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ABSTRACT

Tensor decomposition is a powerful tool for analyzing mul-
tiway data. Nowadays, with the fast development of mul-
tisensor technology, more and more data appear in higher-
order (order > 4) and nonnegative form. However, the de-
composition of higher-order nonnegative tensor suffers from
poor convergence and low speed. In this study, we propose a
new nonnegative CANDECOM/PARAFAC (NCP) model us-
ing proximal algorithm. The block principal pivoting method
in alternating nonnegative least squares (ANLS) framework
is employed to minimize the objective function. Our method
can guarantee the convergence and accelerate the computa-
tion. The results of experiments on both synthetic and real
data demonstrate the efficiency and superiority of our method.

Index Terms— Tensor decomposition, nonnegative CAN-
DECOMP/PARAFAC, proximal algorithm, block principal
pivoting, alternating nonnegative least squares

1. INTRODUCTION

In recent years, the widespread application of multisensor
technology and the fast development of advanced signal pro-
cessing methods have promoted the formation of multiway
data as higher-order tensor. For example, in a brain signal
experiment, the event-related potential (ERP) can be repre-
sented even by a seventh-order tensor including modes such
as space, frequency, time, trial, subject, condition and group
[1]. Tensor decomposition, especially nonnegative CANDE-
COMP/PARAFAC (NCP) decomposition, is a favourable tool
to analyze these data [2]. In order to process such higher-
order data efficiently, fast and stable tensor decomposition al-
gorithm is necessary.

Block coordinate descent (BCD) method [3, 4] is a gen-
eral and important framework to solve tensor decomposition,
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in which each factor matrix is updated alternatively as a
subproblem. Many conventional methods are proposed in
BCD framework. For example, hierarchical alternating least
squares (HALS) was designed for large scale tense data [5,6],
which showed fast computation. However, the normalization
of factor matrices in HALS will spoil the bound-constrained
property of NCP and complicate the optimization proce-
dures [7]. Alternating nonnegative least squares (ANLS) is
a powerful sub-framwork in BCD for NCP, benefiting from
the efficiency of many nonnegative least squares (NNLS)
methods such as active set (AS) [8] and block principal piv-
oting (BPP) [9]. Nevertheless, ANLS often suffers from
rank deficiency because of the sparse effect introduced by
the nonnegative constraints and the possible appearance of
zero components in factor matrices. In recent year, alternat-
ing proximal gradient (APG) [3, 10, 11] method has gained
in popularity for NMF and third-order tensor decomposition
because of its stable convergence, but it still converges very
slowly for higher-order tensor (order > 4). The challenge
of higher-order tensor decomposition is to design a solving
algorithm that is convergent and efficient.

Recently, proximal algorithm has been applied to uncon-
strained CP decomposition [12,13]. The advantage is that the
combination of BCD framework and proximal algorithm will
satisfy the need for uniqueness of minimum in each subprob-
lem [14]. Therefore, the tensor decomposition will be guaran-
teed to converge to stationary point [14]. We extend proximal
algorithm to the bound-constrained NCP, which had not been
adequately analyzed in previous studies. We also find that
NCP using proximal algorithm is equivalent to a ANLS prob-
lem. Consequently, BPP, as an efficient NNLS method, is em-
ployed to solve the ANLS problem. We conduct experiments
on both fourth-order synthetic and real data to demonstrated
the efficiency and superiority of our method.

2. NCP DECOMPOSITION

In this paper, we denote a vector by boldface lowercase letter,
such as x; a matrix by boldface uppercase letter, such as X;



and a tensor by boldface Euler script letter, such as X. Op-
erator ◦ represents outer product of vectors, ∗ represents the
Hadamard product, 〈 〉 represents inner product, J K represents
Kruskal operator, and‖ ‖F means Frobenius norm.

Given a nonnegativeN th-order tensor X ∈ RI1×I2×···×IN ,
the nonnegative CANDECOMP/PARAFAC (NCP) decom-
position is to solve the following minimization problem:

min
A(1),...,A(N)

1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥2
F

s.t. A(n) > 0 for n = 1, . . . , N,

(1)

where A(n) ∈ RIn×R for n = 1, . . . , N are the estimated
factor matrices in different modes, In is the size in mode-n,
and R is the predefined number of components.

Block coordinate descent [3, 4] is an important method to
solve NCP problem, in which the factor matrices of A(n),
n = 1, . . . , N , are updated alternatively. Let X(n) ∈
RIn×

∏N
ñ=1,ñ6=n Iñ represent the mode-n unfolding (matri-

cization) of original tensor X. And the mode-n unfolding of

JA(1), . . . ,A(N)K can be written as A(n)
(
B(n)

)T
, in which

B(n) =
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
∈

R
∏N

ñ=1,ñ 6=n Iñ×R. The updating ofA(n) in the kth iteration is
solved as the following subproblem:

A
(n)
k+1 = argmin

A(n)>0

1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥2
F

. (2)

Essentially, (2) is a bound-constrained optimization prob-
lem, for which HALS [5, 6], APG [3, 10, 11] and ANLS [7–
9] are popular optimization methods. The nonnegative con-
straint will naturally lead to sparse results, which might in-
troduce zero components to A(n). Thus, A(n) might not be
full column rank. Although many nonnegative leaset squares
(NNLS) methods in ANLS framework usually run very fast,
such as active set (AS) [8] and block principal pivoting (BPP)
[9], they often suffer from the rank deficiency. In order to pre-
vent the rank deficiency, the Tiknonov regularization (squared
Frobenius norm) [15] is always incorporated into NCP as the
following subproblem:

A
(n)
k+1 = argmin

A(n)>0

{
1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥2
F

+
αn

2

∥∥∥A(n)
∥∥∥2
F

}
,

(3)

where αn is positive regularization parameter in parameter
vectorα ∈ RN×1. The objective function in (3) can be equiv-
alently rewritten as

F1 =
1

2

∥∥∥∥∥∥
(
XT

(n)

0R×In

)
−

(
B

(n)
k√
αnIR

)(
A(n)

)T∥∥∥∥∥∥
2

F

,

where I is the identity matrix and 0 is zero matrix. After-
wards, NNLS methods, such as AS and BPP, can be employed
to minimize the subproblem. Nevertheless, the optimal solu-
tion by (3) is not a stationary point of NCP in (1) [13].

APG exhibits efficient convergence properties for third-
order tensor, in which the proximal operator is employed to
update the factor matrices yielding a close form solution [3].
However, APG still shows slow convergence for higher-order
(order > 4) tensor data.

3. NCP USING PROXIMAL ALGORITHM

Proximal algorithm has been successfully utilized in uncon-
strained CP decomposition, which can guarantee that CP con-
verges to stationary point [12, 13]. Inspired by this idea, we
extend the proximal algorithm to the bound-constrained NCP
problem. The NCP using proximal algorithm is

min
A(1),...,A(N)

{
1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥2
F

+

N∑
n=1

αn

2

∥∥∥Ã(n) −A(n)
∥∥∥2
F

}
s.t. A(n) > 0 for n = 1, . . . , N,

(4)

where Ã(n) ∈ RIn×R is the former version of A(n) in previ-
ous iteration. According to block coordinate descent method,
A(n) in the kth iteration can be updated alternatively by the
following subproblem:

A
(n)
k+1 = argmin

A(n)>0

{
1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥2
F

+
αn

2

∥∥∥A(n)
k −A(n)

∥∥∥2
F

}
.

(5)

The objective function in (5) can be equivalently rewritten as

F2 =
1

2

∥∥∥∥∥∥∥
 XT

(n)

√
αn

(
A

(n)
k

)T

−( B
(n)
k√
αnIR

)(
A(n)

)T∥∥∥∥∥∥∥
2

F

.

Obviously, (5) is still a nonnegative least squares (NNLS)
problem. Therefore, we employ the block principal pivoting
(BPP) method [9] to solve the subproblem in (5).

Furthermore, we calculate the partial derivative of F2

∂F2

∂A(n)
=A(n)

[(
B

(n)
k

)T
B

(n)
k + αnIR

]
−
[
X(n)B

(n)
k + αnA

(n)
k

]
,

(6)

where X(n)B
(n)
k is called the Matricized Tensor Times

Khatri-Rao Product (MTTKRP) [16], and
(
B

(n)
k

)T
B

(n)
k



Algorithm 1: NCP using proximal algorithm
Input : X, R, α
Output:A(n), n = 1, . . . , N

1 InitializeA(n) ∈ RIn×R, n = 1, . . . , N , using
random numbers;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X asX(n);
5 Compute MTTKRPX(n)B

(n)
k and(

B
(n)
k

)T
B

(n)
k based on (7);

6
(
B

(n)
k

)T
B

(n)
k ←

(
B

(n)
k

)T
B

(n)
k + αnIR;

7 X(n)B
(n)
k ←X(n)B

(n)
k + αnA

(n)
k ;

8 Update factorA(n) based on (5) using BPP:

A
(n)
k+1 = argmin

A(n)>0

F2

(
A(n)

)
= NNLS BPP(X(n)B

(n)
k ,

(
B

(n)
k

)T
B

(n)
k ).

9 end
10 until some termination criterion is reached;
11 returnA(n), n = 1, . . . , N .

can be computed efficiently by(
B

(n)
k

)T
B

(n)
k =

[(
A

(N)
k

)T
A

(N)
k

]
∗ · · ·

∗
[(
A

(n+1)
k

)T
A

(n+1)
k

]
∗
[(
A

(n−1)
k+1

)T
A

(n−1)
k+1

]
∗ · · · ∗

[(
A

(1)
k+1

)T
A

(1)
k+1

]
.

(7)

The proposed NCP using proximal algorithm is summa-
rized in Algorithm 1. Our method has several advantages.
First, the combination of block coordinate descent and prox-
imal algorithm can guarantee that the NCP converges to sta-
tionary point (see Section 3.7.1 in [14]). Second, BPP has
proved to be a very efficient NNLS method [9], which will
improve the performance of NCP significantly.

4. EXPERIMENTS AND RESULTS

We applied the proposed NCP using proximal algorithm
(PROX-BPP for short in the following contents) to both
fourth-order synthetic and real tensor data. Comparison
was made with conventional algorithms of HALS, APG and
ANLS with Frobenius-norm regularization based on BPP
(ANLS-BPP for short).

For all algorithms, the factor matrices were initialized
using nonnegative normally distributed random numbers by
command max(0,randn(In, R)). The stopping condi-
tion was based on the change of relative error [2], in which
the tolerance was set by 1e-8. The maximum running time
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Fig. 1. Simulated signals. (a) shows original signals, and (b)
shows the estimated signals by PROX-BPP with αn =1e-4.
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Fig. 2. Convergence of NCP algorithms on the synthetic data.

was 600s. For PROX-BPP and ANLS-BPP, we kept αn,
n = 1, . . . , N the same in all modes with fixed value during
the iteration. The values of 1, 1e-2, 1e-4, 1e-6, and 1e-8 were
tested for αn. The objective function value, relative error,
running time, iteration, and nonzero component number of
the first factor matrix were used to measure the performance
of the algorithms. The results of 30 independent runs were
recorded and the average was computed.

All experiments were conducted on a computer with Intel
Core i5-4590 3.30GHz CPU, 8GB memory, 64-bit Windows
10 and MATLAB R2016b. The fundamental tensor computa-
tion was based on Tensor Toolbox 2.6 [16–18].

4.1. Fourth-order Synthetic Data

We synthesized a fourth-order nonnegative tensor by 7 chan-
nels of simulated signals, which come from the AC-7 2noi
file in NMFLAB [19] as shown in Fig. 1(a). The ten-
sor was constructed by XSyn = JS(1),A(2),A(3),A(4)K ∈
R1000×100×100×5, in which S(1) ∈ R1000×7 is the signal
matrix, and A(2),A(3) ∈ R100×7,A(4) ∈ R5×7 are random
matrices in uniform distribution. Next, nonnegative Gaussian
noise was added to the tensor with SNR of 40dB.

For all algorithms on this synthetic data, the number of
components is set by 7. The average results of 30 independent
runs are recorded in Table 1. One of the estimated signal ma-
trix by PROX-BPP with αn =1e-4 is shown in Fig. 1(b). We
compare the objective function convergence of all algorithms
within the first 180s with the same initialized factor matrices
as shown in Fig. 2(a), in which we set αn =1e-4 for PROX-
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Fig. 3. One group of components extracted from ERP data by PROX-BPP with αn =1e-4.

Table 1. Performances of NCPs On Synthetic Data
NCP αn Obj RelErr Time Iter Comp

1 1.5391e+03 0.0083 47.4 43.1 7.00
1e-2 1.5391e+03 0.0083 44.2 43.0 7.00

PROX 1e-4 1.5391e+03 0.0083 43.7 42.5 7.00
BPP 1e-6 1.5391e+03 0.0083 43.7 42.6 7.00

1e-8 1.5391e+03 0.0083 44.0 42.9 7.00
1 3.7249e+05 0.0852 264.4 251.0 6.23
1e-2 2.9504e+05 0.0784 65.4 63.8 6.37

ANLS 1e-4 2.1125e+05 0.0633 48.8 47.6 6.53
BPP 1e-6 3.7568e+05 0.0969 50.3 48.9 6.20

1e-8 4.7112e+05 0.1103 52.7 51.1 6.00
APG — 1.5392e+03 0.0083 158.1 149.6 7.00
HALS — 1.5391e+03 0.0083 71.4 67.4 7.00

Table 2. Performances of NCPs On ERP Data
NCP αn Obj RelErr Time Iter Comp

1 4.7781e+05 0.1116 24.7 679.9 40.00
1e-2 4.7803e+05 0.1116 28.2 775.8 40.00

PROX 1e-4 4.7845e+05 0.1117 29.2 805.1 40.00
BPP 1e-6 4.7796e+05 0.1116 27.7 764.4 40.00

1e-8 4.7667e+05 0.1115 29.7 815.2 40.00
1 6.0792e+05 0.1250 28.6 611.1 33.33
1e-2 5.8610e+05 0.1235 26.6 656.2 34.03

ANLS 1e-4 5.9085e+05 0.1240 24.9 676.9 33.80
BPP 1e-6 5.9481e+05 0.1245 28.2 721.9 33.50

1e-8 5.9230e+05 0.1241 30.3 604.8 33.80
APG — 4.8100e+05 0.1120 99.4 2114.7 40.00
HALS — 4.7860e+05 0.1117 51.9 1914.4 40.00

BPP and ANLS-BPP. The objective function convergence of
PROX-BPP with different αn is shown in Fig. 2(b).

4.2. Fourth-order ERP Data

We utilized a set of preprocessed fourth-order event-related
potential (ERP) data (channel × frequency × time × subject-
group = 9 × 71 × 60 × 42). The 9 channel points represent
9 electrodes on the scalp, the 71 frequency points represent
1-15Hz, the 60 time points represent 0-300ms, and the 42
subject-group points include 21 subjects with reading disabil-
ity (RD) and 21 subjects with attention deficit (AD) [20].

For all algorithms, the number of components is set by
40. The experimental procedures are the same as that for the
synthetic data. The results are shown in Table 2 and Fig. 4.
One group of components extracted by PROX-BPP is shown
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Fig. 4. Convergence of NCP algorithms on the real ERP data.

in Fig. 3, which represents typical brain activity [20].

4.3. Discussion

From the results of both fourth-order synthetic data and real
ERP data, we find that our proposed PROX-BPP method out-
performs all other methods with high efficiency and accu-
racy. ANLS-BPP method has high objective function value
and large relative error, and often yields fewer meaningful
components than the predefined ones. Although HALS has
satisfying accuracy, it is inferior to PROX-BPP in running
time. APG, which has excellent performance for third-order
tensor, shows very low convergence for higher-order (order >
4) tensor.

The choice of parameter αn for PROX-BPP is said to be
related the noise level in the data [12, 13]. Surprisingly, our
PROX-BPP is very robust with different αn values. We sug-
gest to select 1e-2 6 αn 6 1e-4, since too large value may
affect the objective function and too small value might still
cause rank deficiency.

5. CONCLUSION

In this study, we proposed a new NCP method using prox-
imal algorithm in block coordinate descent framework. Af-
terwords, one of the efficient NNLS methods implemented
by block principal pivoting (BPP) was employed to solve the
model. The proposed method exhibited high efficiency and
outperformed conventional methods on higher-order (order >
4) tensor data. Our method is very flexible, and can be com-
bined with many other NNLS algorithms.
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