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Tiivistelmä: Johanna Rantala, Monitasoinen Monte Carlo -menetelmä ja stokas-
tiset differentiaaliyhtälöt Lévy-prosesseilla, matematiikan pro gradu -tutkielma, 49
s. Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, helmikuu 2019.

Monitasoinen Monte Carlo -menetelmä on perinteisen Monte Carlo -algoritmin
laajennos. Se on numeerinen metodi, jonka avulla voidaan approksimoida satun-
naismuuttujan X odotusarvoa. Menetelmä hyödyntää diskretisointimetodia, jolla

muodostetaan approksimaatiot X̂1, X̂2, . . . , X̂L siten, että jokainen approksimaatio
on edellistä tarkempi. Approksimaation tarkkuuden kasvaessa myös aikavaativuus
kasvaa. Monitasoinen Monte Carlo -menetelmä hyödyntää approksimointia useilla
eri tasoilla. Tällöin osa laskennasta voidaan tehdä epätarkemmilla mutta aikavaa-
tivuudeltaan pienemmillä tasoilla silti saavuttaen kalliimpien approksimaatioiden
tarkkuus. Toisin sanoen, eri tarkkuuksisien approksimaatioiden yhdistäminen las-
kee menetelmän aikavaativuutta.

Tässä tutkielmassa monitasoista Monte Carlo -menetelmää käytetään stokastisen
differentiaaliyhtälön ratkaisun odotusarvon arvioimiseen. Diskretisointimenetelmänä
käytetään Euler-Maruyama -metodia. Approksimaation paikkansapitävyyttä mi-
tataan keskineliövirheellä suhteutettuna menetelmän aikavaativuuteen. Tutkiel-
massa todistetaan Brownin liikkeen avulla muodostetun stokastisen differentiaali-
yhtälön ratkaisun approksimaation keskineliövirheen olevan luokkaa O(h2) aikavaa-
tivuuden ollessa O(h−2(log h)2). Menetelmä laajennetaan Lévy-prosessin avulla
muodostettuihin stokastisiin differentiaaliyhtälöihin, jolloin aikavaativuudella O(n)
ratkaisun approksimaation keskineliövirhe on O(n−1/2) silloin, kun muodostavassa
Lévy-prosessissa ei ole mukana diffuusiokomponenttia, ja O(n−1/2(log n)3/2) muul-
loin.

Taustatietoina käydään läpi perustiedot todennäköisyysteoriasta ja stokastisis-
ta prosesseista. Jälkimmäisistä esitellään nimeltä Brownin liike, Poisson-prosessi
sekä Lévy-prosessi. Prosessien esittelyn yhteydessä tutustutaan myös Lévy-Itô -
hajotelmaan, joka kertoo kuinka Lévy-prosessi voidaan esittää Brownin liikkeen ja
hyppyprosessin yhdistelmänä. Lisäksi käydään läpi stokastista integrointia Brownin
liikkeen ja yleisemmin martingaalin suhteen, sekä Poisson-satunnaismitan suhteen.
Lopuksi tutustutaan lyhyesti stokastisiin differentiaaliyhtälöihin ja niiden ratkaisui-
hin.



Abstract: Johanna Rantala, A Multilevel Monte Carlo algorithm for SDEs with
jumps, Master’s thesis in mathematics, 49 p. University of Jyväskylä, Department
of Mathematics and Statistics, February 2019.

The multilevel Monte Carlo algorithm is an extension of the traditional Monte
Carlo algorithm. It is a numerical method, which allows us to approximate the
expected value of a random variable X. We use some appropriate discretization

method to obtain approximations X̂1, X̂2, . . . , X̂L of X such that each approximation
is made with a finer grid. The more accuracy we want from our approximation, the
more the computational cost grows. The multilevel method exploits evaluation at
multiple levels of refining discretizations allowing us to achieve a better accuracy
with lower cost.

In this thesis we use the Euler scheme to approximate the solution of the stochas-
tic differential equation, and then we use the multilevel Monte Carlo algorithm to
estimate the expected value of the solution. We prove that the mean squared error of
the estimator is O(h2) with computational complexity O(h−2(log h)2) with stochas-
tic differential equations driven by a Brownian motion. Lastly, we prove that with
computational complexity O(n), when the driving process is a Lévy process with-
out Brownian component the error is O(n−1/2) and with the Brownian component
O(n−1/2(log n)3/2).

As a background theory we introduce the basic concepts of probability and of
stochastic processes, namely the Brownian motion, the Poisson processes and Lévy
processes. We formulate the famous Lévy-Itô decomposition, which allows us to
represent a Lévy process as the combination of a jump process and a Brownian mo-
tion. Additionally, we consider stochastic integration with respect to the Brownian
motion, a martingale and the Poisson random measure. We use these to formulate
the stochastic differential equations in two cases, driven by a Brownian motion or
by a Lévy process.
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1. Introduction

In this thesis we study an algorithm known as the multilevel Monte Carlo, which
is an extension of the classical Monte Carlo method. Often computing something
analytically is not possible or it is too expensive. In those cases we need numeri-
cal analysis. Numerical methods are often based on discretizations and evaluating
needed quantities at certain points. When using them we need to find the balance
between the accuracy of the result and the computational complexity, the latter of
which is usually connected to time consumption of the algorithm. The multilevel
Monte Carlo algorithm is used in many applications, for example in option pricing.

Our main goal is to analyze the numerical approximation of

S(g) := E
[
g(Y )

]
,

where Y = (Yt)t∈[0,1] is the solution to a stochastic differential equation (SDE) and
g is the so called payoff function with certain properties. Our main concerns are the
error of the estimate and the time consumption, which we analyze in two different
settings.

As a background for the algorithm we get familiar with some of the most well
known stochastic processes, namely Poisson processes, Brownian motion and Lévy
processes. Using these processes, we define a stochastic integral in various settings,
and proceed to consider the stochastic differential equations.

In the first chapter we focus on the preliminary knowledge needed to understand
the algorithm. The chapter is divided into two parts, which cover the basic theory of
probabilities and stochastic processes. The next chapter covers stochastic integration
and stochastic differential equations as needed in this thesis. The first and the second
chapter will form the main theory behind our main goal, the multilevel Monte Carlo
algorithm.

The third chapter is based on the work of Michael B. Giles [4]. We first formulate
precisely the multilevel Monte Carlo algorithm to approximate the expected value
of g(YT ), when YT is the solution of the SDE driven by a Brownian motion at
time T . The main result of the chapter is that under certain conditions the mean
squared error of the multilevel estimator is O(h2) with the computational complexity
is O(h−2(log h)2).

In the last chapter we extend the algorithm to a more general case. We follow
the work of Steffen Dereich and Felix Heidenreich [3] and consider the solutions to
Lévy-driven SDEs. We consider Lévy processes with finite L’evy measure, and with
the computation time n we obtain an error that is O(n−1/2) in the case where the
driving process has no Brownian component, and O(n−1/2(log n)3/2) otherwise.

2. Preliminaries

In this section we introduce the basic concepts of probabilities and stochastic pro-
cesses. We also present three of the most well known and used stochastic processes,
the Poisson process, the Brownian motion and the Lévy process, and we discuss the
connection between them.

2.1. Probabilities.

Definition 2.1. A collection F of subsets of Ω is a σ-algebra provided that

(i) ∅ ∈ F
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(ii) if A ∈ F then Ac ∈ F
(iii) if A1, A2, A3, . . . ∈ F , then

⋃∞
k=1Ak ∈ F

Example 2.2. It is easy to see that the smallest possible σ-algebra is {∅,Ω}.

Example 2.3. Let G be an arbitrary collection of subsets of Ω. Then σ(G) denotes
the smallest σ-algebra containing the collection G.

If we set G to be system of all open subsets on M ⊆ Rd (or actually on any
topological space), then σ(G) is called Borel σ-algebra and it is denoted by B(M).
The generating system can also be chosen to consist of all closed subsets fromM ⊆ R,
or even of all open (closed, half open) cuboids.

Definition 2.4. Let F be a σ-algebra on Ω. A function P : F → [0, 1] is a probability
measure provided that

(i) P(Ω) = 1
(ii) P(

⋃∞
k=1 Ak) =

∑∞
k=1 P(Ak) for A1, A2, . . . ∈ F with Ak ∩ Al = ∅ for k 6= l.

Definition 2.5. Let F be a σ-algebra on Ω and P a probability measure. The pair
(Ω,F) is called a measurable space, and the triplet (Ω,F ,P) is called a probability
space.

Definition 2.6. Let (Ω,F) be a measurable space. A sequence (Ft)t≥0 of σ-algebras
on Ω, such that Fs ⊆ Ft ⊆ F for 0 ≤ s < t < ∞, is called a filtration. The
probability space (Ω,F ,P) with filtration (Ft)t≥0 is called a stochastic basis or a
filtered probability space and is denoted by (Ω,F , (Ft)t≥0,P).

Definition 2.7. Let (Ω,F) be a measurable space. The function f : Ω → R is a
random variable, if every pre-image of a Borel set is in F , i.e. f−1(B) := {ω ∈ Ω :
f(ω) ∈ B} ∈ F for every B ∈ B(R). The function f is then said to be F -measurable.
In general, if (Ω,F) and (M,Σ) are measurable spaces, a map f : Ω→ M is called
(F ,Σ)-measurable, provided that

f−1(B) := {ω ∈ Ω : f(ω) ∈ B} ∈ F for every B ∈ Σ.

Definition 2.8. [1, p. 10] Let (Ω,F ,P) be a probability space, G ⊆ F be a σ-algebra
and f be an integrable real valued random variable on (Ω,F ,P). Then there exists
an integrable random variable g on (Ω,G,P) such that∫

B

fdP =

∫
B

gdP for all B ∈ G.

The function g is called conditional expectation of f with respect to G and is denoted
by

g = E[f |G].

When f = (f1, f2, . . . , fd) takes values in Rd with E[|f |] <∞, we write

E[f |G] =
(
E[f1|G],E[f2|G], . . . ,E[fd|G]

)
.

The conditional expectation is unique up to null sets from G.

In the following proposition we list some well known properties of the conditional
expectation.

Proposition 2.9. Let f , f1 and f2 be integrable Rd-valued random variables on
(Ω,F ,P) and let H ⊆ G ⊆ F be σ-algebras.
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(i) If f is G-measurable, then E[f |G] = f a.s.
(ii) Linearity: For a, b ∈ Rd we have E[af1 + bf2|G] = aE[f1|G] + bE[f2|G] a.s.

(iii) Convexity: For a convex function g we have g
(
E[f |G]

)
≤ E

[
g(f)|G

]
a.s.

(iv) Tower property: E[f |H] = E
[
E[f |H]

∣∣G] = E
[
E[f |G]

∣∣H] a.s.

Proof. (i) Follows from the definition of conditional expectation.
(ii) Follows from∫

B

E[af1 + bf2|G]dP =

∫
B

af1 + bf2dP

= a

∫
B

f1dP + b

∫
B

f2dP

= a

∫
B

E[f1|G]dP + b

∫
B

E[f2|G]dP for all B ∈ G.

(iii) Follows from Jensen’s inequality.
(iv) Since E[f |H] is H-measurable and therefore G-measurable, the first equality

follows from (i). Because H ⊆ G, the second equality follows from the fact
that for all B ∈ H we have∫

B

E
[
E[f |G]

∣∣H]dP =

∫
B

E[f |G]dP =

∫
B

fdP =

∫
B

E[f |H]dP.

�

Definition 2.10. A probability distribution F on Rd is said to be infinitely divisible
if for any integer n ≥ 2, there exist n i.i.d random variables Z1, . . . , Zn such that
Z1 + · · ·+ Zn has distribution F .

2.2. Stochastic processes. Stochastic processes are an important tool for analyz-
ing phenomena that are changing randomly over time. They can be defined as a
collection Z = (Zt)t≥0 of random variables where the parameter t describes the time.
The map t 7→ Zt(ω) for fixed ω is called a (sample) path.

Definition 2.11. For any stochastic process Z = (Zt)t≥0, we call the filtration
(FZt )t≥0 given by

FZt = σ(Zs : s ≤ t)

the natural filtration of Z. Here the notation σ(·) represents the smallest σ-algebra
generated by a collection of random variables.

Definition 2.12. A stochastic process Z = (Zt)t≥0 is said to be (Ft)t≥0-adapted or
adapted, if each Zt is Ft-measurable.

Remark 2.1. Note that the natural filtration of the process Z is actually the filtration
generated by process Z. It is also the smallest filtration with respect to which the
process Z is adapted.

Definition 2.13. The predictable σ-algebra is the σ-algebra P on Ω × [0,∞) that
is generated by all left-continuous adapted processes considered as mappings from
Ω× [0,∞) to R. A process that is P-measurable is called a predictable process.

Remark 2.2. [6, p. 16, Theorem 2.2] A predictable σ-algebra is also generated by a
collection of random sets

A× {0}, where A ∈ F0, and A× (s, t], where s < t,A ∈ Fs.
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Definition 2.14. A stochastic process Z is called progressively measurable (with
respect to (Ft)t≥0) if the mapping (s, ω) 7→ Zs(ω) : ([0, t] × Ω,B([0, t]) ⊗ Ft) →
(Rd,B(Rd)) is measurable for every t ≥ 0.

Proposition 2.15. A predictable process is progressively measurable, and a progres-
sively measurable process is also measurable and adapted. Additionally, an adapted
process with all paths left- or right-continuous is progressively measurable.

Proof. By Remark 2.2 the generating sets of the predictable σ-algebra are of form

A× {0}, where A ∈ F0, or A× (s, t], where s < t,A ∈ Fs.
It is clear, that each of these sets belongs in B

(
[0, t]

)
⊗ Ft, which implies that

predictable processes are progressively measurable. Measurability and adaptedness
of a progressively measurable process follow from the definition of progressively
measurable process. For the final statement we refer reader to [7, p. 5, Proposition
1.13]. �

Definition 2.16. Let X and Y be metric spaces. A function f : X → Y is called
cadlag if it is right-continuous with left limits, i.e. if both left and right hand side
limits exist and f(x0) = limx↘x0 f(x) for each x0 ∈ X. The process Z is cadlag if
all its paths are cadlag.

Similarly, we define caglad functions to be left-continuous with right limits.

Remark 2.3. For any cadlag process Z we let Zt− denote the left limit with Z0− := Z0

and for t > 0
Zt− := lim

s↗t
Zs.

Additionally we let ∆Zt denote the jump sizes

∆Zt := Zt − lim
s↗t

Zs = Zt − Zt−.

Proposition 2.17. [6, p. 17, Proposition 2.6] If Z is a cadlag (Ft)t≥0-adapted
process, then (Zt−)t≥0 is a predictable process.

Definition 2.18. The jump times T of a cadlag process Z are defined by T0 := 0
and

Tk := inf{t > Tk−1 : ∆Zt 6= 0}.

Definition 2.19. The jump measure JZ of process Z is defined by

JZ(B) = #{(t,∆Zt) ∈ B}
with B ∈ B((0,∞)× Rd). For every measurable set A ⊂ Rd, JZ([t1, t2]× A) counts
the number of jump times of the process Z between t1 and t2 such that their jump
sizes are in A.

Definition 2.20. Let E ⊂ Rd. A Radon measure on (E,B) is a measure µ such
that µ(B) <∞ for every compact measurable set B ∈ B.

Definition 2.21. Let (Ω,F ,P) be a probability space, E ⊂ Rd and µ a given
positive Radon measure on (E, E). A Poisson random measure on E with intensity
measure µ is an integer valued random measure

N : Ω× E → N, (ω,A) 7→ N(ω,A)

such that
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(i) the measure N(ω, .) is an integer valued Radon measure on (E, E) for almost
all ω ∈ Ω.

(ii) the function N(., A) = N(A) is a Poisson random variable with intensity
µ(A) for each measurable set A ⊂ E, i.e.

P(N(A) = k) = e−µ(A) (µ(A))k

k!
for all k ∈ N.

(iii) For disjoint measurable sets A1, . . . , An ∈ E , the variables N(A1), . . . , N(An)
are independent.

Definition 2.22. Given the Poisson random measure N the compensated Poisson
random measure Ñ is given by

Ñ(A) = N(A)− µ(A).

Definition 2.23. Let τ ≥ 0 be a positive random variable with

{τ ≤ t} ∈ Ft
for all t ≥ 0. Then τ is called a stopping time with respect to filtration (Ft)t≥0.
Moreover,

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ F for all t ∈ R

}
.

Definition 2.24. Let (Zt)t≥0 be a stochastic process and τ a stopping time. Then
the process (Zτ∧t)t≥0 is called a stopped process.

Definition 2.25. The process Z = (Zt)t≥0 is square integrable, if E[|Zt|2] < ∞ for
all t ≥ 0.

Definition 2.26. Let Z = (Zt)t≥0 be an adapted and integrable stochastic process.
Then Z is a

(i) super-martingale if E[Zt|Fs] ≤ Xs a.s. for all 0 ≤ s ≤ t,
(ii) sub-martingale if E[Zt|Fs] ≥ Xs a.s. for all 0 ≤ s ≤ t,

(iii) martingale if E[Zt|Fs] = Xs a.s. for all 0 ≤ s ≤ t.

Remark 2.4. We will sometimes call a square integrable martingale, i.e. a martingale
(Mt)t≥0 with Mt ∈ L2 for all t ≥ 0, an L2-martingale.

Proposition 2.27. A martingale M has constant expectation, i.e. E[Mt] = E[M0]
for all t ≥ 0.

Proof. This follows from the definition of the martingale and the tower property of
the conditional expectation. �

Remark 2.5. If τ is a stopping time, then a martingale M stopped at time τ is also
a martingale. It is called a stopped martingale.

Next we introduce some well known stochastic processes, which will be used later.

Definition 2.28. Let W1,W2, . . . be independent and exponentially distributed ran-
dom variables with parameter λ > 0, T0 := 0 and Tn :=

∑n
i=1Wi. The process

(Nt)t≥0 defined by

Nt =
∑
n≥0

1t≥Tn

is called a Poisson process with intensity λ.
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Remark 2.6. [2, p. 55] The sequence (Ti)i=0,1,2,... denotes the jump times of the
Poisson process (Nt)t≥0. Thus, the process counts the amount of jumps that occur
at the time interval [0, t]. We observe that it defines a measure N by setting

N(ω,A) = #{i ≥ 1, Ti(ω) ∈ A}

for any measurable set A ⊂ [0,∞). This measure is a Poisson random measure on
[0,∞) with Lebesgue measure as intensity measure. We can represent the Poisson
process as

Nt(ω) =

∫ t

0

N(ω, ds).

Proposition 2.29. [2, p. 48, Proposition 2.12] Let the process N = (Nt)t≥0 be a
Poisson process with intensity λ > 0. Then

(i) Nt has independent increments

(ii) P(Nt = n) = e−λt (λt)n

n!
for all n ∈ N

(iii) for any t > s, Nt −Ns
d
= Nt−s

(iv) the paths t 7→ Nt(ω) are cadlag almost surely.

Remark 2.7. The filtration generated by the Poisson process (Nt)t∈R+ is denoted by

FNt := σ(Ns : s ∈ [0, t])

for t ≥ 0.

Proposition 2.30. The compensated Poisson process

(Nt − λt)t≥0

is a martingale with respect to (FNt )t≥0.

Proof. We will prove this in a more general case in Proposition 2.35. �

Definition 2.31. Let N = (Nt)t≥0 be a Poisson process with intensity λ, Wi i.i.d.
random variables with distribution f and N be independent from (Wi)i≥1. Then the
process

Ct =
Nt∑
i=1

Wi

with the convention that Ct = 0 if Nt = 0, is called compound Poisson process with
intensity λ > 0 and jump size distribution f on (Rd,B(Rd).

Remark 2.8. The jump size ∆Ct of the compound Poisson process at time t is given
by the relation

∆Ct = WNt∆Nt

for t ≥ 0 i.e. because ∆Nt ∈ {0, 1}, the process C can only have jumps when N has
jumps, and the size of the jump is WNt . Clearly jump sizes are independent from
jump times.

Proposition 2.32. [2, p. 71] Let C = (Ct)t≥0 be a compound Poisson process. Then

(i) The sample paths of C are piecewise constant functions.
(ii) The jump times (Ti)i=1,2,... can be expressed as partial sums of independent

exponential random variables with parameter λ.
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Figure 1. Typical sample paths of compound Poisson process and
compensated Poisson process.

Remark 2.9. A typical sample path of a compound Poisson process alongside with
a compensated compound Poisson process are shown in Figure 1.

Proposition 2.33. The characteristic function of the increment CT − Ct for any
t ∈ [0, T ] is

ϕCT−Ct(s) = E
[

exp
(
is(CT − Ct)

)]
= exp

(
λ(T − t)

(
ϕW1(s)− 1

))
, s ∈ Rd.

Proof. By definition of the characteristic function and the compound Poisson pro-
cess, and with conditioning we have

ϕCT−Ct(s) = E[exp(is(CT − Ct))]

= E[exp(is(

NT∑
k=1

Wk −
Nt∑
k=1

Wk))]

= E[exp(is(

NT∑
k=Nt+1

Wk))]

=
∞∑
n=0

∞∑
m=0

E
[

exp
(
is(

m+n∑
k=n+1

Wk)
)∣∣∣Nt = n,NT −Nt = m

]
· P(Nt = n,NT −Nt = m).

The Poisson process has independent and stationary increments which gives us

P(Nt = n,NT −Nt = m) = P(Nt = n)P(NT −Nt = m)

= e−λt
(λt)n

n!
e−λ(T−t)

(
λ(T − t)

)m
m!

= e−λT
(λt)n

n!

(
λ(T − t)

)m
m!

,
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and with the independence of the Poisson process N and the random variables
W1,W2, . . . we get that

E
[

exp
(
is(

m+n∑
k=n+1

Wk)
)∣∣∣Nt = n,NT −Nt = m

]

= E
[

exp
(
is(

m+n∑
k=n+1

Wk)
)]

=
m+n∏
k=n+1

E
[

exp(isWk)
]

= E
[

exp(isW1)
]m
.

Combining these with the Taylor expansion of ex gives us

∞∑
n=0

∞∑
m=0

E
[

exp
(
is(

m+n∑
k=n+1

Wk)
)∣∣∣Nt = n,NT −Nt = m

]
· P(Nt = n,NT−t = m)

=
∞∑
n=0

∞∑
m=0

E
[

exp(isW1)
]m
e−λT

(λt)n

n!

(λ(T − t))m

m!

= e−λT
∞∑
n=0

(λt)n

n!

∞∑
m=0

E
[

exp(isW1)
]m (λ(T − t))m

m!

= exp(−λT ) exp(λt) exp
(
E
[
eisW1

]
λ(T − t)

)
= exp

(
λ(T − t)

(
E[eisW1 ]− 1

))
= exp

(
λ(T − t)

(
ϕW1(s)− 1

))
.

�

Corollary 2.34. By setting t = 0 we get the characteristic function of the process

C at time T to be ϕCT (s) = E
[

exp
(
is(CT )

)]
= exp

(
λT (ϕW1(s)− 1)

)
.

The Poisson process is actually a special case of the compound Poisson process:
for a Poisson process the jump height distribution is f = δ1. Thus, the characteristic
function of the increment of the Poisson process N is

ϕNT−Nt(s) = exp
(
λ(T − t)(exp(is)− 1)

)
.

With the characteristic function it is easy to compute the expectation of the
compound Poisson process (Ct)t≥0 for fixed t as E[Ct] = λtE[W1] and the variance
as Var[Ct] = λtE[|W1|2] = E[Nt]E[|W1|2].

Proposition 2.35. The compensated compound Poisson process

C̃t := Ct − λtE[W1]

for t ≥ 0 is a martingale with respect to the filtration (FCt )t≥0.
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Proof. Let t ≥ s. Note that the random variable C̃s is measurable with respect to
FCs and that the increment C̃t − C̃s is independent from FCs . Thus we have that

E[C̃t|FCs ] = E[C̃t + C̃s − C̃s|FCs ] = E[C̃t − C̃s] + C̃s

= E[Ct − Cs]− λE[W1](t− s) + C̃s

= C̃s

�

Definition 2.36. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis and B = (Bt)t≥0 a
stochastic process with Bt : Ω → Rd for d = 1, 2, . . .. A process B is called a d-
dimensional standard Brownian motion (with respect to filtration (Ft)t≥0) provided
that

(i) B0 ≡ 0 almost surely,
(ii) B has almost surely continuous paths,

(iii) B is adapted,
(iv) for all 0 ≤ s ≤ t <∞ the increment Bt −Bs is independent from Fs and
(v) the increment Bt −Bs is N (0, (t− s)Id) distributed

where Id is the d-dimensional identity matrix.

Definition 2.37. [1, p. 48-49] Let B = (Bt)t≥0 be a standard r-dimensional Brow-
nian motion, µ ∈ Rd and σ a d × r-matrix. Then the process X = (Xt)t≥0, where
Xt = µt + σBt is called Brownian motion with a drift parameter µ and covariance
matrix σσ∗.

Proposition 2.38. [5, p. 179] Let M = (Mt)t≥0 be a right-continuous square
integrable F-martingale. Then there exists a right-continuous increasing process
[M ] = ([M ]t)t≥0 such that for each t ≥ 0 and each sequence of partitions pn = (0 =
tn0 ≤ tn1 ≤ · · · ≤ tmn0 = T ) of [0, T ] with ∆(pn)→ 0 as n→∞, we have

Sn =
mn∑
k=1

(
M

t
(n)
k
−M

t
(n)
k−1

)2

→ [M ]t in L1 as n→∞.

Definition 2.39. The process [M ] of proposition (2.38) is called quadratic variation
of the martingale M .

Example 2.40. The quadratic variation of the standard Brownian motion B is

[B]t = t.

It can also be proven, that given an adapted and continuous process Z = (Zt)t≥0

such that Z0 = 0 with [Z]t = t, then the process Z is actually a Brownian motion.
This is known as the Lévy’s characterization of the Brownian motion.

Proposition 2.41. [5, p. 180] If M is a square integrable, right-continuous F-
martingale, then

M2 − [M ]

is a martingale.
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2.3. Lévy processes. Lévy processes are the time-continuous counterpart of ran-
dom walks from the discrete world. The compound Poisson process and the Brow-
nian motion considered before are both core examples of Lévy processes, and they
can also be seen as building blocks of more complicated ones. A typical sample path
of a Lévy process is shown in Figure 2.

Definition 2.42. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis and let X = (Xt)t≥0

be cadlag with values in Rd. The process X is called Lévy process if and only if

(i) X0 = 0 almost surely,
(ii) X is adapted,
(iii) for all 0 ≤ s ≤ t <∞ the increment Xt −Xs is independent from Fs and
(iv) for all 0 ≤ s < ∞ and 0 < t < ∞ the distribution of Xs+t − Xs does not

depend on s.
(v) for all ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0 (stochastic continuity).

Figure 2. A typical sample path of a Lévy process.

Proposition 2.43. [2, p. 69, Proposition 3.1] Let X = (Xt)t≥0 be a Lévy process.
Then for every t, Xt has an infinitely divisible distribution. Conversely, if F is
an infinitely divisible distribution then there exists a Lévy process X such that the
distribution of X1 is given by F .

Definition 2.44. Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on Rd defined
by

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of X, i.e. it describes the expected number of times
between 0 and 1 the process jumps such that the jump size belongs to the set A.
Note that the Lévy measure is in general not a probability measure.

Example 2.45. The Lévy measure ν of a compound Poisson process C = (Ct)t≥0

is given by ν(A) = λf(A), where f is the jump size distribution of C. It is also easy
to see that due to continuity of the paths the standard Brownian motion has Lévy
measure ν(A) = 0 for any A ∈ B(Rd).

11



Proposition 2.46. [2, p. 75, Proposition 3.5] Let (Ct)t≥0 be a compound Poisson
process with intensity λ and a jump size distribution f . Its jump measure JC is
a Poisson random measure on Rd × [0,∞) with intensity measure µ(dx × dt) =
ν(dx)dt = λf(dx)dt.

Proposition 2.47. [2, p. 71, Proposition 3.3] A process X is a compound Pois-
son process if and only if it is a Lévy process and its sample paths are piecewise
continuous functions.

All information needed to determine the distribution of the Lévy process is uniquely
described by the triplet (ν, σσ∗, b), where ν is the Lévy measure of the process, σσ∗
is a d×d matrix and b is a d-dimensional vector. It is called the characteristic triplet
or the Lévy triplet of the Lévy process X.

THEOREM 2.48 (Lévy-Itô decomposition). [1, p. 126, Theorem 2.4.16] If X is
a Lévy process, then there exists b ∈ Rd, a Brownian motion σB with covariance
matrix σσ∗ and an independent Poisson random measure N on [0,∞) × (Rd \{0})
with intensity measure ν(dx)dt such that

Xt = bt+ σBt +

∫
B1

xÑ(t, dx) +

∫
Bc

1

xN(t, dx)

for each t ≥ 0.

The Lévy-Itô decomposition shows us that a Lévy processX can be decomposed to
a rather simple form. The decomposition consists of three components, first of which
is a Brownian motion with a drift and the latter ones describe the jump parts of the
process divided into small and large ones respectively. Small jumps can be tricky
because there can be infinitely many of them possibly preventing their sum from
converging. Hence, we use the compensated sum of small jumps, i.e. the process
(
∫
|x|<1

xÑ(t, dx))t≥0 which is an L2-martingale. The process (
∫
|x|≥1

xN(t, dx))t≥0

describing the large jumps is a coumpound Poisson process (see e.g. [1, p. 127], [2,
p. 80]). If we make some further assumptions on the Lévy measure we can achieve
an even simpler form.

Remark 2.10. If the measure ν is finite and
∫
Rd |x|

2ν(dx) < ∞, then we can write
the process X as

Xt =

(
b+

∫
Bc

1

xν(dx)

)
t+ σBt +

∫
Rd
xÑ(t, dx)

and it follows from Proposition 3.7 that the process (Lt)t≥0 with Lt =
∫
Rd xÑ(t, dx)

is a square integrable martingale and

E[L2
t ] = t

∫
Rd
x2ν(dx).

Remark 2.11. Integration with respect to Poisson random measures is considered in
section 3.3 more specifically.

THEOREM 2.49 (Lévy-Khinchin). Let (Xt)t≥0 be a Lévy process on Rd with char-
acteristic triplet (ν, σσ∗, b). Then

E[eiz.Xt ] = etψ(z), z ∈ Rd

12



with

ψ(z) = −1

2
z.(σσ∗)z + ib.z +

∫
Rd

(eiz.x − 1− iz.x1|x|≤1)ν(dx).

Example 2.50. From the Lévy-Itô decomposition it is easy to see that the Lévy
triplet of the standard Brownian motion B is (0, Id, 0) and hence its characteristic
function is

E
[
eiz.Bt

]
= exp

(
− 1

2
t

d∑
k=0

z2
k

)
.

3. Stochastic integrals and SDEs

In this section we will finish the background theory with the basics about sto-
chastic integration and the SDEs. We assume that the reader is familiar with the
fundamental measure theory. We begin by making some assumptions and continue
with introducing the essentials of stochastic integrals with respect to Brownian mo-
tion. We will then extend the idea of stochastic integrals to cover integrals with
respect to jump processes, more precisely to the compound Poisson processes, and
sums of a compound Poisson process and a Brownian motion. Lastly, we present
the stochastic differential equations to the extent of what is needed in this study.
For more detailed theory we refer the reader to [7] for Brownian motion and [1] for
more general cases.

We fix the stochastic basis (Ω,F , (Ft)t≥0,P) and from now on we will, unless said
otherwise, assume that our stochastic basis satisfies the usual conditions, meaning
that

(i) any set contained in a set of measure zero has also measure zero, or in other
words, the space (Ω,F ,P) is complete,

(ii) Ft =
⋂
s>tFs, or in other words, the filtration is right-continuous.

We note here that completing an incomplete space is straight-forward and so is
enlarging a filtration to be a right-continuous one when the filtration is generated
by a strong Markov process. It means that any stochastic basis can be transferred
to satisfy the usual conditions without too many changes.

Before we begin with stochastic integration, we present two famous and useful
inequalities, Gronwall’s lemma and Doob’s martingale inequalities.

Proposition 3.1 (Gronwall). [1, p. 358, Proposition 6.1.4] Let f, g : [0, T ]→ [0,∞)
with f locally bounded and g integrable. If there exists C ≥ 0 such that, for all
t ∈ [0, T ],

f(t) ≤ C +

∫ t

0

f(s)g(s)ds,

then we have

f(t) ≤ C exp

(∫ t

0

g(s)ds

)
.

Lemma 3.2 (Doob). [1, p. 87, Theorem 2.1.6; p. 86, Theorem 2.1.5] Let M =
(Mt)t≥0 be a right-continuous martingale or a right-continuous positive sub-martingale.
Let M∗

t := sups∈[0,t] |Ms|. Then, for λ, t ≥ 0 and p ∈ (1,∞),

λP(M∗
t ≥ λ) ≤ E[|Mt|]
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and

E[(M∗
t )p] ≤

(
p

p− 1

)p
E[|Mt|p].

3.1. Stochastic integrals with respect to Brownian motion. [7, p. 132-139]
We begin by briefly reviewing a stochastic integral of simple processes with respect
to Brownian motion. A simple process is a pathwise constant process with some ad-
ditional properties. More precisely, we have a simple process K if for some partition
0 = t0 < t1 < . . . with limn→∞ tn =∞ and random variables ξ0, ξ1, . . . with ξi being
Fti-measurable for all i with supn≥0 |ξn(ω)| <∞, for every ω, such that

Kt = ξ01t=0 +
∞∑
i=1

ξi−11(ti−1,ti](t)

where 0 ≤ t <∞. The stochastic integral of a simple process K with respect to the
Brownian motion B is the process (It(K))t≥0 with

IBt (K) =
∞∑
i=1

ξi−1(Bti∧t −Bti−1∧t).

This integral can be generalizated from simple processes to progressively measurable

processes with E
[ ∫ T

0
K2
t dt
]
<∞. It can be shown (see e.q. [7, p. 137, Proposition

2.8]) that for a progressively measurable process (Kt)t≥0 there exists a sequence

((Kt)
(n)
t≥0)∞n=0 of simple processes such that

lim
n→∞

E
[ ∫
|Kt −K(n)

t |2dt
]

= 0.

In other words, the space of simple processes is included in the space of progressively
measurable processes, and the inclusion is dense. Now the stochastic integral of the
process K with respect to the Brownian motion is the unique, square-integrable
martingale (JBt (K))t≥0 for which

lim
n→∞

E
[
JBt (K)− IBt (K(n))

]
= 0.

We write ∫ t

0

KsdBs := JBt (K)

and additionally ∫ t

s

KsdBs := JBt (K)− JBs (K)

for ∞ > t ≥ s ≥ 0.
Since later we are interested in predictable processes in particular, we formulate

the first isometry result for predictable processes. Recall that any predictable process
is also progressively measurable and hence the definition of the integral with respect
to Brownian motion we formulated holds for predictable processes.

Proposition 3.3 (isometry). [2, p. 259, Proposition 8.6] Let φ be a predictable
process verifying

E
[ ∫ t

0

|φs|2ds
]
<∞.
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Then
∫ t

0
φsdBs is is a square integrable martingale with E

[ ∫ t
0
φsdBs

]
= 0 and

E
[∣∣∣∣ ∫ t

0

φsdBs

∣∣∣∣2] = E
[ ∫ t

0

|φs|2dt
]
.

3.2. Stochastic integrals with jumps. [2, p. 249] The notion of stochastic in-
tegrals can be extended to various situations. In this study, we are interested in
processes with jumps. For this setting, we need to define simple predictable pro-
cesses.

Definition 3.4. A stochastic process K = (Kt)t>=0 is called a simple predictable
process if it can be represented as

Kt = K01{t=0} +
n∑
i=0

Ki1(Ti,Ti+1](t),

where 0 = T0 ≤ . . . ≤ Tn+1 < ∞ is a finite sequence of stopping times and Ki is
FTi-measurable with |Hi| <∞ a.s.

In Proposition 2.35 we saw that the compensated compound Poisson process is
actually a martingale. Similarly to the case with Brownian motion we now use
the simple predictable processes as integrands and instead of Brownian motion we
consider integration with respect to a martingale M , namely the process

(
IMt (K)

)
t≥0

with

IMt (K) = K0M0 +
n∑
i=0

Ki(MTi+1∧t −MTi∧t).

It can be shown that with M being a martingale and K a simple predictable
process the integral process

(
IMt (K)

)
t≥0

is also a martingale [2, p. 251, Proposition

8.1]. In many applications simple processes are not enough but we want to study also
more complex integrands. However, it is essential for us to conserve the martingale
preservation property. This leads us to caglad integrands.

Proposition 3.5. [2, p. 256, Proposition 8.4] Let M be a martingale, φ a caglad
process and pn = (T n0 = 0 < T n1 < · · · < T nn+1 = T ) a sequence of random partitions
of [0, T ] such that |pn| = supk |T nk − T nk−1| → 0 almost surely when n→∞. Then

lim
n→∞

n∑
k=0

φTnk (MTnk+1∧t −MTnk ∧t) = JMt (φ) in probability

uniformly in t on [0, T ].

The martingale-preserving property can now be formulated as follows.

Proposition 3.6. [9, p. 56, Theorem 20] Let the process M = (Mt)t≥0 be a square
integrable martingale and K = (Kt)t≥0 an adapted, caglad and bounded process.
Then the stochastic integral of K with respect to M , i.e. the process

(
IMt (K)

)
t≥0

is

also a square integrable martingale.

Like in Brownian motion case, we write∫ t

0

KsdMs := JMt (K)
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and additionally ∫ t

s

KsdMs := JMt (K)− JMs (K)

for ∞ > t ≥ s ≥ 0.

3.3. Stochastic integrals with respect to Poisson random measures. [2, p.
259-263][1, p. 214] In this case, we consider simple predictable functions instead of
processes and then by taking limits we extend to more general ones in analogy to
previous cases. Let N be a Poisson random measure on [0, T ] × Rd with intensity
µ(dt, dx). We say that the function K : Ω×[0, T ]×Rd → R is simple and predictable
if, for some m,n ∈ N there exist adapted random times (Ti)

n+1
i=0 such that 0 = T0 ≤

T1 ≤ . . . ≤ Tn+1 = T , bounded FTi-measurable random variables (Kij)j=1,...,m and
disjoint subsets (Ai)

n
i=1 of Rd with µ

(
[0, T ]× Ai

)
<∞ such that

K(t, y) =
n∑
i=1

m∑
j=1

Kij1(Ti,Ti+1](t)1Aj(y). (3.1)

The stochastic integral of K with respect to Poisson random measure N is defined
as ∫ T

0

∫
Rd
K(t, y)N(dt, dy) =

n∑
i=1

m∑
j=1

Kij

∫
(Ti,Ti+1]×Aj

N(dt, dy)

and similarly the corresponding compensated integral is∫ T

0

∫
Rd
K(t, y)Ñ(dt, dy) =

n∑
i=1

m∑
j=1

Kij

∫
(Ti,Ti+1]×Aj

Ñ(dt, dy)

=
n∑
i=1

m∑
j=1

Kij

(∫
(Ti,Ti+1]×Aj

N(dt, dy)− µ
(
(Ti, Ti+1]× Aj

))
.

The space of simple predictable functions is dense in the space of predictable and
square integrable functions (see [1, p. 218, Lemma 4.1.4]). Hence given a predictable
random function K with

E
[ ∫ T

0

∫
Rd
|K(t, y)|2µ(dt, dy)

]
<∞

there exists a sequence
(
K(n)

)∞
n=0

of simple predictable functions such that

lim
n→∞

E
[ ∫ T

0

∫
Rd
|K(n)(t, y)−K(t, y)|2µ(dt, dy)

]
= 0.

This results in the following proposition about the compensated Poisson integral
and the isometry formula.

Proposition 3.7. [2, p. 262, Proposition 8.8] Let K : Ω × [0, T ] × Rd → R be a
predictable random function with

E
[ ∫ T

0

∫
Rd
|K(t, y)|2µ(dt, dy)

]
<∞.
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Then the process
( ∫ t

0

∫
Rd |K(t, y)|2Ñ(dt, dy)

)
t≥0

is a square integrable martingale

and

E
[∣∣∣∣ ∫ T

0

∫
Rd
K(t, y)Ñ(dt, dy)

∣∣∣∣2] = E
[ ∫ T

0

∫
Rd
|K(t, y)|2µ(dt, dy)

]
.

3.4. Stochastic differential equations. We begin with formulating the notion of
stochastic differential equations in two cases, with respect to Brownian motion and
with respect to a Lévy process.

Definition 3.8. Let y0 ∈ Rd, B be an r-dimensional Brownian motion and let
functions µ : [0,∞) × Rd → Rd and σ : [0,∞) × Rd → Rd × Rr be continuous.
Then a continuous and adapted stochastic process Y = (Yt)t≥0 with values in Rd is
a (strong) solution of the stochastic differential equation with respect to Brownian
motion

dYt = σ(t, Yt)dBt + µ(t, Yt)dt with Y0 = y0 (3.2)

if

(i) Y0 = y0,

(ii) Yt = y0 +
∫ t

0
σ(s,Xs)dBs +

∫ t
0
µ(s,Xs)ds for t ≥ 0 a.s.

Remark 3.1. The function µ of the stochastic differential equation is called drift
coefficient and the function σ diffusion coefficient.

In the following | · | will denote the Euclidean norm in Rd, for d ∈ N.

THEOREM 3.9 (Existence and uniqueness). [7, p. 289, Theorem 2.9] Let y0, B,
σ and µ be as stated in Definition 3.8 with σ and µ satisfying

|σ(t, x)− σ(t, y)|+ |µ(t, x)− µ(t, y)| ≤ K|x− y|
and

|σ(t, x)|2 + |µ(t, x)|2 ≤ K2(1 + |x|2)

for every 0 ≤ t < ∞, x ∈ Rd, y ∈ Rd with a positive constant K. Then there
exists a continuous, adapted process Y = (Yt)t≥0 which is a (strong) solution of
equation (3.2). Moreover, this process is square integrable, i.e. for every T > 0
there exists a constant C, depending only on K and T such that

E[|Yt|2] ≤ C(1 + y2
0)eCt

for 0 ≤ t ≤ T , and the solution is unique up to indistinguishability.

When thinking about financial applications, the main problems concerning Brow-
nian motion as driving process are the continuity and the scale invariance of the
sample paths of the Brownian motion. Many real life events like share prices we
want to simulate are not continuous at all. To be able to provide more accurate and
realistic models for these phenomena we need to formulate also the concept of the
stochastic differential equation with respect to Lévy processes.

Definition 3.10. [1, p. 377] Let y0 ∈ Rr and X = (Xt)t≥0 be a Lévy process with
values in Rd. Recall that by Theorem 2.48 (Lévy-Itô decomposition) Xt can be
written as

Xt = bt+ σBt +

∫
B1

xÑ(t, dx) +

∫
Bc

1

xN(t, dx)
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for t ≥ 0, b ∈ Rd and a d×d matrix σ. Let also a : Rd → Rd×Rr be a function. Then
a cadlag and adapted Rr-valued process Y = (Yt)t≥0 is a solution of the stochastic
differential equation with respect to the Lévy process

dYt = a(Yt−)dXt with Y0 = y0 (3.3)

provided that

(i) Y0 = y0 and

(ii) Yt = y0 + b
∫ t

0
a(Ys−)ds+ σ

∫ t
0
a(Ys−)dBs

+
∫
B1
a(Ys−)xÑ(t, dx)

+
∫
Bc

1
a(Ys−)xN(t, dx).

THEOREM 3.11 (Existence and uniqueness). [1, p. 377-378] If there exists a
positive constant K such that

|a(y)− a(y′)| ≤ K|y − y′|

for all y, y′ ∈ Rd, then there exists a cadlag and adapted process Y = (Yt)t≥0 which
is a unique solution to the equation (3.3).

4. The multilevel Monte Carlo algorithm

In this section we consider an SDE with respect to a Brownian motion given in
Definition 3.8. Our primary object of interest is the expected value of g(YT ), where
Y = (Yt)t∈[0,T ] is a solution to given SDE and g is a Lipschitz payoff function with a
Lipschitz constant Cg. In general we are not able to compute this analytically, not
even when the existence and uniqueness of the solution are known. In these cases
one can try to find a good enough approximate solution by using a discrete time
net. With a finer time grid we achieve a smaller error but with a high computational
cost and, on the other hand, by using a coarser grid the cost would be less but the
error would grow. Using different time grids on different levels of evaluation is one
solution to find the balance between these two options.

We begin by formulating a simple numerical method which is used to approximate
the solution of the given SDE. This method is known as the Euler-Maruyama method
or the Euler scheme.

Definition 4.1 (Euler-Maruyama). [8, p. 305-307, 340-341] Let Y = (Yt)t≥0 be
a solution to a Brownian motion driven stochastic differential equation (3.2) and
let p denote a partition of m timepoints on [0, T ] with 0 = t0 < . . . < tm = T .
We write h = maxn(tn − tn−1) and call it the maximum timestep. We define the

approximation of process Y as Ŷ
(h)

0 = y0 and for k = 0, . . . ,m− 1,

Ŷ
(h)
tk+1

= Ŷ
(h)
tk

+ µ(tk, Ŷ
(h)
tk

)(tk+1 − tk) + σ(tk, Ŷ
(h)
tk

)(Btk+1
−Btk)

with Ŷ
(h)
t = Ŷ

(h)
tk

for all t ∈ [tk, tk−1). For simplicity, we use an equidistant time
discretization and set tk = kT/m for all k > 0, unless said otherwise. In the

equidistant case every timestep is T/m and our approximation is Ŷ
(h)

0 = y0 and for
k = 0, . . . , n

Ŷ
(h)
tk+1

= Ŷ
(h)
tk

+ µ(tk, Ŷ
(h)
tk

)h+ σ(tk, Ŷ
(h)
tk

)(Btk+1
−Btk).
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Proposition 4.2. [8, p. 342, Theorem 10.2.2] Let Y = (Yt)t≥0 be a solution to

a Brownian motion driven stochastic differential equation (3.2), and let Ŷ (h) be its
Euler approximation with maximum timestep h. Assume that the conditions for the
existence and uniqueness stated in Theorem 3.9 hold. Additionally, we assume that
with some constant K > 0, which does not depend on h, we have that

|σ(s, x)− σ(t, x)|+ |µ(s, x)− µ(t, x)| ≤ K
(
1 + |x|

)
|s− t|1/2 (4.1)

for all s, t ∈ [0, T ] and x, y ∈ Rd. Then for Ŷ (h) the estimate

E[|YT − Ŷ (h)
T |] ≤ K̃h1/2

holds, where the constant K̃ > 0 does not depend on h.

Remark 4.1. From the proof of [8, p. 342, Theorem 10.2.2] we see that also the
estimate

E[|YT − Ŷ (h)
T |

2] ≤ K̃2h

holds.

Definition 4.3. The mean squared error MSE of an estimator θ̂ with parameter θ
is

MSE(θ̂) = E[(θ̂ − θ)2],

and it describes the systematic error of the estimator. We have

MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) + E[θ̂ − θ]2 = Var(θ̂) + bias(θ̂, θ)2,

and hence for finding the upper bound for MSE of the estimator Ŝ it is enough to
find an upper bound for its variance and bias.

The law of large numbers gives us the elementary and the most common way to
estimate the expected value of a random variable, that is, by taking the average of
N independent samples. If so, our estimate of E

[
g(YT )

]
would be

Ŷ =
1

N

N∑
i=1

g
(
Ŷ

(h)
T (i)

)
,

where Ŷ
(h)
T (i) is the ith independent copy of the Euler approximation of the process

Y with the maximum timestep h at time T . The estimate Ŷ is the standard Monte

Carlo estimate. The mean squared error of Ŷ is O(1/N) +O(h2) (see [4]).
In the multilevel approach we exploit the sequence of equidistant partitions (pl)l=0,...,L

on [0, T ] such that partition pl has M l timesteps, each of which is of length M−lT =:
hl for integer M ≥ 2. This construction results in a geometric sequence of refining
partitions where each sequence is M times finer than the previous one.

We consider the telescoping sum

E
[
g(Ŷ

(hL)
T )

]
= E

[
g(Ŷ

(h0)
T )

]
+

L∑
l=0

E
[
g(Ŷ

(hl)
T )− g(Ŷ

(hl−1)
T )

]
.

Each of these expectations on the right hand side of the equation are then estimated
separately and on each level l we use Nl samples. More precisely, we denote the
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estimator of E
[
g(Ŷ

(h0)
T )

]
with Ŝ0 and the estimator of E[g(Ŷ

(hl)
T ) − g(Ŷ

(hl−1)
T )] with

Ŝl and use the average of Nl independent samples as estimator. That is,

Ŝ0 =
1

N0

N0∑
i=1

g
(
Ŷ

(h0)
T (i)

)
and

Ŝl =
1

Nl

Nl∑
i=1

(
g
(
Ŷ

(hl)
T (i)

)
− g
(
Ŷ

(hl−1)
T (i)

))
for l = 1, 2, . . . , L. The estimator of E

[
g(YT )

]
is then Ŝ :=

∑L
l=0 Ŝl. It is important

that when we approximate Ŝl we use the same Brownian motion for both Ŷ
(hl)
T (i) and

Ŷ
(hl−1)
T (i). That reduces variance and allows us to use fewer samples on finer levels.

In practice, we would simulate the Brownian increments needed to approximate Ŝl,

and then sum them up in groups of size M to obtain increments for Ŝl−1. In Figure
3 we see sample paths of a single Brownian motion approximated with 2m + 1 time

points, m = 1, 2, . . . , 8. Note that while the quantities Ŷ
(hl)
T (i) and Ŷ

(hl−1)
T (i) inside

Ŝl depend on each others, the estimators Ŝl are independent for all l ≥ 0.

Figure 3. Approximated sample paths of the same Brownian mo-
tion with each time grid twice as fine as the previous one.

With simple computations, we see that

E
[
Ŝ
]

= E
[ L∑
l=0

Ŝl

]
= E

[
g(Ŷ

(h0)
T )

]
+

L∑
l=1

E
[
g(Ŷ

(hl)
T )− g(Ŷ

(hl−1)
T )

]
= E

[
ŜL
]
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and

Var
[
Ŝ
]

=
L∑
l=0

Var
[
Ŝl
]
.

Recall that the function g is Lipschitz with a Lipschitz constant Cg. Hence by
Remark 4.1 we have that

Var
[
Ŝl
]

=
1

Nl

Var
[
g(Ŷ

(hl)
T )− g(Ŷ

(hl−1)
T )

]
≤ 1

Nl

E
[∣∣g(Ŷ

(hl)
T )− g(Ŷ

(hl−1)
T )

∣∣2]
≤
C2
g

Nl

E
[∣∣Ŷ (hl)

T − Ŷ (hl−1)
T

∣∣2]
≤ 2

C2
g

Nl

E
[∣∣Ŷ (hl)

T − YT
∣∣2]+ E

[∣∣YT − Ŷ (hl−1)
T

∣∣2]
≤ 2

C2
g

Nl

K̃2(hl + hl−1)

≤ κ1

Nl

hl

for some constant κ1 > 0 and for each l = 1, 2, . . . , L. Similarly, since y0 is a

constant, for Ŝ0 we have

Var
[
Ŝ0

]
=

1

N0

Var
[
g(Ŷ h0

T )− g(y0)
]
≤
C2
g K̃

2

N0

h0,

and hence for some κ > 0 we have that

Var[Ŝl] ≤ κN−1
l hl (4.2)

for all l = 0, 1, . . . , L.
About the computational cost: We assume that all the arithmetic operations

can be done in one time unit. Additionally we assume that drawing samples from
distributions and evaluating the value of the given function can be done in constant
time. It follows that a evaluating a piecewise constant function f is O(κn), where
κ > 0 is a constant and n is the number of breakpoints. Therefore the computational
cost of the algorithm is proportional to

∑L
l=0Nlh

−1
l . The optimal choices for Nl are

achieved by minimizing the variance for fixed computational cost. For more details,
we refer reader to [4].

4.1. Complexity.

THEOREM 4.4. [4, Giles, Theorem 3.1] Let P = g(YT ) denote a functional of
the solution Y of a Brownian motion driven SDE (3.2) at time T for a given Brow-

nian path Bt, and let P̂l denote the corresponding approximation g(Ŷ
(hl)
T ) using a

numerical equidistant time discretization with timestep hl = M−lT . If there exists

independent estimators Ŝl based on Nl Monte Carlo samples, and positive constants
α ≥ 1

2
, β, c1, c2 and c3 such that

(i) E[P̂l − P ] ≤ c1h
α
l ,

(ii) E[Ŝ0] = E[P̂0] and E[Ŝl] = E[P̂l − P̂l−1] for all l > 0,

(iii) Var[Ŝl] ≤ c2N
−1
l hβl ,
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(iv) Cl ≤ c3Nlh
−1
l ,

where Cl denotes the computational complexity of Ŝl, then there exists a positive
constant c4 such that for any ε < e−1, there are values L and Nl for which the

multilevel estimator Ŝ of E[P ], defined as

Ŝ =
L∑
l=0

Ŝl,

has an MSE with bound

MSE(Ŝ) = E
[
(Ŝ − E[P ])2

]
< ε2,

with a computational complexity C with bound

C ≤

 c4ε
−2, β > 1

c4ε
−2(log ε)2, β = 1

c4ε
−2−(1−β)/α, 0 < β < 1.

Proof. First, we prove that the bias is bounded with 1
2
ε2. Then, we continue by

proving that the variance has the same upper bound, which when combined with
the bias upper bound leads us to the MSE bounded by ε2. We consider the variance
for different values of β simultaneously with computational complexity.

Recall that the ceiling function of x, denoted by dxe gives us the smallest integer
which is equal or larger than x, that is x ≤ dxe < x + 1. We begin our proof by
choosing L to be

L =

⌈
log(
√

2c1T
αε−1)

α logM

⌉
.

From the definition of the ceiling function with some elementary computations we
see that

log(
√

2c1T
αε−1)

α logM
≤ L <

log(
√

2c1T
αε−1)

α logM
+ 1

⇐⇒ L− 1 <
log(
√

2c1T
αε−1)

α logM
≤ L

⇐⇒ log(M (L−1)α) < log(
√

2c1T
αε−1) ≤ log(MαL)

⇐⇒ 1√
2
M−αε < c1(

T

ML
)α ≤ 1√

2
ε

⇐⇒ 1√
2
M−αε < c1h

α
L ≤

1√
2
ε. (4.3)
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Assumptions (ii) and (i) combined with (4.3) imply that

bias(Ŝ, P )2 =
(
E[Ŝ]− E[P ]

)2

=

( L∑
l=0

E[Ŝl]− E[P ]

)2

=

(
E[P̂0] +

L∑
l=1

E[P̂l − P̂l−1]− E[P ]

)2

=

(
E[P̂L]− E[P ]

)2

≤ (c1h
α
L)2 ≤ 1

2
ε2,

which is the estimate we wanted for bias.
Next we find an upper limit for the sum of the sequence (h−1

l )l=0,...,L. Using a
standard result for the geometric series we have that

L∑
l=0

h−1
l =

1

hL

L∑
l=0

M l

ML
=

1

hL

L∑
l=0

1

ML−l =
1

hL

L∑
l=0

1

M l

=
1

hL

(
ML+1 − 1

ML+1 −ML

)
<

1

hL

(
M

M − 1

)
,

and furthermore with (4.3) we have

1

hL
< M

(
c1

√
2

ε

)1/α

.

Note that when α ≥ 1
2

we have ε−1/α ≤ ε−2 and that we assumed ε < e−1. Now
when combined with previous inequalities we have

L∑
l=0

h−1
l <

M2

M − 1

(
c1

√
2

ε

)1/α

≤ M2

M − 1
(c1

√
2)1/αε−2. (4.4)

It remains to find the variance of the estimator Ŷ and the computational com-
plexity C. We proceed by considering β with different values. For each β we find
the upper bound for the variance and then check the computational complexity.

Case β = 1:

We choose Nl =
⌈
2ε−2(L+1)c2hl

⌉
. Then by assumption (iii) the properties of the

ceiling function the variance is bounded with

Var[Ŝ] =
L∑
l=0

Var[Ŝl] ≤
L∑
l=0

c2hl
Nl

≤
L∑
l=0

c2hlε
2

2(L+ 1)c2hl
≤ 1

2
ε2,

which is the bound we wanted for the variance. Defining each Nl as ceiling function
gives us

Nl ≤ 2ε−2(L+ 1)c2hl + 1
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and hence by assumption (iv) the computational complexity C of Ŷ is bounded by

C ≤
L∑
l=0

Cl ≤ c3

L∑
l=0

Nl

hl

≤ c3

L∑
l=0

2ε−2(L+ 1)c2hl + 1

hl

≤ c32ε−2(L+ 1)2c2 + c3

L∑
l=0

h−1
l . (4.5)

Note that for L we have from the properties of the ceiling function that

L ≤ log(
√

2c1T
αε−1)

α logM
+ 1 ≤ log(

√
2c1T

α)

α logM
+

log(ε−1)

α logM
+ 1,

and that from assumption ε < e−1 we have 1 < log(ε−1). It follows that

L+ 1 ≤ log(ε−1)

(
log(
√

2c1T
α)

log(ε−1)α logM
+

1

α logM
+

2

log(ε−1)

)
≤ c5 log(ε−1), (4.6)

where

c5 =
1

α logM
+ max

(
0,

log(
√

2c1T
α)

α logM

)
+ 2.

Hence, from (4.5) together with (4.6) and (4.4) it follows that

C ≤ c32ε−2(L+ 1)2c2 + c3

L∑
l=0

h−1
l

≤ c32ε−2c2
5(log ε−1)2c2 + c3

M2

M − 1
(
√

2c1)1/αε−2

≤ ε−2(log ε−1)2
(

2c3c
2
5c2 + c3

M2

M − 1
(
√

2c1)1/α
)

= c4ε
−2(log ε−1)2,

where c4 = 2c3c
2
5c2 + c3

M2

M−1
(
√

2c1)1/α. Note that (log ε−1)2 = (− log ε)2 = (log ε)2.
Case β > 1:
Set

Nl =
⌈
2ε−2c2T

β−1
2 (1−M−β−1

2 )−1h
β+1
2

l

⌉
.

Again, for geometric series for some s 6= 0 we have

L∑
l=0

hsl = T s
L∑
l=0

(M s)l ≤ T s
M s

M s − 1
= T s(1−M−s)−1, (4.7)
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with which, by choosing s = (β − 1)/2, we have for the variance by assumption (iii)
and from the choice of Nl that

Var[Ŷ ] =
L∑
l=0

Var[Ŷl] ≤ c2

L∑
l=0

hβl
Nl

≤ 1

2
ε2T−

β−1
2 (1−M−β−1

2 )
L∑
l=0

h
β−1
2

l

≤ 1

2
ε2.

From the properties of the ceiling function we have

Nl < 2ε−2c2T
β−1
2 (1−M−β−1

2 )−1h
β+1
2

l + 1,

which together with the assumption (iv) gives us the following upper bound for
computational complexity

C ≤
L∑
l=0

c3Nlh
−1
l ≤ c32ε−2c2T

β−1
2 (1−M−β−1

2 )−1

L∑
l=0

h
β−1
2

l + c3

L∑
l=0

h−1
l . (4.8)

By choosing s = (β − 1)/2 in (4.7) we have

L∑
l=0

h
β−1
2

l ≤ T
β−1
2 (1−M−β−1

2 )−1

and with (4.4) we have

c3

L∑
l=0

h−1
l ≤ c3

M2

M − 1
(c1

√
2)1/αε−2.

We can now estimate (4.8) further by

C ≤ c32ε−2c2T
β−1
2 (1−M−β−1

2 )−1

L∑
l=0

h
β−1
2

l + c3

L∑
l=0

h−1
l

≤ 2c2c3ε
−2T β−1(1−M−β−1

2 )−2 + c3
M2

M − 1
(
√

2c1)1/αε−2

≤ c4ε
−2,

where c4 = 2c2c3T
β−1(1−M−β−1

2 )−2 + c3
M2

M−1
(
√

2c1)1/α.
Case β < 1:

We set Nl =
⌈
2ε−2c2h

− 1−β
2

L (1 −M− 1−β
2 )−1h

β+1
2

l

⌉
. As in previous cases, we have a

geometric series and therefore

L∑
l=0

h
− 1−β

2
l = h

− 1−β
2

L

L∑
l=0

(ML−l)−
1−β
2

= h
− 1−β

2
L

L∑
l=0

(M− 1−β
2 )l

< h
− 1−β

2
L (1−M− 1−β

2 )−1. (4.9)
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By assumption (iii), properties of the ceiling function and (4.9) we have

L∑
l=0

Var[Ŷl] <
L∑
l=0

c2N
−1
l hβl <

1

2
ε2h

1−β
2

L (1−M− 1−β
2 )

L∑
l=0

h
− 1−β

2
l <

1

2
ε2.

We have

Nl < 2ε−2c2h
− 1−β

2
L (1−M− 1−β

2 )−1h
β+1
2

l + 1,

from which it follows by assumption (iv) that

C ≤
L∑
l=0

c3Nlh
−1
l

< 2ε−2c2c3h
− 1−β

2
L (1−M− 1−β

2 )−1

L∑
l=0

h
− 1−β

2
l + c3

L∑
l=0

h−1
l . (4.10)

By inequality (4.9) we have that

h
− 1−β

2
L (1−M− 1−β

2 )−1

L∑
l=0

h
− 1−β

2
l < h

−(1−β)
L (1−M− 1−β

2 )−2 (4.11)

and inequality (4.3) gives that

h
−(1−β)
L < (

√
2c1)

1−β
α M1−βε−

1−β
α . (4.12)

Combining the inequalities (4.11) and (4.4) with the cost estimate (4.10) we see that

C < 2ε−2c2c3h
− 1−β

2
L (1−M− 1−β

2 )−1

L∑
l=0

h
− 1−β

2
l + c3

L∑
l=0

h−1
l

< 2ε−2c2c3h
−(1−β)
L (1−M− 1−β

2 )−2 + c3
M2

M − 1
(
√

2c1)1/αε−2

and the equation (4.12) together with the fact that ε−2 < ε−2−(1−β)/α for ε < e−1

gives us that

2ε−2c2c3h
−(1−β)
L (1−M− 1−β

2 )−2 + c3
M2

M − 1
(
√

2c1)1/αε−2

< ε−2− 1−β
α 2c2c3(

√
2c1)

1−β
α M1−β(1−M− 1−β

2 )−2 + c3
M2

M − 1
(
√

2c1)1/αε−2

< c4ε
−2− 1−β

α ,

where

c4 = 2c2c3(
√

2c1)
1−β
α M1−β(1−M− 1−β

2 )−2 + c3
M2

M − 1
(
√

2c1)1/α.

�

Remark 4.2. The multilevel algorithm presented in Section 4 satisfies the assump-
tions of Theorem 4.4. By Proposition 4.2 the condition (i) follows from

E
[
g
(
Ŷ

(hl)
T

)
− g
(
YT
)]
≤ κh

1/2
l ,
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and condition (ii) is clear from the way the algorithm was constructed. Variance
condition (iii) was discussed in (4.2) and finally, computational cost on each level is
connected to the number of evaluations Nl and timestep hl, i.e. Cl ≤ κNlh

−1
l for

some κ > 0.

5. Application to Lévy-driven SDE

In this section we consider a d-dimensional L2-Lévy process X = (Xt)t≥0 charac-
terized by triplet (ν, σσ∗, b), and the solution Y = (Yt)t≥0 to the stochastic integral
equation

Yt = y0 +

∫ t

0

a(Ys−)dXs, (5.1)

where y0 ∈ Rd and the function a has the properties formulated in Assumption 1
below. Equation (5.1) corresponds to the SDE in Definition 3.10. By Theorem 3.11
the properties in Assumption 1 imply the existence and uniqueness of the solution.
We begin by formulating the multilevel Monte Carlo algorithm for the evaluation of

S(g) = E
[
g(Y )

]
,

where g : D[0, 1]→ R. Here D[0, 1] is the space of cadlag functions, more precisely

D[0, 1] = {f : [0, 1]→ Rr, f cadlag },
which is usually called Skorokhod space. On this space we consider the supremum
norm denoted by

‖f‖ = sup
t∈[0,1]

|f(t)|

for f ∈ D[0, 1] and we use the notation

Lip(1) = {H : D[0, 1]→ R, |H(f)−H(g)| ≤ ‖f − g‖}
for the set of Borel-measurable functions that are Lipschitz continuous with Lipschitz
constant one. This section is based on the article [3].

Assumption 1. For fixed 0 < K <∞, the function a : Rr → Rr × Rd satisfies

|a(y)− a(y′)| ≤ K|y − y′|
for all y, y′ ∈ RdY . Furthermore, we have

|a(y0)| ≤ K,

0 <

∫
|x|2ν(dx) ≤ K2,

σ ∈ Rd×d with |σ| ≤ K,

where | · | denotes here a sub-multiplicate matrix norm and

b ∈ Rd with |b| ≤ K

We recall that the Lévy-Itô decomposition formulated in Remark 2.10 grants us
the representation

Xt = σBt + Lt + bt,

where σBt + bt is a Brownian motion with a drift b and covariance σσ∗, and L =
(Lt)t≥0 is a Lévy process and a martingale with

Lt =

∫
Rd
xÑ(t, dx) =

∫
Rd
xN(t, dx)− t

∫
Rd
xν(dx),
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where N(x, t) is a Poisson random measure with intensity ν(x)t. For h > 0 we define

L
(h)
t :=

∫
Bc
h

xN(t, dx)− t
∫
Bc
h

xν(dx), (5.2)

and set F0(h) :=
∫
Bc
h
xν(dx). Then the process C(h) = (C

(h)
t )t≥0 with C

(h)
t =∫

Bc
h
N(t, dx) is a compound Poisson process with intensity λ(h) = ν(Bc

h) and jump

size distribution µ(h) = ν/λ(h). The process L(h) = (L
(h)
t )t≥0 is a martingale and the

process B is independent of L. By the isometry formula we have that

lim
h→0

E
[∣∣ ∫

Rd
xÑ(t, dx)− L(h)

t

∣∣2] = lim
h→0

E
[∣∣ ∫

Rd
xÑ(t, dx)−

∫
Bc
h

xÑ(t, dx)
∣∣2]

= lim
h→0

E
[∣∣ ∫

Bh

xÑ(t, dx)
∣∣2]

= lim
h→0

E
[
t

∫
Bh

|x|2ν(dx)

]
= 0

and hence L
(h)
t → Lt in L2(Ω,F ,P) as h→ 0.

In Section 4 we used the Euler scheme with equidistant time discretization, but
with Lévy-SDE we proceed more carefully. When evaluating the process Xt we
distinguish between ”small” and ”big” jumps, i.e. jumps smaller than h and at
least h. For the Euler scheme we want to find a time discretization which allows us
to describe the behaviour of the solution well enough. In other words, we want to
approximate the process using a time grid which does not let the process change too
much between time steps. The times of the jumps that are at least h form the basis
of our discretization, which is then refined such that each step is at most ε. We will

refer to this refined discretization with (T
(h,ε)
j )∞j=0. Furthermore, we will denote the

approximation of the process X by X̂(h,ε) and the approximation of the process Y

by Ŷ (h,ε) with parameters h and ε described more specifically below.

5.1. Approximation of the process X. We begin by creating a time discretiza-
tion based on the jump times of the process X. First we deal with jumps that can
be seen as the big jumps of the process X, i.e. jumps that are of size at least h.

From the definition of L(h) we see that the jumps ∆L
(h)
t have values in {0} ∪ Bc

h.

We denote the jump times of L(h) with T
(h)
0 = 0 and

T
(h)
k = inf{t > T

(h)
k−1 : ∆L

(h)
t 6= 0}

for k ≥ 1. Recall from the properties of a compound Poisson process that the

time differences T
(h)
k − T

(h)
k−1 form an i.i.d. sequence of random variables that are

exponentially distributed with parameter λ(h) and that this sequence is independent

of the sequence of jump heights denoted by ∆L
(h)

T
(h)
k

. From (5.2) we see that on every

interval [T
(h)
k , T

(h)
k−1) the process L(h) is linear with the slope −F0(h).

It is not enough to consider only the big jumps of the process, but we need to
handle more minor changes as well. Therefore we refine our time discretization such
that our step sizes are ε at most. Hence our new discretization, which is the one we
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will use, is defined as T h,ε0 = 0 and

T
(h,ε)
j = inf{T (h)

k > T
(h,ε)
j−1 : k ∈ N} ∧ (T

(h,ε)
j−1 + ε). (5.3)

Similarly to the original Giles algorithm with the case of Brownian motion as

driving process we will here consider the simulation of the joint distribution of X̂(h,ε)

and X̂(h′,ε′) for different values of h′ > h > 0 and ε > ε′ > 0. Due to independence
of processes ∆L(h′) (jumps bigger than h′) and ∆(L(h) − L(h′)) (jumps between h
and h′) it holds that

∆L
(h′)
t = ∆L

(h)
t · 1{|∆L(h)

t |>h′}
,

it is enough to simulate both jump times and heights of the process L(h) and then
extract the ones we need to form the process L(h′) to get the joint distribution of
(L(h), L(h′)).

Finally, at each timepoint Tj = T
(h,ε)
j we approximate the process X by X̂

(h,ε)
0 = 0

and

X̂
(h,ε)
Tj

= X̂
(h,ε)
Tj−1

+ σ(BTj −BTj−1
) + ∆L

(h)
Tj

+ (b− F0(h))(Tj − Tj−1)

for j ≥ 1. Note that

X̂
(h,ε)
Tj

= σBTj + L
(h)
Tj

+ bTj,

which can be proven with induction. Case j = 1 is trivial, and for arbitrary j ≥ 1

X̂
(h,ε)
Tj

= X̂
(h,ε)
Tj−1

+ σ(BTj −BTj−1
) + ∆L

(h)
Tj

+ (b− F0(h))(Tj − Tj−1)

= L
(h)
Tj−1

+ σBTj + ∆L
(h)
Tj
− F0(h)(Tj − Tj−1) + bTj

= σBTj + LTj + bTj

since LTj = LTj−1
+ ∆L

(h)
Tj
− F0(h)(Tj − Tj−1).

In conclusion, to simulate the coupled process (X̂(h,ε), X̂(h′,ε′)) we need to draw

samples only from µ(h) and an exponential distribution to form T
(h)
k and L

(h)

T
(h)
k

for

(L(h), L(h′)) respectively, as well as from normal distribution to simulate the Brow-

nian motion component at times (T
(h,ε)
j )j∈N and (T

(h′,ε′)
j )j∈N.

5.2. Approximation of the process Y . To approximate the solution Y of the
SDE (5.1) we will use the Euler scheme presented in Definition 4.1 with the differ-

ence that the driving process is X, approximated with X̂(h,ε). We use the random

time discretizaton (Tj)j∈N = (T
(h,ε)
j )j∈N created in previous subsection and the ap-

proximation of the process Y at times Tj is defined by Ŷ
(h,ε)
T0

= Ŷ
(h,ε)

0 = y0 and

Ŷ
(h,ε)
Tj

= Ŷ
(h,ε)
Tj−1

+ a
(
Ŷ

(h,ε)
Tj−1

)(
X̂

(h,ε)
Tj
− X̂(h,ε)

Tj−1

)
for j ≥ 1. Additionally, we define Ŷ

(h,ε)
t = Ŷ

(h,ε)
Tj

for all t ∈ [Tj, Tj+1) so that the ap-

proximation Ŷ = Ŷ (h,ε) is piecewise constant with respect to our time discretization
(Tj)j∈N. It is clear that to get the approximation for Y we only need to approxi-
mate the driving process X. For the multilevel algorithm we will use coupled Euler

schemes (Ŷ (h,ε), Ŷ (h′,ε′)) with h′ > h > 0 and ε′ > ε > 0. It is again important that

we use the same simulation of the Brownian motion path for both Ŷ (h,ε) and Ŷ (h′,ε′)

in the coupled scheme.

29



5.3. The algorithm. To create the telescoping sum like in Section 4, we fix two
positive and decreasing sequences (εk)k∈N and (hk)k∈N. Additionally, for shorter

notation we denote Ŷ
(k)
t = Ŷ

(hk,εk)
t for all t ≥ 0. This time, we denote the number

of levels with m ∈ Z+ and the payoff function with g : D[0, 1] → R where g is

measurable and g(Ŷ (k)) is integrable for all k = 1, . . . ,m. Now we can write

E
[
g(Ŷ (m))

]
= E

[
g(Ŷ (1))

]
+

m∑
k=2

E
[
g(Ŷ (k))− g(Ŷ (k−1))

]
.

Like previously, we approximate each expectation separately with classical Monte
Carlo with the help of approximations from sections 5.1 and 5.2, and for k = 1, . . . ,m
denote with nk the number of samples on each level. The corresponding multilevel
Monte Carlo algorithm is given by

Ŝ(g) =
1

n1

n1∑
i=1

g
(
Ŷ (1)(i)

)
+

m∑
k=2

1

nk

nk∑
i=1

[
g
(
Ŷ (k)(i)

)
− g
(
Ŷ (k−1)(i)

)]
(5.4)

where Ŷ (1)(i) is the ith independent copy of Ŷ (1) and for each k the
(
Ŷ (k)(i),

Ŷ (k−1)(i)
)

is ith independent copy of the coupled Euler scheme (Ŷ (k), Ŷ (k−1)). By

construction the estimators 1
n1

∑n1

i=1 g
(
Ŷ (1)(i)

)
and 1

nk

∑nk
i=1

[
g
(
Ŷ (k)(i)

)
−g
(
Ŷ (k−1)(i)

)]
for k = 2, . . . ,m are independent.

5.3.1. The error of the algorithm. We are interested in the mean squared error of

the estimator Ŝ(g). Recall from the Definition 4.3 that

MSE(θ̂) = Var(θ̂) + bias(θ̂, θ)2,

which means that variance and bias can be estimated separately. It is easy to see
that

E
[
Ŝ(g)

]
= E

[
1

n1

n1∑
i=1

g
(
Ŷ (1)(i)

)
+

m∑
k=2

1

nk

nk∑
i=1

(
g
(
Ŷ (k)(i)

)
− g
(
Ŷ (k−1)(i)

))]

=
1

n1

n1∑
i=1

E
[
g
(
Ŷ (1)(i)

)]
+

m∑
k=2

1

nk

nk∑
i=1

E
[
g
(
Ŷ (k)(i)

)
− g
(
Ŷ (k−1)(i)

)]
= E

[
g(Ŷ (1))

]
+

m∑
k=2

E
[
g(Ŷ (k))− g(Ŷ (k−1))

]
= E

[
g(Ŷ (m))

]
and hence for g ∈ Lip(1) we compute

bias
(
Ŝ(g), S(g)

)2
= E

[
Ŝ(g)− S(g)

]2
= E

[
g(Ŷ (m))− g(Y )

]2
≤ E

[ ∥∥Y − Y (m)
∥∥ ]2.
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For variance with g ∈ Lip(1) we compute

Var
[
Ŝ(g)

]
= Var

[ 1

n1

n1∑
i=1

g
(
Ŷ (1)(i)

)]
+ Var

[ m∑
k=2

1

nk

nk∑
i=1

g
(
Ŷ (k)(i)

)
− g
(
Ŷ (k−1)(i)

)]
=

1

n1

Var
[
g
(
Ŷ (1)

)]
+

m∑
k=2

1

nk
Var

[
g
(
Ŷ (k)

)
− g
(
Ŷ (k−1)

)]
≤ 1

n1

E
[∣∣g(Ŷ (1)

)
− g(y0)

∣∣2]+
m∑
k=2

1

nk
E
[∣∣∣g(Ŷ (k)

)
− g
(
Ŷ (k−1)

)∣∣∣2]

≤ 1

n1

E
[∥∥Ŷ (1) − y0

∥∥2
]

+
m∑
k=2

1

nk
E
[∥∥Ŷ (k) − Ŷ (k−1)

∥∥2
]
,

and see that the mean squared error of Ŝ(g) can be estimated by

MSE
(
Ŝ(g)

)
≤ E

[ ∥∥Y − Y (m)
∥∥

+
1

n1

E
[∥∥Ŷ (1) − y0

∥∥2]]2
+

m∑
k=2

1

nk
E
[∥∥Ŷ (k) − Ŷ (k−1)

∥∥2]
.

Note that the upper bound we achieved does not depend on the function g and hence
for the worst case error it holds that

e2(Ŝ) = sup
g∈Lip(1)

MSE
(
Ŝ(g)

)
≤ E

[ ∥∥Y − Y (m)
∥∥+

1

n1

E
[∥∥Ŷ (1) − y0

∥∥2]
+

m∑
k=2

1

nk
E
[∥∥Ŷ (k) − Ŷ (k−1)

∥∥2]
. (5.5)

5.3.2. The cost of the algorithm. We make the same assumptions of computation
times we made in Subsection 4. Hence the computational complexity of the algo-

rithm Ŝ is

cost(Ŝ) =
m∑
k=1

nkE
[
Υ(Ŷ (k))

]
,

where the function Υ(·) gives us the breakpoints of an piecewise constant function.

5.4. Results and proofs. In this section our main goal is to analyze the error in
the worst case and the cost of the multilevel algorithm presented in Section 5.3. We
will have the error estimates in terms of the function

F (h) :=

∫
Bh

|x|2ν(dx)

for h > 0. We will first present and prove some auxiliary results.

Lemma 5.1. [3, Lemma 1] Under Assumption 1, we have

E[ sup
t∈[0,1]

|Yt − y0|2] ≤ κ,

where κ is a finite constant depending on K only.
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Proof. Let t ∈ [0, 1]. By the inequality (a+ b)2 ≤ 2a2 + 2b2 we have

E
[∣∣Yt − y0

∣∣2] = E
[∣∣∣ ∫ t

0

a(Ys−)dXs

∣∣∣2]
= E

[∣∣ ∫ t

0

a(Ys−)σdBs + b

∫ 1

0

a(Ys−)ds+

∫ t

0

a(Ys−)dLs
∣∣2]

≤ κ1E
[∣∣ ∫ t

0

a(Ys−)σdBs

∣∣2]
+ E

[∣∣ ∫ t

0

a(Ys−)bds
∣∣2]+ E

[∣∣ ∫ t

0

a(Ys−)dLs
∣∣2], (5.6)

where κ1 is an appropriate positive constant. We analyze each of the expectations
on the right hand side of the last inequality separately. By Proposition 3.3 and
Assumption 1 we have

E
[∣∣ ∫ t

0

a(Ys−)σdBs

∣∣2] ≤ E
[
|σ|2

∫ t

0

|a(Ys−)|2ds
]
≤ K2E

[ ∫ t

0

|a(Ys−)|2ds
]
, (5.7)

since |a(Ys−)σ| ≤ |a(Ys−)||σ| holds for a sub-multiplicate matrix norm. By the
monotonicity of the integral and Assumption 1 we obtain

E
[∣∣ ∫ t

0

a(Ys−)bds
∣∣2] ≤ K2E

[ ∫ t

0

|a(Ys−)|2ds
]
.

For the last term by Proposition 3.7 and Assumption 1 we have

E
[∣∣ ∫ t

0

a(Ys−)dLs
∣∣2] = E

[∣∣ ∫ t

0

∫
Rd
a(Ys−)xdÑ(ds, dx)

∣∣2]
= E

[ ∫ t

0

∫
Rd
|a(Ys−)x|2ν(dx)ds

]
= E

[ ∫ t

0

|a(Ys−)|2
∫
Rd
|x|2ν(dx)ds

]
≤ K2E

[ ∫ t

0

|a(Ys−)|2ds
]
.

All the terms have the same upper bound, which by Assumption 1 and Fubini’s
Theorem we evaluate with

K2E
[ ∫ t

0

|a(Ys−)|2ds
]
≤ 2K2

(
E
[ ∫ t

0

|a(Ys−)− a(y0)|2ds
]

+ E
[ ∫ t

0

|a(y0)|2ds
])

≤ 2K4
(
E
[ ∫ t

0

|Ys− − y0|2ds
]

+ 1
)

≤ 2K4
(∫ t

0

E
[
|Ys− − y0|2

]
ds+ 1

)
. (5.8)

By combining (5.8) together with (5.6) we have

E
[
|Yt − y0|2

]
≤ κ2

(∫ t

0

E
[
|Ys− − y0|2

]
ds+ 1

)
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for a constant κ2 depending only on K. Therefore, by Lemma 3.2 (Doob’s inequality)
and Proposition 3.1 (Gronwall’s lemma) we obtain

E
[

sup
t∈[0,1]

|Yt − y0|2
]
≤ 4E

[
|Y1 − y0|2

]
≤ κ,

where κ is an appropriate constant depending only on K. �

At this point we introduce an auxiliary process Ȳ = (Ȳt)t≥0, which will be used in

the following proofs and results. Recall that L
(h)
t → Lt in L2(Ω,F ,P) as h→ 0 and

that for fixed h the process (L
(h)
t )t≥0 is a compensated compound Poisson process.

We denote L(h) by L′ and let L′′ denote the process (Lt − L′t)t≥0, in which case
L = L′ + L′′. Furthermore, we denote the previous evaluation point before or at
time t by l(t), or, more precisely, we define

l(t) = sup[0, t] ∩ T,

where T is the set of jump times (Tk)k=0,1,... defined by Tk = T
(h,ε)
k as in Section 5.1.

We denote X̄ = (σBt + L′t + bt)t≥0 and let Ȳ be the solution to the corresponding
integral equation

Ȳt = y0 +

∫ t

0

a(Ȳl(s−))dX̄s.

Proposition 5.2. [3, Proposition 1] Under Assumption 1, there exists a constant κ
depending only on K such that for any ε ∈ (0, 1] and h > 0 with ν(Bc

h) ≤ 1/ε we
have

(i) in the case without Brownian component, i.e. σ = 0

E
[

sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ[F (h) + |b− F0(h)|2ε2]

(ii) in the general case

E
[

sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ(ε+ F (h)).
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Proof. For t ≥ 0 we use the notation Zt := Yt − Ȳt and Z ′t := Yt − Ȳl(t). Note first
that

Zt = Yt − Ȳt =

∫ t

0

a(Ys−)dXs −
∫ t

0

a(Yl(s−))dX̄s

=

∫ t

0

(
a(Ys−)− a(Ȳl(s−))

)
σdBs

+

∫ t

0

a(Ys−)dLs −
∫ t

0

a(Ȳl(s−))dL
′
s

+ b

∫ t

0

a(Ys−)− a(Ȳl(s−))ds

=

∫ t

0

a(Ys−)− a(Ȳl(s−))σdBs

+

∫ t

0

a(Ys−)− a(Ȳl(s−))dL
′
s +

∫ t

0

a(Ys−)dL′′s

+ b

∫ t

0

a(Ys−)− a(Ȳl(s−))ds

= Mt + b

∫ t

0

a(Ys−)− a(Ȳl(s−))ds, (5.9)

where

Mt =

∫ t

0

(
a(Ys−)− a(Ȳl(s−))

)
σdBs

+

∫ t

0

a(Ys−)− a(Ȳl(s−))dL
′
s +

∫ t

0

a(Ys−)dL′′s . (5.10)

First we analyze the integral terms of Mt separately. By Proposition 3.3, Assump-
tion1 and Fubini’s Theorem we have

E
[∣∣∣ ∫ t

0

(
a(Ys−)− a(Ȳl(s−))

)
σdBs

∣∣∣2] ≤ |σ|2E[ ∫ t

0

|a(Ys−)− a(Ȳl(s−))|2ds
]

≤ K4E
[ ∫ t

0

|Ys− − Ȳl(s−)|2ds
]

≤ K4

∫ t

0

E[|Z ′s−|2]ds (5.11)

and similarly by Proposition 3.7, Assumption 1 and Fubini we have

E
[∣∣∣ ∫ t

0

a(Ys−)− a(Ȳl(s−))dL
′
s

∣∣∣2] = E
[∣∣∣ ∫ t

0

∫
Bc
h

(
a(Ys−)− a(Ȳl(s−))

)
xÑ(ds, dx)

∣∣∣2]
= E

[ ∫ t

0

∫
Bc
h

|a(Ys−)− a(Ȳl(s−))|2|x|2ν(dx)ds
]

= E
[ ∫ t

0

|a(Ys−)− a(Ȳl(s−))|2ds
∫
Bc
h

|x|2ν(dx)
]

≤ K4

∫ t

0

E[|Z ′s−|2]ds. (5.12)
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The last one follows similarly

E
[ ∫ t

0

a(Ys−)dL′′s

]2

= E
[ ∫ t

0

|a(Yl(s−))|2ds
∫
Bh

|x|2ν(dx)
]

= F (h)E
[ ∫ t

0

(
|a(Yl(s−))− a(y0)|+ |a(y0)|

)2
ds
]

= F (h)K2E
[ ∫ t

0

|Yl(s−) − y0|2ds+ 1
]
. (5.13)

Note that the process (Mt)t≥0 is an L2-martingale. Using Proposition (3.2) to-
gether with (5.11), (5.12) and (5.13) we have

E
[

sup
s∈[0,t]

|Ms|2
]
≤ 4E

[
|Mt|2

]
= 8K4

∫ t

0

E[|Z ′s−|2]ds+ 4F (h)K2E
[ ∫ t

0

|Yl(s−) − y0|2ds+ 1
]
.

(5.14)

By using Hölder’s inequality, Assumption 1 and Fubini’s Theorem the remaining
part of Zt in (5.9) can be bounded by

E
[∣∣∣b ∫ t

0

a(Ys−)− a(Ȳl(s−))ds
∣∣∣2]

≤ |b2t|E
[ ∫ t

0

∣∣∣a(Ys−)− a(Ȳl(s−))
∣∣∣2ds]

≤ K4E
[ ∫ t

0

∣∣∣Z ′s−∣∣∣2ds]
≤ K4

∫ t

0

E
[∣∣Z ′s−∣∣2]ds

for t ∈ [0, 1]. Now, by using (5.9), the inequality (a + b)2 ≤ 2a2 + 2b2 and that
Z ′t = Zt + Ȳt − Ȳl(t), we can estimate the process Z by

E
[

sup
u∈[0,t]

|Zu|2
]
≤ 2E

[
sup
u∈[0,t]

|Mu|2
]

+ 2E
[

sup
u∈[0,t]

∣∣∣b ∫ u

0

(
a(Ys−)− a(Ȳl(s−))

)
ds
∣∣∣2]

≤ 18K4

∫ t

0

E
[
|Z ′s−|2

]
ds+ 8K2F (h)

∫ t

0

E
[(
|Ys− − y0|+ 1

)2
]
ds

≤ 18K4

∫ t

0

E
[
|Zs− + Ȳt − Ȳl(s−)|2

]
ds

+ 8K2F (h)

∫ t

0

E
[(
|Ys− − y0|+ 1

)2
]
ds

≤ 36K4

∫ t

0

E
[
|Zs−|2 + |Ȳt − Ȳl(s−)|2

]
ds

+ 8K2F (h)

∫ t

0

E
[(
|Ys− − y0|+ 1

)2
]
ds.
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Since by Lemma 5.1 the expression E
[

sups∈[0,t](|Ys − y0| + 1)2
]

is bounded by a
constant we have that

z(t) := E
[

sup
s∈[0,t]

|Zs|2
]
≤ κ1

(∫ t

0

E
[
|Zs−|2 + |Ȳt − Ȳl(s−)|2

]
ds+ F (h)

)
≤ κ1

(∫ t

0

z(s) + E
[
|Ȳt − Ȳl(s−)|2

]
ds+ F (h)

)
, (5.15)

where κ1 is a constant that depends only on K.
It remains to find an estimate for E

[
|Ȳt − Ȳl(t)|2

]
. First recall that l(t) is the last

evaluation point before or at time t and thus the process L′ has no jumps on interval(
l(t), t

]
and it is linear with slope −F0(h). We see that

Ȳt − Ȳl(t) = σ

∫ t

l(t)

a(Ȳl(s−))dBs +

∫ t

l(t)

a(Ȳl(s−))dL
′
s + b

∫ t

l(t)

a(Ȳl(s−))ds

= a(Ȳl(t))
(
σ(Bt −Bl(t))− F0(h)

(
t− l(t)

)
+ b
(
t− l(t)

))
= a(Ȳl(t))

(
σ(Bt −Bl(t)) +

(
b− F0(h)

)(
t− l(t)

))
.

Note that from Assumption 1 we obtain

E
[∣∣a(Ȳl(t))

∣∣2] ≤ E
[(
|a(Ȳl(t))− a(y0)|+ |a(y0)|

)2
]

≤ K2E
[(
|Ȳl(t) − y0|+ 1

)2
]

≤ K2E
[(
|Yl(t) − y0|+ |Zl(t)|+ 1

)2
]
,

where the last inequality follows from

|Ȳl(t) − y0| ≤ |Ȳl(t) − Yl(t)|+ |Yl(t) − y0| = |Yl(t) − y0|+ |Zl(t)|.

From the strong Markov property of Brownian motion([7, Theorem 2.6.16]) it follows
that

(
Bl(t)+s − Bl(t)

)
s≥0

is a Brownian motion independent from Fl(t). Hence, by

using the fact that our step size is ε at most and additionally twice the inequality
(a+ b)2 ≤ 2a2 + 2b2, it follows that

E
[
|Ȳt − Ȳl(t)|2

]
≤ E

[∣∣∣a(Ȳl(t))
∣∣∣2∣∣∣(σ(Bt −Bl(t))−

(
b− F0(h)

)(
t− l(t)

))∣∣∣2]
≤ 2K2E

[(
|Yl(t) − y0|+ |Zl(t)|+ 1

)2
](
|σ|2ε+

∣∣b− F0(h)
∣∣2ε2
)

≤ 4K2
(
E
[(
|Yl(t) − y0|+ 1

)2
]

+ E
[
|Zl(t)|2

])(
|σ|2ε+

∣∣b− F0(h)
∣∣2ε2
)
.

The Cauchy-Schwarz inequality together with our assumption ν(Bc
h) ≤ 1/ε yields

that

|F0(h)|2 =
∣∣∣ ∫

Bc
h

xν(dx)
∣∣∣2 ≤ ν(Bc

h)

∫
Bc
h

|x|2ν(dx) ≤ K2

ε
, (5.16)

and we also know by Lemma 5.1 that E
[(
|Yl(t) − y0| + 1

)2]
is uniformly bounded.

Consequently, for t ∈ [0, 1] we have

E
[
|Ȳt − Ȳl(t)|2

]
≤ κ2

[
|σ|2ε+ |b− F0(h)|2ε2 + z(t)

]
,
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where κ2 is an appropriate constant that depends onK only. This estimate combined
with equation (5.15) gives us

z(t) ≤ κ3

[ ∫ t

0

z(s)ds+ |σ|2ε+ |b− F0(h)|2ε2 + F (h)
]

where again κ3 is a constant depending only on K. We see that our estimate for z
is of the form

z(t) ≤ α1

∫ t

0

z(s)ds+ α2.

If σ = 0, the statement of the proposition follows from Gronwall’s inequality (Propo-
sition 3.1). The general case is an immediate consequence of the estimates |σ|2ε ≤
K2ε from Assumption 1 and

|b− F0(h)|2ε2 ≤ 2ε2(|b|2 + |F0(h)|2)

≤ 2ε2K2 + 2εK2

≤ 4K2ε

where we used (5.16). �

Lemma 5.3. [3, Lemma 2] Let r ∈ N and (Gj)j=0,1,...,r denote a filtration. Moreover,
for j = 0, . . . , r−1 let Uj and Vj denote non-negative random variables such that Uj
is Gj-measurable, and Vj is Gj+1-measurable and independent of Gj. Then one has

E
[

max
j=0,...,r−1

UjVj

]
≤ E

[
max

j=0,...,r−1
Uj

]
E
[

max
j=0,...,r−1

Vj

]
.

Proof. Without loss of generality we assume that (Uj) is monotonically increasing.

Otherwise, we can prove the result for (Ũj) given by Ũj = maxk≤j Uk and note that

E
[

max
j=0,...,r−1

UjVj

]
≤ E

[
max

j=0,...,r−1
ŨjVj

]
≤ E

[
max

j=0,...,r−1
Ũj

]
E
[

max
j=0,...,r−1

Vj

]
.

= E
[

max
j=0,...,r−1

Uj

]
E
[

max
j=0,...,r−1

Vj

]
.

We proceed by induction. For r = 1 we have

E[U0V0] = E
[
E[U0V0|G0]

]
= E

[
U0E[V0|G0]

]
= E[U0]E[V0]

because of the independence of V0 and G0. Now let r ≥ 1 be arbitrary. Note that
by induction hypothesis and monotonicity of U we can deduce that

E
[

max
j=1,...r

UjVj
]
≤ E

[
max
j=1,...,r

Uj
]
E
[

max
j=1,...,r

Vj
]

= E[Ur]E
[

max
j=1,...,r

Vj
]
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and the monotonicity of U and the properties of conditional expectation imply that

E
[
(U0V0 − max

j=1,...r
UjVj)

+

]
= E

[
E
[
(U0V0 − max

j=1,...r
UjVj)

+|G0

]]
≤ E

[
U0E

[
(V0 − max

j=1,...r
Vj)

+|G0

]]
= E

[
U0E

[
(V0 − max

j=1,...r
Vj)

+
]]

= E[U0]E
[
(V0 − max

j=1,...r
Vj)

+
]
.

Now it is easy to see that

E
[

max
j=0,...,r

UjVj
]

= E
[

max
j=1,...r

UjVj
]

+ E
[
(U0V0 − max

j=1,...r
UjVj)

+
]

≤ E[Ur]E
[

max
j=1,...,r

Vj
]

+ E[U0]E
[
(V0 − max

j=1,...r
Vj)

+
]

≤ E[Ur]

(
E
[

max
j=1,...,r

Vj
]

+ E
[
(V0 − max

j=1,...r
Vj)

+
])

= E
[

max
j=0,...,r

Uj
]
E
[

max
j=0,...,r

Vj
]
.

�

In the following results we denote Ŷ
(h,ε)
t with the short form Ŷt.

Lemma 5.4. The processes (Ȳt)t≥0 and (Ŷt)t≥0 coincide almost surely for all times

(Tk)k=0,1,... defined by Tk = T
(h,ε)
k as in (5.3).

Proof. Again, recall that L′t is linear with slope −F0(h) on each interval [Tk−1, Tk)
for each k ∈ N and thus

L′Tk = L′Tk−1
+ ∆L′Tk − F0(h)(Tk − Tk−1).

Additionally, we have that ∆LTk = ∆L′Tk almost surely.

It is clear that ȲT0 = Ȳ0 = y0 = ŶT0 and hence by induction we have

ȲTk = y0 +

∫ Tk

0

a(Ȳl(s−))dX̄s = ȲTk−1
+

∫ Tk

Tk−1

a(Ȳl(s−))dX̄s

= ȲTk−1
+ a(ȲTk−1

)
(
σ(BTk −BTk−1

) + ∆L′Tk +
(
b− F0(h)

)
(Tk − Tk−1)

)
= ŶTk−1

+ a(ŶTk−1
)
(
σ(BTk −BTk−1

) + ∆LTk +
(
b− F0(h)

)
(Tk − Tk−1)

)
= ŶTk−1

+ a(ŶTk−1
)
(
X̂Tk − X̂Tk−1

)
= ŶTk

for k ∈ N. �

THEOREM 5.5. [3, Theorem 2] Under Assumption 1, there exists a constant κ
depending only on K such that for any ε ∈ (0, 1] and h > 0 with ν(Bh) ≤ 1

ε
, one has

(i) in the case without Brownian component, i.e. σ = 0

E[ sup
t∈[0,1]

|Yt − Ŷ (h,ε)
t |2] ≤ κ(F (h) + |b− F0(h)|2ε2)
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(ii) in the general case

E[ sup
t∈[0,1]

|Yt − Ŷ (h,ε)
t |2] ≤ κ(ε log(e/ε) + F (h)).

Proof. We will begin the proof by finding an appropriate upper bound for E
[

supt∈[0,1] |Ȳt−
Ŷt|2
]
, which can then be combined with Proposition 5.2 to obtain the statement. Re-

call that in Section 5.2 we defined Ŷt = Ŷl(t) and then by Lemma 5.4 we see that

Ȳt − Ŷt = Ȳt − Ȳl(t) = a(Ȳl(t))
(
σ(Bt −Bl(t)) +

(
b− F0(h)

)(
t− l(t)

))
.

We analyze this in two parts by defining processes (At)t≥0 and (Dt)t≥0 with

At := a(Ȳl(t))σ(Bt −Bl(t))

and

Dt := a(Ȳl(t))(b− F0(h)
)(
t− l(t)

)
.

We defined our time grid such that the mesh size is ε at most and hence

E
[

sup
t∈[0,1]

|Dt|2
]
≤ E

[
sup
t∈[0,1]

|a(Ȳl(t))|2
]
|b− F0(h)|2ε2

≤ K2E
[

sup
t∈[0,1]

(|Ȳl(t) − y0|+ 1)2

]
|b− F0(h)|2ε2

≤ K2E
[
(
∥∥Ȳ − y0

∥∥+ 1)2
]
|b− F0(h)|2ε2. (5.17)

For the process A we see that

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|σ|2E

[
sup
t∈[0,1]

(|Ȳl(t) − y0|+ 1)2|Bt −Bl(t)|2
]

and for r ∈ N we get

E
[

sup
t∈[0,1∧Tr]

|At|2
]
≤ K2|σ|2E

[
sup

t∈[0,1∧Tr]
(|Ȳl(t) − y0|+ 1)2|Bt −Bl(t)|2

]
= K2|σ|2E

[
max

j=0,...,r−1

(
1{Tj<1}(|ȲTj − y0|+ 1)2

)(
sup

t∈[Tj ,Tj+1∧1)

|Bt −BTj |2
)]
.

We apply Lemma 5.3 with Uj = 1{Tj<1}(|ȲTj−y0|+1)2, Vj = supt∈[Tj ,Tj+1) |Bt−BTj |2
and Gj = FTj with j = 0, 1, . . . and obtain

K2|σ|2E
[

max
j=0,...,r−1

(
1{Tj<1}(|ȲTj − y0|+ 1)2

)(
sup

t∈[Tj ,Tj+1∧1)

|Bt −BTj |2
)]

≤ K2|σ|2E
[

max
j=0,...,r−1

1{Tj<1}(|ȲTj − y0|+ 1)2

]
E
[

max
j=0,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Bt −BTj |2
]

= K2|σ|2E
[

sup
t∈[0,1∧Tr]

(|Ȳl(t) − y0|+ 1)2

]
E
[

max
j=0,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Bt −BTj |2
]
.

To estimate the expectation with Brownian motions we use Lévy’s modulus of
continuity theorem ([7, p. 114]). A function g(·) is called a modulus of continuity for
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the function f : [0, T ]→ R if 0 ≤ s < t ≤ T and |t−s| ≤ δ imply |f(t)−f(s)| ≤ g(δ)
for all sufficiently small positive δ. From Lévy’s Theorem it follows that with

g(δ) :=
√

2δ log(1/δ), δ > 0,

cg(δ) is a modulus of continuity for almost every Brownian path on [0, 1] if c >

1. Consider c =
√
e/2, and note that then cg(δ/e) =

√
e/2
√

2δ/e log(1/δ) =√
δ log(e/δ). Therefore the term

‖B‖ϕ := sup
0≤s<t≤1

|Bt −Bs|
ϕ(t− s)

is almost surely finite for ϕ : [0, 1] → [0,∞), δ 7→
√
δ log(e/δ) and, by Fernique’s

theorem, E ‖B‖2
ϕ is finite. Since on interval [0, 1] the function ϕ is increasing and

the mesh size of our timegrid is ε at most, we have that

E
[

max
j=0,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Bt −BTj |2
]
≤ E

[
‖B‖2

ϕ sup
t∈[0,1∧Tr]

ϕ(t− l(t))2

]
≤ E

[
‖B‖2

ϕ

]
ϕ(ε)2.

Now we see that

E
[

sup
t∈[0,1]

|At|2
]

= lim
r→∞

E
[

sup
t∈[0,1∧Tr]

|At|2
]

≤ lim
r→∞

K2|σ|2E
[

sup
t∈[0,1∧Tr]

(|Ȳl(t) − y0|+ 1)2

]
E
[
‖B‖2

ϕ

]
ϕ(ε)2

≤ K2|σ|2E
[

sup
t∈[0,1]

(|Ȳl(t) − y0|+ 1)2

]
E
[
‖B‖2

ϕ

]
ϕ(ε)2

and by combining this estimation of the process A with the estimation of the process
D in (5.17) we get

E
[

sup
t∈[0,1]

|Ȳt − Ŷt|2
]
≤ E

[
sup
t∈[0,1]

|At +Bt|2
]
≤ 2E

[
sup
t∈[0,1]

|At|2
]

+ 2E
[

sup
t∈[0,1]

|Bt|2
]

≤ 2K2E
[
(
∥∥Ȳ − y0

∥∥+ 1)2
](
|σ|2E

[
‖B‖2

ϕ

]
ϕ(ε)2 + |b− F0(h)|2ε2

)
.

By Proposition 5.2 and Lemma 5.1 E
[
(
∥∥Ȳ − y0

∥∥ + 1)2
]

is bounded from above by
some constant depending on K only and hence there exists a constant κ1 depending
only on K such that

E
[

sup
t∈[0,1]

|Ȳt − Ŷt|2
]
≤ κ1

(
|σ|2ϕ(ε)2 + |b− F0(h)|2ε2

)
.

It remains to analyze

E
[

sup
t∈[0,1]

|Yt − Ŷt|2
]
≤ 2E

[
sup
t∈[0,1]

|Yt − Ȳt|2
]

+ 2E
[

sup
t∈[0,1]

|Ȳt − Ŷt|2
]
.

With Proposition 5.2 and some constant κ2 we get that

E
[

sup
t∈[0,1]

|Yt − Ŷt|2
]
≤ κ2

(
F (h) + |b− F0(h)|2ε2)
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for the case with σ = 0 and for general case with constants κ3, κ4 and κ5

E
[

sup
t∈[0,1]

|Yt − Ŷt|2
]
≤ κ3

(
ε+ F (h) + ϕ(ε)2 + |b− F0(h)|2ε2)

≤ κ4

(
ε+ F (h) + ε log(e/ε) + ε)

≤ κ5

(
F (h) + ε log(e/ε)),

where we used (5.16), i.e. the fact that |F0(h)|2 ≤ K2/ε. �

Lemma 5.6. For any h > 0 it holds∫
Bh

|x|ν(dx) ≤
∫ h

0

ν(Bc
u)du

Proof. We show the claim with Fubini’s Theorem:∫
Bh

|x|ν(dx) =

∫
Rd
|x|1{x∈Bh}ν(dx)

≤
∫
Rd
|x| ∧ hν(dx)

=

∫
Rd

(∫ h∧|x|

0

1du

)
ν(dx)

=

∫
Rd

(∫ h

0

1{|x|>u}du

)
ν(dx)

=

∫
Rd

(∫ h

0

1{x∈Bc
u}du

)
ν(dx)

=

∫ h

0

(∫
Rd
1{x∈Bc

u}ν(dx)

)
du

=

∫ h

0

ν(Bc
u)du.

�

5.4.1. Complexity. In the following Theorem, for some positive functions f and g,
we write f - g meaning lim supx→a f(x)/g(x) <∞ where a ∈ R∪{∞}. Note that if
a ∈ R, then f - g if and only if there exists δ > 0 and κ > 0 such that f(x) ≤ κg(x)
for all |a− x| < δ.

We consider a decreasing and invertible function g : (0,∞)→ (0,∞) such that∫
Rd

|x|2

h2
∧ 1ν(dx) ≤ g(h) for all h > 0.

THEOREM 5.7. [3, Theorem 1].

(i) If the driving process X has no Brownian component, i.e., σ = 0, and if
there exists γ > 0 such that

g(h) -
1

h(log 1/h)1+γ
(5.18)
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as h ↘ 0, then there exists a sequence of multilevel algorithms Ŝn as intro-

duced in Section 5.3 such that cost(Ŝn) ≤ n and

e(Ŝn) -
1√
n
.

(ii) If there exists γ ≥ 1
2

such that

g(h) -
(log 1/h)γ

h

as h ↘ 0, then there exists a sequence of multilevel algorithms Ŝn as intro-

duced in Section 5.3 such that cost(Ŝn) ≤ n and

e(Ŝn) -
1√
n

(log n)γ+1.

Proof. Proof of part (i)
Without loss of generality we can assume that

1

h2/3
- g(h) -

1

h(log 1/h)1+γ
, (5.19)

since otherwise we can modify the function g by adding the term 1
h2/3

, in which case
the new function g would have all the wanted properties.

Our algorithm is uniquely described by parameters m and (nk, hk, εk)k=1,2,...,m.
We begin by defining hk := g−1(2k) and εk := 2−k ≤ 1 for k = 0, 1, . . .. Note that
for all x ∈ Bc

h it holds that |x|2 ≥ h2 and hence

ν(Bc
h) =

∫
Bc
h

1ν(dx)

≤
∫
Bc
h

|x|2

h2
∧ 1ν(dx) +

∫
Bh

|x|2

h2
∧ 1ν(dx) ≤ g(h)

(5.20)

and in particular

ν(Bc
hk

) ≤ g(hk) =
1

εk
. (5.21)

Recall that F (h) =
∫
Bh
|x|2ν(dx). Furthermore, note that the inequality

F (hk) ≤ F (hk−1) (5.22)

42



follows from the facts that the function F is increasing and hk−1 > hk. With Hölder’s
inequality we have

|F0(hk)− F0(hk−1)|2ε2
k−1 =

∣∣∣∣ ∫
Bc
hk
\Bc

hk−1

xν(dx)

∣∣∣∣2ε2
k−1

≤
(∫

Bc
hk
\Bc

hk−1

1ν(dx)

)(∫
Bc
hk
\Bc

hk−1

|x|2ν(dx)

)
ε2
k−1

≤
(∫

Bc
hk

1ν(dx)

)(∫
Bhk−1

|x|2ν(dx)

)
ε2
k−1

= ν(Bc
hk

)F (hk−1)ε2
k−1

≤ 1

εk
F (hk−1)ε2

k−1

= 2−k+2F (hk−1)

and thus

|b− F0(hk−1)|2ε2
k−1 = |b− F0(hk) + F0(hk)− F0(hk−1)|2ε2

k−1

≤ 2|b− F0(hk)|2ε2
k−1 + 2|F0(hk)− F0(hk−1)|2ε2

k−1

≤ 2|b− F0(hk)|2ε2
k−1 + 2−k+3F (hk−1). (5.23)

Now by Theorem 5.5 and equation (5.23), we have for k > 1 that

E
[∥∥Ŷ (k) − Ŷ (k−1)

∥∥2]
= E

[(∥∥Y − Ŷ (k)
∥∥+

∥∥Y − Ŷ (k−1)
∥∥)2
]

≤ 2E
[∥∥Y − Ŷ (k)

∥∥2]
+ 2E

[∥∥Y − Ŷ (k−1)
∥∥2]

≤ κ1

(
F (hk) + |b− F0(hk)|2ε2

k + F (hk−1) + |b− F0(hk−1)|2ε2
k−1

)
≤ κ2

(
2F (hk−1) + |b− F0(hk)|2ε2

k + |b− F0(hk−1)|2ε2
k−1

)
≤ κ3

(
F (hk−1) + |b− F0(hk)|2ε2

k−1

)
(5.24)

for some constants κ1, κ2, κ3 > 0.
Now by (5.5), Lemma 5.1, Theorem 5.5 and (5.24) we can estimate the error of

the algorithm for some constant κ4 > 0 by

e2(Ŝ) ≤ E[
∥∥Y − Y (m)

∥∥2
] +

m∑
k=2

1

nk
E[
∥∥Y (k) − Y (k−1)

∥∥2
] +

1

n1

E[
∥∥Y (1) − y0

∥∥2
]

≤ κ4

m+1∑
k=1

1

nk
[F (hk−1) + |b− F0(hk)|2ε2

k−1],

where we set nm+1 = 1.
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By Lemma 5.6 and Assumption (5.18) with an appropriate constant κ5 > 0 and
sufficiently small r ∈ (0, 1), we have

|F0(hk)| =
∣∣ ∫

Bc
hk

xν(dx)
∣∣ ≤ ∫

Rd
|x|ν(dx) ≤ 1

r

∫
Rd
|x|(r ∨ |x|)ν(dx)

=
1

r

∫
Bc
r

|x|2ν(dx) +

∫
Br

|x|ν(dx)

≤ 1

r

∫
Bc
r

|x|2ν(dx) +

∫ r

0

ν(Bc
u)du

≤ 1

r

∫
|x|2ν(dx) +

∫ r

0

g(u)du

≤ 1

r

∫
|x|2ν(dx) + κ5

∫ r

0

1

u(log(1/u))1+γ
du,

where both integrals are finite. Additionally, we have

|F (hk)| =
∫
Bhk

|x|2ν(dx) = h2
k

∫
Bhk

|x|2

h2
k

ν(dx)

≤ h2
k

∫
|x|2

h2
k

∧ 1ν(dx)

≤ h2
kg(hk) = g−1(2k)22k. (5.25)

Note that for (5.19), with some M > 0, we see that for y = 1
Mh2/3

1

h2/3
- g(h) ⇐⇒ 1

h2/3
≤Mg(h)

⇐⇒ 1

y3/2
≤M3/2g−1(y)

⇐⇒ 1

y3/2
- g−1(y) as y →∞. (5.26)

Additionally, from (5.19) for some M > 0 we have

g(h) ≤ M

h(log 1/h)1+γ
as h→ 0

and therefore we have, setting h = 1
y
,

g
(1

y

)
≤ My

(log y)1+γ
as y →∞.

We apply the decreasing function g−1 to the inequality.

1

y
≥ g−1

( My

(log y)1+γ

)
.

We choose y := z(log z)1+γ/M , and note that then y → ∞ ⇐⇒ z → ∞. By the
properties of the logarithm and the fact that log((log z)1+γ)− (logM) ≥ 0 for large
z we have

M

z(log z)1+γ
≥ g−1

( z(log z)1+γ(
log z + log((log z)1+γ)− logM

)1+γ

)
≥ g−1(z)
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as z →∞. Therefore we have

g−1(y) -
1

y log(y)1+γ
as y →∞. (5.27)

Hence, with equation (5.26), we have 2kg−1(2k)2 % 2−2k = ε2
k as k tends to infinity.

By equation (5.25) and in view of the fact that |F0(hk)| is bounded, there exists a
constant κ5 such that

e2(Ŝ) ≤ κ4

m+1∑
k=1

1

nk
[F (hk−1) + |b− F0(hk)|2ε2

k−1] ≤ κ5

m+1∑
k=1

1

nk
2k−1gk−1(2−1)2.

Next we will fix the parameters m and n1, . . . , nm. For some given parameter
Z ≥ 1

g−1(1)
, we choose

m = m(Z) = inf{k ∈ N : Zg−1(2k) < 1} − 1

and set

nk = nk(Z) = bZg−1(2k−1)c

for k = 1, . . . ,m and nm+1 = 1. Now from definition ofm we know that Zg−1(2k−1) ≥
1 for all k = 1, . . . ,m + 1, which implies 1/nk = 1/bZg−1(2k−1)c ≤ 2/Zg−1(2k−1)
and therefore

e2(Ŝ) ≤ κ5

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2 ≤ 2κ5

Z

m+1∑
k=1

2k−1g−1(2k−1). (5.28)

By (5.27) we have that 2kg−1(2k) - k−(1+γ) and hence for some constant M > 0 we
have

m+1∑
k=1

2k−1g−1(2k−1) ≤ g−1(1) +M

m+1∑
k=2

(k − 1)−(1+γ) (5.29)

so we see that the latter sum in (5.28) is uniformly bounded for all m. Hence, there
exists a constant κ6 depending only on g and K such that

e2(Ŝ) ≤ κ6
1

Z
. (5.30)

Finally, we will analyze the cost of the algorithm. To be able to do that, we first

need to evaluate the expected number of breakpoints of Ŷ (k). Recall that there are
two sources of breakpoints, the large and the small jumps. The large jumps were
defined as jumps greater than hk, and hence by Definition 2.44 of the Lévy measure
we see that the expected number of large jumps is ν(Bc

hk
). After setting the large

jumps we then added small ones such that the jump size remained less than εk, and
hence with equation (5.21) we see that

E
[
Υ(Ŷ (k))

]
≤ 1

εk
+ ν(Bc

hk
) ≤ 2k+1.
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Thus, by using again (5.29) we have

cost(Ŝ) ≤
m∑
k=1

nkE
[
Υ(Y (k))

]
≤

m∑
k=1

2k+1nk

≤ 4Z
m∑
k=1

2k−1g−1(2k−1)

≤ κ7Z (5.31)

for some appropriate constant κ7 > 0. Then we choose Z = n in (5.30) and (5.31)
and the result follows.
Proof of part (ii)

As in part (i), we can assume without loss of generality that g satisfies√
log 1/h

h
- g(h) -

(log 1/h)γ

h
(5.32)

and again, we choose hk := g−1(2k) and εk := 2−k for k = 0, 1, . . .. Note that we still
have that ν(Bc

hk
) ≤ g(hk) = 1/εk, εk ≤ 1 and that F (hk) ≤ g(hk)h

2
k = 2kg−1(2k)2 as

explained in (5.21) and (5.25). By a simple computation we see that εk log(e/εk) ≤
εk−1 log(e/εk−1) for k ≥ 1 and hence, by Theorem 5.5 and equation (5.22) we have
that

E
[∥∥Ŷ (k) − Ŷ (k−1)

∥∥2] ≤ 2E
[∥∥Y − Ŷ (k)

∥∥2
] + 2E[

∥∥Y − Ŷ (k−1)
∥∥2

]

≤ κ1(εk log(e/εk) + F (hk) + εk−1 log(e/εk−1) + F (hk−1))

≤ κ2(F (hk−1) + εk−1 log(e/εk−1))

for some constants κ1, κ2 > 0. Now, like in part (i), we can estimate the error of the
algorithm by

e2(Ŝ) ≤ E[
∥∥∥Y − Ŷ (m)

∥∥∥2

] +
m∑
k=2

1

nk
E[
∥∥Y (k) − Y (k−1)

∥∥2
] +

1

n1

E[
∥∥Y (1) − y0

∥∥2
]

≤ κ3

m+1∑
k=1

1

nk

[
F (hk−1) + εk−1 log

(
e

εk−1

)]

≤ κ3

m+1∑
k=1

1

nk

[
2k−1g−1(2k−1)2 + 2−(k−1) log(e2k−1)

]
for some κ3 > 0. With similar computations as in (5.27), which we do not repeat,
we see that from (5.32) it follows that

√
log y

y
- g−1(y) -

(log y)γ

y
as y →∞ (5.33)

By a simple computation we have that

2−k log(e2k) = 2ke
(√log(e2k)

e2k

)2

- 2kg−1(e2k)2 ≤ 2kg−1(2k)2
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where the last step follows from the fact that the inverse of function g is decreasing.
Thus, we can find a constant κ4 such that

e2(Ŝ) ≤ κ4

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2.

Again, to finish the evaluation of the error, for Z ≥ e ∨
(
1/g−1(1)

)
we choose

m = m(Z) = inf{k ∈ N : Zg−1(2k) < 1} − 1 and set nk = nk(Z) = bZg−1(2k−1)c
for k = 1, . . . ,m. Like in previous part, note that 1/nk ≤ 2/Zg−1(2k−1). Now with
(5.33) we see that

e2(Ŝ) ≤ 2κ4
1

Z

m+1∑
k=1

2k−1g−1(2k−1)

≤ κ5
1

Z

m+1∑
k=1

(
log(2k−1)

)γ
≤ κ6

1

Z

m+1∑
k=1

(k − 1)γ

≤ κ6
1

Z
mγ+1

for κ5, κ6 > 0. Furthermore, from the choice of m it follows that Zg−1(2m) ≥ 1, and
it is easy to see that log

(
(logZ)γ

)
≤ logZ for large Z. Thus, by (5.32) with some

constant M > 0 we obtain

m ≤ log2

(
g
( 1

Z

))
=

log
(
g(1/Z)

)
log(2)

≤ M

log(2)
log
(
Z
(

logZ
)γ)

≤ M

log(2)

(
logZ + log

(
(logZ)γ

))
≤ 2M

log(2)
log(Z)

- log(Z) (5.34)

as Z →∞. Hence, we can estimate the error with

e2(Ŝ) ≤ κ7
(logZ)γ+1

Z
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for some positive constant κ7. Similarly, with the definition of nk and the equations
(5.33) and (5.34) we have

cost(Ŝ) ≤
m∑
k=1

2k+1nk ≤
m∑
k=1

2k+1Zg−1(2k−1)

≤ κ8Z
m∑
k=1

(k − 1)γ ≤ κ8Zm
γ+1

≤ κ9Z(logZ)γ+1

with κ8, κ9 > 0. Finally, we choose

Z = Z(n) =
1

2κ9

n

(log n)γ+1

for n ≥ e sufficiently large such that Z ≥ e ∨
(
1/g−1(1)

)
. Then

lim
n→∞

log(Z)

log(n)
= lim

n→∞

log(1/2κ9)

log(n)
+

log(n)

log(n)
− log((log n)γ+1)

log(n)
= 1

which implies

lim
n→∞

cost(Ŝ)

n/2
≤ lim

n→∞

κ9Z(logZ)γ+1

n/2

= lim
n→∞

n/2

n/2

(logZ)γ+1

(log n)γ+1
= 1

and hence, we have for sufficiently large n that cost(Ŝ) ≤ n. Additionally, for the
error we have

lim sup
n→∞

κ7(logZ)γ+1

Z

n

(log n)2(γ+1)
= lim sup

n→∞

2κ7κ9(logZ)γ+1

n

n

(log n)γ+1

= 2κ7κ9 lim sup
n→∞

(logZ)γ+1

(log n)γ+1
<∞,

which implies

e2(Ŝ) -
(log n)2(γ+1)

n
.

�

6. Afterword

This text covers the basic idea behind the multilevel Monte Carlo algorithm ap-
plied to a functional of a solution to an SDE with jumps. The algorithm is based
on the method where one approximates the solution to the SDE with refining time
grids. In general, finer grid leads to more time consuming algorithm. The multi-
level approach exploits the grids with refining grid size to achieve better accuracy
with lower cost. On each level it uses a discretization method. Here only the Eu-
ler scheme was introduced, but actually any discretization with certain properties
would do. One example is the Milstein scheme, which has been widely studied. Both
schemes are simple examples of Taylor approximations.

The multilevel algorithm provides considerably lower error rates compared to tra-
ditional Monte Carlo. Yet, it is not significantly more complicated to put into
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practice. The article [4] in which the Section 4 is based on is one of the very first
papers of this subject. The multilevel algorithm is a current topic in research and
there are new applications rising up at steady pace.
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