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Flux flow spin Hall effect in type-II 
superconductors with spin-splitting 
field
Artjom Vargunin1,2 & Mikhail Silaev1

We predict the very large spin Hall effect in type-II superconductors whose mechanism is drastically 
different from the previously known ones. We find that in the flux-flow regime the spin is transported 
by the spin-polarized Abrikosov vortices moving under the action of the Lorenz force in the direction 
perpendicular to the applied electric current. Due to the large vortex velocities the spin Hall angle can 
be of the order of unity in realistic systems based on the high-field superconductors, superconductor/
ferromagnet hybrid structures or the recently developed superconductor/ferromagnetic insulator 
proximity structures. We propose the realization of high-frequency pure spin current generator based 
on the periodic structure of moving vortex lattices. We find the patterns of charge imbalance and spin 
accumulation generated by moving vortices, which can be used for the electrical detection of individual 
vortex motion. The new mechanism of inverse flux-flow spin Hall effect is found based on the driving 
force acting on the vortices in the presence of injected spin current which results in the generation of 
transverse voltage.

The spin Hall effect (SHE) is currently one of the basic tools in spintronics used for the generation and detection 
of pure spin currents1. Although it has quite a rich variety of applications, from the fundamental point of view 
there have been only two known mechanisms leading to the spin Hall effect: (i) the spin-orbital interaction in 
semiconductors and heavy metals and (ii) the Zeeman spin splitting in graphene close to the neutrality point 
making the electrons and holes to carry different spin polarizations2–4. Here we suggest the third fundamental 
mechanism combining the specific properties of the electronic spectrum in superconductors with spin-splitting 
field and the coherent dynamics of the superconducting order parameter manifested through the flux flow of 
Abrikosov vortices under the action of the external transport current.

The non-equilibrium properties of superconductors with spin-splitting fields have become a hot topic in the 
field of superconductivity5. Such systems are characterized by the spin-dependent electron-hole asymmetry of 
Bogolubov quasiparticles6. Recently it has been realized that this feature allows for the generation of long-range 
spin accumulation5,7–11, which is robust against the usual spin-flip and spin-orbital scattering relaxations. This 
mechanism explains many experimental observations of long-range non-local spin signals in mesoscopic super-
conducting wires generated by the injected current from the ferromagnetic or even non-ferromagnetic elec-
trodes12–15. In this paper we demonstrate the possibility of not only the long-range spin accumulation but also 
the non-decaying pure spin current generation using the properties of superconductors with spin-splitting fields.

In principle, the paramagnetic spin-splitting of Bogolubov quasiparticles appears inevitably due to the 
Zeeman effect in any superconductor subject to the magnetic field12,14,16,17. However, the magnetic field simulta-
neously leads to the orbital effect, inducing the center-of mass motion of the Cooper pairs due to the Meissner 
effect. The relative magnitude of the paramagnetic shift and the orbital kinetic energy of the Cooper pair is deter-
mined by the parameter introduced by Maki16 (referred later as the Maki parameter) α µ= eD/( )B0 , where μB is 
the Bohr magneton, D is the diffusion coefficient, e is the electron charge and we use theoretical units 

= = =c k 1B . Usually the orbital effect in superconductors dominates over the paramagnetic one, provided 
that the second critical field Hc2 is not too high so that μ H TB c c2 . In this case the Maki parameter is small 
α  10 . Exceptions are the high-field superconductors were the Zeeman shift can become relatively large at fields 
not exceeding Hc2

16,18–22. The paramagnetic effect can be significantly enhanced due to the geometrical confine-
ment in thin superconducting films12,14,23,24. Alternatively, the spin splitting in superconductors can be induced by 
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the exchange interaction of conduction electrons with localized magnetic moments, e.g. aligned magnetic impu-
rities25 or in superconductor/metallic ferromagnet hybrid structures26–28. Recently, the systems consisting of 
superconducting films grown on the surfaces of ferromagnetic insulators like EuS13,29–32 and GdN33 have been 
fabricated. The exchange field heff in the superconducting film is induced due to the scattering of conductivity 
electrons from the ferromagnetic insulator interface34. Such systems are currently studied quite actively as the 
possible platforms for the advanced radiation sensing technology5,35 and quantum computing with Majorana 
states36.

The most well known paramagnetic effects in spin-singlet superconductors are the first-order transition into 
the normal state18,19 and the second-order transition into the inhomogeneous superconducting state induced by 
the spin-splitting field heff. The inhomogeneous state (FFLO) suggested by Fulde, Ferrell25 and Larkin, 
Ovchinnikov37 is realized in the narrow window of parameters and suppressed by impurities38 which hinders its 
experimental realizations39. However the first-order transition into the normal state driven by the Zeeman split-
ting has been detected in thin aluminum films23. In this paper we focus on the more robust nonequilibrium phe-
nomena which generically appear in the presence of any spin-splitting field in the spin-singlet superconductor5. 
In particular, we consider the film of type-II superconductor which can host Abrikosov vortices. The example of 
such setup is shown schematically in Fig. 1. It consists of the thin superconducting film deposited on the magnetic 
insulator which creates spin splitting of the conduction electron subbands in the superconductor due to the effec-
tive exchange interaction heff. In addition there is a magnetic field B directed perpendicular to the film plane to 
create vortices. The total spin splitting field is given by the superposition μ= +h B hB eff , so the single-particle 
Hamiltonian becomes σ= ∇ + + ˆA hH i e m( ) /(2 )2 , where A is the vector potential and σ̂ is the vector of spin 
Pauli matrices.

Superconductors with the total spin splitting field μ= +h h Beff B  coming both due to Zeeman shift and inter-
nal exchange are characterized by the renormalized Maki parameter α α µ= h H/( )B c0 2 . It can become large α ∼ 1 
if the total spin splitting is close to the paramagnetic depairing threshold ∼h Tc. Such strong spin splitting has 
been recently obtained in superconductor/ferromagnetic insulator proximity structures used for the generation 
of the long-range spin accumulation in the non-local spin valve geometries5,13,31–33. Due to the large exchange field 
this regime can be achieved even if the Zeeman effect is small, that is when μ B TB c.

Although we focus on the superconductor/ferromagnetic insulator bilayer system, the regime when α ∼ 1 is 
also possible in high-field bulk superconductors where the spin splitting comes solely from the Zeeman effect16,20. 
Similar behavior can be observed in magnetic superconductors40, such as borocarbides41 where weak ferromag-
netic ordering is possible42 so that vortex cores can host localized paramagnetic moments43 and weak pinning 
facilitates flux-flow regime. The effective spin-splitting can be obtained due to the inverse proximity effect in 
superconductor/metallic ferromagnet hybrids26–28. For instance, recently the flux-flow regime has been realized44 
in Nb/PdNi/Nb trilayers which makes it potentially possible to study spin accumulation induced by vortex 
motion in such systems.

Below we demonstrate that α becomes the only relevant parameter which determines the amplitude of the 
pure spin current generated by the vortex motion. The latter can be characterized by the spin Hall angle 
θ = ej j/sH s , where js is the induced spin current and and =j jt is the charge current equal to the transport current 
generated by the external source. The spin Hall angle can be estimated as θ α∼sH . At the paramagnetic threshold 

∼h Tc it can reach θ ∼ 1sH  which is much larger than the record values θ < .0 1sH  obtained in the heavy metal spin 
current generators1.

Figure 1. The mechanisms of direct and inverse flux-flow spin Hall effects. The schematic picture of (a) flux-
flow spin Hall effect (SHE) and (b) flux-flow inverse spin Hall effect (ISHE) in type-II superconductors. 
Magnetic field B perpendicular to film plane creates Abrikosov vortices (AV). Vortex cores contain localized 
spin polarization Sloc due to the splitting field μ= +h h Beff B . (a) Transport current =j jt generates the Lorentz 
force driving motion of spin-polarized AV with the velocity ⊥v jL  and inducing the spin current j vs L. (b) 
Ferromagnetic electrodes with polarization P generate spin-dependent bias Vs. The induced spin accumulation 
gradient μ∇ s produces the driving force on AV, μ∇Fd s which results in the AV motion in the direction μ∇vL s 
and induction of the average electric field = ×E B vL.
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The above result is rather surprising because the maximal spin splitting ∼h Tc is very small as compared to 
the Fermi energy εF, since in usual superconductors ε ∼ −T/ 10 10F c

2 3. In this case the polarization, which is the 
relative difference between spin-up/down conductivities is rather small ~ ε h/ 1F . This limit yields vanishing 
spin-polarized component of the resistive current. However, it is the vortex motion which generates much larger 
spin current in the transverse direction ⊥j js . Large values of spin Hall angle are in the sharp contrast with 
extremely small ordinary (charge) Hall angle θH. As shown by Kopnin45 the Hall angle is determined by the 
parameter θ τ ε∼ T /H c F

2 , where τ  is the electronic mean free time due to the scattering by impurities. The first 
factor τ T 1c  in the dirty regime while the second factor ε T / 1c F  in all superconductors. So, θ  1H  is deter-
mined by the product of two very small parameters, unlike the spin Hall angle which does not contain any small 
parameters. Thus, the charge and spin transport channels are separated in this system and the spin current gener-
ated by the vortex motion is to the very high accuracy the pure one with only vanishingly small admixture of the 
transverse charge current. Simultaneously, for θ  1H  vortices move almost perpendicularly to the transport 
current ⊥v jL t according to the textbook picture of the flux-flow effect which we use in the discussion below.

The scheme of the flux-flow direct spin Hall effect is shown in Fig. 1a. Here, we assume that the superconduc-
tor with spin-splitting field and vortices is subject to the transport charge current j generated by the external 
source. This transport current induces the Lorenz force acting on the vortex lines in the direction perpendicular 
to current ∝ ×F j BL . Provided that the Lorenz force overcomes the pinning barrier, vortices start to move in the 
transverse direction with the velocity ⊥v jL . Taking into account the spin polarization Sloc which exists inside 
each vortex core due to paramagnetic response, this motion generates the transverse pure spin current 

≈j vn Ss v L loc, where φ=n B/v 0 is the vortex density, φ0 is flux quantum.
Vortex cores in diffusive superconductors can be though of as the normal metal tubes, of the diameter deter-

mined by the coherence length ξ. In the presence of spin splitting field, the vortex cores contain localized spin 
χ ξ∼S hloc n

2 per unit vortex length, where χ = Nn 0 is the normal metal paramagnetic susceptibility and N0 is the 
Fermi-level density of states. To estimate js we substitute the flux-flow vortex velocity = −v E B/L  and get 
θ α∼ ∼h eDH/( )sH c2 , so that α appears to be the only small parameter limiting the spin current generation. The 
physical reason for large θsH lies in the fast motion of vortices which can be compared e.g. with the Drude-model 
electron drift velocity σ=v E ne/( )n , where the conductivity is σ = e N Dn

2
0 . At ≈B Hc2 we have the relation 

ε≈ v v T v/L F c . Therefore spin polarization can be transported much faster by moving vortices than by elec-
trons drifting along the electric field.

Along with the direct SHE we propose also the scheme of the inverse flux-flow SHE shown in Fig. 1b. The 
mechanism is based on the injection of spin-polarized quasiparticle current into the superconductor by applying 
the voltage through the spin-filtering ferromagnetic electrodes with polarization P. The resulting spin-dependent 
voltage Vs generates the spatially-inhomogeneous non-equilibrium spin accumulation which we hereafter denote 
μz. Its gradient ∇μz will be shown to produce the longitudinal force acting on the spin-polarized vortex cores 
pushing them towards one of the ferromagnetic electrodes. The vortex lattice motion with velocity vL generates 
electric field in the transverse direction μ× ∇E B s thus providing the novel mechanism of inverse SHE.

Model
To quantify these effects we use the framework of Keldysh-Usadel theory46,47 describing the spin current and 
spin accumulation induced by the vortex motion in the usual s-wave spin-singlet superconductor in the diffusive 
regime5. We consider the range of magnetic fields close to Hc2, neglecting screening and using the Abrikosov solu-
tion for the moving vortex lattice. We will show that in addition to the large average spin current there is also the 
oscillating part which can be considered as the high-frequency source of the spin current at the nearly-terahertz 
range48.

We use the formalism of quasiclassical Green’s functions (GF)46,47 generalized to describe the non-equilibrium 

spin states in diffusive superconductors5,49, =












ˆ ˆ
ˆ

g g g
g0

R K

A
, where ĝ R A K/ /  are the retarded/advanced/Keldysh com-

ponents which are the matrices in spin-Nambu space and depend on two times and a single spatial coordinate 
variable =
 

rg g t t( , , )1 2 . Choosing the z-axis in spin space to be directed along the spin-splitting field h we con-
sider general expressions for the spin density deviation from the normal state one, = rS S t( , ), and spin current 

=j j rt( , )s  determined through the GF at coinciding coordinates =t t1,2

πχ
τ σ= − ˆ ˆ ˆS g

8
Tr[ ] (1)

n K
3 3

πσ
σ= ∂ˆ ˆ ˆ ˆj

e
g g

8
Tr[ ( ) ]

(2)rs
n K
2 3

Here after σ̂i, τ̂i are the Pauli matrices in spin and Nambu spaces, and the symbolic time-convolution operator 
is given by ∫=A B t t dtA t t B t t( ) ( , ) ( , ) ( , )1 2 1 2 , the covariant differential superoperator is defined by 

τ∂ = ∇ −ˆ ˆAie[ ]r t3  and the two-time commutator is defined as = −X g X t g t t g t t X t[ , ] ( ) ( , ) ( , ) ( )t 1 1 2 1 2 2 , similarly 
for anticommutator {, }t. The Keldysh GF is conveniently described using the parametrization = − 

ˆ ˆ ˆ ˆ ˆg g f f gK R A 
which follows from the normalization condition δ= −˘�̆g g t t( )1 2 . Here =ˆ ˆ rf f t t( , , )1 2  is the generalized dis-
tribution function. For calculations we use mixed representation ∫ ε ε π= ε

−∞

∞ − −
 

g t t g t e d( , ) ( , ) /2i t t
1 2

( )1 2 , where 
= +t t t( )/21 2  is the ‘center of mass’ time.
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In the flux-flow regime we assume that vortices move with the constant velocity vL. In the zero-order approx-
imation the distribution function is equilibrium ε ε τ ε τ= ≡ˆ ˆ ˆf f T( ) ( ) tanh[ /(2 )]0 0 0. Similarly, the spectral func-
tions have their equilibrium forms in the frame moving together with vortices ≈ −ˆ ˆr r vg g t( ) ( )R A R A

L
/

0
/ . This 

approximation yields zero spin current which is absent in equilibrium spin-singlet superconductors. Thus, we 
need to consider corrections in the linear-response regime which is realized provided the vortex velocity vL is 
small enough to neglect Joule heating, pair breaking or vortex-core shrinking effects50,51. For this purpose we take 
into account first-order terms in the gradient expansion of time convolutions52,53 as well as the non-equilibrium 
corrections to the spectral functions ĝne

R A/  and the distribution function τ= −ˆ ˆ ˆf f fne 0 0.
The nonequilibrium GF is determined by the Keldysh-Usadel equation46,47 which should be solved together 

with the self-consistency equations. In general this problem is very complicated and has never been approached 
even numerically. However, the regime of high magnetic fields − H B Hc c2 2 allows for significant simplifica-
tions based on the existence of the Abrikosov vortex lattice solution for the superconducting order parameter. In 
this case it is possible to find analytically nonequilibrium corrections to the spectral functions ĝ R A/  and the com-
ponents of distribution function f̂ . First of all, we employ the analytical expression for the order parameter distri-
bution in the moving vortex lattice. Assuming the particular directions of vortex velocity =v yvL L  and electric 
field =E xE  we choose the time-dependent vector potential in the form = −A y xBx Et . Then the order param-
eter is given by superposition of the f irst Landau-level nuclei  = −x x L( ) exp( /2 )H

2 2 ,  so that 
∆ = ∑ −− −b e C e x nx( )ieEtx

n n
inp y v t

0
2 ( )

0
L . Here b0 is magnetic field-dependent amplitude derived in 

the Supplementary Material, =x pLH0
2  determines the distance between neighbour superconducting nuclei and 

=L eH1/ 2H c2  is the magnetic length. For the triangular lattice = π
+

−C en
i

1
( 1) /4n

, π=pL 3H  and for the 
square one =C 1n , π=pL 2H .

Second, we use the known solutions for the equilibrium spectral functions in the vortex lattice near the upper 
critical field54. Here we take into account the spin-splitting field by shifting the quasiparticle energies according to 
ε ε σ= −σ h, where σ = ±. Then the spin-up 

+g R
0  and spin-down −ĝ R

0  GFs are given by

ε
ε

τ
τ

ε
=





 +

|∆|
+





 +

|∆|
+σ

σ

ϕτ

σ

−
ˆ ˆ ˆ ˆ

rg
iq

i e
iq

( , ) 1
2( )

,
(3)

R
i

0

2

2 3
2

3

and τ τ= −ˆ ˆ ˆ ˆ†g gA R
0 3 0 3 for the advanced GF. Here =q eH Dc2  and the order parameter is ∆ = |∆| ϕei . The total GF is 

given by σ σ= + + −+ − + −ˆ ˆ ˆ ˆ ˆ ˆ ˆg g g g g( )/2 ( )/2R R R R R
0 0 0 0 3 0 0 .

These spin-polarized spectral functions provide the description of equilibrium spin density modulation in 
a superconductor with spin-splitting field in the presence of vortex lattices. The periodic spin density patterns 
calculated for the typical cases of triangular and square lattices are shown in the Fig. 2. The spin polarization 
demonstrates enhancement at the vortex cores and suppression between vortices where the order parameter is 
larger. Thus even in the regime of dense vortex lattices there is an excess spin polarization Sloc localized in the vor-
tex cores. It is natural to expect that the motion of such spin-polarized vortices will produce pure spin currents. 
Below we demonstrate the presence of these spin currents by an explicit calculation in the flux-flow regime con-
sidering the non-equilibrium situation when the vortex lattice moves under the action of the transport current 
jt. We will calculate the spin current density induced by the vortex motion as well as the non-equilibrium spin 
accumulation and charge imbalance near the vortex cores.

Results
Spin current. The expression for spin current (2) can be decomposed into the parts js1 related to the distor-
tions and time derivatives of spectral functions ĝ R A/  and js2 which is determined by the corrections to the distri-
bution function = −ˆ ˆf f fne 0, where f0 is the equilibrium distribution function. The first part of the spin current 
js1 is determined by the non-equilibrium corrections to the spectral quantities while it contains only the 

Figure 2. Spin density modulation in the vortex cores. Normalized deviation of the total spin density from the 
normal metal background, S/Sn, on square (A) and triangular (B) lattices. Here χ= −S hn n  is spin polarization 
of the normal metal and S/Sn is shown in the units of dimensionless order parameter amplitude 〈∆ 〉 T/ c

2 2. 
Calculations were performed at low-temperatures, T Tc, for effective Maki parameter α = .0 5.
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equilibrium distribution function. In the charge sector these corrections yield the Caroli-Maki part of the flux-
flow conductivity55. The important difference is that the charge current is determined by the corrections induced 
by the order parameter distortions in the moving vortex lattice while they do not contribute to the spin current. 
Since we neglect the spin-flip and spin-orbital scattering processes the total spin density and the spin current 
given by the Eqs (1) and (2) satisfy the continuity equation ∂ + ∇ ⋅ =jS 0t s . When implementing the linear 
response calculations we collect all contributions to the spin current to satisfy the continuity equation to the first 
order in vortex velocity. The derivation of this conservation law is discussed in the Supplementary Material.

The distortions of spectral GF generated by the vortex motion can be found using (3) and the normalization 
condition expanded in the mixed representation up to the first-order time derivatives. After performing several 
steps of analytical calculations described in Supplementary Material we obtain the spectral-related part of the 
spin current

σ
π

= −
Ψ

∆ Π∂ ∆ − ∂ ∆ Π∆ˆ ˆ⁎ ⁎j
e T16

Im
( )

Re[ ( ) ( ) ],
(4)s

n
t t1 2

(2)

2

where πΨ = Ψ + +q ih T[1/2 ( )/(2 )] is digamma function, Ψ = Ψz d z dz( ) ( )/n n n( )  and Π = ∇ −ˆ Aie2 . This part 
of the spin current has the non-zero space- and time-average 〈 〉 = 〈 〉j js s1 . Indeed, as we show below the second 
part of the spin current related to the non-equilibrium distribution function does not contribute to the average 
〈 〉 =j 0s2 .

At low temperatures, the space- average spin current can be written in the intuitively transparent expression

α
〈 〉 = − 〈 〉




 +




j v S 2

1 (5)s L 2

where 〈 〉S  is the average spin density deviation from the normal state. The absolute magnitude of 〈 〉S  is determined 
by the average order parameter amplitude 〈∆ 〉2  which can be found analytically using the expression for the order 
parameter amplitude near the upper critical field56,57. Then, substituting 〈 〉S  derived in the Supplementary 
Material and taking into account that the vortex velocity is σ= −v j H/( )L n c2  we obtain the following analytical 
expression for the spin Hall angle θ = 〈 〉j je /sH s t , as a function of the average magnetic induction at low 
temperatures,

θ α
β α

= −
−






−





B B
H

( ) 4
(1 )

1 ,
(6)

sH
L c

4
2

where the Abrikosov parameter equals β = .1 16L  for the triangular and β = .1 18L  for the square lattice58. The 
growth of θsH(B) with decreasing B given by Eq. (6) close to Hc2 should continue at lower fields until the order 
parameter between vortices becomes fully developed at ≈ .B H0 3 c2. In this regime θ α∝sH  without any small 
parameters so that θ ∼ 1sH  for large exchange splitting ∼h Tc. Besides that, according to Eq. (6) large spin Hall 
angle can be obtained already in the regime − B H(1 / ) 1c2  provided that α− − B H1 1 / c2. Note that we 
restrict our consideration to α < 1 when the superconducting transition at =B Hc2 is of the second order20,59.

Now let us consider the second part of the spin current determined by the correction to the distribution func-
tion. Due to the smallness of the order parameter near Hc2 it can be written as σ µ= ∇j e( / )s n s2

2 , where 
∫µ ε ε=

−∞

∞ f d( ) /2s T3  is the quantity which can be considered as the spin-dependent shift of the chemical potential 
and σ= ˆ ˆf fTr[ ]/4T3 3  is the spin-dependent component of the distribution function5,11. Besides fT3 the vortex 
motion excites the electron-hole imbalance described by the component of distribution function τ= ˆ ˆf fTr[ ]/4T 3 . 
Both these components are determined by the following kinetic equations (see Supplementary Material for 
derivation)

σ
∇ = −∂








+
∂ ∆ − 







ε
ˆ ˆ ˆ ˆ

J ED f f e
g gTr[ ( )]
8 (7)

T se
t

R A
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3 0
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ED f f e
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( )
Tr[ ( )]

8
,

(8)
T T

t
R A

2
0

3 0 0

where  τ σ τ τ= −ˆ ˆ ˆ ˆ ˆ ˆD g gTr( )/8T
R A

0 0 3 0 3 0  is the diffusion coefficient for the charge imbalance modified by supercon-
ducting correlations, τ σ= ∇ − ∇ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆJ D g g g gTr[ ( )]/8se

R R A A
3 3 0 0 0 0  is spectral spin-energy current density11 and the gap 

operator in the second term of the r.h.s. is τ∆ = |∆| ϕτ−ˆ ˆ ˆi e i
2

3. For the general-form Abrikosov vortex lattice, Eqs (7) 
and (8) can be solved analytically yielding the expression which can be found in the Supplementary Material. 
Since fT3 and hence μs have to be periodic functions, the contribution to spin current js2 has zero space and 
time-averages but contributes to the AC component of js.

The overall distributions spin currents are shown in Fig. 3 produced using the Matplotlib package60 for two 
different vortex lattice geometries. Here one can see that the spin current mostly flows along the vortex chains 
with maximal current concentrated in the vortex cores. This result confirms our initial qualitative picture shown 
in Fig. 1 that the spin is transported by the moving spin-polarized vortex cores. In addition, in Fig. 3C,D one can 
see a non-trivial distribution of the spatially-periodic part of the current = − 〈 〉 j jjs s s , which is important for the 
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AC spin current generation discussed below. The periodic part js forms two standing eddies localized close to the 
vortex core similar to that which are formed by the low-Reynolds viscous flow past a cylinder.

Spin accumulation and charge imbalance. Besides generating the spin current, moving vortices pro-
duce other types of non-equilibrium states in the superconductor, such as the charge imbalance and the 
non-equilibrium spin accumulation which we denote as μ and μs , respectively. These quantities have been widely 
used as the experimentally observable characteristics of the non-equilibrium superconducting states both in spin 
-degenerate61–68 and spin-split systems12–15,24,31,69. General expressions for charge imbalance and spin accumula-
tion in terms of the quasiclassical GF read as

µ π
= −

ˆ rg t t
8
Tr ( , , ) (9)ne

K

µ π τ σ= − ˆ ˆ ˆ rg t t
8
Tr[ ]( , , ) (10)s h ne

K
3

where ĝne
K is non-equilibrium part of Keldysh GF.

In contrast to the stationary cases considered before5,49 in the time-dependent system these imbalances are 
determined not only by the the nonequlibrium distribution function components ∫µ ε= f d /2T  and μs discussed 
above. Besides that they contain additional terms determined by the dynamics of the order parameter

µ µ
π

= − + ∂ |∆|
Ψ

 v
T

Im
(4 ) (11)s s L y

2
(2)

2

µ µ
π

= − − ∂ |∆|
Ψ

 v
T

Re
2(4 )

,
(12)L x

2
(2)

2

see the Supplementary Material for details of the derivation. Distributions of μ and μs  generated by the moving 
triangular and square vortex lattices are shown in Fig. 4. The patterns of charge imbalance agree with the 

Figure 3. Spin current density generated by the vortex lattice motion. (A,B) The total spin current js for square 
and triangular spin lattices generated by the vortex lattice motion, normalized by χ 〈∆ 〉v T/L n c

2 . (C,D) Deviation 
of the net spin current from its spatial average = − 〈 〉j j js s s . Gray circles correspond to the position of the 
vortices. Left/right columns describe the case of the square/triangular lattices, respectively. Arrows between 
panels indicate the direction of the vortex velocity vL and average electric field E. Calculations were performed 
at low-temperatures, T Tc, for α = .0 5.
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qualitative picture suggested by Bardeen and Stephen70 where the vortex motion is accompanied by the genera-
tion of dipolar-like electric field near the vortex core, corresponding to the electric dipole directed perpendicular 
to the vortex velocity vL. On the contrary, the “spin dipoles” corresponding to the patterns of μs  are directed along 
vL. Note also, that spin accumulation is proportional to the generalized Maki parameter, while μ remains finite 
when α → 0. These quantities μ and μs  can be directly measured with the help of ferromagnetic detector electro
des5,12–15,24,31,62,65,67–69 thus providing experimental tool to detect the motion of individual vortices.

Flux-flow inverse spin Hall effect (ISHE). We suggest the new mechanism of the flux-flow ISHE which is 
based on the previously unknown effect of longitudinal vortex motion driven by the spin current or spin accumu-
lation injected into the superconductor from the attached ferromagnetic electrodes with polarization P. We 
denote Vs the corresponding spin-dependent external bias. For simplicity we assume that the polarization is 
aligned with the spin-splitting filed in the superconductor P h. To calculate the force acting on vortex from the 
injected spin current we consider the regime of temperatures close to the critical one Tc. In this case we can 
neglect the superconducting corrections to the density of states. This assumption simplifies expression for 
spin-dependent part of the distribution function which can be taken in the form corresponding to the normal 
metal µ= − ∂εr rf f( ) ( )T s3 0 where μ μ= r( )s s  is the spatially-inhomogeneous spin accumulation generated by the 
external bias Vs. Besides that here we consider the regime of small fields B Hc2 when vortices can be considered 
as individual objects. The force acting on the single vortex from non-equilibrium spin-polarized environment Fd 
can be calculated using the known general expression52,53. Near the critical temperature when |∆|  T  we obtain 
the simple analytical result μ≈ ∇ |∆|F S T/d s loc c

2 2, where Sloc is the total spin localized in the vortex core. This driv-
ing force, balanced by the friction ρ= −F vv L, where ρ is the vortex viscosity coefficient, yields the flux-flow 
velocity μ∇vL z. Its absolute value can be found using the known analytical expression for viscosity coefficient 
ρ φ σ β= Hn c0 2. The temperature dependence close to Tc is determined by the coefficient β β= − T T/ 1 / c0 , 
where β0 is some numerical value71–73. Taking into account that the concentration of vortices is determined by the 
average magnetic induction B and using the usual expression for the sample-average electric field = − ×E v BL  
we obtain the relation

μ∇
≈

|∆|
− .

eE h
q T

B
H

T
T

1
(13)s c c c

2

2
2

Figure 4. Charge imbalance μ (A,B) and spin accumulation μ~s (C,D) generated by the moving vortex lattices. 
Both quantities are normalized to 〈∆ 〉v L q/( )L H

2 2 . Left/right columns describe the case of the square/triangular 
lattices, respectively. Gray circles correspond to the position of the vortex cores and black arrows indicate the 
direction of the vortex velocity vL. Calculations were performed at low-temperatures, T Tc, for α = .0 5.
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The obtained result (13) yields the linear response relation for the inverse spin Hall effect because the electric 
field E and the corresponding electric current are generated in response to the applied spin-dependent voltage Vs. 
The overall temperature dependence of the generated electric field ∝ −E T T(1 / )c

3/2 is determined by the order 
parameter amplitude ∆ ∝ − T T(1 / )c

2  and the additional factor which comes from the divergence of vortex vis-
cosity coefficient close to the critical temperature72 ρ ∝ − T T1/ 1 / c .

Discussion and Conclusions
We have found the spin current generation by moving vortices which penetrate the whole volume of the type-II 
superconductor. Thus the obtained spin current in contrast to the previously known schemes based on the injec-
tion mechanisms exists everywhere in the sample volume and is prone to the spin relaxation mechanisms such as 
the spin-flip scattering. The predicted spin current generation can be tested in the open circuit geometries when 
the vortices annihilate at the insulating boundary. In this case the net spin current at the boundary, =y 0, should 
vanish = =j y( 0) 0sy  generating the surface spin accumulation μ=V e/s s  which can be measured by the ferro-
magnetic detector electrodes12–15.

The second possible experimental test is based on the direct measurement of the spin current injected through 
superconductor interfaces into the inverse spin Hall detector74,75. This approach allows for the measurement of 
both the DC and the high-frequency AC spin current signals. The latter is generated due to the periodic structure 
of moving vortex lattice. The distribution of the space-periodic spin current component is shown in Fig. 3C,D. 
The amplitude of AC component flowing through the superconductor interface, 〈 〉jsy x, is determined by the vari-
ations of the current average along the boundary, 〈 〉jsy x, with respect to the constant background current 〈 〉js . At 
low temperatures, the relative magnitude is given by α〈 〉 〈 〉 = − 〈∆ 〉 〈∆ 〉 +j j/ (1 / ) (1 )/2sy x s x

2 2 2 . According to the 
recent measurements in Pb, the frequency of vortex entry into the superconducting sample can reach dozens of 
gigahertz48 and the THz range in layered high-temperature superconductors76. In the suggested setup this is the 
frequency of the AC spin current generated by the vortex motion. The high-frequency spin current generation 
can be useful in antiferromagnetic spintronics characterized by the terahertz-range dynamics of the magnetic 
system77.

The charge imbalance and spin accumulation have been accessed experimentally using non-local conductance 
measurements12–15,24,31,62,65,67–69, when the non-equilibrium states were created by the current in the injector cir-
cuit. The non-local electric signal has been measured between the normal detector electrodes, either ferromag-
netic or non-ferromagnetic attached to the different points of superconducting sample. Here we show that in the 
flux-flow regime the non-equilibrium states with non-zero charge imbalance μ and spin accumulation μs  appear 
in the absence of quasiparticle injector current, but rather just due to the vortex motion. The quantities μ and μs  
can be measured using the same electrical detection circuits as in the non-local conductance measurement setups. 
For example, the tunneling current at the non-ferromagnetic normal detector electrode is proportional to μ. In 
case of the ferromagnetic electrode there is a contribution to the detector current5 proportional to μs . In the 
flux-flow regime each vortex carries the distributions of μ and μs  localized in the vortex core. Thus, moving vor-
tices passing close to the detector electrode are expected to generate pulses of the tunneling current or voltage, 
depending on the detection scheme. This provides a tool capable for detecting the motion of individual vortices. 
In contrast to the magnetometer techniques it does not have the frequency limitations48 and therefore can directly 
resolve the ultrafast vortex motion with the frequencies up to the dozens of gigahertz.

To conclude, we have demonstrated fundamental mechanisms of direct and inverse spin Hall effects due to 
the flux-flow of Abrikosov vortices in type-II superconductors with spin-splitting field. The spin splitting can 
be generated by the adjacent ferromagnetic insulator as shown in Fig. 1, by the Zeeman effect in the magnetic 
field applied in the plane of thin superconducting film or due to the inverse proximity effect in superconductor/
ferromagnet hybrid structures26–28. The pure spin current carried by the fast vortices moving in the transverse 
direction is characterized by the large spin Hall angle which in general does not contain any small parameters. 
Besides that there is also an AC component which appears due to the periodic structure of the vortex lattice. The 
AC spin current has the same order of magnitude as the average one. This effect can be used for the generation 
of spin signals in wide frequency domain up to the range of therahertz. We pointed out the longitudinal driving 
force exerted on vortex by the injected spin current. The vortex motion generated by this force leads to the inverse 
spin Hall effect. This mechanism can be applied for flux-flow based detection of pure spin currents.

Data Availability
No datasets were generated or analysed during the current study.
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