This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Behringer, Donald C.; Karvonen, Anssi; Bojko, Jamie Title: Parasite avoidance behaviours in aquatic environments **Year:** 2018 **Version:** Accepted version (Final draft) **Copyright:** © 2018 The Author(s). Rights: In Copyright **Rights url:** http://rightsstatements.org/page/InC/1.0/?language=en ## Please cite the original version: Behringer, D. C., Karvonen, A., & Bojko, J. (2018). Parasite avoidance behaviours in aquatic environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1751), Article 0202. https://doi.org/10.1098/rstb.2017.0202 ## Parasite Avoidance Behaviours in Aquatic Environments Donald C. Behringer^{1,2,*†}, Anssi Karvonen³, Jamie Bojko^{1,2} ¹University of Florida School of Forest Resources and Conservation Program in Fisheries and Aquatic Sciences Gainesville, FL, USA ORCiD: https://orcid.org/0000-0001-5244-471X ²University of Florida Emerging Pathogens Institute Gainesville, FL, USA ³University of Jyvaskyla Department of Biological and Environmental Science P.O. Box 35 40014 Jyvaskyla, Finland ^{*}Author for correspondence (behringer@ufl.edu). ABSTRACT Parasites, including macroparasites, protists, fungi, bacteria, and viruses, can impose a heavy burden upon host animals. However, hosts are not without defences. One aspect of host defence, behavioural avoidance, has been studied in the terrestrial realm for over 50 years, but only first reported from the aquatic environment ~20 years ago. Evidence has mounted on the importance of parasite avoidance behaviours and it is increasingly apparent that there are core similarities in the function and benefit of this defence mechanism between terrestrial and aquatic systems. However, there are also stark differences driven by the unique biotic and abiotic characteristics of terrestrial and aquatic (fresh and salt) environments. Here, we review avoidance behaviours in a comparative framework and highlight the characteristics of each environment that drive differences in the suite of mechanisms and cues that animals use to avoid parasites. We then explore trade-offs, potential negative effects of avoidance behaviour, and the influence of human activities on avoidance behaviours. We conclude that avoidance behaviours are understudied in aquatic environments but can have significant implications for disease ecology and epidemiology, especially considering the accelerating emergence and re- emergence of parasites. **KEY WORDS:** pathogen, infection, behavioural immunity, avoidance behaviour, marine, freshwater ### 1. INTRODUCTION Pathogen and parasite avoidance behaviours (hereafter referred to as parasite avoidance behaviours) are traits aimed at reducing the exposure and infection risk for a host to a given parasite and may thereby increase host fitness. Avoidance behaviours complement other mechanisms of defence, including immunological resistance and tolerance [1,2], but are generally considered less energetically expensive than a true immune reaction [3]. In theory, behavioural avoidance should be favoured by selection if it ameliorates the negative impacts of parasites on host fitness [4], and should transcend the type of environment, terrestrial or aquatic, in which the host and parasite live. In contrast, specific costs associated with each of the three mechanisms [4-6] result in remarkable variation among the defence traits observed in wild and cultured fauna [7-9]. Quantitative evidence exists from terrestrial, marine, and freshwater environments that organisms lower their likelihood of infection by using parasite avoidance behaviours [3]. Parasite avoidance can take many forms, including quarantine of new arrivals or shunning of infected individuals from social groups (reviewed in [10,11]), avoidance of food or habitat containing infectious agents (e.g. [12,13]), avoidance of infected mates (e.g. [14,15]), and avoidance of infected conspecifics (e.g. [16,17]) (Box 1, Fig. 1), to name a few. The study of parasite avoidance behaviour has its roots in the study of terrestrial mammals [4,10], but its role in parasite epidemiology, ecology and evolution in aquatic (marine and freshwater) systems is increasingly apparent. As the number of reports of parasite avoidance behaviour in aquatic systems has grown, we are now able to discern broad patterns in the form and function of avoidance behaviours, and compare these between terrestrial and aquatic systems. In this review, we discuss some of the fundamental differences and similarities between terrestrial and aquatic environments, including: how the environment is likely to affect the development of parasite avoidance behaviours, the types of parasite avoidance cues used by animals, and the mechanisms of parasite avoidance. Additionally, we highlight how the effectiveness of parasite avoidance in reference to environmental application can affect disease dynamics, and the consequence of indirect avoidance behaviours. Finally, we explore the effect of anthropogenic activities on parasite avoidance dynamics, specifically within aquatic hosts, and how a greater understanding could advance our ability to understand disease epidemiology in wild, cultured, and invasive species. Distinct properties of aquatic and terrestrial systems Fundamental physical differences exist between terrestrial and aquatic environments. Parasites are abundant on terrestrial surfaces and in terrestrial soils, as well as aquatic surfaces and sediments, but unless they are associated with a mobile host/vector (or await a host to come into contact with them) parasites must move through the air or water to reach a host. Therefore, the distinct physical and chemical properties of air and water (fresh and salt) are responsible for many of the differences observed in parasite transport, parasite transmission, parasite longevity and viability, and the diffusion of parasite avoidance cues through these different fluids. For example, at a given temperature, the density and viscosity of seawater are approximately 800 and 50 times greater, respectively, than that of air. These properties facilitate the suspension of particles, and when combined with the movement of water via tides and currents, these particles can be transported long distances. Indeed, parasites, whether associated with a host or not, can be transported long distances in a relatively short period of time through the water (reviewed in [18]). This is not to suggest that long-distance dispersal of parasites in the terrestrial environment is not possible. Fungal spores from agricultural parasites present some of the most extreme examples, with some studies finding that spores can be transported thousands of kilometres by the wind [19]. However, parasites in the marine environment are estimated to spread at a rate two orders of magnitude faster than their terrestrial counterparts, with viruses of marine vertebrates topping out at > 12,000 km year⁻¹ [18]. In addition to greater passive transport in the aquatic environment, many more infective stages of aquatic parasites are mobile relative to their terrestrial developmental stages or other solely terrestrial diseases. Several parasite taxa, including trematodes, acanthocephalans, monogeneans (all aquatic), and crustaceans (all aquatic), are much more common in aquatic environments [20], presumably because of the motile developmental stage(s) they possess. Water is also a more hospitable and stable environment compared to air, because of its higher heat capacity, lower levels of damaging ultraviolet radiation, and lack of desiccating effect. These factors likely contribute to parasite longevity outside their host. The efficient transport, motility, and potential for increased longevity of aquatic parasites may explain the apparent rarity of vector-borne parasites in aquatic environments compared to terrestrial [21]. The aquatic environment, and in particular seawater, is rife with bacteria, viruses, and other microbes important to marine food webs [22-24]. In this respect, it is perhaps not surprising that many of the parasites, ranging from parasitic microbes to higher order metazoans, are capable of remaining viable outside of a host for extended periods, and can be transported great distances. This situation is classically illustrated by an unknown parasitic infection that emerged in the Caribbean Sea, near Panama, in January 1983, and caused approximately 95% mortality of long-spined sea urchin (*Diadema antillarum*) populations on coral reefs around the Caribbean within just 13 months [25]. While this was an unequivocally rapid epizootic, the high connectivity of many aquatic metapopulations allows parasites to persist in host populations at low to moderate levels [26]. Interestingly, recent evidence from a terrestrial plant-fungal system even showed that more highly connected host populations experienced lower parasite re-infection rates than isolated populations, due to disease resistance imparted by higher gene flow between host populations [27]. Whether this holds true for aquatic host-parasite systems, which typically demonstrate greater connectivity than their terrestrial counterparts, is unknown and worthy of further research. For the following sections of the paper, we first go through cues and mechanisms of parasite avoidance and discuss their specific characteristics in a comparative framework between aquatic and terrestrial systems. We then present possible trade-offs associated with parasite avoidance and how anthropogenic changes to aquatic ecosystems could shape these behaviours. We conclude with a synthesis and suggestions for future research on parasite avoidance behaviours that are lacking or deficient in aquatic and terrestrial systems. ### 2. CUES FOR PARASITE AVOIDANCE A central prerequisite of parasite avoidance is that
hosts have to be able to detect the risk of infection. Detection can happen before or after the actual encounter with a parasite (reviewed in [28]), following specific cues associated with parasite presence, contact or establishment, that subsequently trigger an avoidance mechanism(s) (see Section 3). In humans, 'disgust responses' are mechanisms for avoiding diseases and the behaviour can be triggered through visually revolting sores or lesions [29], repulsive body odours [30], slimy textures associated with microbial activity [31], or just a simple auditory cue of infection such as coughing, sneezing, or wheezing. While it is interesting to consider whether other animals show a disgust response in the same respect that we do, there is also neurological evidence that humans are capable of detecting and responding to visual and olfactory cues of sickness prior to the production of overt cues for disgust [32]. Other animals can also use similar cues to detect and avoid infection. For instance, terrestrial animals have been shown to use visual cues, as in the warbling vireo, Vireo gilvus, which uses visual cues to detect and eject brood parasites (i.e., eggs) from the brown-headed cowbird Molothrus ater [33]. Others use chemosensory cues, such as the nematode Caenorhabditis elegans, which can detect secondary metabolites from the pathogenic bacteria *Pseudomonas aeruginosa* and avoid contaminated feeding areas [34]. The mouse Mus musculus also detects chemical cues, but uses those found in the urine to avoid conspecifics, or potential mates, infected with a variety of pathogens [15,35]. Other terrestrial animals use mechanosensory cues, such as the termite Zootermopsis angusticollis, which sends vibrational cues to warn unexposed conspecifics after it contacts the pathogenic fungus Metarhizium anisopliae [36]. Even auditory cues are occasionally reported for parasite detection, as seen in baywing Agelaioides badius, which rejects shiny cowbird Molothrus bonariensis brood parasites partly by distinguishing between the begging calls of host and parasite fledglings [37]. Avoidance can also be triggered by a combination of two or more sensory cues, such as visual combined with chemosensory cues or visual combined with chemosensory and tactile cues [38]. When used in combination, one cue can compensate for diminished effectiveness of another [39] or improve the responsiveness to a threat through an additive effect [40,41]. ### (a) Visual cues Visual cues are highly effective at rapidly transmitting information, but in the aquatic environment the distance over which these cues can be transmitted is often significantly shorter than in the terrestrial environment; and can be further hindered by turbidity, water colour, and/or depth [39,42]. This may explain why visual cues often operate in conjunction with chemosensory or mechanosensory methods, which can be combined to reduce infection risk in aquatic environments. One of the first reports of parasite avoidance behaviour in the aquatic environment was at least partially based on visual cues. Juvenile three-spine sticklebacks (*Gasterosteus aculeatus*) were shown to avoid shoals of conspecifics infected with the ectoparasite *Argulus canadensis*, in part because the infected conspecifics behaved abnormally [16]. Another possibility is that hosts could observe larger parasites visually, although in the case of *Argulus* sp., parasites alone did not elicit the avoidance behaviour [16]. Parasites may also affect mate choice through visual cues, as is commonly reported for male secondary sexual characteristics (see section 2.d). Female guppies (*Poecilia reticulata*) select males with fewer parasites (nematode *Camallanus cotti* or monogenean *Gyrodactylus* sp.) because these males demonstrate a higher rate of mating display [43]. Not limited strictly to female choice, male pipefish *Sygnathus typhle* use the visual cue of the black spots induced by the trematode *Cryptocotyle* sp. to avoid mating with infected females. This is presumably because the parasite affects female fecundity since it is not directly transmitted between fish [44]. In sum, visual cues for parasite avoidance operate in both terrestrial and aquatic systems, but are likely to be more efficient and common in the former. ### (b) Chemical cues While visual cues allow for rapid transmission of information, chemosensory cues can be transmitted over a greater distance reducing the risk of being in close proximity to the threat [45]. Unlike their terrestrial counterparts, aquatic organisms are continually bathed in an environment rich in chemical compounds. In this respect, it is not surprising that many aquatic organisms possess intricate chemosensory systems capable of deciphering this complex environment (reviewed in [46]). Aquatic and terrestrial organisms also fundamentally differ by the way in which they receive chemical cues. While terrestrial animals receive olfactory cues through the air and gustatory cues through water, there is no such distinction for aquatic animals – all chemical cues are mediated through water. Therefore, aquatic animals have evolved specific neuroanatomical pathways for distinguishing between these different types of cues, and these systems vary markedly between vertebrates (e.g., fish) and invertebrates (e.g., crustaceans) (reviewed in [46]). The chemicals which carry the information are typically small unspecialized metabolic products [47,48], so aquatic animals must be able to detect minute differences in chemical composition amongst the vast mosaic of compounds. Their sensitive chemosensory systems are adapted to capitalize on the water solubility of these chemicals and the directional concentration gradients established from their source. This forms an efficient mechanism for the transmission of information vital to many behaviours, including: avoiding predators (reviewed in [49]), finding mates [50], finding appropriate habitat [51,52], and avoiding parasites. Although chemoreception can be used effectively in either air or water, it is not without its disadvantages, regardless of the environment. In particular, turbulence in air or water can disrupt or limit chemoreception by diluting the chemosensory plume [53]. Research into this area has focused on foraging and predation in aquatic environments (e.g. [54,55]), but it has also been shown to affect parasite avoidance behaviours. While external chemoreception may have evolved as a mechanism of communication between unicellular organisms [56], the use of necromones (i.e., chemical compounds from dead animals or contagion) by terrestrial insects and aquatic crustaceans to avoid parasites suggests that this specific behaviour has ancient lineages, and may have evolved in the sea over 420 million years ago; prior to the divergence of Crustacea and Hexapoda [57]. This long history of chemosensory driven behaviours among the Crustacea may explain why so much of their ecology is mediated by their chemical surroundings. The Caribbean spiny lobster P. argus provides an exceptionally good example (see Box 1, Fig. 1) of this. *Panulirus argus* uses chemosensory cues to detect and avoid shelters containing conspecifics infected with the virus PaV1, but in high-velocity flow environments this avoidance behaviour is diminished, presumably because the turbulence created by high flow interferes with chemoreception of infected individuals [58]. In addition to triggering P. argus to avoid infected conspecifics, chemosensory cues are used by this species to find healthy conspecifics and to avoid competitors and predators [17,58,59]. Chemosensory cues for parasite avoidance have remained important throughout the evolutionary history of vertebrates, including fish and amphibians. For example, Poulin et al. [60] found that rainbow trout infected with the trematode *Diplostomum* sp. release chemical alarm substances that increase the activity of unexposed conspecifics. While suggestive of a possible beneficial effect in parasite avoidance (see section 3a), the exact role of alarm substances in parasite avoidance of fish is still largely unknown. Similarly, bullfrog tadpoles (Rana catesbeiana) have been shown to use chemical cues from conspecifics to avoid infection by the pathogenic yeast Candida humicola [61]. As we note above, chemosensory-driven parasite avoidance is not absent from the terrestrial environment, however the very nature of the aquatic environment and the shear abundance of chemical compounds within it has necessitated a heightened evolution of chemoreception among aquatic taxa. ### (c) Auditory and mechanosensory cues Auditory and mechanosensory cues of parasite avoidance are probably much more common in terrestrial than aquatic systems. One reason for this may be that disease vectors, often detectable through sound (e.g., flying insects) and contact (e.g., biting insects), are more abundant in terrestrial systems [21]. In the aquatic realm, auditory cues associated with an infection risk seem unlikely and we are not aware of specific examples. However, mechanosensory cues in water have been proposed for trematode parasites that infect their hosts (e.g., many species of amphibians and fish) by piercing the skin and invading into host tissues [12]. In such cases, it is important to note that a response to a mechanosensory cue, similar to a chemosensory cue, may depend on the number of infective stages present in the water. When parasite numbers are low, the response may be absent or require a cumulative exposure, which could result in some infection before avoidance is initiated. Fish hosts are also particularly well adapted for detecting very subtle movements, such as the detection of abnormal swimming behaviours, using mechanosensory cues detected via their lateral line, which could indicate a diseased individual. Mechanosensory cues could complement an avoidance behaviour primarily mediated by visual cues (see 2.a above)
and are possibly more detectable in water due to its increased density relative to mechanosensory cues mediated by the movement of air in terrestrial systems. ### 3. PARASITE AVOIDANCE MECHANISMS Many of the mechanisms of parasite avoidance are principally similar across terrestrial and aquatic habitats (changes in activity, moving away from infection source, avoiding infected prey and mates, grouping), but differences also exist owing to the specific characteristics of water. Table 1 captures details of the comparison between marine, freshwater, and a limited number of terrestrial taxa in behavioural avoidance mechanisms (Table 1). Earlier reviews have covered some of these topics for fish [28,62] and other animals [3], although they did not provide a detailed comparative approach between terrestrial and aquatic systems. We also limit our review to avoidance and do not discuss mechanisms of parasite removal that take place after infection. Such post-infection mechanisms have been reviewed elsewhere [e.g. [28]). Many avoidance mechanisms are sensitive to details of the parasite transmission process, infection burden, and the consequences (e.g. behavioural alterations) of infection. In some microparasitic infections, only a single contact may be needed for transmission (infection classified as 0 or 1), which could favour avoidance of sick conspecifics that transmit the infection. In contrast, effects of other parasites (usually macroparasites) often come about with increasing number of successful infections, i.e. in density-dependent manner [63], when avoidance mechanisms (and the associated cues, see section 2) may allow some infection to occur before the avoidance behaviour is activated. Further, infections may be transmitted between reproducing males and females, or vertically from parent to offspring, which can shape decisions of avoiding infected mates. These points apply equally to aquatic and terrestrial systems. Implementing different avoidance mechanisms can also be influenced by how a parasite finds its host, and these processes can differ between aquatic and terrestrial systems. In aquatic environments, water currents can disperse passively transmitted propagules, such as bacteria, viruses, and many larval macroparasites, more effectively than air. Infective stages that actively seek their hosts through motility (e.g. use of cilia or flagella) are also clearly more common in the aquatic realm. It is also worth noting that if an infection occurs, regardless of avoidance, it may shape avoidance of subsequent exposures. For example, species of gammarids [64], copepods [65], and fish [66] are known to become passive following a macroparasite infection, presumably because of the physiological consequence of infection. Overall, such conditions can result in mechanisms that decrease the likelihood of one infection, but increase the likelihood of another. Below, we provide some specific examples on the aspects described above, particularly from aquatic organisms. ### (a) Changes in activity An essential difference in parasite transmission strategies between aquatic and terrestrial environments is that motile infective stages are more common in water. This means that infective stages, particularly those of macroparasites, can actively seek their hosts [67]. Avoidance of such propagules can happen on a large scale by avoiding habitats of high infection risk (see section 2.b), or on a smaller scale through increases or decreases in host activity that target against parasite attachment and establishment. Evidence for the effects of host activity on infection probability in aquatic systems comes from amphibian tadpoles. Responses in tadpole activity typically express as evasive movements or bursts of activity that aim to fend off parasites in close proximity, or prevent establishment once a parasite makes contact [68,69]. These are equivalent to responses in terrestrial animals against vectors of microparasite infections. Daly & Johnson [69] compared infection between active Pacific chorus frog (*Pseudacris regilla*) tadpoles to those immobilized using anaesthesia. They found that the anaesthetized tadpoles had up to 39% higher risk of becoming infected and harboured 2.8-times more parasite cysts. This suggests that microscale behavioural processes can determine infection in an environment rich in infective stages. Similar results have been reported for other amphibians [70-72]. Studies have also suggested that increased activity could take place without actual parasite contact, possibly through cues released by the parasite cercariae [71,73]. Overall, there is considerable variation in the behavioural responses to parasitism across different amphibian species [74-76], which suggests that it may be difficult to find general trends in activity responses to parasitism. Changes in host activity can also be tightly linked with other risks, such as from predators [71,72,75]. We discuss these trade-offs in more detail in section 4. Research on host activity and parasitism outside of amphibian systems is scarce. In fish, fathead minnows (*Pimephales promelas*) showed lower activity when presented with chemical and visual cues of dead cercariae of *Ornithodiplostomum* sp. (Trematoda), but only after the fish had an earlier experience with the parasite [77]. While these results are suggestive of avoidance learning (see section 3.f), they also emphasise fine-tuned and variable outcomes of avoidance mechanisms across different systems. Clearly, fish can move over a wider range than tadpoles when increasing activity may result in further risk of infection or pose a trade-off with the risk of predation. ## (b) Avoiding areas of infection risk A mechanism tightly linked with changes in host activity is the avoidance of areas with high infection risk. As noted above, water facilitates the active and passive spread of infective stages in aquatic environments, which tends to homogenize the spatial structure of hot and cold spots of infection risk, relative to terrestrial systems. However, infection risk in water is nevertheless spatially and temporally structured because infections are aggregated in certain host individuals [78], infected intermediate hosts releasing the parasite propagules are aggregated [79,80], there is seasonality in parasite transmission at higher latitudes [12,81], and many infective stages have short lifespans [82]. Moreover, parasite infective stages can actively seek host microhabitats [67], and their release can coincide with the diurnal rhythm [83] or seasonal activity of the host [12]. This makes it possible for animals to detect and avoid certain habitats, areas within habitats, temporal factors, or avoid hosts that are of higher infection risk than others (reviews e.g. in [28,84]). Spatial avoidance through detection of infective stages in water has been studied in detail in many species of fish. For example, Poulin & Fitzgerald [85] showed that sticklebacks preferred vegetated benthic habitats when crustacean fish lice (*Argulus* sp.) were absent, but moved to the surface when the parasites were added. In that system, the infective stages were clearly visible to the fish. Similarly, rainbow trout move away from shelter to open water when exposed to cercariae of *Diplostomum* sp. (Fig. 2), possibly following mechanosensory or chemical cues [12]. These examples illustrate that aquatic hosts can identify spatial aggregations of parasites and avoid them. A particular feature of aquatic systems compared to terrestrial systems, is that water currents and active dispersal can create a gradient of infective propagules from an infected host or other source releasing them. This can have significant implications for aquatic epidemiology, parasite detection, and decisions in the spatial avoidance of parasites. Unfortunately, it is poorly understood whether hosts can specifically respond to the concentration of infective stages, or whether cues associated with these stages are what guide the magnitude and direction of evasive movements. More data are clearly needed both from aquatic and terrestrial systems. Overall, many more empirical tests of spatial avoidance in different types of aquatic systems, including temporal changes in infection pressure, are needed. At a larger scale, migrations can be important in terms of disease epidemiology and the spatial avoidance of parasites [86,87]. While the principles of how migration mediates avoidance are similar between aquatic and terrestrial systems, much of the evidence comes from the latter [87]. One of the best-known examples of the effect of animal migration on parasite infection is from reindeer, *Rangifer tarandus*, where populations that migrate outside their calving areas have lower infestation of parasitic flies compared to non-migrating populations. This has been suggested as a defensive strategy against infection [88,89]. Similar processes have been described for the monarch butterfly *Danaus plexippus*, which benefit from the migratory culling of individuals infected with the protozoan parasite *Ophryocystis elektroscirrha* (individuals weakened by infections are lost during migration and decrease infection pressure on survivors [90]), and for several terrestrial animals (reviewed in [86]). One of the few examples in aquatic systems comes from migratory and non-migratory species of fish from the genus *Galaxias* [91], inhabiting freshwater streams (all adults and offspring of the resident species) and pelagic marine habitats (offspring of the migratory species). By comparing infection levels of trematode parasites in different host populations, Poulin *et al.* [91] found that offspring of the migratory species had lower infection levels compared to resident ones. Although it could not be concluded whether this is an adaptation to avoid parasitism, or a side-effect of the migratory behaviour, these results suggest that migrations can alter parasitism.
Similar effects could take place in migrations of anadromous salmonid fishes through processes of migratory 'escape' from parasites (loss of parasite infective stages from the environment during host absence [11]) or migratory culling. However, to our knowledge, there are no detailed comparative analyses of parasite infections in resident vs. migratory salmonids that would support or refute such hypotheses. Overall, it is important to note that in addition to decreased infection, migrations in many cases result in increased parasitism, depending on the mode of transmission and specificity of the parasite [86]. This may be synonymous between aquatic and terrestrial systems. ### (c) Avoidance of infected prey Several parasite taxa are transmitted trophically between predators and prey. Often these trophically-transmitted parasites also change the phenotype (appearance, behaviour etc.) of their intermediate host to enhance transmission to a predatory next host [84]. Thus, by identifying and discriminating such changes or other signs associated with infection in the prey, predators could theoretically avoid becoming infected. Overall, examples of parasite-induced changes in host phenotype are abundant in both aquatic and terrestrial systems, and the topic of avoiding infected prey is covered in earlier reviews [62,84]. Thus, we do not go into this topic in great depth here, but state that current evidence largely suggests that rather than avoiding infected prey, hosts prefer eating prey whose behaviour has been altered by infections [92]. In cases where discrimination of infected prey has been reported, parasites are typically not trophically-transmitted and can actually induce anti-predatory phenotypic changes that protect the host from predation (e.g. [93,94]). Wisenden *et al.* [28] summarised underlying reasons for the general lack of avoidance of infected prey, some of which are related to energy budgets and cost-benefit ratios of consuming infected prey (see also [95]). However, data are lacking to compare between aquatic and terrestrial systems. Avoiding cannibalism can clearly reduce the chance of intraspecific transmission of parasites in aquatic or terrestrial animals. Cannibalistic behaviour presumably occurs due to starvation, to maintain a social hierarchy, or to reduce competition for sex, space, or food, while also gaining a nutritional benefit [96-98]. Cannibalistic behaviour has been reported in over 3000 species, and has been noted to be influenced by parasitism. While cannibalism may indeed be a route of parasite transmission, there is little evidence from terrestrial or aquatic animals that it is a widespread and significant source of infection (reviewed in [99]). Bolker *et al.* [100] further addressed this issue in a theoretical framework using tiger salamander *Ambystoma tigrinum* larvae and the lethal ranavirus, ATV (*Ambystoma tigrinum* Virus), as a model system. Larval salamanders can develop into one of two predatory morphs, specialising on invertebrates, or invertebrates and conspecifics, based on their abundance. They tested the hypothesis that infection risk explains the evolutionary lack of widespread cannibalism. They concluded that because disease transmission and cannibalism are both often density-dependent and interfere with one another (i.e., high disease prevalence reduces population size and therefore the likelihood of cannibalism, and vice versa), this reduces the evolutionary pressure that infection risk might otherwise have on reducing cannibalism. While cannibalism would logically seem problematic for the transmission and spread of parasites among populations of terrestrial or aquatic organisms, empirical and modelling evidence suggests this is not the case. ## (d) Avoidance of infected conspecifics and mates Risk of contagious infections and 'bad' decision-making in social contexts may also result in another form of avoidance behaviour, the avoidance of infected conspecifics and mates. The prerequisite for such a behaviour is that infected individuals can be identified, which can take place through a number of cues (see section 2). In the aquatic environment, these are predominantly chemical, but include visual cues that may be more likely predominate in the terrestrial realm. One example comes from the Caribbean spiny lobster P. argus that can identify and discriminate conspecifics infected with the lethal virus PaV1, using chemical cues [17,58] (Box 1, Fig. 1). In fishes, sticklebacks prefer shoals of conspecifics not infected with the microsporidian, Glugea anomala, which causes clear visible swelling of skin cells [101]. Further examples have been described in bullfrog tadpoles [61] and other species of fish (reviewed in [28]). All of the examples above come from directly transmitted pathogens, where avoidance of infected conspecifics is reasonable because of the direct infection risk. However, hosts could also identify signals of infection associated with non-contagious infections [102]. An example includes macroparasites with complex life cycles that can also cause visible symptoms in their hosts, such as epidermal spots [102], opaque eyes [63] (Fig. 2), and changes in body shape [103]. While these infections cannot be passed directly between hosts, hosts can differentiate between infections in relation to their risk and this provides an interesting field of research both in aquatic and terrestrial environments about "unnecessary avoidance". Hamilton and Zuk [14] were the first to put forth the handicap theory that mate selection, particularly selection by female birds for males with exaggerated secondary sexual characteristics (e.g., colour, song, display behaviour), could be driven by parasites. They showed an association between male secondary sexual characteristics and parasite load, whereby heavily parasitized males had less attractive characteristics, indicative of a weak immune system, and were avoided in favour of males with more overt characteristics. This same relationship was later demonstrated in the aquatic environment using male guppies, where display rate was associated with parasite load and female selection (e.g. [43]), and in three-spine sticklebacks where male colour intensity indicated parasite load to females [104]. Lopez [105] also demonstrated that in addition to genes for immunocompetence, an acquired resistance could affect male display and female mate choice. However, the avoidance technique may vary based on the transmission mode of the parasite. In the amphipod *Gammarus duebeni*, males may choose to mate with conspecifics infected with a vertically transmissible microsporidian, or choose to avoid them [106]. The transmission pathway of this parasite poses little threat to the male but would result in the production of infected young. Despite this, males may still choose to mate with infected females, but can limit their reproductive effort by providing a lower quantity of sperm, thus reducing the number of infected offspring [106] (Fig. 3). A secondary factor, which may drive males to breed with infected females, is competition from conspecifics. This may regulate and balance the parasite avoidance behaviour, allowing for reproduction but limiting parasite transmission [107]. Parallel studies in terrestrial systems have found that European woodlice (*Armadillidium vulgare*) females infected *Wolbachia* sp. bacteria receive less sperm than uninfected females [108]. ## (e) Grouping and sociality Animals can also group in response to parasitism, which can act as a mechanism of avoidance if it dilutes or reduces the risk of infection on an individual host. Again, much of the evidence comes from terrestrial systems, such as ungulates infected with biting insect parasites [84,109]. Grouping and shoaling of aquatic organisms, such as fish, have more often been considered in association with predation (reviewed in [62]), while avoidance of parasitic infections has received less attention. One of the first studies on grouping in response to parasitism was conducted using stickleback fish and their brachyuran ectoparasite *Argulus canadensis* [110]. In that study, Poulin & Fitzgerald [110] observed that parasitized fish formed larger shoals, and had a higher tendency to join shoals. More recently, Stumbo *et al.* [111] showed similar results in fathead minnows (*Pimephales promelas*) exposed to cercariae from two harmful trematodes. The fish residing in the centre of more cohesive shoals had lower infection levels compared to non-shoaling conspecifics or those on the perifery of the shoal. Further, Mikheev *et al.* [112] investigated how individual rainbow trout *Oncorhynchus mykiss* avoided areas of infection risk from the trematode *Diplostomum pseudospathaceum* compared to fish groups in experimental tanks consisting of compartments with and without parasites. They found that both individual fish and groups of fish avoided the infection, but also that groups were more effective in their avoidance [112]. This suggests that individuals in a group may benefit from reactions of others to avoid both infection and predation, which results in lower overall levels of infection and consumption in tandem. Despite the benefits of group living, in terms of predator and parasite avoidance, it can also come with a cost in the form of higher within-group parasite transmission. This is true for many contagious diseases that can transmit effectively between hosts in close proximity. In other words, while grouping can clearly decrease infection risk of an individual to indirectly transmitted parasites through dilution effect, it can also increase risk of directly transmitted infections. Heavily parasitized hosts in a group may show impaired decision-making capability because of the infection. Such behaviours could result in misguided collective movements among less-infected conspecifics, and in turn, possibly lower food acquisition rates, and raise the risk of
infection or predation. These topics have been discussed in detail in previous reviews (e.g. [62]). ### (f) Avoidance learning The ability of hosts to avoid infection is not necessarily intrinsic, and it is possible that hosts could also learn to avoid conditions of a higher infection risk with experience from parasites they have encountered earlier. However, there is little direct evidence of avoidance learning in the aquatic environment. Most of the evidence so far comes from terrestrial insects and mammals learning to avoid flavours or odours previously associated with food-transmitted infections [113,114], or initiating a faster avoidance response after a previous infection, or by observing conspecifics becoming infected [115,116]. In aquatic systems, evidence for learning of risks comes almost entirely from predator-prey interactions (reviewed in [117]). For example, fish such as minnows can learn to identify habitats of high predation risk [118] or odours that are associated with alarm behaviour in conspecifics ([119], reviewed in [28]). Principally, similar processes could be operating in parasite avoidance. For example, it has been shown that the fathead minnows *P. promelas* tend to avoid trematode parasites *Ornithodiplostomum* sp., but activation of this behaviour requires an initial contact with the parasite; suggesting plasticity in the behaviour [77]. A recent study on sea trout (*Salmo trutta trutta*) has also shown that the fish can learn to identify visual signals of their environment that are associated with infections [120]. In that study, fish were given a choice between two compartments, one with cercariae of the trematode *D. pseudospathaceum* and the other without cercariae, marked with different colours. After the first four repeated trials, fish made a significantly higher proportion of accurate choices between the compartments, i.e. entering the parasite-free compartment more often. Interestingly, the avoidance disappeared in the following trials as the fish presumably became immunologically competent to the parasite [120]. These results suggest that hosts can identify specific characteristics of their environment associated with parasitism, but also that the tendency to avoid parasites can be strongly linked with other components of defence, such as immunological resistance and tolerance (see also [121,122]). Outside the context of avoidance learning in individuals, variation in parasite exposure between host populations can result in different adaptations to avoidance. For example, in the amphipod *Paracalliope novizealandiae*, individuals from a population not commonly infected with the trematode *Maritrema novaezealandensis* had less pronounced avoidance behaviour and were more susceptible to infection compared to an infected population [123]. Indeed, as avoidance behaviours can be costly in terms of energy expenditure and trade-offs with other life-history functions, selection should reduce avoidance behaviours when they are no longer needed [124], increasing fitness in the parasite-free environment, but decreasing it in the presence of parasites [125]. For example, comparative studies suggest that levels of parasitism and predation experienced by host species in the wild can influence their parasite avoidance decisions [126]. Overall, such selection pressures for avoidance should show similarities across aquatic and terrestrial habitats, but comparisons are currently hampered by the lack of empirical examples particularly from the aquatic realm. ## 4. TRADE-OFFS AND NEGATIVE CONSEQUENCES OF PARASITE AVOIDANCE BEHAVIOURS ### (a) *Immunological trade-offs* In general, hosts can rely on different forms of defence against infections. Traditionally, most research emphasis has been put on the immune system, which for invertebrates consists of an innate branch that works through mechanisms such as RNA interference [127], cellular melanisation responses [128], and the production of anti-microbial peptides [129]. Aquatic vertebrates, like mammals, fish, reptiles and birds also have an adaptive immune system capable of 'learning' to defend against parasites by producing an array of immunoglobulins [130], amongst other adaptions, that link behaviour and immunocompetence [121,122]. However, innate and acquired immune systems are energetically costly, which could make the evolution of parasite avoidance behaviours selectively advantageous. This could also result in trade-offs between defensive components, but empirical data are scarce. Conversely, excessive use of avoidance behaviours could also affect host condition through energy expenditure on low risk scenarios. This could limit the benefits of other life history traits (see section 4.b) as well as the upkeep of beneficial microbes within the 'microbiome' [131], and the efficiency of immune-related responses [132]. ## (b) Ecological trade-offs Despite the presence of parasites, organisms must continue to forage, find mates, evade predators etc., in order to survive and reproduce. This often brings them into contact with parasites and creates a trade-off between these different life history functions. One of the ecological conflicts that has received recent attention concerns the interactions between parasite and predator avoidance. It is possible that changes in host behaviour in response to parasites, such as increases in activity (section 3.a) or shifts in habitat (section 3.b), could make them more susceptible to predation, or vice versa. In aquatic systems, several studies have illustrated such conflicts in amphibian tadpoles. For example, Koprivnikar & Penelva [73] reported stronger behavioural responses of *Lithobates pipiens* tadpoles to predation than parasitism. Similar results have been reported e.g. in *Pseudacris regilla* and *Anaxyrus boreas* [75]. Further, Raffel et al. [133] discussed the concept of 'parasites as predators' in this context, exploring the link between multiple predators and multiple parasites and how avoidance of one may result in the interaction with another. Although aquatic examples of the 'parasites-as-predators' concept are scarce, it has been considered in terrestrial examples, particular with mammal hosts of the lone star tick (Amblyomma americanum) [134]. The study by Fritzsche & Allan [134] found that "food abandonment" was significantly associated with avoidance of parasitism, just as one would expect from the presence of a predator. Overall, these examples clearly illustrate the need of comprehensive studies of avoidance against different natural enemies. Parasite avoidance behaviours may also include other types of ecological trade-offs. In dolphins, for example, the practice of inquisitive, sexual or dominance behaviour has been observed among males in response to deceased conspecifics, despite the likelihood of parasites (particularly bacterial diseases) being contractible from the cadaver [135,136]. In addition to the examples noted in section 3.d, some amphipods also exhibit cannibalistic behaviour in times of hardship, or when other food is not available, despite the risk of contracting infection [98]. In these examples, stricter parasite avoidance would likely result in lower infection rates, but could also lead to reduced fitness through lower foraging and reproduction. Similar trade-offs occur also in terrestrial environments. For example, trade-offs in nutrient intake were highlighted in a recent study where small mammals and birds, susceptible to the raccoon roundworm parasite Baylisascaris procyonis, were shown to avoid contaminated raccoon latrines that otherwise provide nutritious seed forage to animals not susceptible to the parasite [137]. Organisms should therefore balance between parasite avoidance, parasite risk behaviours and susceptibility to infection, depending on the specific characteristics of each particular environment. Hosts are also often exposed to, and infected by, more than one parasite species. Such co-infections are common in natural and artificial environments [138]. The overall defence of a host against parasitic infections may therefore represent a balance between the risk of infection from multiple parasites. While interactions between parasite and predator avoidance behaviours in aquatic systems have been studied (see examples on tadpoles above), evidence of trade-offs in avoidance against different parasite taxa is virtually absent both in aquatic and terrestrial ecosystems. # 5. IMPACTS OF HUMAN ACTIVITIES AND ENVIRONMENTAL CHANGE ON PARASITE AVOIDANCE IN AQUATIC ENVIRONMENTS ### (a) *Increase in environmental temperature* Many key aspects of parasite biology, aquatic and terrestrial, are strongly controlled by temperature. Therefore, ongoing climate change is generally predicted to increase parasite transmission and reproduction [139,140]. For example, experimental data predicts that an increase of 10°C in temperature can increase release of infective stages of trematode parasites (cercariae) up to 200-fold [141]. Similarly, long-term time-series data on pathogenic fish diseases suggests an increase in disease occurrence with temperature [142]. Increasing temperature can also shape parasite avoidance behaviours. If detection and behavioural avoidance responses are connected to the level of infection risk (see [143]), they should rise concomitantly with the emergence, re-emergence, or proliferation of parasites. Longer term responses could include changes in allocation to different defence components (avoidance, immunity and tolerance) and in trade-offs between avoidance, foraging and predator avoidance (see section 4.b). Such ecological and evolutionary consequences of increasing parasite exposure form an open and interesting field for future research. ## (b) Eutrophication Similar to water temperature, eutrophication in aquatic systems [144,145] is predicted to increase infections among aquatic organisms [139], with potential effects on avoidance
behaviours as well. Eutrophication could also directly influence some of the avoidance cues perceived by hosts. For example, eutrophication increases water turbidity, which could impair visual cues from parasite infective stages. However, such questions await empirical tests. Eutrophication may also change host and parasite distributions through habitat loss. For example, in Gull Lake (Michigan, USA) anoxic conditions following eutrophication shifted mayflies to shallow waters where they became exposed to *Crepidostomum* trematodes transmitted from shallow-living sphaerid clams. When the lake later recovered, the process was reversed [146,147]. Similarly, eutrophication and resulting anoxic conditions have led to hybridization of deep and shallow living species of whitefish in Swiss pre-alpine lakes [148], which has likely exposed the deep-living species to new parasitic taxa in the shallows [149]. Thus, in both examples, human activity has forced hosts out of a potential parasite refuge into contact with new infectious agents, creating a novel selection landscape for parasite avoidance strategies. ## (c) Aquaculture Intensive aquaculture favours persistence of diverse parasite infections, including bacteria, viruses, protozoans, and monogenean, trematode and crustacean macroparasites [150-152], that benefit from conditions of high transmission among abundant and dense numbers of susceptible hosts. Again, in comparison to terrestrial systems, water can effectively mediate infections coming from the wild, making it challenging to prevent them from entering aquaculture facilities. This, along with parasite replication, can result in rampant density-dependent exposure within the facilities. Aquaculture conditions also limit or prevent opportunities for spatial parasite avoidance, which may not only increase infections, but also prevent learning of cues associated with infections in the wild (see [120]). The latter can be particularly important for the survival of fish intended for fishery stock enhancement or recovery [153]. Unfortunately, research on parasite avoidance and its significance in aquaculture systems is lacking. ## (d) *Invasive species* Anthropogenic activity can result in movement of invasive and non-native species (INNS) that can carry a multitude of parasites to novel invasion sites. In some cases, this has resulted in the infection of native species [154,155]. Susceptible native species are unlikely to have evolved avoidance behaviours capable of responding to the non-native parasites, resulting in increased infection risk relative to an INNS that co-evolved an avoidance behaviour to the parasite [156]. Consequences of susceptibility to non-native parasites include reduced competitive ability with the native host, decreased reproductive success, or even extirpation from the invasion range of the parasite [157]. Alternatively, INNS who lose their parasites when introduced to a novel invasion site can reduce their resistance or avoidance to infection as such traits lose their benefit in the absence of their co-evolved parasites [158]. Presently, a number of aquatic invasive species, many carriers of parasites, are being moved around the globe. Their introduction into novel habitats will undoubtedly have an effect on native fauna. However, lack of data on the effects of introduced parasites on native host behaviours make it difficult to draw general conclusions. ### 6. CONCLUSIONS AND FUTURE DIRECTIONS Research on parasite avoidance behaviours began in terrestrial systems decades before aquatic systems. However, accumulation of empirical evidence in recent years now suggests that parasite avoidance plays an important role in the defence of many aquatic organisms, ranging from small crustaceans to vertebrates, such as fish and mammals. These behaviours operate through a complex of cues and avoidance mechanisms that complement the overall defence repertoire of an organism and, depending on the specific details of each host-parasite system, can provide effective and energetically efficient protection against infection. The distinct properties of parasite transmission in aquatic versus terrestrial systems generate marked differences in avoidance behaviours found in these environments, while many of the principal mechanisms remain similar. For example, the presence of suspended parasites in the water column could theoretically bring an organism into increased contact with disease-causing agents, but no comparative studies exist to assess whether parasite avoidance behaviour is more common in aquatic relative to terrestrial species. While the knowledge of parasite avoidance behaviours in aquatic systems has increased over recent decades, some aspects are still in their infancy. For example, we know a great deal about the large-scale spatial distribution of infections among sessile taxa, such as corals and oysters, but very little about how avoidance of infected conspecifics or infected habitat drives the spatial distribution of mobile species, such as fish or crustaceans, at the population or ecosystem scale. We also need more research into the predicted outcomes for host-parasite interactions from ongoing climate change as this could dramatically alter our understanding of how hosts defend themselves against infections. Predictive models and the few available long-term data sets (e.g. [139,140,142]) suggest that parasitic infections are likely to increase with rising temperatures. Theoretically, this should impose selection towards measures that decrease host exposure to infections, but the exact outcomes are difficult to predict given the versatility of different host-parasite interactions and environmental variation. More research and long- term data gathering are needed to tackle questions of parasite avoidance, particularly in different taxa and at different levels of infection risk, to gain empirical support for these predictions. Changes in infection pressure and avoidance also connect closely with the function of the other components of the defence system, the immune system that eliminates infections, and tolerance that is built up to mitigate deleterious effects of infection without killing the parasite (e.g. [1,2]). The relationships between these components and their underlying mechanisms are fundamental to understanding host-parasite evolution, and can carry significant medical and economic implications. While recent studies in animal systems have begun to explore relationships between resistance and tolerance in particular (e.g. [8,9]), the role of avoidance in complementing or offsetting these functions is still poorly understood. Further, the effects of factors such as host infection history on parasite avoidance strategies and changes in avoidance through experience and learning are virtually unexplored areas for research. Comprehensive studies on defence scenarios with hosts under different parasite pressures and with different infection experience, incorporating the role of all three defence components – immunological resistance, tolerance, and behaviour – are needed. To summarise, while the evidence for behavioural defences against parasite infections is accumulating, we still need to identify more instances of parasite avoidance behaviours in aquatic environments. They are apt to be much more common than we realize, particularly in the complex marine environment, but it will require creative, interdisciplinary approaches to discover them. Building our understanding of parasite avoidance behaviours across taxa and across the terrestrial – aquatic divide will encourage the development of unifying theories and holistic views of their role in the host-parasite evolutionary arms race. ### Acknowledgments The authors would like to thank Ms. Cecile Sarabian, Dr. Rachel McMullan and three anonymous reviewers for constructive comments, and the Royal Society for organizing and hosting the meeting on 'Evolution of Pathogen and Parasite Avoidance Behaviours' at Chicheley Hall. ### **Authors' Contributions** DB developed the concept for the manuscript and drafted the initial outline. DB, AK, and JB contributed equally to the writing of the text and drafting of the figures. JB created the table. All authors gave final approval for publication. ## **Competing Interests** The authors have no competing interests. ### REFERENCES - 1. Boots, M., Best, A., Miller, M. R., White, A. 2009 The role of ecological feedbacks in the evolution of host defence: what does theory tell us? *Phil. Trans. R. Soc. B* **364**, 27-36. (DOI:10.1098/rstb.2008.0160). - 2. de Roode, J. C., Lefevre, T. 2012 Behavioral Immunity in Insects. *Insects* 3, 789-820. - 3. Curtis, V. A. 2014 Infection-avoidance behaviour in humans and other animals. *Trends Immunol.* **35**, 457-464. (DOI:10.1016/j.it.2014.08.006). - 4. Hart, B. L. 1990 Behavioral adaptations to pathogens and parasites 5 strategies. *Neurosci. Biobehav. Rev.* **14**, 273-294. - Sheldon, B. C., Verhulst, S. 1996 Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. *Trends Ecol. Evol.* 11, 317-321. - 6. Graham, A. L., Allen, J. E., Read, A. F. 2005 Evolutionary causes and consequences of immunopathology. *Ann. Rev. Ecol., Evol. Syst.*, 373-397. - 7. Schmid-Hempel, P. 2003 Variation in immune defence as a question of evolutionary ecology. *Proc. R. Soc. B* **270**, 357-366. - 8. Råberg, L., Graham, A. L., Read, A. F. 2009 Decomposing health: tolerance and resistance to parasites in animals. *Phil. Trans. R. Soc. B* **364**, 37-49. (DOI:10.1098/rstb.2008.0184). - 9. Medzhitov, R., Schneider, D. S., Soares, M. P. 2012 Disease tolerance as a defense strategy. *Science* 335, 936-941. (DOI:10.1126/science.1214935). - 10. Freeland, W. J. 1976 Pathogens and the evolution of primate sociality. *Biotropica* **8**, 12-24. (DOI:10.2307/2387816). - 11. Loehle, C. 1995 Social barriers to pathogen transmission in wild animal populations. *Ecology*
76, 326-335. (DOI:10.2307/1941192). - 12. Karvonen, A., Seppälä, O., Valtonen, E. T. 2004 Parasite resistance and avoidance behaviour in preventing eye fluke infections in fish. *Parasitology* **129**, 159-164. (DOI:10.1017/s0031182004005505). - Garnick, S. W., Elgar, M. A., Beveridge, I., Coulson, G. 2010 Foraging efficiency and parasite risk in eastern grey kangaroos (*Macropus giganteus*). *Behav. Ecol.* 21, 129-137. (DOI:10.1093/beheco/arp162). - 14. Hamilton, W. D., Zuk, M. 1982 Heritable true fitness and bright birds a role for parasites. *Science* **218**, 384-387. (DOI:10.1126/science.7123238). - 15. Boillat, M., Challet, L., Rossier, D., Kan, C., Carleton, A., Rodriguez, I. 2015 The vomeronasal system mediates sick conspecific avoidance. *Curr. Biol.* **25**, 251-255. (DOI:10.1016/j.cub.2014.11.061). - 16. Dugatkin, L. A., Fitzgerald, G. J., Lavoie, J. 1994 Juvenile 3-spined sticklebacks avoid parasitized conspecifics. *Environ. Biol. Fishes* **39**, 215-218. (DOI:10.1007/bf00004940). - 17. Behringer, D. C., Butler IV, M. J., Shields, J. 2006 Avoidance of disease by social lobsters. *Nature* **441**, 421-421. - 18. McCallum, H., Harvell, D., Dobson, A. 2003 Rates of spread of marine pathogens. *Ecol. Lett.* **6**, 1062-1067. (DOI:10.1046/j.1461-0248.2003.00545.x). - 19. Brown, J. K. M., Hovmoller, M. S. 2002 Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. *Science* **297**, 537-541. (DOI:10.1126/science.1072678). - 20. Poulin, R., Morand, S. 2004 *Parasite Biodiversity*. Washington DC, USA, Smithsonian Books; 216 p. - 21. McCallum, H. I., Kuris, A., Harvell, C. D., Lafferty, K. D., Smith, G. W., Porter, J. 2004 Does terrestrial epidemiology apply to marine systems? *Trends Ecol. Evol.* 19, 585-591. (DOI:10.1016/j.tree.2004.08.009). - 22. Fuhrman, J. A., Noble, R. T. 1995 Viruses and protists cause similar bacterial mortality in coastal seawater. *Limnol. Oceanogr.* **40**, 1236-1242. - 23. Whitman, W. B., Coleman, D. C., Wiebe, W. J. 1998 Prokaryotes: The unseen majority. *Proc. Natl. Acad. Sci. USA* **95**, 6578-6583. (DOI:10.1073/pnas.95.12.6578). - 24. Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., Poulos, B. T., Solonenko, N., Lara, E., Poulain, J., et al. 2016 Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. *Nature* 537, 689-+. (DOI:10.1038/nature19366). - 25. Lessios, H. A. 1988 Mass mortality of *Diadema antillarum* in the Caribbean what have we learned. *Annu. Rev. Ecol. Syst.* **19**, 371-393. (DOI:10.1146/annurev.es.19.110188.002103). - 26. Kough, A. S., Paris, C. B., Behringer, D. C., Butler, M. J. 2015 Modelling the spread and connectivity of waterborne marine pathogens: the case of PaV1 in the Caribbean. *ICES J. Mar. Sci.* **72**, 139-146. (DOI:10.1093/icesjms/fsu209). - 27. Jousimo, J., Tack, A. J. M., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C., Laine, A.-L. 2014 Ecological and evolutionary effects of fragmentation on infectious disease dynamics. *Science* 344, 1289-1293. (DOI:10.1126/science.1253621). - 28. Wisenden, B. D., Goater, C. P., James, C. T. 2009 Behavioral defences against parasites and pathogens. In *Fish defences* (eds. G. Zaccone, C. Perriere, A. Mathis & B. G. Kapoor), pp. 151-168. Enfield, NJ, Science Publishers, Inc. - 29. Curtis, V., Aunger, R., Rabie, T. 2004 Evidence that disgust evolved to protect from risk of disease. *Proc. R. Soc. B 271, S131-S133. (DOI:10.1098/rsbl.2003.0144). - 30. Olsson, M. J., Lundstrom, J. N., Kimball, B. A., Gordon, A. R., Karshikoff, B., Hosseini, N., Sorjonen, K., Hoglund, C. O., Solares, C., Soop, A., et al. 2014 The scent of disease human body odor contains an early chemosensory cue of sickness. *Psychol. Sci.* 25, 817-823. (DOI:10.1177/0956797613515681). - 31. Oum, R. E., Lieberman, D., Aylward, A. 2011 A feel for disgust: Tactile cues to pathogen presence. *Cogn. Emot.* **25**, 717-725. (DOI:10.1080/02699931.2010.496997). - 32. Regenbogen, C., Axelsson, J., Lasselin, J., Porada, D. K., Sundelin, T., Peter, M. G., Lekander, M., Lundstroem, J. N., Olsson, M. J. 2017 Behavioral and neural correlates to multisensory detection of sick humans. *Proc. Natl. Acad. Sci. USA* 114, 6400-6405. (DOI:10.1073/pnas.1617357114). - 33. Underwood, T. J., Sealy, S. G. 2011 Behavior of Warbling Vireos ejecting real and artificial cowbird eggs. *Wilson J. Ornithol.* **123**, 395-400. - 34. Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C., Kim, D. H. 2014 Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of *C. elegans. Cell* **159**, 267-280. (DOI:10.1016/j.cell.2014.09.011). - 35. Kavaliers, M., Colwell, D. D. 1993 Aversive responses of female mice to the odors of parasitized males neuromodulatory mechanisms and implications for mate choice. *Ethology* **95**, 202-212. - 36. Rosengaus, R. B., Jordan, C., Lefebvre, M. L., Traniello, J. F. A. 1999 Pathogen alarm behavior in a termite: A new form of communication in social insects. *Naturwissenschaften* **86**, 544-548. (DOI:10.1007/s001140050672). - 37. De Marsico, M. C., Gantchoff, M. G., Reboreda, J. C. 2012 Host-parasite coevolution beyond the nestling stage? Mimicry of host fledglings by the specialist screaming cowbird. *Proc. R. Soc. B* **279**, 3401-3408. (DOI:10.1098/rspb.2012.0612). - 38. Stynoski, J. L., Noble, V. R. 2012 To beg or to freeze: multimodal sensory integration directs behavior in a tadpole. *Behav. Ecol. Sociobiol.* **66**, 191-199. (DOI:10.1007/s00265-011-1266-3). - 39. Johannesen, A., Dunn, A. M., Morrell, L. J. 2012 Olfactory cue use by three-spined sticklebacks foraging in turbid water: prey detection or prey location? *Anim. Behav.* **84**, 1-8. - 40. Ward, A. J. W., Mehner, T. 2010 Multimodal mixed messages: the use of multiple cues allows greater accuracy in social recognition and predator detection decisions in the mosquitofish, *Gambusia holbrooki. Behav. Ecol.* **21**, 1315-1320. (DOI:10.1093/beheco/arq152). - 41. Sharp, J. G., Garnick, S., Elgar, M. A., Coulson, G. 2015 Parasite and predator risk assessment: nuanced use of olfactory cues. *Proc. R. Soc. B* **282**. (DOI:10.1098/rspb.2015.1941). - Ranaker, L., Nilsson, P. A., Bronmark, C. 2012 Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish. *PLoS One* 7. (DOI:10.1371/journal.pone.0038411). - 43. Kennedy, C. E. J., Endler, J. A., Poynton, S. L., McMinn, H. 1987 Parasite load predicts mate choice in guppies. *Behav. Ecol. Sociobiol.* **21**, 291-295. (DOI:10.1007/bf00299966). - 44. Rosenqvist, G., Johansson, K. 1995 Male avoidance of parasitized females explained by direct benefits in a pipefish. *Anim. Behav.* **49**, 1039-1045. - 45. Brown, G. E., Poirier, J. F., Adrian, J. C. 2004 Assessment of local predation risk: the role of subthreshold concentrations of chemical alarm cues. *Behav. Ecol.* 15, 810-815. (DOI:10.1093/beheco/arh084). - 46. Derby, C. D., Sorensen, P. W. 2008 Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. *J. Chem. Ecol.* 34, 898-914. (DOI:10.1007/s10886-008-9489-0). - 47. Atema, J. 1988 Distribution of chemical stimuli. In *Sensory Biology of Aquatic Animals* (eds. J. Atema, R. R. Fay, A. N. Popper & W. N. Tavolga), pp. 29-56. New York, Springer. - 48. Carr, W. E. S. 1988 The molecular nature of chemical stimuli in the aquatic environment. In *Sensory Biology of Aquatic Animals* (eds. J. Atema, R. R. Fay, A. N. Popper & W. N. Tavolga), pp. 3-27. New York, Springer. - 49. Ferrari, M. C. O., Wisenden, B. D., Chivers, D. P. 2010 Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. *Can. J. Zool.* **88**, 698-724. (DOI:10.1139/z10-029). - 50. Kamio, M., Derby, C. D. 2011 Approaches to a molecular identification of sex pheromones in blue crabs. *Chem. Comm. Crust.*, 393-412. (DOI:10.1007/978-0-387-77101-4_20). - 51. Lecchini, D., Planes, S., Galzin, R. 2005 Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. *Behav. Ecol. Sociobiol.* **58**, 18-26. (DOI:10.1007/s00265-004-0905-3). - 52. Goldstein, J. S., Butler, M. J. 2009 Behavioral enhancement of onshore transport by postlarval Caribbean spiny lobster (*Panulirus argus*). *Limnol. Oceanogr.* **54**, 1669-1678. (DOI:10.4319/lo.2009.54.5.1669). - 53. Koehl, M. A. R. 2006 The fluid mechanics of arthropod sniffing in turbulent odor plumes. *Chem. Senses* **31**, 93-105. (DOI:10.1093/chemse/bjj009). - 54. Weissburg, M. J., Zimmerfaust, R. K. 1993 Life and death in moving fluids hydrodynamic effects on chemosensory-mediated predation. *Ecology* **74**, 1428-1443. (DOI:10.2307/1940072). - 55. Johannesen, A., Dunn, A. M., Morrell, L. J. 2017 Disturbed flow in an aquatic environment may create a sensory refuge for aggregated prey. *Peerj* 5. (DOI:10.7717/peerj.3121). - 56. Haldane, J. B. S. 1954 La signalisation animale. Ann. Biol. 58, 89-98. - 57. Yao, M., Rosenfeld, J., Attridge, S., Sidhu, S., Aksenov, V., Rollo, C. D. 2009 The ancient chemistry of avoiding risks of predation and disease. *Evol. Biol.* 36, 267-281. (DOI:10.1007/s11692-009-9069-4). - 58. Anderson, J. R., Behringer, D. C. 2013 Spatial dynamics in the social lobster *Panulirus argus* in response to diseased conspecifics. *Mar. Ecol. Prog. Ser.* **474**, 191-200. (DOI:10.3354/meps10091). - 59. Behringer, D. C., Hart, J. E. 2017 Competition with stone crabs drives juvenile spiny lobster abundance and distribution. *Oecologia* **184**, 205-218. (DOI:10.1007/s00442-017-3844-1). - 60. Poulin, R., Marcogliese, D. J., McLaughlin, J. D. 1999 Skin-penetrating parasites and the release of alarm substances in juvenile rainbow trout. *J. Fish Biol.* **55**, 47-53. (DOI:10.1006/jfbi.1999.0970). - 61. Kiesecker, J. M., Skelly, D. K., Beard, K. H., Preisser, E. 1999 Behavioral reduction of infection risk.
Proc. Natl. Acad. Sci. USA **96**, 9165-9168. (DOI:10.1073/pnas.96.16.9165). - 62. Barber, I., Hoare, D., Krause, J. 2000 Effects of parasites on fish behaviour: a review and evolutionary perspective. *Rev. Fish Biol. Fish.* **10**, 131-165. (DOI:10.1023/a:1016658224470). - 63. Karvonen, A. 2012 *Diplostomum spathaceum* and Related Species. In *Fish Parasites: Pathobiology* and *Protection* (eds. P. T. K. Woo & K. Buchmann), pp. 260-269. Oxfordshire, UK, CAB International. - 64. Dianne, L., Perrot-Minnot, M. J., Bauer, A., Gaillard, M., Leger, E., Rigaud, T. 2011 Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. *Evolution* **65**, 2692-2698. (DOI:10.1111/j.1558-5646.2011.01330.x). - 65. Hafer, N., Milinski, M. 2015 When parasites disagree: Evidence for parasite-induced sabotage of host manipulation. *Evolution* **69**, 611-620. (DOI:10.1111/evo.12612). - 66. Gopko, M., Mikheev, V. N., Taskinen, J. 2015 Changes in host behaviour caused by immature larvae of the eye fluke: evidence supporting the predation suppression hypothesis. *Behav. Ecol. Sociobiol.* **69**, 1723-1730. (DOI:10.1007/s00265-015-1984-z). - 67. Combes, C., Fournier, A., Mone, H., Theron, A. 1994 Behaviors in trematode cercariae that enhance parasite transmission patterns and processes. *Parasitology* **109**, S3-S13. (DOI:10.1017/s0031182000085048). - 68. Taylor, C. N., Oseen, K. L., Wassersug, R. J. 2004 On the behavioural response of Rana and Bufo tadpoles to echinostomatoid cercariae: implications to synergistic factors influencing trematode infections in anurans. *Can. J. Zool.* **82**, 701-706. (DOI:10.1139/z04-037). - 69. Daly, E. W., Johnson, P. T. J. 2011 Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. *Oecologia* **165**, 1043-1050. (DOI:10.1007/s00442-010-1778-y). - 70. Koprivnikar, J., Forbes, M. R., Baker, R. L. 2006 On the efficacy of anti-parasite behaviour: a case study of tadpole susceptibility to cercariae of *Echinostoma trivolvis*. *Can. J. Zool.* **84**, 1623-1629. (DOI:10.1139/z06-158). - 71. Rohr, J. R., Swan, A., Raffel, T. R., Hudson, P. J. 2009 Parasites, info-disruption, and the ecology of fear. *Oecologia* **159**, 447-454. (DOI:10.1007/s00442-008-1208-6). - 72. Marino, J. A., Werner, E. E. 2013 Synergistic effects of predators and trematode parasites on larval green frog (*Rana clamitans*) survival. *Ecology* **94**, 2697-2708. (DOI:10.1890/13-0396.1). - 73. Koprivnikar, J., Penalva, L. 2015 Lesser of two evils? Foraging choices in response to threats of predation and parasitism. *PLoS One* **10**. (DOI:10.1371/journal.pone.0116569). - Koprivnikar, J., Redfern, J. C., Mazier, H. L. 2014 Variation in anti-parasite behaviour and infection among larval amphibian species. *Oecologia* 174, 1179-1185. (DOI:10.1007/s00442-013-2857-7). - 75. Preston, D. L., Boland, C. E., Hoverman, J. T., Johnson, P. T. J. 2014 Natural enemy ecology: comparing the effects of predation risk, infection risk and disease on host behaviour. *Funct. Ecol.* **28**, 1472-1481. (DOI:10.1111/1365-2435.12293). - 76. Marino, J. A. 2016 Interspecific variation in larval anuran anti-parasite behavior: a test of the adaptive plasticity hypothesis. *Evol. Ecol.* **30**, 635-648. (DOI:10.1007/s10682-016-9831-x). - 77. James, C. T., Noyes, K. J., Stumbo, A. D., Wisenden, B. D., Goater, C. P. 2008 Cost of exposure to trematode cercariae and learned recognition and avoidance of parasitism risk by fathead minnows *Pimephales promelas*. *J. Fish Biol.* **73**, 2238-2248. (DOI:10.1111/j.1095-8649.2008.02052.x). - 78. Shaw, D. J., Dobson, A. P. 1995 Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review. *Parasitology* **111**, S111-S133. - 79. Jokela, J., Lively, C. M. 1995 Spatial variation in infection by digenetic trematodes in a population of fresh-water snails (*Potamopyrgus antipodarum*). *Oecologia* **103**, 509-517. (DOI:10.1007/bf00328690). - 80. Byers, J. E., Blakeslee, A. M. H., Linder, E., Cooper, A. B., Maguire, T. J. 2008 Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. *Ecology* **89**, 439-451. (DOI:10.1890/06-1036.1). - 81. Faltýnková, A., Valtonen, E. T., Karvonen, A. 2008 Spatial and temporal structure of the trematode component community in *Valvata macrostoma* (Gastropoda, Prosobranchia). *Parasitology* **135**, 1691-1699. (DOI:10.1017/s0031182008005027). - 82. Karvonen, A., Paukku, S., Valtonen, E. T., Hudson, P. J. 2003 Transmission, infectivity and survival of *Diplostomum spathaceum* cercariae. *Parasitology* **127**, 217-224. (DOI:10.1017/s0031182003003561). - 83. Combes, C. 2001 *Parasitism: The Ecology and Evolution of Intimate Interactions*. Chicago, The University of Chicago Press. - 84. Moore, J. 2002 Parasites and the Behavior of Animals. New York, Oxford University Press. - 85. Poulin, R., Fitzgerald, G. J. 1989 Risk of parasitism and microhabitat selection in juvenile sticklebacks. *Can. J. Zool.* **67**, 14-18. - 86. Altizer, S., Bartel, R., Han, B. A. 2011 Animal migration and infectious disease risk. *Science* **331**, 296-302. (DOI:10.1126/science.1194694). - 87. McKay, A. F., Hoye, B. J. 2016 Are migratory animals superspreaders of infection? *Integr. Comp. Biol.* **56**, 260-267. (DOI:10.1093/icb/icw054). - 88. Folstad, I., Nilssen, A. C., Halvorsen, O., Andersen, J. 1991 Parasite avoidance the cause of post-calving migrations in rangifer. *Can. J. Zool.* **69**, 2423-2429. (DOI:10.1139/z91-340). - 89. Nilssen, A. C., Haugerud, R. E. 1995 Epizootiology of the reindeer nose bot fly, *Cephenemyia trompe* (Modeer) (Diptera, Oestridae), in reindeer, *Rangifer tarandus* (L), in norway. *Can. J. Zool.* **73**, 1024-1036. (DOI:10.1139/z95-123). - 90. Bradley, C. A., Altizer, S. 2005 Parasites hinder monarch butterfly flight: implications for disease spread in migratory hosts. *Ecol. Lett.* **8**, 290-300. (DOI:10.1111/j.1461-0248.2005.00722.x). - 91. Poulin, R., Closs, G. P., Lill, A. W. T., Hicks, A. S., Herrmann, K. K., Kelly, D. W. 2012 Migration as an escape from parasitism in New Zealand galaxiid fishes. *Oecologia* **169**, 955-963. (DOI:10.1007/s00442-012-2251-x). - 92. Lafferty, K. D. 1992 Foraging on prey that are modified by parasites. Am. Nat. 140, 854-867. - 93. Fenton, A., Magoolagan, L., Kennedy, Z., Spencer, K. A. 2011 Parasite-induced warning coloration: a novel form of host manipulation. *Anim. Behav.* 81, 417-422. (DOI:10.1016/j.anbehav.2010.11.010). - 94. Jones, R. S., Fenton, A., Speed, M. P. 2016 "Parasite-induced aposematism" protects entomopathogenic nematode parasites against invertebrate enemies. *Behav. Ecol.* 27, 645-651. (DOI:10.1093/beheco/arv202). - 95. Lafferty, K. D. 1999 The evolution of trophic transmission. *Parasitol. Today* **15**, 111-115. (DOI:10.1016/s0169-4758(99)01397-6). - 96. Polis, G. A. 1981 The evolution and dynamics of intraspecific predation. *Annu. Rev. Ecol. Syst.* **12**, 225-251. (DOI:10.1146/annurev.es.12.110181.001301). - 97. Claessen, D., de Roos, A. M., Persson, L. 2004 Population dynamic theory of size-dependent cannibalism. *Proc. R. Soc. B* **271**, 333-340. (DOI:10.1098/rspb.2003.2555). - 98. Bunke, M., Alexander, M. E., Dick, J. T. A., Hatcher, M. J., Paterson, R., Dunn, A. M. 2015 Eaten alive: cannibalism is enhanced by parasites. *R. Soc. Open Sci.* **2**. (DOI:10.1098/rsos.140369). - 99. Rudolf, V. H. W., Antonovics, J. 2007 Disease transmission by cannibalism: rare event or common occurrence? *Proc. R. Soc. B* **274**, 1205-1210. (DOI:10.1098/rspb.2006.0449). - 100. Bolker, B. M., De Castro, F., Storfer, A., Mech, S., Harvey, E., Collin, J. P. 2008 Disease as a selective force precluding widespread cannibalism: a case study of an iridovirus of tiger salamanders, *Ambystoma tigrinum. Evol. Ecol. Res.* **10**, 105-128. - 101. Ward, A. J. W., Duff, A. J., Krause, J., Barber, I. 2005 Shoaling behaviour of sticklebacks infected with the microsporidian parasite, *Glugea anomala. Environ. Biol. Fishes* 72, 155-160. (DOI:10.1007/s10641-004-9078-1). - 102. Krause, J., Ruxton, G. D., Godin, J. G. J. 1999 Distribution of *Crassiphiala bulboglossa*, a parasitic worm, in shoaling fish. *J. Anim. Ecol.* **68**, 27-33. (DOI:10.1046/j.1365-2656.1999.00262.x). - 103. Barber, I., Scharsack, J. P. 2010 The three-spined stickleback-*Schistocephalus solidus* system: an experimental model for investigating host-parasite interactions in fish. *Parasitology* **137**, 411-424. (DOI:10.1017/s0031182009991466). - 104. Milinski, M., Bakker, T. C. M. 1990 Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. *Nature* **344**, 330-332. - 105. Lopez, S. 1998 Acquired resistance affects male sexual display and female choice in guppies. Proc. R. Soc. Lond. B 265, 717-723. - 106. Dunn, A. M., Andrews, T., Ingrey, H., Riley, J., Wedell, N. 2006 Strategic sperm allocation under parasitic sex-ratio distortion. *Biol. Lett.* **2**, 78-80. (DOI:10.1098/rsbl.2005.0402). - 107. Arundell, K. L., Wedell, N., Dunn, A. M. 2014 The impact of predation risk and of parasitic infection on parental care in brooding crustaceans. *Anim. Behav.* **96**, 97-105. (DOI:10.1016/j.anbehav.2014.08.002). - 108. Rigaud, T., Moreau, M. 2004 A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion in a terrestrial isopod. *Proc. R. Soc. B* **271**, 1941-1946. (DOI:10.1098/rspb.2004.2804). - 109. Mooring, M. S., Hart, B. L. 1992 Animal grouping for protection from parasites selfish herd and encounter-dilution effects. *Behaviour* **123**, 173-193. (DOI:10.1163/156853992x00011). - 110. Poulin, R., Fitzgerald, G. J. 1989 Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (*Gasterosteus* spp). *Behav. Ecol. Sociobiol.* **24**, 251-255.
(DOI:10.1007/bf00295205). - 111. Stumbo, A. D., James, C. T., Goater, C. P., Wisenden, B. D. 2012 Shoaling as an antiparasite defence in minnows (*Pimephales promelas*) exposed to trematode cercariae. *J. Anim. Ecol.* **81**, 1319-1326. (DOI:10.1111/j.1365-2656.2012.02012.x). - 112. Mikheev, V. N., Pasternak, A. F., Taskinen, J., Valtonen, T. E. 2013 Grouping facilitates avoidance of parasites by fish. *Parasit. Vectors* **6**. (DOI:10.1186/1756-3305-6-301). - 113. Zhang, Y., Lu, H., Bargmann, C. I. 2005 Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. *Nature* **438**, 179-184. (DOI:10.1038/nature04216). - 114. Babin, A., Kolly, S., Schneider, F., Dolivo, V., Zini, M., Kawecki, T. J. 2014 Fruit flies learn to avoid odours associated with virulent infection. *Biol. Lett.* **10**. (DOI:10.1098/rsbl.2014.0048). - 115. Kavaliers, M., Colwell, D. D., Choleris, E. 2003 Learning to fear and cope with a natural stressor: individually and socially acquired corticosterone and avoidance responses to biting flies. *Horm. Behav.* **43**, 99-107. (DOI:10.1016/s0018-506x(02)00021-1). - 116. Kavaliers, M., Colwell, D. D., Choleris, E. 2005 Kinship, familiarity and social status modulate social learning about "micropredators" (biting flies) in deer mice. *Behav. Ecol. Sociobiol.* **58**, 60-71. (DOI:10.1007/s00265-004-0896-0). - 117. Kelley, J. L., Magurran, A. E. 2006 Learned defences and counterdefences in predator–prey interactions. In *Fish Cognition and Behavior* (eds. G. Brown, K. Laland & J. Krause). Oxford, UK, Blackwell Publishing. - 118. Chivers, D. P., Smith, R. J. F. 1995 Fathead minnows (*Pimephales promelas*) learn to recognize chemical stimuli from high-risk habitats by the presence of alarm substance. *Behav. Ecol.* **6**, 155-158. (DOI:10.1093/beheco/6.2.155). - 119. Mathis, A., Chivers, D. P., Smith, R. J. F. 1996 Cultural transmission of predator recognition in fishes: Intraspecific and interspecific learning. *Anim. Behav.* 51, 185-201. (DOI:10.1006/anbe.1996.0016). - 120. Klemme, I., Karvonen, A. 2016 Learned parasite avoidance is driven by host personality and resistance to infection in a fish-trematode interaction. *Proc. R. Soc. B* **283**. (DOI:10.1098/rspb.2016.1148). - 121. Kortet, R., Hedrick, A. V., Vainikka, A. 2010 Parasitism, predation and the evolution of animal personalities. *Ecol. Lett.* **13**, 1449-1458. (DOI:10.1111/j.1461-0248.2010.01536.x). - 122. Barber, I., Dingemanse, N. J. 2010 Parasitism and the evolutionary ecology of animal personality. *Phil. Trans. R. Soc. B* **365**, 4077-4088. (DOI:10.1098/rstb.2010.0182). - 123. Bryan-Walker, K., Leung, T. L. F., Poulin, R. 2007 Local adaptation of immunity against a trematode parasite in marine amphipod populations. *Mar. Biol.* **152**, 687-695. (DOI:10.1007/s00227-007-0725-x). - 124. Thieltges, D. W., Poulin, R. 2008 Parasites and Pathogens: Avoidance. In *Encyclopedia of Life Sciences (ELS)* (Chichester, John Wiley & Sons, Ltd. - 125. Schulenburg, H., Ewbank, J. J. 2007 The genetics of pathogen avoidance in *Caenorhabditis elegans*. *Mol. Microbiol.* **66**, 563-570. (DOI:10.1111/j.1365-2958.2007.05946.x). - 126. Szuroczki, D., Richardson, J. M. L. 2012 The behavioral response of larval amphibians (Ranidae) to threats from predators and parasites. *PLoS One* **7**. (DOI:10.1371/journal.pone.0049592). - 127. Kato, Y., Shiga, Y., Kobayashi, K., Tokishita, S.-I., Yamagata, H., Iguchi, T., Watanabe, H. 2011 Development of an RNA interference method in the cladoceran crustacean *Daphnia magna*. Dev. Genes Evol. 220, 337-345. (DOI:10.1007/s00427-011-0353-9). - 128. Cerenius, L., Lee, B. L., Soderhall, K. 2008 The proPO-system: pros and cons for its role in invertebrate immunity. *Trends Immunol.* **29**, 263-271. (DOI:10.1016/j.it.2008.02.009). - 129. Destoumieux, D., Munoz, M., Bulet, P., Bachere, E. 2000 Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). *Cell. Mol. Life Sci.* **57**, 1260-1271. (DOI:10.1007/pl00000764). - 130. Travis, J. C., Sanders, B. G. 1972 Whale immunoglobulins .2. Heavy-chain structure. *Comp. Biochem. Physiol.* **43**, 637. (DOI:10.1016/0305-0491(72)90148-4). - 131. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., Gordon, J. I. 2007 The Human Microbiome Project. *Nature* **449**, 804-810. (DOI:10.1038/nature06244). - 132. Round, J. L., Mazmanian, S. K. 2009 The gut microbiota shapes intestinal immune responses during health and disease. *Nat. Rev. Immunol.* **9**, 313-323. (DOI:10.1038/nri2515). - 133. Raffel, T. R., Martin, L. B., Rohr, J. R. 2008 Parasites as predators: unifying natural enemy ecology. *Trends Ecol. Evol.* **23**, 610-618. (DOI:10.1016/j.tree.2008.06.015). - 134. Fritzsche, A., Allan, B. F. 2012 The ecology of fear: Host foraging behavior varies with the spatio-temporal abundance of a dominant ectoparasite. *EcoHealth* **9**, 70-74. (DOI:10.1007/s10393-012-0744-z). - 135. Dudzinski, K. M., Sakai, M., Masaki, K., Kogi, K., Hishii, T., Kurimoto, M. 2003 Behavioural observations of bottlenose dolphins towards two dead conspecifics. *Aquat. Mamm.* **29**, 108-116. (DOI:10.1578/016754203101023951). - 136. Beit-Hallahmi, B. 2012 Fear of the dead, fear of death: is it biological or psychological. *Mortality* **17**, 322-337. (DOI:10.1080/13576275.2012.734986). - 137. Weinstein, S. B., Moura, C. W., Mendez, J. F., Lafferty, K. D. 2018 Fear of feces? Tradeoffs between disease risk and foraging drive animal activity around raccoon latrines. *Oikos*. (DOI:10.1111/oik.04866). - 138. Read, A. F., Taylor, L. H. 2001 The ecology of genetically diverse infections. *Science* **292**, 1099-1102. (DOI:10.1126/science.1059410). - 139. Marcogliese, D. J. 2001 Implications of climate change for parasitism of animals in the aquatic environment. *Can. J. Zool.* **79**, 1331-1352. (DOI:10.1139/cjz-79-8-1331). - 140. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., Samuel, M. D. 2002 Climate warming and disease risks for terrestrial and marine biota. *Science* 296, 2158-2162. - 141. Poulin, R. 2006 Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. *Parasitology* **132**, 143-151. (DOI:10.1017/s0031182005008693). - 142. Karvonen, A., Rintamäki, P., Jokela, J., Valtonen, E. T. 2010 Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int. J. Parasitol. 40, 1483-1488. (DOI:10.1016/j.ijpara.2010.04.015). - 143. van der Wal, R., Irvine, J., Stien, A., Shepherd, N., Albon, S. D. 2000 Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. *Oecologia* **124**, 19-25. (DOI:10.1007/s004420050020). - 144. Schindler, D. W. 2006 Recent advances in the understanding and management of eutrophication. *Limnol. Oceanogr.* **51**, 356-363. - 145. Ficke, A. D., Myrick, C. A., Hansen, L. J. 2007 Potential impacts of global climate change on freshwater fisheries. *Rev. Fish Biol. Fish.* **17**, 581-613. (DOI:10.1007/s11160-007-9059-5). - 146. Esch, G. W., Hazen, T. C., Marcogliese, D. J., Goater, T. M., Crews, A. E. 1986 A long-term study on the population biology of *Crepidostomum cooperi* (Trematoda, Allocreadidae) in the burrowing mayfly, *Hexagenia limbata* (Ephemeroptera). *Am. Midl. Nat.* **116**, 304-314. (DOI:10.2307/2425738). - 147. Marcogliese, D. J., Goater, T. M., Esch, G. W. 1990 *Crepidostomum cooperi* (Allocreadidae) in the burrowing mayfly, *Hexagenia limbata* (Ephemeroptera) related to trophic status of a lake. *Am. Midl. Nat.* **124**, 309-317. (DOI:10.2307/2426180). - 148. Vonlanthen, P., Bittner, D., Hudson, A. G., Young, K. A., Mueller, R., Lundsgaard-Hansen, B., Roy, D., Di Piazza, S., Largiader, C. R., Seehausen, O. 2012 Eutrophication causes speciation reversal in whitefish adaptive radiations. *Nature* **482**, 357-362. (DOI:10.1038/nature10824). - 149. Karvonen, A., Lundsgaard-Hansen, B., Jokela, J., Seehausen, O. 2013 Differentiation in parasitism among ecotypes of whitefish segregating along depth gradients. *Oikos* 122, 122-128. (DOI:10.1111/j.1600-0706.2012.20555.x). - 150. Rintamäki-Kinnunen, P., Valtonen, E. T. 1997 Epizootiology of protozoans in farmed salmonids at northern latitudes. *Int. J. Parasitol.* **27**, 89-99. (DOI:10.1016/s0020-7519(96)00162-2). - 151. Sundberg, L. R., Ketola, T., Laanto, E., Kinnula, H., Bamford, J. K. H., Penttinen, R., Mappes, J. 2016 Intensive aquaculture selects for increased virulence and interference competition in bacteria. *Proc. R. Soc. B* **283**. (DOI:10.1098/rspb.2015.3069). - 152. Hakalahti, T., Valtonen, E. T. 2003 Population structure and recruitment of the ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura) on a fish farm. *Parasitology* **127**, 79-85. (DOI:10.1017/s0031182003003196). - 153. Brown, C., Laland, K. 2001 Social learning and life skills training for hatchery reared fish. *J. Fish Biol.* **59**, 471-493. (DOI:10.1006/jfbi.2001.1689). - 154. Bojko, J., Bacela-Spychalska, K., Stebbing, P. D., Dunn, A. M., Grabowski, M., Rachalewski, M., Stentiford, G. D. 2017 Parasites, pathogens and commensals in the "low-impact" non-native amphipod host *Gammarus roeselii*. *Parasit. Vectors* **10**. (DOI:10.1186/s13071-017-2108-6). - 155. Svoboda, J., Mrugala, A., Kozubikova-Balcarova, E., Petrusek, A. 2017 Hosts and transmission of the crayfish plague pathogen *Aphanomyces astaci*: a review. *J. Fish Dis.* **40**, 127-140. (DOI:10.1111/jfd.12472). - 156. Holway, D. A., Suarez, A. V. 1999 Animal behavior: an essential component of invasion biology. *Trends Ecol. Evol.* **14**, 328-330. (DOI:10.1016/s0169-5347(99)01636-5). - 157. Dunn, A. M., Torchin, M. E., Hatcher, M. J., Kotanen, P. M., Blumenthal, D. M., Byers, J. E., Coon, C. A. C., Frankel, V. M., Holt, R. D., Hufbauer, R. A., et al. 2012 Indirect effects of parasites in invasions. *Funct. Ecol.* 26,
1262-1274. (DOI:10.1111/j.1365-2435.2012.02041.x). - 158. Colautti, R. I., Ricciardi, A., Grigorovich, I. A., MacIsaac, H. J. 2004 Is invasion success explained by the enemy release hypothesis? *Ecol. Lett.* **7**, 721-733. (DOI:10.1111/j.1461-0248.2004.00616.x). - 159. Behringer, D. C., Butler, M. J., Herrnkind, W. F., Hunt, J. H., Acosta, C. A. & Sharp, W. C. 2009 Is seagrass an important nursery habitat for the Caribbean spiny lobster, *Panulirus argus*, in Florida? *New Zeal. J. Mar. Fresh. Res.* **43**, 327-337. - 160. Marx, J. & Herrnkind, W. 1985 Factors regulating microhabitat use by young juvenile spiny lobsters, *Panulirus argus* food and shelter. *J. Crust. Biol.* **5**, 650-657. - 161. Ratchford, S. & Eggleston, D. 2000 Temporal shift in the presence of a chemical cue contributes to a diel shift in sociality. *Anim. Behav.* **59**, 793-799. - 162. Berger, D. & Butler, M. 2001 Octopuses influence den selection by juvenile Caribbean spiny lobster. *Mar. Fresh. Res.* **52**, 1049-1053. - 163. Shields, J. & Behringer, D. 2004 A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys. Dis. Aquat. Org. 59, 109-118. - 164. Moss, J., Behringer, D. C., Shields, J. D., Baeza, J. A., Aguilar-Perera, A., Bush, P. G., Dromer, C., Herrera-Moreno, A., Gittens, L., Matthews, T. R., et al. 2013 Distribution, prevalence, and genetic analysis of Panulirus argus Virus I from the Caribbean Sea. *Dis. Aquat. Org.* 104, 129-140. - 165. Behringer, D. C., Butler, M. J., Shields IV, J. D. & Moss, J. 2011 Review of Panulirus argus Virus 1 (PaV1) a decade after its discovery. *Dis. Aquat. Org.* **94**, 153-160. - 166. Butler, M. J., Behringer, D. C. & Shields, J. D. 2008 Transmission of Panulirus argus virus 1 (PaV1) and its effect on the survival of juvenile Caribbean spiny lobster. *Dis. Aquat. Org.* **79**, 173-182. (DOI:10.3354/dao01899). - 167. Behringer, D. C. & Butler, M. J. 2010 Disease avoidance influences shelter use and predation in Caribbean spiny lobster. *Behav. Ecol. Sociobiol.* **64**, 747-755. (DOI:10.1007/s00265-009-0892-5). - 168. Fritzsche, A., Allan, B. F. 2012 The ecology of fear: host foraging behavior varies with the spatio-temporal abundance of a dominant ectoparasite. *EcoHealth*, **9**, 70-74. - 169. Hart, B. L. 1988 Biological basis of the behaviour of sick animals. Neurosci. Biobehav. Rev. **12**, 123-137 - 170. Hart, B. L., Hart, L. A. 1994 Fly switching by Asian elephants: tool use to control parasites. Anim. Behav. 48, 35-45. - 171. Theis, F. J., Ugelvig, L. V., Marr, C. & Cremer, S. 2015 Opposing effects of allogrooming on disease transmission in ant societies. *Phil. Trans. R. Soc. B* 370.(DOI:10.1098/rstb.2014.0108). - 172. Diez, L., Deneubourg, J.-L. & Detrain, C. 2012 Social prophylaxis through distant corpse removal in ants. *Naturwissenschaften* **99**, 833-842. (DOI:10.1007/s00114-012-0965-6). Box 1: Case study of the Caribbean spiny lobster The Caribbean spiny lobster *Panulirus argus* (Fig. 1) has a complex life history starting with a 5 – 7 month pelagic larval period [52], which connects its Caribbean-wide population [26]. After the larval period, postlarval lobsters are attracted to chemical cues of red algae emanating from its preferred settlement habitat, shallow hard-bottom [52,159]. Early benthic juveniles (< 20 mm CL) are asocial and spend several months hiding and foraging in complex vegetated habitat before going through an ontogenetic shift and emerging from the vegetation as social, crevice dwelling juveniles [160]. At this stage they have developed acute chemosensory abilities which dominate their sensory ecology. They are attracted to chemical cues from healthy conspecifics [161] and the Caribbean king crab *Damithrax spinosissimus*, with which it often shares shelters [59]. Conversely, they avoid chemical cues from the predatory octopus *Octopus briarius* [162], their competitor the stone crab *Menippe mercenaria* [59], and conspecifics infected with the pathogenic virus PaV1 (Panulirus argus Virus 1) [58]. PaV1 was discovered in 2000 infecting juvenile lobsters in the Florida Keys [163], and has since been reported from throughout much of the Caribbean [164]. Prevalence of PaV1 has remained relatively stable in the Florida Keys, where it has been monitored since its discovery [165]. PaV1 is transmitted directly between juvenile lobsters via contact or ingestion of infected tissue [166]. Despite the efficacy of direct transmission in this social species, *P. argus* is able to detect and avoidance shelters containing infected conspecifics before those individuals become infectious [17]. Even following a massive sponge die-off event, which dramatically reduced shelter availability and increased lobster aggregations, chemically-mediated avoidance of infected conspecifics tempered transmission and reduced the likelihood of an epizootic [26]. However, in shelter-limited areas, avoidance of shelters containing infected conspecifics further decreases shelter availability, and in turn, increases the predation risk for both infected and healthy lobsters [58,167]. ## FIGURE CAPTIONS **Figure 1.** Life cycle of the Caribbean spiny lobster *Panulirus argus* and the role of chemosensory mediated attraction in its ecology. Juvenile *P. argus* are social but able to discern attractive chemical cues emanating from shelters containing healthy conspecifics and co-habiting crustaceans (spider crab *Damithrax spinosissimus*), from aversive chemical cues emanating from shelters containing competitors (stone crab *Menippe mercenaria*), predators (octopus *Octopus briarius*), and conspecifics infected with the lethal virus PaV1 (see Box 1 for detailed case study). Spider crab (left) and octopus drawings used with permission from Helen Casey. All other drawings are public domain. Figure 2. Parasite avoidance of fish in the *Diplostomum* system. Trematodes of the genus *Diplostomum* are ubiquitous parasites of freshwater fishes, with species like *D. pseudospathaceum* infecting the eye lenses of fish. An infected first intermediate snail (*Lymnaea stagnalis*) host of the parasite can release tens of thousands of cercaria larvae per day (dense swarm of cercariae can be observed visually in water; top left and right; photos Anssi Karvonen and Anna Faltýnková). In the eye lens, parasites develop to metacercariae, which in high numbers can cause opacity of the lens, reduction in vision and severe fitness consequences to the fish (bottom left, photo Ines Klemme). Fish can recognize the presence of cercariae in water and avoid them by swimming away. The response time to cercarial presence is correlated with the number of infections in the eye lenses (bottom right). Figure reproduced with permission from data in Karvonen *et al.* [12]. **Figure 3.** Graphical representation of sperm investment in the amphipod *Gammarus duebeni*. Parasitized females receive a lower sperm investment from males, relative to those females who are uninfected. Hypothetically, this will lead to an increased chance of uninfected offspring within the population via larger uninfected brood sizes and increased health status, as identified by Dunn *et al.* [106]. Figure 1. Figure 2. Figure 3. Table 1: Aquatic and terrestrial examples of pathogen avoidance behaviour compiled in this review, with select additional examples. The table explores the host, parasite, transmission pathways, avoidance behaviour, avoidance cue, and the effectiveness of this avoidance system for all examples presented. In many cases, some of the information on these behaviours is lacking, and this has been signified with an "Unknown". | | | Host | Parasite | Transmission pathway | Host avoidance behaviour | Avoidance cue | Effectiveness | Reference | |---------------------------|-----------|--|--|--------------------------------------|--|---|---|---| | | lobsters | Panulirus argus | PaV1 (virus) | Horizontal | Avoid social interaction with infected conspecifics, who give of a chemical signal that indicates that they are infected with the virus. | Chemosensory | Highly effective at avoiding the contraction of disease, which is vectored through the water. This system is discussed in high detail in Box 1. | [17] | | nent | amphipods | Gammarus
duebeni (var.
celticus) | Nosema granulosis
(Microsporidia) | Vertical | Reduced sperm allocation. | Unknown | Reduced sperm allocation for infected females is a trade-off between avoiding siring infected young, and procreation. | [106] | | environment | | | Pleistophora mulleri
(Microsporidia) | Vertical/
Horizontal | Avoidance of cannibalism, relative to infected conspecifics. | Unknown | Effectiveness unknown | [98] | | Marine env | | Paracalliope
novizealandiae | Maritrema
novaezealandensis
(Trematode) | Multi-host | Swim away from high densities of parasite cercariae | Visual | Susceptibility to infection, and effectivity of immunological response, can be dependent on prevalence of the parasite in a population, where avoidance behaviour is more common in populations with a high prevalence of the parasite. | [123] | | | fish | Sygnathus
typhle | Cryptocotyle sp.
(Trematode) | Multi-host | Males avoid infected females | Visual | Females with black spots are avoided by males when seeking a mate. The black spots indicate trematode infection in females. The trematode is suspected to effect female fecundity. |
[44] | | water | fish | Oncorhynchus
mykiss | Diplostomum
pseudospathaceum
(Trematode) | Multi-host | Swim away from concentrations of trematode cercariae suspended in the water. Increased grouping. | Tactile, visual | Likely dependent on high densities of trematodes present in the water column to avoid interacting with the cloud of parasite. | [12, 112] | | Freshwater
Environment | | Pimephales | Ornithodiplostomum sp. (Trematode) | Multi-host | Learning: lower activity to avoid infection. | Unknown | When presented with a cue from infective trematodes, the fish initially had little behavioural avoidance response. Over time the fish lowered their activity when provided with the stimuli. | [77] | | | | | promelas | Ornithodiplostomum ptychocheilus and | Multi-host | Increased shoal movement away from parasites. | Visual | Shoaling reduced the contact with high densities of parasite. | | | | | Posthodiplostomum minimum (Trematoda) | | | | | | |-------------------------|------------|---------------------------------------|---|------------------------------|--|-------------------------|--|---------------| | | | Gasterosteus sp. | Argulus sp. (Crustacea) | Horizontal / free-living | Habitat preference and shoaling. Avoidance of conspecifics exhibiting abnormal behaviour. | Visual | Fish select habitat based on the presence or absence of the lice. Increased shoaling of parasitized fish, possibly to increase the chance of grooming. Avoidance of conspecifics with abnormal behaviour. | [16, 85, 110] | | | | | Glugea anomala
(Microsporidia) | Horizontal | Decreased shoaling with infected conspecifics. | Visual | Infected animals have visible lesions and infected tissues, which trigger conspecifics to avoid shoaling with infected animals. | [101] | | | | Galaxias sp. | Trematode | Multi-host | Migratory behaviour results in reduced parasitism | Unknown | Possible side-effect of migration. | [91] | | | | Poecilia
reticulate | Camallanus cotti
(Nematode) or
Gyrodactylus sp.
(Monogenean) | Multi-host /
horizontal | Females select males with lower infection burden. | Visual | Selection is based on male colour and display. | [43] | | | amphibians | Rana sp. | Echinostoma trivolvis
(Trematode) | Multi-host | Move away from large densities of cercariae. | Visual | Effectivity of infection rate can increase within a temperature range, but this does not alter successful avoidance. | [70] | | | | Pseudacris
regill | Ribeiroia and
Echinostoma
(Trematoda) | Multi-host | Impaired behavioural response via anaesthesia. | Unknown | Anaesthetised animals were unable to move, and became 2.8X more likely to become infected by encysting trematodes. Activity behaviour is stated to lower parasite encystment success. | [69] | | | | Anaxyrus
boreas | Ribeiroia ondatrae
(Trematode) | Multi-host | Reduced host activity | Visual | Reduced activity is considered to lower the likelihood of the animal encountering a parasite, or high densities of parasites. Additionally, there is a possibility that the reduction in activity was related to infection, not avoidance. | [75] | | Terrestrial Environment | mammals | Various
mammals | Amblyomma
americanum
(Tick/Arachnid) | Opportunistic | Ectoparasitic, increased probability of subsequent secondary infection, causes irritation to host and reduces in increased host energy expenditure | Visual
avoidance | Visual avoidance of areas with high food content due to the presence of parasites. This is an example of the parasite-aspredator avoidance theory. | [168] | | | | Rangifer
tarandus
platyrhynchus | Faecal patches containing infectious agents. | Horizontal/Op
portunistic | Avoidance of foraging areas with high amounts of faeces results in the avoidance of infection. | Visual,
Chemosensory | Avoidance of areas with high amounts of faeces reduced the likelihood of contracting disease, but could result in a lack of quality grazing. This could have impacts on the nutritional related health of the deer. | [143] | | | Equus sp. | Avoidance of biting flies | Opportunistic pest | Move to areas with low fly concentration and group to further dilute the impact of the pests | Visual | Avoidance dilutes the impact of the flies on the horses, resulting in loss of less blood and avoids contracting parasites from the biting flies. | [169] | |-----------|-------------------------------|--------------------------------------|------------------------------|--|--|---|-------| | | Elephas
maxiumus | Avoidance of biting flies | Opportunistic pest | Use of a branch as a fly switch to prevent flies from landing and biting. | Movement
reaction to batt
away flies.
Touch sensitive
and visual
assumed. | The use of the branch tool to swat away flies means that the animal loses less blood and maintains fitness and avoids contracting parasites from the biting flies. | [170] | | | Mus Musculus | Various | Various | Use of urine cues to avoid mating and co-habiting with infected conspecifics. | Chemosensory | Being able to detect infected conspecifics via their urine allows the mouse to avoid a range of diseases. | [35] | | sp | Vireo gilvus | Parasitic birds | Specialised | Use of visual cues to eject the eggs of parasitic birds. | Visual | By being able to detect when parasitic birds have laid eggs in their nests, the warbling vireo avoids brooding eggs from the brown-headed cowbird <i>Molothrus ater</i> . | [33] | | birds | Agelaioides
badius | Parasitic birds | Specialised | Use of auditory cues to eject the eggs of parasitic birds. | Auditory | By being able to detect when parasitic birds hatch in their nests, the Baywing avoids feeding chicks from the brown-headed cowbird <i>Molothrus ater</i> . | [37] | | | Social insect species | General entomopathogens | Horizontal/op
portunistic | Allogrooming | Unknown | Allogrooming prevents parasite burden from reaching mortality-inducing levels. | [171] | | insects | Formicoidea | General entomopathogens | Horizontal/op
portunistic | Corpse removal from the nest | Unknown | Removal of decaying conspecifics decreases the growth and spread of entomopathogenic disease. | [172] | | sui | Zootermopsis
angusticollis | Entomopathogenic funus | Horizontal | Vibrations from infected conspecifics trigger responses from unexposed conspecifics. | Warning
behaviour from
infected
conspecifics | Infected conspecifics vibrate to alert uninfected co-habitants of their infection status. This results in their removal and avoidance of disease. | | | spodosi | Armadillidium
vulgare | Wolbachia sp.
(Bacteria) | Vertical | Reduced sperm investment from male to infected females. | Unknown | Effective in avoiding females with decreased fertility due to infection. | [108] | | es | Caenorhabditis
elegans | Bacillus megaterium (Bacteria) | Potential opportunist | Avoid consumption of the bacteria. | Unknown | Effective at avoiding this species as low food quality. Potential pathogen. | | | nematodes | | Bacillus thuringiensis
(Bacteria) | Opportunistic | Immunological and stress response result in a behavioural response to physically evade the pathogen. | Chemosensory | Immunological and stress response, alongside behavioural response, seem to be co-evolved and effective at avoiding this bacterial species by moving away from high densities of bacteria. | [125] | | | | Microbacterium
nematophilum
(Bacteria) | Opportunistic | Defensive tail-swelling response in the host, and aversive behaviour. | Chemosensory | Movement away from a lawn of bacteria reduces likelihood of infection. | | |--|--|--|---------------|---|--------------|---|--| | | | Photorhabdus
luminescens
(Bacteria) | Opportunistic | Physical escape and reduced the ingestion of pathogenic bacteria | Chemosensory | Capable of distinguishing between infective strains and avirulent strains to consume as food. | | | | | Serratia marcescens
(Bacteria) | Opportunistic | Movement away from the bacterium. | Chemosensory | Avoidance is dependent on the expression of cyclic lipodepsipentapeptide serrawettin W2 (secreted surfactant) by the bacteria and the correct functioning of the AWB neurons of <i>C. elegans</i> . | | | | | Pseudomonas aeruginosa (Bacteria) | Opportunistic | Learning of avoidance to virulent and avirulent strains. | Chemosensory | This behaviour is adaptable, and allows the animal to learn whether to avoid or tolerate the presence of bacteria. | |