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Abstract

Markov chain Monte Carlo (MCMC) is an approach to parameter inference in
Bayesian models that is based on computing ergodic averages formed from a Markov
chain targeting the Bayesian posterior probability. We consider the efficient use of
an approximation within the Markov chain, with subsequent importance sampling
(IS) correction of the Markov chain inexact output, leading to asymptotically ex-
act inference. We detail convergence and central limit theorems for the resulting
MCMC-IS estimators. We also consider the case where the approximate Markov
chain is pseudo-marginal, requiring unbiased estimators for its approximate mar-
ginal target. Convergence results with asymptotic variance formulae are shown for
this case, and for the case where the IS weights based on unbiased estimators are
only calculated for distinct output samples of the so-called ‘jump’ chain, which, with
a suitable reweighting, allows for improved efficiency. As the IS type weights may
assume negative values, extended classes of unbiased estimators may be used for the
IS type correction, such as those obtained from randomised multilevel Monte Carlo.
Using Euler approximations and coupling of particle filters, we apply the resulting
estimator using randomised weights to the problem of parameter inference for par-
tially observed Itô diffusions. Convergence of the estimator is verified to hold under
regularity assumptions which do not require that the diffusion can be simulated ex-
actly. In the context of approximate Bayesian computation (ABC), we suggest an
adaptive MCMC approach to deal with the selection of a suitably large tolerance,
with IS correction possible to finer tolerance, and with provided approximate con-
fidence intervals. A prominent question is the efficiency of MCMC-IS compared to
standard direct MCMC, such as pseudo-marginal, delayed acceptance, and ABC-
MCMC. We provide a comparison criterion which generalises the covariance ordering
to the IS setting. We give an asymptotic variance bound relating MCMC-IS with
the latter chains, as long as the ratio of the true likelihood to the approximate like-
lihood is bounded. We also perform various experiments in the state space model
and ABC context, which confirm the validity and competitiveness of the suggested
MCMC-IS estimators in practice.
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Foreword

The modern reliance on probability theory to model the universe and various as-
pects of life reveals on the one hand our tremendous lack of knowledge and ability
to understand and hence predict the workings of the universe with Newtonian preci-
sion. On the other hand, the success of probability theory reveals the hidden order of
the universe, as well as the significant deductive reasoning capacities of humankind,
where from the disorder of incomplete knowledge arises the order of probabilistic
laws. Statistics allows us to ascertain to what extent our deductive reasoning is
justified by real observation. Statistics acts as the intermediary, allowing dialogue
to proceed between our perceived knowledge of the (mechanistic and probabilistic)
laws of the universe and of the universe as she presents herself to us in actual fact.

Of utmost importance for the development of statistics has been the increas-
ing computational ability in the computer age [cf. 30]. As the speed of computers
increases, so does the potential complexity of problems increase which statistical
methods can handle with precision. Considerable interest therefore lies in the de-
velopment of computational methods which are efficient and able to perform the
demanding computational tasks of modern statistics. It is the scientific and human-
istic hope for this thesis, that the work will serve to the advancement of human
knowledge, and that it will be solely useful to the commendable pursuits of hu-
mankind.

As the fields of probability and statistics are intellectually challenging, any small
progress in this field is dependent upon a stable, friendly, and stimulating working
and living environment. First of all, I would like to thank Dr. Matti Vihola, for
being a wonderful adviser, scientist, and person. In the beginning, I knew very
little about computational statistics and Monte Carlo methods, but due greatly to
Matti’s tremendous help and patience, my knowledge and skills in mathematics and
statistics has grown considerably. This thesis would not have been possible without
his help. The enclosed introductory text has also benefited greatly from his insightful
remarks. As his first sole doctoral student, I have one of the early claims to be able
to call him mathematico-statistical father.

As for a stable, friendly, and stimulating working and living environment, I would
like to thank the University of Jyväskylä and its employees, for being able to pursue
my doctoral studies here. The last three years have been enjoyable as a place to work,
study, and live. Financial support is gratefully acknowledged from the Academy of
Finland (‘Exact approximate Monte Carlo methods for complex Bayesian inference,’
grants 284513 and 312605, PI: Dr. Matti Vihola).

Sincere thanks to the reviewers, Prof. Marko Laine (Finnish Meteorological Insti-
tute) and Prof. Krzysztof  Latuszyński (University of Warwick).

There are many other individual persons whom I should thank for being a help
these last few years. As I drew up an account of all the people whom I would like
to thank, it became ever-expanding, touching every aspect and time of my life. I
simply could not do proper justice to those who have helped me, and I would run
the danger of leaving somebody unintentionally out. I therefore would simply like
to thank the many precious people who have been a positive impact on me, without
going into all the details here. They and there deeds are simply too many to be
entrusted to these few pages.

I think the saying is true, and hope it is true: when someone has stayed somewhere
long enough, the place becomes forever a part of the person. I wish to thank the
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many people in Jyväskylä whom I have enjoyed getting to know during these last
few years. Language has not always been an insurmountable barrier. I will miss
you, and I will miss Jyväskylä—the snow, the sauna, the summer, the lakes, the
festivals, the food, the people—all of which make Finland a special place to live.

I mention regards to the researchers everywhere with whom I have had the priv-
ilege to meet. Statistics, like other scientific disciplines such as pure mathematics,
involves many devotees interested in a common subject with undesirable distrac-
tions kept to a minimum. When immersed in a scientific subject, where validity is
judged by logic and observation rather than might or necessity, when one is able
to escape the day-to-day absorption of the human condition, then one is able to
view the world from a new perspective. One sees like the astronaut, for whom, after
seeing the Earth as the single terrestrial mass, life will never be the same.

Jordan Franks
Jyväskylä, Finland
April 4, 2019
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1. Introduction

Bayesian inference often requires the use of computational simulation methods
known as Monte Carlo methods. Monte Carlo methods use probabilistic sampling
mechanisms and ensemble averages to estimate expectations, such as those taken
with respect to the posterior probability of a Bayesian model. Therefore, in practice
on a computer, Monte Carlo methods can be computationally intensive.

A further inferential challenge arises when the likelihood function of the Bayesian
model is intractable. In some important settings, it is possible to obtain an unbiased
estimator for the likelihood. One such setting is the state space model, where
sequential Monte Carlo supplies the unbiased estimator. In settings where unbiased
estimators are not possible, approximate Bayesian computation (ABC) may be used,
assuming forward generation of the model is possible and a choice of tolerance size
has been made. Though only an approximation to the original Bayesian model, the
ABC model comes equipped with a straightforward unbiased estimator for its ABC
likelihood.

In these two example settings, a Markov chain can be run, allowing for Markov
dependence in the samples, as well as the use of the unbiased estimators for the
(ABC) likelihood as part of a pseudo-marginal algorithm. As a result, the samples
of the Markov chain are drawn asymptotically from the (ABC) posterior, and infer-
ence is based on averaging the samples obtained. This computational approach to
Bayesian inference is known as Markov chain Monte Carlo (MCMC).

This thesis is concerned with a slightly different approach, namely, where the
Markov chain targets an approximate marginal of the (ABC) posterior. The subse-
quent importance sampling (IS) type correction is performed by a reweighting of the
inexact sample output, using the unbiased estimators, which yields asymptotically
exact inference for the (ABC) posterior. The use of an approximation for the Markov
chain target can be computationally efficient, as can be the parallel calculation of
the IS weights on a parallel computer. Some of the resulting MCMC-IS estimators
are well-known, but in practice have been used only rarely, in comparison to direct
MCMC. In addition, the MCMC-IS approach is shown to offer additional flexibility
compared to direct MCMC.

The rest of this Section 1 is laid out as follows. We present some important
notions, such as that of a statistical model, likelihood function, and Bayesian model.
We briefly describe the general goal of (likelihood-based) parameter inference in
statistics, as well as some of the challenges of computation which the thesis seeks
to address, specifically inference aided by use of an approximation. Section 1.5
concludes with an outline of the remainder of the text.

1.1. Likelihoods. A statistical model (Y,Y ,P) is composed of an observational
space Y, together with its σ-algebra of subsets Y , and a set P of probability distri-
butions on Y [cf. 34]. We assume the family P is parametrised by a vector of model
parameters θ ∈ T, with T ⊂ Rnθ for some nθ ≥ 1. That is,

P = {p(θ)}θ∈T,

where p(θ)(dy) is a probability on Y, sometimes called the data distribution. The
probability p(θ) corresponds to a modeling of the dependency relationship of the
observation y, considered as a random variable, on the model parameter θ.
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We assume for simplicity in this introduction that p(θ)(dy) has a density, also
denoted p(θ)(y), with respect to a σ-finite reference measure on Y. Fixing the obser-
vation y ∈ Y, we define the function

L(θ) := p(θ)(y),

which is known as the likelihood. One type of likelihood-based inference for θ is
to answer which values of θ maximise L(θ). This method of inference is known as
maximum likelihood estimation (MLE) in a statistical model with observation [cf.
14]. In other words, MLE seeks to answer, which probability distribution on Y in
P would most readily give rise to the observation.

1.2. Bayesian inference. In practice, MLE is highly dependent on the candidate
set P of probabilities to consider. The set P could be parametrised by arbitrarily
high dimensions of parameters, and is the result of the statistician’s modeling of the
dependence of the observation y on the model parameter θ. Going further, in light
of this arbitrary construction of the set P, the statistician is arguably1 not out of
bounds to specify which θ values are to be considered more probable and with more
weight, based on prior knowledge or hypothesis.

This specification, for a statistical model with known observation, leads to the
Bayesian model [cf. 33]. The Bayesian model consists of an assignment of a prior
probability pr(dθ) to the model parameters, with density also denoted pr(θ). Infer-
ence for the Bayesian model then consists of quantification of the posterior proba-
bility

π(θ) := p(θ|y) =
L(θ)pr(θ)

p(y)
, (1)

where the last equality, giving the posterior in terms of the likelihood and prior, is
the practically useful formula of Bayes, and p(y) is the model evidence, defined by

p(y) :=

∫
L(θ)pr(θ)dθ.

1.3. Challenges for inference. In statistical models of practical interest, the like-
lihood L(θ) is often intractable, meaning that it can not be evaluated pointwise.
However, in many settings which we consider, we will see that L(θ) can be esti-

mated unbiasedly, meaning it is possible to generate a random variable L̂θ such that
E[L̂θ] = L(θ). However, construction of a reliable unbiased estimator may be neither
directly available, nor efficient.

The posterior π(θ) of the Bayesian model is in general intractable, and can not
even be estimated unbiasedly. This is often the case even if the likelihood is tractable,
because of the normalisation by the model evidence in (1), which is usually com-
putationally intensive to calculate. In case of intractable likelihood in the Bayesian
model, posterior inference is even more of a challenge, and one must usually rely
on ergodic averages from Markov chain Monte Carlo (MCMC). Such averages are
generally asymptotically exact (i.e. consistent) as the number of iterations of the
MCMC algorithm increases, in the sense of a law of large numbers. However, MCMC
can be computationally expensive to run. It can take hours, days, weeks, or longer,
in order to ensure a ‘reliable’ MCMC estimate, where the level of reliability can be
theoretically difficult to justify.

1The frequentist approach differs from the Bayesian approach considered here [cf. 30].
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1.4. Approximate families. We will see that the use of approximations can help
facilitate tractable, efficient and user-friendly inference. Let P∞ denote a set of
(ideal) model probability distributions on Y. In many cases in practice, it may be
desirable to work with a surrogate family of probability distributions P0. Going
further, it may be desirable to work with a family

P` = {p(θ,`)}θ∈T,
of data (probability) distributions, with ` ∈ [0,∞] used to indicate families of in-
creasingly ‘better’ approximations. For example, inference using P∞ may be too
difficult to achieve or too costly, in which case using an approximate family P` may
be possible instead.

It is conceivably possible to incorporate P` in a Bayesian inference method, which
may lessen the computational cost of the algorithm, while in the end performing
inference for P∞. The aim of this thesis is to show general strategies in different
settings where this is possible.

1.5. Overview. We now outline the remainder of this text2. The text seeks to serve
as an introduction and summary for the thesis papers listed on page vi. Method-
ological aspects are stressed for this introduction to the articles, as are some of the
supporting theoretical results. Most of the details are left to the articles. For this
introductory text, we do not give algorithms and results in full generality and for
all cases. Rather we focus on a few important cases. For example, we consider only
a few specific Markov chains, rather than general Harris ergodic chains for the IS
correction, and we focus on the use of unbiased estimators from particle filters3 in
state space models, rather than from general importance sampling distributions in
latent variable models. Some more generality is provided in the original articles
listed on page vi.

We begin in Section 2 with a specific problem of intractable likelihoods for sta-
tistical models, namely, that of the state space model, and review how interacting
particle systems known as particle filters [44, 94] can lead to unbiased estimators of
the∞-likelihood (the likelihood corresponding to the family P∞), as long as the dy-
namics of the state space model can be simulated. We also detail an MCMC known
as the particle marginal Metropolis-Hastings (PMMH) [1] (see also [5, 9, 59, 69]),
which allows for ∞-inference for the corresponding Bayesian model posterior, when
unbiased ∞-likelihood estimators are available.

In Section 3, as in [A] we consider two different MCMCs, which are intended for
acceleration of PMMH, and which are based on use of an approximate family P0

and unbiased estimators for the ∞-likelihood. These are the delayed acceptance
(DA) MCMC [cf. 59, 8, 16, 17, 41, 61] and the MCMC-IS [cf. 24, 37, 38, 48, 73, A],
both of which allow for unbiased estimators of the 0-likelihood and ∞-likelihood,
which can be useful when deterministic approximations are not available4. Based
on an extension of the covariance ordering [67] to the IS setting, with differing

2As for the intended audience, in order to keep the text of moderate size we must suppose some
notions from analysis [cf. 80], probability [cf. 34], simulation [cf. 61], and statistics [cf. 33]. We try
to strike a balance, to make the text of interest both to those knowledgeable and less knowledgeable
in the subject matter of the thesis.

3also known as sequential Monte Carlo
4The references [41] for DA and [A] for MCMC-IS are most relevant in the unbiased estimator

context for intractable likelihoods.
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reversible stationary probabilities and with unbiased estimators, we seek to compare
the algorithms in terms of statistical efficiency, as in [B].

Section 4 is concerned with a discretely and partially observed Itô diffusion, where
unbiased ∞-likelihood estimates can not be directly obtained by the particle filter,
because the dynamics of the diffusion can not be simulated. Instead, approximate
families P` based on Euler approximation [cf. 56] are used, along with multilevel
[49, 36], randomisation [64, 77] and particle filter coupling [53] techniques, leading
to an unbiased estimator for the ∞-likelihood and to the Bayesian ∞-posterior by
using an MCMC-IS with randomised weights, as in [C].

Section 5 is concerned with Bayesian models with intractable likelihoods, where
an unbiased estimator of the likelihood is not readily available, but where it is
at least possible to generate artificial observations from p(θ)(dy′). The approach of
approximate Bayesian computation [cf. 92] is to use families P1/ε of approximations
to P∞, where P1/ε is indexed by ε > 0, the ‘tolerance,’ which is difficult to choose.
We detail an approach based on an adaptive MCMC, as well as MCMC-IS [98], with
approximate confidence intervals for post-correction to finer tolerance, as in [D].

We close with a brief discussion of ideas for future work in Section 6 and provide
expanded individual summaries for the thesis papers in Section 7.

2. Bayesian inference for state space models on path space

We introduce a well-known class of models based on latent variables on a state
space (X,X ) and conditionally independent observations on (Y,Y) which is suffi-
ciently general and motivates a main application area of Articles [A], [B] and [C]
based on unbiased estimators and approximate families P`.

2.1. Discretely-observed continuous-time path-dependent process. To mo-
tivate this general class of models, we consider an example of continuous-time latent
process. Suppose there is a process (X ′t)t≥0 of latent or hidden states X ′t ∈ X, where
X ′t depends on (X ′s)0≤s<t and the model parameter θ. Also, suppose (Y ′t )t≥0 is an-
other process (of observations), where Y ′t depends on (X ′s)0≤s≤t and θ. We make the
realistic assumption5 that only finitely many observations {Y ′tp}np=0 are gathered at

observation times {tp}np=0.
Let us set Yp := Y ′tp and Xp := X ′tp . Let us define X0:p := (X0, . . . , Xp), and

for fixed parameter value θ, consider the following dependency structure involving
conditionally independent observations:

· · · X0:p−1 X0:p X0:p+1 · · ·

Yp−1 Yp Yp+1

Here, the arrows denote a dependency relationship, described in the following, where

the initial state X0 ∼ η
(θ)
0 is drawn from an initial distribution η

(θ)
0 . The dynamics

between states (on path space) X0:p−1 and X0:p is defined by a Markov probability

kernel M̄
(θ,∞)
p (on path space), where

M̄ (θ,∞)
p (x0:p−1, dx

′
0:p) := 1

{
x′0:p−1 = x0:p−1

}
M (θ,∞)

p (x0:p−1, dx
′
p),

5since the continuum can not easily be recorded by electronic or other physical means
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where M
(θ,∞)
p is a Markov probability kernel from Xp to X induced by the dynamics

of the path-dependent continuous-time process. The observations Yp are obtained

via Yp ∼ g
(θ)
p ( · |X0:p), where g

(θ)
p is the observational density.

Let us set as shorthand M
(θ,∞)
0 (x0:−1, dx0) := η0(dx0) and

G(θ)
p (x0:p) := g(θ)

p (yp|x0:p).

The model described above in terms of the pair (M
(θ,∞)
p , G

(θ)
p )np=0 is known as a

path-dependent state space model (SSM)6, or, more succinctly, as a Feynman-Kac
model [cf. 18].

Simulation methods for the∞-Feynman-Kac model are impossible if the dynamics

M
(θ,`)
p can not be simulated exactly. Besides some (important) exceptions, this is in

general the case for continuous-time latent processes [cf. 19, Sect. 1.3]. However, we
will see when we consider Itô diffusions in Section 4, that often one can obtain Euler
type approximations of the original process, with precision denoted ‘`’, leading to

approximate dynamics M
(θ,`)
p between observation times [cf. 19, 56]. Using the same

observational densities as for the exact model, we obtain a Feynman-Kac model

(M
(θ,`)
p , G

(θ)
p )np=0 derived from the Euler type approximation of the dynamics.

2.2. Model probabilities. We now describe some of the probabilities associated

to a Feynman-Kac model (M
(θ,`)
p , G

(θ)
p )np=0.

First, we define a bit of standard notation from analysis. If µ is a probability
measure and s ≥ 1, we denote by Ls(µ) the Banach space of real-valued functions
φ, modulo equivalence in norm, with finite norm

µ(|φ|s) 1
s <∞, where µ(φ) :=

∫
φ(x)µ(dx). (2)

Consider now the conditional `-model probability on the latents, or `-smoother,

p(θ,`)(dx0:n) =
p

(θ,`)
u (dx0:n)

p
(θ,`)
u (1)

, (3)

where7

p(θ,`)
u (dx0:n) =

( n∏

p=0

G(θ)
p (x0:p)

)
η

(θ)
0 (dx0)

n∏

p=1

M (θ,`)
p (x0:p−1, dxp). (4)

Then p(θ,`) represents the probability to observe the latent states given the observa-

tions according to the Feynman-Kac model (M
(θ,`)
p , G

(θ)
p )np=0. In terms of a statistical

model8 on Xn+1, we have P` = {p(θ,`)}θ∈T with p(θ,`)(dx0:n) defined in (3), for the
Feynman-Kac model.

The joint `-posterior probability for the Bayesian model over model parameters
and latent states is then

π(`)(dθ, dx0:n) ∝ pr(dθ)p(θ,`)
u (dx0:n). (5)

6As SSM is also known as a hidden Markov model [cf. 14], especially in the engineering
disciplines.

7In the notation p
(θ,`)
u (1), we view 1 as the function x0:n 7→ 1, and the integral p

(θ,`)
u (φ) =∫

φ(x0:n)p
(θ,`)
u (dx0:n) as in (2) for φ : Xn+1 → R.

8really on (X × Y,X ⊗ Y), but we view y0:n ∈ Yn+1 as fixed and therefore disregarded in the
notation



6 JORDAN FRANKS

Writing the marginal `-likelihood as L(`)(θ) := p
(θ,`)
u (1) and considering the marginal

`-posterior on θ, we obtain a more familiar formula to (1) given in the beginning in
Section 1.2, namely,

π(`)
m (dθ) =

∫

Xn+1

π(`)(dθ, dx0:n) =
pr(dθ)L(`)(θ)∫
pr(dθ)L(`)(θ)

.

The main topic of this thesis is incorporation of `-approximation within a ∞-
inference method, to obtain efficient and user-friendly inference with respect to π(∞)

and π
(∞)
m .

2.3. Particle filter. Ignoring the θ and ` labels, we have seen that a Feynman-Kac
model (with time horizon n) is defined through a pair (Mp, Gp)

n
p=0, where,

(i) Mp(x0:p−1, dxp) is a Markov ‘transition’ kernel for p = 1, . . . , n, andM0(x0:−1, dx0) :=
η0(dx0) is a probability measure, and

(ii) Gp(x0:p) is a nonnegative ‘potential’ function for 0 ≤ p ≤ n.

The particle filter (PF) (Algorithm 1) was popularised in [e.g. 94, 44], and allows
for unbiased estimation [cf. 18, 28] of

pu(dx0:n) =

( n∏

p=0

Gp(x0:p)

)
η0(dx0)

n∏

p=1

Mp(x0:p−1, dxp), (6)

for (traditional) SSMs that are not path-dependent, that is,

Mp(X0:p−1, dx
′
p) = Mp(Xp−1, dx

′
p), (7)

Gp(X0:p) = Gp(Xp). (8)

However, straightforward generalisation also allows for unbiased estimators in the
path-dependent setting of Feynman-Kac models, at least when the dynamics can
be simulated [cf. 18]. In addition, as is well-known, the general resampling scheme

in PF (Algorithm 1) for ancestor random variables {A(i)
p }Ni=1 do lead to unbiased

estimators, since the equality

E
[ N∑

k=1

1
{
A(k)
p = i

}]
= N

V
(i)
p

V ∗p
,

is assumed satisfied for all p ∈ {0:n} in PF (Algorithm 1) [cf. A, Prop. 20]. Such
resampling schemes include the popular multinomial, stratified, residual, and sys-
tematic resampling [cf. 14, 25, 28].

The unbiased estimator, from the output (V
(i)
n ,X(i))ni=1 of PF (Algorithm 1) run

for Feynman-Kac model (Mp, Gp)
n
p=0, is obtained by setting

p̂u(φ) :=
N∑

i=1

V (i)
n φ(X(i)), (9)

for φ ∈ L1(pu), which satisfies

E
[
p̂u(φ)

]
= pu(φ). (10)

An important point is that particle approximations p̂u(dx0:n), for pu(dx0:n) through
the PF for the model (Mp, Gp)

n
p=0, are not unique [cf. 18, Sect. 2.4.2]. One standard
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Algorithm 1 Particle filter for Feynman-Kac model (Mp, Gp)
n
p=0, with N ≥ 1

particles.

In the following, the particle index i implicitly assumes all values in {1:N}.
(1) For initialisation,

(i) Sample X
(i)
0 ∼ η0. Set X(i) := X(i).

Set V
(i)

0 := 1
N
G0(X(i)) and set V ∗0 :=

∑N
j=1 V

(j)
0 .

(ii) Sample random variables {A(k)
0 }Nk=1 satisfying

E
[∑N

k=1 1
{
A

(k)
0 = i

}]
= NV

(i)
0 /V ∗0 .

(2) For p = 1, . . . n,

(i) Sample X
(i)
p ∼Mp(X

(A
(i)
p−1), · ). Set X(i) := (X(A

(i)
p−1), X(i)).

Set V
(i)
p :=

(
V ∗p−1

)(
1
N
Gp(X

(i))
)

and set V ∗p :=
∑N

j=1 V
(j)
p .

(ii) Sample random variables {A(k)
p }Nk=1 satisfying

E
[∑N

k=1 1
{
A

(k)
p = i

}]
= NV

(i)
p /V ∗p .

Output: (V (i),X(i))Ni=1, where V (i) := V
(i)
n .

way to obtain a different particle approximation is merely changing the Feynman-
Kac model to (M̃p, G̃p)

n
p=0, but in such a way that

( n∏

p=0

G̃p(x0:p)

)
η̃0(dx0)

n∏

p=1

M̃p(x0:p−1, dxp) =

( n∏

p=0

Gp(x0:p)

)
η0(dx0)

n∏

p=1

Mp(x0:p−1, dxp).

(11)
holds, and running the PF (Algorithm 1) for the new Feynman-Kac model. From
(6) and (10), it follows that the unbiased estimator from the PF run for (M̃p, G̃p)

n
p=0

delivers the same unbiased estimation for pu(dx0:n) corresponding to the model
(Mp, Gp)

n
p=0. As an example for (M̃p, G̃p)

n
p=0, consider

G̃p(x0:p) :=
Gp(x0:p)Mp(x0:p−1, dxp)

M̃p(x0:p−1, dxp)
(x0:p)

in the sense of a Radon-Nikodým derivative [cf. 90], which always exists if Mp and

M̃p admit densities and a support condition holds.
This non-uniqueness opens the door to consider more efficient PF implementa-

tions for a particular model and filtering/smoothing problem [cf. 18, 28, 45, 75]. The
question of the optimal choice of (M?

p , G
?
p)
n
p=0 for the smoothing problem (i.e. unbi-

ased estimation of pu(dx0:n)) has been considered in [45]. As the optimal choice is
usually not implementable, [45] suggest an adaptive iterative algorithm, based on
approximating families of mixtures of normals, in order to approximately find M?

p

and G?
p (see also e.g. [50] for a related method). Deterministic approximations, such

as Laplace approximations [cf. 83], can also be used as a substitute for the optimal
transition M?

p [A] (see also [60]). We emphasise that all the above mentioned ap-
proaches to the optimal choice problem achieve unbiased estimation of pu(dx0:n), as
they use appropriately weighted potentials so that (11) holds.

Latent inference with respect to p(dx0:n) is possible through the PF, at least when
the dynamics Mp can be simulated, by using a ratio estimator targeting pu(φ)/pu(1).
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Algorithm 2 Particle marginal Metropolis-Hastings, with m ≥ 1 iterations.

With (Θ0, V
(i)

0 ,X
(i)
0 )Ni=1 given, with

∑N
i=1 V

(i)
0 > 0, for k = 1, . . . ,m, do:

(i) Sample Θ′ ∼ q( · |Θk−1) from a transition kernel q on T.
(ii) Run PF (Algorithm 1) for (M (Θ′,∞), G(Θ′)), outputting (V ′(i),X′(i))Ni=1.

(iii) Accept, setting (Θk, V
(i)
k ,X

(i)
k )Ni=1 ← (Θ′, V ′(i),X′(i))Ni=1, with probability

min

{
1,

pr(Θ′)
(∑N

i=1 V
′(i))q(Θk−1|Θ′)

pr(Θk−1)
(∑N

i=1 V
(i)
k−1

)
q(Θ′|Θk−1)

}
. (13)

Otherwise, reject, setting (Θk, V
(i)
k ,X

(i)
k )Ni=1 ← (Θk−1, V

(i)
k−1,X

(i)
k−1)Ni=1.

That is, if {p̂u,k}mk=1 with m ≥ 1 are formed9 as in (9) from independent runs of PF
(Algorithm 1) for (Mp, Gp)

n
p=0, then

∑m
k=1 p̂u,k(φ)∑m
k=1 p̂u,k(1)

m→∞−−−→ p(θ)(φ), almost surely. (12)

We remark that the above estimator (12), as mentioned for example in [15, Eq. 1],
is an IS analogue of the ‘particle independent Metropolis-Hastings’ (PIMH) [1] chain
for latent smoothing. The algorithm based on (12) is completely parallelisable and
does not depend on mixing of a chain, and is therefore relatively resilient in the
number of particlesN . Straightforward consistent estimators to construct confidence
intervals are also available [cf. A, Prop. 23].

2.4. Particle marginal Metropolis-Hastings. The main task for which we are
interested is joint ∞-inference with respect to π(∞)(dθ, dx0:n). So far, we only have

shown how to perform ∞-inference for p
(θ,∞)
u (dx0:n) and p(θ,∞)(dx0:n), with θ fixed.

Surprisingly [cf. 5, 9, 59, 69], joint inference is possible, using an MCMC known as
the particle marginal Metropolis-Hastings (PMMH) [1]. Assuming q(θ′|θ) > 0 for all
θ, θ′ ∈ T in the PMMH chain (Algorithm 2), or a similarly mild condition ensuring
Harris ergodicity of the chain [cf. 66], the estimator formed from PMMH is strongly
consistent: for f ∈ L1(π(∞)),

EPM
m (f) :=

1

m

m∑

k=1

N∑

i=1

V
(i)
k f(Θk,X

(i)
k )

∑N
j=1 V

(j)
k

m→∞−−−→ π(∞)(f), a.s.10 (14)

We remark about ‘Metropolis-Hastings type’ MCMC. The PMMH [1] is used in
state space models using PFs, pseudo-marginal MCMC [5, 9, 59, 69] is the gen-
eral term for the chain used in latent variable models with unbiased estimators,
and Metropolis-Hastings MCMC [65, 48] is used in Bayesian models with tractable
likelihoods. In fact, it is possible to view these ‘Metropolis-Hastings type’ MCMCs
each as a substantiation of the other: one direction follows by viewing the pseudo-
marginal MCMC and PMMH as full-dimensional Metropolis-Hastings kernels on an
extended state space, while the other direction follows by trivialisation [cf. 5].

9Traditionally in particle filtering [cf. 28], latent inference (12) is done with m = 1, possibly
with a final resampling to form uniformly weighted particles, but final resampling leads to higher
variance of the resulting estimator and is unnecessary here.

10almost surely
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Algorithm 3 Delayed acceptance, with m ≥ 1 iterations, and ε ≥ 0

Given (Θ0, V
(i)

0 ,X
(i)
0 , L̂

(0)(Θ0))Ni=1, with
∑N

i=1 V
(i)

0 > 0 and L̂(0)(Θ0) > 0.
For k = 1, . . . ,m, do:

(i) Sample Θ′ ∼ q( · |Θk−1) from a transition kernel q on T.

Obtain unbiased estimate L̂(0)(Θ′) of L(0)(Θ′).
Proceed to step (ii) with probability

min

{
1,

pr(Θ′)
(
L̂(0)(Θ′) + ε

)
q(Θk−1|Θ′)

pr(Θk−1)
(
L̂(0)(Θk−1) + ε

)
q(Θ′|Θk−1)

}
. (15)

Otherwise, reject, setting

(Θk, V
(i)
k ,X

(i)
k , L̂

(0)(Θk))
N
i=1 ← (Θk−1, V

(i)
k−1,X

(i)
k−1, L̂

(0)(Θk−1))Ni=1.

(ii) Run PF (Algorithm 1) for (M (Θ′,∞), G(Θ′)), outputting (V ′(i),X′(i))Ni=1. Accept,

setting (Θk, V
(i)
k ,X

(i)
k , L̂

(0)(Θk))
N
i=1 ← (Θ′, V ′(i),X′(i), L̂(0)(Θ′))Ni=1, with proba-

bility

min

{
1,

(∑N
i=1 V

′(i))/
(
L̂(0)(Θ′) + ε

)
(∑N

i=1 V
(i)
k−1

)
/
(
L̂(0)(Θk−1) + ε

)
}
. (16)

Otherwise, reject, setting

(Θk, V
(i)
k ,X

(i)
k , L̂

(0)(Θk))
N
i=1 ← (Θk−1, V

(i)
k−1,X

(i)
k−1, L̂

(0)(Θk−1))Ni=1.

3. Accelerations based on an approximation

The Metropolis-Hastings MCMC has served as the backbone of the MCMC rev-
olution for half of the last century [23], while pseudo-marginal MCMC and the
PMMH have been quite popular and extensively used in the current century (see
[B, Sect. 1.2] for a review). Because of the importance of these MCMCs, there has
been considerable interest in their possible acceleration. We focus on acceleration
of the PMMH in the following.

Usually by far the most computationally intensive part of the PMMH is running

the PF (Algorithm 1), for (M
(θ,∞)
p , G

(θ)
p )np=0 with output (V (i),X(i))Ni=1, to obtain the

unbiased estimator

L̂(∞)(θ) := p̂(θ,∞)
u (1) =

N∑

i=1

V (i)

of the likelihood L(∞)(θ). The idea of acceleration based on approximation is to

substitute a computationally cheaper (non-negative unbiased estimator L̂(0)(θ) of an)

approximation L(0)(θ) for the∞-likelihood, instead of using L̂(∞)(θ). One would also
like to maintain (strong) consistency of the resulting estimator for the ∞-posterior.

3.1. Delayed acceptance and importance sampling. One such popular accel-
eration algorithm is delayed acceptance (DA) (Algorithm 3) [cf. 59, 8, 16, 17, 41, 61],
with ε ≥ 0. We require that almost surely the support condition

L̂(∞)(θ) > 0 =⇒
(
L̂(0)(θ) + ε

)
> 0 (17)

holds, so that the resulting weight L̂(∞)(θ)/
(
L̂(0)(θ)+ε

)
in Algorithm 3(ii) is guaran-

teed well-defined. This can be simply achieved always by choosing a regularisation
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Algorithm 4 MCMC-IS. Importance sampling correction of PMMH, with m ≥ 1
iterations, and ε ≥ 0.

(P1) Given (Θ0, L̂
(0)(Θ0)), with L̂(0)(Θ0) > 0, for k = 1, . . . ,m, do:

(i) Sample Θ′ ∼ q( · |Θk−1) from a transition kernel q.

(ii) Obtain unbiased estimate L̂(0)(Θ′) of L(0)(Θ′).
(iii) Accept, setting (Θk, L̂

(0)(Θk)) ← (Θ′, L̂(0)(Θ′)), with probability (15).

Otherwise, reject, setting (Θk, L̂
(0)(Θk))← (Θk−1, L̂

(0)(Θk−1)).
(P2) For all k ∈ {1:m},

(i) Run PF (Algorithm 1) for (M (Θk,∞), G(Θk)), outputting (V
(i)
k ,X

(i)
k )Ni=1.

(ii) Set ξk(φ) :=
∑N
i=1 V

(i)
k φ(X

(i)
k )

L̂(0)(Θk)+ε
, for φ : Xn+1 → R. Form the estimator,

EIS
m (f) :=

∑m
k=1 ξk(f

(Θk))∑m
k=1 ξk(1)

. (18)

constant11 ε > 0, leading to asymptotically exact ∞-inference. We note that step
(i) in DA (Algorithm 3) effectively acts as a screening stage: only ‘good’ proposals
proceed to step (ii), where the expensive ∞-model PF must be run. The resulting
DA estimator for the ∞-posterior is the same as that of PMMH, given in (14).

As an alternative to PMMH/DA, we consider MCMC-IS (Algorithm 4) [cf. 24,
37, 38, 48, 73, A]. Here, for f : T × Xn+1 → R we have set f (θ)(x0:n) = f(θ, x0:n).
Assuming the Phase 1 chain is Harris ergodic (e.g. q(θ, θ′) > 0 for all θ, θ′ ∈ T)
and the support condition (17) holds, like the PMMH/DA estimator, the MCMC-IS
estimator is strongly consistent [A, Thm. 3]: for f ∈ L1(π(∞)),

EIS
m (f)

m→∞−−−→ π(∞)(f), almost surely.

Phase 1 of MCMC-IS (Algorithm 1) implements a PMMH (Algorithm 2) targeting
marginally

π(0)
m (θ) ∝ pr(θ)L(0)(θ).

Phase 2 consists of independent calls of PF (Algorithm 1), and is therefore com-
pletely parallelisable, unlike DA (Algorithm 3). This allows for the possibility of
substantial additional speedup on a parallel computer [cf. 58].

We remark about an acceleration technique known as ‘early rejection’ [93] for
Metropolis-Hastings, that can sometimes be employed if the likelihood takes a special
form, described below.12 The acceleration technique also applies to DA step (i) and

MCMC-IS Phase 1, if L̂(0)(θ) = L(0)(θ) almost surely and ε = 0. The form required
in [93] is that the 0-likelihood L(0)(θ) can be written, for example, as

L(0)(θ) ∝
n∏

j=0

exp
(
− l(θ,0)

j (yj)
)

with l
(θ,0)
j (yj) ≥ 0. In this case, because the likelihood only gets smaller with

more components of the product computed, the calculation of the components can
be ended and the proposal rejected early in acceptance probability (15) for DA and

11This will be done in Algorithm 6 given later, and is linked to ‘defensive importance sampling’
[51].

12A similar idea of early cancellation as ‘early rejection’ has been used previously in the exact
simulation literature, under the name of ‘retrospective simulation’ [10].
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MCMC-IS, as soon as the partially computed acceptance probability in (15) becomes
smaller than the uniformly generated random variable [cf. 93, Sect. 4]. The ‘early
rejection’ trick requires a special form for the likelihood, however, and therefore is
not always applicable.

3.2. The question of relative efficiency. The delayed acceptance and impor-
tance sampling correction are two acceleration alternatives to the standard PMMH,
both of which use the same approximation and algorithmic ingredients. The ques-
tion of choice of alternative methods has been remarked before [17] in the simpler
setting of Metropolis-Hastings, without unbiased estimators. Article [A] introduces
the IS correction in the general case of unbiased estimators in both Phase 1 and
Phase 2, and seeks to compare MCMC-IS with DA in the general setting.

A numerical comparison of the methods is done in [A], where the MCMC-IS
approach was found to work slightly better than DA in experiments in SSMs, even
without parallelisation. As an example of a computationally intensive experiment,
a stochastic volatility model was considered with observation consisting of real data
from daily financial index returns spanning two decades. Laplace approximations
were used to approximate the 0-likelihood, and were used as well in the IS correction,
namely, for the approximation to the optimal choice13 of Feynman-Kac model for

the smoothing problem for p
(θ,∞)
u (dx0:n). With all methods making intelligent use of

the Laplace approximations, MCMC-IS performed significantly better than PMMH
or DA in the experiment.

In additional to the experiments, many additional potential enhancements were
suggested in [A] which would improve the computational efficiency of MCMC-IS
in practice, relative to DA acceleration of PMMH, even further. For example, the
Phase 2 IS weights do not need to be calculated during the burn-in phase14 and for
thinned out samples of the chain15, nor for repeated samples of the chain if the jump
chain16 is used. As well, as previously mentioned, Phase 2 admits a straightforward
parallelisation for calculation of the more expensive IS weights, which significantly
increases the scalability and efficiency of MCMC-IS.

3.3. Peskun and covariance orderings of asymptotic variances. An estima-
tor Em(f) is said to satisfy a central limit theorem (CLT), if

√
m
[
Em(f)− π(∞)(f)

] m→∞−−−→ N
(
0, σ2(f)

)
, in distribution.

In this case, we call σ2(f) the asymptotic variance of the estimator.
Without taking into account computational factors previously mentioned (which

generally support the use of MCMC-IS; see also Section 4.6), and considering just
the statistical efficiency of the estimators in terms of the asymptotic variance, it
was found in [B] through artificially constructed toy examples that either MCMC-
IS or PMMH/DA may do arbitrary better than the other. Moreover, the examples
seemed to indicate that MCMC-IS might do better in cases of practical interest,
with multi-modal targets, a phenomenon remarked previously about MCMC-IS and
Metropolis-Hastings [e.g. 37]. Proving that the IS acceleration is usually ‘better’

13as discussed in Section 2.3
14Additionally, the debiasing tricks [cf. 39] may be effectively and efficiently used.
15Thinning [cf. 72] denotes the procedure, in which only every kth sample of the Markov chain

is kept, with say k = 10, in order to decrease the auto-correlation of samples.
16the chain formed formed from the original chain, consisting only of the accepted states of the

original chain [cf. 27, A]
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than DA is of course a separate matter, which can not be done based on experiments
or examples alone.

We first introduce some notation and terminology. A Markov kernel K on (X,X )
is said to be reversible with respect to a probability µ, if for all A,B ∈ X ,

∫
µ(dx)K(x, dy)1

{
x ∈ A, y ∈ B

}
=

∫
µ(dy)K(y, dx)1

{
x ∈ A, y ∈ B

}
.

We also define the Dirichlet form

EK(g) := 〈g, (1−K)g〉µ
for g ∈ L2(µ), where 〈g1, g2〉µ :=

∫
g1(x)g2(x)µ(dx), Kg(x) :=

∫
K(x, dx′)g(x′) and

(1g)(x) = g(x).
The famous Peskun ordering [74, 95] says that if

K(x,A\{x}) ≥ L(x,A\{x}) µ-almost every x ∈ X, ∀A ∈ X , (19)

where K and L are two Markov kernels, both reversible with respect to a probability
µ, then

σ2
K(f) ≤ σ2

L(f) ∀f ∈ L2(µ), (20)

where σ2
K(f) and σ2

L(f) denote the asymptotic variances of the K and L chains,
respectively.

Consider next a popular Peskun ‘type’ comparison result for asymptotic variances
of reversible chains, known as the covariance ordering17 [67]: if K and L are two
Markov kernels, both reversible with respect to a probability µ, and if

EK(g) ≥ EL(g), ∀g ∈ L2(µ), (21)

then

σ2
K(f) ≤ σ2

L(f) ∀f ∈ L2(µ). (22)

Compared to the Peskun ordering, the covariance ordering can be more useful in
practice, as the criterion can distinguish better between chains on general state
spaces. For example, some chains vanish along the diagonal, in which case (19) may
be useless, but (21) may still be able to distinguish between these chains [cf. 67, 68].

As a simple application of the covariance ordering, let us consider the case of
PMMH and DA, which are both reversible with respect to the same invariant mea-
sure (see [8] or Section 3.5). Using the identity

EL(g) =
1

2

∫
µ(dx)L(x, dy)

(
g(x)− g(y)

)2
,

which holds for any µ-reversible kernel L, and that the product of the acceptance
probabilities (15) and (16) in DA (Algorithm 3) is less than or equal to the accep-
tance probability (13) in PMMH (Algorithm 2), it can be shown [cf. 8] that the
covariance ordering implies

σ2
PM(f) ≤ σ2

DA(f).

17Though not mentioned by name, it was shown already in [95, Proof of Lem. 3] that the Peskun
ordering is equivalent with the ‘covariance’ ordering.
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3.4. Peskun type ordering for importance sampling correction. Article [B]
is concerned with extending the covariance ordering to chains K and L reversible
with respect to probabilities Π(0) and Π(∞), where Π(0) and Π(∞) may be different.

Suppose then that K and L are Harris ergodic chains on a space (X,X ), where K
is Π(0)-reversible and L is Π(∞)-reversible. Suppose further that the Radon-Nikodým
derivative18

w(x) :=
dΠ(∞)

dΠ(0)
(x)

exists. Let c, c̄ ≥ 0 be constants such that

c EK(g) ≤EL(g) ≤ c̄ EK(g)

c ≤w(x) ≤ c̄,

for all x ∈ X and g ∈ L2(Π(0)). Then [B, Thm. 2], for all f ∈ L2(Π(∞)) with
f̄ := f − Π(∞)(f), we have

σ2
K(f) + varΠ(0)(wf̄) ≤ c̄

(
σ2
L(f) + varΠ(∞)(f)

)
, (23)

σ2
K(f) + varΠ(0)(wf̄) ≥ c

(
σ2
L(f) + varΠ(∞)(f)

)
. (24)

If Π(0) = Π(∞), then it is direct to see that (23) simplifies to the covariance ordering
(22) given earlier. Versions of the orderings (23-24) also hold for when the marginal
weight is bounded in a latent variable setting [B, Thm. 5], and for self-normalised
estimators using jump chain representation and unbiased estimators [B, Thm. 12]
to compare with pseudo-marginal type MCMC. We discuss a particular implication
of these orderings in the next section, namely MCMC-IS (algorithm 4) compared to
PMMH (Algorithm 2) and DA (Algorithm 3).

3.5. Comparison results. We are now ready to compare MCMC-IS (Algorithm
4) with PMMH (Algorithm 2) and DA (Algorithm 3) in terms of the asymptotic
variance. For simplicity, we assume deterministic approximation for the 0-likelihood,
that is, L̂(0)(θ) = L(0)(θ) almost surely.19 We note that the MCMC-IS chain is
Π(0)-reversible, while the PMMH and DA chains are both Π(∞)-reversible, with
probabilities defined in the following.

Article [B] shows how a comparison can be made when the (marginal) weight be-
tween the approximate and exact model posteriors w (or ẇ) is bounded (the weights
w and ẇ are defined below). This follows from the extension of the covariance or-
dering to the IS context with unbiased estimators, mentioned earlier.

We first need to define some notation. Let Q
(∞)
θ (dx(1:N), dv(1:N)) denote the law of

the output (X(1:N), V (1:N)) of the PF (Algorithm 1) for the model (M
(θ,∞)
p , G

(θ)
p )np=0.

The full invariant probability of the PMMH (Algorithm 2) is then given by

Π(∞)(dθ, dv(1:N), dx(1:N)) =
1

c∞
pr(dθ)Q

(∞)
θ (dx(1:N), dv(1:N))

N∑

i=1

v(i),

18This is the function w satisfying Π(0)(wg) = Π(∞)(g) for all g ∈ L1(Π(∞)).
19For the general case for L̂(0)(θ), see [B, Thm. 14].
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where c∞ is a normalising constant. The full invariant probability of the IS corrected
chain (Algorithm 4) is

Π(0)(dθ, dv(1:N), dx(1:N)) =
1

c0

pr(dθ)
(
L(0)(θ) + ε

)
Q

(∞)
θ (dx(1:N), dv(1:N)),

where c0 is a normalising constant. We set for a function f : T× Xn+1 → R,

ζ̂(f) :=
ζ(f)

ζ(1)
, where ζ(f) :=

N∑

i=1

V (i)f(Θ,X(i)).

Assuming

L̂(∞)(θ) > 0 =⇒
(
L(0)(θ) + ε

)
> 0 (25)

almost surely, for some ε ≥ 0, the weights

w(θ, v(1:N),x(1:N)) :=
c0

c∞

1

L(0)(θ) + ε

N∑

i=1

v(i), and ẇ(θ) :=
c0

c∞

L(∞)(θ)

L(0)(θ) + ε
,

correspond to the Radon-Nikodým derivatives between the approximate and exact
model full and marginal posteriors.

Let us now describe a CLT for MCMC-IS. As before, for a function f ∈ L2(π(∞)),
we set f̄ := f−π(∞)(f). By [A, Thm. 7(i)], for f ∈ L2(π(∞)) the MCMC-IS estimator
(18) satisfies a CLT, with a formula for the MCMC-IS asymptotic variance given by

σ2
IS(f) = σ2

IS,1(f) + σ2
IS,2(f), (26)

assuming σ2
IS(f) <∞, support condition (17) holds, and the marginal chain (Θk)k≥1

of MCMC-IS (Algorithm 4) is Harris ergodic20 and aperiodic21. Here, σ2
IS,1(f) is the

asymptotic variance of the marginal chain (Θ)k≥1, that is,

1√
m

m∑

k=1

E
[
w(θ, V (1:N),X(1:N))ζ̂(f̄)|Θk = θ

] m→∞−−−→ N
(
0, σ2

IS,1(f)
)
,

and

σ2
IS,2(f) := π(0)

m

(
vwζ̂(f̄)

)
,

with

vg(θ) := var
(
g(θ, V (1:N),X(1:N))|Θk = θ

)
.

Note the decomposition of the MCMC-IS asymptotic variance (26) into marginal
MCMC and IS correction components, which may be helpful in questions of tuning
and allocation of computational resources. A similar decomposition is not expected
to hold for the DA asymptotic variance.

We now state the comparison results between MCMC-IS and PMMH/DA. For
functions f ∈ L2(π(∞)), such that the CLT and conditions given above for MCMC-
IS hold, and assuming the PMMH and DA chains are Harris ergodic, we have the
following comparison result [B, Thm. 14], with σ2

L equal to σ2
PM or σ2

DA:

σ2
IS(f) ≤ (sup ẇ)

(
σ2
L(f) + varΠ(∞)

(
ζ̂(f)

))
+ 3varΠ(0)

(
wζ̂(f̄)

)
. (27)

20E.g. q(θ, θ′) > 0 for all θ, θ′ ∈ T.
21See for example [66] for this and other definitions.
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Note that sup ẇ ≤ supw. We have, moreover, if also supw <∞,

σ2
IS(f) + varΠ(0)

(
wζ̂(f̄)

)
≤ (supw)

(
σ2
L(f) + varΠ(∞)

(
ζ̂(f)

))
(28)

σ2
IS(f) + varΠ(0)

(
wζ̂(f̄)

)
≥ (inf w)

(
σ2
L(f) + varΠ(∞)

(
ζ̂(f)

))
(29)

The results show that the asymptotic variance of MCMC-IS and PMMH/DA can
be related up to additive and multiplicative constants, which can be informative by
(27) in practical cases where the marginal weight ẇ is bounded, where ẇ relates the
ratio of likelihoods. We note that (29) is usually not helpful since a positive lower
bound on w is usually not possible, while (27) and (28) do not require a positive lower
bound, and are therefore more generally applicable, providing theoretical guarantees
for MCMC-IS in terms of PMMH/DA. Another nice facet of (27-29) is that the
function f ∈ L2(Π(∞)) is allowed to be a function on T× Xn+1, not only on T.

Also shown in [B] is the not too surprising fact that geometric ergodicity of the
MCMC-IS augmented chain is inherited by its marginal chain. This relates the
fact that the convergence and mixing of the MCMC-IS chain is not affected by the
noise in the Phase 2 unbiased estimators, unlike PMMH and DA, which are very
dependent on the noise, and are not geometrically ergodic if the unbiased estimator
is unbounded [cf. 5, B]. Of course, the asymptotic variance (26) of the MCMC-
IS estimator (18) depends on the noise, but it seems it is not as harmful in the
output estimator compared to in the acceptance ratios (13) and (16) of PMMH
and DA, respectively. Besides convergence and mixing, geometric ergodicity is also
likely helpful for example in estimation of the asymptotic variance [cf. 32], as well
as in verifying convergence of adaptive MCMC schemes [cf. 6], at least based on the
existing theory.

There is room for further theoretical development. For example, quantification of
the error of MCMC-IS and of the asymptotic variance, could be investigated along
the lines of [32, 79]. Also, in terms of non-asymptotic error bounds, results for
MCMC [e.g. 100, 63, 81] could likely be extended to MCMC-IS.

4. Bayesian inference for state space models with diffusion dynamics

The PF (Algorithm 1) for the Feynman-Kac model (M
(θ,∞)
p , G

(θ)
p ) requires that

the samples can be drawn from the Markov transition kernels M
(θ,∞)
p . However, as

discussed at the end of Section 2.1, in many settings important for real applications,
the assumption that the dynamics can be simulated does not hold.

We consider the case where the model (M
(θ,∞)
p , G(θ)) stems from a discretely and

partially observed Itô diffusion process. Suppose (X ′t)t≥0 solves an Itô stochastic
differential equation of the form

dX ′t = a(θ)(X ′t)dt+ b(θ)(X ′t)dWt, t ≥ 0,

where {Wt}t≥0 is a standard Brownian motion. As in Section 2.1, we assume
that there is some observational process (Y ′t )t≥0, and that observations {Y ′tp}np=0

are obtained at discrete times {tp}np=0. With Xp := X ′tp and Yp := Y ′tp , and with

G
(θ)
p (xp) := g

(θ)
p (yp|xp), we obtain a model (M

(θ,∞)
p , G

(θ)
p )np=0 which additionally sat-

isfies the SSM conditions (7-8).
In some, essentially one-dimensional diffusion settings, where the Lamperti trans-

formation [cf. 70] can be applied, ∞-inference is possible for p(θ,∞) [10, 11, 31] and
π(∞) [87, 97]. Article [C] attempts to extend to more settings ∞-inference for p(θ,∞)
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and π(∞) in a computationally feasible way. The approach of [C] is based on Euler
approximations of the dynamics [cf. 56], multilevel Monte Carlo (MLMC) [49, 36],
a particle filter coupling [53], debiasing tricks for MLMC [64, 77], and an IS type
correction [A]. We introduce each of these in turn in the following.

4.1. Euler approximations. The Euler approximation amounts to defining a dis-
cretisation size h` ∝ 2−` for ` ∈ N ∪ {0}, and replacing the dynamics of the latent
process (X ′t)t≥0 with a discrete-time Markov chain,

X ′t+h` = X ′t + a(θ)(X ′t)h` + b(θ)(X ′t)(Wt+h` −Wt).

Here, (Wt)t≥0 is a standard Brownian motion, so that Wt+h` − Wt ∼ N(0, h`) is
independent of X ′u, u ≤ t.

The approximate dynamics corresponds to an approximate transitionM
(θ,`)
p , which,

together with the conditionally independent observations, results in a model (M
(θ,`)
p , G

(θ)
p )

satisfying the SSM conditions (7-8), with `-smoother p(θ,`)(dx0:n) given in (3) in Sec-
tion 2.2, and with joint `-posterior π(`)(dθ, dx0:n) given in (5).

Joint `-inference for π(`) is possible using PMMH (Algorithm 2) [1], which has
been quite popular in the setting of diffusions [cf. 42]. Another `-inference method
[53], which uses PMMH together with a ‘multilevel’ decomposition, is discussed in
the following section. We reiterate that, in distinction to these methods, the goal in
[C] is to develop a ∞-inference method (which is also computationally efficient).

4.2. Multilevel Monte Carlo. The idea of MLMC is based on telescoping sums,
where each summand is coupled in such a way that leads to lower variance of the
resulting estimator [49, 36]. The multilevel decomposition used in [53], for `F -
inference in partially observed diffusions, is based on the telescoping sum in terms
of expectations of normalised probabilities,

π(`F )(φ) =

`F∑

`=1

(
π(`)(φ)− π(`−1)(φ)

)
+ π(0)(φ),

with `F ≥ 1 ideally taken quite large. PMMH chains are run at level ` and at
level `− 1 in each summand, and are coupled to each other using the ‘approximate
coupling’ described below.

In [C], such a telescoping sum is used not to target an expectation (and where
the normalising constants must be simultaneously estimated in each summand), but
rather an integral taken with respect to an unnormalised `F -smoother,

p(θ,`F )
u (φ) =

`F∑

`=1

(
p(θ,`)
u (φ)− p(θ,`−1)

u (φ)

)
+ p(θ,0)

u (φ), (30)

with `F ≥ 1 ideally taken quite large. The quality of the approximation as measured
by the variance depends on the coupling used for each increment

p(θ,`)
u (φ)− p(θ,`−1)

u (φ).

The algorithm used in [C] to unbiasedly estimate this difference is given in Al-
gorithm 5, which we refer to as the ‘delta PF’ (∆PF). The coupling used is the
‘approximate coupling’ of [53]. This coupling is based on a change of measure of
the Feynman-Kac model on a joint path space, which, together with an importance
sampling correction of the particle filter output, leads to the ∆PF.
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Algorithm 5 Delta particle filter (∆PF) for (M̌
(θ,`)
p , Ǧ

(θ)
p )np=0, with ` ≥ 1 and with

N ≥ 1 particles.

(i) Run PF (Algorithm 1) for (M̌
(θ,`)
p , Ǧ

(θ)
p )np=0, outputting (V

(i)
n , X̌

(i)
0:n)Ni=1.

(ii) Output ∆(θ,`), where, for φ : Xn+1 → R,

∆(θ,`)(φ) :=
N∑

i=1

V (i)
n

(
w`(X̌

(i)
0:n)φ(X

(`,i)
0:n )− w`(X̌

(i)
0:n)φ(X

(`−1,i)
0:n )

)

where

w`(X̌0:n) :=

∏n
p=0G

(θ)
p (X

(`)
0:p)∏n

p=0 Ǧ
(θ)
p (X̌0:p)

and w`(X̌0:n) :=

∏n
p=0G

(θ)
p (X

(`−1)
0:p )

∏n
p=0 Ǧ

(θ)
p (X̌0:p)

.

4.3. Coupling of Feynman-Kac models. Suppose (M
(θ,`)
p , G

(θ)
p )np=0 and (M

(θ,`−1)
p , G

(θ)
p )np=0

are two Feynman-Kac models. We describe a coupling of them as follows. For some

fixed ` ≥ 1, M̌
(θ,`)
p (x̌0:p−1, dx̌p) is assumed to be a coupling of the ` and ` − 1 level

transitions, that is,

M̌ (θ,`)
p (x̌0:p−1, A× X) = M (θ,`)

p (x
(`)
0:p−1, A),

M̌ (θ,`−1)
p (x̌0:p−1,X× A) = M (θ,`−1)

p (x
(`−1)
0:p−1, A),

for A ∈ B(X) and with the notation x̌0:p = (x
(`)
0:p, x

(`−1)
0:p ) denoting an element in the

space X2(p+1), and we set

Ǧ
(θ)
0:p(x̌0:p) =

1

2

(
G(θ)
p (x

(`)
0:p) +G(θ)

p (x
(`−1)
0:p )

)
. (31)

The dynamics M̌
(θ,`)
p is typically obtained in the diffusion context by using a common

Brownian path for mesh discretisation levels ` and `− 1. Other choices for Ǧ
(θ)
p are

possible then the choice (31) used in [C]. The important point is that Ǧ
(θ)
p (x̌0:p) > 0

whenever G
(θ)
p (x

(`)
0:p) > 0 or G

(θ)
p (x

(`−1)
0:p ) > 0. This ensures that the estimator ∆(θ,`)(φ)

from the ∆PF (Algorithm 5) is unbiased [C, Prop. 3]: for bounded φ : Xn+1 → R,

E[∆(θ,`)(φ)] = p(θ,`)
u (φ)− p(θ,`−1)

u (φ).

We can then estimate p
(θ,`F )
u unbiasedly using MLMC. Namely,

E
[
I(θ,0)
m0

(φ) + I(θ,1:`F )
m1:F

(φ)
]

= p(θ,`F )
u (φ), (32)

where

I(θ,0)
m0

(φ) :=
1

m0

m0∑

i=1

p̂
(θ,0)
u,i (φ),

with {p̂(θ,0)
u,i (φ)}m0

i=1 independently run versions of the estimator p̂
(θ,0)
u (φ) =

∑N
i=1 V

(i)φ(X(i))

from the output (V (1:N),X(1:N)) of the PF (Algorithm 1) run for the model (M
(θ,0)
p , G

(θ)
p )np=0,

and where

I(θ,1:`F )
m1:F

(φ) :=

`F∑

`=1

1

m`

m∑̀

i=1

∆
(θ,`)
i (φ),

with {∆(θ,`)
i (φ)}m`i=1 estimators formed from independent runs of the ∆PF (Algorithm

5) run for the model (M̌
(θ,`)
p , Ǧ

(θ)
p )np=0.
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The approach based on (32) allows for efficient MLMC estimation of the unnor-

malised `F -smoother p
(θ,lF )
u , over the latent states. If we were content with joint

`F -inference, then we could apply already the IS type correction of MCMC as in
Algorithm 4, with regularised ‘likelihood’ estimate

L(Θk) := I(Θk,0)
m0

(1) + ε

in the acceptance ratio (15), with ε ≥ 0, and with IS weights

ξk(φ) :=
I

(Θk,0)
m0 (φ) + I

(Θk,1:`F )
m1:F (φ)

I
(Θk,0)
m0 (1) + ε

,

which are allowed to take negative values [cf. A]. This would provide an efficient
MLMC alternative method to the PMMH or the algorithm in [53] for inference with
respect to π(lF ). Instead, we wish to go one (infinite!) step further, and target π(∞).

4.4. Debiasing techniques. Debiased MLMC [64, 77, 96] is based on randomising
the running level used in deterministic MLMC (with a reweighting), as follows.

We assume that (p`)`≥1 is a probability mass function (p.m.f.) on N satisfying
p` > 0 for all ` ≥ 1. We also assume that

p(θ,`)
u (φ)

`→∞−−−→ p(θ,∞)
u (φ),

for all bounded φ : Xn+1 → R, which is not too difficult to verify in our setting under
certain boundedness assumptions, because of the known convergence properties of
the Euler approximation [cf. 56]. With L ∼ (p`), the single-term debiased MLMC
estimator of [77] in our case is given by p−1

L ∆(θ,L)(φ), which satisfies

E[p−1
L ∆(θ,L)(φ)] = p(θ,∞)

u (φ)− p(θ,0)
u (φ).

Adding an independent ‘zeroth level’ estimate p̂
(θ,0)
u (φ) :=

∑N
i=1 V

(i)φ(X(i)), formed

from the output (V (i),X(i))Ni=1 of PF (Algorithm 1) run for the model (M
(θ,0)
p , G

(θ)
p )np=0,

we set

∆̃(θ)(φ) :=
1

pL
∆(θ,L)(φ) + p̂(θ,0)

u (φ), (33)

to obtain that

E[∆̃(θ)(φ)] = p(θ,∞)
u (φ).

By using a self-normalised estimator to take care of the normalising constant, this
already allows for consistent inference over the latents. That is, as in (12) of Section

2.3, if {∆̃(θ)
k }mk=1 for m ≥ 1 are independently run to form estimator functionals of

the form (33), then
∑m

k=1 ∆̃
(θ)
k (φ)

∑m
k=1 ∆̃

(θ)
k (1)

−→ p(θ,∞)(φ), almost surely,

as m→∞ [C, Prop. 7].

4.5. Joint inference using importance sampling type correction. Recall that
our original goal was joint∞-inference (for π(∞)). To do this, we will use Algorithm
6, which is similar to Algorithm 4, but which uses a multilevel IS type correction
based on the randomised ∆PF output. Consistency was also detailed in [A] for
IS type correction involving negative weights as in Algorithm 6, which can occur
frequently in the multilevel context which we consider here.
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Algorithm 6 MCMC-IS for joint ∞-inference for diffusions based on debiased IS
type correction, with m ≥ 1, ε ≥ 0, p.m.f. (p`) on N, and N` ≥ 1 for all ` ≥ 0.

(P1) With (Θ0, V
(i)

0 ,X
(i)
0 )N0

i=1 given, for k = 1, . . . ,m, do:
(i) Sample Θ′ ∼ q( · |Θk−1) from a transition kernel q.

(ii) Run PF (Algorithm 1) for (M
(Θ′,0)
p , G

(Θ′)
p ), with output (V

′(i),X
′(i))N0

i=1.

(iii) Accept, setting (Θk, V
(i)
k ,X

(i)
k )N0

i=1 ← (Θ′, V ′(i),X′(i))N0
i=1, with probability

min

{
1,

pr(Θ′)
(
ε+

∑N0

i=1 V
′(i))q(Θk−1|Θ′)

pr(Θk−1)
(
ε+

∑N0

i=1 V
(i)
k−1

)
q(Θ′|Θk−1)

}
.

Otherwise, reject, setting (Θk, V
(i)
k ,X

(i)
k )N0

i=1 ← (Θk−1, V
(i)
k−1,X

(i)
k−1)N0

i=1.
(P2) For all k ∈ {1:m},

(i) Sample Lk ∼ (p`).
(ii) Run ∆PF (Algorithm 5) for (M̌ (Θk,Lk), Ǧ(Θk)) with NLk particles, out-

putting ∆(Θk,Lk).
With ξk(φ) defined for φ : Xn+1 → R, form the estimator

EIS
m (f) :=

∑m
k=1 ξk(f

(Θk))∑m
k=1 ξk(1)

, ξk(φ) :=
p−1
Lk

∆(Θk,Lk)(φ) +
∑N0

i=1 V
(i)
k φ(X

(i)
k )

ε+
∑N0

i=1 V
(i)
k

.

The likelihood support condition (17) mentioned for Algorithm 4 can be achieved
by using ε > 0.22 We also need finiteness of the variance of the randomised ∆PF,
p−1
L ∆(θ,L), in order to guarantee that the debiased MLMC works correctly [cf. 77],

and that the MCMC-IS (Algorithm 6) can have finite asymptotic variance [cf. C,
Prof. 13]. That is, we need to show that

var

(
1

pL
∆(θ,L)(φ)

)
=
∑

`≥1

E
[
(∆(θ,`)(φ))2

]

p`
−
(
p(θ,∞)
u (φ)− p(θ,0)

u (φ)
)2

(34)

is finite, uniformly in θ ∈ T. This requires showing that the variance of ∆(θ,`)(φ)
decays at a sufficient rate relative to p` as ` increases.

Under some standard (stringent) assumptions used elsewhere in the literature,
the results of the technical analysis are formulated in [C, Cor. 9]. In the case of
standard Euler approximation, the result says that

E
[
(∆(θ,`)(φ))2

]
≤ C

(2−`

N`

+ 2−2`
)
, (35)

where C > 0 is a constant which does not depend on N` ≥ 1, ` ≥ 1, or θ ∈ T, where
N` particles are used in the ∆PF run at level `. Hence, with N` = N constant, by
taking p` ∝ 2−r`, with r < 1, (34) will be finite. More generally, if N` ∝ 2ρ` with
ρ ∈ [0, 1], then we see that we can take p` ∝ 2−r` with r < 1 + ρ, so that (34) will
be finite.

The assumptions needed to prove the bound (35) in [C] are on the diffusion [e.g.
56], in terms of uniform ellipticity and globally Lipschitz diffusion terms, as well as
on the Feynman-Kac model [e.g. 18], in terms of globally Lipschitz potentials and
transitions and lower and upper bounded potentials. The results of the analysis
are based on a global error martingale decomposition [cf. 18] in terms of the local

22It is closely linked to ‘defensive importance sampling’ [51], but its optimal choice in terms of
efficiency is not known.
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sampling error of the particle filter run for the coupled Feynman-Kac model, and
on an analysis of the ∆PF in the diffusion context.

4.6. Computational efficiency and allocations. We have seen that under some
assumptions, the finiteness of the variance of the randomised ∆PF can be verified
for any N` ≥ 1 and for sufficiently heavy-tailed (p`) [C, Cor. 9]. However, the use
of a heavy-tailed p.m.f. (p`) can lead to excessive use of computational resources,
and we must therefore try to use thinner-tailed p.m.f.s (p`) and optimal number of
particles N` at level ` in order to minimise the inverse relative efficiency (IRE) [40]
which measures the computational cost.

Let (Θk)k≥1 be the marginal Markov chain of Algorithm 6, and Lk ∼ (p`) for
k ≥ 1. With terminology similar to [40], who consider the i.i.d.23 case for (τk)k≥1,
we assume that the total computational cost to run Algorithm 6 for m iterations is

C (m) :=
m∑

k=1

τk,

where (τk)k≥1 are conditionally independent positive random variables given (Θk, Lk)k≥1,
where τk depends only on Θk and Lk. Given some budget κ ∈ R≥0, the realised length
of the chain is

M (κ) := max
{
m ∈ N≥0|C (m) ≤ κ

}
.

Then, if for some number τ > 0,

1

m

m∑

k=1

τk
m→∞−−−→ τ, almost surely,

and if the MCMC-IS estimator satisfies a CLT with asymptotic variance σ2(f), then
[40, C]

√
κ
[
EIS

M (κ)(f)− π(∞)(f)
] κ→∞−−−→ N

(
0, τσ2(f)

)
, in distribution,

and τσ2(f) is the IRE. We thus extend the discussion of [40] to non-i.i.d. (τk)k≥1.
Using this computational efficiency framework, similar to [77] who consider the

i.i.d. case in traditional MLMC, it is possible to consider the matter of computational
complexity and optimal allocation of resources in Algorithm 6. Suppose a CLT holds
for the MCMC-IS estimator of Algorithm 6 with finite asymptotic variance [cf. C,
Prop. 13]. Let ε > 0 and δ ∈ (0, 1) be given. In order to have

P[|EIS
m (f)− π(∞)(f)| ≤ ε] ≥ 1− δ,

by the Chebyshev inequality and using the standard m−1 mean squared error con-
vergence rate for MCMC, we need that m is of order ε−2, denoted m = O(ε−2).24

The question is then how we can minimise the computational complexity given by
C (m) when m = O(ε−2), by adjusting p` and N`, while keeping the variance (34)
finite.25 Assuming

E[τk|Θk = θ, Lk = `] ≤ C2`(1+ρ),

23independent and identically distributed
24That is, with m = m(ε), we have m(ε)/ε−2 → C as ε→ 0, some C > 0.
25Besides for the debiasing [77] to work, the asymptotic variance [see C, Prop. 13] of the MCMC-

IS estimator of Algorithm 6 has a part from the marginal MCMC, as well as from the IS type
correction. The latter is finite if the variance (34) is finite.
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where C does not depend on θ or `, then it is shown in [C, Prop. 24] that for all
q > 2, η > 1, the computational cost

O
(
ε−2|log2 ε|q

)
(36)

can be obtained for sufficiently small ε, if p` and N` are chosen to be

p` ∝ 2−`(1+ρ)`[log2(`+ 1)]η and N` ∝ 2ρ` (37)

for ρ ∈ [0, 1]. This choice for p` and N` ensures that the variance (34) is finite, and
suggests26 the choice

p` ∝ 2−`(1+ρ) and N` ∝ 2ρ` (38)

for ρ ∈ [0, 1]. The computational cost (36) is the same as that of [77, Prop. 4] for
the single-term estimator in traditional, randomised MLMC. It is also very close to

O
(
ε−2(log2 ε)

2
)
,

(recall q > 2), which is the well-known computational complexity order [36] in the
traditional, deterministic MLMC.

The result (37) shows that in case of Euler approximation, there is in fact a
parametrisation of recommended choices for particle number N` and p.m.f. (p`),
all of which share the same order of computational complexity to obtain a given
precision, under certain assumptions such as previously explained for τk. Then (37)
(or the simplified suggestion (38)) should lead to a proper usage of computational
resources, in order to keep both the asymptotic variance and the total cost jointly
small, and therefore the IRE small. The order of computational complexity is
the same along the parametrisation in terms of ρ ∈ [0, 1], but it is still unknown
whether a certain choice of ρ will usually lead to the best choice for N` and (p`).
In an experiment in [C] concerning a geometric Brownian motion, the choice ρ = 0
performed better than the choice ρ = 1 in the allocation (37). We leave, for now,
the optimal choice of ρ for future research and experiment.

5. Inference via approximate Bayesian computation

We assume a Bayesian model as in Section 1.2, with fixed observation denoted y∗ ∈
Y, prior pr(θ), and likelihood L(θ) = p(θ)(y∗), which is assumed to be intractable.
Although the data distribution p(θ)( · ) can not be evaluated, we assume that it is
possible to sample data y ∼ p(θ)( · ) from it. Let d(y, y′) be a pseudo-metric27 on Y2.
With tolerance ε > 0, we then define

p(θ,1/ε)
u (dy) := p(θ)(dy)1

(
d(y, y∗) ≤ ε

)
, 28

Approximate Bayesian computation (ABC) (see [92] for a review) is based on using
the family P1/ε := {p(θ,1/ε)}θ∈T of approximate probabilities, where

p(θ,1/ε)(dy) :=
p

(θ,1/ε)
u (dy)

L(1/ε)(θ)
,

26by disregarding the factor `[log2(`+ 1)]η in (37)
27 That is, for all y1, y2, y3 ∈ Y, it holds d(y1, y2) ≥ 0, d(y1, y2) = d(y2, y1), and d(y1, y3) ≤

d(y1, y2)+d(y2, y3). For example, d(y1, y2) = ‖s(y1)− s(y2)‖ where s : Y → Rny is some (summary)
statistic [cf. 76].

28The quantity ‘1/ε’ can be thought of as denoting the level of ‘precision.’
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with ABC likelihood,

L(1/ε)(θ) :=

∫
p(θ)(dy)1

(
d(y, y∗) ≤ ε

)
.

Then P1/ε become families of increasingly ‘better’ approximations as ε goes to 0.
However, it is important to keep in mind that it is only approximate even in the
limit, since in general,

L(∞)(θ) := lim
ε→0

L(1/ε)(θ) 6= L(θ).29

The ABC posterior is then given by

π(1/ε)(θ) ∝ pr(θ)L(1/ε)(θ).

A method of inference for the ABC posterior which we consider is the ABC-MCMC
(Algorithm 7), as suggested by [62], which may also be viewed as a pseudo-marginal
MCMC [5], with

Eθ
[
1
{
d(Y, y∗) ≤ ε

}]
= L(1/ε)(θ).

5.1. Choosing the tolerance in ABC-MCMC. The choice of tolerance ε is a
difficult question in ABC-MCMC [cf. 91]. Namely, a large choice of ε leads to large
bias, but to computational inefficiency if ε is small. To see this, note that if ε is small,
then a proposed state is hardly ever accepted, since 1

{
d(Y ′k , y

∗) ≤ ε
}

is usually 0. If

ε is large, then L(1/ε)(θ) ≈ 1 is nearly constant in θ and so ABC-MCMC is essentially
targeting the prior model, which is uninformative for Bayesian posterior inference.

Article [D] attempts to deal with the issue of tolerance choice in ABC-MCMC, by
using an inflated and adaptively tuned tolerance parameter in order to maximise ef-
ficiency of the MCMC, and then to use a post-correction, importance sampling step,
to remove bias [98] as well as to quantify uncertainty with proposed approximate
confidence intervals.

The tolerance adaptive ABC-MCMC (Algorithm 8), which is run during burn-in
for some number of iterations nb, is an adaptive MCMC [cf. 6] targeting a user-
specified overall acceptance probability α∗ ∈ (0, 1). In experiments in [D], a value
of α∗ = 10% was used, which ensures sufficient mixing and number of different
samples from the MCMC. We provide convergence theorems in [D] for the adaptive
algorithm under two sets of assumptions. The simpler set of assumptions essentially
requires that the proposal q(θ′|θ) > 0 is uniformly bounded away from zero, and εk
is bounded away from zero for all k ≥ 1 almost surely. The former assumption on q
is removed in the more general set of assumptions. Removing the assumption on εk
might be possible, based on projections [cf. 4].

5.2. Approximate confidence intervals. An approximate estimator for the as-
ymptotic variance of the post-corrected ABC-MCMC has been suggested in [D,
Alg. 6], which can be used for the construction of (approximate) confidence inter-
vals.

Suppose that τ̂ε0(f) is an estimate for the integrated auto-correlation time for
ABC-MCMC(ε0),

τε0(f) :=
∑

k≥1

Corr
(
f(ϑ0), f(ϑk)

)
, ϑ0 ∼ π(1/ε0)( · ), (40)

29This is in general the case. However, there can be equality if, for example, d(y, y′) is a metric,
or, in particular, a metric formed from composition of a sufficient statistic with a Euclidean norm
‖ · ‖ [cf. 76].
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Algorithm 7 ABC-MCMC(ε). Given Θ0 ∈ T with pr(Θ0) > 0, run the following
for k = 0, . . . n− 1:

(i) Sample Θ′k ∼ q( · |Θk).
(ii) Sample Y ′k ∼ p(Θ′k)( · ).
(iii) Accept, setting (Θk+1, Yk+1)← (Θ′k, Y

′
k), with probability αε(Θk,Θ

′
k, Y

′
k), where

αε(θ, θ
′, y′) := min

{
1,

pr(θ′)q(θ|θ′)
pr(θ)q(θ′|θ)

}
1
{
d(y′, y∗) ≤ ε

}
. (39)

Else, reject, by setting (Θk+1, Yk+1)← (Θk, Yk).

Algorithm 8 TA(nb). Given Θ0 ∈ T with pr(Θ0) > 0, ε0 := d(Y0, y
∗) > 0 with

Y0 ∈ Y, α∗ = .1, and step sizes γk = k−2/3.

For k = 0, . . . , nb − 1,

(i) Sample Θ′k ∼ q( · |Θk).
(ii) Sample Y ′k ∼ p(Θ′k)( · ).
(iii) Accept, setting (Θk+1, Yk+1)← (Θ′k, Y

′
k), with probability αεk(Θk,Θ

′
k, Y

′
k), with

αε defined in (39). Otherwise, reject, setting (Θk+1, Yk+1)← (Θk, Yk).
(iv) log εk+1 ← log εk + γk

(
α∗ − αεk(Θk,Θ

′
k, Y

′
k)
)
.

Output (Θnb , εnb).

perhaps using a windowed sample auto-correlation estimator [cf. 47]. Also define
the following estimator for the function variance,

Sε0,ε(f) :=
n∑

k=1

1
(
d(Yk, y

∗) ≤ ε
)(
f(Θk)− Eε0,ε(f)

)2

(∑n
j=1 1

(
d(Yj, y∗) ≤ ε

) )2 . (41)

The approximate confidence interval then takes the form
[
Eε0,ε(f)± β

√
τ̂ε0(f)Sε0,ε(f)

]
,

where β > 0 corresponds to the standard normal quantile.
We remark that there is some theoretical backing for the approximate confidence

interval, based on an exact formula for the integrated auto-correlation time of the
post-corrected chain [D, Thm. 7]. The relevance of the approximate confidence
intervals is also verified in some experiments in [D].

5.3. Adaptive ABC-MCMC with post-correction. The approach of [D] then
takes the form of Algorithm 9. In regards to the adaptive ABC-MCMC, also the
proposal covariance matrix q is best updated as in [46, 3]. The estimator Eε0,ε(f)
can be calculated effortlessly for all ε ∈ (0, ε0] by sorting beforehand the samples Θk

according to their corresponding distances Tk.
In experiments in [D], for example in a Lotka-Volterra model involving two reagents

and three reactions [cf. 13], it was found that Algorithm 9 delivers a robust approach
to inference in ABC models. In particular, the post-processing estimators were found
to be competitive with direct ABC-MCMC with pre-tuned tolerance and starting
value, the approximate confidence interval provided good coverage, and the adaptive
ABC-MCMC allowed for essentially arbitrary initial choice of tolerance and starting
value from the prior.
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Algorithm 9 Given nb, n ≥ 1 perform the following:

(i) Run TA(nb) (Algorithm 8), and call the output (Θ0, ε0).
(ii) Run ABC-MCMC(ε0) (Algorithm 7) for n iterations, with starting values

(Θ0, ε0), outputting (Θk, Yk)
n
k=1.

(iii) For all ε ≤ ε0, an estimator for π(1/ε)(f) is given by

Eε0,ε(f) :=

∑n
k=1 1

{
d(Yk, y

∗) ≤ ε
}
f(Θk)∑n

k=1 1
{
d(Yk, y∗) ≤ ε

} .

(iv) With τ̂ε(f) an estimate of (40), Sε0,ε(f) calculated as in (41), and β > 0
corresponding to the desired standard normal quantile, report the approximate
confidence interval [

Eε0,ε(f)± β
√
τ̂ε0(f)Sε0,ε(f)

]
.

Compared to direct ABC-MCMC(ε), the approach based on slightly inflated tol-
erance and post-correction, was shown to be competitive in experiments in [D].
An upper bound for the asymptotic variance of the ABC-MCMC(ε0) with post-
correction to ε, in terms of that of a direct ABC-MCMC(ε), is given in [D, Thm. 8].
It is a direct application of the Peskun type ordering for importance sampling [B]
stated previously in (23), where the upper bound guarantee becomes an equality as
|ε0 − ε| → 0.

5.4. Convergence of the tolerance adaptive ABC-MCMC. We briefly discuss
the general approach to the convergence proofs of the tolerance adaptive ABC-
MCMC. To obtain a setup fitting within the framework of stochastic approximation
[cf. 3, 4], we write the tolerance adaptation update in Algorithm 8(iv) as

log εk+1 = log εk + γk+1Hεk(Θk,Θ
′
k, Y

′
k)

= log εk + γk+1h(εk) + γk+1ηk+1,

where Hε(θ, θ
′, y′) := α∗ − αε(θ, θ′, y′), with αε defined in (39), with ’mean field’

h(ε) :=

∫
π(ε)(dθ)q(θ, dθ′)p(θ′)(dy′)Hε(θ, θ

′, y′),

and centred ‘noise’ sequence ηk+1 := Hεk(Θk,Θ
′
k, Y

′
k)−h(εk). In this common frame-

work for stochastic approximation algorithms, we can apply [4, Theorem 2.3], which
implies that the key lemma for the proof of convergence of the tolerance adaptive
ABC-MCMC (Algorithm 8) essentially reduces to showing that the noise sequence
ηk is asymptotically controlled,

lim
j→∞

sup
n≥j

∣∣∣∣
n∑

k=j

γkηk

∣∣∣∣ = 0, almost surely,

[D, Lemma 20]. This relies on various ancillary results, such as monotonicity of
the map ε 7→ h(ε), continuity and contraction properties of the Markov kernels,
and a generalisation of the ‘proposal augmentation’ from Metropolis-Hastings chains
[85, 82] to ‘proposal-rejection’ chains. Here, we call a kernel K a ‘proposal-rejection’
kernel if it is reversible and can be written as

K(θ, dθ′) = q(dθ′|θ)α(θ, θ′) +
(

1−
∫
q(dϑ|θ)α(θ, ϑ)

)
δθ(dθ

′), (42)
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where α(θ, θ′) ∈ [0, 1] is a measurable function on T2. By marginalising away the
auxiliary variable in ABC-MCMC(ε) (7), we obtain such a ‘proposal-rejection’ ker-
nel, with

α(θ, θ′) = min

{
1,

pr(θ′)q(θ|θ′)
pr(θ)q(θ′|θ)

}
L(1/ε)(θ′),

which is clearly not a Metropolis-Hastings kernel any longer.
Non-standard theoretical challenges of the tolerance adaptive ABC-MCMC (Al-

gorithm 8) are that the invariant measure π(1/εk) is changing at each iteration, and
that the chain is technically a pseudo-marginal. Regarding this latter point, how-
ever, we do have simplification to independent refreshments of the auxiliary variable
y′, because of the use of a simple cut-off function 1

{
d( · , y∗) ≤ ε

}
in the acceptance

ratio. As mentioned in Section 5.1, essentially, the convergence theorems for the
adaptation are formulated in a simpler setting of uniform ergodicity, as well as for
simultaneously geometrically ergodic ‘proposal-rejection’ chains, obtained by only
considering the marginal chain (Θk)k≥1 of the original chain (Θk, Yk)k≥1, on possibly
unbounded state space domains.

6. Discussion and directions for future work

In this thesis, various old and new Monte Carlo estimators are presented. A
defining feature of the estimators suggested is that they involve an IS type correction
of samples drawn according to an intermediate approximate distribution. Basic
convergence properties of the suggested estimators are established, and efficiency of
these algorithms is studied and related to standard direct methods used hitherto
commonly in practice.

There is still much interesting work that could be done in regards to the use of
these estimators in different settings and with different approximations. Experimen-
tal results have been promising, and suggest further comparisons could be made, for
example, of PIMH and its IS analogue (12). In the parameter inference setting,
there have been many MCMC implementations making use of an approximation by
applying delayed acceptance [see B, Section 7.2], but very few using MCMC-IS (see
[73] for one other non-academic example). One of the main goals of [A] is to bring
attention to MCMC-IS, that it represents a viable approach, which enjoys flexibility
in implementation and theoretical backing.

In the filtering and smoothing context, the approach for optimal selection of
Feynman-Kac model for the smoothing problem [45] based on deterministic approx-
imations, as used in [A] and further developed in [60] for an extended class of models,
could be further developed. These approximations could also be based on various
other non-linear filters and smoothers [cf. 84].

There are various directly applicable innovations which could be incorporated into
MCMC-IS, and we mention a few. Quasi-Monte Carlo may be helpful in MCMC-IS,
whether in the MCMC [cf. 86] or in the PF [35]. Work on exact simulation [12]
techniques for diffusions [10, 11, 31] (see also the recent preprint [97]) and jump-
diffusions [43] using continuous-time IS techniques is showing progress, and suggests
parameter inference methods for partially observed versions could be developed,
at least in the one-dimensional setting, using the MCMC-IS framework, with IS
correction based on a PF using exact simulation dynamics, or based on other types
of randomised weights, which may freely assume negative values in the IS correction.

It would be of interest to adapt the tuning guidelines [29] (see also [89]) for the PF
when used in the PMMH, to the case when used within MCMC-IS. The formula (26)
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for the MCMC-IS asymptotic variance, which decomposes into marginal chain and IS
correction parts, could also be useful in this regard. More generally, beyond PMMH,
it would be beneficial to use better scaling MCMCs within MCMC-IS, for example,
particle Gibbs [1], which is known to scale very well with backward sampling [cf.
57]. Additional annealing steps may be useful, as part of the Metropolis-Hastings
with asymmetric acceptance ratio (MHAAR) approach [cf. 2]

In [B], more practical examples could be given showing bounds of likelihood ratios
and usefulness of the results in practice. Further comparisons could be made, for
example, with annealed IS [71] correction versus multi-stage DA [8]. Two different
extensions of traditional DA correction were introduced in [B], and it would be
interesting to study the stability properties of these new DA corrections, for example,
along the lines of [5, 88]. Other more sophisticated reversible chains as in [2] with
IS correction could be considered and compared. The effect of debiasing tricks [39]
could be compared between MCMC-IS and pseudo-marginal type MCMC, where
the coupling time integral to the debiasing approach may be considerably less for
MCMC-IS if Phase 1 is based on deterministic approximation and Phase 2 involves
noisy unbiased estimators.

There are many settings where there is a multilevel type structure and the debias-
ing techniques can be applied. In the joint inference setting, the IS-debiasing method
as presented in [C] allows for an efficient debiasing strategy for joint inference using
Euler approximations. The results could be generalised to Itô diffusions with time-
dependent path-dependent coefficients, and to general resampling schemes in the
∆PF besides multinomial resampling. It would be nice to apply the IS-debiasing
strategy in various settings, for example, to jump-diffusions [cf. 22, 54]. The cou-
pling [53] and multilevel approach to the (unnormalised) smoothing problem [C],
with possible randomised MLMC correction [64, 77], could be applied, for example,
to the problem of calculation of normalisation constants [cf. 20] important for model
selection. The optimal choice of coupled dynamics and potential could be studied,
where we remark that the coupled potentials may be made level dependent, which
is an additional degree of freedom. It would also be of interest to study stability and
limit theorems [15, 18, 26] of these coupled PFs [cf. 55] based on change of reference
measure and IS reweighting for use in unnormalised multilevel estimators as in [C].

We are currently looking into optimal tuning of the regularisation constant in
the approximate likelihood estimator within MCMC-IS, which is connected to ‘de-
fensive importance sampling’ [51]. The question of efficiency and proper allocation
of resources of the MCMC-IS carries over to the multilevel and PF setting, where
additionally multilevel aspects play a rôle. The question of optimal scaling particles
versus level in the sub-canonical regime associated to Euler approximations was not
entirely conclusive in [C]. It would be interesting to study this phenomenon in more
depth. This may entail adapting the non-canonical CLT of [99] in the diffusion
setting to the partially observed diffusion setting where number of particles and
particle approximation variances are additional factors.

Applied in the ABC context in [98], the post-correction (or trimming) over a range
of tolerances is a methodological approach applicable in other Monte Carlo settings
where IS can be applied at small additional cost, for example, in the MLMC con-
text, with the sum of multilevel increments computed sequentially over an increasing
range of the fine tolerances, with corresponding plots. In such settings, it may also
be possible to derive analogous approximate confidence intervals for the resulting



MCMC IMPORTANCE SAMPLERS 27

estimators as in [D]. The tolerance adaptive ABC-MCMC in [D] was based on tar-
geting a user-specified overall acceptance probability, and we chose a target close to
the rule of thumb from the more general random walk PM literature [89]. It may be
interesting to adapt the assumptions of [29, 89] to ones more resembling the ABC
context, in order to find a perhaps different ‘rule of thumb’ for ABC-MCMC. The
tolerance adaptation was also found to benefit the covariance adaptation during the
burn-in, likely due to the improved mixing in the initial stages of the algorithm. It
would be of interest to study this phenomenon and the interplay of different optimi-
sation criteria in more depth, following, for example, the theoretical developments
of adaptive MCMC as in [3, 4, 6].

The ‘proposal-rejection’ chains (42), which were considered for DA correction [B]
and ‘proposal augmentation’ [D], are generalisations of Metropolis-Hastings chains,
which include DA [8], PM [5], MHAAR [2] and marginalised ABC-MCMC [D].
Although ‘proposal-rejection’ chains technically include pseudo-marginal chains, we
lay here particular emphasis on the possible course of study of (simpler) chains on
the marginal (parameter) space, without auxiliary variable extensions like in pseudo-
marginal MCMC. Many results worked out for Metropolis-Hastings can likely be
extended to the marginal-space ‘proposal-rejection’ setting. For example, the waste-
recyclers of [21, 82, 85], originally for Metropolis-Hastings, could be extended to
‘proposal-rejection’ chains. Some convergence analysis has been done for pseudo-
marginal Metropolis-Hastings chains [cf. 5, 7] and some of this type of analysis could
possibly be adapted to marginal-space ‘proposal-rejection’ chains. Following the line
of argument of [52, 78], who show geometric ergodicity of symmetric random walk
Metropolis-Hastings essentially if the target has exponential or lighter tails and a
certain contour condition holds, it would be interesting to work out conditions for
a similar type of result for the more general sub-class of marginal-space ‘proposal-
rejection’ chains.

7. Summary of articles

7.1. Article [A]. Convergence properties are established for Markov chain Monte
Carlo (MCMC) algorithms using an additional importance sampling (IS) type cor-
rection of approximate sample output of the Markov chain. Included is the inter-
esting case where the approximate chain itself stems from a pseudo-marginal chain.
The asymptotic variance from the proven central limit theorems is shown to decou-
ple over the approximate marginal chain and the IS correction, which can be useful
for questions of optimal allocation of computational resources. Particular strengths
of the approach are highlighted, such as the efficient use of a jump chain, thinning,
and straightforward parallelisation. Abstract properties of the augmented Markov
chains corresponding to the MCMC-IS method are established. Experiments in state
space models compare the MCMC-IS method with existing popular direct methods,
and show the viability of the MCMC-IS approach in the state space models context.

7.2. Article [B]. The asymptotic variance of the MCMC-IS is compared to that of
the direct MCMC methods. This is based on an extension of the existing covariance
comparison result for direct chains to the context of comparison of one MCMC-IS
to one direct chain. The extension also allows for use of unbiased estimators in the
MCMC-IS Phase 1 and 2, as well as the use of a jump chain. Provided examples show
that there can be no strict ordering between MCMC-IS and direct MCMC, as either
may perform arbitrarily better than the other. Theoretical results are provided,
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which show upper and lower bounds for the MCMC-IS asymptotic approach in
relation to an analogous direct MCMC method. The upper bound is satisfied in
practice when approximations are reasonably accurate, and provides guarantees for
the MCMC-IS asymptotic variance in terms of direct pseudo-marginal and delayed
acceptance analogues. In the latent variable setting, this is the case in the sense
of finite supremum norm of the ratio of likelihoods. Ergodicity and mixing of the
MCMC-IS is shown to be less affected by noise of the Phase 2 unbiased estimators
compared to pseudomarginal direct MCMC. The results help justify the viability of
the MCMC-IS approach as a competing method to a direct approach.

7.3. Article [C]. The question of joint inference for a challenging class of state
space models is considered, where the underlying process is a diffusion process aris-
ing as a solution to a stochastic differential equation, which can not be simulated
exactly. Noisy non-linear observations are obtained at some discrete points in time.
Bayesian inference is performed using the IS debiasing approach, where, namely,
an IS type correction, based on debiased multilevel Monte Carlo, a particle filter
coupling, and Euler approximations, is used for an approximate MCMC targeting
a coarse-model approximate distribution. Convergence of the method to the exact
posterior is verified under standard conditions on the state space model and Euler
type approximations found in the literature. From asymptotic efficiency and cost
considerations, suggested allocations for computational resources are given, which
help ensure efficient use of the algorithm.

7.4. Article [D]. The use of a slightly inflated tolerance is suggested in the con-
text of approximate Bayesian computation (ABC) MCMC, along with subsequent
post-correction based on trimming or IS correction of the sample output, over a
(continuous) range of decreasing tolerances. Approximate confidence intervals for
the resulting estimators are provided, which enjoy theoretical backing as well as
good coverage in the experiments considered. An adaptive ABC-MCMC is also pro-
posed, which finds a suitable (inflated) tolerance based on acceptance rate as the
proxy. Convergence theorems for the adaptation under simple and more general
conditions are provided. The tolerance adaptation worked well when used together
with proposal covariance adaptation, in experiments which confirmed the suitability
of the method based on adaptive ABC-MCMC and post-correction.
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Abstract. We consider importance sampling (IS) type weighted estimators based on
Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target
distribution. In the context of Bayesian latent variable models, the MCMC typi-
cally operates on the hyperparameters, and the subsequent weighting may be based
on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well.
The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-
marginal/particle MCMC, and has many advantages over DA, including a straightfor-
ward parallelisation and additional flexibility in MCMC implementation. We detail
minimal conditions which ensure strong consistency of the suggested estimators, and
provide central limit theorems with expressions for asymptotic variances. We demon-
strate how our method can make use of SMC in the state space models context, using
Laplace approximations and time-discretised diffusions. Our experimental results are
promising and show that the IS type approach can provide substantial gains relative
to an analogous DA scheme, and is often competitive even without parallelisation.

1. Introduction

Markov chain Monte Carlo (MCMC) has become a standard tool in Bayesian analysis.
The greatest benefit of MCMC is its general applicability — it is guaranteed to be con-
sistent with virtually no assumptions on the underlying model. However, the practical
applicability of MCMC generally depends on the dimension of the unknown variables,
the number of data, and the computational resources available. Because MCMC is
only asymptotically unbiased, and sequential in nature, it can be difficult to implement
efficiently with modern parallel and distributed computing facilities [44, 64, 102].

We promote a simple two-phase inference approach, based on importance sampling
(IS), which is well-suited for parallel implementation. It combines a typically low-
dimensional MCMC targeting an approximate marginal distribution with independently
calculated estimators, which yield exact inference over the full posterior. The estima-
tor is similar to self-normalised importance sampling, but is more general, allowing
for sequential Monte Carlo and multilevel type corrections. The method is naturally
applicable in a latent variable models context, where the MCMC operates on the hy-
perparameter distribution using an approximate marginal likelihood, and re-weighting
is based on a sampling scheme on the latent variables. We detail the application of
the method with Bayesian state space models, where we use importance sampling and
particle filters for correction.

2010 Mathematics Subject Classification. Primary 65C60; secondary 60J22, 65C05, 65C35, 65C40.
Key words and phrases. Delayed acceptance, exact approximation, importance sampling, Markov

chain Monte Carlo, parallel computing, particle filter, state space model, unbiased estimator.
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1.1. Related work. We consider a framework which combines and generalises upon
various previously suggested methods, which, to our knowledge, has not been system-
atically explored before. Importance sampling correction of MCMC has been suggested
early in the MCMC literature [e.g. 20, 38, 46], and used, for instance, to estimate Bayes
factors using a single MCMC output [21]. Related confidence intervals have been sug-
gested based on regeneration [11] and in case of multiple Markov chains [94]. Using
unbiased estimators of importance weights in this context has been suggested at least in
[65, 68], who consider marginal inference with a generalisation of the pseudo-marginal
method, allowing for likelihood estimators that may take negative values, and in [82]
with data sub-sampling.

Nested or compound sampling has also appeared in many forms in the Monte Carlo
literature. The SMC2 algorithm [13] is based on an application of nested sequential
Monte Carlo steps, which has similarities with our framework, and the IS2 method [96]
focuses on the case where the preliminary inference is based on independent sampling.
We focus on the MCMC approximation of the marginal distribution, which we believe
often to be easily implementable in practice, also when the marginal distribution has a
non-standard form. The Markov dependence in the marginal Monte Carlo approxima-
tion comes with some extra theoretical issues, which we address in detail.

Our setting highlights explicitly the connection of IS type correction and delayed ac-
ceptance (DA) [15, 33, 67], and recently developed pseudo-marginal type MCMC [4, 65]
such as particle MCMC [2], grouped independence Metropolis-Hastings [9], approximate
Bayesian computation (ABC) MCMC [69], the algorithm for estimation of discretely
observed diffusions suggested in [10], and annealed IS [57, 74]. Theoretical advances
of pseudo-marginal methods [3, 6, 7, 14, 27, 66, 92] have already led to more efficient
implementation of such methods, but have also revealed fundamental limitations. For
instance, the methods may suffer from slow (non-geometric) convergence in practically
interesting scenarios [4, 62]. Adding dependence to the estimators [cf. 7], such as using
the recently proposed correlated version of the pseudo-marginal MCMC [18], may help
in more efficient implementation in certain scenarios, but a successful implementation
of such a method may not always be possible, and the question of efficient parallelis-
ability remains a challenge. The blocked parallelisable particle Gibbs [93] has appealing
limiting properties, but its implementation still requires synchronisation between every
update cycle, which may be costly in some computing environments.

The IS approach which we propose may assuage some of the aforementioned chal-
lenges of the pseudo-marginal framework; see Section 2.3.

1.2. Outline. We introduce a generic Bayesian latent variable model in Section 2, de-
tail our approach algorithmically, and compare it with DA. We also discuss practical
implications, modifications and possible extensions. After introducing notation in Sec-
tion 3, we formulate general IS type correction of MCMC and related consistency results
in Section 4. We detail the general case (Theorem 3), based on a concept (Definition
2), which we call a ‘proper weighting’ scheme (following the terminology of Liu [67]),
which is natural and convenient in many contexts. In Section 5, we state central limit
theorems and expressions for asymptotic variances. Section 6 focuses on estimators
which calculate IS correction once for each accepted state, stemming from a so-called
‘jump chain’ representation. Section 7 details consistency of our estimators in case the
approximate chain is pseudo-marginal.
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We detail proper weighting schemes in the state space models (SSMs) using sequen-
tial Monte Carlo (SMC) in Section 8. We then focus on SSMs with linear-Gaussian
state dynamics in Section 9, and show how a Laplace approximation can be used both
for approximate inference, and for construction of efficient proper weighting schemes.
Section 10 describes an instance of our approach in the context of discretely observed
diffusions, with an approximate pseudo-marginal chain. We compare empirically sev-
eral algorithmic variations in Section 11 with Poisson observations, with a stochastic
volatility model and with a discretely observed geometric Brownian motion. Section 12
concludes, with discussion.

2. The proposed latent variable model inference methodology

A generic Bayesian latent variable model is defined in terms of three random vector,
and corresponding conditional densities:

• Θ ∼ pr( · ) — prior density of (hyper)parameters,
• X | Θ = θ ∼ µ(θ)( · ) — prior of latent variables given parameters, and
• Y | (Θ = θ,X = x) ∼ g(θ)( · | x) — the observation model.

The aim is inference over the posterior of (Θ, X) given observations Y = y, with density
π(θ, x) ∝ pr(θ)µ(θ)(x)g(θ)(y | x). Standard MCMC algorithms may, in principle, be
applied directly for inference, but the typical high dimension of the latent variable
x and the common strong dependency structures often lead to poor performance of
generic algorithms.

Our inference approach focuses on the specific structure of the model, based on the
factorisation π(θ, x) = πm(θ)r(x | θ), where the marginal posterior density πm and the
corresponding conditional r are:

πm(θ) :=

∫
π(θ, x)dx ∝ pr(θ)L(θ) and r(x | θ) :=

p(θ)(x, y)

L(θ)
,

with the joint density of the latent and the observed p(θ)(x, y), and the marginal likeli-
hood L(θ) given as follows:

p(θ)(x, y) := µ(θ)(x)g(θ)(y | x) and L(θ) :=

∫
p(θ)(x, y)dx.

Two particularly successful latent variable model inference methods, the integrated
nested Laplace approximation (INLA) [87] and the particle MCMC methods (PMCMC)
[2], rely on this structure. In essence, the INLA is based on an efficient Laplace approx-

imation p
(θ)
a (x, y) of p(θ)(x, y), determining an approximate marginal likelihood La(θ)

and approximate conditional distribution ra(x | y). Particle MCMC uses a specialised
SMC algorithm, which provides an unbiased approximation of expectations with re-
spect to p(θ)(x, y) allowing for exact inference, and which is particularly efficient in the
state space models context.

2.1. An algorithmic description. The primary aim of this paper is the efficient use of
an approximate marginal likelihood La(θ) within a Monte Carlo framework that leads to
efficient, parallelisable and exact inference. For instance, Laplace approximations often
lead to a natural choice for La(θ). The inference method which we propose comprises
two algorithmic phases, which are summarised below:

Phase 1: Simulate a Markov chain (Θk)k=1,...,n targeting an approximate hyperparame-
ter posterior πa(θ) ∝ pr(θ)La(θ).
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Phase 2: For each Θk, sample (V
(i)
k , X

(i)
k )i=1,...,m where V

(i)
k ∈ R and X

(i)
k are in the

latent variable space, and calculate W
(i)
k := V

(i)
k /La(Θk), which determine a

weighted estimator

(1) En(f) :=

∑n
k=1

∑m
i=1W

(i)
k f(Θk, X

(i)
k )

∑n
j=1

∑m
`=1W

(`)
j

of the full posterior expectation Eπ[f(Θ, X)] =
∫
f(θ, x)π(θ, x)dθdx.

The essential conditions required for the validity of the estimator are:

C1: The approximation is consistent, in the sense that La(θ) > 0 whenever L(θ) > 0,
and

∫
pr(θ)La(θ)dθ <∞.

C2: The Markov chain (Θk)k≥n is Harris ergodic (Definition 1) with respect to πa.
C3: Denoting f ∗(θ) := Eπ[f(Θ, X) | Θ = θ] =

∫
r(x | θ)f(θ, x)dx, there exists a

constant cw > 0 such that

E
[ m∑

i=1

V
(i)
k f(Θk, X

(i)
k )

∣∣∣∣ Θk = θ

]
= cwL(θ)f ∗(θ),(2)

for all θ ∈ T, all functions f of interest, and for f ≡ 1 (i.e. (2) holds with f( · ) and
f ∗( · ) omitted). The value of cw need not be known.

Both C1 and C2 are easily satisfied by construction of the approximation, and C3 is
satisfied by many schemes. Section 8 reviews how (unnormalised) importance sam-
pling and particle filter lead to such schemes. There is also a (mild) integrabil-

ity condition, which (W
(i)
k , X

(i)
k ) must satisfy in order to guarantee a strong conver-

gence En(f) → Eπ[f(Θ, X)]. When V
(i)
k ≥ 0 almost surely, it suffices that |f | satis-

fies (2); see Section 4 for details. Further conditions ensure a central limit theorem√
n{En(f)− Eπ[f(Θ, X)]} → N(0, σ2), as detailed in Section 5.
When Phase 1 is a Metropolis-Hastings algorithm, it is possible to generate only one

batch of (Ṽ
(i)
k , X̃

(i)
k )i=1,...,m for each accepted state (Θ̃k). If Nk stands for the time spent

at Θ̃k, then the corresponding weights are determined as W̃k := NkV
(i)
k /La(Θ̃k); see

Section 6 for details about such ‘jump chain’ estimators.

2.2. Use with approximate pseudo-marginal MCMC. In many scenarios, such
as with time-discretised diffusions, the latent variable prior density µ(θ) cannot be evalu-
ated, and exact simulation is impossible or very expensive. Simulation is also expensive
with a fine enough time-discretisation.

A coarsely discretised model leads to a natural cheap approximation µ̂(θ), but in
Phase 1, the Markov chain will often be a pseudo-marginal MCMC [cf. 4], in which case
our scheme would have the following form:

Phase 1’: Simulate a pseudo-marginal Metropolis-Hastings chain (Θk, Uk) for k =
1, . . . , n, following

(i) Draw a proposal Θ̃k from q(Θk−1, · ) and given Θ̃k, construct an estima-
tor Ũk ≥ 0 such that E[Ũk | Θ̃k = θ] = La(θ).

(ii) With probability min
{

1, pr(Θ̃k)Ũkq(Θ̃k,Θk−1)

pr(Θk−1)Uk−1q(Θk−1,Θ̃k)

}
, accept and set

(Θk, Uk) = (Θ̃k, Ũk); otherwise reject the move.

Phase 2’: For each (Θk, Uk), sample (V
(i)
k , X

(i)
k )i=1,...,m and set W

(i)
k := V

(i)
k /Uk, which

determine the estimator as in (1).
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Algorithmically, the pseudo-marginal version above is similar to the method in Section
2.1, with the likelihood La(Θk) replaced with its estimator Uk. The requirements for
the approximate likelihood C1 and its estimator C3 remain identical, and C2 must hold
for the pseudo-marginal chain (Θk, Uk), together with the following condition:

C4: The estimators Ũk are strictly positive, almost surely, for all Θ̃k ∈ T.

These are enough to guarantee consistency; see Section 7, and in particular Proposition
15 for details, which also justifies why C4 is needed for consistency. In practice it may
be easily satisfied, because the likelihood estimators Ũk may be inflated, if necessary
(see Section 12).

Note that the variables (V
(i)
k , X

(i)
k ) may depend on both Θk and the related likelihood

estimate Uk. The dependency may be useful, if positively correlated V
(i)
k and Uk are

available, leading to lower variance weights W
(i)
k = V

(i)
k /Uk. This is similar to the

correlated pseudo-marginal algorithm [18], which relies on a particular form of V
(i)
k and

Uk. If positively correlated structure is unavailable, (V
(i)
k , X

(i)
k ) may be constructed

independent of Uk.

2.3. Comparison with delayed acceptance. The key condition, under which we
believe our method to be useful, is that the Phase 1 Markov chain is computationally

relatively cheap compared to construction of the random variables (W
(i)
k , X

(i)
k ) computed

in Phase 2. Similar rationale, and similar building blocks — a πa-reversible Markov

chain and random variables analogous to (W
(i)
k , X

(i)
k ) — have been suggested earlier

for construction of a delayed acceptance (DA) pseudo-marginal MCMC scheme [cf.

42]. Such an algorithm defines a Markov chain (Θk,W
(i)
k , X

(i)
k )k≥1, with one iteration

consisting of the following steps:

DA 1: Draw Θ̃k ∼ P (Θk−1, · ). If Θ̃k = Θk−1 reject, otherwise go to (DA 2).

DA 2: Conditional on Θ̃k, draw (Ṽ
(i)
k , X̃

(i)
k ) which satisfies (2) with Θ̃k in place of

Θk, and set W̃
(i)
k := Ṽ

(i)
k /La(Θ̃k). With probability min

{
1,

∑m
i=1 W̃

(i)
k∑m

`=1W
(`)
k−1

}
, accept

(Θ̃k, W̃
(i)
k , X̃

(i)
k ), otherwise reject.

If the pseudo-marginal method is used in DA 1, the value La(Θk) is replaced with the
related likelihood estimator. Under essentially the same assumptions as required by

our scheme, and additionally requiring that W̃
(i)
k ≥ 0, the DA scheme described above

leads to a consistent estimator:

1

n

n∑

k=1

m∑

i=1

(
W

(i)
k∑m

`=1W
(`)
k

)
f(Θk, X

(i)
k )

n→∞−−−→ Eπ[f(Θ, X)]

Our IS scheme is a natural alternative to such a DA scheme, replacing the indepen-
dent Metropolis-Hastings type accept-reject step DA 2 with analogous weighting. This
relatively small algorithmic change brings many, potentially substantial, benefits over
DA, which we note next.

(i) Phase 2 corrections are entirely independent ‘post-processing’ of Phase 1 MCMC
output (Θk)k=1,...,n, which is easy to implement efficiently using parallel or dis-
tributed computing. This is unlike DA 1 and DA 2, which must be iterated
sequentially.

(ii) If Phase 2 correction variables are calculated only once for each accepted Θk (so-
called ‘jump chain’ representation, see Section 6), the IS method will typically be
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computationally less expensive than DA with the same number of iterations, even
without parallelisation.

(iii) The Phase 1 MCMC chain (Θk) may be (further) thinned before applying (much
more computationally demanding) Phase 2. Thinning of the DA chain is less likely
beneficial [cf. 78].

(iv) In case the approximate marginal MCMC (Θk) is based on a deterministic likeli-
hood approximation, it is generally ‘safer’ than (pseudo-marginal) DA using like-
lihood estimators, because pseudo-marginal MCMC may have issues with mixing
[cf. 6]. It is also easier to implement efficiently. For instance, popular adaptive
MCMC methods which rely on acceptance rate optimisation [5, and references
therein] are directly applicable.

(v) Reversibility of the MCMC kernel P in DA 1 is necessary, but not required for
the Phase 1 MCMC.

(vi) Non-negativity of W
(i)
k is required in DA 2, but not in Phase 2. This may be

useful in certain contexts, where multilevel [37, 47] or debiasing [71, 84, 98] are
applicable. (See also the discussion in [52] why pseudo-marginal method may not
be applicable at all in such a context.)

(vii) The separation of ‘approximate’ Phase 1 and ‘exact’ Phase 2 allows for two-level
inference. In statistical practice, preliminary analysis could be based on (fast)
purely approximate inference, and the (computationally demanding) exact method
could be applied only as a final verification to ensure that the approximation did
not affect the findings.

To elaborate the last point, the approximate likelihood La(θ) is usually based on an

approximation p
(θ)
a (x, y) of the latent model p(θ)(x, y). If the approximate model admits

tractable expectations of functions f of interest or exact simulation, direct approximate
inference is possible, because

1

n

n∑

k=1

f ∗a (Θk)→ Eπ̃[f(Θ, X)], where f ∗a (θ) := Eπ̃[f(Θ, X) | Θ = θ],

with approximate joint posterior π̃(θ, x) ∝ pr(θ)p
(θ)
a (x, y). Then, Phase 2 allows for

quantification of the bias Eπ̃[f(Θ, X)]−Eπ[f(Θ, X)], and confirmation that both infer-
ences lead to the same conclusions.

The further work [35] considers the relationship between IS and DA in terms of the
asymptotic variance.

3. Notation and preliminaries

Throughout the paper, we consider general state spaces while using standard integral
notation. If the model at hand is given in terms of standard probability densities, the
rest of this paragraph can be skipped. Each space X is assumed to be equipped with a σ-
finite dominating measure ‘dx’ on a σ-algebra denoted with a corresponding calligraphic
letter, such as X . Product spaces are equipped with the related product σ-algebras and
product dominating measures. If X is a subset of an Euclidean space Rd, dx is taken
by default as the Lebesgue measure and X as the Borel subsets of X. R+ stands for the
non-negative real numbers, and constant unit function is denoted by 1.

If ν is a probability density on X, we define the support of ν as supp(ν) := {x ∈
X : ν(x) > 0}, and the probability measure corresponding to ν with the same symbol
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ν(dx) := ν(x)dx.1 If g : X → R, we denote ν(g) :=
∫
g(x)ν(dx), whenever well-

defined. For a probability density or measure ν on X and p ∈ [1,∞), we denote by
Lp(ν) the set of measurable g : X→ R with ν(|g|p) <∞, and by Lp0(ν) := {g ∈ Lp(ν) :
ν(g) = 0} the corresponding set of zero-mean functions. If P is a Markov transition
probability, we denote the probability measure (νP )(A) :=

∫
ν(dx)P (x,A), and the

function (Pg)(x) :=
∫
P (x, dy)g(y). Iterates of transition probabilities are defined

recursively through P n(x,A) :=
∫
P (x, dy)P n−1(y, A) for n ≥ 1, where P 0(y, A) :=

I (y ∈ A).
We follow the conventions 0/0 := 0 and N := {1, 2, . . .}. For integers a ≤ b, we

denote by a:b the integers within the interval [a, b]. We use this notation in indexing,
so that xa:b = (xa, . . . , xb), x

(a:b) = (x(a), . . . , x(b)). If a > b, then xa:b or x(a:b) is void,
so that for example g(x, y1:0) is interpreted as g(x). Similarly, if i1:T is a vector, then

x(i1:T ) = (x(i1), . . . , x(iT )) and x
(i1:T )
1:T = (x

(i1)
1 , . . . , x

(iT )
T ). We also use double-indexing,

such as x
(1:m,1:n)
k = (x

(1,1)
k , . . . , x

(1,m)
k , x

(2,1)
k , . . . , x

(m,n)
k ).

Throughout the paper, we assume the underlying MCMC scheme to satisfy the fol-
lowing standard condition.

Definition 1 (Harris ergodicity). A Markov chain is called Harris ergodic with respect
to ν, if it is ψ-irreducible, Harris recurrent and with invariant probability ν.

Virtually all MCMC schemes are Harris ergodic [cf. 75, 95], although in some cases
careless implementation could lead to a non-Harris chain [cf. 85]. Thanks to the Harris
assumption, all the limit theorems which we give hold for any initial distribution of the
related Markov chain.

4. General importance sampling type correction of MCMC

Hereafter, πa is a probability density on T and represents an approximation of a
probability density πm of interest. The consistency of IS type correction relies on the
following mild assumption.

Assumption 1. The Markov chain (Θk)k≥1 and the density πa satisfy:

(i) (Θk)k≥1 is Harris ergodic with respect to πa.
(ii) supp(πm) ⊂ supp(πa).
(iii) wu(θ) := cwπm(θ)/πa(θ), where cw > 0 is a constant.

If Assumption 1 holds and it is possible to calculate the unnormalised importance
weight wu(θ) pointwise, the chain (Θk)k≥1 can be weighted in order to approximate
πm(g) for every g ∈ L1(πm), using (self-normalised) importance sampling [e.g. 20, 38]

∑n
k=1wu(Θk)g(Θk)∑n

j=1wu(Θj)
=
n−1

∑n
k=1wu(Θk)g(Θk)

n−1
∑n

j=1 wu(Θj)

n→∞−−−→
a.s.

πa(wug)

πa(wu)
= πm(g),

as Harris ergodicity guarantees the almost sure convergence of both the numerator and
the denominator.

In case πm is a marginal density, which we will focus on, both the ratio wu(θ) and the
function g (which will be a conditional expectation) are typically intractable. Instead,
it is often possible to construct unbiased estimators, which may be used in order to
estimate the numerator and the denominator, in place of wu(Θk) and g(Θk), under

1Note that our definition is set-theoretic support of the density, and differs in general from the
support of the measure ν (on a topological space X).
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mild conditions. In order to formalise such a setting, we give the following generic
condition for ratio estimators, which resemble the IS correction above.

Assumption 2. Suppose Assumption 1 holds, and let (Sk)k≥1, where Sk =
(
Ak, Bk

)
∈

R2, be conditionally independent given (Θk)k≥1, such that the distribution of Sk depends
only on the value of Θk, and

(i) fA(θ) := E[Ak | Θk = θ] satisfies πa(fA) = cwπm(g),
(ii) fB(θ) := E[Bk | Θk = θ] satisfies πa(fB) = cw, and

(iii) πa(m
(1)) <∞ where m(1)(θ) := E

[
|Ak|+ |Bk|

∣∣ Θk = θ
]
.

We record the following simple statement which guarantees consistency under As-
sumption 2.

Lemma 1. If Assumption 2 holds for some g ∈ L1(πm), then

En(g) :=

∑n
k=1 Ak∑n
j=1 Bj

n→∞−−−→
a.s.

πm(g).

The proof of Lemma 1 follows by observing that (Θk, Sk)k≥1 is Harris ergodic, where
Sk = (Ak, Bk), and the functions h1(θ, a, b) = a and h2(θ, a, b) = b are integrable with
respect to its invariant distribution π̌(dθ × ds) := πa(dθ)Q(θ, ds), where Q(θ, A) :=
P(Sk ∈ A | Θk = θ); see Lemma 24 in Appendix A.

In the latent variable model discussed in Section 2, the aim is inference over a joint
target density π(θ, x) := πm(θ)r(x | θ) on an extended state space T × X. For every
function f ∈ L1(π), we denote by f ∗(θ) :=

∫
r(x | θ)f(θ, x)dx the conditional expecta-

tion of f given θ, so π(f) = πm(f ∗). The following formalises a scheme which satisfies
Assumption 2 with g = f ∗ and therefore guarantees consistency for a class of functions
f ∈ L ⊂ L1(π).

Definition 2 (L-Proper weighting scheme). Suppose Assumption 1 holds, and let
(Pk)k≥1 be conditionally independent given (Θk)k≥1, such that the distribution of each

Pk = (Mk,W
(1:Mk)
k , X

(1:Mk)
k ) depends only on the value of Θk, where Mk ∈ N, W

(i)
k ∈ R

and X
(i)
k ∈ X. Define for any f ∈ L1(π),

ξk(f) :=

Mk∑

i=1

W
(i)
k f(Θk, X

(i)
k ).

Let L ⊂ L1(π) be all the functions for which

(i) µf (θ) := E[ξk(f) | Θk = θ] satisfies πa(µf ) = cwπ(f), and

(ii) πa(m
(1)
f ) <∞ where m

(1)
f (θ) := E

[
|ξk(f)|

∣∣ Θk = θ
]
.

If 1 ∈ L, then (W
(1:Mk)
k , X

(1:Mk)
k )k≥1 or equivalently (ξk)k≥1, form a L-proper weighting

scheme.

Remark 2. Regarding Definition 2:

(i) In case of non-negative weights, that is, W
(i)
k ≥ 0 almost surely, we have |ξk(1)| =

ξk(1), so f ≡ 1 ∈ L if and only if (i). Further, if (i) holds for both f and |f |, then
(ii) holds, because |ξk(f)| ≤ ξk(|f |).

(ii) When certain multilevel [37, 47] or debiasing methods [cf. 39, 71, 84] are applied,

W
(i)
k generally take also negative values. In such a case, an extra integrability

condition is necessary, and we believe (ii) is required for consistency in general.
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(iii) Note that L is closed under linear operations, that is, if a, b ∈ R and f, g ∈ L,
then af + bg ∈ L. This, together with L containing constant functions, implies
that if f ∈ L, then f̄ := f − π(f) ∈ L.

(iv) In fact, ξk may be interpreted as a random (signed) measure. Our results extend
also to such generalisation, which may be a useful interpretation for instance in
the context of Rao-Blackwellisation, where ξk could be mixtures of Gaussians.

The following consistency result is a direct consequence of Lemma 1.

Theorem 3. If (ξk)k≥1 form a L-proper weighting scheme, then the IS type estimator
is consistent, that is,

(3) En(f) :=

∑n
k=1 ξk(f)∑n
j=1 ξj(1)

n→∞−−−→ π(f), almost surely.

Let us next exemplify a ‘canonical’ setting of a proper weighting scheme, stemming
from standard unnormalised importance sampling.

Proposition 4. Suppose Assumption 1 holds and q(θ)( · ) defines a probability density
on X for each θ ∈ T and supp(π) ⊂ {(θ, x) : πa(θ)q

(θ)(x) > 0}. Let

X
(1:m)
k

i.i.d.∼ q(Θk), V
(i)
k :=

1

m
· cwπ(Θk, X

(i)
k )

q(Θk)(X
(i)
k )

and W
(i)
k :=

V
(i)
k

πa(Θk)
,

where cw > 0 a constant. Then, (W
(1:m)
k , X

(1:m)
k )k≥1 form a L1(π)-proper weighting

scheme.

When the weights are all positive, we record the following simple observations how a
proper weighting property is inherited in sub-sampling, which may be useful for instance
due to memory constraints.

Proposition 5. Suppose that (W
(1:Mk)
k , X

(1:Mk)
k )k≥1 forms a L-proper weighting scheme

with non-negative W
(1:Mk)
k ≥ 0 (a.s.). Let Wk :=

∑Mk

i=1W
(i)
k and let (Ik) be random

variables conditionally independent of (Θk, X
(i)
k ) such that P(Ik = i) = W

(i)
k /Wk (and

let Ik = 1 if Wk = 0). Then, (Wk, X
(Ik)
k )k≥1 forms a L-proper weighting scheme.

The sub-sampling estimator simplifies to

En(f) =

∑n
k=1Wkf(Θk, X

(Ik)
k )∑n

k=1Wk

.

We conclude by recording a complementary statement about convex combinations, al-
lowing to merge multiple proper sampling schemes.

Proposition 6. Suppose (ξk,j)k≥1 forms a L-proper weighting scheme for each j ∈
{1:N}, then, for any constants β1, . . . , βN ≥ 0 with

∑N
j=1 βj = 1, the convex combina-

tions ξk(f) :=
∑N

j=1 βjξk,j(f) form a L-proper sampling scheme.

5. Asymptotic variance and a central limit theorem

The asymptotic variance is a common efficiency measure for Markov chains, which
coincides with the limiting variance of related estimators in case a central limit theorem
(CLT) holds.
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Definition 3. Suppose the Markov chain (Θk)k≥1 on T has transition probability P
which is Harris ergodic with respect to invariant probability πa. For f ∈ L2(πa), the
asymptotic variance of f with respect to P is

Var(f, P ) := lim
n→∞

E
(

1√
n

n∑

k=1

[
f(Θ

(s)
k )− πa(f)

])2

,

whenever the limit exists in [0,∞], where (Θ
(s)
k )k≥1 stands for the stationary Markov

chain with transition probability P , that is, with Θ
(s)
1 ∼ πa.

In what follows, we denote by f̄(θ, x) = f(θ, x) − π(f) the centred version of any

f ∈ L1(π), and recall that if f ∈ L, then f̄ ∈ L. We also denote m
(2)
f (θ) := E[|ξk(f)|2 |

Θk = θ] for any f ∈ L. The proof of the following CLT is given in Appendix B.

Theorem 7. Suppose that the conditions of Theorem 3 are satisfied, and (Θk)k≥1 is

aperiodic. Let f ∈ L ∩ L2(π) and denote f̄(θ, x) := f(θ, x) − π(f). If πa(m
(2)

f̄
) < ∞

and either of the following hold:

(i) (Θk)k≥1 is reversible and Var(µf̄ , P ) <∞, or

(ii)
∑∞

n=1 n
−3/2

{
πm
([∑n−1

k=0 P
k(µf̄ )

]2)}1/2
<∞,

then, the estimator En(f) defined in (3) satisfies a CLT

√
n[En(f)− π(f)]

n→∞−−−→ N
(
0, σ2

f

)
, where σ2

f :=
Var(µf̄ , P ) + πa(v)

c2
w

in distribution, where v(θ) := Var
(
ξk(f̄)

∣∣ Θk = θ
)
.

Remark 8. In case of reversible chains, the condition in Theorem 7 (i) is essentially
optimal, and the CLT relies on a result due to Kipnis and Varadhan [58]. The con-
dition always holds when (Θk)k≥1 is geometrically ergodic, for instance (Θk)k≥1 is a
random-walk Metropolis algorithm and πa is light-tailed [53, 86]. In case (Θk)k≥1 is
sub-geometric, such as polynomial, extra conditions are required; see for instance [54].
The condition (ii) which applies for non-reversible chains is also nearly optimal, and
relies on a result due to Maxwell and Woodroofe [70]. See also the review on Markov
chain CLTs by Jones [55].

Note that the latter term πa(v) in the asymptotic variance expression contains the
contribution of the ‘noise’ in the IS estimates. If the estimators ξk(f) are made increas-
ingly accurate, in the sense that πa(v) becomes negligible, the limiting case corresponds
to an IS corrected approximate MCMC and calculating averages over conditional expec-
tations µf̄ (θ). We conclude by relating the asymptotic variance with a straightforward
estimator.

Theorem 9. Suppose f ∈ L ∩ L2(π) and πa(v) <∞ where v is defined in Theorem 7,

and also πa(m
(2)
1 ) <∞. Then, the estimator

vn :=

∑n
k=1

(
ξk(f)− ξk(1)En(f)

)2

(∑n
j=1 ξj(1)

)2

satisfies nvn → πa(v + µ2
f̄
)/c2

w almost surely as n→∞.
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Proof of Theorem 9 is given in Appendix B.
The estimator nvn in Theorem 9 provides a consistent estimate for the CLT variance

σ2
f/n when P corresponds to i.i.d. sampling, in which case Var(µf̄ , P ) = πa(µ

2
f̄
). Typ-

ically, Var(µf̄ , P ) ≥ πa(µ
2
f̄
) (which is always true when P is positive), and then nvn

provides a lower bound of the variance. It can provide useful information about the
importance sampling noise contribution, and may be used as an optimisation criteria
when adjusting the accuracy of the related estimators. Generic Markov chain asymp-
totic variance estimators (see, e.g., the review [32] and references therein) may also be
used with IS correction, by estimating the asymptotic variance of n−1

∑n
k=1 ξk(f) and

dividing it by [n−1
∑n

k=1 ξk(1)]2.

6. Jump chain estimators

Many MCMC algorithms such as the Metropolis-Hastings include an accept-reject
mechanism, which results in blocks of repeated values Θk = . . . = Θk+b. In the context
of IS type correction, and when the computational cost of each estimate ξk is high, it may
be desirable to construct only one estimator per each accepted state. To formalise such
an algorithm we consider the ‘jump chain’ representation of the approximate marginal
chain [cf. 19, 23, 27].

Definition 4 (Jump chain). Suppose that (Θk)k≥1 is Harris ergodic with respect to

πa. The corresponding jump chain (Θ̃k)k≥1 with holding times (Nk)k≥1 is defined as
follows:

Θ̃k := ΘN̄k−1+1 and Nk := inf
{
j ≥ 1 : ΘN̄k−1+j+1 6= Θ̃k

}
,

where N̄k :=
∑k

j=1Nj, and with N̄0 ≡ 0.

Remark 10. If (Θk)k≥1 corresponds to a Metropolis-Hastings chain, with non-diagonal
proposal distributions q (that is, q(θ, {θ}) = 0 for every θ ∈ T), then the jump chain
(Θ̃k) consists of the accepted states, and Nk− 1 is the number of rejections occurred at
state (Θ̃k).

Hereafter, we denote by α(θ) := P(Θk+1 6= Θk | Θk = θ) the overall acceptance prob-
ability at θ. We consider next the practically important ‘jump IS’ estimator, involving
a proper weighting for each accepted state.

Assumption 3. Suppose that Assumption 1 holds, and let (Θ̃k, Nk)k≥1 denote the
corresponding jump chain (Definition 4). Let (ξk)k≥1 be a L-proper weighting scheme,

where the variables (Mk,W
(1:Mk)
k , X

(1:Mk)
k ) in the scheme are now allowed to depend on

both Θ̃k and Nk, and the conditions (i) and (ii) in Definition 2 are replaced with the
following:

(i) E[ξk(f) | Θk = θ,Nk = n] = µf (θ) for all n ∈ N and πa(µf ) = cwπ(f),
(ii) πa(m̄

(1)) <∞ where m̄(1)(θ) := supn∈N E
[
|ξk(f)|

∣∣ Θk = θ,Nk = n
]
.

Theorem 11. Suppose Assumption 3 holds, then,

(4) En(f) :=

∑n
k=1Nkξk(f)∑n
j=1 Njξj(1)

n→∞−−−→
a.s.

π(f).

The proof follows from Lemma 1 because (Θ̃k) is Harris ergodic with invariant prob-
ability π̃a(θ) ∝ πa(θ)α(θ); see Proposition 27 in Appendix C. Furthermore, the holding
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times Nk ≥ 0 are, conditional on (Θ̃k), independent geometric random variables with
parameter α(Θ̃k) (Proposition 27), and therefore E[Nk | Θ̃k = θ] = 1/α(θ).

Remark 12. Regarding Assumption 3:

(i) Condition (ii) in Assumption 3 is practically convenient, because ξk are usually
chosen either as independent of Nk, or increasingly accurate in Nk (often taking
Mk proportional to Nk); see the discussion below. However, (ii) is not optimal:
it is not hard to find examples where the estimator is strongly consistent, even
though m̄(1)(θ) =∞ for some θ ∈ T.

(ii) In case each ξk is constructed as a mean of independent (ξk,1, . . . , ξk,Nk) (cf. Propo-
sition 6), the jump chain estimator coincides with the simple estimator discussed
in Section 5 (at jump times). However, the jump chain estimator offers more flex-
ibility, which may allow for variance reduction, for instance by using a single mNk

particle filter (cf. Section 8) instead of an average of Nk independent m-particle
filters, or by stratification or control variates.

(iii) Even though we believe that the estimators of the form (4) are often appropriate,
we note that in some cases Rao-Blackwellised lower-variance estimators of 1/α(Θ̃j)
may be used instead of Nk, as suggested in [23].

Let us finally consider a central limit theorem corresponding to the estimator in
Theorem 11, whose proof is given in Appendix C.

Theorem 13. Suppose Assumption 3 holds, (Θ̃k)k≥1 is aperiodic, f ∈ L ∩ L2(π),

(5) πa
(
αm̃(2)

)
<∞, where m̃(2)(θ) := E

[
N2
k |ξk(f̄)|2

∣∣ Θ̃k = θ
]
,

and one of the following holds:

(i) (Θk)k≥1 is reversible and Var(µf̄ , P ) <∞.
(ii) There exists g ∈ L2(πa) satisfying the Poisson equation g − Pg = µf̄ .

Then, the estimator En(f) in (4) satisfies
√
n
[
En(f)− π(f)

] n→∞−−−→ N(0, σ2) in distribution,

where the limiting variance can be given as:

σ2 =
πa(α)

c2
w

[
Var
(
µf̄ , P

)
+ πa(αṽ)

]
,(6)

where ṽ(θ) := E
[
N2
kVar

(
ξk(f̄)

∣∣ Θ̃k = θ,Nk

) ∣∣ Θ̃k = θ
]
.

Let us briefly discuss the conditions and implications of Theorem 13 under certain
specific cases. When the acceptance probability is bounded from below, infθ α(θ) > 0,
using a proper weighting ξk independent of Nk is ‘safe’, because

ṽ(θ) ≤ m̃(2)(θ) ≤ 2− α(θ)

α2(θ)
b(θ); b(θ) := sup

n≥1
E
[
|ξk(f̄)|2

∣∣ Θ̃k = θ,Nk = n
]
,

and so πa(b) <∞ guarantees (5). For example, if (Θk)k≥1 is L2-geometrically ergodic,
then the acceptance probability is (essentially) bounded away from zero [86], and g :=∑

k≥0 P
kµf̄ ∈ L2(πa) satisfies g − Pg = µf̄ , so that (ii) is satisfied.

When ξk corresponds to an average of i.i.d. ξk,1, . . ., ξk,Nk (cf. Proposition 6) which
do not depend on Nk,

Var
(
ξk(f̄)

∣∣ Θ̃k = θ,Nk

)
= v̂(θ)/Nk; v̂(θ) := Var

(
ξk,1(f̄)

∣∣ Θ̃k = θ).
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Then, πa(αṽ) = πa(v̂), which leads to an asymptotic variance that coincides with simple
IS correction (cf. Theorem 7).

Remark 14. In the non-reversible case, our CLT only applies when a solution g ∈ L2(πa)
to the Poisson equation g − Pg = µf̄ exists. We believe that the result holds more

generally, but this requires showing that the jump chain (Θ̃k)k≥1 inherits a central limit
theorem from the base chain (Θk)k≥1 under more general conditions.

7. Pseudo-marginal approximate chain

We next discuss how our limiting results still apply, in case the approximate chain is
a pseudo-marginal MCMC, as discussed in Section 2.2. Let us formalise next a pseudo-
marginal Markov chain (Θk,Φk)k≥1 on T × SΦ. Let Θ0 ∈ T and Φ0 ∈ SΦ such that
U(Φ0) > 0, and for k ≥ 1, iterate

(i) Generate Θ̃k ∼ q(Θk−1, · ) and Φ̃k ∼ Qa(Θ̃k, · ).
(ii) With probability min

{
1, U(Φ̃k)q(Θ̃k,Θk−1)

U(Φk−1)q(Θk−1,Θ̃k)

}
, accept and set (Θk,Φk) = (Θ̃k, Φ̃k);

otherwise reject and set (Θk,Φk) = (Θk−1,Φk−1).

Above, Qa(θ, · ) defines a (regular conditional) distribution on (a measurable space)
SΦ, and U : SΦ → R+ is a (measurable) function. Under the following condition,
the Markov chain (Θk,Φk)k≥1 is reversible with respect to the probability measure
π◦a(dθ, dφ) := dθQa(θ, dφ)U(φ)/ca, which admits the marginal πa(θ) [e.g. 6]:

Assumption 4. There exists a constant ca > 0 such that for each θ, the random
variable Φθ ∼ Qa(θ, · ) satisfies E[U(Φθ)] = caπa(θ).

In addition, (Θk,Φk)k≥1 is easily shown to be Harris ergodic under minimal conditions.
Let us consider next an abstract minimal condition which ensures consistency of an IS

type estimator. We discuss practically relevant sufficient conditions later in Proposition
17.

Assumption 5. Suppose Assumption 1 holds, (Θk,Φk)k≥1 is Harris ergodic, cm > 0 is a
constant, and let (Pk)k≥1 be conditionally independent given (Θk,Φk)k≥1, such that the

distribution of each Pk = (Mk, V
(1:Mk)
k , X

(1:Mk)
k ) depends only on (Θk,Φk), where Mk ∈

N, V
(i)
k ∈ R and X

(i)
k ∈ X. Define for any f ∈ L1(π), ζk(f) :=

∑Mk

i=1 V
(i)
k f(Θk, X

(i)
k ),

and let L ⊂ L1(π) stand for all the functions for which

(i)
∫∫

Qa(θ, dφ)I (U(φ) > 0)E[ζk(f) | Θk = θ,Φk = φ]dθ = cmπ(f), and
(ii)

∫∫
Qa(θ, dφ)I (U(φ) > 0)E

[
|ζk(f)|

∣∣ Θk = θ,Φk = φ
]
dθ <∞.

Proposition 15. Suppose Assumption 4 and 5 hold, and 1 ∈ L. Then, Theorem 3
holds with

ξk(f) :=

Mk∑

i=1

W
(i)
k f(Θk, X

(i)
k ) where W

(i)
k =

V
(i)
k

U(Φk)
.

The proof of Proposition 15 follows by noting a proper weighting scheme involving the
augmented approximate marginal distribution π◦a and target distribution π◦ (Lemma
16), and Theorem 3.

Lemma 16. Suppose the conditions of Proposition 15 hold. Then, ξk form a L◦-
proper weighting scheme, with L◦ := {f ◦(θ, φ, x) = f(θ, x) : f ∈ L}, in the sense of
Proposition 2, corresponding to
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(i) approximate marginal π◦a(dθ, dφ) = dθQa(θ, dφ)U(φ)/ca,
(ii) target π◦

(
(dθ, dφ), dx

)
which admits the marginal π(θ, x)dθdx.

Proof. For any f ◦ ∈ L◦ and φ ∈ SΦ, let νf (θ, φ) := E[ζk(f) | Θk = θ,Φk = φ]. Whenever
U(φ) > 0, define

µ◦f◦(θ, φ) := E[ξk(f
◦) | Θk = θ,Φk = φ] = νf (θ, φ)/U(φ),

and µ◦f◦(θ, φ) := 0 otherwise. We have

π◦a(µ
◦
f◦) = c−1

a

∫∫
Qa(θ, dφ)I (U(φ) > 0) νf (θ, φ)dθ = cwπ(f),

by Assumption 5 (i), where cw = cm/ca. We also have

m
◦(1)
f◦ (θ, φ) := E[ξk(f

◦) | Θk = θ, φk = φ] = |νf (θ, φ)|/U(φ),

so π◦a(m
◦(1)
f◦ ) <∞ by Assumption 5 (ii). �

Let us finally consider different conditions, which guarantee Assumption 5 (i); the
integrability Assumption 5 (ii) may be shown similarly.

Proposition 17. Assumption 5 (i) holds if one of the following hold:

(i) For πa-a.e. θ ∈ T, U(Φθ) > 0 a.s. and

(7) E[ζk(f) | Θk = θ] = cmπm(θ)f ∗(θ),

where E[ζk(f) | Θk = θ] =
∫
Qa(θ, dφ)E[ζk(f) | Θk = θ,Φk = φ].

(ii) ζk only depend on Θk, and for πa-a.e. θ ∈ T,

E[ζk(f) | Θk = θ] = cmπm(θ)f ∗(θ)/p(θ),

where p(θ) := P(U(Φθ) > 0) with Φθ ∼ Qa(θ, · ).
(iii) For πa-a.e. θ ∈ T (7) holds, and U(φ) = 0 implies E[ζk(f) | Θk = θ,Φk = φ] = 0.

Proof. Note that (i) implies (iii), under which

∫∫
Qa(θ, dφ)I (U(φ) > 0) νf (θ, φ)dθ = cm

∫
πm(θ)f ∗(θ)dθ = cmπ(f),

where νf (θ, φ) = E[ζk(f) | Θk = θ,Φk = φ].
In case of (ii), we have νf (θ, φ) = E[ζk(f) | Θk = θ] and so

∫
Qa(θ, dφ)I (U(φ) > 0) νf (θ, φ) = cmπm(θ)f ∗(θ). �

Remark 18. Proposition 17 (i) is the most straightforward in the latent variable context,
and often sufficient, since we may choose a positive U(φ) (e.g. by considering inflated
Ũ((φ) = U(φ) + ε instead). Proposition 17 (ii) may be used directly to verify the
validity of an MCMC version of the lazy ABC algorithm [81]. It also demonstrates why
positivity plays a key role: if only (7) is assumed and p(θ) is non-constant, then p(θ)
must be accounted for, or else we end up with biased estimators targeting a marginal
proportional to πm(θ)p(θ). Proposition 17 (iii) demonstrates that strict positivity is
not necessary, but in this case a delicate dependency structure is required.
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8. General state space models and sequential Monte Carlo

State space models (SSM) are latent variable models which are commonly used in
time series analysis [cf. 12]. In the setting of Section 2, SSMs are parametrised by θ ∈ T,
and x = z1:T ∈ X = STz and y = y1:T ∈ Y = STy , and

µ(θ)(x) =
T∏

t=1

µ
(θ)
t (zt | zt−1) and g(θ)(y | x) =

T∏

t=1

g
(θ)
t (yt | zt),

where, by convention, µ
(θ)
1 (z1 | z0) := µ

(θ)
1 (z1). That is, the latent states Z1:T form

a Markov chain with initial density µ
(θ)
1 and state transition densities µ

(θ)
t , and the

observations Y1:T are conditionally independent with Yi ∼ g
(θ)
t ( · | Zt).

This section reviews general techniques to generate random variables V
(1:m)
θ and

X
(1:m)
θ for which ζθ(h) :=

∑m
i=1 V

(i)
θ h(X(i)) satisfy:

E[ζθ(h)] =

∫
p(θ)(z1:T , y1:T )h(z1:T )dz1:T .(8)

for any θ and for some class of functions h : STz → R. These random variables may be
used in order to construct a proper weighting; see Corollary 21 below.

Simple IS correction may be applied directly (see Proposition 4). Note that (8) is
satisfied for all integrable h, so L = L1(π). It is often useful to combine such schemes
as in Proposition 6, allowing for instance variance reduction by using pairs of antithetic
variables [29].

For the rest of the section, we focus on the particle filter (PF) algorithm [43]; see also
the monographs [12, 16, 24]. We consider a generic version of the algorithm, with the
following components [cf. 16]:

(i) Proposal distributions: M1 is a probability density on Sz and Mt( · | z1:t−1) defines
conditional densities on Sz given z1:t−1 ∈ St−1

z .
(ii) Potential functions: Gt : Stz → R+.
(iii) Resampling laws: Res( · | ω̄(1:m)) defines a probability distribution on {1:m}m for

every discrete probability mass ω̄(1:m).

The following two conditions are minimal for consistency:

Assumption 6. Suppose that the following hold:

(i)
∏T

t=1Mt(zt | z1:t−1)Gt(z1:t) = p(θ)(z1:T , y1:T ) for all z1:T ∈ STz .
(ii) E

[∑m
i=1 I (A(i) = j)

]
= mω̄(j), where A(1:m) ∼ Res( · | ω̄(1:m)), for any j ∈ {1:m}

and any probability mass vector ω̄(1:m).

Assumption 6 (i) holds with traditionally used ‘filtering’ potentials Gt(z1:t) := g
(θ)
t (yt |

zt)µ
(θ)
t (zt | zt−1)/Mt(zt | z1:t−1), assuming a suitable support condition. We discuss

another choice of Mt and Gt in Section 9, inspired by the ‘twisted SSM’ approach of
[45]. It allows a ‘look-ahead’ strategy based on approximations of the full smoothing
distributions q(θ)(z1:T | y1:T ). Assumption 6 (ii) allows for multinomial resampling,

where A
(i)
t are independent draws from ω̄

(1:m)
t , but also for lower variance schemes,

including stratified, residual and systematic resampling methods [cf. 22].
Below, whenever the index ‘i’ appears, it takes values i = 1, . . . ,m.

Algorithm 1 (Particle filter). Initial state:
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(i) Sample Z
(i)
1 ∼M1 and set Z̄

(i)
1 = Z

(i)
1 .

(ii) Calculate ω
(i)
1 := G1(Z

(i)
1 ) and set ω̄

(i)
1 := ω

(i)
1 /ω∗1 where ω∗1 =

∑m
j=1 ω

(j)
1 .

For t = 2, . . . , T , do:

(ii) Sample A
(1:m)
t−1 ∼ Res( · | ω̄(1:m)

t−1 ).

(iii) Sample Z
(i)
t ∼Mt( · | Z̄

(A
(i)
t−1)

t−1 ) and set Z̄
(i)
t = (Z̄

(A
(i)
t−1)

t−1 , Z
(i)
t ).

(iv) Calculate ω
(i)
t := Gt(Z̄

(A
(i)
t−1)

t−1 , Zt) and set ω̄
(i)
t := ω

(i)
t /ω

∗
t where ω∗t =

∑m
j=1 ω

(j)
t .

Remark 19. If ω∗t = 0, then Algorithm 1 is terminated immediately, and all the estima-
tors considered (cf. Proposition 20) equal zero.

The following result summarises alternative ways how the random variables

(V
(1:m)
θ , X

(1:m)
θ ) may be constructed from the PF output, in order to satisfy (8). The

results stated below are scattered in the literature [e.g. 16, 79], and some may be
stated under slightly more stringent conditions, but a self-contained and concise proof
of Proposition 20 may be found in [99].

Proposition 20. Let θ ∈ T be fixed, assume Res, Mt and Gt satisfy Assumption 6,
and let h : STz → R be such that the integral in (8) is well-defined and finite. Consider

the random variables generated by Algorithm 1, and let U :=
∏T

t=1

(
1
m
ω∗t
)
. Then,

(i) the random variables (V
(1:m)
θ , X

(1:m)
θ ) where V

(i)
θ = Uω̄

(i)
T and X

(i)
θ = Z̄

(i)
T satisfy

(8).

Suppose in addition that Mt(zt | z1:t−1)Gt(z1:t) = Ct(zt−1:t) for all t ∈ {1:T} and all
z1:T ∈ STz . Define for t ∈ {2:T}, and any it, it−1 ∈ {1:m}, the backwards sampling
probabilities

bt−1(it−1 | it) :=
ω̄

(it−1)
t−1 Ct(Z

(it−1)
t−1 , Z

(it)
t )

∑m
`=1 ω̄

(`)
t−1Ct(Z

(`)
t−1, Z

(it)
t )

, and bT (iT | iT+1) = ω̄
(iT )
T .

(ii) Let I1:T be random indices generated recursively backwards by IT ∼ bT and It ∼
bt( · | It+1). The random variables (V

(1)
θ , X

(1)
θ ) satisfy (8), where V

(1)
θ = U and

X
(1)
θ = Z

(I1:T )
1:T .

(iii) If h(z1:T ) = ĥ(zt−1, zt) for some t ∈ {2:T}, that is, h is constant in all coordinates

except t − 1 and t, then, the random variables (V
(1:m,1:m)
θ , X

(1:m,1:m)
θ ) satisfy (8)

(with ĥ on the left), where

(a) X
(i,j)
θ := (Z

(i)
t−1, Z

(j)
t ),

(b) V
(i,j)
θ := Ubt−1(i | j)ω̂(j)

t , and where

(c) ω̂
(i)
T := ω̄

(i)
T and ω̂

(i)
t :=

∑m
k=1 ω̂

(k)
t+1bt(i | k) for t = T − 1, . . . , t.

(iv) If h(z1:T ) = ĥ(zt) for some t ∈ {1:T}, then the random variables (V
(1:m)
θ , X

(1:m)
θ )

satisfy (8) (with ĥ on the left), where X
(i)
θ = Z

(i)
t and V

(i)
θ = Uω̂

(i)
t are defined in

(iiic).

The estimator in Proposition 20 (i) was called the filter-smoother in [59]. This prop-
erty was shown in [16, Theorem 7.4.2] in case of multinomial resampling, and extended
later [cf. 2]. The statement holds also when the PF is applied with a general sequence
of distributions rather than the SSM [16]. Proposition 20 (ii) corresponds to backwards
simulation smoothing [41]. Drawing a single backward trajectory is, perhaps surpris-
ingly, probabilistically equivalent to subsampling one trajectory from the filter-smoother
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estimate in Proposition 20 (i) [26]. However, drawing several trajectories independently
as in Proposition 20 (ii) may lead to lower variance estimators. Proposition 20 (iii) and
its special case (iv) correspond to the forward-backward smoother [25]; see also [12]. It
is a Rao-Blackwellised version of (ii), but applicable only when considering estimates
of a single marginal (pair). This scheme can lead to lower variance, but its square
complexity in m makes it inefficient with large m.

We next formally state how Proposition 20 allows to use Algorithm 1 to derive a
proper weighting scheme.

Corollary 21. Let (Θk)k≥1 be a Markov chain which is Harris ergodic with respect to

πa. Suppose each (V
(1:m)
k , X

(1:m)
k ) corresponds to an independent run of Algorithm 1 with

θ = Θk, as defined in Proposition 20 (i), (ii), (iii) or (iv). Then, (W
(1:m)
k , X

(1:m)
k )k≥1

with W
(i)
k := pr(θk)V

(i)
k /πa(θk) provide a proper weighting scheme for target distribu-

tion π(θ, x1:T ) = p(θ, x1:T | y1:T ) (Definition 2), for the following classes of functions,
respectively:

(i) L = L1(π), (iii) L = {f ∈ L1(π) : f(θ, x1:T ) = f̂(θ, xt−1:t)},
(ii) L = L1(π), (iv) L = {f ∈ L1(π) : f(θ, x1:T ) = f̂(θ, xt)}.

In case (Θk, Uk)k≥1 is a pseudo-marginal algorithm, Wk := pr(θk)V
(i)
k /Uk.

Remark 22. The latter two cases in Corollary 21 are stated for a single marginal (pair),
but it is clear that we may calculate estimates simultaneously for several marginal
(pairs), so that Proposition 20 (iii) is applicable for every function which is of the form∑T−1

t=1 ft(θ, xt:t+1) and Proposition 20 (iv) for a function of the form
∑T

t=1 ft(θ, xt). See
also the general discussion of smoothing functionals in [12, §4.1.2].

We state finally an implication of Proposition 20 outside the main focus of this paper,
in general SSM smoothing context (with fixed θ). This result is widely known among
particle filtering experts, but appears not to be widely adopted.

Proposition 23. Suppose θ ∈ T is fixed, and let (V
(1:m)
k , X

(1:m)
k )k≥1 correspond to

independent realisations of random variables defined in Proposition 20.

(i) If the conditions of Proposition 20 are satisfied, then the estimator

En(h) :=

∑n
k=1 ζk(h)∑n
j=1 ζj(1)

n→∞−−−→
a.s.

µh :=

∫
p(θ)(x1:T | y1:T )h(x1:T )dx1:T .

(ii) If also σ2
∗ := E

[
|ζ1(h̄)|2

]
<∞, where h̄ = h− µh, then

√
n
[
En(h)− µh

] n→∞−−−→
d

N(0, σ2), where σ2 :=
σ2
∗

p(θ)(y1:T )2
.

(iii) If in addition E
[
|ζ1(1)|2] <∞, then nvn → σ2, almost surely, where

vn :=

∑n
k=1

(
ζk(h)− ζk(1)En(h)

)2

(∑n
j=1 ζk(1)

)2 .

Proof is similar to Theorem 9 in Appendix B.
The estimator En(h) in Proposition 23 is an importance sampling analogue of the

particle independent Metropolis-Hastings (PIMH) algorithm suggested in [2]. Unlike
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the PIMH, calculation of En(h) is parallelisable, and allows for straightforward consis-
tent confidence intervals

[
En(f)±β√vn

]
, where β corresponds to the desired standard

Gaussian quantile. Calculation of consistent confidence intervals for a single realisa-
tion of a particle smoothing algorithm requires sophisticated techniques [63]. Another
promising method recently suggested in [50] relies on unbiased estimators obtained by
coupling of conditional sequential Monte Carlo and debiasing tricks as in [39, 71, 84].

9. State space models with linear-Gaussian state dynamics

We consider a special case of the general SSM in Section 8, where both Sz and Sy
are Euclidean and µ

(θ)
t are linear-Gaussian, but the observation models g

(θ)
t may be

non-linear and/or non-Gaussian, taking the form

g
(θ)
t (yt | zt) = η

(θ)
t (yt | H(θ)

t zt).

Our setting covers exponential family observation models with Gaussian, Poisson, bi-
nomial, negative binomial, and Gamma distributions, and a stochastic volatility model.
This class contains a large number of commonly used models, such as structural time se-
ries models, cubic splines, generalised linear mixed models, and classical autoregressive
integrated moving average models.

9.1. Marginal approximation. The scheme we consider here is based on [28, 90],

and relies on a Laplace approximation p
(θ)
a (z1:T , ỹ

(θ)
1:T ) = µ(θ)(z1:T )g̃(θ)(ỹ

(θ)
1:T | z1:T ), where

g̃(θ)(ỹ
(θ)
1:T | z1:T ) :=

∏T
t=1 g̃

(θ)
t (ỹ

(θ)
t | zt). The linear-Gaussian terms g̃t approximate gt in

terms of pseudo-observations ỹ
(θ)
t and pseudo-covariances R

(θ)
t , which are found by an

iterative process, which we detail next for a fixed θ. Denote D
(n)
t (zt) := ∂n

∂nzt
log η

(θ)
t (yt |

zt), and assume that z̃1:T is an initial estimate for the mode ẑ
(θ)
1:T of p(θ)(z1:T | y1:T ).

following:

(i) R
(θ)
t = −[D

(2)
t (H

(θ)
t z̃t)]

−1 and ỹ
(θ)
t = H

(θ)
t z̃t +R

(θ)
t D

(1)
t (H

(θ)
t z̃t)

(ii) Run the Kalman filter and smoother for the model with g
(θ)
t (yt | zt) replaced by

g̃
(θ)
t (ỹ

(θ)
t | zt) = N(ỹ

(θ)
t ;H

(θ)
t zt, R

(θ)
t ) and set z̃1:T to the smoothed mean.

These steps are then repeated until convergence, which typically take less than 10
iterations [29].

Consider the following decomposition of the marginal likelihood:

(9) L(θ) = L̃a(θ)
g(θ)(y1:T | ẑ(θ)

1:T )

g̃(θ)(ỹ
(θ)
1:T | ẑ

(θ)
1:T )

E

[
g(θ)(y1:T | Z1:T )/g(θ)(y1:T | ẑ(θ)

1:T )

g̃(θ)(ỹ
(θ)
1:T | Z1:T )/g̃(θ)(ỹ

(θ)
1:T | ẑ

(θ)
1:T )

]
,

where L̃a(θ) :=
∫
p

(θ)
a (z1:T , ỹ

(θ)
1:T )dz1:T is the marginal likelihood (from the Kalman filter),

and the expectation is taken with respect to the approximate smoothing distribution

p
(θ)
a (z1:T | ỹ(θ)

1:T ) = p
(θ)
a (z1:T , ỹ

(θ)
1:T )/L̃a(θ). If the pseudo-likelihoods g̃

(θ)
t are nearly propor-

tional to the true likelihoods g
(θ)
t around the mode of p

(θ)
a (z1:T | y1:T ), the expectation

in (9) is close to one. Our approximation is based on dropping the expectation in (9):

La(θ) := L̃a(θ)g
(θ)(y1:T | ẑ1:T )/g̃(θ)(ỹ

(θ)
1:T | ẑ1:T ). The same approximate likelihood La(θ)

was also used in a maximum likelihood setting by [31] as an initial objective function
before more expensive importance sampling based maximisation was done.
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The evaluation of the approximation La(θ) above requires a reconstruction of the
Laplace approximation for each value of θ. We call this local approximation, and con-
sider also a faster global approximation variant, where the pseudo-observations and
covariances are constructed only once, at the maximum likelihood estimate of θ.

9.2. Proper weighting schemes. The simplest approach to construct a proper
weighting scheme based on the Laplace approximations is to use the approximate

smoothing distribution p
(θ)
a (z1:T | y1:T ) as IS proposal. Such a scheme using the simula-

tion smoother [30] antithetic variables, we call SPDK, following [90].
We consider also several variants ofMt andGt in the particle filter discussed in Section

8. The bootstrap filter [43], abbreviated as BSF, uses Mt = µ
(θ)
t and Gt = g

(θ)
t (yt | · ),

and hence does not rely on an approximation. Inspired by the developments in [45, 101],
we consider also the choice

Mt(zt | z1:t−1) = p(θ)
a (zt | zt−1, y1:T ), and Gt(z1:t) = g

(θ)
t (yt | zt)/g̃(θ)

t (ỹt | zt),
where p

(θ)
a (zt | zt−1, y1:T ) = p

(θ)
a (zt | z1:t−1, y1:T ) are conditionals of p

(θ)
a (z1:T | y1:T ).

This would be optimal in our setting if the Gt were constants [45]. As they are often
approximately so, we believe that this choice, which we call ψ-APF following [45], can
provide substantial benefits over BSF.

10. Discretely observed diffusions

In many applications, for instance in finance or physical systems modelling, the SSM
state transitions arise naturally from a continuous time diffusion model, such as

dZ̃t = m(θ)(t, Z̃t)dt+ σ(θ)(t, Z̃t)dBt,

where Bt is a (vector valued) Brownian motion and where m(θ) and σ(θ) are functions
(vector and matrix valued, respectively). The latent variables X = (Z1, . . . , ZT ) are

assumed to follow the law of (Z̃t1 , . . . , Z̃tT ), so µ
(θ)
k would ideally be the transition

densities of Z̃tk given Z̃tk−1
. These transition densities are generally unavailable (for non-

linear diffusions), but standard time-discretisation schemes allow for straightforward
approximate simulation [cf. 60]. The denser the time-discretisation mesh used, the less
bias introduced. However, the computational complexity of the simulation is higher —
generally proportional to the size of the mesh.

The MCMC-IS may be applied to speed up the inference of discretely observed dif-

fusions by the following simple two-level approach. The ‘true’ state transition µ
(θ)
t are

based on ‘fine enough’ discretisations, which are assumed to ensure a negligible bias,
but which are expensive to simulate. Cheaper ‘coarse’ discretisation corresponds to

transitions µ̂
(θ)
t .

Because neither of the models admit exact calculations, we may only use a pseudo-
marginal approximate chain as discussed in Sections 2.2 and 7). More specifically,

we may use the bootstrap filter (Section 8) with SSM (µ̂
(Θ̃k)
t , g

(Θ̃k)
t ) to generate the

likelihood estimators Ũk in Phase 1’, and in Phase 2’, we may use bootstrap filters for

SSM (µ
(Θk)
t , g

(Θk)
t ) to generate (V

(i)
k , X

(i)
k ).

Assuming that the observation model satisfies g
(θ)
t > 0 guarantees the validity of this

scheme, because then Ũk > 0 (see Proposition 17 (i)). It is most straightforward to sim-
ulate the bootstrap filters in Phases 1’ and 2’ independent of each other, but they may
be made dependent as well, by using a coupling strategy [cf. 89]. The correction phase
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could be also based on exact sampling for diffusions [10], which allow for elimination of
the discretisation bias entirely.

The recent work [34] details how unbiased inference is also possible with IS type
correction, using randomised multilevel Monte Carlo.

11. Experiments

We did experiments for our generic framework with SSMs, using Laplace approxima-
tions (Section 9) and an approximation based on coarsely discretised diffusions (Section
10). We compared several approaches in our experiments:

AI: Approximate inference with MCMC targeting πa(θ), and for each accepted
Θ̃k, sampling one realisation from p̃(Θk)(z1:T | y1:T ).

PM: Pseudo-marginal MCMC with m samples targeting directly π(θ, x).
DA: Two-level delayed acceptance pseudo-marginal MCMC with first stage ac-

ceptance based on πa(θ) and with target π(θ, x).
IS1: Jump chain IS correction with mNk samples for each accepted Θ̃k.
IS2: Jump chain IS correction with m samples for each accepted Θ̃k.

The IS1 algorithm is similar to simple IS estimator (1), but is expected to be generally
safer; see Remark 12 (ii). Except for AI, all the algorithms are asymptotically exact.
Ignoring the effects of parallel implementation, the average computational complexity,
or cost, of DA and IS2 are roughly comparable, and we have similar pairing between
PM and IS1. However, as the weighting in IS methods is based only on the post-burn-in
chain, the IS methods are generally somewhat faster.

We used a random walk Metropolis algorithm for πa with a Gaussian proposal dis-
tribution, whose covariance was adapted during burn-in following [97], targeting the
acceptance rate 0.234. In DA, the adaptation was based on the first stage acceptance
probability.

All the experiments were conducted in R [83] using the bssm package which is available
online [48]. The experiments were run on a Linux server with eight octa-core Intel Xeon
E7-8837 2.67GHz processors with total 1TB of RAM.

In each experiment, we calculated the Monte Carlo estimates several times indepen-
dently, and the inverse relative efficiency (IRE) was reported. The IRE, defined as the
mean square error (MSE) of the estimate multiplied by the average computation time,
provides a justified way to compare Monte Carlo algorithms with different costs [40].

Further details and results of the experiments may be found in the preprint version
of our article [99].

11.1. Laplace approximations. In case of Laplace approximations, the maximum
likelihood estimate of θ was always used as the starting value of MCMC. We used
sub-sampling as in Proposition 5, and sampled one trajectory Z1:T per each accepted
state. We tested the exact methods with three different IS correction schemes, SPDK,
BSF and ψ-APF, described in Section 9.2. For BSF and ψ-APF, the filter-smoother
estimates as in Proposition 20 (i) were used. When calculating the MSE, we used the
average over all estimates from all unbiased algorithms as the ground truth.

For all the exact methods, we chose the IS accuracy parameter m based on a pilot
experiment, following the guidelines for optimal tuning of pseudo-marginal MCMC in
[27]. More specifically, m was set so that the standard deviation of the logarithm of
the likelihood estimate, denoted with δ, was around 1.2 in the neighbourhood of the
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Table 1. IREs for the Poisson model, with local (top) and global (bot-
tom) approximations. Times are in seconds. For PM-BSF, IREs are one
and time 676s.

BSF SPDK ψ-APF

AI DA IS1 IS2 PM DA IS1 IS2 PM DA IS1 IS2

Time 54 281 600 166 78 61 71 53 115 78 83 62

ση 0.039 0.721 0.535 0.336 0.060 0.047 0.056 0.042 0.082 0.068 0.065 0.049
σξ 0.042 0.676 0.537 0.278 0.064 0.052 0.059 0.044 0.091 0.068 0.069 0.051
u1 0.561 0.911 0.609 0.406 0.063 0.055 0.057 0.042 0.097 0.071 0.076 0.053
u100 1.211 1.049 0.623 0.441 0.072 0.059 0.067 0.052 0.106 0.075 0.074 0.060

Time 11 235 549 120 35 17 28 10 72 34 38 19

ση 0.012 0.596 0.476 0.218 0.025 0.013 0.022 0.008 0.052 0.028 0.030 0.015
σξ 0.052 0.564 0.530 0.197 0.029 0.015 0.025 0.009 0.061 0.031 0.034 0.017
u1 0.085 0.779 0.527 0.273 0.027 0.016 0.023 0.009 0.056 0.030 0.033 0.015
u100 0.333 0.804 0.563 0.305 0.034 0.016 0.027 0.010 0.068 0.034 0.036 0.019

posterior mean of θ. We kept the same m for all methods, for comparability, even
though in some cases optimal choice might differ [91].

11.1.1. Poisson observations. Our first model is of the following form:

g
(θ)
t (yt | zt) = Poisson(yt; e

ut), and

(
ut+1

vt+1

)
=

(
ut + vt + σηηt
vt + σξξt

)
,

with Z1 = (U1, V1) ∼ N(0, 0.1I), where ξt, ηt ∼ N(0, 1). For testing our algorithms, we
simulated a single set of observations y1:100 from this model with Z1 = (0, 0) and θ =
(ση, σξ) = (0.1, 0.01). We used a uniform prior U(0, 2s) for the parameters, where the
cut-off parameter s was set to 1.6 based on the sample standard deviation of log(y1:T ),
where zeros were replaced with 0.1. Results were not sensitive to this upper bound.

Based on a pilot optimisation, we set m = 10 for SPDK and ψ-APF, leading to
δ ≈ 0.1, and m = 200 for BSF with δ ≈ 1.2. For all algorithms, we used 100,000
MCMC iterations with the first half discarded as burn-in. We ran all the algorithms
independently 1000 times.

Table 1 shows the IREs, which are re-scaled such that all IREs of PM-BSF equal
one. The overall acceptance rate of DA-BSF was around 0.104, and 0.234 for
all others. All exact methods led to essentially the same overall mean estimate
(0.093, 0.016,−0.075, 2.618–2.619) for (ση, σξ, u1, u100), in contrast with AI showing
some bias on (u1, u100), with overall mean estimates (−0.064, 2.629) and (−0.065, 2.631)
with local and global approximation, respectively. IS2-BSF outperformed DA-BSF by
about a factor of two in terms of IRE, because of the burn-in benefit. Similarly, IS1-
BSF outperformed PM-BSF by a clear margin. With SPDK and ψ-APF, the IS1 and
IS2 outperformed the PM and DA alternatives, but with a smaller margin because of
smaller overall execution times. There were no significant differences between the SEs
of local and global variants, but the global one was faster leading to smaller IREs.

11.1.2. Stochastic volatility model. Our second illustration is more challenging, involv-
ing analysis of real time series: the daily log-returns for the S&P index from 4/1/1995
to 28/9/2016, with total number of observations T = 5473. The data was analysed
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Table 2. IREs for SV model. Times are in hours. AIG is with global
approximation and IS28 is with 8 parallel cores. For DA-BSF, IREs are
one and time 46.3h.

BSF SPDK ψ-APF

AI AIG IS2 IS28 PM DA IS1 IS2 PM DA IS1 IS2

Time 1.3 0.2 25.2 4.6 4.4 1.9 2.8 1.5 2.4 1.4 1.5 1.3

φ 0.083 0.062 0.304 0.050 1.015 0.696 0.684 0.483 0.021 0.024 0.009 0.017
ση 0.726 0.298 0.483 0.096 3.090 3.307 0.603 0.710 0.044 0.055 0.016 0.028
ν 0.008 0.747 0.287 0.042 1.208 2.544 0.228 0.404 0.026 0.027 0.010 0.020
Z1 0.133 0.035 0.321 0.071 3.054 1.883 0.346 0.373 0.029 0.026 0.007 0.018
Z5473 1.887 0.417 0.540 0.112 6.574 1.871 0.444 0.810 0.057 0.064 0.012 0.039

using the following stochastic volatility (SV) model:

Yt | Zt ∼ N(0, eZt), Zt+1 | Zt ∼ N(ν + φ(Zt − ν), σ2
η),

with Z1 ∼ N(ν, σ2
η/(1 − φ2)). We used a uniform prior on [−0.9999, 0.9999] for φ, a

half-Gaussian prior with standard deviation 5 for ση, and a zero-mean Gaussian prior
with standard deviation 5 for ν. SPDK was expected to be problematic, due to its
well-known exponential deterioration in T , unlike the particle filter which often scales
much better in T [100]. In addition, it is known that for this particular model, the
importance weights may have large variability [61, 80]. While in principle ψ-APF may
also be affected by such fluctuations, we did not observe any problems with it in our
experiments.

Based on our pilot experiment, we chose m = 10 for ψ-APF, m = 70 for SPDK
and m = 300 for BSF, which all led to δ ≈ 1.1. We used 100,000 MCMC iterations
with the first half discarded as burn-in, and 100 independent replications. the IREs
re-scaled here with respect to DA-BSF are shown in Table 2. The PM and IS1 were not
tested because of their high costs. The results with global approximation are shown
only for AI, and indicate significant computational savings. The parallelisation with 8
cores dropped the execution time nearly ideally. The total acceptance rates were 0.1
for DA-BSF, PM-SPDK and DA-ψ-APF, 0.06 for DA-SPDK, and 0.15 for PM-ψ-APF.

Like in the Poisson experiment, the overall means of the exact methods were close
to each other, but AI had some bias, this time also with some of the hyperparameters
(ση and ν). The IS1 and IS2 methods outperformed the PM and DA methods similarly
as in the Poisson experiment. Due to a much smaller m, the DA-SPDK and DA-ψ-
APF were an order of magnitude faster than DA-BSF. Diagnostics from the individual
runs of PM-SPDK and DA-SPDK sometimes showed poor mixing, and despite the
large reductions in execution time, the IREs were worse than PM-BSF. We observed
also cases with a few very large correction weights in IS1-SPDK and IS2-SPDK, which
had some impact also on their efficiencies. The SEs of DA-ψ-APF were comparable
with the DA-BSF. We did not experience problems with mixing or overly large weights
with ψ-APF, which suggests ψ-APF being more robust than SPDK. There were no
significant differences in the SEs between the exact methods when using the local and
global approximation schemes.

11.2. Discretely observed Geometric Brownian motion. Our last experiment
was about a discretely observed diffusion as discussed in Section 10. The model was a
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geometric Brownian motion, with noisy log-observations:

dZ̃t = νZ̃tdt+ σzZ̃tdBt, Yk | (Zk = z) ∼ N(log(z), σ2
y),

with Z̃0 ≡ 1, where (Bt)t≥1 stands for the standard Brownian motion, and where

Zk = Z̃k. The discretisations µ
(θ)
t and µ̂

(θ)
t were based on a Milstein discretisation with

uniform meshes of sizes 2LF and 2LC , respectively, with LC = 4 and LF = 16, reflected
to positive values. We did not consider optimising LC and LF , but rather aimed for
illustrating the potential gains for the IS2 algorithm from parallelisation. The data
was a single simulated realisation of length 50 from the exact model, with ν = 0.05,
σx = 0.3, and σy = 1. We used a half-Gaussian prior with s.d. 0.1 for ν, a half-Gaussian
prior with s.d. 0.5 for σx, and N(1.5, 0.52) prior truncated to > 0.5 for σy. For both
IS2 and DA, and both levels, we used m = 50 which led to δ ≈ 0.6.

Assuming a unit cost for each step in the BSF, the total average cost of a parallel IS2
run is n2LC +α(n−nb)2LF /M , where α is the mean acceptance rate of the approximate
MCMC, nb is the length of burn-in and M is the number of parallel cores used for the
weighting. We chose n = 5000, nb = 2500, M = 48, and the target acceptance rate
α = 0.234, leading to an expected 43-fold speed-up due to the parallelisation of IS2.

Single run of DA cannot be easily parallelised, but we ran instead multiple inde-
pendent DA chains in parallel, and averaged their outputs for inference. While such
parallelisation may not be optimal, it allows for utilisation of all of the available compu-
tational resources. The running time of each DA chain was constrained to be similar to
the time required by IS2, leading to n = 100 with nb = 50. Because of the short runs, we
suspected that initial bias could play a significant role, which was explored by running
two experiments, with MCMC initialised either to the prior mean θ0 = (0.08, 0.4, 1.5), or
to an independent sample from the prior. We experimented also with further thinning,
by forming the IS2 correction based on every other accepted state.

Table 3 summarises the results from 100 replications. The run time of the parallel DA
algorithms was defined as the maximum run time of all parallel chains. The paralleli-
sation speedup of IS2 was nearly optimal, as well as the further speedup from thinning.
The SEs with prior mean initialisation were similar between DA and IS2, but DA pro-
duced slightly biased results, leading to 9.5 to 13.0 times higher IREs. The efficiency
gains of thinning were inconclusive, indicating some gains for the hyperparameters θ,
but not for the state variables. The smaller memory requirements and smaller absolute
time requirements for the thinning make it still appealing. With prior sample initial-
isation, DA behaved sometimes poorly, in contrast with IS2 which behaved similarly
with both initialisation strategies.

11.3. Summary of results. In our experiments with Laplace approximations, IS1 and
IS2 were competitive alternatives to PM and DA, respectively, even without paralleli-
sation. The differences were more emphasised when the cost of correction (number of
samples m) was higher. The ψ-APF was generally preferable over SPDK, and BSF was
the least efficient. The global approximation gave additional performance boost in our
experiments, without compromising the accuracy of the estimates, but we stress that
it may not be stable in all scenarios.

As noted earlier, the use of the guidelines by [27] were not necessarily optimal in our
setting. We did an additional experiment to inspect how the choice of m affects the
IRE with BSF in the Poisson model, and with ψ-APF in the SV model. Figure 1 shows
the average IREs as a function of m. Both IS2 and DA behaved similarly, and IS2 was
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Table 3. Results for the geometric Brownian motion experiment using
48 cores. IS2t is with thinning, and time is in minutes. Ground truth
(GT) was calculated with MCMC using exact latent inference.

Mean IRE

Init. Prior mean Prior sample Prior mean Prior sample

GT DA IS2 IS2t DA IS2 DA IS2 IS2t DA IS2

Time — 12.3 3.4 1.9 14.0 3.3 12.3 3.4 1.9 14.0 3.3

ν 0.053 0.061 0.053 0.053 0.064 0.053 0.069 0.004 0.002 0.135 0.004
σx 0.253 0.278 0.253 0.253 0.251 0.252 0.576 0.029 0.019 0.336 0.022
σy 1.058 1.054 1.058 1.058 1.083 1.058 0.088 0.020 0.014 1.010 0.022
Z1 1.254 1.273 1.254 1.246 1.243 1.252 0.670 0.109 0.119 0.805 0.103
Z50 2.960 2.953 2.966 2.935 20.773 2.971 12.605 1.880 2.074 4×106 2.308
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Figure 1. Average IRE of (ση, σξ, Z1, Z100) in the Poisson model with
BSF (left) and of (φ, ση, ν, Z1, Z5473) in the SV model with ψ-APF (right).
DA is shown in black and IS2 in red.

less than DA uniformly in terms of IRE. In the Poisson-BSF case, the choice m = 200
based on [27] appears nearly optimal. In case of the SV-ψ-APF, the optimal m for DA
and IS2 was around 50, which was higher than m = 10 based on [27]. This is likely
because of the initial overhead cost of the approximation.

The discretely observed geometric Brownian motion example illustrated the potential
gains which may be achieved by using the IS2 method in a parallel environment. While
we admit that our experiment is academic, we believe that it is indicative, and shows
that IS2 can provide substantial gains, and makes reliable inference possible in a much
shorter time than DA. The IS framework is less prone to issues with burn-in bias, which
can be problematic with naive MCMC parallelisation based on independent chains.

12. Discussion

Our framework of IS type estimators based on approximate marginal MCMC provides
a general way to construct consistent estimators. Our experiments demonstrate that
the IS estimator can provide substantial speedup relative to a delayed acceptance (DA)
analogue with parallel computing, and appears to be competitive to DA even without
parallelisation. We believe that IS is often better than DA in practice, but it is not hard
to find simple examples where DA can be arbitrarily better than IS (and vice versa)
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[35]. Our followup work [35] complements our findings by theoretical considerations,
with guaranteed asymptotic variance bounds between IS and DA.

IS is known to be difficult to implement efficiently in high dimensions, but this is not
a major concern in most latent variable models, where the hyperparameters are low-
dimensional. The IS weight may also be regularised easily by inflating the (estimated)
approximate likelihood, for instance with La(θ) + ε, with some ε > 0. If the likelihood
L is bounded, then wu(θ) ∝ L(θ)/(La(θ) + ε) is bounded as well. The latter approach
can be seen as an instance of defensive importance sampling [49]. Other generic safe IS
schemes may also be useful [cf. 77], and tempering may be applied for the likelihood as
well.

We used adaptive MCMC in order to construct the marginal chain (Θk)k≥1 in our
experiments, and believe that it is often useful [cf. 5]. Note, however, that our the-
oretical results do not apply directly with adaptive MCMC, unless the adaptation is
stopped after suitable burn-in. Our results could be extended to hold with continuous
adaptation, under certain technical conditions. We detailed proper weighting schemes
based on standard IS and particle filters. We note that various PF variations, such as
Rao-Blackwellisation, alternative resampling strategies [12], or quasi-Monte Carlo up-
dates [36], apply directly. PFs can also be useful beyond the state space models context
[17]. Twisted particle filters [1, 101] could also be applied, instead of the ψ-APF.

In a diffusion context, a proper weighting can be constructed based on randomised
multilevel Monte Carlo, as recently described in [34]. We are currently investigating
various other instances of our framework. Laplace approximations are available for
a wider class of Gaussian latent variable models beyond SSMs [cf. 87]. Variational
approximations [8, 56] and expectation propagation [73] have been found useful in a
wide variety of models. In the SSM context, various non-linear filters could also be ap-
plied [cf. 88]. Our framework provides a generic validation mechanism for approximate
inference, where assessment of bias is difficult in general [cf. 76]. Contrary to purely ap-
proximate inference, our approach only requires moderately accurate approximations,
as demonstrated by our experiment with global Laplace approximations. Debiased
MCMC, as suggested in [39] and further explored in [50, 51], may also lead to useful
proper weighting schemes.
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Appendix A. Properties of augmented Markov chains

Throughout this section, suppose that K is a Markov kernel on X and Q(x,B) is a
kernel from X to a space S. We consider here properties of an augmented Markov kernel
Ǩ defined on X× S as follows:

Ǩ
(
(x, s), dx′ × ds′

)
:= K(x, dx′)Q(x′, ds′).

We first state the following basic result.

Lemma 24. The properties of K and the augmented chain Ǩ are related as follows:

(i) Let irr(K) denote the set of φ-irreducibility measures of a Markov kernel K, then
• ϕP ∈ irr(K) =⇒ ϕP̌ (dx× ds) := ϕP (dx)Q(x, ds) ∈ irr(Ǩ),
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• ϕP̌ ∈ irr(Ǩ) =⇒ ϕP (dx) := ϕP̌ (dx× S) ∈ irr(K).
(ii) The implications in (i) hold when irr(K) and irr(Ǩ) are replaced with sets of

maximal irreducibility measures of K and Ǩ, respectively.
(iii) The invariant probabilities of K and Ǩ satisfy:

• νK = ν =⇒ ν̌Ǩ = ν̌ where ν̌(dx× dy) := ν(dx)Q(x, dy),
• ν̌Ǩ = ν̌ =⇒ νK = ν where ν(dx) := ν̌(dx× S).

These implications hold also with invariance replaced by reversibility.
(iv) K is Harris recurrent if and only if Ǩ is Harris recurrent.
(v) Suppose h : X × S → R is measurable and such that mh(x) :=

∫
Q(x, ds)h(x, s)

and (Knmh)(x) are well-defined. Then, for any n ≥ 1,

(Ǩnh)(x, s) = (Knmh)(x).

Proof. The inheritance of irreducibility measures (i), maximal irreducibility measures
(ii), invariant measures (iii), and reversibility is straightforward.

For Harris recurrence (iv), let the probability φK be a maximal irreducibility measure
for K, then φǨ(dx × ds) := φK(dx)Q(x, ds) is the maximal irreducibility measure for
Ǩ. Let C ∈ X ⊗ S with φǨ(C) > 0, and choose ε > 0 such that φK(C(ε)) > 0, where
C(ε) := {x ∈ X : Q(x,Cx) > ε} with Cx := {s ∈ S : (x, s) ∈ C}. Notice that

P
( ∞∑

k=1

I ((Xk, Sk) ∈ C) =∞
)
≥ P

( ∞∑

k=1

I
(
Sτk ∈ CXτk

)
=∞

)
,

where τk are the hitting times of (Xk) to C(ε). This concludes the proof because
I
(
Sτk ∈ CXτk

)
are independent Bernoulli random variables with success probability at

least ε. The converse statement is similar.
For (v), it is enough to notice that for any (x, s) ∈ X × S and n ≥ 1, it holds that

Ǩn
(
(x, s), dx′ × ds′

)
= Kn(x, dx′)Q(x′, ds). �

We next state the following generic results about the asymptotic variance and the
central limit theorem of an augmented Markov chain. For h ∈ L2

0(ν̌), we denote as
above the conditional mean mh(x) :=

∫
Q(x, ds)h(x, s) and the conditional variance

vh(x) :=
∫
Q(x, ds)h2(x, s)−m2

h(x).

Lemma 25. Let h ∈ L2
0(ν̌). The asymptotic variance of an augmented Markov chain

satisfies
Var(h, Ǩ) = Var(mh, K) + ν(vh),

whenever Var(mh, K) is well-defined.

Proof. Let (Xk, Sk) be a stationary Markov chain with transition probability Ǩ.

Var

(
1√
n

n∑

k=1

h(Xk, Sk)

)
= ν̌(h2) +

2

n

n−1∑

i=1

n−i∑

`=1

E[h(X0, S0)h(X`, S`)],

by stationarity. For ` ≥ 1, Lemma 24 (v) implies

E[h(X0, S0)h(X`, S`)] = E[mh(X0)mh(X`)].

We deduce for any n ≥ 1

Var

(
1√
n

n∑

k=1

h(Xk, Sk)

)
= Var

(
1√
n

n∑

k=1

mh(Xk)

)
+ ν(vh),

because ν̌(h2)− ν(m2
h) = ν(vh). The claim follows by taking limit n→∞. �
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Lemma 26. Suppose K is Harris ergodic and aperiodic, and h ∈ L2
0(ν̌). The CLT

(10)
1√
n

n∑

k=1

h(Xk, Sk)
n→∞−−−→ N

(
0,Var(mh, K) + ν(vh)

)

holds for every initial distribution, if one of the following holds:

(i) K is reversible and Var(mh, K) <∞.

(ii)
∑∞

n=1 n
−3/2

{
ν
([∑n−1

i=0 K
imh

]2)}1/2
<∞.

(iii) There exists g ∈ L2(ν) which solves the Poisson equation g −Kg = mh.
In this case, Var(mh, K) = ν(g2 − (Kg)2).

Proof. The reversible case (i) follows from Lemma 25 and the Kipnis and Varadhan
CLT [58], which implies (10) for the initial distribution ν̌. The jump chain is Harris by
Lemma 24 (iv), so [72, Proposition 17.1.6] guarantees (10) for every initial distribution.

The case (ii) follows similarly, but relies on a result due to Maxwell and
Woodroofe [70], which guarantees (10) from ν̌-almost every starting point, if∑∞

n=1 n
−3/2

{
ν̌
([∑n−1

i=0 Ǩ
ih
]2)}1/2

<∞. Notice that for n ≥ 2 by Lemma 24 (v),

ν̌

([ n−1∑

i=0

Ǩih

]2)
= ν̌

([
(h−mh) +

n−1∑

i=0

Kimh

]2)
= ν(vh) + ν

([ n−1∑

i=0

Kimh

]2)
.

Because (a+ b)1/2 ≤ a1/2 + b1/2 for a, b ≥ 0 and ν(vh) <∞, the claim follows.
For (iii), we first observe that

ǧ − Ǩǧ = h where ǧ(x, s) := g(x) + h(x, s)−mh(x) ∈ L2(ν̌).

Indeed, it is clear that ǧ ∈ L2(ν̌) and because (Ǩǧ)(x, s) = (Kg)(x),

ǧ(x, s)− (Ǩǧ)(x, s) = g(x)− (Kg)(x) + h(x, s)−mh(x) = h(x, s).

The CLT and asymptotic variance follow from [72, Theorem 17.4.4]. �

Appendix B. Proofs about CLT and asymptotic variance

Proof of Theorem 7. Whenever
∑n

i=1 ξi(1) > 0, we may write

√
n
[
En(f)− π(f)

]
=
n−1/2

∑n
k=1 ξk(f̄)

n−1
∑n

j=1 ξk(1)
.

The denominator converges to cw > 0 almost surely, som by Slutsky’s lemma, it is
enough to show that the numerator converges in distribution toN

(
0,Var(νf̄ , P )+πa(v)

)
.

This follows from Lemma 26 (i) and (ii), under conditions (i) and (ii), respectively. �
Proof of Theorem 9. For n large enough such that

∑n
j=1 ξj(1) > 0, we may write

nvn =
1
n

∑n
k=1

(
ξk(f)− ξk(1)En(f)

)2

(
1
n

∑n
j=1 ξj(1)

)2 .

The denominator converges to c2
w, and the numerator can be written as

1

n

n∑

k=1

[
ξ2
k(f̄) + ξ2

k(1)D2
n + 2ξk(1)ξk(f̄)Dn

]
with Dn := π(f)− En(f).

The term n−1
∑n

k=1 ξ
2
k(f̄) → πa(v + µ2

f̄
), and because Dn → 0, the remainder terms

D2
n

(
n−1

∑n
k=1 ξ

2
k(1)

)
→ 0 and 2Dn

(
n−1

∑n
k=1 ξk(1)ξk(f̄)

)
→ 0. �
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Appendix C. Proofs about jump chain estimators

In this section, K is assumed to be a Markov kernel on X which is non-degenerate,
that is, a(x) := K(x,X\{x}) > 0 for all x ∈ X. The following proposition complements
[23, Lemma 1] and [19], which are stated for more specific cases.

Proposition 27. Suppose (Xk) is a Markov chain with kernel K and (X̃k) the cor-
responding jump chain with holding times (Nk) (Definition 4). Then, the following
hold:

(i) (X̃k) is Markov with transition kernel K̃(x,A) = K(x,A \ {x})/a(x).
(ii) The holding times (Nk) are conditionally independent given (X̃k), and each Nk

has geometric distribution with parameter a(X̃k).
(iii) If K admits invariant probability ν(dx), then K̃ admits invariant probability

ν̃(dx) := ν(dx)a(x)/ν(a). In addition, if K is reversible with respect to ν, then K̃
is reversible with respect to ν̃.

(iv) (Xk) is ψ-irreducible if and only if (X̃k) is ψ-irreducible, with the same maximal
irreducibility measure.

(v) (Xk) is Harris recurrent if and only if (X̃k) is Harris recurrent.

Proof. The expression of the kernel (i) is due to straightforward conditioning, and (ii)
was observed in [23]. The invariance (iii) follows from

∫
ν̃(dx)K̃(x,A) =

1

ν(a)

∫
ν(dx)

[
K(x,A)− I (x ∈ A)K(x, {x})

]

=
1

ν(a)

[
ν(A)−

∫

A

ν(dx)
(
1− a(x)

)]
= ν̃(A),

and the reversibility is shown in [23]. For (iv) it is sufficient to observe that

∀x ∈ X :
∑

n≥1

Px(Xn ∈ A) > 0 ⇐⇒ ∀x ∈ X :
∑

n≥1

Px(X̃n ∈ A) > 0,

where Px( · ) = P( · | X0 = X̃0 = x), which holds because the sets {Xk}k≥0 and {X̃k}k≥0

coincide. Similarly, (v) holds because

∀x ∈ X : Px(ηA =∞) = 1 ⇐⇒ ∀x ∈ X : Px(η̃A =∞) = 1,

where ηA :=
∑∞

k=1 I (Xk ∈ A) and η̃A :=
∑∞

k=1 I (X̃k ∈ A). �

We now state results about the asymptotic variance of the jump chain, complementing
the reversible case characterisation of [19, 27].

Proposition 28. Let f ∈ L2
0(ν̃). With the notation of Proposition 27,

(i) If K is reversible, then Var(f, K̃) <∞ iff af ∈ L2(ν) and Var(af,K) <∞, and

(11) Var(f, K̃) = ν(a)−1
[
Var(af,K)− ν

(
a(1− a)f 2

)]
.

(ii) If there exists a function g ∈ L2(ν) which satisfies g−Kg = af , then Var(f, K̃) <
∞, Var(af,K) <∞, (11) holds, g − K̃g = f and g ∈ L2(ν̃).

Proof. The reversible case (i) is a restatement of [19, Theorem 1].
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Consider then (ii). By Proposition 27 (i), we obtain for any h : X → R with Kh
well-defined,

(K̃h)(x) =
(Kh)(x)−

(
1− a(x)

)
h(x)

a(x)
=

(Kh)(x)− h(x)

a(x)
+ h(x).

Consequently, we observe that g − K̃g = a−1
(
g − Kg

)
= f implying (ii). Because

g ∈ L2(ν̃), Lemma 26 (iii) and a straightforward calculation yield

Var(f, K̃) = ν̃
(
g2 − (K̃g)2

)

= 2〈g, g − K̃g〉ν̃ − 〈g − K̃g, g − K̃g〉ν̃
= ν(a)−1

[
2〈g, g −Kg〉ν − ν(af 2)

]
,

where 〈f, g〉ν :=
∫
f(x)g(x)ν(dx). Similarly, by Lemma 26 (iii)

Var(af,K) = ν
(
g2 − (Kg)2

)
= 2〈g, g −Kg〉ν − ν(a2f 2),

which allows us to conclude. �

Proof of Theorem 13. Whenever
∑n

j=1 ξj(1) > 0, we may write

√
n
[
En(f)− π(f)

]
=
n−1/2

∑n
k=1Nkξk(f̄)

n−1
∑n

j=1 Njξj(1)
.

We shall show below that the CLT holds for the numerator, with asymptotic variance
σ2 :=

[
Var(µf̄ , P ) + πa(αṽ)

]
/πa(α). This implies the claim by Slutsky’s lemma, as the

denominator converges to cw/πa(α). For the rest of the proof, let P̃ and P̌ be the
Markov kernels of (Θ̃k)k≥1 and (Θ̃k,Nk,ξk(f̄))k≥1, respectively, and let π̃ and π̌ be the
corresponding invariant probabilities. Note that the function h(θ, n, ξ) := nξ is in L2(π̌)
by assumption (5).

In case (i) holds, also P̃ and P̌ are reversible by Proposition 27 (iii) and Lemma 24
(iii). Lemma 26 (i) with K = P̃ , Ǩ = P̌ , ν = π̃ and ν̌ = π̌ implies that a CLT holds
for h whenever the asymptotic variance is finite:

Var(h, P̌ ) = Var
(
µf̄/α, P̃

)
+ πa(αṽNξ)/πa(α),

where, by the variance decomposition formula,

ṽNξ(θ) := Var(Nkξk(f̄) | Θ̃k = θ)

= ṽ(θ) + Var
(
NkE[ξk(f̄) | Θ̃k = θ,Nk]

∣∣ Θ̃k = θ
)

= ṽ(θ) + µ2
f̄ (θ)

(
1− α(θ)

)
/α2(θ).

Proposition 28 (i) implies that

Var
(
µf̄/α, P̃

)
= πa(α)−1

[
Var(µf̄ , P )− πa

(
(1− α)µ2

f̄/α
)]
,

which implies Var(h, P̌ ) = σ2.
Consider then (ii). Proposition 28 (ii) implies that g − P̃ g = µf̄/α, and g ∈ L2(π̃).

Lemma 26 (iii) implies the CLT, and together with Proposition 28 (ii) leads to
Var(h, P̌ ) = σ2. �
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IMPORTANCE SAMPLING CORRECTION VERSUS
STANDARD AVERAGES OF REVERSIBLE MCMCS IN TERMS

OF THE ASYMPTOTIC VARIANCE

JORDAN FRANKS AND MATTI VIHOLA

Abstract. We establish an ordering criterion for the asymptotic variances of
two consistent Markov chain Monte Carlo (MCMC) estimators: an importance
sampling (IS) estimator, based on an approximate reversible chain and subse-
quent IS weighting, and a standard MCMC estimator, based on an exact re-
versible chain. Essentially, we relax the criterion of the Peskun type covariance
ordering in order to consider two different invariant probabilities, and obtain,
in place of a strict ordering of asymptotic variances, a bound of the asymptotic
variance of IS by that of the direct MCMC. Simple examples show that IS can
have arbitrarily better or worse asymptotic variance than Metropolis-Hastings
and delayed acceptance (DA) MCMC. Our ordering implies that IS is guar-
anteed to be competitive up to a factor depending on the supremum of the
(marginal) IS weight. We elaborate upon the criterion in case of unbiased esti-
mators as part of an auxiliary variable framework. We show how the criterion
implies asymptotic variance guarantees for IS in terms of pseudomarginal (PM)
and DA corrections, essentially if the ratio of exact and approximate likelihoods
is bounded. We also show that convergence of the IS chain can be less affected
by unbounded high-variance unbiased estimators than PM and DA chains.

1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are important for sampling.
They are widely applicable and asymptotically exact under mild hypotheses. As
they take considerable time to run, it is of interest to know which MCMCs are
more efficient. The standard measure of statistical efficiency for MCMCs is the
asymptotic variance, as it corresponds with the limiting variance of a

√
n-central

limit theorem (CLT) (cf. Proposition 1). A famous ordering criterion for the as-
ymptotic variances of two reversible Markov chains is the Peskun ordering [50,
Thm. 2.1.1], extended to general state spaces by Tierney [61, Thm. 4], and elab-
orated upon in [43, Thm. 4.2] in terms of the lag-1 auto-covariance, whence it
is sometimes called the ‘covariance ordering’ [see also 61, Proof of Lem. 3]. The
result has been applied and extended to various settings, e.g. continuous-time
chains [36, 44], Gibbs [4] and hybrid [1, 41] samplers, and to pseudomarginal
(PM) chains [3, 8, 9, 23, 59], where it is used in particular for the proof of the
‘convex order’ criterion for PM chains [9]. The aforementioned orderings have in
common that the two chains being compared share the same invariant probability,
at least marginally.

Key words and phrases. Asymptotic variance, delayed acceptance, importance sampling,
Markov chain Monte Carlo, pseudomarginal algorithm, unbiased estimator.
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1.1. Ordering criterion. We suggest a Peskun type ordering for importance
sampling (IS) MCMC estimators to compare with standard MCMC estimators. IS
is based on a chain targeting an approximate probability µ of the target probability
ν of interest. A final IS correction phase is then used, which involves an IS weight w
satisfying µ(wf) = ν(f) for suitable functions f [cf. 21, 28, 29, 31, 49, 65]. We seek
to compare IS with the typical MCMC, i.e. standard averages of a reversible chain
targeting ν. Instead of a strict ordering as in the covariance ordering, we obtain
a quasi -ordering involving constants depending on w and the function variance
(Theorem 2). A product space version for augmented IS kernels (Theorem 5) will
turn out to be particularly useful when unbiased estimators are introduced as part
of an auxiliary variable framework.

1.2. Popular direct MCMCs. The workhorse of the reversible MCMC world is
the Metropolis-Hastings algorithm [cf. 31], or equivalently, its novel reformulation
in terms of unbiased estimators, the PM algorithm [38, 6]. A PM variant, known
as delayed acceptance (DA) [cf. 38, 40, 17], has drawn considerable attention re-
cently as a means to accelerate PM [cf. 10, 18, 20, 24, 30, 52, 56, 57, 58, 60, 65];
see §3.2.1 and §6 for in fact two different possible types of DA ‘correction,’ and
§7.3 for examples of DA in different settings. Although the statistical efficiency
of DA is worse than PM by the covariance ordering, the overall computational
efficiency of DA can be better, as judged by empirical wall-clock time to reach a
certain confidence interval assuming the chains start at stationarity. The acceler-
ation is based on decreasing the number of expensive calculations in the standard
PM implementation by using an intermediate approximation as a ‘screening’ step
(cf. Algorithm 4, p. 14).

1.3. The IS vs. direct MCMC question. As IS and DA are consistent MCMCs
which can use the same intermediate approximation, and along with PM are
asymptotically exact, there is a choice about which algorithm to use. A study of
self-normalised IS versus the independence Metropolis-Hastings has been made in
[39], who also explains why the objective function plays a rôle in IS, which can be
super-efficient, i.e. better than sampling i.i.d. from the target distribution (but IS
can also be worse). Asymptotic variances are explicitly computed and compared
in some discrete examples in [12] who find that IS and Metropolis-Hastings can
be competitive, but that Metropolis-Hastings can do much better (see also [11,
§4.2]). On the other hand, [62] study independent IS with unbiased estimators,
and find that this performs better than PM in their experiments (see also [16]).
The algorithm of [51] in the approximate Bayesian computation setting involving
a two-phase IS approach is also found to perform better experimentally than a
direct approach. The IS versus DA question is noted in [18, §3.3.3], who mention
the likely improvement of IS over DA in massive parallelisation. A methodological
comparison of the alternatives in the general MCMC and joint inference context
is made in [65], who investigate empirically the relative efficiencies, finding that
IS and DA can be competitive, with IS doing slightly better than DA in their
experiments, with little or no parallelisation. The gap widens with increased
parallelisation, a known strength of the IS correction [cf. 18, 35, 51, 65].
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1.4. Either may do arbitrarily better in asymptotic variance. Ignoring
computational and implementation aspects for the most part (but see the dis-
cussion in §7), this paper seeks to address the question generally in terms of the
asymptotic variances. The prior references and the examples provided in Appen-
dix D show that the answer can not be completely simple. We give toy examples
where either IS or PM/DA can do (arbitrarily) better than the other in terms of
asymptotic variance (cf. Figure 1, and Appendix D for details).

Figure 1. Marked regions for examples
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ν µ

(a) ‘direct MCMC better’ case

1 20
ν µ ν

(b) ‘IS better’ case

1.5. Intuition why IS can help with multimodal targets. As the examples
in Appendix D show, IS can do well when µ is uniform or close to uniform, which
allows for good mixing between modes of the target [cf. 28]. The benefit of a
slow transition to the target is well-known throughout the IS repertoire, e.g. in
sequential IS [cf. 40] and annealed IS [45]. The possible mixing improvement of
the IS first phase as a ‘warm start’ is not shared by PM/DA, which targets ν
directly. In the simple setting of the examples, where no unbiased estimators are
used, Corollary 4 gives guarantees that IS performs competitively with PM/DA
if the IS weight is bounded, which is always true if µ is the uniform density and
ν is a bounded density.

1.6. Unbiased estimators. After extending Theorem 2 to an auxiliary variable
framework suitable for pseudomarginal chains and unbiased estimators (Theorem
12), we show a quasi-ordering for IS and PM/DA (Theorem 14), implying as-
ymptotic variance guarantees for IS in terms of PM/DA. When the IS weight is
estimated unbiasedly, the essential assumption for our ordering to hold is bound-
edness of the IS weight estimator conditional means, not necessarily the IS weight
estimator itself. Also, the objective function may depend on the latents, which is
usually not the case for Peskun type orderings for PM chains (cf. Remark 6(i)).
These relaxations are ultimately due to the augmented kernel structure of the IS
chain (17) (cf. Lemma 22(iii)).

1.7. Convergence considerations. We complement our ordering results by show-
ing that the IS chain is geometrically or uniformly ergodic if and only if the IS
base chain has the corresponding property (Lemma 22). The error of MCMC is
due to two factors: the distance of the chain from stationarity, related e.g. by
the burn-in time, and the Monte Carlo error, related by the asymptotic variance
[cf. 33, 46]. In case of unbiased estimators for the weight, we describe how an
IS chain can be geometrically ergodic, in contradistinction to PM/DA (cf. §7.1).
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As geometrically ergodic chains converge geometrically fast from all initial posi-
tions, IS may be a good choice when little is known about the IS weight but good
approximate (marginal) Markov chains are available (cf. §7.2). Also, geometric
and uniform ergodicity are likely to benefit adaptive MCMC [cf. 7], at least based
on the existing theory [cf. 5, 54], as well as the construction of estimators for
the asymptotic variance [cf. 25]. The minimal requirement on the IS weight is a
simple support condition (Assumption 1 or Assumption 4(iii)), which can often
be ensured easily in practice (cf. Remark 8(ii) of §5).

1.8. Possible extensions. Although we only apply our criterion (Theorem 12)
to a comparison of IS with PM/DA (Theorem 14), and allude to the possible
utility of approximate Gibbs samplers in §3.2.2, our criterion may also be relevant
for a comparison of IS with other direct reversible MCMCs, such as ‘MHAAR’
[3] and ‘correlated PM’ [19]. By decreasing the variance occurring in the PM
acceptance ratio, these algorithms seek to improve upon mixing properties of PM
type chains. Our result (Theorem 14) applies to a comparison of IS versus ‘DA
correction’ (19) of approximate reversible chains, such as approximate versions of
the previously mentioned chains. Further studies may be interesting in the specific
settings of e.g. annealed IS [45], likelihood-free inference [cf. 51], multi-stage DA
[10], multilevel Monte Carlo [cf. 20], and sequential Monte Carlo [cf. 16, 40]. See
also §7.3 for possible application settings.

1.9. Related work. Earlier studies involving IS and direct MCMC have been
made in e.g. [12, 39, 51, 62, 65] (cf. §1.3). We consider here general reversible
Markov chains, in particular PM/DA, and seek a Peskun type ordering of the
asymptotic variances. Our elaboration of the IS correction with the use of unbiased
estimators in §5 aligns with the IS type correction of [65], but we only consider
here nonnegative IS weights (and reversible base chains). The work [65] includes
consistency and CLT results for the IS type correction, as well as implementation
and computational efficiency comparisons for IS, PM, and DA in experiments in
state space models.

1.10. Outline. After preliminaries in §2, we state in §3 the Peskun type order-
ing result for normalised IS (Theorems 2), its implication for IS versus PM/DA
in a simple setting (Corollary 4), and augmented IS kernels (Theorem 5). We
define jump chains and self-normalised importance sampling (SNIS) in §4, before
proceeding to §5, where we consider a general auxiliary variable framework which
accommodates IS and PM type schemes that use unbiased estimators. The PM
type algorithms and kernels which we consider are given in §6, and we compare
them with IS (Theorem 14). We discuss some stability, implementation, and com-
putational efficiency considerations in §7. Proofs of the Peskun type orderings are
given in Appendix A. Dirichlet form bounds and proof of the main comparison
application (Theorem 14) are found in Appendix B. Appendix C mentions some
properties of augmented chains. Appendix D contains the examples mentioned
earlier in §1.4.
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2. Notation and definitions

2.1. Notation. The spaces X we consider are assumed equipped with a σ-algebra,
denoted B(X), and with a σ-finite dominating measure, denoted ‘dx.’ Product
spaces will be assumed equipped with their product σ-algebras and corresponding
product measures. If µ is a probability density on X, we denote the corresponding
probability measure with the same symbol, so that µ(dx) = µ(x)dx.

For p ∈ [1,∞), we denote by Lp(µ) the Banach space of equivalence classes
of measurable f : X → R satisfying ‖f‖p < ∞ under the norm ‖f‖Lp(µ) :=

{
∫
|f(x)|pµ(dx)}1/p. We similarly define L∞(µ) under the norm ‖f‖∞ := µ- ess supx∈X |f(x)|.

We denote by Lp0(µ) the subset of Lp(µ) with µ(f) = 0, where µ(f) :=
∫
f(x)µ(dx).

For f ∈ L1(µ) andKx(dx
′) a Markov kernel on X, we define µK(A) :=

∫
µ(dx)Kx(A)

forA ∈ B(X), Kf(x) :=
∫
Kx(dx

′)f(x′), and inductivelyKnf(x) := Kn−1(Kf)(x)
for n ≥ 2. For f, g ∈ L2(µ), we define 〈f, g〉µ :=

∫
f(x)g(x)µ(dx), ‖f‖µ :=

(〈f, f〉µ)1/2, and varµ(f) := µ(f 2)− µ(f)2.

For m ∈ N and x(i) ∈ X for i = 1, . . .m, we write x(1:m) := (x(1), . . . , x(m)). If
x = x(1:m), then x(−i) is the vector of length m − 1 obtained from x by deleting
the ith entry. Throughout, ν will denote the target probability of interest, and
for ϕ ∈ L1(ν) we set ϕ̄ := ϕ− ν(ϕ), element of L1

0(ν).

2.2. Definitions. Let µ and ν be σ-finite measures on X. If µ(A) = 0 implies
ν(A) = 0 for all A ∈ B(X), we say that ν is absolutely continuous with respect
to µ, and write ν � µ. Suppose ν � µ. A Radon-Nikodým derivative of ν with
respect to µ is a measurable function dν

dµ
(x) on X such that µ( dν

dµ
f) = ν(f) for all

f ∈ L1(ν). If also µ and ν are probability densities, then it is easy to see that
dν
dµ

(x) exists in L1(µ), and is equivalent with ν(x)
µ(x)

.

Let µ be a probability on X. A Markov chain K on X is µ-invariant if µK = µ.
If also 〈f,Kf〉µ ≥ 0 for all f ∈ L2(µ), then K is positive. If µ(dx)Kx(dx

′) =

µ(dx′)Kx′(dx), then K is said to satisfy detailed balance with respect to µ, or
briefly, K is µ-reversible. This implies that K is µ-invariant, and that the Dirichlet
form EK(f) for f ∈ L2(µ) satisfies

EK(f) := 〈f, (1−K)f〉µ =
1

2

∫
µ(dx)Kx(dx

′)
(
f(x)− f(x′)

)2
. (1)

Definition 1 (Harris ergodic). A Markov chain K is µ-Harris ergodic if K is
µ-invariant, ψ-irreducible, and Harris recurrent.

See [42] for details, and for the definition of ψ-irreducibility. Most MCMC
schemes are Harris ergodic, although a careless implementation can lead to a
non-Harris chain [cf. 53].

Definition 2 (Asymptotic variance). Let (Xk) be a µ-Harris ergodic Markov
chain with transition K. For f ∈ L2(µ) the asymptotic variance of f with respect
to K is defined, whenever the limit exists in [0,∞], as

var(K, f) := lim
n→∞

1

n
E
[( n∑

k=1

[f(X
(s)
k )− µ(f)]

)2]
, (2)

where (X
(s)
k ) denotes a stationary version of the chain (Xk), i.e. X

(s)
0 ∼ µ.
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For reversible K, which is the focus of this paper, var(K, f) always exists in
[0,∞] [cf. 61]. Moreover, a CLT holds under general conditions.

Proposition 1. [34, Cor. 1.5] and [42, Prop. 17.1.6] Let (Xk)k≥1 be an aperiodic
µ-reversible Harris ergodic Markov chain with transition K. If f ∈ L2(µ) and
var(K, f) <∞, then, for all initial distributions,

1√
n

( n∑

k=1

[f(Xk)− µ(f)]
)

n→∞−−−→ N
(
0, var(K, f)

)
, in distribution, (3)

where N (a, b2) is a normal random variable with mean a and variance b2.

See [42] for definition of aperiodic. Proposition 1 above explains the importance
of the asymptotic variance, since it is the CLT limiting variance.

3. Peskun type ordering for normalised importance sampling

3.1. General case. Let µ and ν be probability measures on a space X, and let
w : X→ [0,∞) be a nonnegative measurable function.

Assumption 1 (Importance sampling). A triplet (µ, ν, w) is such that ν � µ
and w(x) = dν

dµ
(x) is the Radon-Nikodým derivative.

Assumption 2. A heptuple (µ, ν, w,K, L, c, c) is such that (µ, ν, w) satisfies As-
sumption 1, K and L are Harris ergodic Markov chains reversible with respect to
µ and ν, respectively, and the constants c, c ≥ 0 satisfy

(a) c EK(g) ≤ EL(g) ≤ c EK(g), for all g ∈ L2(µ), and
(b) c ≤ w ≤ c, µ-a.e.

Theorem 2. If Assumption 2 holds, then for all ϕ ∈ L2(ν),

var(K,wϕ) + varµ(wϕ̄) ≤ c
[
var(L, ϕ) + varν(ϕ)

]
, (4)

var(K,wϕ) + varµ(wϕ̄) ≥ c
[
var(L, ϕ) + varν(ϕ)

]
. (5)

Remark 3. Here, we recall the notation ϕ̄ := ϕ − ν(ϕ). Regarding Theorem 2,
whose proof is given in Appendix A:

(i) If w = 1 constant, in which case µ = ν, it reduces to [4, Lemma 32]. If
also (c, c) = (0, 1), it is the covariance ordering [43, Thm. 4.2], which is a
Peskun [50, 61] type criterion based on the Dirichlet form [see also 61, Proof
of Lem. 3].

(ii) The assumptions are the same as those of [37, Lem. 13.22] about comparison
of mixing times in the countable state space context.

(iii) (5) holds even if we ‘forget’ c, i.e. set c = ∞ but also require wϕ ∈ L2(µ).
In practice, (5) is usually useless since we can only assume c = 0.

3.2. Intermezzo: some simple comparison examples. We show how Theo-
rem 2 implies results in two simple and common settings before introducing the
various machinery that occupies the remainder of this paper.
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3.2.1. With Metropolis-Hastings and delayed acceptance correction. Let q be a
probability kernel and ν a probability on X. With R(ν) ⊂ X2 the ‘symmetric
set’ as in [61, Prop. 1], we let 0 < r(ν)(x, x′) < ∞ denote the Radon-Nikodým
derivative

r(ν)(x, x′) :=
ν(dx′)qx′(dx)

ν(dx)qx(dx′)

for (x, x′) ∈ R(ν), and otherwise we define r(ν)(x, x′) := 0. The Metropolis-
Hastings chain MH(q → ν) with proposal q and target ν has kernel

Px(dx
′) := qx(dx

′) min
{

1, r(ν)(x, x′)
}

+ [1− αMH(x)]δx(dx
′), (6)

where δx is the Dirac measure at x, αMH(x) := Px(X\{x}) [cf. 31, 40].
We show DA can take two forms: DA0 correction, and DA1 correction. In the

following we define the two corrections. These corrections will turn the approxi-
mate chain into an exact chain, targeting directly the probability most of interest.
Traditionally, DA has meant DA0 correction of PM [cf. 10, 17]. However, we will
see that DA0 is applicable to the more general class of ’proposal-rejection’ chains,
while a different type of algorithm, which we call DA1 correction, is applicable to
general reversible chains. DA1 has been considered in [40, ‘surrogate transition
method,’ §9.4.3]. Both DA corrections, DA0 and DA1, will lend themselves to
comparison with IS correction.

We call a kernel K a µ-proposal-rejection kernel if it is µ-reversible and can be
written as

Kx(dx
′) = qx(dx

′)α(x, x′) +

(
1−

∫
qx(dy)α(x, y)

)
δx(dx

′)

for some measurable function α : X × X → [0, 1]. This obviously includes the
case where K is a MH(q → µ) kernel, but also includes, for example, DA (leading
to ‘multi-stage’ DA [cf. 10]) and ‘MHAAR’ [3]. Proposal-rejection kernels have
also been considered in [64], where the abstraction arose from consideration of
the marginal chain of a certain pseudomarginal chain arising from approximate
Bayesian computation.

If (µ, ν, w) satisfies Assumption 1 and K is a µ-proposal-rejection kernel, then
we define DA0 correction of the proposal-rejection kernel K to be the kernel

KDA0
x (dx′) := qx(dx

′)α(x, x′) min
{

1, w(x′)/w(x)
}

+ [1− αDA0(x)]δx(dx
′), (7)

where αDA0(x) := KDA0
x (X\{x}). It is straightforward to check that KDA0 is ν-

reversible; this is the standard delayed acceptance kernel in the case K is MH(q →
µ) (cf. [10, 40] and §6.1).

If (µ, ν, w) satisfies Assumption 1, and K is a µ-reversible kernel, we define the
DA1 correction to be the chain with transition kernel given by

KDA1
x (dx′) := Kx(dx

′) min
{

1, w(x′)/w(x)
}

+ [1− αDA1(x)]δx(dx
′), (8)

where αDA1(x) := KDA1
x (X\{x}); KDA1 is ν-reversible, as is straightforward to

check.
It is a direct application of the covariance (or Peskun) ordering to see that the

asymptotic variances of KDA0 and KDA1 are the same, where K is a µ-proposal-
rejection chain. However, we will see in §6 that KDA0 is likely to be more compu-
tationally efficient in practice.
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Corollary 4. Suppose (µ, ν, w) satisfies Assumption 1, and that

(I) L = KDA0 (7), where K is a µ-proposal-rejection kernel,
(II) L = KDA1 (8), where K is a µ-reversible kernel, or

(III) L = P (6), and K =MH(q → µ).

Assume K and L form Harris ergodic chains. The following statements hold.

(i) If w ≤ c µ-a.e., then for all ϕ ∈ L2(ν), (4) holds.
(ii) If w ≥ c µ-a.e., then for all ϕ ∈ L2(ν) with wϕ ∈ L2(µ), (5) holds.

The result follows from Theorem 2 and Lemma 21 of Appendix B.

3.2.2. With Gibbs samplers and delayed acceptance correction. Suppose ν is prob-
ability density on a product space X := X1 × · · · ×Xm, with m ∈ N. Let I be
a Markov kernel on the discrete set {1, . . . ,m}. For example, the ‘scan’ I could
be a systematic scan: Ii(j) = δi+1(j) for i = 1, . . . ,m − 1, and Im(j) = δ1(j).
Or, I could be a random scan: Ii(j) = 1/m for all j ∈ {1, . . . ,m}. For each

i = 1, . . . ,m, let q
(i)

x(−i)(x
′(i)) be a transition density from X(−i) to X(i), which, to

avoid technical problems, may be assumed strictly positive. We define a Markov
transition density q on X× {1, . . . ,m},

qx,i(x
′, j) := Ii(j) q(j)

x(−j)(x
′(j)).

The Metropolis-within-Gibbs with random scan, MGrs(q → ν), has kernel

Px,i(x
′, j) := qx,i(x

′, j) min
{

1,
ν(x′)q(j)

x′(−j)(x
(j))

ν(x)q
(j)

x(−j)(x′(j))

}
+ [1− αMGrs(x, i)]δx,i(x

′, j),

where αMGrs(x, 1) := Lx,i(X × (1 : m)\{(x, i)}), which is reversible as an MH

kernel, and targets ν marginally [cf. 40]. If q
(i)

x(−i)(x
′(i)) = ν(x′(i)|x(−i)) for all

i = 1, . . . ,m, then the acceptance ratio is identically 1 and MGrs(q → ν) becomes
the standard Gibbs sampler (without the Metropolis-Hastings step) [cf. 27, §11.3].

Suppose µ is a density on X with ν � µ. Because the MGrs may be viewed as a
full-dimensional MH on X×{1, . . . ,m}, Corollary 4 applies, with K = MGrs(q →
µ).

3.3. Marginalisations and augmented importance sampling kernels. Let
X = T ×Y, where T and Y are measurable spaces. For a probability µ on X,
denote by µ∗(dθ) = µ(dθ,Y) its marginal probability. If (µ, ν, w) on X satisfies
Assumption 1, then ν∗ � µ∗, and with w∗(θ) := dν∗

dµ∗ (θ), the triplet (µ∗, ν∗, w∗)
satisfies Assumption 1 on T.

Assumption 3. Assumption 2, with Assumption 2(a–b) replaced with

(a) c EK(g) ≤ EL(g) ≤ c EK(g), for all g ∈ L2(µ∗), and
(b) c ≤ w∗ ≤ c, µ∗-a.e.

We introduce the notion of an augmented Markov kernel, as in [9, 65].

Definition 3. Let µ̇ be some probability on T, let K̇ be a µ̇-invariant Markov ker-
nel on T, and letQθ(dy) be a probability kernel from T to Y. TheQ-augmentation
of K̇, or the Q-augmented kernel K, is a Markov kernel on X, with transition K
and invariant measure µ, given by

Kθ y(dθ
′, dy′) = K̇θ(dθ

′)Qθ′(dy
′), and µ(dθ, dy) = µ̇(dθ)Qθ(dy). (9)
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Theorem 5. Suppose Assumption 3 holds, and that K is an augmented kernel as
in Definition 3. Let ϕ ∈ L2(ν) with wϕ ∈ L2(µ). With NK := 0 if K is positive,
and NK := 1 if not, the following bound holds:

var(K,wϕ) ≤ c
[
var(L, ϕ) + varν(ϕ)

]
+ (1 + 2NK) varµ(wϕ̄) (10)

Moreover, if wϕ only depends on θ ∈ T, then (4) holds.

Remark 6. Regarding Theorem 5, whose proof is given in Appendix A:

(i) The function ϕ (and wϕ) is allowed to depend on the auxiliary variable
y ∈ Y, unlike comparison results in the PM setting (cf. [8, Thm. 7] and [59,
Thm. 1]) that are based on the convex order [9, Thm. 10].

(ii) K is positive iff K̇ is positive (Lemma 22 of Appendix C). This is the case
e.g. if K̇ is a random walk Metropolis-Hastings kernel with normal proposals
[13, Lem. 3.1]. See [23, Prop. 3] for more examples.

(iii) See also Remarks 17(iii–iv) in Appendix A about Assumption 3, which also
hold for Assumption 2 by trivialising the space Y (Lemma 18(i)).

4. Jump chains and self-normalised importance sampling

4.1. Jump chains. We recall the notion of a jump chain [cf. 22], which is a
Markov chain consisting of the accepted states of the original chain.

Definition 4. Let (Θk)k≥1 be a Markov chain with transition Kθ(dθ
′). The jump

chain (Θ̃k, Ñk)k≥1 with transition K̃θn(dθ′, dn′) and holding times

Ñj := min
{
i ≥ 1|ΘÑ∗j−1+i+1 6= ΘÑ∗j−1+1

}
, j ≥ 1,

is given by Θ̃1 := Θ1 and Θ̃k+1 := ΘÑ∗k+1, where Ñ∗k :=
∑k

j=1 Ñj, Ñ
∗
0 := 0.

For a Harris ergodic chain K, (Ñk)k≥1 are independent random variables given

(Θ̃k)k≥1, where Ñk is geometrically distributed with parameter α(Θ̃k). Here,
α(θ) := K(θ,T\{θ}) is the acceptance probability function of K at θ ∈ T. See
[65, Prop. 27] for this as well as for proof of the following result.

Lemma 7. Let K be a µ-invariant Markov chain with α > 0. The marginal
chain K̃ of the jump chain of K has transition K̃(θ, A) = K(θ, A\{θ})/α(θ), for
all A ∈ B(T), and is µ̃-invariant, where µ̃(dθ) = α(θ)µ(dθ)/µ(α). Moreover, K
is µ-reversible iff K̃ is µ̃-reversible, and K is µ-Harris ergodic iff K̃ is µ̃-Harris
ergodic.

We note that (Θ̃k, Ñk)k≥1 has as its transition the Q(N)-augmentation of K̃

(Definition 3), where K̃ is as in Lemma 7 and Q
(N)
θ (·) ∼ Geo(α(θ)) [23].

Different estimators can sometimes be used in place of (Ñk), which can lead to
lower asymptotic variance of the related MCMC than when not using the jump
chain, or when using the jump chain with standard (Ñk) [22].

4.2. Self-normalised importance sampling. Jump chains can be naturally
used with IS estimators, and can lead to improved computational and statistical
efficiency [cf. 65]. To avoid redundancy, we shall adhere to the following conven-
tion: when we write (Θk,Nk, a,µ), it shall stand simultaneously for (Θ̃k, Ñk, α, µ̃),
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corresponding to an IS jump chain (denoted ‘ISJ’), and for (Θk, 1, 1, µ), corre-
sponding to a non-jump IS chain (denoted ‘IS0’).

Suppose (µ, ν, w) satisfies Assumption 1 and that (Θk)k≥1 is µ-Harris ergodic.
Often one can not evaluate w(θ). However, one can often evaluate an unnormalised
version wu(θ) = cξ · w(θ), with cξ > 0 a (unknown) constant. In this case, for
ϕ ∈ L1(ν), one can use the following SNIS estimator,

ESNIS
n (ϕ) :=

∑n
k=1 Nkwu(Θk)ϕ(Θk)∑n

k=1 Nkwu(Θk)
=

1
n

∑n
k=1 Nkwu(Θk)ϕ(Θk)

1
n

∑n
k=1 Nkwu(Θk)

. (11)

By Harris ergodicity, the SNIS estimator is a consistent estimator for ν(ϕ),

ESNIS
n (ϕ)

n→∞−−−→
a.s.

µ(E[Nk|Θk]wuϕ)

µ(E[Nk|Θk]wu)
=

µ(wuϕ/a)

µ(wu/a)
= ν(ϕ).

Next we consider a framework on an extended space, from which a Peskun type
ordering for SNIS will trivially follow (Remark 13(ii) of Theorem 12).

5. Unbiased estimators and exact approximation schemes

In an auxiliary variable framework, such as a latent variable model, joint infer-
ence involves expectations of the form

ν(f) =

∫
f(θ, z)ν(dθ, dz),

where θ ∈ T is the model ‘parameter’ and z ∈ Z is the ‘latent variable’ or ‘state.’
The marginal inference case, i.e. when f(θ, ·) = f(θ) only depends on θ ∈ T,
is important for model parameter estimation [cf. 6]. State estimation (when θ is
viewed as fixed) is possible in the state space model (SSM) setting using sequential
Monte Carlo (SMC) [cf. 40], while particle MCMC [2], which uses a specialised
SMC within an MCMC, allows for joint inference.

5.1. Exact approximation schemes. The approximation schemes we consider
rely on the existence of PM probability kernels, which represent the laws corre-
sponding to draws from e.g. i.i.d. IS, or from SMC, and which are basic to the
PM approach [6].

We associate to a probability kernel Q
(U)
θ (du) from T to a space U a function

η(1) := η(θ, u) on T×U. For example, if U ∼ Q
(U)
θ (·) and θ is fixed, then η(1) is

an unbiased estimator for the ‘likelihood’ at θ in the SSM setting [cf. 2]. Let V
be the space

V :=
{

(m, z(1:m), ζ(1:m)) : m ∈ N, and z(i) ∈ Z, ζ(i) ∈ [0,∞) for i = 1, . . .m
}
.

We then similarly associate to a probability kernel Q
(V )
θu (dv) from T×U to V, a

function ζ(1) of v ∈ V, given by

ζ(1) :=
m∑

i=1

ζ(i), if v = (m, z(1:m), ζ(1:m)).
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Assumption 4 (Pseudomarginal kernels). The two kernels and two functions
defined above determine probability measures µ on T×U and π on T×U×V,
given by

µ(dθ, du) := c−1
η dθQ

(U)
θ (du)η(1),

π(dθ, du, dv) := c−1
ζ dθQ

(U)
θ (du)Q

(V )
θu (dv)ζ(1),

where cη and cζ are finite normalising constants. For a target probability ν on a
space T× Z, with ν̇(dθ) := ν(dθ,Z) as before, we assume conditions:

(i) ν̇ � µ̇, where µ̇(dθ) := µ(dθ,U), ‘approx. marginal posterior’
(ii) ν̇ = π̇, where π̇(dθ) := π(dθ,U,V), ‘exact marginal posterior’

(iii) η(1) = 0 =⇒ ζ(1) = 0 on T×U×V. ‘(IS estimator) support cond.’

If Assumption 4 holds, for f ∈ L1(ν) we define the following functions of

(θ, u, v) = (Θk, Uk, Vk), where Vk = (Mk, Z
(1:Mk)
k , ζ

(1:Mk)
k ):

ζk(f) :=

Mk∑

i=1

ζ
(i)
k f(Θk, Z

(i)
k ), ξk(f) :=

ζk(f)

ηk(1)
, ζ̂k(f) :=

ζk(f)

ζk(1)
. (12)

We define the following subsets Lpπ(ν) ⊂ Lp(ν), p = 1 or 2, by

L1
π(ν) := {f ∈ L1(ν) : π(ζ̂(f)) = ν(f) and π(ζ̂(|f |)) <∞},
L2
π(ν) := {g ∈ L1

π(ν) : g2 ∈ L1
π(ν)}.

Remark 8. Regarding Assumption 4 and the above definitions:

(i) If f ∈ L1(ν) satisfies f(θ, ·) = f(θ), then f ∈ L1
π(ν). In many settings,

e.g. SSMs where Vk is constructed from SMC as part of a particle MCMC,
L1
π(ν) may be much larger, or all of L1(ν) [cf. 65, Cor. 21].

(ii) Support condition (iii) holds quite generally, e.g. if η(1) > 0. In a latent
variable model, where, given θ, η(1) is an unbiased estimator for an approx.
marginal posterior pr(θ)L(U)(θ) ∝ µ̇(θ), this can be achieved by inflating the
likelihood L(U) by a constant ε > 0: L(U)(θ) 7→ L(U)(θ) + ε [cf. 65, Prop. 17
and Rem. 18], renormalising µ accordingly.

The following concerns a PM type scheme targeting ν directly [cf. 6].

Proposition 9. Suppose a Markov chain (Θk, Uk, Vk)k≥1 is π-reversible Harris
ergodic, where Assumption 4 holds. Then, for all f ∈ L1

π(ν),

EPM
n (f) :=

1

n

n∑

k=1

ζ̂k(f)
n→∞−−−→
a.s.

ν(f). (13)

Proof. Follows by Harris ergodicity, as π(ζ̂(f)) = ν(f), f ∈ L1
π(ν). �

Consider now an IS scheme (Algorithm 1) as in [65]. Compared to [65], we
additionally assume µ-reversibility of the base chain and nonnegativity of the
estimators ζ(i) ≥ 0. This is done to facilitate comparison with the previous PM
type scheme corresponding to PM and DA algorithms, which are π-reversible and
require ζ(i) ≥ 0, as ζ(1) is present in their acceptance ratio (cf. §6). If Assumption
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Algorithm 1 (Importance sampling scheme). Suppose Assumption 4 holds.

(Phase 1) Let (Θk, Uk)k≥1 be a µ-reversible Harris ergodic Markov chain.
(Phase 2) For each k ≥ 1, let Vk be drawn as follows, for the IS0 and ISJ cases:

(IS0) Vk ∼ Q
(V )
ΘkUk

(·). For f ∈ L1
π(ν), we define

mf (θ, u) := E[ξk(f)|Θk = θ, Uk = u]. (14)

(ISJ) Form a jump chain (Θ̃k, Ũk, Ñk)k≥1, and draw Vk from some kernel

Vk ∼ Q
(V |N)

Θ̃kŨkÑk
(·) from T×U× N to V such that

E[ξk(f)|Θ̃k = θ, Ũk = u, Ñk = n] = mf (θ, u)

for all n ∈ N and f ∈ L1
π(ν).

4 (PM kernels) holds, then for all f ∈ L1
π(ν),

µ(mf ) =
1

cη

∫
dθQ

(U)
θ (du)η(1)Q

(V )
θu (dv)

ζ(f)

η(1)
= cξν(f)

where cξ := cζ/cη, and mf is defined in (14). This motivates the following con-
sistency result, an instance of [65, Prop. 15] for the Nk = 1 case (IS0) and [65,
Thm. 11] for the Nk = Ñk case (ISJ).

Proposition 10. Under Algorithm 1, for all f ∈ L1
π(ν),

EIS
n (f) :=

∑n
k=1 Nkξk(f)∑n
k=1 Nkξk(1)

n→∞−−−→
a.s.

ν(f). (15)

Remark 11. In the ISJ case, allowing for dependence on Ñk when drawing Vk
in Algorithm 1 allows for variance reduction of ξk(f) and hence of the resultant
estimator (15) (cf. Proposition 19), by using larger Mk when Ñk is large. For
example, Mk could correspond to the number of independent samples drawn from
an instrumental, or, more generally, to the number of particles used in the SMC,
if this is how Vk is generated.

5.2. A Peskun type ordering for importance sampling schemes. Under
Assumption 5 below, the IS estimator EIS

n (f) (15) satisfies a CLT

√
n[EIS

n (f)− ν(f)]
n→∞−−−→ N

(
0,VIS

f

)
, in distribution. (16)

See [65] or Proposition 19 of Appendix A, with a formula for VIS
f . In analogy with

Definition 2 and (3), we refer to VIS
f as the IS asymptotic variance.

Assumption 5 (Importance sampling CLT). Suppose Algorithm 1 (IS scheme)
and that (Θk,Uk,Nk)k≥1 is aperiodic. Let f ∈ L2

π(ν) be a function such that
var(K,mf ) <∞, where mf is defined in (14), and vf̄ by

(IS0) vf̄ (θ, u) := var
(
ξk(f̄)|Θk = θ, Uk = u

)
,

(ISJ) ṽf̄ (θ, u) := E[Ñ2
kvar

(
ξk(f̄)|Θ̃k = θ, Ũk = u, Ñk

)
|Θ̃k = θ, Ũk = u],

satisfies µ
(
avf̄
)
<∞.
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Let us denote the kernel and measure of the IS0 corrected chain of Algorithm
1 by (K̄, µ̄) on the space X = (T×U)×V, where,

K̄θuv(dθ
′, du′, dv′) := Kθu(dθ

′, du′)Q(V )
θ′u′(dv

′)

µ̄(dθ, du, dv). = µ(dθ, du)Q
(V )
θu (dv). (17)

Note that K̄ = K(V ) is an augmented kernel (Definition 3).
With definitions as in Assumption 5, we define a ‘difference’ constant Df̄ , for

the IS0 and ISJ cases, respectively, by Df̄ := 0 and

D̃f̄ := µ(a)c−2
ξ µ(aṽf̄ − vf̄ ).

Theorem 12. Suppose Algorithm 1 (IS scheme) and Assumption 5 (IS CLT)
hold.

(i) If (µ̄, π, w, K̄, L, c, c) satisfies Assumption 2 on X, then

VIS
f + µ(a)varµ̄

(
wζ̂(f̄)

)
≤ c µ(a)

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}
+ Df̄

VIS
f + µ(a)varµ̄

(
wζ̂(f̄)

)
≥ c µ(a)

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}
+ Df̄ .

(ii) If (µ̄, π, w, K̄, L, c, c) satisfies Assumption 3 on X, then

VIS
f ≤ c µ(a)

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}

+ (1 + 2NK)µ(a)varµ̄
(
wζ̂(f̄)

)
+ Df̄

where NK := 0 if K is positive, and NK := 1 if not.

Remark 13. Regarding Theorem 12, whose proof is in Appendix A:

(i) Note that 0 ≤ µ(a) ≤ 1, with a as in §4.2, and that w = c−1
ξ ξ(1) and

w∗ = c−1
ξ m1, with mf (θ, u) defined in (14).

(ii) As a trivialisation, when η(Θk, Uk) := η(1) = µ̇(Θk) a.s., Z = {0}, and
ξk(f) = wu(Θk)f(Θk) a.s., we obtain a Peskun type ordering for SNIS (11).

Here, the simplifications are K̄ ↔ K, ζ̂(f̄)↔ f̄ and ξ(f̄)↔ cξwf̄ .

6. Pseudomarginal and delayed acceptance MCMC

We define PM and DA type algorithms in the setting of the auxiliary variable
framework of §5, where PM could be the ‘particle marginal Metropolis-Hastings’
[2]; a DA type variant of this algorithm has been implemented e.g. in [30, 52,
65]. After defining the corresponding kernels, we then compare the asymptotic
variances of PM/DA with IS (Theorem 14).

6.1. Algorithms. Let qθ(dθ
′) = qθ(θ

′)dθ′ be a proposal kernel on T. Assume
the setup of Assumption 4 (recall that η(1) ≥ 0 and ζ(1) ≥ 0). Whenever the
denominators are not zero we define the following ‘acceptance ratios’ for x, x′ ∈
X := T×U×V, where x = (θ, u, v),

r(U)(x, x′) :=
η′(1)qθ′(θ)

η(1)qθ(θ′)
, and r(V )(x, x′) :=

ζ ′(1)qθ′(θ)

ζ(1)qθ(θ′)
. (18)

Consider Algorithm 2 (‘PM parent,’ following the terminology of [57]), Algo-
rithm 3 (‘DA0’), and Algorithm 4 (‘DA1’), with transition kernels given later
and which are π-invariant [cf. 2, 6, 10]. Under Assumption 4 (PM kernels) and
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Algorithm 2 (Pseudomarginal parent). Suppose Assumption 4 (PM kernels)
holds. Initialise X0 ∈ X with ζ0(1) > 0. For k = 1, . . . n, do:

(1) Draw Θ′k ∼ qΘk−1
(·) and U ′k ∼ Q

(U)

Θ′k
(·) and V ′k ∼ Q

(V )

Θ′kU
′
k
(·). With probability

min
{

1, r(V )(Xk−1, X
′
k)
}

accept X ′k; otherwise, reject.

Algorithm 3 (Delayed acceptance (‘DA0’)). Suppose Assumption 4 (PM kernels)
holds, and K is a µ-proposal-rejection kernel of the form (20). Initialise X0 ∈ X
with ζ0(1) > 0. For k = 1, . . . , n, do:

(1) Draw Θ′k ∼ qΘk−1
(·). Construct U ′k ∼ Q

(U)

Θ′k
(·). With probability

α(Θk−1, Uk−1; Θ′k, U
′
k), proceed to step (2). Otherwise, reject.

(2) Construct V ′k ∼ Q
(V )

Θ′k,U
′
k
(·). With probability min

{
1, ξ′k(1)/ξk(1)

}
, accept

(Θ′k, U
′
k, V

′
k); otherwise, reject.

Algorithm 4 (Delayed acceptance (‘DA1’)). Suppose Assumption 4 (PM kernels)
holds. Initialise X0 ∈ X with ζ0(1) > 0. For k = 1, . . . , n, do:

(1) Draw (Θ′k, U
′
k) ∼ KΘk−1,Uk−1

(·).
(2) Construct V ′k ∼ Q

(V )

Θ′k,U
′
k
(·). With probability min

{
1, ξ′k(1)/ξk(1)

}
, accept

(Θ′k, U
′
k, V

′
k); otherwise, reject.

the assumption that the resultant chains are π-Harris ergodic, by construction
Algorithms (2-4) produce output as in Proposition 9 (PM type scheme). In PM
parent (Algorithm 2) and DA1 (Algorithm 4), the computationally expensive Vk-
variable is drawn whenever Uk is drawn. This is the essential difference with DA0
(Algorithm 3). The separation of sampling steps can substantially reduce com-
putational cost in DA0 [cf. 17], even though the asymptotic variance of DA0 is
more than PM parent in the case K is the approximate PM kernel (22) [cf. 10],
and more than DA1 in the case K is a µ-proposal-rejection chain (see Section 6.2
below, these are the cases when the chains are comparable).

6.2. Kernels. Let K be the transition kernel of a µ-reversible Harris ergodic IS0
base chain (Θk, Uk)k≥1, with definitions as in Assumption 4 (PM kernels). The
DA1 correction of K is the π-reversible kernel KDA1 corresponding to Algorithm
4, given by,

KDA1
θuv (dθ′, du′, dv′) = Kθu(dθ

′, du′)Q(V )
θ′u′(dv

′) min
{

1, ξ′(1)/ξ(1)
}

+ [1− αDA1(θ, u, v)]δθuv(dθ
′, du′, dv′), (19)

where αDA1(θ, u, v) :=
∫
Kθu(dθ

′, du′)Q(V )
θ′u′(dv

′) min
{

1, ξ′(1)/ξ(1)
}
.

If K is in particular a µ-proposal-rejection kernel (see §3.2.1) of the form

Kθu(dθ
′, du′) = qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)

+

(
1−

∫
qθ(dθ

′′)Q(U)
θ′′ (du′′)α(θ, u; θ′′, u′′)

)
δθ,u(dθ

′, du′), (20)
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then DA0 correction of K is

KDA0
x (dx′) = qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)Q(V )

θ′u′(dv
′) min

{
1, ξ′(1)/ξ(1)

}

+ [1− αDA0(x)]δθuv(dθ
′, du′, dv′), (21)

where αDA0(x) = KDA0
x (X\{x}), and X := T×U×V, x ∈ X, x := (θ, u, v).

Decreasing the variability of ξ′(1) = ζ ′(1)/η′(1) by coupling the u′ and v′ vari-
ables can lead to improved mixing of (19), and is similar in idea to recently
proposed ‘correlated PM’ [19] and ‘MHAAR’ [3] chains. The mere requirement of
reversibility allows the kernel K to be taken to be approximate versions of the two
chains listed above, or an approximate DA or ‘multi-stage DA’ [10]. Regardless,
the most straightforward choice for K is the (approximate) PM kernel targeting
µ with proposal q, given by,

Kθu(dθ
′, du′) = qθ(dθ

′)Q(U)
θ′ (du′) min

{
1, r(U)(x, x′)

}

+ [1− α(θ, u)]δθu(dθ
′, du′), (22)

where α(θ, u) :=
∫
qθ(dθ

′)Q(U)
θ′ (du′) min

{
1, r(U)(x, x′)

}
.

We remark that by the covariance (or Peskun) ordering, we have var(KDA1, f) ≤
var(KDA0, f) for all f ∈ L2(π), where K is a µ-proposal-rejection kernel. However,
for the reason discussed in Section 6.1, DA0 is likely more computationally efficient
than DA1 in practice.

We define the PM parent kernel P of KDA1 to be given by

Pθuv(dθ
′, du′, dv′) = qθ(dθ

′)Q(U)
θ′ (du′)Q(V )

θ′u′(dv
′) min

{
1, r(V )(x, x′)

}

+ [1− αPMP(θ, v)]δθuv(dθ
′, du′, dv′), (23)

where αPMP(θ, v) :=
∫
qθ(dθ

′)Q(U)
θ′ (du′)Q(V )

θ′u′(dv
′) min

{
1, r(V )(x, x′)

}
.

We define a probability kernel from T to V by

Q̂
(V )
θ (dv) :=

∫

U

Q
(U)
θ (du)Q

(V )
θu (dv) (24)

We then define the following PM kernel with proposal q targeting π,

Mθv(dθ
′, dv′) = qθ(dθ

′)Q̂(V )
θ′ (dv′) min

{
1, r(V )(x, x′)

}

+ [1− αPM(θ, v)]δθv(dθ
′, dv′), (25)

where αPM(θ, v) :=
∫
qθ(dθ

′)Q̂(V )
θ′ (dv′) min

{
1, r(V )(x, x′)

}
.

When Uk and Vk are independent given θ, i.e.

Q
(V )
θu (dv) = Q

(V )
θ (dv), (26)

then M (25) is the standard PM with proposal q and target π, since,

Q̂
(V )
θ (dv) = Q

(V )
θ (dv).

6.3. Comparison with importance sampling correction.

Theorem 14. Suppose Assumption 4 (PM kernels) holds, and that one of the
following conditions for pairs of kernels holds:

(I) L = KDA0 is DA0 correction (21), and K is µ-proposal-rejection (20),
(II) L = KDA1 is DA1 correction (19), and K is µ-reversible,

(III) L = P is the PM parent (23), and K is the approx. PM (22), or
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(IV) L = M is the PM kernel (25), and K is the approx. PM (22).

Assume K and L are Harris ergodic, and a function f ∈ L2
π(ν) is such that

Assumption 5 (IS CLT) holds. The following statements hold:

(i) The IS asymptotic variance (16) satisfies, with c := µ̄-ess inf w,

VIS
f + µ(a)varµ̄

(
wζ̂(f̄)

)
≤ µ(a) ‖w‖∞

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}
+ Df̄

VIS
f + µ(a)varµ̄

(
wζ̂(f̄)

)
≥ µ(a) · c ·

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}
+ Df̄ .

(ii) With NK := 0 if K is positive and NK := 1 if not, the following holds:

VIS
f ≤µ(a) ‖w∗‖∞

{
var
(
L, ζ̂(f)

)
+ varπ

(
ζ̂(f)

)}

+ (1 + 2NK)µ(a)varµ̄
(
wζ̂(f̄)

)
+ Df̄ .

See Remark 13(i) for w and w∗. See Appendix B for the proof of Theorem 14,
which follows from Theorem 12, after bounding the Dirichlet forms.

7. Discussion

In this section we discuss various issues of stability (§7.1), computational effi-
ciency (§7.2), and approximation strategies (§7.3).

7.1. Importance sampling weight and stability considerations. A neces-
sary condition for a successful implementation of an IS or PM scheme is a simple
support condition, Assumption 4(iii), that can often be easily ensured by Remark
8(ii). On the other hand, Theorem 14 depends on a uniform bound on the mar-
ginal weight w∗ ∝m1, with mf (θ, u) as in (14). This bound is much weaker than
a bound on w, and can often be ensured. For example, assuming that η(1)m1

is bounded, one can often inflate η(1) as in Remark 8(ii) to obtain an uniform
bound on w∗. Other techniques may be applicable if a bounded w∗ is particularly
desired, such as a combination of cutoff functions, approximations, or tempering
[cf. 48, 65].

When considering a PM/DA implementation, the issue of boundedness of the
full weight w ∝ ζ(1)/η(1) takes particular importance, more so than in the case
with IS. This is because PM and DA are more liable to be poorly mixing, while
IS is less affected by noisy estimators, as described below.

We claim that if ζ(1) is not bounded, then PM and KDA0, with K as in (22),
are not geometrically ergodic. This is [6, Thm. 8] for PM chains. To prove that
result for PM chains, or in particular for the PM parent chain (23), [6] show that
for all ε > 0,

ν
(
1{αPMP ≤ ε}

)
> 0. (27)

By [55, Thm. 5.1], one concludes that the PM parent is not geometrically ergodic
[6]. Moreover, with K as in (22) and L = KDA0 as in (19), from

min{1, r(U)(x, x′)}min{1, w(x′)/w(x)} ≤ min{1, r(V )(x, x′)}, (28)

it follows that αDA0(x) ≤ αPMP(x). By (27), one concludes that KDA0 also is not
geometrically ergodic.

On the other hand, the IS chain may converge fine, even in the case of un-
bounded ζ(1). For example, if K is a random walk Metropolis-Hastings chain,
then K is geometrically ergodic essentially if µ has exponential or lighter tails and
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a certain contour regularity condition holds [32, 55], where we have said nothing
about the exact level estimator ζ(1). We then apply Lemma 22(v), which says
that whenever K is geometrically ergodic then so is K̄, to conclude that the IS
chain is geometrically ergodic, even in the case of unbounded ζ(1). This may be
beneficial if adaptation is used [5, 7, 54].

Of course, high variability affects also the IS estimator, but we believe this noise
to be a smaller issue in IS, as the noise is in the IS output estimator rather than
in the acceptance ratio as in PM/DA. This can make a significant difference in
the evolution and ergodicity of the chains, as described above.

7.2. Computational aspects of the importance sampling correction. The
finite-size perturbation bounds for the asymptotic variance of IS versus PM/DA
(Corollary 4 or Theorem 14) show that IS can not do much worse than PM/DA
in terms of statistical efficiency. On the other hand, the flexibility of the IS
implementation allows for the use of many potentially substantial computational
efficiency enhancements [65], which we briefly mention.

Thinning, where only every kth value of a chain is kept [cf. 47], may be ap-
plied to the IS base chain, which may be e.g. adaptive [5, 7, 54], approximated
[33, 46], correlated [19], ‘MHAAR’ [3], or nonreversible [63]. The thinning can
be performed before any calculations of weights. The weights also need not be
calculated in the burn-in phase. The use of a jump chain estimator can further
decrease the number of necessary weight calculations, and shows the strength of
IS in relation to PM/DA using ‘early rejection’ [60], which is computational ef-
ficiency enhancement for PM/DA applicable when the posterior is factorisable
and the subposteriors are monotonically decreasing [cf. 60, §4], but may involve
expensive calculations for all innovations, unlike ISJ. Real-valued IS type weight
estimators also allow for multilevel Monte Carlo [cf. 20]. Also, the IS correction,
which is based on independent ‘post-processing’ correction of the approximate
chain output, allows for separation of approximate and exact phases, leading to
easy process management, output analysis, and parallelisation.

7.3. Finding an approximation. A necessity of the IS approach compared to a
direct PM approach is finding a suitable approximate Markov chain; see [33, 58, 65]
for suggestions. We remark that this problem simplifies when there is a clear
grading of approximate models, for then one can use a PM chain targeting a
coarse-level distribution and then IS correct to the fine-level. The grading could
be based on the tolerance size in approximate Bayesian computation as in [51] or
on the discretisation size of a discretely observed diffusion as in [65], who both
show performance gains over a direct approach.

The grading could also come from the order of the Taylor [17] or Fourier [18,
24, 58] series approximation needed for the posterior density, a multilevel [20],
multiscale [24], or dimension reduction [18] framework, the amount of subsampled
data in a big data setting [10, 52], the size of introduced noise in a perturbed
problem strategy [11], the subfactor length of a factorisable likelihood [60], or
the number of nearest neighbours used in a local approximation [56]. The cited
works are just a few of the many that use the DA implementation, which may
alternatively be run as an IS implementation by a simple rearrangement of the
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algorithm. The two-phase IS method may lead to performance gains over a direct
MCMC, especially with massive parallelisation [35].

Acknowledgments

The authors have been supported by the Academy of Finland (grants 274740,
284513 and 312605). JF thanks also the organisers of the 2017 SMC course and
workshop in Uppsala for hosting a great event.

Appendix A. Proofs for the Peskun type orderings

A.1. Subprobability kernels. Let K be a µ-reversible Markov kernel on X. For
all λ ∈ (0, 1], λK is a subprobability kernel : λK(x,X) ≤ 1 for all x ∈ X. The
Dirichlet form EλK(f) of the subprobability kernel λK is

EλK(f) := 〈f, (1− λK)f〉µ = λEK(f) + (1− λ) ‖f‖2
µ , (29)

defined for f ∈ L2(µ). For f ∈ L2
0(µ), if (1−K)−1f exists in L2(µ), then by (2),

var(K, f) = 2 〈f, (1−K)−1f〉µ−µ(f 2) [cf. 9]. Following [9, 61], we then (formally)
extend Definition 2 of the asymptotic variance to subprobability kernels: for λ ∈
(0, 1), the operator (1− λK) is always invertible, and we define

var(λK, f) := 2
〈
f, (1− λK)−1f

〉
µ
− µ(f 2). (30)

Moreover, (1) and (29) imply for λ ∈ (0, 1] that 1 − λK is a positive operator,
i.e. EλK(f) ≥ 0 for all f ∈ L2(µ). By a result attributed to Bellman [14, Eq.
14], for positive self-adjoint operators, and used e.g. in [1, 9, 15, 44, 43], we have
another asymptotic variance representation: for all λ ∈ (0, 1) and f ∈ L2

0(µ),

var(λK, f) = 2 sup
g∈L2(µ)

{
2 〈f, g〉µ − EλK(g)

}
− µ(f 2). (31)

Here, the supremum is attained with g := (1−λK)−1f , in which case (31) simpli-
fies to (30). For λ ∈ (0, 1), equalities (30–31) hold and are finite for any f ∈ L2

0(µ).
The function λ 7→ var(λK, f) has a limit as λ ↑ 1 on the extended real numbers
[0,∞], and var(K, f) equals this limit [61].

A.2. Normalised importance sampling ordering. We set

NK := − inf
µ(g)=0,µ(g2)=1

〈g,Kg〉µ (32)

for a µ-reversible kernel K, so that the left spectral gap of K is 1−NK [cf. 9].

Lemma 15. Suppose (µ, ν, w,K, L, c, c) satisfies Assumption 3 on X := T ×Y.
Let ϕ ∈ L2

0(ν) be such that wϕ ∈ L2(µ). Define uλ := (1 − λK)−1(wϕ) and
ǔλ := uλ − wϕ, in L2(µ) for all λ ∈ (0, 1). The following hold:

(i) If uλ(θ, y) = uλ(θ), λ ∈ (0, 1), then (4) holds.
(ii) If ǔλ(θ, y) = ǔλ(θ), λ ∈ (0, 1), then (10) holds, with NK as in (32).

Proof. Note that L2(µ∗) ⊂ L2(ν∗) by Assumption 3(b). For g ∈ L2(µ∗),

EλL(g) = λEL(g) + (1− λ)ν∗(g2) ≤ cλEK(g) + (1− λ)ν∗(g2),
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by Assumption 3(a). From the above first equality, now for λK and µ∗,

EλL(g) ≤ c
[
EλK(g)− (1− λ)µ∗(g2)

]
+ (1− λ)ν∗(g2)

= cEλK(g)− (1− λ)µ∗
(
g2[c− w∗]

)
≤ cEλK(g), (33)

by Assumption 3(b). Since 1− λK is self-adjoint on L2(µ), we also note that

EλK(ǔλ) = EλK(uλ − wϕ) = EλK(uλ) + EλK(wϕ)− 2 ‖wϕ‖2
µ ,

as 〈vλ, (1− λK)wϕ〉µ = ‖wϕ‖2
µ . Regardless of λ ∈ (0, 1), 1 − λK has support of

its spectral measure contained in [0, 1 + NK ] (cf. Remark 17(ii) below). Hence,
EλK(wϕ) ≤ (1 + NK) ‖wϕ‖2

µ, so

EλK(ǔλ) ≤ EλK(uλ) + (NK − 1) ‖wϕ‖2
µ . (34)

We now compare the asymptotic variances. By (30),

LS := var(λK,wϕ) + ‖wϕ‖2
µ = 2

[
2 〈wϕ, uλ〉µ − EλK(uλ)

]
.

With ψ := uλ for (i), and with ψ := ǔλ for (ii) using (34),

LS ≤ 2
[
2 〈wϕ, ψ〉µ − EλK(ψ)

]
+ Eψ,

where Eψ := 0 if ψ = uλ and Eψ := 2(1 + NK) ‖wϕ‖2
µ if ψ = ǔλ. Hence,

LS ≤ 2
[
2 〈ϕ, ψ〉ν − EλK(ψ)

]
+ Eψ ≤ 2

[
2 〈ϕ, ψ〉ν − (c)−1EλL(ψ)

]
+ Eψ,

where we have used (33). Since ψ ∈ L2(µ∗) ⊂ L2(ν),

LS ≤ 1

c

(
2 sup
g∈L2(ν)

{
2 〈cϕ, g〉ν − EλL(g)

}
− ‖cϕ‖2

ν

)
+ c ‖ϕ‖2

ν + Eψ

= c
(
var(λL, ϕ) + ‖ϕ‖2

ν

)
+ Eψ,

by (31). We then take the limit λ ↑ 1 [61]. Noting that ‖wϕ‖2
µ = varµ(wϕ) since

µ(wϕ) = ν(ϕ) = 0, we conclude. �
Lemma 16. Suppose the assumptions of Lemma 15 hold, where c may be also ∞.
If vλ := (1− λL)−1(ϕ) satisfies vλ(θ, y) = vλ(θ), then (5) holds.

Proof. The lower bound (5) is trivial if c = 0. Assume c > 0. Then µ � ν,
w−1 ≤ c−1 (implying L2(ν) ⊆ L2(µ)), and EK(g) ≤ c−1EL(g) for all g ∈ L2(ν).
The result follows by applying Lemma 15(i). �
Remark 17. Regarding Lemma 15 and Lemma 16:

(i) The solution vλ to the Poisson eq. [cf. 42], (1 − λL)g = ϕ in L2(µ), is also
used in [9, Thm. 17] as a lemma for the proof of the convex order criterion
Peskun type ordering for PM chains [9, Thm. 10].

(ii) We have NK ∈ [−1, 1] in general, but NK ∈ [−1, 0] if K is positive.
(iii) It is reasonable to use a single constant c in Assumptions 3(a–b). If one

replaces Assumption 3(b) with w∗ ≤ c′ µ∗ − a.e., then, if c′ < c, one ob-
tains the same result after bounding a nonpositive quantity by zero in (33).
If c′ > c, then one would need to impose the unappealing condition that
supλ∈(0,1) ‖uλ‖2

µ∗ < ∞ and add a positive constant involving this bound to
the final results. Anyways, for the the application in this paper, we have
c = c′ (Lemma 21).
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(iv) Assumption 3(a) can be replaced with the weaker assumption that EL(g) ≤
c EK(g) for all g ∈ G ⊂ L2(µ∗), where G := {uλ : λ ∈ (0, 1)} for (i) and
G := {ǔλ : λ ∈ (0, 1)} for (ii).

Lemma 18. Let K be a µ-reversible chain on X = T ×Y. For h ∈ L2(µ) and
λ ∈ (0, 1), set hλ := (1− λK)−1h and ȟλ := hλ − h, which are in L2(µ).

(i) If Y = {y0} is the trivial space, then hλ(θ, y) = hλ(θ).
(ii) If K is an augmented kernel, then ȟλ(θ, y) = ȟλ(θ). Moreover, if also

h(θ, y) = h(θ), then hλ(θ, y) = hλ(θ).

Proof. (i) is clear. For (ii), we write the series representation for the inverse of an
invertible operator and use Lemma 22(iii), to get that,

hλ(θ, y) =
∞∑

n=0

λnKnh(θ, y) = h(θ, y) +
∞∑

n=1

λnK̇n(Qh)(θ).

The result then follows. �

Proof of Theorem 2. The upper bound (4) follows from Lemma 15(i) and Lemma
18(i), while (5) follows from Lemma 16 and Lemma 18(i). �

Proof of Theorem 5. Follows by Lemma 15 and Lemma 18(ii). �

A.3. Importance sampling schemes. The following CLT, based on Proposi-
tion 1, and asymptotic variance formula, are [65, Theorem 7 & 13].

Proposition 19. Under Assumption 5, the IS estimator (15) satisfies the CLT
(16), with limiting variance VIS

f = µ(a)
[
var(K,mf ) + µ(avf̄ )

]
/c2
ξ .

Proof of Theorem 12. We first note that

ξ(f) :=
ζ(f)

η(1)
=
cζ
cη
· cη
cζ

ζ(1)

η(1)
· ζ(f)

ζ(1)
= cξwζ̂(f).

By Slutsky’s Theorem applied to (15) in the IS0 case,

VIS0
f = var

(
K̄, ξ(f)

)
/c2
ξ = var

(
K̄, wζ̂(f)

)
.

Then (i) follows by Theorem 2, and (ii) by Theorem 5, for the IS0 case. To prove
the result for the ISJ case, we first note the relationship

VISJ
f = µ(α)c−2

ξ

[
var(K,mf ) + µ(vf̄ ) + µ(αṽf̄ − vf̄ )

]
= µ(α)VIS0

f + D̃f̄ ,

from Proposition 19. The result then follows from the IS0 case. �

Appendix B. Proofs for main comparison application

Lemma 20. Let (K,L) be the pair of kernels as in (II), (I), or (III) of Theorem
14, where we assume that (µ̄, ν, w) satisfies Assumption 1, with (K̄, µ̄) the Q(V )-
augmentation of K (17). Then, the following hold:

(i) If ‖w‖∞ <∞, then EL(g) ≤ ‖w‖∞ EK̄(g) for all g ∈ L2(µ̄).
If c := µ̄-ess inf w, then EL(g) ≥ c EK̄(g) for all g ∈ L2(µ̄).

(ii) If ‖w∗‖∞ <∞, then EL(g) ≤ ‖w∗‖∞ EK̄(g) for all g ∈ L2(µ).
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Proof. This is done separately below for the cases L ∈ {P,KDA0, KDA1}. Set
G := [g(x)− g(x′)]2, g ∈ L2(µ̄), with x, x′ ∈ X := T×U×V. Then,

EP (g) =
1

2

∫
π(dx)qθ(dθ

′)Q(U)
θ′ (du′)Q(V )

θ′u′(dv
′) min

{
1, r(V )(x, x′)

}
G

=
1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)Q(V )

θ′u′(dv
′) min

{
w(x), w(x)r(V )(x, x′)

}
G

=
1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)Q(V )

θ′u′(dv
′) min

{
w(x), w(x′)r(U)(x, x′)

}
G,

because w(x)r(V )(x, x′) = w(x′)r(U)(x, x′), well-defined on the set of interest. We
then use the uniform bounds c ≤ w ≤ ‖w‖∞ to conclude (i) for L = P .

Now assume g ∈ L2(µ), so G = [g(θ, u)− g(θ′, u′)]2. By Jensen’s inequality and
concavity of (x, x′) 7→ min{x, x′} when one of x, x′ ≥ 0 is held fixed,

EP (g) =
1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)G

∫
Q

(V )
θ′u′(dv

′) min
{
w(x), w(x′)r(U)(x, x′)

}

≤ 1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)Gmin

{
w(x), w∗(θ′, u′)r(U)(x, x′)

}
.

Here, we have used that r(U)(x, x′) does not depend on v′ ∈ V, and that
∫
w(x)Q

(V )
θu (dv) =

cη
cζ

1

η(1)

∫
ζ(1)Q

(V )
θu (dv) =

π∗(dθ, du)

µ(dθ, du)
= w∗(θ, u).

We then apply Jensen again, this time integrating out v ∈ V, to get,

EP (g)

≤ 1

2

∫
dθQ

(U)
θ (du)

η(1)

cη
qθ(dθ

′)Q(U)
θ′ (du′)G

∫
Q

(V )
θu (dv) min

{
w(x), w∗(x′)r(U)(x, x′)

}

≤ 1

2

∫
dθQ

(U)
θ (du)

η(1)

cη
qθ(dθ

′)Q(U)
θ′ (du′) min

{
w∗(θ, u), w∗(θ′, u′)r(U)(x, x′)

}
G.

We then apply the uniform bound w∗ ≤ ‖w∗‖∞ and use the fact that EK(g) =
EK̄(g) for all g ∈ L2(µ) to conclude (ii) for L = P .

Now consider the case L = KDA0. With G := [g(x)− g(x′)]2 on X2,

EKDA0(g) =
1

2

∫
π(dx)qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)Q(V )

θ′u′(dv
′) min

{
1,
w(x′)

w(x)

}
G

=
1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)Q(V )

θ′u′(dv
′) min

{
w(x), w(x′)

}
G,

for all g ∈ L2(µ̄). As before, this allows us to conclude (i) for L = KDA0.
Now assume g ∈ L2(µ), with G := [g(θ, u)− g(θ′, u′)]2. By Jensen,

EKDA0(g) ≤ 1

2

∫
µ̄(dx)qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)Gmin

{
w(x), w∗(θ′, u′)

}

≤ 1

2

∫
µ(dθ, du)qθ(dθ

′)Q(U)
θ′ (du′)α(θ, u; θ′, u′)Gmin

{
w∗(θ, u), w∗(θ′, u′)

}
,

which allows us to conclude (ii) as before.
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Now consider the case L = KDA1. With G := [g(x)− g(x′)]2 on X2,

EKDA1(g) =
1

2

∫
π(dx)Kθu(dθ

′, du′)Q(V )
θ′u′(dv

′) min
{

1,
w(x′)

w(x)

}
G

=
1

2

∫
µ̄(dx)Kθu(dθ

′, du′)Q(V )
θ′u′(dv

′) min
{
w(x), w(x′)

}
G,

for all g ∈ L2(µ̄). As before, this allows us to conclude (i) for L = KDA1.
Now assume g ∈ L2(µ), with G := [g(θ, u)− g(θ′, u′)]2. By Jensen,

EKDA1(g) ≤ 1

2

∫
µ̄(dx)Kθu(dθ

′, du′)Gmin
{
w(x), w∗(θ′, u′)

}

≤ 1

2

∫
µ(dθ, du)Kθu(dθ

′, du′)Gmin
{
w∗(θ, u), w∗(θ′, u′)

}
,

which allows us to conclude (ii) as before. �
Lemma 21. With assumptions as in Lemma 20, and additionally assuming that
K and L determine Harris ergodic chains, the following hold:

(i) If ‖w‖∞ <∞, then (µ̄, π, w, K̄, L, c, ‖w‖∞) satisfies Assumption 2.
(ii) If ‖w∗‖∞ <∞, then (µ̄, π, w, K̄, L, 0, ‖w∗‖∞) satisfies Assumption 3.

Proof. Lemma 20(i) and (ii) imply respectively (i) and (ii). �
Proof of Theorem 14. The support condition Assumption 4(iii) implies that (µ̄, π, w)
satisfies Assumption 1. Under conditions (II), (I), or (III), the result follows by
Lemma 21 and Theorem 12.

Assume condition (IV). Because g := ζ̂(f) is a function on X = T ×U × V
which does not depend on the second coordinate, P kg(θ, u, v) = Mkg(θ, v) for all
(θ, u, v) ∈ X and k ≥ 1. Therefore, var(M, g) = var(P, g). �

Appendix C. Properties of augmented kernels

For measurable functions V : X→ [1,∞) and f : X→ R, we set

‖ν‖V := sup
f :|f |≤V

ν(f), and ‖f‖V := sup
x∈X

|f(x)|
V (x)

for any finite signed measure ν on X.

Definition 5. A µ-invariant Markov chain K on X is said to be

(i) V -geometrically ergodic if there is a function V : X→ [1,∞) such that

‖Kn(x, ·)− µ(·)‖V ≤ RV (x)ρn

for all n ≥ 1, where R <∞ and ρ ∈ (0, 1) are constants.
(ii) uniformly ergodic if K is 1-geometrically ergodic.

Lemma 22. Let Kθy(dθ
′, dy′) = K̇θ(dθ

′)Qθ′(dy
′) be an augmented kernel on T×

Y.

(i) The invariant measures of K and K̇ satisfy (µK = µ =⇒ µ∗K̇ = µ∗), and
(µ̇K̇ = µ̇ =⇒ µK = µ), where µ(dθ, dy) := µ̇(dθ)Qθ(dy). These implica-
tions hold with invariance replaced with reversibility.

(ii) K is µ-Harris ergodic ⇐⇒ K̇ is µ̇-Harris ergodic.
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(iii) For all f ∈ L1(µ) and n ≥ 1, Knf(θ, y) = K̇n(Qf)(θ).
(iv) K is aperiodic ⇐⇒ K̇ is aperiodic. K is positive ⇐⇒ K̇ is positive.
(v) K is geometrically ergodic ⇐⇒ K̇ is geometrically ergodic.

(vi) K is uniformly ergodic ⇐⇒ K̇ is uniformly ergodic.

Proof. (i–iii) are [65, Lem. 24]. Proof of (iv) is straightforward.
For (v), consider first the case that K̇ is V̇ -geometrically ergodic:

sup
|f |≤V̇
|K̇n(f)(θ)− µ̇(f)| ≤ RV̇ (θ)ρn, n ≥ 1,

with V̇ : T→ [1,∞) and constants R and ρ. Define V (θ, y) := V̇ (θ). By (iii),

sup
|f |≤V
|Knf(θ, y)− µ(f)| = sup

|f |≤V
|K̇n(Qf)(θ)− µ̇(Qf)|. (35)

Since Qf(θ, y) ≤ QV (θ, y) = V̇ (θ), we get that K is V -geometrically ergodic.
Assume now that K is V -geometrically ergodic. Using (35), we have,

sup
|f |≤V
|Knf(θ, y)− µ(f)| = sup

g=Qf :|f |≤V
|K̇ng(θ)− µ̇(g)|, (36)

for n ≥ 1. Define V̇ (θ) := infy V (θ, y). For all g such that |g(θ)| ≤ V̇ (θ), set

f(θ, y) := g(θ). Then |f | ≤ V and Qf = g. By (36), K̇ is V̇ -geometrically
ergodic. This proves (v), and (vi) follows from the form of V̇ and V . �

Appendix D. Toy examples of two extremes

Figure 3. Mass allocations for µ, ν, and f on X = {0, 1, 2}, a ∈ [1
2
, 1).

µ = ( 1−a
2

1−a
2

a )
ν = ( 1/2 1/2 0 )

f = ( 1 −1 0 )

(a) ‘MH/DA better’ case

µ = ( 1/3 1/3 1/3 )
ν = ( a

2
1−a

2
1/2 )

f =
√

2√
a+a2

( 1 0 −a )

(b) ‘IS better’ case

Let X := {0, 1, 2} and consider the two mass allocations for probabilities µ
and ν on X and function f ∈ L2

0(ν) given pictorially in Figure 1 and precisely
in Figure 3. Denote by q(r) the (reflected) random walk proposal on X, given by

q
(r)
0 (x) = δ1(x), q

(r)
1 (x) = 1

2
[δ0(x) + δ2(x)], and q

(r)
2 (x) = δ1(x), and by q

(u)
x (x′) the

uniform proposal on X. We set K :=MH(q → µ) and let L be the MH (6) or
DA0 (7) kernels, using proposals q(r) or q(u), and targeting ν. We use a parameter
a ∈ [1

2
, 1) to allow for continuous intensity shifts in the mass allocations in our

examples. Because µ is constant on the support of ν, one can check that the MH
and DA0 kernels coincide for a ∈ [1

2
, 1).

The resulting IS and MH/DA asymptotic variances, var(K,wf) and var(L, f),
are listed in Table 1, and plotted in Figure 5. Here,

UBa(f) := max(w)var(L, f) + ν(f 2[max(w)− w]). (37)

is the upper bound on var(K,wf) from Corollary 4.
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Table 1. Asymptotic variance as a function of a ∈ [1/2, 1)

Proposal var(L, f) ≤ var(K,wf) var(L, f) ≥ var(K,wf)

RW q(r) 1 1
1−a

−1+8a+a2

a2−1
9a

1+a

uniform q(u) 2 1
1−a

−1+10a−a2
(1+a)2

15a
4(1+a)

var(L, f) ≤ var(K,wf) var(L, f) ≥ var(K,wf)
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Figure 5. Plots from Table 1: var(K,wf) ‘—’, var(L, f) ‘−−’,
and UBa(f) ‘· · · ’, vs. a ∈ [1

2
, 1). Here, in the top left, UBa(f)

exactly coincides with var(K,wf).

The code used to calculate the asymptotic variances can be found in the earlier
preprint [26, App. C]. It is based on a straightforward diagonalisation of 3 × 3
matrices and a discrete version of a spectral formula [34, Cor. 1.5] for var(K, f)
of Proposition 1.
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Abstract. We develop a Bayesian inference method for diffusions observed discretely
and with noise, which is free of discretisation bias. Unlike existing unbiased inference
methods, our method does not rely on exact simulation techniques. Instead, our method
uses standard time-discretised approximations of diffusions, such as the Euler–Maruyama
scheme. Our approach is based on particle marginal Metropolis–Hastings, a particle filter,
randomised multilevel Monte Carlo, and importance sampling type correction of approxi-
mate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias
from the time-discretisation as the number of Markov chain iterations increases. We give
convergence results and recommend allocations for algorithm inputs. Our method admits
a straightforward parallelisation, and can be computationally efficient. The user-friendly
approach is illustrated on two examples, where the underlying diffusion is an Ornstein–
Uhlenbeck process or a geometric Brownian motion.

1. Introduction

Hidden Markov models (HMMs) are widely used in real applications, for example, for
financial and physical systems modeling [cf. 5]. We focus on the case where the hidden
Markov chain arises from a diffusion process that is observed with noise at some number
of discrete points in time [cf. 30]. The parameters associated to the model are static and
assigned a prior density. Bayesian inference involves expectations with respect to (w.r.t.)
the joint posterior distribution of parameters and states, and is important in problems of
model calibration and uncertainty quantification. A difficult part of Bayesian inference for
these models is simulation of the diffusion dynamics. Except for some special cases where
the transition probability is explicitly known [cf. 22, Section 4.4] or exact simulation [3] type
methods can be applied [cf. 3, 4, 10, 33], one must time-discretise the diffusion dynamics
with an approximation scheme in order to facilitate tractable inference. This is despite the
fact that one is ideally interested when there is no time-discretisation: unbiased inference.

Our goal is unbiased inference for HMM diffusions. As previously mentioned, one ap-
proach to unbiased inference is based on exact simulation type methods [3, 4, 10, 33].
At the present point in time, exact simulation type methods are mostly only applicable
to one-dimensional models where the Lamperti transformation [cf. 24] can be applied (cf.
[25, 28, 33] for reviews). In contrast, we proceed with an Euler–Maruyama [cf. 22] (re-
ferred henceforth as Euler) or similar time-discretisation of the diffusion, which is generally
applicable.

Traditional inference approaches based on time-discretisations face a trade-off between
bias and computational cost. Once the user has decided on a suitably fine discretisation
size, one can run, for example, the particle marginal Metropolis-Hastings (PMMH) [2].
This algorithm uses a particle filter (PF) [cf. 7], where proposals between time points are
generated by the approximation scheme, and ultimately accepted or rejected according to a
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Metropolis-Hastings type acceptance ratio [cf. 16]. As the discretisation size adopted must
be quite fine, a PMMH algorithm can be computationally intensive.

To deal with the computational cost of PMMH, [19] develop a PMMH based method
which uses (deterministic) multilevel Monte Carlo (dMLMC) [14, 17]. The basic premise
of MLMC is to introduce a telescoping sum representation of the posterior expectation
associated to the most precise time discretisation. Then, given an appropriate coupling
of posteriors with ‘consecutive’ time discretisations, the cost associated to a target mean
square error is reduced, relative to exact sampling from the most precise (time-discretised)
posterior. In the HMM diffusion context, the standard MLMC method is not possible, so
based upon a PF coupling approach and PMMH, an MLMC method is devised in [19, 20],
which achieves fine-level, though biased, inference.

1.1. Method. The unbiased and computationally efficient inference method suggested in
this paper is built firstly on PMMH, using Euler type discretisations, but using a PMMH
targeting a coarse-level model, which is less computationally expensive. This does not
yield unbiased inference yet, but it can be achieved by an importance sampling (IS) type
correction [cf. 32].

We suggest an IS type correction that is based on a single-term (randomised) MLMC
type estimator [23, 26] and the PF coupling approach of [19]. The rMLMC correction is
based on randomising the running level in the multilevel context of a certain PF, which we
refer to as the ‘delta PF (∆PF)’ (Algorithm 3). In short, the ∆PF uses the PF coupling
introduced in [19], but here an estimator is used for unbiased estimation of the difference
of unnormalised integrals corresponding to two consecutive discretisation levels, over the
latent states with parameter held fixed (cf. Section 2), rather than to the difference of
self-normalised PMMH averages.

The resulting IS type estimator leads to unbiased inference over the joint posterior distri-
bution, and is highly parallelisable, as the more costly (randomised) ∆PF corrections may
be performed independently en masse given the PMMH base chain output. We are also
able to suggest optimal choices for algorithm inputs in a straightforward manner (Recom-
mendation 1 and Figure 1). This is because there is no bias, and therefore the difficult
cost–variance–bias trade-off triangle associated with dMLMC is not present. Besides being
unbiased and efficient, our method is user-friendly, as it is a combination of well-known and
relatively straightforward components: PMMH, Euler approximations, PF, rMLMC, and
an IS type estimator. For more about the strengths of the method, see Remark 10 later,
as well as [12, 32] for more discussion about IS (type) estimators based on approximate
Markov chain Monte Carlo (MCMC).

Key to verifying consistency of the method is a finite variance assumption for the r∆PF
estimator. We verify a parameter-uniform bound for the variance under a simple set of
HMM diffusion conditions in Section 3. Note, however, that consistency of our method
is likely to hold more generally. This is in contradistinction to methods based on exact
simulation, which require analytically tractable transformations to unit covariance diffusion
term and computable bounds in the rejection sampler, in order to even apply the method
(see for example the review in the recent preprint [33]).

If an exact simulation method is applicable, the obvious question arises whether our
method or the exact simulation method should be applied. The efficiency of exact simulation
type methods is dependent upon several and different factors than our method. These
factors for exact simulation include proper tuning and tight computable bounds for the
rejection sampler. In an ideal scenario for exact simulation, a method based on exact
simulation is likely to perform better than our method. However, in the reverse case, our
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method can perform better, if the efficiency of exact simulation is poor. For instance, the
efficiency of exact simulation decreases to zero as the analytically computed upper bound
of the IS weight used in the rejection sampler increases to infinity.

Although we have mostly in mind the case of Euler approximation schemes for the diffu-
sion dynamics approximation, which are generally implementable, other schemes could be
possibly be used as well [cf. 13]. However, suitable couplings for these schemes in dimensions
greater than one may not be trivial. For the sake of theory and proof of consistency, ideally
these would have also known weak and strong order convergence rates [cf. 22]. Indeed, as-
suming a coupling exists, such higher-order schemes can improve convergence of our method
(see Sections 5 and 6). More generally, our approach based on PMMH or other approximate
MCMC, increasingly fine families of approximations, MLMC, and IS correction, could be
applied beyond the HMM diffusion context, for example, to HMM jump-diffusions [cf. 21].

1.2. Outline. Section 2 introduces the aforementioned ∆PF (Algorithm 2) and subse-
quently discusses some applications of randomisation techniques. The theoretical properties
of the ∆PF in the HMM diffusion context are summarised in Section 3. Section 4 presents
the suggested IS type estimator (Algorithm 4), based on PMMH with rMLMC (i.e. r∆PF)
correction, and details its consistency and a corresponding central limit theorem (CLT).
Section 5 suggests suitable allocations in the ∆PF based on rMLMC efficiency consider-
ations. The numerical experiments in Section 6 illustrate our method in practice in the
setting of an Ornstein–Uhlenbeck process and geometric Brownian motion. Proofs for the
technical results of Sections 3, 4 and 5 are given in Appendix A, B and C, respectively.

1.3. Notation. Let (En, En) be a measurable space. Functions ϕ : En → R will be assumed
measurable. We denote by P(En) the collection of probability measures on (En, En), and
by Bb(En) the set of ϕ : En → R with ‖ϕ‖ := supx∈X |ϕ(x)| < ∞. For a measure µ on
(En, En), we set µ(ϕ) :=

∫
En
ϕ(x)µ(dx) whenever well-defined. For K : En × En → [0, 1]

a Markov kernel and µ ∈ P(En), we set µK(dy) :=
∫
En
µ(dx)K(x, dy), and K(ϕ)(x) :=∫

En
ϕ(y)K(x, dy), whenever well-defined. We use the convention

∏
∅ := 1, and p:q := {r ∈

Z : p ≤ r ≤ q}.

2. Delta particle filter for unbiased estimation of level differences

Consider the (Itô) diffusion process

dXt = aθ(Xt)dt+ bθ(Xt)dWt, t ≥ 0,(1)

with Xt ∈ X := Rd, model parameter θ ∈ T, and {Wt}t≥0 a Brownian motion of appropriate
dimension. We suppose that there are data {Yp = yp}np=0, yp ∈ Rm, which are observed at
equally spaced discrete times, p = 0:n for simplicity. The Markov transition between Xp−1

and Xp is given by some kernel M
(θ,∞)
p (xp−1, dxp). It is assumed that conditional on Xp, Yp

is independent of random variables {Xi, Yi}i 6=p and has density gθ(yp|xp) =: G
(θ)
p (xp). The

resulting pair (M
(θ,∞)
p , G

(θ)
p ) defines the HMM diffusion, and is an example of a so-called

Feynman-Kac model [cf. 7] described below. As the results of this section can just as easily
be stated in terms of Feynman-Kac models, we do so in the following, which shows the
generality of our approach.

2.1. Particle filters. A Feynman–Kac model (Mn, Gn) on spaces (En, En) arises when

(i) Mn(x0:n−1, dxn) are (regular) probability ‘transition’ kernels from E0:n−1 to En for
n ≥ 1, and M0(x−1:0, dx0) := η0(dx0) ∈P(E0), and

(ii) Gn(x0:n) are [0,∞)-valued (measurable) ‘potential’ functions for n ≥ 0.
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Particle filter (Algorithm 1) [cf. 7] generates sets of samples and weights corresponding to
the Feynman–Kac model, which for ϕ : E0:n → R lead to an unbiased estimator for the
(unnormalised) smoother γγγn(Gnϕ), defined here in terms of the (unnormalised) predictor

(2) γγγn(ϕ) :=

∫
ϕ(x0:n)

( n−1∏

t=0

Gt(x0:t)
)
η0(dx0)

n∏

t=1

Mt(x0:t−1, dxt).

Algorithm 1 Particle filter for model (M0:n, G0:n) := (Mt, Gt)t=0:n with N particles.

In each line, i takes values 1:N . Do:

(i) Sample x
(i)
0 ∼ η0( · ) and set xxx

(i)
0 := x

(i)
0 .

(ii) Compute ω
(i)
0 := G0(xxx

(i)
0 ) and set ω̄

(i)
0 := ω

(i)
0 /ω∗0 where ω∗0 =

∑N
j=1 ω

(j)
0 .

For t = 1:n, do:

(iii) Given ω̄
(1:N)
t−1 , sample A

(1:N)
t−1 satisfying E

[∑N
j=1 1{A(j)

t−1 = k}
]

= Nω̄
(k)
t−1.

(iv) Sample x
(i)
t ∼Mt(xxx

A
(i)
t−1

t−1 , · ) and set xxx
(i)
t = (xxx

(A
(i)
t−1)

t−1 , x
(i)
t ).

(v) Compute ω
(i)
t := Gt(xxx

(i)
t ) and set ω̄

(i)
t := ω

(i)
t /ω

∗
t where ω∗t :=

∑N
j=1 ω

(j)
t .

Report (V (1:N),X(1:N)) where V (i) := ω̄
(i)
n

∏n
t=0

1
N
ω∗t and X(i) := xxx

(i)
n .

(In case ω∗t = 0, the algorithm is terminated with V (i) = 0 and with arbitrary X(i) ∈ E0:n.)

Proposition 1. Suppose that ϕ : E0:n → R is such that γγγn(Gnϕ) < ∞. Then, the output
of Algorithm 1 satisfies

E
[ N∑

i=1

V (i)ϕ(X(i))

]
= γγγn(Gnϕ).

Proposition 1 is a restatement of [7, Theorem 7.4.2] in case A
(i)
t−1 are sampled indepen-

dently (‘multinomial resampling’). The extension to the general unbiased case, which covers
popular residual, stratified and systematic resampling schemes [cf. 5, 8], is straightforward
[cf. 32].

2.2. Level difference estimation. Suppose that we have two Feynman–Kac models (MF
n , G

F
n )

and (MC
n , G

C
n ) defined on common spaces (En, En). The models correspond to ‘finer’ and

‘coarser’ Euler type discretised HMM diffusions. We are interested in estimating (unbias-
edly) the difference

(3) γγγFn (GF
nϕ)− γγγCn (GC

nϕ).

If the models are close to each other, as they will be in the multilevel (diffusion) context, we
would like the estimator also to be typically small. In many contexts, if one can estimate
the difference using a coupling, it is possible to obtain a variance reduction. The particular
coupling approach we use here is based on using a combined Feynman–Kac model as in
[19], which provides a simple, general and effective coupling of PFs, and which we will use
to estimate the level difference of unnormalised smoother (3).

Hereafter, we denote x̌n = (x̌Fn , x̌
C
n ) ∈ En×En, and for x̌0:n = (x̌0, . . . , x̌n) ∈ E2

0 × . . . E2
n,

we set x̌s0:n := (x̌s0, . . . , x̌
s
n) ∈ E0:n for s ∈ {F,C}.

Assumption 2. Suppose that (M̌t, Ǧt) is a Feynman–Kac model on the product spaces
(Et × Et, Et ⊗ Et), such that:
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(i) M̌t is a coupling of the probabilities MF
t and MC

t , i.e. for all A ∈ Et, we have
∫

A×Et
M̌t(x̌0:t−1, dx̌t) = MF

t (x̌F0:t−1, A),

∫

Et×A
M̌t(x̌0:t−1, dx̌t) = MC

t (x̌C0:t−1, A),

and for A ∈ E0, we have η̌0(A× E0) = ηF0 (A) and η̌0(E0 × A) = ηC0 (A).
(ii) Ǧt(x̌0:t) := 1

2

[
GF
t (x̌F0:t) +GC

t (x̌C0:t)
]
.

Algorithm 2 Delta particle filter (∆PF) for unbiased estimation of level differences.

(i) Run Algorithm 1 with (M̌0:n, Ǧ0:n, N), outputting (V̌ (1:N), X̌(1:N)).
(ii) Report (V (1:2N),X(1:2N)) where

(
V (i), X(i)

)
:=





(
V̌ (i)wF (X̌(i)), X̌(i)F

)
i = 1:N,(

−V̌ (i−N)wC(X̌(i−N)), X̌(i−N)C
)

i = (N + 1):2N,

and where wF (x̌0:n) :=
∏n
t=0G

F
t (x̌F0:t)∏n

t=0 Ǧt(x̌0:t)
and wC(x̌0:n) :=

∏n
t=0G

C
t (x̌C0:n)∏n

t=0 Ǧt(x̌0:t)
.

Proposition 3. Under Assumption 2, the output of Algorithm 2 satisfies

E
[ 2N∑

i=1

V (i)ϕ(X(i))

]
= γγγFn (GF

nϕ)− γγγCn (GC
nϕ)

whenever both integrals on the right are well-defined and finite.

Proof. By the unbiasedness property of PF Algorithm 1, we have

E
[ N∑

i=1

V (i)ϕ(X(i))

]
=

∫
wF (x̌0:n)ϕ(x̌F0:n)

( n∏

t=0

Ǧt(x̌0:t)
)
η̌(dx0)

n∏

t=1

M̌t(x̌0:t−1, dx̌t)

=

∫
ϕ(x̌F0:n)

( n∏

t=0

GF
t (x̌F0:t)

)
η̌(dx0)MF

t (x̌F0:t−1, dx̌
F
t ) = γγγFn (GF

nϕ),

where Assumption 2(ii) guarantees Ǧt > 0 whenever GF
t > 0, and (i) implies the marginal

law of
∏n

t=0 M̌t is
∏n

t=0 M
F
t . Similarly, E

[∑2N
i=N+1 V

(i)ϕ(X(i))
]

= −γγγCn (GC
nϕ). �

Remark 4. Regarding Algorithm 2:

(i) Typically, in the discretisation of diffusions context [14, 26], the couplings M̌t would
be based on using the same underlying Brownian motion [cf. 22]. That is, if

XF
t+hF = XF

t + aθ(X
F
t )hF + bθ(X

F
t )δW F

t+hF

XF
t+2hF = XF

t+hF + aθ(X
F
t+hF )hF + bθ(X

F
t+hF )δW F

t+2hF

with δW F
t+khF ∼ N(0, hF ), k = 1, 2, 3, . . ., corresponds to two steps of an Euler dis-

cretisation with step-size hF , then we can use

XC
t+hC = XC

t + aθ(X
C
t )hC + bθ(X

C
t )
(
δW F

t+hF + δW F
t+2hF

)

with hC := 2hF for the coarser Euler discretisation. The kernels M̌t on the joint space
then move N particles according to the fine-level discretisation, and N according to the
coarse-level discretisation, both based on the same underlying sequence of standard
normals (δW F

t+khF )k≥1.
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(ii) The choice of Ǧt in Assumption 2(ii) provides a safe ‘balance’ in between the approx-
imations, as wF and wC are upper bounded by 2n+1. Indeed, the coupled Feynman–
Kac model can be thought as an ‘average’ of the two extreme cases—with the choice
Ǧt(x0:t) = GF

t (x̌F0:t) the coupled PF would coincide marginally with the Feynman–Kac
model with dynamics MF

t . What is the optimal choice for Ǧt is an interesting question.
(iii) Clearly, the choice of Ǧ0:t can be made also in other ways. It is sufficient for unbiased-

ness to choose Ǧt(x̌0:t) such that it is strictly positive whenever either the GF
t (x̌F0:t) or

GC
t (x̌C0:t) product is positive, but choices which make wF and wC bounded are safer, for

instance Ǧ0:t(x̌0:t) = max{GF
t (x̌F0:t), G

C
t (x̌C0:t)}. This was the original choice made in

[19] for approximation of normalised smoother differences. This PF coupling approach
based on change of measure and weight corrections wF and wC , has been further used
also, for example, in [20].

(iv) Later, in the HMM diffusion context, we set GF
t = GC

t , corresponding to common
observational densities, but the method is also of interest with differing potentials.

2.3. Unbiased latent inference. We show here how the randomisation techniques of
[23, 26] can be used with the output of Algorithms 1 and 2 to provide an unbiased estimator
according to the true model, even though the PFs are only run according to approximate

models. Let us index the transitions M
(`)
p and potentials G

(`)
p by ` ≥ 0. They are assumed

throughout to be increasingly refined approximations, in the (weak) sense that

(4) γγγ(`)
n (G(`)

n ϕ) −→ γγγ(∞)
n (G(∞)

n ϕ), as `→∞,
for all ϕ ∈ Bb(E0:n), where

γγγ(`)
n (ϕ) :=

∫
ϕ(x0:n)

( n−1∏

t=0

G
(`)
t (x0:t)

)
η

(`)
0 (dx0)

n∏

t=1

M
(`)
t (x0:t−1, dxt).

In Assumption 2 we set symbols (F,C) to be (`, `−1) for ` ≥ 1. Algorithm 3 can then provide

unbiased estimation of γγγ
(∞)
n (G

(∞)
n ϕ) (Lemma 6), leading to unbiased inference w.r.t. the

normalised smoother

ϕ 7→ γγγ
(∞)
n (Gnϕ)

γγγ
(∞)
n (Gn)

,

which is stated as Proposition 7 below.

Algorithm 3 Unbiased estimator based on PF and r∆PF; N particles, probability p =
(p`)`∈N.

(i) Run Algorithm 1 with (M
(0)
0:n, G

(0)
0:n, N), outputting (V (1:N)′ ,X(1:N)′).

(ii) Sample L ∼ p (independently from the other random variables).

(iii) Run Algorithm 2 with (M
(L)
0:n , G

(L)
0:n , N), outputting (V (1:2N),X(1:2N)).

Report
(
(V (1:N)′ ,X(1:N)′), (V (1:2N),X(1:2N)), L

)
.

Assumption 5. Assumption 2 holds, p = (p`)`∈N is a probability on N := Z≥1 with p` > 0
for all ` ≥ 1, g : E0:n → R is a function, and

(5) sg :=
∑

`≥0

E∆2
`(g)

p`
<∞,
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where

(6) ∆`(g) :=
2N∑

i=1

V (i)g(X(i))

is formed from the output (V (1:2N),X(1:2N)) of Algorithm 2 with (M̌
(`)
0:n, Ǧ

(`)
0:n, N).

Lemma 6. Under Assumption 5, the estimator

(7) ζ(g) :=
N∑

i=1

V (i)′g(X(i)′) +
1

pL
∆L(g)

formed from the output of Algorithm 3 satisfies

E[ζ(g)] = γγγ(∞)
n (G(∞)

n g),

whenever γγγ
(0)
n (Gng) and γγγ

(∞)
n (Gng) are both finite.

Proof. Under Assumption 5, we have [cf. 26, 31]

E[p−1
L ∆L(g)] = γγγ(∞)

n (G(∞)
n g)− γγγ(0)

n (G(0)
n g),

so the result follows by Proposition 1 and linearity of the expectation. �

The following suggests a fully parallelisable algorithm for unbiased inference over the
normalised smoother, and is an unbiased alternative to the particle independent Metropolis-
Hastings (PIMH) [2] run at some fine level of discretisation.

Proposition 7. Suppose p on N satisfies Assumption 5 for functions g ∈ {1, ϕ}, with

γγγ
(0)
n (G

(0)
n g) and γγγ

(∞)
n (G

(∞)
n g) finite, and γγγ(∞)(G

(∞)
n ) > 0. For each k ∈ {1:m}, if one runs

independently Algorithm 3, forming ζk(g) from the output as in (7) for each k, then

Em,N,p(ϕ) :=

∑m
k=1 ζk(ϕ)∑m
k=1 ζk(1)

m→∞−−−→ p(∞)(ϕ) almost surely.

Moreover, with ϕ̄ := ϕ− p(∞)(ϕ),

√
m[Em,N,p(ϕ)− p(∞)(ϕ)]

m→∞−−−→ N (0, σ2) in distribution,

where

σ2 =
sϕ̄ −

(
γγγ(∞)(G

(∞)
n ϕ̄)− γγγ(0)(G

(0)
n ϕ̄)

)2

[γγγ(∞)(G
(∞)
n )]2

.

The above result follows directly from the results of Section 4. It can also be seen as
a multilevel version of [32, Proposition 23], with straightforward estimators for σ2. See
Section 5 for suggested choices for p and N`.

3. A variance bound for the delta particle filter

In this section we give theoretical results for the ∆PF (Algorithm 2) in the setting of
HMM diffusions, which can be used to verify finite variance and therefore consistency of
related estimators.
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3.1. Hidden Markov model diffusions. We consider an HMM diffusion and correspond-
ing Feynman-Kac model as in Section 2. We omit θ from the notation in the following, which
is allowed as the remaining conditions and results in this Section 3 will hold uniformly in θ
(i.e. any constants are independent of θ). The following will be assumed throughout.

Condition (D). The coefficients aj, bj,k are twice differentiable for j, k = 1, . . . , d, and

(i) uniform ellipticity: b(x)b(x)T is uniformly positive definite;
(ii) globally Lipschitz: there is a C > 0 such that |a(x)−a(y)|+|b(x)−b(y)| ≤ C|x−y|

for all x, y ∈ Rd;
(iii) boundedness: E|X0|p <∞ for all p ≥ 1.

Let M (∞)(x, dy) =: M
(∞)
p (x, dy) for p = 0:n denote the Markov transition of the unob-

served diffusion (1), i.e. the distribution of the solution X1 of (1) started at X0 = x. With
similar setup from Section 2, with En := Xn+1, we have that (2) takes the form

γ(∞)
n (ϕ) =

∫
ϕ(x0:n)

( n−1∏

p=0

Gp(xp)
)
η0(dx0)

n∏

p=1

M (∞)(xp−1, dxp).

In practice one usually must approximate the true dynamics M (∞)(x, dy) of the underlying
diffusion with a simpler transition M (`)(x, dy), based on some Euler type scheme using a
discretisation parameter h` = 2−` for ` ≥ 0 [cf. 22]. The scheme allows for a coupling of the

diffusions (X
(`)
t , X

(`−1)
t )t≥0 running at discretisation levels ` and ` − 1 (based on using the

same Brownian path Wt), such that for some β ∈ {1, 2}, we have

(8) E(x,y)[|X(`)
1 −X(`−1)

1 |2] ≤M(|x− y|2 + hβ` ),

where M < ∞ does not depend on ` ≥ 1. In particular, if the diffusion coefficient b(Xt)
in (1) is constant or if a Milstein scheme can be applied otherwise, then β = 2; otherwise
β = 1 [cf. 18, Proposition D.1.].

3.2. Variance bound. Assume we are in the above HMM diffusion setting, and that the
coupling of Assumption 2 holds, with symbols (F,C) equal to (`, ` − 1) for ` ≥ 1, and

G
(`)
p = G

(`−1)
p := Gp for p = 0:n. Running Algorithm 2, we recall that ∆`(ϕ), defined in (6),

satisfies, by Proposition 3,

E[∆`(ϕ)] = γ(`)
n (Gnϕ)− γ(`−1)

n (Gnϕ),

regardless of the number N ≥ 1 of particles.
Recall that a (measurable) function ϕ : X → R is Lipschitz, denoted ϕ ∈ Lip(X), if for

some C ′ <∞, |ϕ(x)− ϕ(y)| ≤ C ′|x− y| for all x, y ∈ X.

Condition (A). The following conditions hold for the model (Mn, Gn):

(A1) (i) ‖Gn‖ <∞ for each n ≥ 0.
(ii) Gn ∈ Lip(X) for each n ≥ 0.

(iii) infx∈XGn(x) > 0 for each n ≥ 0.

(A2) For every n ≥ 1, ϕ ∈ Lip(X)∩Bb(X) there exist a C ′ <∞ such that for s ∈ {F,C},
we have for every (x, y) ∈ X× X that |M s

n(ϕ)(x)−M s
n(ϕ)(y)| ≤ C ′|x− y|.

In the following results for ∆`(ϕ), the constant M <∞ may change from line-to-line. It
will not depend upon N or ` (or θ), but may depend on the time-horizon n or the function
ϕ. E denotes expectation w.r.t. the law associated to the ∆PF started at (x, x), with x ∈ X.
Below we only consider multinomial resampling in the ∆PF for simplicity, though Theorem
8 and Corollary 9 can be proved also assuming other resampling schemes.
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Theorem 8. Assume (A1-2). Then for any ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), there exists a
M <∞ such that

E
[(

∆`(ϕ)− E[∆`(ϕ)]
)2]
≤ Mh2∧β

`

N
, with β as in (8).

Corollary 9. Assume (A1-2). Then for any ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), there exists a
M <∞ such that

E
[(

∆`(ϕ)
)2]
≤M

(h2∧β
`

N
+ h2

`

)
, with β as in (8).

The proofs are given in Appendix A.
Based on Corollary 9, Recommendation 1 of Section 5 suggests allocations for p and N`

in the ∆PF (Algorithm 2) to optimally use resources and minimise variance (5).

4. Unbiased joint inference for hidden Markov model diffusions

We are interested in unbiased inference for the Bayesian model posterior

π(dθ, dx0:n) ∝ pr(dθ)G(θ)
n (xn)γ(θ,∞)

n (dx0:n),

where pr(dθ) = pr(θ)dθ is the prior on the model parameters, and

γ(θ,∞)
n (dx0:n) =

( n−1∏

t=0

G
(θ)
t (xt)

)
η

(θ)
0 (dx0)

n∏

t=1

M
(θ,∞)
t (xt−1, dxt).

Here, M
(θ,∞)
t corresponds to the transition density of the diffusion model of interest. The

dependence of the HMM on θ is made explicit in this section. As in Section 3, we assume

the transition densities M
(θ,∞)
t cannot be simulated, but that there are increasingly refined

discretisations M
(θ,`)
t approximating M

(θ,∞)
t in the sense of (4) (with E0:n := Xn+1).

4.1. Randomised MLMC IS type estimator based on coarse-model PMMH. We
now consider Algorithm 4 for joint inference w.r.t. the above Bayesian posterior. Algorithm
4 uses the following ingredients:

(i) M̌
(θ,`)
0:n satisfying Assumption 2(i) with MF

0:n = M
(θ,`)
0:n , and MC

0:n = M
(θ,`−1)
0:n .

(ii) Ǧ
(θ)
0:n defined as in Assumption 2(ii), with GF

0:n = GC
0:n = G

(θ)
0:n.

(iii) Metropolis–Hastings proposal distribution q( · | θ) for parameters.
(iv) Algorithm constant ε ≥ 0.
(v) Number of MCMC iterations miter ∈ N and number of particles N ∈ N.
(vi) Probability mass p = (p`)`∈N on N with p` > 0 for all ` ∈ N.

Remark 10. Before stating consistency and central limit theorems, we briefly discuss various
aspects of this approach, which are appealing from a practical perspective, and we also
mention certain algorithmic modifications which could be further considered.

(i) The first phase (P1) of Algorithm 4 implements a PMMH type algorithm [2]. If ε = 0,

this is exactly PMMH targeting the model π(0)(dθ, dx0:n) ∝ pr(dθ)G
(θ)
n (xn)γ

(θ,0)
n (dx0:n).

It is generally safer to choose ε > 0 [32], which ensures that the IS type correction
in phase (P2) will yield consistent inference for the ideal model π(∞)(dθ, dx0:n) ∝
pr(dθ)G

(θ)
n (xn)γ

(θ,∞)
n (x0:n) (Theorem 11). Setting ε > 0 may be helpful otherwise in

terms of improved mixing, as the PMMH will target marginally an averaged probability
between a ‘flat’ prior and a ‘multimodal’ ` = 0 marginal posterior.
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Algorithm 4 Randomised multilevel importance sampling type estimator.

(P1) Let (Θ0, V
(1:N)

0 ,X
(1:N)
0 ) such that

∑N
i=1 V

(i)
0 > 0, and for k = 1:miter, iterate:

(i) Propose Θ̂k ∼ q( · | Θk−1).

(ii) Run Algorithm 1 with (M
(Θ̂k,0)
0:n , G

(Θ̂k)
0:n , N) and call the output (V̂

(1:N)
k , X̂

(1:N)
k ).

(iii) With probability

min

{
1,

pr(Θ̂k)q(Θk−1 | Θ̂k)
(∑N

i=1 V̂
(i)
k + ε

)

pr(Θk−1)q(Θ̂k | Θk−1)
(∑N

j=1 V
(j)
k−1 + ε

)
}
,

accept and set (Θk, V
(1:N)
k ,X

(1:N)
k ) ← (Θ̂k, V̂

(1:N)
k , X̂

(1:N)
k ); otherwise set

(Θk, V
(1:N)
k ,X

(1:N)
k )← (Θk−1, V

(1:N)
k−1 ,X

(1:N)
k−1 ).

(P2) For all k ∈ {1:miter}, independently conditional on (Θk, V
(1:N)
k ,X

(1:N)
k ):

(i) Set X
(1:N)
k,0 := X

(1:N)
k , and set W

(i)
k,0 := V

(i)
k /
(∑N

j=1 V
(j)
k + ε

)
.

(ii) Sample Lk ∼ p (independently from the other random variables).

(iii) Run ∆PF (Algorithm 2) with (M̌
(Θk,Lk)
0:n , Ǧ

(Θk)
0:n , N), and call the output

(V
(1:2N)
k,Lk

,X
(1:2N)
k,Lk

). Set W
(i)
k,Lk

:= V
(i)
k,Lk

/
[
pLk
(∑N

j=1 V
(j)
k + ε

)]
.

Report the estimator

Emiter,N,p(f) :=

∑miter

k=1

[∑N
i=1W

(i)
k,0f(Θk,X

(i)
k,0) +

∑2N
i=1 W

(i)
k,Lk

f(Θk,X
(i)
k,Lk

)
]

∑miter

k=1

[∑N
i=1W

(i)
k,0 +

∑2N
i=1W

(i)
k,Lk

] ≈ π(∞)(f).

(ii) It is only necessary to implement PMMH for the coarsest level. This is typically
relatively cheap, and therefore allows for a relatively long MCMC run. Consequently,
relative cost of burn-in is small, and if the proposal q is adapted [cf. 1], it has time to
converge.

(iii) The (potentially costly) r∆PFs are applied independently for each Θk, which allows
for efficient parallelisation.

(iv) We suggest that the number of particles ‘N0’ used in the PMMH be chosen based on
[9, 29], while the number of particles ‘N`’ (and p`) can be optimised for each level `
based on Recommendation 1 of Section 5, or kept constant. One can also afford to
increase the number of particles when a ‘jump chain’ representation is used (see the
following remark).

(v) The r∆PF corrections may be calculated only once for each accepted state [32]. That

is, suppose (Θ̃k, Ṽ
(1:N)
k , X̃

(1:N)
k )

mjump
iter

k=1 are the accepted states, (Dk)
mjump

iter
k=1 are the corre-

sponding holding times, and (Ṽ
(1:2NLk)
k,Lk

, X̃
(1:2NLk )

k,Lk
)
mjump

iter
k=1 are corresponding ∆PF outputs,

then the estimator is formed as in Algorithm 4 using (Θ̃k, Ṽ
(1:N)
k , X̃

(1:N)
k ), and account-

ing for the holding times in the weights defined as W
(i)
k := DkṼ

(i)
k /
(∑N

j=1 Ṽ
(j)
k + ε

)

and W
(i)
k,Lk

:= Ṽ
(i)
k,Lk

/
[
pLk
(∑N

j=1 Ṽ
(j)
k + ε

)]
.

(vi) In case the Markov chain in (P1) phase is slow mixing, (further) thinning may be
applied (to the jump chain) before the (P2) phase.

(vii) In practice, Algorithm 4 may be implemented in an on-line fashion w.r.t. the number
of iterations miter, and by progressively refining the estimator Emiter,N,p(f). The r∆PF
corrections may be calculated in parallel with the Markov chain.

(viii) In Algorithm 4, the r∆PFs depend only on Θk. They could depend also on V
(i)
k and

X
(i)
k , but it is not clear how such dependence could be used in practice to achieve better
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performance. Likewise, the ‘zeroth level’ estimate in Algorithm 4 is based solely on
particles in (P1), but it could also be based on (additional) new particle filter output.

(ix) In order to save memory, it is possible also to ‘subsample’ only one trajectory X∗k
from X

(1:N)
k , such that P[X∗k = X

(i)
k ] ∝ V

(i)
k , and set W ∗

k,0 :=
∑N

i=1W
(i)
k,0, and similarly

in Algorithm 2 find X̌∗ such that P[X̌∗ = X̌(i)] ∝ V̌ (i), setting X
∗(1:2)
k,Lk

:= X̌∗, and

defining from the usual output of Algorithm 2, W
∗(1)
k,Lk

:=
∑N

i=1W
(i)
k,Lk

and W
∗(2)
k,Lk

:=∑2N
i=N+1 W

(i)
k,Lk

. The subsampling output estimator then takes the form,

Esubsample
miter,N,p

(f) :=

∑miter

k=1

[
W ∗
k,0f(Θk,X

∗
k) +

∑2
i=1W

∗(i)
k,Lk

f(Θk,X
∗(i)
k,Lk

)
]

∑miter

k=1

[
W ∗
k,0 +

∑2
i=1W

∗(i)
k,Lk

] .

Note, however, that the asymptotic variance of this estimator is higher, because
Emiter,N,p(f) may be viewed as a Rao-Blackwellised version of Esubsample

miter,N,p
(f).

4.2. Consistency and central limit theorem.

Theorem 11. Assume that the algorithm constant ε ≥ 0 is chosen positive, and that the

Markov chain (Θk, X
(1:N)
k , V

(1:N))
k )k≥1 is ψ-irreducible, and that π(0)(f) and π(∞)(f) are

finite. For each θ ∈ T, suppose Assumption 5 holds for g ≡ 1 and g = f (θ) := f(θ, · ), with

M
(`)
0:n := M

(θ,`)
0:n and G

(`)
0:n := G

(θ)
0:n. Assume

∫
pr(θ)

(√
s1(θ) +

√
sf (θ)(θ)

)
dθ <∞.

Then, the estimator of Algorithm 4 is strongly consistent:

Emiter,N,p(f)
miter→∞−−−−−→

∫
π(∞)(dθ, dx0:n)f(θ, x0:n) (a.s.)

Remark 12. Regarding Theorem 11, whose proof is given in Appendix B:

(i) If all potentials Gt are strictly positive, the algorithm constant ε may be taken to

be zero. However, if ε = 0 and Algorithm 1 with (M
(Θ̂k,0)
0:n , G

(Θ̂k)
0:n , N) can produce an

estimate with
∑N

i=1 V
(i) = 0 with positive probability, the consistency may be lost

[32].

Proposition 13. Suppose that the conditions of Theorem 11 hold. Suppose additionally that

π(∞)(f 2) < ∞ and that the base chain (Θk, V
(1:N)
k ,X

(1:N)
k )k≥1 is aperiodic, with transition

probability denoted by P . Then,

√
miter

[
Emiter,N,p(f)− π(∞)(f)

] miter→∞−−−−−→ N (0, σ2), in distribution,

whenever the asymptotic variance

(9) σ2 =
var(P, µf̄ ) + Π(σ2

ξ )

c2

is finite. Here, f̄ := f − π(∞)(f), c > 0 is a constant (equal to Π(µ1)), and

σ2
ξ (θ, v

(1:N),x(1:N)) := var
(
ξk(f̄)

∣∣ Θk = θ, V
(1:N)
k = v(1:N),X

(1:N)
k = x(1:N)

)

=
sf̄ (θ)(θ)−

(
γ

(θ,∞)
n (Gnf̄

(θ))− γ(θ,0)
n (Gnf̄

(θ))
)2

(∑N
i=1 v

(i) + ε
)2 .
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Remark 14. Proposition 13 follows from [32, Theorem 7]. We suggest that N = N0 for (P1)
be chosen based on [9, 29] to minimise var(P, µf̄ ), and that (p`) and N = N` in (P2) for
the r∆PF be chosen as in Recommendation 1 of Section 5, to minimise σ2

ξ , subject to cost

constraints, in order to jointly minimise σ2. However, the question of the optimal choice
for N0 in the IS context is not yet settled.

5. Asymptotic efficiency and randomised multilevel considerations

We summarise the results of this section by suggesting the following safe allocations
for probability p = (p`)`∈N and number N = N` of particles at level ` ≥ 1 in the ∆PF
(Algorithm 2) used in Algorithm 3 and 4, and Proposition 7, with β given in (8) in the
HMM diffusion context of Section 3, or, indeed, with β given in the abstract framework
under Assumption 18 given later. See also Figure 1 for the recommended allocations.

Recommendation 1. With strong error convergence rate β given in (8), we suggest the
following for p = (p`)`∈N and N` ∈ N in ∆PF (Algorithm 2):

(β = 1) (e.g. Euler scheme). Choose p` ∝ (1
2
)` and N` ∝ 1 constant.

(β = 2) (e.g. Milstein scheme). Choose p` ∝ 2−1.5` ≈ (1
3
)` and N` ∝ 1 constant.

The suggestions are based on Corollary 9 of Section 3, and Propositions 20 (β = 2) and
26 (β = 1) given below (with weak convergence rate α = 1; see Figure 1 for general α). In
the Euler case, although the theory below gives the same computational complexity order
by choosing any ρ ∈ [0, 1] and setting p` ∝ 2−(1+ρ)` and N` ∝ 2ρ`, the experiment in Section
6 gave a better result using simply ρ = 0, corresponding to no scaling.

5.1. Efficiency framework. The asymptotic efficiency of Monte Carlo was considered
theoretically in [15]; see [14] in the dMLMC context. The developments of this section
follow [26] for rMLMC (originally in the i.i.d. setting), while also giving some extensions
(also applicable to that setting). We will see that the basic rMLMC results carry over to
our setting involving MCMC and randomised estimators based on PF outputs. Proofs are
given in Appendix C.

We are interested in modeling the computational costs involved in running Algorithm 4;
the algorithm of Proposition 7 is recovered with T = {θ}. Let τΘk,Lk represent the combined
cost at iteration k of the base Markov chain and weight calculation in Algorithm 4, so that
the total cost C (m) of Algorithm 4 with m iterations is

C (m) :=
m∑

k=1

τΘk,Lk .

The following assumption seems natural in our setting.

Assumption 15. For Θk ∈ T, a family {τΘk,`}k,`≥1 consists of positive-valued random
variables that are independent of {Lk}k≥1, where Lk ∼ p i.i.d., and that are conditionally
independent given {Θk}k≥1, such that τΘk,` depends only on Θk ∈ T and ` ∈ N.

Under a budget constraint κ > 0, the realised length of the chain is L (κ) iterations,
where

L (κ) := max{m ≥ 1 : C (m) ≤ κ}.
Under a budget constraint, the CLT of Proposition 13 takes the following altered form,
where here Πm(dθ) denotes the θ-marginal of the invariant probability measure (given as
(25) in Appendix B) of the base Markov chain (equal to the θ-marginal posterior of the
` = 0 model).
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Proposition 16. If the assumptions of Theorem 13 hold with σ2 < ∞, and if E[τττ ] :=
EΠm⊗p[τττ ] <∞ with τττ(θ, `) := E[τΘk,Lk |Θk = θ, Lk = `], then

(10)
√
κ
[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0,E[τττ ]σ2), in distribution.

Remark 17. The quantity E[τττ ]σ2 is called the ‘inverse relative efficiency’ by [15], and is
considered a more accurate quantity than the asymptotic variance (σ2 here) for comparison
of Monte Carlo algorithms run on the same computer, as it takes into account also the
average computational time.

In the following we consider (possibly) variance reduced (if ρ > 0) versions of ∆`(g) of
Assumption 5, denoted ∆`, where g = f (θ), based on running the ∆PF (Algorithm 2) with
parameters θ, ` fixed. The constant C < ∞ may change line-to-line, but does not depend
on N , `, or θ, but may depend on the time-horizon n and function f .

Assumption 18. Assumption 15 holds, and constants 2α ≥ β > 0, γ > 0, and ρ ≥ 0 are
such that the following hold:

(i) (Mean cost) E[τθ,`] ≤ C2γ`(1+ρ)

(ii) (Strong order) E[∆2
` ] ≤ C2−`(β+ρ) + C2−2α`

(iii) (Weak order) |E∆`| ≤ C2−α`

Remark 19. Regarding Assumption 18:

(i) We only assume bounded mean cost in (i), rather than the almost sure cost bound
commonly used. This generalisation allows for the setting where occasional algorithmic
runs may take a long time.

(ii) In the original MLMC setting, the cost scaling γ in (i) is taken to be γ = 1 [14, 26].
However, in settings involving uncertainty quantification, and where the forward solver
may involve non-sparse matrix inversions, often γ ≥ 1 [6, 18, 20].

(iii) We assume in (i) that the mean cost to form ∆` is bounded by the γ-scaled product of
the number of samples or particles N` times the number of Euler time steps 2` + 2`−1

together with the O(N`)-resampling cost, where there are N` ∝ 2ρ` particles at level
`. Here, we recall that the stratified, systematic, and residual resampling algorithms
have O(N`) cost, as does an improved implementation of multinomial resampling [cf.
5, 8].

(iv) With ρ = 0, by Jensen’s inequality one sees why α ≥ β/2 can be assumed, and that
(ii) becomes E∆2

` ≤ C2−`β.
(v) ρ ≥ 0 in (i) and (ii) corresponds to using an average of N` := d2ρ`e i.i.d samples

of ∆
(1)
` , i.e. ∆` = 1

N`

∑N`
i=1 ∆

(i)
` , or, of more present interest to us, to increasing the

number of particles used in a PF by a factor of N` instead of the default lower number.

The former leads to E∆2
` = 1

N`
var(∆

(1)
` ) +E[∆

(1)
` ]2, justifying (ii), as does Corollary 9,

with β ∈ {1, 2} and α = 1, for the ∆PF (Algorithm 2) in the HMM diffusion context
(Section 3).

Proposition 20. Suppose Assumption 18 and the assumptions of Proposition 13 hold, with
var(P, µf̄ ) <∞. If p` ∝ 2−r` for some r ∈

(
γ(1 + ρ),min(β + ρ, 2α)

)
, then (10) holds, i.e.

√
κ
[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0,E[τττ ]σ2), in distribution.

Remark 21. Regarding Proposition 20, in the common case γ = 1 for simplicity:

(i) If β > 1 (‘canonical convergence regime’) and ρ = 0, then a choice for r ∈ (1, β) exists.
See also [26, Theorem 4] for a discussion of the theoretically optimal p.

(ii) If β ≤ 1 (‘subcanonical convergence regime’), then β + ρ ≤ 1 + ρ and so no choice for
r exists.
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2α− β
ρ

1 + ρ

(1 + β)/2

2α

2α− 1

β

1 2α0

ρ = ρ(β)
r = r(β, ρ)

Figure 1. Recommendations for number of particles N` ∝ 2ρ` and prob-
ability p` ∝ 2−r`. Here, γ = 1 always, and ρ ∈ [0, 2α − 1] when β = 1
provides a line of choices with the same order of computational complexity.
In our particular experiment in Section 6, however, the simple choice ρ = 0,
corresponding to no scaling in the particles, will turn out to be optimal.

5.2. Subcanonical convergence. When β > 1, within the framework above we have seen
that a canonical convergence rate holds (Proposition 20) because E[τττ ] < ∞ and σ2 < ∞.
When β ≤ 1, this is no longer the case, and one must choose between a finite asymptotic
variance and infinite expected cost, or vice versa. Assuming the former, and that a CLT
holds (Proposition 13), for ε > 0 and 0 < δ < 1 the Chebyshev inequality implies that the
number of iterations of Algorithm 4 so that

(11) P[|Em,N,p(f)− π(∞)(f)| ≤ ε] ≥ 1− δ
holds implies that m must be of the order O(ε−2). The question is then how to minimise the
total cost C (m), or computational complexity, involved in obtaining the m samples. This
will involve optimising for (p`) and N` to minimise C (m), while keeping the asymptotic
variance finite.

Proposition 22. Suppose that the assumptions of Proposition 13 hold with σ2 < ∞, and
Assumption 18 holds with E[τΘk0 ,Lk0

] =∞ for some k0 ≥ 1. If
∑

k≥1

sup
j≥1

P[τΘj ,Lj > ak] <∞

with ak = O
(
kc1(log2 k)c0

)
for some constants c0 > 0 and c1 ≥ 1, then (11) can be obtained

with computational complexity

O
(
ε−2c1|log2 ε|c0

)
as ε→ 0.

Remark 23. The above result shows that even for costs with unbounded tails, reasonable
confidence intervals and complexity order may be possible. This may be the case for example
when a rejection sampler or adaptive resampling mechanism is used within Algorithm 1 or
4, which may lead to large costs for some Θk, for example a cost with a geometric tail.

The next results are as in [26, Proposition 4 and 5] in the standard rMLMC setting,
and shows how one can choose p, assuming an additional almost sure cost bound, so that
σ2 <∞, with reasonable complexity.

Proposition 24. Suppose that the assumptions of Proposition 13 hold with var(P, µf̄ ) <∞,

and that Assumption 18 holds with β ≤ 1, where moreover τθ,` ≤ C2γ`(1+ρ) almost surely,
uniformly in Θk = θ ∈ T. For all q > 2 and η > 1, the choice of probability

p` ∝ 2−2b``[log2(`+ 1)]η
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where b := min((β+ρ)/2, α), leads to σ2 <∞, and (11) can be obtained with computational
complexity

O
(
ε−γ

(1+ρ)
b |log2 ε|qγ

(1+ρ)
2b

)
as ε→ 0.

Remark 25. Regarding Proposition 24, with γ = 1:

(i) Under Assumption 18 with ρ = 0, the usual setup in MLMC before variance reduced es-
timators are used, the above proposition shows that finite variance and (11) can be ob-
tained without increasing the number of particles at the higher levels, even in the sub-

canonical regime. We have in this case b = β/2 ≤ α and complexity O
(
ε−

2
β |log2 ε|

q
β

)
.

When β = 1 (borderline case), dMLMC gives complexity O(ε−2|log2 ε|2) [14, 18], which
is negligibly better (recall q > 2), but is biased inference.

(ii) When α > β/2, which is the usual case in the subcanonical regime (β ≤ 1) [cf. 22], a
more efficient use of resources can be obtained by increasing the number of particles
(see Proposition 26 below).

Proposition 26. Suppose the assumptions of Proposition 24 hold, where moreover ρ ≥ 0
may vary as a free parameter without changing the constant C > 0. Then, for all q > 2,
η > 1 constants, the choice ρ = 2α− β and probability

p` ∝ 2−2α``[log2(`+ 1)]η

leads to σ2 <∞, and (11) can be obtained with computational complexity

O
(
εγ[−2− (1−β)

α
]|log2 ε|γ[q+

(1−β)
2α

]
)

as ε→ 0.

6. Numerical simulations

Now the theoretical results relating to the method herein introduced will be demonstrated
on two examples. We will consider one example in the canonical regime, and one in the
sub-canonical, both of which have likelihoods that can be computed exactly, so that the
ground truth π(∞)(f) can be easily calculated to arbitrary precision. We run each example
with 100 independent replications, and calculate the MSE when the chain is at length m as

MSE(m) =
1

100

100∑

i=1

∣∣E(i)
m,N,p(f)− π(∞)(f)

∣∣2,

which is depicted as the thick red line, average of the thin lines, in Figure 2 below. The
error decays with the optimal rate of cost−1 and log(cost)cost−1 in the canonical and sub-
canonical cases, respectively, where cost is the realised cost of the run, C (m) from Section
5, measured in seconds, with m iterations of the Markov chain.

6.1. Ornstein–Uhlenbeck process. Consider the Ornstein–Uhlenbeck (OU) process

(12) dXt = −aXtdt+ bdWt , t ≥ 0,

with initial condition x0 = 0, model parameter θ = (θ1, θ2) ∼ N(0, σ2I), and a := aθ =
exp(θ1) and b := bθ = exp(θ2). The process is discretely observed for k = 1, . . . , n,

(13) Yk = Xk + ξk ,

where ξk ∼ N(0, γ2) i.i.d. Therefore,

Gk(x) = exp(− 1

2γ2
|x− yk|2) .
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The marginal likelihood is given by

P[y1:n|θ] =
n∏

k=1

P[yk|y1:k−1, θ] ,

and each factor can be computed as the marginal of the joint on the prediction and current
observation, i.e.

(14) P[yk|y1:k−1, θ] =

∫

R
P[yk|xk, θ]P[xk|y1:k−1, θ]dxk .

In this example the ground truth can be computed exactly via the Kalman filter. In
particular, the solution of (12) is given by

X1 = e−aX0 +W1 , W1 ∼ N
(

0,
b2

2a
(1− e−2a)

)
.

The filter at time k is given by the following simple recursion

mk = ck

(
yk
γ2

+
m̂k

ĉk

)
, ck = (γ−2+ĉ−1

k )−1 , m̂k = e−amk−1 , ĉk = e−2ack−1+
b2

2a
(1−e−2a) .

Additionally, the incremental marginal likelihoods (14) can be computed exactly

P[yk|y1:k−1, θ] =

√
ck

2πĉkγ2
exp

{
−1

2

[
y2
k

γ2
+
m̂2
k

ĉk
− ck

(
yk
γ2

+
m̂k

ĉk

)2
]}

.

The parameters are chosen as γ = 1, σ2 = 0.1, n = 5, and the data is generated with
θ = (0, 0)T . Our aim is to compute E(θ|y1:n) (or E[(a, b)T |y1:n], etc., but we will content
ourselves with the former). This is done via a brute force random walk MCMC for m = 108

steps using the exact likelihood P[y1:n|θ] as above. The IACT is around 10, so this gives a
healthy limit for MSE computations.

For the numerical experiment, we use Euler-Maruyama method at resolution h` = 2−` to
solve (12) as follows

(15) Xk+1 = (1− ah`)Xk + bBk+1 , Bk+1 ∼ N (0, h`) i.i.d.

for k = 1, . . . , K` = h−1
` . Levels ` and `− 1 are coupled in the simulation of ∆` by defining

BC
1:K`/2

= BF
1:2:K`−1 +BF

2:2:K`
Algorithm 2 is then run using the standard bootstrap particle

filter (Algorithm 1) with N = 20 particles and O(N)-complexity multinomial resampling
[cf. 5]. Theorem 8 provides a rate of β = 2 for Algorithm 2, because the diffusion coefficient
is constant, which implies we are essentially running a Milstein scheme (cf. (8) and [22]).
Recommendation 1 (or Proposition 20) of Section 5 suggests arbitrary precision can be
obtained by Algorithm 4 with p` ∝ 2−3`/2 and no scaling of particle numbers based on `
in this canonical β = 2 regime (with weak rate α = 1). We choose a positive PMMH
algorithm constant ε = 10−6 (cf. Remark 10(i)). We run Algorithm 4 for 104 steps, with
100 replications. The results are presented in Figure 2, where it is clear that the theory
holds and the MSE decays according to 1/cost. The variance of the run-times is very small
over replications.

6.2. Geometric Brownian motion. We next consider the following stochastic differential
equation

(16) dXt = aXtdWt,

with initial condition x0 = 1, and a := aθ = exp(θ) with θ ∼ N (0, σ2). This equation is
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Figure 2. The MSE of PMMH rMLMC IS Algorithm 4 applied to the prob-
lem of parameter inference for the discretely observed OU process (left plot)
and GBM process (middle plot with ρ = 0, right plot with ρ = 1). Repli-
cations are given by the thin curves, while the bold curves give the average
MSE over replications as well as the lines cost−1 (left plot) and log(cost)cost−1

(middle and right plots) to guide the eye.

analytically tractable as well, and the solution of the transformed equation Z = logX is
given via Itô’s formula by

dZt = −a
2

2
dt+ a dWt.

Defining Wk ∼ N (0, 1) i.i.d., one has that

Zk+1 = Zk +−a
2

2
+ aWk , with z0 = log x0 = 0,

and the solution of (16) can be obtained via exponentiation: Xk = eZk . Moreover, noisy
observations are introduced on the form

Yk = log(Xk) + ξk = Zk + ξk ,

where ξk ∼ N (0, γ2) i.i.d. as above. Therefore we have

Gk(z) = exp(− 1

2γ2
|z − yk|2) .

Again P[y1:n|θ] can be computed analytically by integrating over (z1, . . . , zn).
In order to investigate the theoretical sub-canonical rate, we return to (16) and approxi-

mate this directly using Euler-Maruyama method (15), which introduces artificial approx-
imation error. This problem suffers from stability problems when X < 0, so we take
h` = 2−5−`. Algorithm 1 is then used along with the selection functions

Gk(x) = exp(− 1

2γ2
| log(x)− yk|2) .

Here the diffusion coefficient is not constant, and Euler-Maruyama method yields a rate of
β = 1 = α, the borderline case, which is expected to give a logarithmic penalty. Based
on Recommendation 1 (or Proposition 26) of Section 5, we consider scaling the particles as
2ρ` with ρ = 2α − β = 1 and ρ = 0, with p` ∝ 2−2`` log(`)2 in both cases. Again we let
ε = 10−6. Again the standard bootstrap particle filter is used, with N = 20× 2ρ` particles.
Algorithm 4 is run for 105 steps, with 100 replications. The results are presented in Figure
2, and they show good agreement with the theory, in terms of rate. On the other hand, the
cost for ρ = 0 is apparently smaller than that of ρ = 1 by a factor of approximately 100.
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Appendix A. Analysis of the delta particle filter

We now give our analysis that is required for the proofs of Theorem 8 and Corollary 9
of Section 3 regarding the ∆PF (Algorithm 2) for HMM diffusions. The structure of the
appendix is as follows. In Section A.1 we introduce some more Feynman–Kac notations,
following [7, 18], emphasising that here we consider standard HMMs that can be coupled.
In Section A.2 we recall the ∆PF stated earlier. A general variance bound for quantities
such as ∆`(ϕ) is given in Section A.3. This is particularised to the HMM diffusion case in
Section A.4, where we supply the proofs for the results of Section 3.

A.1. Models. Let (X,X ) be a measurable space and {Gn}n≥0 a sequence of non-negative,
bounded and measurable functions such that Gn : X → R+. Let ηF0 , η

C
0 ∈ P(X) and

{MF
n }n≥1, {MC

n }n≥1 be two sequences of Markov kernels, i.e. MF
n : X→P(X), MC

n : X→
P(X). Set En := Xn+1 for n ≥ 0, and for x0:n ∈ En,

GGGn(x0:n) = Gn(xn)

and for n ≥ 1, s ∈ {F,C}, x0:n−1 ∈ En−1

MMM s
n(x0:n−1, dx

′
0:n) = δ{x0:n−1}(dx

′
0:n−1)M s

n(x′n−1, dx
′
n).

Define for s ∈ {F,C}, ϕ ∈ Bb(En), un ∈ En

γγγsn(ϕ) =

∫

E0×···×En
ϕ(un)

( n−1∏

p=0

GGGs
p(up)

)
ηs0(du0)

n∏

p=1

MMM s
p(up−1, dup)

and

ηηηsn(ϕ) =
γγγsn(ϕ)

γγγsn(1)
.

Throughout this appendix, we assume (D), and that Assumption 2(i) holds, i.e. there
exists η̌0 ∈P(X× X) such that for any A ∈ X

η̌0(A× X) = ηF0 (A) η̌0(X× A) = ηC0 (A)

and moreover for any n ≥ 1 there exists Markov kernels {M̌n}, M̌n : X × X → P(X × X)
such that for any A ∈ X , (x, x′) ∈ X× X:

(17) M̌n(A× X)(x, x′) = MF
n (A)(x) M̌n(X× A)(x, x′) = MC

n (A)(x′).

A.2. Delta particle filter. Define xp = (xFp , x
C
p ) ∈ X× X and

Ǧp(xp) =
1

2
(Gp(x

F
p ) +Gp(x

C
p )),

as in Assumption 2(ii). Set, for n ≥ 0, x0:n ∈ X2(n+1)

Ǧ̌ǦGn(x0:n) = Ǧn(xn)

and for n ≥ 1, x0:n−1 ∈ X2n

M̌̌M̌Mn(x0:n−1, dx
′
0:n) = δ{x0:n−1}(dx

′
0:n−1)M̌n(x′n−1, dx

′
n), .
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Note that coupling assumption (17) for M̌n can be equivalently formulated for M̌̌M̌Mn.
For n ≥ 0, ϕ ∈ Bb(En × En), un ∈ En × En, we have

γ̌̌γ̌γn(ϕ) =

∫

E2
0×···×E2

n

ϕ(un)
( n−1∏

p=0

Ǧ̌ǦGp(up)
)
η̌0(du0)

n∏

p=1

M̌̌M̌Mp(up−1, dup)

and

η̌̌η̌ηn(ϕ) =
γ̌̌γ̌γn(ϕ)

γ̌̌γ̌γn(1)
.

As noted in [19] it is simple to establish that for ϕ ∈ Bb(En), if

(18) ψ(x0:n) = Ǧ̌ǦGn(x0:n)
(
ϕ(xF0:n)

n∏

p=0

GGGp(x
F
0:p)

Ǧ̌ǦGp(x0:p)
− ϕ(xC0:n)

n∏

p=0

GGGp(x
C
0:p)

Ǧ̌ǦGp(x0:p)

)

then

(19) γ̌̌γ̌γn(ψ) = γ̌̌γ̌γn(1)η̌̌η̌ηn(ψ) = γFn (Gnϕ)− γCn (Gnϕ).

Note

γ̌̌γ̌γn(1) =
n−1∏

p=0

η̌̌η̌ηp(Ǧ̌ǦGp).

In order to approximate γ̌̌γ̌γn(ψ) one can run the following abstract version of Algorithm 2
(recall from Section 3 that we will only consider multinomial resampling). Define for n ≥ 1,
µ ∈P(En−1 × En−1), ϕ ∈ Bb(En × En)

φ̌̌φ̌φn(µ)(ϕ) =
µ(Ǧ̌ǦGn−1M̌̌M̌Mn(ϕ))

µ(Ǧ̌ǦGn−1)
.

The algorithm begins by generating ui0 ∈ E0 × E0, i ∈ {1, . . . , N} with joint law

N∏

i=1

η̌0(dui0) =
N∏

i=1

η̌̌η̌η0(dui0).

Defining

η̌̌η̌ηN0 (du0) =
1

N

N∑

i=1

δui0(du0)

we then generate ui1 ∈ E1 × E1, i ∈ {1, . . . , N} with joint law

N∏

i=1

φ̌̌φ̌φ1(η̌̌η̌ηN0 )(dui1).

This proceeds recursively, so the joint law of the particles up to time n is

( N∏

i=1

η̌̌η̌η0(dui0)
)( n∏

p=1

N∏

i=1

φ̌̌φ̌φp(η̌̌η̌η
N
p−1)(duip)

)
.

Hence we have the estimate

γ̌̌γ̌γNn (ψ) =
( n−1∏

p=0

η̌̌η̌ηNp (Ǧ̌ǦGp)
)
η̌̌η̌ηNn (ψ).

Remark 27. Note that γ̌̌γ̌γNn (ψ) corresponds to the quantity ∆`(ϕ) in (6) from the ∆PF output
(Algorithm 2).
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A.3. General hidden Markov model case. Define for p ≥ 1 the semigroup

Q̌̌Q̌Qp(x0:p−1, dx
′
0:p) = Ǧ̌ǦGp−1(x0:p−1)M̌̌M̌Mp(x0:p−1, dx

′
0:p)

with the definition for 0 ≤ p ≤ n, ϕ ∈ Bb(En × En)

Q̌̌Q̌Qp,n(ϕ)(up) =

∫
ϕ(un)

n∏

j=p+1

Q̌̌Q̌Qj(uj−1, duj)

if p = n clearly Q̌̌Q̌Qn,n is the identity operator. For any 0 ≤ n, ϕ ∈ Bb(En × En) we set

Q̌̌Q̌Q−1,n(ϕ)(u−1) = 0.
Now following [7, Chapter 7] we have the following martingale (w.r.t. the natural filtration

of the particle system), ϕ ∈ Bb(En × En):

(20) γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ) =
n∑

p=0

γ̌̌γ̌γNp (1)[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))

with the convention that φ̌̌φ̌φp(η̌̌η̌η
N
p−1) = η̌̌η̌η0 if p = 0. The representation immediately establishes

that

E[γ̌̌γ̌γNn (ϕ)] = γ̌̌γ̌γn(ϕ)

where the expectation is w.r.t. the law associated to the particle system. We will use the
following convention that C ′ is a finite positive constant that does not depend upon n,N or
any of the Gn, M s

n (s ∈ {F,C}, M̌n. The value of C ′ may change from line-to-line. Define
for 0 ≤ p ≤ n <∞

Gp,n =
n∏

q=p

‖Gq‖

with the convention that if p = 0 we write Gn. We have the following result.

Proposition 28. Suppose that ‖Gn‖ <∞ for each n ≥ 0. Then there exist a C ′ <∞ such
that for any n ≥ 0, ϕ ∈ Bb(En × En)

E
[(
γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ)

)2]
≤ C ′

N

n∑

p=0

G
2

p−1E[Q̌̌Q̌Qp,n(ϕ)(u1
p)

2].

Proof. Set

Š̌ŠSNp,n(ϕ) = γ̌̌γ̌γNp (1)[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))

By (20), one can apply the Burkholder-Gundy-Davis inequality to obtain

(21) E
[(
γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ)

)2]
≤ C ′

n∑

p=0

E[Š̌ŠSNp,n(ϕ)2].

Now, we have that

E[Š̌ŠSNp,n(ϕ)2] ≤ G
2

p−1E[[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))2].

Application of the (conditional) Marcinkiewicz-Zygmund inequality yields

E[Š̌ŠSNp,n(ϕ)2] ≤ C ′G
2

p−1

N
E
[(
Q̌̌Q̌Qp,n(ϕ)(u1

p)− φ̌̌φ̌φp(η̌̌η̌ηNp−1)(Q̌̌Q̌Qp,n(ϕ))
)2]

.

After applying C2 and Jensen inequalities, we then conclude by (21). �
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A.4. Diffusion case. We now consider the model of Section 3, where we recall that θ is
omitted from the notation. A series of technical results are given and the proofs for Theorem
8 and Corollary 9 are given at the end of this section.

We recall that the joint probability density of the observations and the unobserved dif-
fusion at the observation times is given by

n∏

p=0

Gp(xp)Q
(∞)(xp−1, xp).

As the true dynamics can not be simulated, in practice we work with
n∏

p=0

Gp(xp)Q
(`)(xp−1, xp).

Recall an (Euler) approximation scheme with discretisation h` = 2−`, ` ≥ 0. In our context
then, MF

n corresponds Q(`) (` ≥ 1) and MC
n corresponds Q(`−1). The initial distribution η0

is simply the (Euler) kernel started at some given x0. As noted earlier in Remark 4(i), a
natural coupling of MF

n and MC
n (and hence of η0) exists. As established in [18, eq. (32)]

one has (uniformly in θ as (D) holds with θ independent constants) for C ′ <∞
(22) sup

A
sup
x∈X
|MF

n (ϕ)(x)−MC
n (ϕ)(x)| ≤ C ′h`

where A = {ϕ ∈ Bb(X) ∩ Lip(X) : ‖ϕ‖ ≤ 1|}. We also recall that (8) holds (recall (D) is
assumed).

We will use M < ∞ to denote a constant that may change from line-to-line. It will
not depend upon θ nor N , `, but may depend on the time parameter or a function. The
following result will be needed later on. The proof is given after the proof of Lemma 30
below.

Proposition 29. Assume (A1 (i)-(ii),2). Then for any n ≥ 0 and ϕ ∈ Bb(Xn+1)∩Lip(Xn+1)
there exists a M <∞ such that

|γFn (Gnϕ)− γCn (Gnϕ)| ≤Mh`

We write expectations w.r.t. the time-inhomogeneous Markov chain associated to the
sequence of kernels (MF

p )p≥1 (resp. (MC
p )p≥1) as EF , (resp. EC).

Lemma 30. Assume (A1(i)-(ii),2). Let s ∈ {F,C} and ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), then,
define the function for 0 ≤ p ≤ n

ϕsp,n(x0:p) := Es[ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|xp].

Then we have that ϕsp,n ∈ Bb(Xp+1) ∩ Lip(Xp+1).

Proof. The case p = n follows immediately from ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1). We will use a
backward inductive argument on p. Suppose p = n−1 then we have for any (x0:n−1, x

′
0:n−1) ∈

Xn × Xn

|ϕsn−1,n(x0:n−1)− ϕsn−1,n(x′0:n−1)| =
|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]| ≤
|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]|+
|Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]|
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By ϕ ∈ Lip(Xn+1) it easily follows via (A1(i)) that

|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]| ≤M
n−1∑

j=0

|xj − x′j|.

By (A1(ii)) and ϕ ∈ Lip(Xn+1), ϕ(x0:n)Gn(xn) is Lipschitz in xn and hence by (A2)

(23) |Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]| ≤M |xn−1 − x′n−1|.
Hence it follows

|ϕsn−1,n(x0:n−1)− ϕsn−1,n(x′0:n−1)| ≤M
n−1∑

j=0

|xj − x′j|.

The induction step follows by almost the same argument as above and is hence omitted. �

Proof of Proposition 29. We have the following standard collapsing sum representation:

γFn (Gnϕ)− γCn (Gnϕ) =
n∑

p=0

(
EF [

p∏

q=0

Gq(Xq)EC [ϕ(X0:n)
n∏

q=p+1

Gq(Xq)|Xp]]−

EF [

p−1∏

q=0

Gq(Xq)EC [ϕ(X0:n)
n∏

q=p

Gq(Xq)|Xp−1]]

)

The summand is

Tp := EF
[( p−1∏

q=0

Gq(Xq)
)

(EF − EC)
(
EC [ϕ(X0:n)

n∏

q=p+1

Gq(Xq)|Xp]Gp(Xp)
∣∣∣Xp−1

)]
.

By Lemma 30, EC [ϕ(x0:p, Xp+1:n)
∏n

q=p+1Gq(Xq)|xp] ∈ Bb(Xp+1) ∩ Lip(Xp+1) and by (A1)

(i) and (ii) Gp ∈ Bb(X) ∩ Lip(X). So by (22)

∣∣∣(EF − EC)
(
EC [ϕ(X0:n)

n∏

q=p+1

Gq(Xq)|Xp]Gp(Xp)
∣∣∣Xp−1

)∣∣∣ ≤

Mh` sup
x0:p∈Xp+1

|EC [ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|

and hence

|Tp| ≤Mh`EF [

p−1∏

q=0

Gq(Xq)] sup
x0:p∈Xp+1

|EC [ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|xp]Gp(xp)|.

Application of (A1) (i) gives |Tp| ≤Mh` and the proof is hence concluded. �

Lemma 31. Assume (A1). Then for any n ≥ 0 there exists a M < ∞ such that for any
x0:n ∈ X2(n+1)

∣∣∣
n∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏

p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤M
n∑

p=0

|xFp − xCp |.

Proof. The is proof by induction. The case n = 0:
∣∣∣G0(xF0 )

Ǧ0(x0)
− G0(xC0 )

Ǧ0(x0)

∣∣∣ =
1

Ǧ0(x0)
|G0(xF0 )−G0(xC0 )|.
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Application of (A1) (ii) and (iii) yield that

∣∣∣G0(xF0 )

Ǧ0(x0)
− G0(xC0 )

Ǧ0(x0)

∣∣∣ ≤M |xF0 − xC0 |.

The result is assumed to hold at rank n− 1, then

∣∣∣
n∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏

p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤

∣∣∣Gn(xFn )

Ǧn(xn)
− Gn(xCn )

Ǧn(xn)

∣∣∣ ·
n−1∏

p=0

Gp(x
F
p )

Ǧp(xp)
+
∣∣∣
n−1∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n−1∏

p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ · Gn(xCn )

Ǧn(xn)
.

For the first term of the R.H.S. one can follow the argument at the initialisation and apply
(A1) (i) and (iii). For the second term of the R.H.S., the induction hypothesis and (A1) (i)
and (iii) can be used. That is one can deduce that

∣∣∣
n∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏

p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤M
n∑

p=0

|xFp − xCp |.

�

Recall (18) for the definition of ψ and that xp = (xFp , x
C
p ) ∈ X× X.

Lemma 32. Assume (A1-2). Then for any 0 ≤ p < n, ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1) there
exists a M <∞ such that for any x0:p ∈ Ep × Ep

|Q̌̌Q̌Qp,n(ψ)(x0:p)| ≤M
( p∑

j=0

|xFj − xCj |+ h`

)

Proof. We have

Q̌̌Q̌Qp,n(ψ)(x0:p) = Ǧp(xp)×
( p∏

q=0

Gq(x
F
q )

Ǧq(xq)
EF [ϕ(xF0:p, Yp+1:n)

n∏

s=p+1

Gs(X
F
s )|xFp ]

−
p∏

q=0

Gq(x
C
q )

Ǧq(xq)
EC [ϕ(xC0:p, Yp+1:n)

n∏

s=p+1

Gs(X
C
s )|xCp ]

)
.

It then follows that Q̌̌Q̌Qp,n(ψ)(x0:p) = Ǧp(xp)(T1 + T2) where

T1 =
( p∏

q=0

Gq(x
F
q )

Ǧq(xq)
−

p∏

q=0

Gq(x
C
q )

Ǧq(xq)

)
EF [ϕ(xF0:p, Yp+1:n)

n∏

s=p+1

Gs(X
F
s )|xFp ]

T2 =

p∏

q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏

s=p+1

Gs(X
F
s )|xFp ]− EC [ϕ(xC0:p, Yp+1:n)

n∏

s=p+1

Gs(X
C
s )|xCp ]

)
.

By Lemma 31, ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1) and (A1) (i)

|T1| ≤M

p∑

j=0

|xFj − xCj |.
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Now T2 = T3 + T4 where

T3 =

p∏

q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏

q=p+1

Gs(X
F
s )|xFp ]− EF [ϕ(xF0:p, Yp+1:n)

n∏

s=p+1

Gs(X
F
s )|xCp ]

)

T4 =

p∏

q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏

s=p+1

Gs(X
F
s )|xCp ]− EC [ϕ(xC0:p, Yp+1:n)

n∏

s=p+1

Gs(X
C
s )|xCp ]

)
.

For T3 one can use Lemma 30 (along with (A1) (i) and (iii)) to get that

|T3| ≤M

p∑

j=0

|xFj − xCj |.

For T4 a similar collapsing sum argument that is used in the proof of Proposition 29 can be
used to deduce that

|T4| ≤Mh`.

One can then conclude the proof via the above bounds (along with (A1) (i)). �
Below E denotes expectation w.r.t. the particle system described in Section A.2 started at

position (x, x) at time n = 0 with x ∈ X, in the diffusion case of Section A.4. Recall the parti-
cle U i

n ∈ En×En at time n ≥ 0 in path space. We denote by U i,s
n (j) ∈ X as the j ∈ {0, . . . , n}

component of particle i ∈ {1, . . . , N} at time n ≥ 0 of s ∈ {F,C} component. Recall

(U i,F
n (n), U i,C

n (n)) for n ≥ 1 is sampled from the kernel M̌n((ūi,Fn−1(n − 1), ūi,Cn−1(n − 1)), · )
where the ū denotes post-resampling and the component (U i,F

n (j), U i,C
n (j)) = (ūi,Fn−1(j), ūi,Cn−1(j))

for j ∈ {0, . . . , n− 1} is kept the same for the earlier components of the particle.

Lemma 33. Assume (A1 (i) (iii), 2). Then for any n ≥ 0 there exists a M <∞ such that

E[
n∑

j=0

|U1,F
n (j)− U1,C

n (j)|2] ≤Mhβ` .

where β is as in (8).

Proof. Our proof is by induction, the case n = 0 following by (8). Assuming the result at
n− 1 we have

E[
n∑

j=0

|U1,F
n (j)− U1,C

n (j)|2] = E[
n−1∑

j=0

|Ū1,F
n−1(j)− Ū1,C

n−1(j)|2 + |U1,F
n (n)− U1,C

n (n)|2].

Now

E[
n−1∑

j=0

|Ū1,F
n−1(j)− Ū1,C

n−1(j)|2] = N
n−1∑

j=0

E
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))

∑N
j=1 Ǧn−1(U j,F

n−1(n− 1), U j,C
n−1(n− 1))

×

|U1,F
n−1(j)− U1,C

n−1(j)|2
]

≤ ME[
n−1∑

j=0

|U1,F
n−1(j)− U1,C

n−1(j)|2]

where we have used (A1) (i) and (iii). Applying the induction hypothesis along with (8)
yields

E[
n∑

j=0

|U1,F
n (j)− U1,C

n (j)|2] ≤M
(
hβ` + E[|Ū1,F

n−1(n− 1)− Ū1,C
n−1(n− 1)|2]

)
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Now

E[|Ū1,F
n−1(n− 1)− Ū1,C

n−1(n− 1)|2] =

NE
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))

∑N
j=1 Ǧn−1(U j,F

n−1(n− 1), U j,C
n−1(n− 1))

|U1,F
n−1(n− 1)− U1,C

n−1(n− 1)|2
]

Then by (A1) (i) and (iii)

E
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))

∑N
j=1 Ǧn−1(U j,F

n−1(n− 1), U j,C
n−1(n− 1))

|U1,F
n−1(n− 1)− U1,C

n−1(n− 1)|2
]
≤

M

N
E[|U1,F

n−1(n− 1)− U1,C
n−1(n− 1)|2] ≤ M

N
E[

n−1∑

j=0

|U1,F
n−1(j)− U1,C

n−1(j)|2].

Hence via the induction hypothesis, one has

E[|Ū1,F
n−1(n− 1)− Ū1,C

n−1(n− 1)|2] ≤Mhβ`

and the proof is concluded. �

Recall Remark 27.

Proof of Theorem 8. This follows first by applying Proposition 28, followed by Lemma 32
and then some standard calculations followed by Lemma 33. �

Proof of Corollary 9. Easily follows by adding and subtracting γ̌̌γ̌γn(ψ) the C2 inequality
along with Theorem 8, and then using (19) combined with Proposition 29. �

Appendix B. Proof of consistency of the Markov chain Monte Carlo

Proof of Theorem 11. Denote

(24) ξk(g) :=
( N∑

i=1

V
(i)
k + ε

)−1[ N∑

i=1

V
(i)
k g(Θk, X

(i)
k ) + ∆̃k(g

(Θk))
]
,

where g(θ)(x) := g(θ, x) and ∆̃k(g
(θ)) := p−1

Lk

∑2N
i=1 V

(i)
k,Lk

g(θ)(X
(i)
k,Lk

). Then Emiter,N,p(f) =
∑miter
k=1 ξk(f)∑miter
j=1 ξk(1)

. Furthermore, by Assumption 5 [cf. 26, 31], we have

E[∆̃2
k(g) | Θk = θ] = sg(θ),

E[∆̃k(g) | Θk = θ] = γ(θ,∞)
n (Gng)− γ(θ,0)

n (Gng)

for g = 1 and g = f (θ). This implies for g = f and g = 1,

µg(θ, v
(1:N), x(1:N)) := E[ξk(g) | (Θk, V

(1:N)
k ,X

(1:N)
k ) = (θ, v(1:N),x(1:N))]

=
1∑N

j=1 v
(j) + ε

[ N∑

i=1

v(i)g(θ, x(i))− γ(θ,0)
n (Gng) + γ(θ,∞)

n (Gng)

]
,

m(1)
g (θ, v(1:N), x(1:N)) := E[|ξk(g)| | (Θk, V

(1:N)
k ,X

(1:N)
k ) = (θ, v(1:N),x(1:N))]

≤ 1∑N
j=1 v

(j) + ε

[ N∑

i=1

v(i)|g(θ, x(i))|+
√
sg(θ)(θ)

]
.
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It is direct to check that the PMMH type chain (Θk, X
(1:N)
k , V

(1:N))
k ) is reversible with respect

to the probability

(25) Π(dθ, dx(1:N), dv(1:N)) = c0pr(θ)dθR
(0)
θ (dx(1:N), dv(1:N))

( N∑

i=1

v(i) + ε
)
,

where c0 > 0 is a normalisation constant and R
(0)
θ ( · ) stands for the law of the output of

Algorithm 1 with (M
(θ,0)
0:n , G

(θ,0)
0:n , N), and therefore is Harris recurrent as a full-dimensional

Metropolis–Hastings that is ψ-irreducible [cf. 27, Theorem 8]. It is direct to check that

Π(m
(1)
f ) < ∞, Π(m

(1)
1 ) < ∞, Π(µf ) = cπ(∞)(f) and Π(µ1) = c, where c > 0 is a constant,

so the result follows from [32, Theorem 3]. �

Appendix C. Proofs about asymptotic efficiency and allocations

Proof of Proposition 16. By Harris ergodicity, m−1C (m) → E[τττ ] almost surely. Dividing
the inequality

C (L (κ)) ≤ κ < C (L (κ) + 1)

by L (κ) and taking the limit κ → ∞, which implies L (κ) → ∞, we get that κ/L (κ) →
E[τττ ] almost surely. Also, by Proposition 13,

√
L (κ)

[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0, σ2), in distribution,

so the result follows by Slutsky’s theorem. �
Proof of Proposition 20. We have that

E[C (m)] =
m∑

k=1

E[τΘk,Lk ] =
m∑

k=1

∞∑

`=1

E[τΘk,`]p`. ≤ Cm
∞∑

k=1

p`2
γ`(1+ρ),

by Assumption 18(i), which is finite if r > γ(1 + ρ). Also,

sg(θ) = E[∆̃2
k(g)|Θk = θ] =

∑

`≥1

E∆2
`

p`
≤ C

∑(
2−`(β+ρ−r) + 2−`(2α−r)

)
,

which is finite if r < min(β+ρ, 2α). Therefore, σ2 <∞, and the CLT follows by Proposition
16. �
Lemma 34. Let {Xk}k≥1 be a sequence of independent random variables with E[Xk0 ] =∞
for at least one k0, and let {ak}k≥1 be a sequence of monotonically increasing real numbers
with ak/k −→∞. Suppose one of the following assumptions holds:

(i)
∑

k≥1 P[Xk > ak] <∞, and {Xk}k≥1 are also identically distributed, or
(ii)

∑
k≥1 supm≥1 P[Xm > ak] <∞.

Then

P[
m∑

k=1

Xk > am infinitely many m ∈ N] = 0.

Proof. (i) is [11, Theorem 2] since E[Xk0 ] =∞ implies E[Xk] =∞ for all k ≥ 1 as {Xk}k≥1

are i.i.d. For (ii), note that if Xk has c.d.f. denoted Fk, then it is straightforward to check
that

F ∗(x) := inf
k≥1

Fk(x)

is a c.d.f. also. With X∗k ∼ F ∗ i.i.d. for k ≥ 1, we have

P[X∗k > ak] = 1− F ∗(ak) = sup
m≥1

1− Fm(ak) = sup
m≥1

P [Xm > ak].
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Summing over k ≥ 1, we obtain
∑

k≥1 P[X∗k > ak] <∞. In addition,

E[X∗k ] =

∫
P[X∗k > x]dx ≥

∫
P[Xk0 > x]dx =∞,

for all k ≥ 1. Hence, we can apply (i) for i.i.d. random variables, obtaining

0 = P[
m∑

k=1

X∗k > am infinitely many m] ≥ P[
m∑

k=1

Xk > am infinitely many m],

where the first equality comes from (i), and so we conclude. �

Proof of Proposition 22. Conditional on output {Θk}k≥1 of Algorithm 4, {τΘk,Lk}k≥1 are
independent random variables. Our assumptions imply Lemma 34(ii) holds, so

P[C (m) > am infinitely many m] = 0,

which means that C (m) is asymptotically bounded by am. Setting m = O(ε−2) allows us
to conclude. �

The proofs below of Proposition 24 and 26 are similar to that of [26, Proposition 4 and
5].

Proof of Proposition 24. With the prescribed choice of p` we have finite variance, as

sg(θ) =
∑

`≥1

E∆2
`

p`
≤ C

∑

`≥1

1

`[log2(`+ 1)]η
<∞,

uniformly in θ ∈ T. To determine the order of complexity, we would like to apply Lemma
34(i) to the i.i.d sequence {τ ∗Lk}k≥1, where τ ∗` := C2γ`(1+ρ). For any k ≥ 1, where ak > 0 is
some positive real number, we have,

(26) P[τ ∗Lk > ak] =
∑

`≥1

P[τ ∗` > ak]p` =
∑

`≥1

1

{
` >

1

γ(1 + ρ)
log2

ak
C

}
p`.

Because
∑

`≥1 p` = 1 and p` is monotonically decreasing, we have
∑

`≥`∗ p` is O(p`∗). Setting

`∗ = b 1
γ(1+ρ)

log2
ak
C
c, we therefore obtain that (26) is of order

a
− 2b
γ(1+ρ)

k

(
log2 ak

)(
log2 log2 ak

)η
.

Setting

(27) ak := [k(log2 k)q]
γ(1+ρ)

2b

then ensures that
∑

k≥1 P[τ ∗Lk > ak] < ∞. As β ≤ 1, it is easy to check that E[τ ∗Lk ] = ∞.
We then apply Lemma 34(i), obtaining

0 = P[
m∑

k=1

τ ∗Lk > am infinitely many m] ≥ P[
m∑

k=1

τΘk,Lk > am infinitely many m].

and conclude as before, by using that C (m) is asymptotically bounded by am and setting
m = O(ε−2). �

Proof of Proposition 26. We are in the basic setting of Proposition 24 as before, but ad-
ditionally may choose ρ ≥ 0 as we please. The growth of ak given in (27) is essentially
determined by γ(1 +ρ)/2b, which can be made small when ρ = 2α−β, implying b = α. �
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[5] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models. Springer,
New York, 2005.

[6] A. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup. Multilevel Monte Carlo methods
and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci., 14(1):
3, 2011.

[7] P. Del Moral. Feynman-Kac Formulae. Springer, New York, 2004.
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ON THE USE OF ABC-MCMC WITH INFLATED TOLERANCE AND
POST-CORRECTION

MATTI VIHOLA AND JORDAN FRANKS

Abstract. Approximate Bayesian computation (ABC) allows for inference of compli-
cated probabilistic models with intractable likelihoods using model simulations. The ABC
Markov chain Monte Carlo (MCMC) inference is often sensitive to the tolerance parameter:
low tolerance leads to poor mixing and large tolerance entails excess bias. We consider an
approach using a relatively large tolerance for the ABC-MCMC to ensure sufficient mixing,
and post-processing the output of ABC-MCMC leading to estimators for a range of finer
tolerances. We introduce an approximate confidence interval for the related post-corrected
estimators, which can be calculated from any run of ABC-MCMC, with little extra cost. We
propose an adaptive ABC-MCMC, which finds a ‘balanced’ tolerance level automatically,
based on acceptance rate optimisation. Tolerance adaptation, combined with proposal
covariance adaptation, leads to an easy-to-use adaptive ABC-MCMC, with subsequent
post-correction over a range of tolerances. Our experiments show that post-processing
based estimators can perform better than direct ABC-MCMC, that our confidence inter-
vals are reliable, and that our adaptive ABC-MCMC leads to reliable inference with little
user specification.

1. Introduction

Approximate Bayesian computation (ABC) is a form of likelihood-free inference (see, e.g.,
the reviews Marin et al., 2012; Sunn̊aker et al., 2013) which is used when exact Bayesian
inference of a parameter θ ∈ T with posterior density π(θ) ∝ pr(θ)L(θ) is impossible, where
pr(θ) is the prior density and L(θ) := g(y∗ | θ) is an intractable likelihood with data y∗ ∈ Y.
More specifically, when the generative model of observations g( · | θ) cannot be evaluated,
but allows for simulations, ABC can be used for relatively straightforward approximate
inference, based on a pseudo-posterior

(1) πε(θ) ∝ pr(θ)Lε(θ), where Lε(θ) := E[Kε(Yθ, y
∗)], Yθ ∼ g( · | θ),

where ε > 0 is a ‘tolerance’ parameter, and Kε : Y2 → [0,∞) is a ‘kernel’ function, which
is often taken as a simple cut-off Kε(y, y

∗) = 1 (‖s(y)− s(y∗)‖ ≤ ε), where s : Y → Rd

extracts a vector of summary statistics from the (pseudo) observations
The summary statistics are often chosen based on the application at hand, and reflect

what is relevant for the inference task; see also (Fearnhead and Prangle, 2012). Because
Lε(θ) may be regarded as a smoothed version of the true likelihood g(y∗ | θ) using the kernel
Kε, it is intuitive that using a too large ε may blur the likelihood and bias the inference.
Therefore, it is generally desirable to use as small a tolerance ε > 0 as possible, but because
the computational ABC methods suffer from inefficiency with small ε, the choice of tolerance
level is difficult (cf. Bortot et al., 2007; Sisson and Fan, 2018; Tanaka et al., 2006).

We discuss a simple post-processing procedure which allows for consideration of a range
of values for the tolerance ε ≤ ε0, based on a single run of ABC Markov chain Monte
Carlo (ABC-MCMC) (Marjoram et al., 2003) with tolerance ε0. Post-processing has been

Key words and phrases. Adaptive, approximate Bayesian computation, confidence interval, importance
sampling, Markov chain Monte Carlo, tolerance choice.
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suggested earlier at least in (Wegmann et al., 2009) (in the special case of simple cut-
off), and it can be regarded as an importance sampling correction of pseudo-marginal type
MCMC (cf. Vihola et al., 2016). The method, discussed further in Section 2, can be useful
for two reasons:

• A range of tolerances ε ≤ ε0 may be routinely inspected, which can reveal excess
bias of ABC-MCMC with tolerance ε0.
• The ABC-MCMC may be implemented with sufficiently large ε0 to allow for good

mixing, and post-correction ε0 → ε may be used for inference.

Our contribution is two-fold. We suggest straightforward-to-calculate approximate confi-
dence intervals for the post-processing output, with some theoretical properties discussed in
Section 3. We also introduce an adaptive ABC-MCMC in Section 4 which finds a balanced
ε0 during burn-in, using acceptance rate as a proxy. We provide some experimental results
regarding the suggested confidence interval and the tolerance adaptation in Section 5, and
conclude with discussion in Section 6.

2. ABC-MCMC with post-processing over a range of tolerances

For the rest of the paper, we assume that the kernel function has the following form:

Kε(y, y
∗) := φ

(d(y, y∗)

ε

)
,

where d : Y2 → [0,∞) is any ‘dissimilarity’ function and φ : [0,∞) → [0, 1] is a non-
increasing ‘cut-off’ function. Typically d(y, y∗) = ‖s(y) − s(y∗)‖, where s : Y2 → Rd

are the chosen summaries, and in case of the simple cut-off discussed in Section 1, φ(t) =
φsimple(t) := 1 (t ≤ 1). We also assume that the ABC posterior πε given in (1) is well-defined
for all ε > 0 of interest (that is,

∫
pr(θ)Lε(θ)dθ > 0).

The following summarises the ABC-MCMC algorithm suggested by Marjoram et al.
(2003), using a proposal density q and a tolerance ε > 0:

Algorithm 1 (ABC-MCMC(ε)). Suppose Θ0 ∈ T and Y0 ∈ Y are any starting values, such
that pr(Θ0) > 0 and φ(d(Y0, y

∗)/ε) > 0. For k ≥ 1, iterate:

(i) Draw Θ̃k ∼ q(Θk−1, · ) and Ỹk ∼ g( · | Θ̃k).
(ii) With probability αε(Θk−1, Yk−1; Θ̃k, Ỹk) accept and set (Θk, Yk)← (Θ̃k, Ỹk); otherwise

reject and set (Θk, Yk)← (Θk−1, Yk−1), where

αε(θ, y; θ̃, ỹ) := min

{
1,

pr(θ̃)q(θ̃, θ)φ
(
d(ỹ, y∗)/ε

)

pr(θ)q(θ, θ̃)φ
(
d(y, y∗)/ε

)
}
.

Note that Algorithm 1 may be implemented by storing only Θk and the related distances
Tk := d(Yk, y

∗), and in what follows, we regard either (Θk, Yk)k≥1 or (Θk, Tk)k≥1 as the
output of Algorithm 1. Note also that in practice, the initial values (Θ0, Y0) should be
taken as the state of the Algorithm 1 run for a number of initial ‘burn-in’ iterations, during
which time an adaptive algorithm for parameter tuning may be employed (Section 4).

Definition 2. Suppose (Θk, Tk)k=1,...,n is the output of ABC-MCMC(ε0) for some ε0 > 0.
For any ε ∈ (0, ε0] such that φ(Tk/ε) > 0 for some k = 1, . . . , n, and for any function
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f : T→ R, define

W
(ε0,ε)
k :=

U
(ε0,ε)
k∑n

j=1 U
(ε0,ε)
j

, U
(ε0,ε)
k :=

φ(Tk/ε)

φ(Tk/ε0)
,

Eε0,ε(f) :=
n∑

k=1

W
(ε0,ε)
k f(Θk), Sε0,ε(f) :=

n∑

k=1

(W
(ε0,ε)
k )2

[
f(Θk)− Eε0,ε(f)

]2
.

The estimator Eε0,ε(f) approximates Eπε [f(Θ)] and Sε0,ε(f) may be used to construct a
confidence interval; see Algorithm 6 below. The following algorithm shows that in case
of simple cut-off, Eε0,ε(f) and Sε0,ε(f) may be calculated simultaneously for all tolerances
efficiently:

Algorithm 3. Suppose φ = φsimple and (Θk, Tk)k=1,...,n is the output of ABC-MCMC(ε0).

(i) Sort (Θk, Tk)k=1,...,n with respect to Tk:
• Find indices I1, . . . , In such that TIk ≤ TIk+1

for all k = 1, . . . , n− 1.

• Denote (Θ̂k, T̂k)← (ΘIk , TIk).

(ii) For all unique values ε ∈ {T̂1, . . . , T̂n}, let mε := max{k ≥ 1 : T̂k ≤ ε}, and define

Eε0,ε(f) :=
1

mε

mε∑

k=1

f(Θ̂k), and Sε0,ε(f) :=
1

m2
ε

mε∑

k=1

[
f(Θ̂k)− Eε0,ε(f)

]2
.

(and for T̂k < ε < T̂k+1, let Eε0,ε(f) := Eε0,T̂k(f) and Sε0,ε(f) := Sε0,T̂k(f).)

The sorting in Algorithm 3(i) may be performed in O(n log n) time, and Eε0,ε(f) and
Sε0,ε(f) may all be calculated in O(n) time by forming appropriate cumulative sums.

Theorem 5 below details consistency of Eε0,ε(f), and relates Sε0,ε(f) to the limiting vari-
ance, in case the following (well-known) condition ensuring a central limit theorem holds:

Assumption 4 (Finite integrated autocorrelation). Suppose that Eπε [f 2(Θ)] < ∞
and

∑
k≥1 ρ

(ε0,ε)
k is finite, with ρ

(ε0,ε)
k := Corr

(
hε0,ε(Θ

(s)
0 , Y

(s)
0 ), hε0,ε(Θ

(s)
k , Y

(s)
k )
)
, where

(Θ
(s)
k , Y

(s)
k )k≥1 is a stationary version of the ABC-MCMC(ε0) chain, and

hε0,ε(θ, y) := wε0,ε(y)f(θ) where wε0,ε(y) := φ
(
d(y, y∗)/ε

)
/φ
(
d(y, y∗)/ε0

)
.

Theorem 5. Suppose (Θk, Tk)k≥1 is the output of ABC-MCMC(ε0), and denote by E
(n)
ε0,ε(f)

and S
(n)
ε0,ε(f) the estimators in Definition 2. If (Θk, Tk)k≥1 is ψ-irreducible, then, for any

ε ∈ (0, ε0), we have as n→∞:

(i) E
(n)
ε0,ε(f)→ Eπε [f(Θ)] almost surely, whenever the expectation is finite.

(ii) Under Assumption 4,
√
n
(
E

(n)
ε0,ε(f)−Eπε [f(Θ)]

)
→ N

(
0, vε0,ε(f)τε0,ε(f)

)
in distribution,

where

τε0,ε(f) :=
(

1 + 2
∑

k≥1

ρ
(ε0,ε)
k

)
∈ [0,∞), and nS(n)

ε0,ε
(f)

a.s.−−→ vε0,ε(f) ∈ [0,∞).

Proof of Theorem 5 is given in Appendix A. Based on Theorem 5, we suggest to report
the following approximate confidence intervals for the suggested estimators:

Algorithm 6. Suppose (Θk, Tk)k=1,...,n is the output of ABC-MCMC(ε0) and f : Θ→ R is
a function, then for any ε ≤ ε0:

(i) Calculate Eε0,ε(f) and Sε0,ε(f) as in Definition 2 (or in Algorithm 3).
(ii) Calculate τ̂ε0(f), an estimate of the integrated autocorrelation of

(
f(Θk)

)
k=1,...,n

.
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(iii) Report the confidence interval
[
Eε0,ε(f)± β

√
Sε0,ε(f)τ̂ε0(f)

]
,

where β > 0 corresponds to the desired normal quantile.

The classical choice for τ̂ε0(f) in Algorithm 6(ii) is windowed autocorrelation, τ̂ε0(f) =∑∞
k=−∞ ω(k)ρ̂k, with some 0 ≤ ω(k) ≤ 1, where ρ̂k is the sample autocorrelation of

(
f(Θk)

)

(cf. Geyer, 1992), but also more sophisticated techniques for the calculation of the asymp-
totic variance have been suggested (e.g. Flegal and Jones, 2010).

Because computing an estimate of τε0,ε(f) is computationally demanding, and because
such an estimate is likely to be unstable for small ε, Algorithm 6 is based on the use
of τ̂ε0(f) as a common autocorrelation for all ε ≤ ε0. This relies on the approximation
τε0,ε(f) / τε0,ε0(f), which may not always be entirely accurate, but likely to be reasonable,
as illustrated by Theorem 7 in Section 3 below.

We remark that, although we focus on the case of using a common cut-off for both
the ABC-MCMC and post-correction, one could also consider using two different cut-offs.
The extension to Definition 2 is straightforward, and Algorithm 3 holds with simple post-
correction cut-off, under a support condition.

3. Confidence interval and efficiency

The following result, whose proof is given in Appendix A, gives an expression for the
integrated autocorrelation in case of simple cut-off.

Theorem 7. Suppose Assumption 4 holds and φ = φsimple, then

τε0,ε(f)− 1 =

(
τ̌ε0,ε(f)− 1

)
varπε0 (fε0,ε) + 2

∫
πε0(θ)w̄ε0,ε(θ)

(
1− w̄ε0,ε(θ)

) rε0 (θ)

1−rε0 (θ)
f 2(θ)dθ

varπε0 (fε0,ε) +
∫
πε0(θ)w̄ε0,ε(θ)

(
1− w̄ε0,ε(θ)

)
f 2(θ)dθ

,

where w̄ε0,ε(θ) := Lε(θ)/Lε0(θ), fε0,ε(θ) := f(θ)w̄ε0,ε(θ), τ̌ε0,ε(f) is the integrated autocorrela-

tion of {fε0,ε(Θ(s)
k )}k≥1 and rε0(θ) the rejection probability of the ABC-MCMC(ε0) chain at

θ.

We next discuss how this loosely suggests that τε0,ε(f) / τε0,ε0(f). Note that w̄ε0,ε0 ≡
1, and under suitable regularity conditions both w̄ε0,ε(θ) and τ̌ε0,ε(f) are continuous with
respect to ε, and w̄ε0,ε(θ) → 0 as ε → 0. Then, for ε ≈ ε0, we have w̄ε0,ε ≈ 1 and therefore
τε0,ε0(f) ≈ τε0,ε(f). For small ε, the terms with varπε0 (fε0,ε) are of order O(w̄2

ε0,ε
), and are

dominated by the other terms of order O(w̄ε0,ε). The remaining ratio may be written as

2
∫
πε0(θ)w̄ε0,ε(θ)

(
1− w̄ε0,ε(θ)

) rε0 (θ)

1−rε0 (θ)
f 2(θ)dθ

∫
πε0(θ)w̄ε0,ε(θ)

(
1− w̄ε0,ε(θ)

)
f 2(θ)dθ

= 2Eπε0
[
ḡ2
ε0,ε

(Θ)
rε0(Θ)

1− rε0(Θ)

]
,

where ḡε0,ε ∝ (w̄ε0,ε(1 − w̄ε0,ε))1/2f with πε0(ḡ
2
ε0,ε

) = 1. If rε0(θ) ≤ r∗ < 1, then the term is

upper bounded by 2r∗(1−r∗)−1, and we believe it to be often less than τε0,ε0(f), because the
latter expression is similar to the contribution of rejections to the integrated autocorrelation;
see the proof of Theorem 7.

For general φ, it appears to be hard to obtain similar theoretical result, but we expect the

approximation to be still sensible. Theorem 7 relies on Y
(s)
k being independent of (Θ

(0)
k , Y

(0)
k )

conditional on Θ
(s)
k , assuming at least single acceptance. This is not true with other cut-offs,

but we believe that the dependence of Y
(s)
k from (Θ

(s)
0 , Y

(s)
0 ) given Θ

(s)
k is generally weaker

than dependence of Θ
(s)
k and Θ

(s)
0 , suggesting similar behaviour.



ABC-MCMC WITH POST-CORRECTION 5

Let us state next a general upper bound for the IS-corrected ABC-MCMC as we suggest,
with respect to a direct ABC-MCMC with a smaller tolerance.

Theorem 8. For any ε ≤ ε0, denote by σ2
ε0,ε

(f) := vε0,ε(f)τε0,ε(f) the asymptotic variance
of the estimator of Definition 2 (see Theorem 5(ii)). Define

wε0,ε(y) :=
φ
(
d(y, y∗)/ε

)

φ
(
d(y, y∗)/ε0

) , cε :=

∫
pr(θ)Lε(θ)dθ, π̃ε(θ, y) :=

pr(θ)g(y | θ)Kε(y, y
∗)

cε
,

and denote f̄(θ) = f(θ)− Eπε [f(Θ)]. Then for any ε ≤ ε0,

σ2
ε0,ε

(f) ≤ cε0
cε

[
σ2
ε (f) + π̃ε

(
f̄ 2(1− wε0,ε)

)]
,

where σ2
ε (f) := σ2

ε,ε(f) is the asymptotic variance of the direct ABC-MCMC(ε).

Theorem 8 follows directly from (Franks and Vihola, 2017, Corollary 4). The upper bound
guarantees that a moderate correction, that is, ε close to ε0 and cε0 close to cε, is nearly
as efficient as direct ABC-MCMC. Indeed, typically wε0,ε → 1 and cε → cε0 as ε → ε0, in
which case Theorem 8 implies lim supε→ε0 σ

2
ε0,ε

(f) ≤ σ2
ε (f). However, as ε → 0, the bound

becomes less informative.

4. A tolerance adaptive ABC-MCMC algorithm

We propose Algorithm 9 below to adapt the tolerance ε0 in the ABC-MCMC during
burn-in, in order to obtain a user-specified overall acceptance rate α∗. Together with the
approach based on post-correction of Section 2, we thus obtain an automated ABC inference
solution that does not require prior choice of an ε0.

In Algorithm 9, we assume that a desired acceptance rate α∗ ∈ (0, 1) is specified. We
used α∗ = 0.1 in our experiments, and discuss this choice later. We also assume a choice
of decreasing positive step sizes (γk)k≥1. We used γk = k−2/3 in our experiments. For
convenience, we denote the distance distribution here as T ∼ Qθ( · ), where T := d(Y, y∗)
for Y ∼ g( · |θ).
Algorithm 9 (TA(nb, α

∗)). Suppose Θ0 ∈ T is a starting value with pr(Θ0) > 0.

1. Initialise ε0 := T0 where T0 ∼ QΘ0( · ) and T0 > 0.
2. For k = 0, . . . , nb − 1, iterate:

(i) Draw Θ′k ∼ q(Θk, · ).
(ii) Draw T ′k ∼ QΘ′k

( · ).
(iii) Accept, by setting (Θk+1, Tk+1)← (Θ′k, T

′
k), with probability

(2) αεk(Θk, Tk; Θ′k, T
′
k) := min

{
1,

pr(Θ′k)q(Θ
′
k,Θk)φ(T ′k/εk)

pr(Θk)q(Θk,Θ′k)φ(Tk/εk)

}

and otherwise reject, by setting (Θk+1, Tk+1)← (Θk, Tk).
(iv) log εk+1 ← log εk + γk+1

(
α∗ − α′εk(Θk,Θ

′
k, T

′
k)
)
.

3. Output (Θnb , εnb).

The following simple conditions suffice for convergence of the adaptation

Assumption 10. Suppose φ = φsimple and the following hold:

(i) γk := Ck−r with r ∈ (1
2
, 1] and C > 0 a constant.

(ii) The domain T ⊂ Rnθ , nθ ≥ 1, is a nonempty open set.
(iii) pr(θ) is uniformly bounded on T, and pr(θ) = 0 for θ /∈ T.
(iv) q is a uniformly bounded density, and q ≥ δq on T2, δq > 0.
(v) Qθ(dt) admits a uniformly bounded density Qθ(t).
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(vi) εk stays in a set [a, b] almost surely, where 0 < a ≤ b < +∞.
(vii)

∫
pr(dθ)Lε(θ) > 0 for all ε ∈ [a, b].

Theorem 11. Under Assumption 10, the expected value of the acceptance probability (2),
taken with respect to the stationary measure of the chain, converges to α∗.

Proof of Theorem 11 will follow from the more general Theorem 13 of Appendix B.
Theorem 13 is phrased for geometrically ergodic chains on possibly unbounded domains
without the lower bound in Assumption 10(iv). See Appendix C for the proofs of both
theorems.

In practice, the tolerance adaptation is the most straightforward to apply with a symmet-
ric random walk proposal q adapted simultaneously with proposal covariance adaptation
(Andrieu and Moulines, 2006; Haario et al., 2001) (see Algorithm 22 of Appendix D for
a detailed description of the resulting algorithm). Such simultaneous use of different op-
timisation criteria within adaptive MCMC has been discussed, for example, in the review
(Andrieu and Thoms, 2008). While we do not consider Algorithm 22 explicitly in our the-
oretical analysis, our results could be elaborated, along the lines of Andrieu and Moulines
(2006), to accommodate Algorithm 22 in detail.

In the standard Adaptive Metropolis algorithm (Haario et al., 2001), the limiting accep-
tance rate is often around 0.234 (Roberts et al., 1997). In the ABC-MCMC context, this
acceptance rate would be reached if the tolerance would be made infinite, and if the prior
distribution would be regular enough (e.g. Gaussian). Because the mean acceptance rate of
ABC-MCMC typically decreases when tolerance is decreased (see Lemma 15 of Appendix
C in case of φsimple), and because the likelihood approximation must be reasonable, the
desired acceptance rate should be substantially lower than 0.234.

As ABC-MCMC may be interpreted as an instance of pseudo-marginal MCMC, for which
there are certain conditions under which the optimal acceptance rate of about 0.07 is reached
(Sherlock et al., 2015), one could take this as a guideline as well for the ABC-MCMC.
However, the context of Sherlock et al. (2015) is quite dissimilar to that of ABC-MCMC,
and so we decided to push the acceptance rate a little higher to ensure sufficient mixing. As
well, we do subsequent post-correction, which is further justification for a slightly inflated
tolerance and therefore acceptance rate.

5. Experiments

We experiment with our methods on two models, a lightweight Gaussian toy example,
and a Lotka-Volterra model. Our experiments aim at providing information regarding the
following questions:

• Can ABC-MCMC with larger tolerance and post-correction to a desired tolerance
deliver more accurate results than direct application of ABC-MCMC?
• Does our approximate confidence interval appear reliable?
• How well does the adaptive ABC-MCMC work in practice?

In all our experiments, we apply the Adaptive Metropolis (Andrieu and Moulines, 2006;
Haario et al., 2001) covariance adaptation, which is run during the whole simulation, using
an identity covariance initially.

Regarding our first question, we investigate running the ABC-MCMC starting near the
posterior mode with different pre-selected tolerances, both selected in a preliminary pilot
experiment. We first attempted to perform the experiments by initialising the chains from
independent samples of the prior distribution, but in this case, most of the chains did not
accept a single move during the whole run. In contrast, our experiments with tolerance
adaptation do start from initial points drawn from the prior distribution, and both the
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Figure 1. Gaussian model with simple cut-off.

tolerances and the covariances are adjusted fully automatically by our algorithm. The
latter assumes no prior information of the model at all, which we aim at.

In our tests about confidence intervals, we employ a simple ‘automatic window’ estimator
of integrated autocorrelation of the form τ̂ε0,M = 1+2

∑M
i=1 ρ̂k(f), where ρ̂k are lag-k sample

autocorrelations, and where M is the smallest positive integer such that M ≥ 5τ̂ε0,M (Sokal,
1996).

When running the covariance adaptation alone, we employ the covariance adaptation of
Andrieu and Moulines (2006) with step size n−1, which behaves similar to the original Adap-
tive Metropolis algorithm of Haario et al. (2001). In case we apply tolerance adaptation,
we use step size n−2/3 for both the tolerance adaptation and for the covariance adaptation.
Slower decaying step sizes such as this often behave better with acceptance rate adaptation
(cf. Vihola, 2012, Remark 3).

All the experiments are implemented in Julia (Bezanson et al., 2017), and the codes are
available in https://bitbucket.org/mvihola/abc-mcmc.

5.1. One-dimensional Gaussian model. Our first model is a toy model with pr(θ) =
N(θ; 0, 302) and Y = Θ + Z, where Z is standard Gaussian random variable. The true
posterior without ABC approximation is Gaussian. While this scenario is clearly academic,
the prior is far from the posterior, which we believe to be common in practice. It is clear
that πε has zero mean for all ε, and also that the distribution πε is spread wider for bigger
ε. We experiment with both simple cut-off φsimple and Gaussian cut-off φGauss(t) := e−t

2/2.
We run the experiments with 10,000 independent chains, each for 11,000 iterations in-

cluding 1,000 burn-in. The chains were always started from θ0 = 0. Figures 1 and 2 show
results of the same experiments with simple and Gaussian cut-off. On the left, a single
realisation of the estimates and confidence intervals calculated for all ε ≤ ε0 = 3 are shown
for functions f1(θ) = θ (above) and f2(θ) = |θ| (below). The figures on the right show box
plots of the final estimators calculated for each chain, for five equispaced tolerance values
between 0.1 and 3.0 (x axis labels indicate these tolerances). The leftmost box plot in each
group corresponds to the direct ABC-MCMC targeting that tolerance, and the rightmost
box plot corresponds to the post-corrected estimators from the ABC-MCMC with ε0 = 3.0,
and the second from the right with ε0 = 2.275 etc. The colour indicates the ε0. Some
post-corrected estimates appear to be slightly more accurate than ABC-MCMC, and in the
results suggest that ε0 = 0.82 might be a good choice, if the desired tolerance is ε = 0.1.

Table 1 indicates the frequencies of the calculated 95% confidence intervals containing
the ‘ground truth’, over the 10,000 independent experiments, as well as acceptance rates.
The ground truth for Eπε [f1(Θ)] is known to be zero for all ε, and the overall mean of all the
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Figure 2. Gaussian model with Gaussian cut-off.

Table 1. Frequencies of the 95% confidence intervals containing the ground
truth in the Gaussian model.

Cutoff f(x) = x f(x) = |x| Acc.

ε0 \ ε 0.10 0.82 1.55 2.28 3.00 0.10 0.82 1.55 2.28 3.00 rate

φsimple

0.1 0.93 0.93 0.03
0.82 0.97 0.95 0.95 0.94 0.22
1.55 0.97 0.97 0.95 0.96 0.95 0.95 0.33
2.28 0.98 0.97 0.96 0.95 0.96 0.96 0.96 0.95 0.4
3.0 0.98 0.98 0.97 0.97 0.95 0.96 0.96 0.96 0.95 0.95 0.43

φGauss

0.1 0.93 0.93 0.05
0.82 0.94 0.95 0.92 0.95 0.29
1.55 0.94 0.94 0.95 0.94 0.94 0.95 0.38
2.28 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.41
3.0 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.42

calculated estimates is used as the ground truth for Eπε [f2(Θ)]. The frequencies appear close
to ideal with the post-correction approach, being slightly pessimistic in case of simple cut-off
as anticipated by the theoretical considerations (see Theorem 7 and discussion below).

Figure 3 shows progress of tolerance adaptations during the burn-in, and histogram of the
mean acceptance rates of the chain after burn-in. The lines on the left show the median, and
the shaded regions indicate the 50%, 75%, 95% and 99% quantiles. The figures indicate
concentration, but suggest that the adaptation has not fully converged yet. This is also
indicated by the mean acceptance rate over all realisations, which are 0.17 and 0.12 with
simple and Gaussian cutoff, respectively. Table 2 shows root mean square errors from the
ground truth, for both the fixed tolerance estimators, and the adaptive algorithms, for
tolerance ε = 0.1. Here, only the adaptive chains with final tolerance ≥ 0.1 were included
(9,997 and 9,996 out of 10,000 chains for the simple and Gaussian cut-offs, respectively).

5.2. Lotka-Volterra model. Our second experiment is a Lotka-Volterra model suggested
in (Boys et al., 2008), and also analysed in the ABC context in (Fearnhead and Prangle,
2012). The model is a Markov process (Xt, Yt)t≥0 of counts, corresponding to a reaction
network X → 2X with rate θ1, X + Y → 2Y with rate θ2 and Y → ∅ with rate θ3. The
reaction rates θ = (θ1, θ2, θ3)> are parameters, which we equip here with a uniform prior,
(log θ1, log θ2, log θ3)> ∼ U([−6, 0]3). The data is a simulated trajectory from the model
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Figure 3. Progress of tolerance adaptation (left) and histogram of accep-
tance rates (right) in the Gaussian model experiment with simple cutoff (top)
and Gaussian cutoff (bottom).

Table 2. RMSEs (×10−2) with fixed tolerance and with the adaptive algo-
rithms in the Gaussian model, for tolerance ε = 0.1.

φsimple φGauss

Fixed tolerance Adapt Fixed tolerance Adapt

ε0 0.1 0.82 1.55 2.28 3.0 0.64 0.1 0.82 1.55 2.28 3.0 0.28

x 9.68 8.99 9.21 9.67 10.36 9.16 7.97 7.12 7.82 8.94 9.93 9.26
|x| 5.54 5.38 5.5 5.85 6.21 5.44 4.47 4.22 4.68 5.26 5.95 5.46

with θ = (0.5, 0.0025, 0.3)> until time 40. The ABC is based on Euclidean distance of a
six-dimensional summary statistic, which consists of:

• Sample autocorrelation of X
(1)
t at lag 10, multiplied by 100.

• 10% and 90% (time-averaged) quantiles of both X
(1)
t and X

(2)
t .

• Number of jumps (or events), divided by 10.

The summary statistics are then (−51.0711, 29.0, 304.0, 65.0, 404.0, 749.4)> for the observed
series.

We first run comparisons similar to Section 5.1, but now only with 1,000 independent
chains and simple cut-off. We investigate the effect of post-correction, with 20,000 samples,
including 10,000 burn-in, for each chain. The MCMC is run on log-transformed θ, and all
chains were started from near the mode, from log θ = (−0.55,−5.77,−1.09)>. Figure 4 and
Table 3 show similar comparisons as in Section 5.1. The results suggest that post-corrected
ABC does provide slightly more accurate estimators, particularly with smaller tolerances.

In addition, we experiment with the tolerance adaptation, using also 20,000 samples out
of which 10,000 are burn-in. Figure 5 shows the progress of the log-tolerance during the
burn-in, and histogram of the realised mean acceptance rates during the estimation phase.
The realised acceptance rates are concentrated around the desired 10%, with mean 0.10.
Table 4 shows RMSEs of both the fixed tolerance ABC-MCMC outputs and with tolerance
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Figure 4. Lotka-Volterra model with simple cut-off.

Table 3. Frequencies of the 95% confidence intervals in the Lotka-Volterra
experiment and mean acceptance rates.

f(θ) = θ1 f(θ) = θ2 f(θ) = θ3

ε0

ε

10
0.

0

12
5.

0

15
0.

0

17
5.

0

20
0.

0

10
0.

0

12
5.

0

15
0.

0

17
5.

0

20
0.

0

10
0.

0

12
5.

0

15
0.

0

17
5.

0

20
0.

0

Acc.
rate

100.0 0.59 0.55 0.53 0.04
125.0 0.97 0.88 0.97 0.88 0.96 0.81 0.11
150.0 0.99 0.97 0.92 0.99 0.97 0.92 0.99 0.95 0.88 0.13
175.0 0.99 0.97 0.96 0.92 0.99 0.98 0.96 0.92 0.99 0.98 0.97 0.92 0.16
200.0 0.98 0.98 0.98 0.96 0.94 0.99 0.99 0.98 0.97 0.92 0.98 0.97 0.96 0.96 0.92 0.18

adaptation. Again, only the adaptive chains with final tolerance ≥ 100.0 were included (999
out of 1,000 chains).

In this case, the chains run with the tolerance adaptation led to better results than those
run only with the covariance adaptation (and fixed tolerance). This perhaps surprising
result may be due to the initial behaviour of the covariance adaptation, which may be
unstable when there are many rejections. Different initialisation strategies, for instance
following (Haario et al., 2001, Remark 2), might lead to more stable behaviour compared to
using the adaptation of Andrieu and Moulines (2006) from the start, as we do. The different
step size sequences (n−1 and n−2/3) could also play a rôle. We repeated the experiment for
the chains with fixed tolerances, but now with covariance adaptation step size n−2/3. This
led to more stable behaviour of the ABC-MCMC with tolerance ε0 = 100.0. In any case,
also here, the adaptive ABC-MCMC using the tolerance adaptation delivered slightly better
results (see supplementary results in Appendix E).

6. Discussion

We believe our approach consisting of ABC-MCMC with post-processing is a useful addi-
tion, and complements some earlier and related work. As previously mentioned, trimming
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Figure 5. Progress of tolerance adaptation (left) and histogram of accep-
tance rates (right) in the Lotka-Volterra experiment.

Table 4. RMSEs with fixed tolerance and with the adaptive algorithms in
the Lotka-Volterra model, for tolerance ε = 100.

Fixed tolerance Adapt

ε0 100.0 125.0 150.0 175.0 200.0 119.1

θ1 (×10−2) 5.07 1.39 1.13 1.31 1.74 0.79
θ2 (×10−4) 3.15 0.85 0.69 0.74 1.02 0.54
θ3 (×10−2) 2.94 1.09 0.87 0.85 1.39 0.51

of ABC-MCMC output to finer tolerances has been considered earlier (e.g. Wegmann et al.,
2009). Our experimental results suggest that this can indeed be beneficial, and our confi-
dence interval may make the approach more appealing in practice.

Another related approach by Bortot et al. (2007) makes tolerance an auxiliary variable
with a user-specified prior, and ABC-MCMC is run targeting the joint posterior of pa-
rameter and tolerance. While this approach avoids tolerance selection, we believe that our
approach, where the effect of tolerance can be investigated explicitly, can be helpful in
interpretation of the ABC posterior. In fact, Bortot et al. (2007) also provide tolerance-
dependent analysis, but we believe that our estimators, with associated confidence intervals,
have a more immediate interpretation.

Automatic selection of tolerance in ABC-MCMC has been considered earlier in Ratmann
et al. (2007), who propose an algorithm based on tempering and a cooling schedule. It has
been remarked by Sisson and Fan (2018) that acceptance rate based adaptation could be
used to deal with the choice of a suitable tolerance. Based on our experiments, the adaptive
ABC-MCMC we present in this paper appears to perform well in practice, and provides
reliable results with post-correction. The tolerance adaptation also seems to benefit the co-
variance adaptation in the early phases. For the adaptive ABC-MCMC to work efficiently,
the MCMC chains must be taken relatively long, rendering the approach difficult for com-
putationally demanding models. However, we believe that our approach using adaptive
ABC-MCMC provides a straightforward way to do inference with ABC models.

Our estimators, and their uncertainty estimators, could also turn out to be useful in
the regression adjustment context (Beaumont et al., 2002; Blum, 2010; Wegmann et al.,
2009). We did not consider such adjustments, but note that approximate normality and
the confidence bounds may be used to derive an appropriately weighted estimator that
reflects the uncertainty of the estimators.

We conclude with a brief discussion of certain extensions of the suggested post-correction
method. The first extension is based on ‘recycling’ the rejected samples in the estimator
(Ceperley et al., 1977). This may improve the accuracy (but can also reduce accuracy in
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certain pathological cases; see Delmas and Jourdain (2009)). The ‘waste recycling’ estimator
is

EWR
ε0,ε

(f) :=
n∑

k=1

W
(ε0,ε)
k

[
αε0(Θk, Yk; Θ̃k+1, Ỹk+1)f(Θ̃k+1) + [1−αε0(Θk, Yk; Θ̃k+1, Ỹk+1)]f(Θk)

]
.

When Eε0,ε(f) is consistent under Theorem 5(i), this is also a consistent estimator. Namely,

as in the proof (in Appendix A) of Theorem 5, we find that (Θk, Yk, Θ̃k+1, Yk+1)k≥1 is a
Harris recurrent Markov chain with invariant distribution

π̂ε0(θ, y, θ̃, ỹ) = π̃ε0(θ, y)q̃(θ, y; θ̃, ỹ),

and π̂ε(θ, y, θ̃, ỹ)/π̂ε0(θ, y, θ̃, ỹ) = cεwε0,ε(y), where q̃(θ, y; θ′, y′) = q(θ, θ′)g(y′ | θ′). There-
fore, EWR

ε0,ε
(f) is a strongly consistent estimator of

Eπ̂ε
[
αε0(Θ, Y ; Θ̃, Ỹ )f(Θ̃) + [1− αε0(Θ, Y ; Θ̃, Ỹ )]f(Θ)

]
= Eπε [f(Θ)].

See (Rudolf and Sprungk, 2018; Schuster and Klebanov, 2018) for alternative waste recycling
estimators based on importance sampling analogues.

Another extension, which could be considered, is about enhancing the accuracy of the
estimator with smaller values of ε, by performing further simulations from the model (which
may be calculated in parallel for different Θk). Namely, a new estimator may be formed as
follows:

Êε0,ε(f) =

∑n
k=1

∑m
j=0 Û

(ε0,ε)
k,j f(Θk)

∑n
`=1

∑m
i=0 Û

(ε0,ε)
`,i

, Û
(ε0,ε)
k,0 := U

(ε0,ε)
k and Û

(ε0,ε)
k,j :=

N̂kφ(T̂k,j/ε)

φ(Tk/ε0)
,

for j ≥ 1, where N̂k is the number of independent random variables Ẑ1, Ẑ2, . . . ∼ g( · | Θk)

generated before observing φ(T̂k,N̂k/ε0) > 0 where T̂k,j := d(Ẑj, y
∗), and T̂k := d(Ŷk, y

∗) with

independent Ŷk ∼ g( · | Θk). This ensures that

E[N̂kφ(T̂k,j/ε) | Θk = θ, Yk = y] =
Lε(θ)

Pg( · |θ)
(
φ
(
d(Y, y∗)/ε0

)
> 0
) ,

which is sufficient to ensure that ξk,j(f) := Û
(ε0,ε)
k,j f(Θk) is a proper weighting scheme from

π̃ε0 to πε; see (Vihola et al., 2016, Proposition 17(ii)), and consequently the average ξk(f) :=
(m+ 1)−1

∑m
j=0 ξk,j(f) is a proper weighting.

The latter extension, which involves additional simulations as post-processing, is similar
to ‘lazy ABC’, which incorporates a randomised stopping rule for simulation (Prangle, 2015,
2016), and to unbiased ‘exact’ ABC (Tran and Kohn, 2015), which may lead to estimators
which get rid of ε-bias entirely, using the debiasing approach lately investigated in (McLeish,
2011; Rhee and Glynn, 2015).
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likelihoods. Proc. Natl. Acad. Sci. USA, 100(26):15324–15328, 2003.
D. McLeish. A general method for debiasing a Monte Carlo estimator. Monte Carlo Methods

Appl., 17(4):301–315, 2011.
S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University

Press, 2nd edition, 2009. ISBN 978-0-521-73182-9.
D. Prangle. Lazier ABC. Preprint arXiv:1501.05144, 2015.
D. Prangle. Lazy ABC. Statist. Comput., 26(1-2):171–185, 2016.
O. Ratmann, O. Jørgensen, T. Hinkley, M. Stumpf, S. Richardson, and C. Wiuf. Using

likelihood-free inference to compare evolutionary dynamics of the protein networks of H.
pylori and P. falciparum. PLoS Comput. Biol., 3(11):e230, 2007.

C.-H. Rhee and P. W. Glynn. Unbiased estimation with square root convergence for SDE
models. Oper. Res., 63(5):1026–1043, 2015.

G. Roberts, A. Gelman, and W. Gilks. Weak convergence and optimal scaling of random
walk Metropolis algorithms. Ann. Appl. Probab., 7(1):110–120, 1997.



14 MATTI VIHOLA AND JORDAN FRANKS

G. O. Roberts and J. S. Rosenthal. Harris recurrence of Metropolis-within-Gibbs and trans-
dimensional Markov chains. Ann. Appl. Probab., 16(4):2123–2139, 2006.

D. Rudolf and B. Sprungk. On a Metropolis-Hastings importance sampling estimator.
Preprint arXiv:1805.07174, 2018.

I. Schuster and I. Klebanov. Markov chain importance sampling - a highly efficient estimator
for MCMC. Preprint arXiv:1805.07179, 2018.

C. Sherlock, A. H. Thiery, G. O. Roberts, and J. S. Rosenthal. On the efficiency of pseudo-
marginal random walk Metropolis algorithms. Ann. Statist., 43(1):238–275, 2015.

S. Sisson and Y. Fan. ABC samplers. In S. Sisson, Y. Fan, and M. Beaumont, editors,
Handbook of Markov chain Monte Carlo. Chapman & Hall/CRC Press, 2018.

A. D. Sokal. Monte Carlo methods in statistical mechanics: Foundations and new algo-
rithms. Lecture notes, 1996.

M. Sunn̊aker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz. Ap-
proximate Bayesian computation. PLoS computational biology, 9(1):e1002803, 2013.

M. Tanaka, A. Francis, F. Luciani, and S. Sisson. Using approximate Bayesian computation
to estimate tuberculosis transmission parameters from genotype data. Genetics, 173(3):
1511–1520, 2006.

M. N. Tran and R. Kohn. Exact ABC using importance sampling. Preprint
arXiv:1509.08076, 2015.

M. Vihola. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statist.
Comput., 22(5):997–1008, 2012.

M. Vihola, J. Helske, and J. Franks. Importance sampling type estimators based on ap-
proximate marginal MCMC. Preprint arXiv:1609.02541v5, 2016.

D. Wegmann, C. Leuenberger, and L. Excoffier. Efficient approximate Bayesian computation
coupled with Markov chain Monte Carlo without likelihoods. Genetics, 182(4):1207–1218,
2009.

Appendix A. Proofs for the post-correction estimators

Proof of Theorem 5. Algorithm 1 is a Metropolis-Hastings algorithm with proposal
q̃(θ, y; θ′, y′) = q(θ, θ′)g(y′ | θ′) and with target

π̃ε(θ, y) ∝ pr(θ)g(y | θ)φ
(
d(y, y∗)/ε

)
.

The chain (Θk, Yk)k≥1 is Harris-recurrent, as a full-dimensional Metropolis-Hastings which
is ψ-irreducibile (Roberts and Rosenthal, 2006).

Because φ is monotone and ε ≤ ε0, we have φ
(
d(y, y∗)/ε0

)
≥ φ

(
d(y, y∗)/ε

)
, and therefore

π̃ε is absolutely continuous with respect to π̃ε0 , so

wε0,ε(y) = cε0,ε
π̃ε(θ, y)

π̃ε0(θ, y)
,

where cε0,ε > 0 is a constant. If we denote ξk(f) := U
(ε0,ε)
k f(Θk) and ξk(1) := U

(ε0,ε)
k =

wε0,ε(Yk), then we may write

E(n)
ε0,ε

(f) =

∑n
k=1 ξk(f)∑n
j=1 ξj(1)

n→∞−−−→ Eπ̃ε [f(Θ)],

by Harris recurrence and π̃ε invariance (e.g. Vihola et al., 2016). The claim (i) follows
because πε is the marginal density of π̃ε.
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The chain (Θk, Yk)k≥1 is reversible, so (ii) follows by (Vihola et al., 2016, Theorem 7(i)),

because m
(2)
f (θ, y) := w2

ε0,ε
(y)f 2(θ) satisfies

Eπ̃ε0 [m
(2)
f (Θ, Y )] = cε0,εEπ̃ε [wε0,ε(Y )f 2(Θ)] ≤ cε0,εEπε [f 2(Θ)] <∞,

and because the asymptotic variance of the function hε0,ε with respect to (Θk, Yk)k≥1

may be expressed as varπ̃ε0
(
hε0,ε(Θ, Y )

)
τε0,ε(f), so we may conclude that vε0,ε(f) =

varπ̃ε0
(
hε0,ε(Θ, Y )

)
/c2
ε0,ε

.

The convergence nS
(n)
ε0,ε(f)→ vε0,ε(f) follows from (Vihola et al., 2016, Theorem 9). �

Proof of Theorem 7. Note that π̃ε0(θ, y) = πε0(θ)ḡε0(y | θ), where

ḡε0(y | θ) := g(y | θ)1 (d(y, y∗) ≤ ε0) /Lε0(θ).

Notice that
∫
ḡε0(y | θ)wpε0,ε(y)dy = w̄ε0,ε(θ) for p ∈ {1, 2}, and consequently π̃ε0(hε0,ε) =

πε0(fε0,ε) and π̃ε0(h
2
ε0,ε

) = πε0(f
2w̄ε0,ε). Therefore,

varπ̃ε0 (hε0,ε) =
[
varπε0 (fε0,ε) + πε0

(
w̄ε0,ε(1− w̄ε0,ε)f 2

)]
.

Hereafter, let aε0,ε :=
(
varπ̃ε0 (hε0,ε)

)−1/2
and denote h̃ε0,ε := aε0,εhε0,ε and f̃ε0,ε := aε0,εfε0,ε.

Clearly, varπ̃ε0 (h̃ε0,ε) = 1 and

ρ
(ε0,ε)
k = e

(ε0,ε)
k −

(
πε0(f̃ε0,ε)

)2
, where e

(ε0,ε)
k := E

[
h̃ε0,ε(Θ

(s)
0 , Y

(s)
0 )h̃ε0,ε(Θ

(s)
k , Y

(s)
k )
]
.

Note that with φ = φsimple, the acceptance ratio satisfies

αε0(θ, y; θ̂, ŷ) = α̇(θ, θ̂)1 (d(ŷ, y∗) ≤ ε0) , where α̇(θ, θ̂) = min

{
1,

pr(θ̂)q(θ̂, θ)

pr(θ)q(θ, θ̂)

}
,

which is independent of y, so (Θ
(s)
k ) is marginally a Metropolis-Hastings type chain, with

proposal q and acceptance probability α(θ, θ̂)Lε0(θ̂). We have

E
[
h̃ε0,ε(Θ

(s)
1 , Y

(s)
1 )

∣∣ (Θ
(s)
0 , Y

(s)
0 ) = (θ, y)

]

= aε

∫
q(θ, θ̂)α̇(θ, θ̂)g(ŷ | θ̂)wε(ŷ)f(θ̂)dθ̂dŷ + rε0(θ)h̃ε0,ε(θ, y)

=

∫
q(θ, θ̂)α̇(θ, θ̂)Lε0(θ̂)f̃ε0,ε(θ̂)dθ̂ + rε0(θ)h̃ε(θ, y).

Using this iteratively, we obtain that

e
(ε0,ε)
k = E

[
f̃ε0,ε(Θ

(s)
0 )f̃ε0,ε(Θ

(s)
k )
]

+

∫
π̃ε0(θ, y)

[
h̃2
ε0,ε

(θ, y)− f̃ 2
ε0,ε

(θ)
]
rkε0(θ)dθdy,

and therefore with γ
(ε0,ε)
k := a2

ε0,ε
cov
(
fε0,ε(Θ

(s)
0 ), fε0,ε(Θ

(s)
k )
)
,

∑

k≥1

ρ
(ε0,ε)
k =

∑

k≥1

γ
(ε0,ε)
k + a2

ε0,ε

∫
πε0(θ)w̄ε0,ε(θ)

(
1− w̄ε0,ε(θ)

) rε0(θ)

1− rε0(θ)
f 2(θ)dθ.

We conclude by noticing that 2
∑

k≥1 γ
(ε0,ε)
k = a2

ε0,ε
varπε0 (fε0,ε)(τ̌ε0,ε(f)− 1). �
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Appendix B. Convergence of the tolerance adaptive ABC-MCMC under
generalised conditions

This appendix details a convergence theorem, under weaker assumptions than that of
Theorem 11, for the tolerance adaptation (Algorithm 9) of Section 4.

Let us set β := log ε, and consider the proposal-rejection Markov kernel

(3) Ṗβ(θ, dϑ) := q(θ, dϑ)αβ(θ, ϑ) +

(
1−

∫
q(θ, dϑ)αβ(θ, ϑ)

)
1 (θ ∈ dϑ) ,

where αβ(θ, ϑ) := α̇(θ, ϑ)Lβ(ϑ),

α̇(θ, ϑ) := min

{
1,

pr(ϑ)q(ϑ, θ)

pr(θ)q(θ, ϑ)

}
, and Lβ(ϑ) :=

∫
Qϑ(dt)1

(
t ≤ eβ

)
.

Then Ṗβk is the transition of the θ-coordinate chain of Algorithm 9 with simple cut-off at
iteration k, obtained by disregarding the t-coordinate. It is easily seen to be reversible with
respect to the posterior probability πβ(θ) ∝ pr(θ)Lβ(θ) given in (1), written here in terms
of β = log ε instead of ε.

Assumption 12. Suppose φ = φsimple and the following hold:

(i) Step sizes (γk)k≥1 satisfy γk ≥ 0, γk+1 ≤ γk,

∑

k≥1

γk =∞, and
∑

k≥1

γ2
k

(
1 + |log γk|+ |log γk|2

)
<∞.

(ii) The domain T ⊂ Rnθ , nθ ≥ 1, is a nonempty open set.
(iii) pr( · ) and q(θ, · ) are uniformly bounded densities on Rnθ (i.e. ∃C > 0 s.t. q(θ, ϑ) < C

and pr(θ) < C for all θ, ϑ ∈ Rnθ), and pr(θ) = 0 for θ /∈ T.
(iv) Qθ(dt) admits a uniformly bounded density Qθ(t).
(v) The values {βk} remain in some compact subset B ⊂ R almost surely.

(vi) cβ > 0 for all β ∈ B, where cβ :=
∫

pr(dθ)Lβ(θ).

(vii) There exists V̇ : T → [1,∞) such that the Markov transitions Ṗβ are simultaneously

V̇ -geometrically ergodic: there exist C > 0 and ρ ∈ (0, 1) s.t. for all k ≥ 1 and
f : T→ R with |f | ≤ V̇ , it holds that

|Ṗ k
β f(θ)− πβ(f)| ≤ CV̇ (θ)ρk.

(viii) With E[ · ] = Eθ,β[ · ] denoting expectation with respect to the law of the marginal

chain (Θk) of Algorithm 9 started at θ ∈ T, β ∈ B, and with V̇ as in Assumption
12(vii), we have,

sup
θ,β,k

E
[
V̇ (Θk)

2
]
<∞.

Theorem 13. Under Assumption 12, the expected value of the acceptance probability (2),
taken with respect to the stationary measure of the chain, converges to α∗.

Proof of Theorem 13 can be found in Appendix C. It relies heavily on the simple conditions
of (Andrieu et al., 2005, Theorem 2.3), which says that one must essentially show that the
noise in the stochastic approximation update is asymptotically controlled.

We remark that there are likely extensions of Assumption 12(v) to the general non-
compact adaptation parameter case based on projections (cf. Andrieu et al., 2005).
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Appendix C. Analysis of the tolerance adaptive ABC-MCMC

In this appendix we aim to prove generalised convergence (Theorem 13 of Appendix B)
of the tolerance adaptation, from which Theorem 11 of Section 4 will follow as a corollary.

In this appendix, C > 0 denotes some constant which may change from line to line.

C.1. Proposal augmentation. Suppose L̇ is a Markov kernel which can be written as

(4) L̇(x, dy) = q(x, dy)α(x, y) +

(
1−

∫
q(x, dy′)α(x, y′)

)
1 (x ∈ dy) ,

where α(x, y) ∈ [0, 1] is a jointly measurable function and q(x, dy) is a Markov proposal
kernel. With x̆ := (x, x′), we define the proposal augmentation to be the Markov kernel

(5) L(x̆, dy̆) = α(x̆)1 (x′ ∈ dy) q(x′, dy′) +
(
1− α(x̆)

)
1 (x ∈ dy) q(x, dy′).

It is easy to see that L need not be reversible even if L̇ is reversible. In this case, however,
L does leave a probability measure invariant.

Lemma 14. Suppose a Markov kernel L̇ of the form given in (4) is µ̇-reversible. Let L be
its proposal augmentation. Then the following statements hold:

(i) µL = µ, where µ(dx, dx′) := µ̇(dx)q(x, dx′).
(ii) If L̇ is V̇ -geometrically ergodic with constants (Ċ, ρ̇), then L is V -geometrically ergodic

with constants (C, ρ), where C := 2Ċ/ρ̇, ρ := ρ̇, and V (x̆) := 1
2

(
V (x) + V (x′)

)
.

Lemma 14 extends (Schuster and Klebanov, 2018, Theorem 4), who consider the case
where Ṗ is a Metropolis-Hastings chain (see also Delmas and Jourdain, 2009; Rudolf and
Sprungk, 2018). The extension to the more general class of reversible proposal-rejection
chains allows one to consider, for example, jump and delayed acceptance chains, as well
as the marginal chain (3) of Appendix B, which will be important for our analysis of the
tolerance adaptation.

Proof of Lemma 14. Part (i) follows by a direct calculation. We now consider part (ii). For

f : X2 → R, we shall use the notation ḟ(x) :=
∫
f(x̆)q(x, dx′). For f : X2 → R, we have

∫
q(x, dx′)L

(
(x, x′); dy̆

)
f(y̆) =

∫
q(x, dx′)α(x̆)ḟ(x′) +

∫
q(x, dx′)

(
1−α(x̆)

)
ḟ(x) = L̇ḟ(x),

and then inductively, for k ≥ 1,
∫
q(x, dx′)Lk

(
(x, x′); dy̆

)
f(y̆) =

∫
q(x, dx′)α(x̆)q(x′, dy′)Lk−1

(
(x′, y′); dz̆

)
f(z̆)

+

∫
q(x, dx′)

(
1− α(x̆)

)
q(x, dy′)Lk−1

(
(x, y′); dz̆)f(z̆)

=

∫
q(x, dx′)α(x̆)L̇k−1ḟ(x′) +

∫
q(x, dx′)

(
1− α(x̆)

)
L̇k−1ḟ(x)

= L̇kḟ(x).

We then have the equality,

Lkf(x̆) = α(x̆)

∫
q(x′, dy′)Lk−1

(
(x′, y′); dz̆

)
f(z̆) +

(
1− α(x̆)

) ∫
q(x, dy′)Lk−1

(
(x, y′); dz̆

)
f(z̆)

= α(x̆)L̇k−1ḟ(x′) +
(
1− α(x̆)

)
L̇k−1ḟ(x).
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For ‖f‖ ≤ V , note that ‖ḟ‖ ≤ V̇ since ‖q‖∞ ≤ 1, and we conclude (ii) from

|Lkf(x̆)− µ(f)| ≤ α(x̆)|L̇k−1ḟ(x′)− µ̇(ḟ)|+
(
1− α(x̆)

)
|L̇k−1ḟ(x)− µ̇(ḟ)|

≤ Ċρ̇k−1
(
V̇ (x′) + V̇ (x)

)
. �

Consider now the θ-coordinate chain Ṗβ presented in (3) of Appendix B. This transition

Ṗβ is clearly a reversible proposal-rejection chain of the form (4). We now consider Pβ, its

proposal augmentation. This is the chain Θ̆k := (Θk,Θ
′
k) ∈ T2, formed by disregarding

the t-parameter as with Ṗβ before, but now augmenting by the proposal θ′ ∼ q(θ, · ). Its

transitions are of the form θ̆ = Θ̆k goes to ϑ̆ = Θ̆k+1 in the ABC-MCMC, with ϑ̆ = (ϑ, ϑ′)
and kernel

Pβ(θ̆, dϑ̆) := αβ(θ̆)1 (θ′ ∈ dϑ) q(θ′, dϑ′) +
(
1− αβ(θ̆)

)
1 (θ ∈ dϑ) q(θ, dϑ′)

By Lemma 14(i), Pβ leaves π′β := π′β,u/cβ invariant, where π′β,u(dθ̆) := pr(dθ)Lβ(θ)q(θ, dθ′)
and cβ :=

∫
pr(dθ)Lβ(θ).

C.2. Monotonicity properties. The following result establishes monotonicity of the
mean field acceptance rate with increasing tolerance.

Lemma 15. Assume Assumption 12(iii) and 12(iv) hold. The mapping β 7→ π′β(αβ) is
monotone non-decreasing.

Proof. Since pr(θ) and q(θ, θ′) are uniformly bounded (Assumption 12(iii)), and Lβ(θ) ≤
1, differentiation under the integral sign is possible in the following by the dominated
convergence theorem. By the quotient rule,

(6)
d

dβ

(
π′β(αβ)

)
=

1

c2
β

(
cβ

d

dβ

(
π′β,u(αβ)

)
− π′β,u(αβ)

dcβ
dβ

)
.

By reversibility of Metropolis-Hastings targeting pr(θ) with proposal q,

d

dβ

(
π′β,u(αβ)

)
= 2eβ

∫
pr(dθ)Lβ(θ)q(θ, dθ′)α̇(θ, θ′)Qθ′(e

β).

With

f(θ′) := 2Qθ′(e
β)

∫
pr(dθ̃)Lβ(θ̃)− Lβ(θ′)

∫
pr(dθ̃)Qθ̃(e

β),

we can then write (6) as

d

dβ

(
π′β(αβ)

)
=
eβ

c2
β

∫
pr(dθ)Lβ(θ)q(θ, dθ′)α̇(θ, θ′)f(θ′).

By the same reversibility property as before, we can write this again as

d

dβ

(
π′β(αβ)

)
=
eβ

c2
β

∫
f(θ)pr(dθ)

∫
q(θ, dθ′)Lβ(θ′)α̇(θ, θ′),

We then conclude, since∫
f(θ)pr(dθ) =

∫
Qθ(e

β)pr(dθ)

∫
Lβ(θ̃)pr(dθ̃) ≥ 0. �

Lemma 16. The following statements hold:

(i) The function β 7→ cβ is monotone non-decreasing on R.
(ii) If Assumption 12(v) and 12(vi) hold, then there exist Cmin > 0, Cmax > 0 such that

Cmin ≤ cβ ≤ Cmax for all β ∈ B.
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Proof. Part (i) follows, for β ≤ β′, from

cβ =

∫
pr(dθ)Qθ([0, e

β]) ≤
∫

pr(dθ)Qθ([0, e
β′ ]) = cβ′ .

Consider part (ii). By part (i) and compactness of B (Assumption 12(v)), we can set
Cmin := cmin(B) and Cmax := cmax(B), both of which are positive by Assumption 12(vi). �

C.3. Stochastic approximation framework. To obtain a form common in the stochastic
approximation literature (cf. Andrieu et al., 2005), we write the update in Algorithm 9 as

βk+1 = βk + γk+1Hβk(Θ̆k, T
′
k)

= βk + γk+1h(βk) + γk+1ζk+1

where Hβ(θ̆, t′) := α∗ − α′β(θ̆, t′),

α′β(θ̆, t′) := min

{
1,

pr(θ′)q(θ′, θ)

pr(θ)q(θ, θ′)

}
1
(
t′ ≤ eβ

)
,

h(β) := π′β(Ĥβ) =

∫
πβ(dθ)q(θ, dθ′)Qθ′(dt

′)Hβ(θ, θ′, t′),

noise sequence ζk+1 := Hβk(Θ̆k, T
′
k)− h(βk), and conditional expectation

Ĥβ(θ̆) := E[Hβ(Θ̆, T ′)|Θ̆ = θ̆],

where T ′ ∼ Qθ′( · ). We also set for convenience H̄β(θ̆) := Ĥβ(θ̆)− π′β(Ĥβ).

Lemma 17. Suppose Assumption 12(vii) holds. Then the following statements hold:

(i) The proposal augmented kernels (Pβ)β∈B are simultaneously V -geometrically ergodic,

where V (θ, θ′) := 1
2

(
V̇ (θ) + V̇ (θ′)

)
, with V̇ as in Assumption 12(vii).

(ii) There exists C > 0, such that for all β ∈ B, the formal solution gβ =
∑

k≥0 P
k
β H̄β to

the Poisson equation gβ − Pβgβ = H̄β satisfies |gβ(θ̆)| ≤ CV (θ̆).

Proof. (i) follows directly from the explicit parametrisation for (C, ρ) given in Lemma 14(ii).
Part (ii) follows from part (i) and the bound, since |H̄β| ≤ 1 ≤ V ,

|gβ(θ̆)| ≤ 1 + Cβ
∑

k≥1

ρkβV (θ̆) ≤
(

1 +
Cβ

1− ρβ

)
V (θ̆). �

C.4. Contractions. We define for V : T → [1,∞) and g : T → R the V -norm ‖g‖V :=

supθ∈T
|g(θ)|
V (θ)

. We define for a bounded operator A on a Banach space of bounded functions

f , the operator norm ‖A‖∞ = supf
‖Af‖∞
‖f‖∞ .

Lemma 18. Suppose Assumption 12(iv), 12(v) and 12(vi) hold. The following hold:

(i) ∃C > 0, ∃C+
B > 0 s.t. ∀β1 ∈ B, ∀β2 ∈ B, ∀g : T2 → R bounded, we have

‖(Pβ1 − Pβ2)g‖∞ ≤ C‖g‖∞|eβ1 − eβ2| ≤ C+
B ‖g‖∞|β1 − β2|.

(ii) ∃C−B > 0, ∃CB > 0, s.t. ∀β1 ∈ B, ∀β2 ∈ B, we have

‖H̄β1 − H̄β2‖∞ ≤ C−B |eβ1 − eβ2| ≤ CB|β1 − β2|.
(iii) ∃C−B > 0, ∃CB > 0, s.t. ∀β1 ∈ B, ∀β2 ∈ B, ∀g : T2 → R bounded, we have

|π′β1(g)− π′β2(g)| ≤ C−B ‖g‖∞|eβ1 − eβ2| ≤ CB‖g‖∞|β1 − β2|.
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Proof. By Assumption 12(iv), we have for all β1, β2 ∈ B,

|Lβ1(θ)− Lβ2(θ)| =
∫ eβ1∨β2

eβ1∧β2
Qθ(dt) ≤ C|eβ1 − eβ2|.

We obtain the first inequality for part (i), then, from the bound,

|(Pβ1 − Pβ2)g(θ̆)| = |
(
αβ1(θ̆)− αβ2(θ̆)

)
ġ(θ′) +

(
αβ2(θ̆)− αβ1(θ̆)

)
ġ(θ)|

≤ α̇(θ̆)|Lβ1(θ′)− Lβ2(θ′)|
∫ (

q(θ′, dϑ′)|g(θ′, ϑ′)|+ q(θ, dϑ′)|g(θ, ϑ′)|
)
,

The second, Lipschitz bound follows by a mean value theorem argument for the function
β 7→ eβ, namely

|eβ1 − eβ2| ≤ sup
β∈B

eβ |β1 − β2| ≤ C+
B |β1 − β2|,

where the last inequality follows by compactness of B (Assumption 12(v)).
We now consider part (ii). We have,

‖H̄β1 − H̄β2‖∞ ≤ ‖Ĥβ1 − Ĥβ2‖∞ + |h(β1)− h(β2)|.
For the first term, by Assumption 12(iv), as in (i), we have

‖Ĥβ1 − Ĥβ2‖∞ ≤ sup
θ̆

α̇(θ̆)

∫ eβ1∨β2

eβ1∧β2
Qθ′(dt) ≤ C|β1 − β2|.

For the other term, we have

|h(β1)− h(β2)| ≤ 1

cβ1
|π′β1,u(αβ1)− π′β2,u(αβ2)|+ π′β2,u(αβ2)

|cβ1 − cβ2|
cβ1cβ2

.

By the triangle inequality, we have

|π′β1,u(αβ1)− π′β2,u(αβ2)| ≤ |π′β1,u(αβ1)− π′β1,u(αβ2)|+ |π′β1,u(αβ2)− π′β2,u(αβ2)|
Each term above is bounded by C|eβ1 − eβ2|, as is |cβ1 − cβ2|. Moreover, by Lemma 16(ii),
we have cβ ≥ cmin > 0 for all β ∈ B, and the first inequality in part (ii) follows. The second
inequality follows by a mean value theorem argument as before. Proof of (iii) is simpler. �

C.5. Control of noise. We state a simple standard fact used repeatedly in the proof of
Lemma 20 below, our key lemma.

Lemma 19. Suppose (Xj)j≥1 are random variables with Xj ≥ 0, Xj+1 ≤ Xj, and
limj→∞ E[Xj] = 0. Then, almost surely, limj→∞Xj = 0.

Lemma 20. Suppose Assumption 12 holds. Then, with Tj,n :=
∑n

k=j γkζk, we have

lim
j→∞

sup
n≥j

∣∣Tj,n
∣∣ = 0, almost surely.

Proof. Similar to (Andrieu et al., 2005, Proof of Prop. 5.2), we write Tj,n :=
∑8

i=1 T
(j)
j,n ,

where

Ĥβk−1
(Θ̆k−1) = E[Hβk−1

(Θ̆k−1, T
′)|F ′k−1],

with F ′k−1 = σ(βk−1,Θk−1,Θ
′
k−1) representing the information obtained through running

Algorithm 9 up to and including iteration k − 2 and then also generating Θ′k−1, and

T (1)
j,n :=

n∑

k=j

γk

(
Hβk−1

(Θ̆k−1, T
′
k−1)− Ĥβk−1

(Θ̆k−1)
)
,
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T (2)
j,n :=

n∑

k=j

γk

(
gβk−1

(Θ̆k−1)− Pβk−1
gβk−1

(Θ̆k−2)
)
,

T (3)
j,n := γj−1Pj−1gβj−1

(Θ̆j−2)− γnPβngβn(Θ̆n−1),

T (4)
j,n :=

n∑

k=j

(
γk − γk−1

)
Pβk−1

gβk−1
(Θ̆k−2),

T (5)
j,n :=

n∑

k=j

γk
∑

i≥mk+1

P i
βk
H̄βk(Θ̆k−1),

T (6)
j,n := −

n∑

k=j

γk
∑

i≥mk+1

P i
βk−1

H̄βk−1
(Θ̆k−1),

T (7)
j,n :=

n∑

k=j

γk

mk∑

i=1

(
P i
βk
− P i

βk−1

)
H̄βk(Θ̆k−1),

T (8)
j,n :=

n∑

k=j

γk

mk∑

i=1

P i
βk−1

(
H̄βk − H̄βk−1

)
(Θ̆k−1).

Here, gβ is the Poisson solution defined in Lemma 17(ii), and mk := d|log γk|e. We remind

that H̄β := Ĥβ − h(β) from Section C.3.

We now show limj→∞ supn≥j
∣∣T (i)
j,n

∣∣ = 0 for each of the terms i ∈ {1:8} individually, which
implies the result of the lemma.
(1) Since for all n > j,

E[T (1)
j,n − T (1)

j,n−1|F ′n−1] = 0,

we have that (T (1)
j,n )n≥j is a F ′n-martingale for each j ≥ 1. By the Burkholder-Davis-Gundy

inequality for martingales (cf. Burkholder et al., 1972), we have

E[sup
n≥j
|T (1)
j,n |2] ≤ CE

[ ∞∑

k=j

γ2
k

(
Hβk−1

(Θ̆k−1, T
′
k−1)− Ĥβk−1

(Θ̆k−1)
)2
]
≤ C

∞∑

k=j

γ2
k,

where in the last inequality we have noted that |Hβ − Ĥβ| ≤ 1. Since
∑

k≥1 γ
2
k <∞, we get

that

lim
j→∞

E[sup
n≥j
|T (1)
j,n |2] = 0.

Hence, the result follows by Lemma 19.
(2) For j ≥ 2, we have for n > j,

E[T (2)
j,n − T (2)

j,n−1|F ′n−2] = 0,

so that (T (2)
j,n )n≥j is a F ′n−1-martingale, for j ≥ 2. By the Burkholder-Davis-Gundy inequal-

ity again,

E[sup
n≥j
|T (2)
j,n |2] ≤ CE

[ ∞∑

k=j

γ2
k

(
gβk−1

(Θ̆k−1)− Pβk−1
gβk−1

(Θ̆k−2)
)2
]
.

We then use Lemma 17(ii) and ‖Pβ‖∞ ≤ 1, to get, after combining terms,

E[sup
n≥j
|T (2)
j,n |2] ≤ C

∞∑

k=j−1

γ2
kE
[
V (Θ̆k−1)2

]
≤ C

∞∑

k=j−1

γ2
k,
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where we have used Assumption 12(viii) in the last inequality. We then conclude by Lemma
19 as before.
(3) By Lemma 17(ii), the triangle inequality, ‖Pβ‖∞ ≤ 1, and the dominated convergence
theorem, we obtain

E[sup
n≥j
|T (3)
j,n | ≤ Cγj−1E[V (Θ̆j−2)] + C sup

n≥j
γnE[V (Θ̆n−1)].

We then apply Assumption 12(viii) and Jensen’s inequality, and use that γk go to zero,
since

∑
γ2
k <∞, to get that

lim
j→∞

E[sup
n≥j
|T (3)
j,n |] ≤ C

(
lim
j→∞

γj−1 + sup
n≥j

γn

)
= 0.

We now may conclude by Lemma 19.
(4) By Lemma 17(ii) and γk ≤ γk−1, we have for j ≥ 2,

E[sup
n≥j
|T (4)
j,n |] ≤ C sup

n≥j

n∑

k=j

(γk−1 − γk)E[V (Θ̆k−2)] ≤ C sup
n≥j

n∑

k=j

(γk−1 − γk)

where we have used lastly Assumption 12(viii) and Jensen’s inequality. Since this is a
telescoping sum, we get

E[sup
n≥j
|T (4)
j,n |] ≤ C sup

n≥j
(γj−1 − γn) ≤ Cγj−1

We then conclude by Lemma 19, since γj → 0.

(5) By Lemma 17(i), |P i
βH̄β(θ̆)| ≤ CρiV (θ̆), where C, ρ do not depend on β ∈ B. Hence,

E[|T (5)
j,n |] ≤ C

n∑

k=j

γk
∑

i≥mk+1

ρiE[V (Θ̆k−1)] ≤ C
n∑

k=j

γkρ
mk ,

where we have used lastly Assumption 12(viii) and Jensen’s inequality. Since mk was defined
to be of order |log γk|, we have

E[|T (5)
j,n |] ≤ C

∞∑

k=j

γ2
k <∞

By the dominated convergence theorem, we then have

E[sup
n≥j
|T (5)
j,n |] ≤ C

∞∑

k=j

γ2
k.

Taking the limit j →∞, we can then conclude by using Lemma 19.
(6) The proof is essentially the same as for (5).
(7) We write for i ≥ 1,

P i
βk
− P i

βk−1
=

i−1∑

l=0

P i−l−1
βk

(
Pβk − Pβk−1

)
P l
βk−1

.

Since ‖P i
β‖∞ ≤ 1 for all i ≥ 0, and |H̄β| ≤ 1, by Lemma 18(i), we have

‖(P i
βk
− P i

βk−1
)H̄βk‖ ≤ C

i−1∑

l=0

‖P i−l−1
βk

‖∞|βk − βk−1|‖P l
βk−1

H̄βk‖∞ ≤ C|βk − βk−1|i.
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Since |βk − βk−1| ≤ γk from the adaptation step in Algorithm 9, we have

|T (7)
j,n | ≤ C

n∑

k=j

γk

mk∑

i=1

iγk ≤ C
∞∑

k=j

γ2
kmk(1 +mk) <∞.

We then take supn≥j on the left, take the expectation, and conclude by Lemma 19.

(8) Since ‖P i
β‖∞ ≤ 1 and by Lemma 18(ii), we have that

‖P i
βk−1

(H̄βk − H̄βk−1
)‖∞ ≤ ‖P i

βk−1
‖∞‖H̄βk − H̄βk−1

‖∞ ≤ C|βk − βk−1|
Since |βk − βk−1| ≤ γk, we have

E[sup
n≥j
T (8)
j,n ] ≤ C

∞∑

k=j

γ2
kmk <∞.

We then conclude by Lemma 19. �

C.6. Proofs of convergence theorems.

Proof of Theorem 13. We define our Lyapunov function w : R → [0,∞) to be the contin-

uously differentiable function w(β) := 1
2
|eβ − eβ∗|2. We also have that h(β) := π′β(Ĥβ) is

continuous, which follows from Lemma 18(iii). One can then check that Assumption 12
and Lemma 20 imply that the assumptions of (Andrieu et al., 2005, Theorem 2.3) hold.
The latter result implies lim|βk − β∗| → 0, for some β∗ ∈ B satisfying π′β∗(αβ∗) = α∗, as
desired. �

Lemma 21. Suppose Assumption 10 holds. Then both (Ṗβ)β∈B and (Pβ)β∈B are simultane-
ously 1-geometrically ergodic (i.e. uniformly ergodic).

Proof. We have pr(θ) ≤ Cpr some Cpr > 0, and also 0 < δq ≤ q(θ, ϑ), for all θ, ϑ ∈ T.
Hence, for A ⊂ T,

Ṗβ(θ, A) ≥
∫
δq min

{
1,

pr(ϑ)

pr(θ)

}
Lβ(ϑ)1 (ϑ ∈ A) ≥

∫
δq

pr(ϑ)

Cpr

Lβ(ϑ)1 (ϑ ∈ A)

By Lemma 16(ii), it holds cβ ≥ Cmin for some Cmin > 0 for all β ∈ B. Therefore,

Ṗβ(θ, A) ≥ δπβ(A),

where δ := δqCmin/Cpr > 0 is independent of β. As in Nummelin’s split chain construction
(cf. Meyn and Tweedie, 2009), we can then define the Markov kernel Rβ(θ, A) := (1 −
δ)−1

(
Ṗβ(θ, A) − δπβ(A)

)
with πβRβ = πβ. Set Πβ(θ, A) := πβ(A). For any f ≤ 1, β ∈ B,

and k ≥ 1, we have

‖Ṗ k
β f − πβ(f)‖∞ = (1− δ)‖(Rβ − Πβ)Ṗ k−1

β f‖∞ = (1− δ)‖RβṖ
k−1
β

(
f − πβ(f)

)
‖∞

≤ (1− δ)‖Ṗ k−1
β

(
f − πβ(f)

)
‖∞ = (1− δ)‖Ṗ k−1

β f − πβ(f)‖∞
≤ . . . ≤ (1− δ)k‖f − πβ(f)‖∞ ≤ 2(1− δ)k‖f‖∞,

where we have used ‖Rβ‖∞ ≤ 1 in the first inequality. Hence, (Ṗβ)β∈B are simultaneously
1-geometrically ergodic, and thus so are (Pβ)β∈B by Lemma 17(i). �

Proof of Theorem 11. Since (Ṗβ)β∈B are simultaneously 1-geometric ergodic by Lemma 21,
it is direct to see that Assumption 10 implies Assumption 12. We conclude by Theorem
13. �
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Appendix D. Simultaneous tolerance and covariance adaptation

Algorithm 22 (TA-AM(nb, α
∗)). Suppose Θ0 ∈ T ⊂ Rnθ is a starting value with pr(Θ0) > 0

and Γ0 = 1nθ×nθ is the identity matrix.

1. Initialise ε0 := T0 where T0 ∼ QΘ0( · ) and T0 > 0. Set µ0 := Θ0.
2. For k = 0, . . . , nb − 1, iterate:

(i) Draw Θ′k ∼ N(Θk, (2.382/nθ)Γk)
(ii) Draw T ′k ∼ QΘ′k

( · ).
(iii) Accept, by setting (Θk+1, Tk+1)← (Θ′k, T

′
k), with probability

αεk(Θk, Tk; Θ′k, T
′
k) := min

{
1,

pr(Θ′k)φ(T ′k/εk)

pr(Θk)φ(Tk/εk)

}
.

Otherwise reject, by setting (Θk+1, Tk+1)← (Θk, Tk).
(iv) log εk+1 ← log εk + γk+1

(
α∗ − α′εk(Θk,Θ

′
k, T

′
k)
)
.

(v) µk+1 ← µk + γk+1

(
Θk+1 − µk

)
.

(vi) Γk+1 ← Γk + γk+1

(
(Θk+1 − µk)(Θk+1 − µk)> − Γk

)
.

3. Output (Θnb , εnb).

Appendix E. Supplementary results

Table 5. RMSEs (×10−2) and acceptance rates in the Gaussian model.

Cutoff f(x) = x f(x) = |x| Acc.

ε0 \ ε 0.10 0.82 1.55 2.28 3.00 0.10 0.82 1.55 2.28 3.00 rate

φsimple

0.1 9.68 5.54 0.03
0.82 8.99 3.81 5.38 2.14 0.22
1.55 9.21 3.66 3.59 5.5 2.17 1.96 0.33
2.28 9.67 3.86 3.6 3.97 5.85 2.28 2.02 2.08 0.4
3.0 10.36 4.03 3.71 3.98 4.51 6.21 2.42 2.12 2.16 2.26 0.43

φGauss

0.1 7.97 4.47 0.05
0.82 7.12 3.67 4.22 2.08 0.29
1.55 7.82 3.39 4.35 4.68 1.99 2.52 0.38
2.28 8.94 3.59 3.81 5.52 5.26 2.2 2.29 3.29 0.41
3.0 9.93 4.01 3.97 4.81 6.76 5.95 2.44 2.44 2.92 4.1 0.42

Table 6. Coverages for the adaptive algorithm in the Gaussian model, for
tolerance ε = 0.1.

φsimple φGauss

Fixed tolerance Adapt Fixed tolerance Adapt

ε0 0.1 0.82 1.55 2.28 3.0 0.64 0.1 0.82 1.55 2.28 3.0 0.28

x 0.93 0.97 0.97 0.98 0.98 0.96 0.93 0.94 0.94 0.95 0.95 0.94
|x| 0.93 0.95 0.96 0.96 0.96 0.95 0.93 0.92 0.94 0.95 0.95 0.92
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Figure 6. Lotka-Volterra model with simple cut-off and step size n−2/3.

Table 7. RMSEs and acceptance rates in the Lotka-Volterra experiment.

f(θ) = θ1, RMSE ×10−2 f(θ) = θ2, RMSE ×10−4 f(θ) = θ3, RMSE ×10−2

ε0

ε
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0
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0
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0.

0
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0

20
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0
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0

12
5.

0
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0
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5.

0

20
0.

0

10
0.

0

12
5.

0

15
0.

0

17
5.

0

20
0.

0

Acc.
rate

100.0 5.07 3.15 2.94 0.04
125.0 1.39 1.55 0.85 0.85 1.09 0.97 0.11
150.0 1.13 1.19 1.1 0.69 0.68 0.64 0.87 0.99 0.86 0.13
175.0 1.31 1.47 1.17 1.06 0.74 0.9 0.69 0.69 0.85 1.45 1.01 0.89 0.16
200.0 1.74 1.48 1.12 0.96 0.91 1.02 0.8 0.6 0.57 0.59 1.39 1.29 0.84 0.7 0.7 0.18

Table 8. Coverages for the adaptive algorithm in the Lotka-Volterra model,
for tolerance ε = 100.

Fixed tolerance Adapt

ε0 100.0 125.0 150.0 175.0 200.0 119.1

θ1 0.59 0.97 0.99 0.99 0.98 0.95
θ2 0.55 0.97 0.99 0.99 0.99 0.91
θ3 0.53 0.96 0.99 0.99 0.98 0.88
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Table 9. Frequencies of the 95% confidence intervals and mean acceptance
rates in the Lotka-Volterra experiment with step size n−2/3.

f(θ) = θ1 f(θ) = θ2 f(θ) = θ3

ε0

ε

1
0
0.

0

1
2
5
.0

15
0
.0

1
7
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0

2
00

.0

10
0
.0

1
2
5
.0

1
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1
7
5
.0

2
0
0
.0

1
0
0
.0

1
2
5
.0

1
5
0
.0

1
7
5
.0

2
00

.0

Acc.
rate

100.0 0.85 0.76 0.81 0.08
125.0 0.98 0.87 0.98 0.85 0.96 0.84 0.11
150.0 0.99 0.98 0.91 0.99 0.98 0.91 0.99 0.97 0.9 0.15
175.0 0.99 0.99 0.97 0.92 1.0 0.98 0.97 0.91 1.0 0.98 0.97 0.93 0.17
200.0 0.99 0.99 0.98 0.96 0.92 1.0 0.99 0.99 0.98 0.93 0.99 0.99 0.98 0.96 0.91 0.2

Table 10. RMSEs and acceptance rates in the Lotka-Volterra experiment
with step size n−2/3.

f(θ) = θ1, RMSE ×10−2 f(θ) = θ2, RMSE ×10−4 f(θ) = θ3, RMSE ×10−2
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Acc.
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100.0 1.34 1.03 1.11 0.08
125.0 0.79 0.98 0.92 0.89 0.59 0.61 0.11
150.0 1.24 1.12 1.12 0.62 0.51 0.49 0.61 0.57 0.64 0.15
175.0 0.99 0.91 0.86 0.85 0.62 0.53 0.47 0.47 0.64 0.53 0.49 0.52 0.17
200.0 1.2 1.04 0.89 0.82 0.8 0.78 0.59 0.49 0.46 0.46 0.78 0.58 0.5 0.51 0.57 0.2

Table 11. RMSEs with fixed tolerance and step size n−2/3 and with the
adaptive algorithms in the Lotka-Volterra model, for tolerance ε = 100.

Fixed tolerance Adapt

ε0 100.0 125.0 150.0 175.0 200.0 119.1

θ1 (×10−2) 1.34 0.79 1.24 0.99 1.2 0.71
θ2 (×10−4) 1.03 0.92 0.62 0.62 0.78 0.46
θ3 (×10−2) 1.11 0.59 0.61 0.64 0.78 0.39
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