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Abstract

Approximate inference in probabilistic graphical models (PGMs) can be grouped
into deterministic methods and Monte-Carlo-based methods. The former can often
provide accurate and rapid inferences, but are typically associated with biases
that are hard to quantify. The latter enjoy asymptotic consistency, but can suffer
from high computational costs. In this paper we present a way of bridging the
gap between deterministic and stochastic inference. Specifically, we suggest an
efficient sequential Monte Carlo (SMC) algorithm for PGMs which can leverage
the output from deterministic inference methods. While generally applicable, we
show explicitly how this can be done with loopy belief propagation, expectation
propagation, and Laplace approximations. The resulting algorithm can be viewed as
a post-correction of the biases associated with these methods and, indeed, numerical
results show clear improvements over the baseline deterministic methods as well
as over “plain” SMC.

1 Introduction

Probabilistic graphical models (PGMs) are ubiquitous in machine learning for encoding dependencies
in complex and high-dimensional statistical models [18]. Exact inference over these models is
intractable in most cases, due to non-Gaussianity and non-linear dependencies between variables.
Even for discrete random variables, exact inference is not possible unless the graph has a tree-topology,
due to an exponential (in the size of the graph) explosion of the computational cost. This has resulted
in the development of many approximate inference methods tailored to PGMs. These methods can
roughly speaking be grouped into two categories: (i) methods based on deterministic (and often
heuristic) approximations, and (ii) methods based on Monte Carlo simulations.

The first group includes methods such as Laplace approximations [30], expectation propagation [23],
loopy belief propagation [26], and variational inference [36]. These methods are often promoted as
being fast and can reach higher accuracy than Monte-Carlo-based methods for a fixed computational
cost. The downside, however, is that the approximation errors can be hard to quantify and even if the
computational budget allows for it, simply spending more computations to improve the accuracy can
be difficult. The second group of methods, including Gibbs sampling [28] and sequential Monte Carlo
(SMC) [11, 24], has the benefit of being asymptotically consistent. That is, under mild assumptions
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they can often be shown to converge to the correct solution if simply given enough compute time. The
problem, of course, is that “enough time” can be prohibitively long in many situations, in particular if
the sampling algorithms are not carefully tuned.

In this paper we propose a way of combining deterministic inference methods with SMC for inference
in general PGMs expressed as factor graphs. The method is based on a sequence of artificial target
distributions for the SMC sampler, constructed via a sequential graph decomposition. This approach
has previously been used by [24] for enabling SMC-based inference in PGMs. The proposed method
has one important difference however; we introduce a so called twisting function in the targets
obtained via the graph decomposition which allows for taking dependencies on “future” variables
of the sequence into account. Using twisted target distributions for SMC has recently received
significant attention in the statistics community, but to our knowledge, it has mainly been developed
for inference in state space models [14, 16, 34, 31]. We extend this idea to SMC-based inference in
general PGMs, and we also propose a novel way of constructing the twisting functions, as described
below. We show in numerical illustrations that twisting the targets can significantly improve the
performance of SMC for graphical models.

A key question when using this approach is how to construct efficient twisting functions. Computing
the optimal twisting functions boils down to performing exact inference in the model, which is
assumed to be intractable. However, this is where the use of deterministic inference algorithms comes
into play. We show how it is possible to compute sub-optimal, but nevertheless efficient, twisting
functions using some popular methods—Laplace approximations, expectation propagation and loopy
belief propagation. Furthermore, the framework can easily be used with other methods as well, to
take advantage of new and more efficient methods for approximate inference in PGMs.

The resulting algorithm can be viewed as a post-correction of the biases associated with the deter-
ministic inference method used, by taking advantage of the rigorous convergence theory for SMC
(see e.g., [9]). Indeed, the approximation of the twisting functions only affect the efficiency of the
SMC sampler, not its asymptotic consistency, nor the unbiasedness of the normalizing constant
estimate (which is a key merit of SMC samplers). An implication of the latter point is that the
resulting algorithm can be used together with pseudo-marginal [1] or particle Markov chain Monte
Carlo (MCMC) [3] samplers, or as a post-correction of approximate MCMC [34]. This opens up the
possibility of using well-established approximate inference methods for PGMs in this context.

Additional related work: An alternative approach to SMC-based inference in PGMs is to make use
of tempering [10]. For discrete models, [15] propose to start with a spanning tree to which edges are
gradually added within an SMC sampler to recover the original model. This idea is extended by [6] by
defining the intermediate targets based on conditional mean field approximations. Contrary to these
methods our approach can handle both continuous and/or non-Gaussian interactions, and does not rely
on intermediate MCMC steps within each SMC iteration. When it comes to combining deterministic
approximations and Monte-Carlo-based inference, previous work has largely been focused on using
the approximation as a proposal distribution for importance sampling [13] or MCMC [8]. Our method
has the important difference that we do not only use the deterministic approximation to design the
proposal, but also to select the intermediate SMC targets via the design of efficient twisting functions.

2 Setting the stage

2.1 Problem formulation

Let π(x1:T ) denote a distribution of interest over a collection of random variables x1:T =
{x1, . . . , xT }. The model may also depend on some “top-level” hyperparameters, but for brevity
we do not make this dependence explicit. In Bayesian statistics, π would typically correspond to a
posterior distribution over some latent variables given observed data. We assume that there is some
structure in the model which is encoded in a factor graph representation [20],

π(x1:T ) =
1

Z

∏
j∈F

fj(xIj ), (1)

where F denotes the set of factors, I := {1, . . . , T} is the set of variables, Ij denotes the index set
of variables on which factor fj depends, and xIj := {xt : t ∈ Ij}. Note that Ij = Ne(j) is simply
the set of neighbors of factor fj in the graph (recall that in a factor graph all edges are between factor
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nodes and variable nodes). Lastly, Z is the normalization constant, also referred to as the partition
function of the model, which is assumed to be intractable. The factor graph is a general representation
of a probabilistic graphical model and both directed and undirected PGMs can be written as factor
graphs. The task at hand is to approximate the distribution π(x1:T ), as well as the normalizing
constant Z. The latter plays a key role, e.g., in model comparison and learning of top-level model
parameters.

2.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC, see, e.g., [11]) is a class of importance-sampling-based algorithms
that can be used to approximate some, quite arbitrary, sequence of probability distributions of interest.
Let

πt(x1:t) =
γt(x1:t)

Zt
, t = 1, . . . , T,

be a sequence of probability density functions defined on spaces of increasing dimension, where
γt can be evaluated point-wise and Zt is a normalizing constant. SMC approximates each πt by a
collection of N weighted particles {(xi1:t, wit)}Ni=1, generated according to Algorithm 1.

Algorithm 1 Sequential Monte Carlo (all steps are for i = 1, . . . , N )

1. Sample xi1 ∼ q1(x1), set w̃i1 = γ1(x
i
1)/q1(x

i
1) and wi1 = w̃i1/

∑N
j=1 w̃

j
1.

2. for t = 2, . . . , T :
(a) Resampling: Simulate ancestor indices {ait}Ni=1 with probabilities {νit−1}Ni=1.

(b) Propagation: Simulate xit ∼ qt(xt|x
ait
1:t−1) and set xi1:t = {x

ait
1:t−1, x

i
t}.

(c) Weighting: Compute w̃it = ωt(x
i
1:t)w

ait
t−1/ν

ait
t−1 and wit = w̃it/

∑N
j=1 w̃

j
t .

In step 2(a) we use arbitrary resampling weights {νit−1}Ni=1, which may depend on all variables
generated up to iteration t− 1. This allows for the use of look-ahead strategies akin to the auxiliary
particle filter [27], as well as adaptive resampling based on effective sample size (ESS) [19]: if the
ESS is below a given threshold, say N/2, set νit−1 = wit−1 to resample according to the importance
weights. Otherwise, set νit−1 ≡ 1/N which, together with the use of a low-variance (e.g., stratified)
resampling method, effectively turns the resampling off at iteration t.

At step 2(b) the particles are propagated forward by simulating from a user-chosen proposal distri-
bution qt(xt|x1:t−1), which may depend on the complete history of the particle path. The locally
optimal proposal, which minimizes the conditional weight variance at iteration t, is given by

qt(xt|x1:t−1) ∝ γt(x1:t)/γt−1(x1:t−1) (2)

for t ≥ 2 and q1(x1) ∝ γ1(x1). If, in addition to using the locally optimal proposal, the resampling
weights are computed as νit−1 ∝

∫
γt({xi1:t−1, xt})dxt/γt−1(xi1:t−1), then the SMC sampler is said

to be fully adapted. At step 2(c) new importance weights are computed using the weight function
ωt(x1:t) = γt(x1:t)/ (γt−1(x1:t−1)qt(xt|x1:t−1)) .
The weighted particles generated by Algorithm 1 can be used to approximate each πt by the empirical
distribution

∑N
i=1 w

i
tδxi

1:t
(dx1:t). Furthermore, the algorithm provides unbiased estimates of the

normalizing constants Zt, computed as Ẑt =
∏t
s=1

{
1
N

∑N
i=1 w̃

i
s

}
; see [9] and the supplementary

material.

3 Graph decompositions and twisted targets

We now turn our attention to the factor graph (1). To construct a sequence of target distributions for
an SMC sampler, [24] proposed to decompose the graphical model into a sequence of sub-graphs,
each defining an intermediate target for the SMC sampler. This is done by first ordering the variables,
or the factors, of the model in some way—here we assume a fixed order of the variables x1:T as
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indicated by the notation; see Section 5 for a discussion about the ordering. We then define a
sequence of unnormalized densities {γt(x1:t)}Tt=1 by gradually including the model variables and
the corresponding factors. This is done in such a way that the final density of the sequence includes
all factors and coincides with the original target distribution of interest,

γT (x1:T ) =
∏
j∈F

fj(xIj ) ∝ π(x1:T ). (3)

We can then target {γt(x1:t)}Tt=1 with an SMC sampler. At iteration T the resulting particle tra-
jectories can be taken as (weighted) samples from π, and Ẑ := ẐT will be an unbiased estimate
of Z.

To define the intermediate densities, let F1, . . . , FT be a partitioning of the factor set F defined by:

Ft = {j ∈ F : t ∈ Ij , t+ 1 /∈ Ij , . . . , T /∈ Ij}.

In words, Ft is the set of factors depending on xt, and possibly x1:t−1, but not xt+1:T . Furthermore,
let Ft = tts=1Fs. Naesseth et al. [24] defined a sequence of intermediate target densities as1

γt(x1:t) =
∏
j∈Ft

fj(xIj ), t = 1, . . . , T. (4)

Since FT = F , it follows that the condition (3) is satisfied. However, even though this is a valid
choice of target distributions, leading to a consistent SMC algorithm, the resulting sampler can
have poor performance. The reason is that the construction (4) neglects the dependence on “future”
variables xt+1:T which may have a strong influence on x1:t. Neglecting this dependence can result
in samples at iteration t which provide an accurate approximation of the intermediate target γt, but
which are nevertheless very unlikely under the actual target distribution π.

To mitigate this issue we propose to use a sequence of twisted intermediate target densities,

γψt (x1:t) := ψt(x1:t)γt(x1:t) = ψt(x1:t)
∏
j∈Ft

fj(xIj ), t = 1, . . . , T − 1, (5)

where ψt(x1:t) is an arbitrary positive “twisting function” such that
∫
γψt (x1:t)dx1:t < ∞. (Note

that there is no need to explicitly compute this integral as long as it can be shown to be finite.)
Twisting functions have previously been used by [14, 16] to “twist” the Markov transition kernel of a
state space (or Feynman-Kac) model; we take a slightly different viewpoint and simply consider the
twisting function as a multiplicative adjustment of the SMC target distribution.

The definition of the twisted targets in (5) is of course very general and not very useful unless
additional guidance is provided. To this end we state the following simple optimality condition (the
proof is in the supplementary material; see also [14, Proposition 2]).

Proposition 1. Assume that the twisting functions in (5) are given by

ψ∗t (x1:t) :=

∫ ∏
j∈F\Ft

fj(xIj )dxt+1:T t = 1, . . . , T − 1, (6)

that the locally optimal proposals (2) are used in the SMC sampler, and that νit = wit. Then,
Algorithm 1 results in particle trajectories exactly distributed according to π(x1:T ) and the estimate
of the normalizing constant is exact; Ẑ = Z w.p.1.

Clearly, the optimal twisting functions are intractable in all situations of interest. Indeed, computing
(6) essentially boils down to solving the original inference problem. However, guided by this, we
will strive to select ψt(x1:t) ≈ ψ∗t (x1:t). As pointed out above, the approximation error, here, only
affects the efficiency of the SMC sampler, not its asymptotic consistency or the unbiasedness of Ẑ.
Various ways for approximating ψ∗t are discussed in the next section.

1More precisely, [24] use a fixed ordering of the factors (and not the variables) of the model. They then
include one or more additional factors, together with the variables on which these factors depend, in each step of
the SMC algorithm. This approach is more or less equivalent to the one adopted here.
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4 Twisting functions via deterministic approximations

In this section we show how a few popular deterministic inference methods can be used to approximate
the optimal twisting functions in (6), namely loopy belief propagation (Section 4.1), expectation
propagation (Section 4.2), and Laplace approximations (Section 4.3). These methods are likely to be
useful for computing the twisting functions in many situations, however, we emphasize that they are
mainly used to illustrate the general methodology which can be used with other inference procedures
as well.

4.1 Loopy belief propagation

Belief propagation [26] is an exact inference procedure for tree-structured graphical models, although
its “loopy” version has been used extensively as a heuristic approximation for general graph topologies.
Belief propagation consists of passing messages:

Factor→ variable : µj→s(xs) =

∫
fj(xIj )

∏
u∈Ne(j)\{s}

λu→j(xu)dxIj\{s},

Variable→ factor : λs→j(xs) =
∏

i∈Ne(s)\{j}

µi→s(xs).

In graphs with loops, the messages are passed until convergence.

To see how loopy belief propagation can be used to approximate the twisting functions for SMC, we
start with the following result for tree-structured model (the proof is in the supplementary material).
Proposition 2. Assume that the factor graph with variable nodes {1, . . . , t} and factor nodes
{fj : j ∈ Ft} form a (connected) tree for all t = 1, . . . , T . Then, the optimal twisting function (6)
is given by

ψ∗t (x1:t) =
∏

j∈F\Ft

µj→(1:t)(x1:t) where µj→(1:t)(x1:t) =
∏

s∈{1, ..., t}∩Ij

µj→s(xs). (7)

Remark 1. The sub-tree condition of Proposition 2 implies that the complete model is a tree, since this
is obtained for t = T . The connectedness assumption can easily be enforced by gradually growing
the tree, lumping model variables together if needed.

While the optimality of (7) only holds for tree-structured models, we can still make use of this
expression for models with cycles, analogously to loopy belief propagation. Note that the message
µj→(1:t)(x1:t) is the product of factor-to-variable messages going from the non-included factor
j ∈ F \ Ft to included variables s ∈ {1, . . . , t}. For a tree-based model there is at most one
such message (under the connectedness assumption of Proposition 2), whereas for a cyclic model
µj→(1:t)(x1:t) might be the product of several “incoming” messages.

It should be noted that the numerous modifications of the loopy belief propagation algorithm that are
available can be used within the proposed framework as well. In fact, methods based on tempering of
the messages, such as tree-reweighting [35], could prove to be particularly useful. The reason is that
these methods counteract the double-counting of information in classical loopy belief propagation,
which could be problematic for the following SMC sampler due to an over-concentration of probability
mass. That being said, we have found that even the standard loopy belief propagation algorithm
can result in efficient twisting, as illustrated numerically in Section 6.1, and we do not pursue
message-tempering further in this paper.

4.2 Expectation propagation

Expectation propagation (EP, [23]) is based on introducing approximate factors, f̃j(xIj ) ≈ fj(xIj )
such that

π̃(x1:T ) =

∏
j∈F f̃j(xIj )∫ ∏

j∈F f̃j(xIj )dx1:T
(8)

approximates π(x1:T ), and where the f̃j’s are assumed to be simple enough so that the integral in the
expression above is tractable. The approximate factors are updated iteratively until some convergence
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criterion is met. To update factor f̃j , we first remove it from the approximation to obtain the so called
cavity distribution π̃−j(x1:T ) ∝ π̃(x1:T )/f̃j(xIj ). We then compute a new approximate factor f̃j ,
such that f̃j(xIj )π̃

−j(x1:T ) approximates fj(xIj )π̃
−j(x1:T ). Typically, this is done by minimizing

the Kullback–Leibler divergence between the two distributions. We refer to [23] for additional details
on the EP algorithm.

Once the EP approximation has been computed, it can naturally be used to approximate the optimal
twisting functions in (6). By simply plugging in f̃j in place of fj we get

ψt(x1:t) =

∫ ∏
j∈F\Ft

f̃j(xIj )dxt+1:T . (9)

Furthermore, the EP approximation can be used to approximate the optimal SMC proposal. Specifi-
cally, at iteration t we can select the proposal distribution as

qt(xt|x1:t−1) = π̃(xt|x1:t−1) =

∏
j∈Ft

f̃j(xIj )

 ∫ ∏j∈F\Ft
f̃j(xIj )dxt+1:T∫ ∏

j∈F\Ft−1
f̃j(xIj )dxt:T

. (10)

This choice has the advantage that the weight function gets a particularly simple form:

ωt(x1:t) =
γψt (x1:t)

γψt−1(x1:t−1)qt(xt|x1:t−1)
=
∏
j∈Ft

fj(xIj )

f̃j(xIj )
. (11)

4.3 Laplace approximations for Gaussian Markov random fields

A specific class of PGMs with a large number of applications in spatial statistics are latent Gaussian
Markov random fields (GMRFs, see, e.g., [29, 30]). These models are defined via a Gaussian prior
p(x1:T ) = N (x1:T |µ,Q−1) where the precision matrix Q has Qij 6= 0 if and only if variables xi
and xj share a factor in the graph. When this latent field is combined with some non-Gaussian or non-
linear observational densities p(yt|xt), t = 1, . . . , T , the posterior π(x1:T ) is typically intractable.
However, when p(yt|xt) is twice differentiable, it is straightforward to find an approximating Gaussian
model based on a Laplace approximation by simple numerical optimization [12, 33, 30], and use the
obtained model as a basis of twisted SMC. Specifically, we use

ψt(x1:t) =

∫ T∏
s=t+1

{
p̃(ys|xs)

}
p(xt+1:T |x1:t)dxt+1:T , (12)

where p̃(yt|xt) ≈ p(yt|xt), t = 1, . . . , T are the Gaussian approximations obtained using Laplace’s
method. For proposal distributions, we simply use the obtained Gaussian densities p̃(xt|x1:t−1, y1:T ).
The weight functions have similar form as in (11), ωt(x1:t) = p(yt|xt)/p̃(yt|xt). For state space
models, this approach was recently used in [34].

5 Practical considerations

A natural question is how to order the variables of the model. In a time series context a trivial
processing order exists, but it is more difficult to find an appropriate order for a general PGM.
However, in Section 6.3 we show numerically that while the processing order has a big impact on the
performance of non-twisted SMC, the effect of the ordering is less severe for twisted SMC. Intuitively
this can be explained by the look-ahead effect of the twisting functions: even if the variables are
processed in a non-favorable order they will not “come as a surprise”.

Still, intuitively a good candidate for the ordering is to make the model as “chain-like” as possible by
minimizing the bandwidth (see, e.g., [7]) of the adjacency matrix of the graphical model. A related
strategy is to instead minimize the fill-in of the Cholesky decomposition of the full posterior precision
matrix. Specifically, this is recommended in the GMRF setting for faster matrix algebra [29] and this
is the approach we use in Section 6.3. Alternatively, [25] propose a heuristic method for adaptive
order selection that can be used in the context of twisted SMC as well.
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Application of twisting often leads to nearly constant SMC weights and good performance. However,
the boundedness of the SMC weights is typically not guaranteed. Indeed, the approximations
may have lighter tails than the target, which may occasionally lead to very large weights. This
is particularly problematic when the method is applied within a pseudo-marginal MCMC scheme,
because unbounded likelihood estimators lead to poor mixing MCMC [1, 2]. Fortunately, it is
relatively easy to add a ‘regularization’ to the twisting, which leads to bounded weights. We discuss
the regularization in more detail in the supplement.

Finally, we comment on the computational cost of the proposed method. Once a sequence of
twisting functions has been found, the cost of running twisted SMC is comparable to that of running
non-twisted SMC. Thus, the main computational overhead comes from executing the deterministic
inference procedure used for computing the twisting functions. Since the cost of this is independent
of the number of particles N used for the subsequent SMC step, the relative computational overhead
will diminish as N increases. As for the scaling with problem size T , this will very much depend
on the choice of deterministic inference procedure, as well as on the connectivity of the graph, as
is typical for graphical model inference. It is worth noting, however, that even for a sparse graph
the SMC sampler needs to be efficiently implemented to obtain a favorable scaling with T . Due to
the (in general) non-Markovian dependencies of the random variables x1:T , it is necessary to keep
track of the complete particle trajectories {xi1:t}Ni=1 for each t = 1, . . . , T . Resampling of these
trajectories can however result in the copying of large chunks of memory (of the order Nt at iteration
t), if implemented in a ’straightforward manner’. Fortunately, it is possible to circumvent this issue
by an efficient storage of the particle paths, exploiting the fact that the paths tend to coalesce in logN
steps; see [17] for details. We emphasize that this issue is inherent to the SMC framework itself,
when applied to non-Markovian models, and does not depend on the proposed twisting method.

6 Numerical illustration

We illustrate the proposed twisted SMC method on three PGMs using the three deterministic approxi-
mation methods discussed in Section 4. In all examples we compare with the baseline SMC algorithm
by [24] and the two samplers are denoted as SMC-Twist and SMC-Base, respectively. While the
methods can be used to estimate both the normalizing constant Z and expectations with respect to
π, we focus the empirical evaluation on the former. The reasons for this are: (i) estimating Z is of
significant importance on its own, e.g., for model comparison and for pseudo-marginal MCMC, (ii) in
our experience, the accuracy of the normalizing constant estimate is a good indicator for the accuracy
of other estimates as well, and (iii) the fact that SMC produces unbiased estimates of Z means that
we can more easily assess the quality of the estimates. Specifically, log Ẑ—which is what we actually
compute—is negatively biased and it therefore typically holds that higher estimates are better.

6.1 Ising model

252

254

256

258

64 256 1024
Number of particles

Lo
g 

Z

Method
SMC−PGM
SMC−Twist

Figure 1: Results for the Ising model.
See text for details.

As a first proof of concept we consider a 16 × 16 square
lattice Ising model with periodic boundary condition,

π(x1:T ) =
1

Z
exp

( ∑
(i,j)∈E

Jijxixj +
∑
i∈I

Hixi

)
.

where T = 256 and xi ∈ {−1,+1}. We let the inter-
actions be Jij ≡ 0.44 and the external magnetic field is

simulated according to Hi
i.i.d.∼ Uniform(−1, 1).

We use the Left-to-Right sequential decomposition consid-
ered by [24]. For SMC-Twist we use loopy belief prop-
agation to compute the twisting potentials, as described
in Section 4.1. Both SMC-Base and SMC-Twist use fully
adapted proposals, which is possible due to the discrete na-
ture of the problem. Apart for the computational overhead
of running the belief propagation algorithm (which is quite
small, and independent of the number of particles used in
the subsequent SMC algorithm), the computational costs
of the two SMC samplers is more or less the same.
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Figure 2: Results for LDA likelihood evaluation for the toy model (left), PubMed data (mid), and 20
newsgroups data (right). Dotted lines correspond to the plain EP estimates. See text for details.

Each algorithm is run 50 times for varying number of particles. Box-plots over the obtained
normalizing constant estimates are shown in Figure 1, together with a “ground truth” estimate (dashed
line) obtained with an annealed SMC sampler [10] with a large number of particles and temperatures.
As is evident from the figure, the twisted SMC sampler outperforms the baseline SMC. Indeed, with
twisting we get similar accuracy using N = 64 particles, as the baseline SMC with N = 1024
particles.

6.2 Topic model evaluation

Topic models, such as latent Dirichlet allocation (LDA) [4], are widely used for information retrieval
from large document collections. To assess the quality of a learned model it is common to evaluate
the likelihood of a set of held out documents. However, this turns out to be a challenging inference
problem on its own which has attracted significant attention [37, 5, 32, 22]. Naesseth et al. [24]
obtained good performance for this problem with a (non-twisted) SMC method, outperforming the
special purpose Left-Right-Sequential sampler by [5]. Here we repeat this experiment and compare
this baseline SMC with a twisted SMC. For computing the twisting functions we use the EP algorithm
by Minka and Lafferty [22], specifically developed for inference in the LDA model. See [37, 22] and
the supplementary material for additional details on the model and implementation details.

First we consider a synthetic toy model with 4 topics and 10 words, for which the exact likelihood
can be computed. Figure 2 (left) shows the mean-squared errors in the estimates of the log-likelihood
estimates for the two SMC samplers as we increase the number of particles. As can be seen, twisting
reduces the error by about half an order-of-magnitude compared to the baseline SMC. In the middle
and right panels of Figure 2 we show results for two real datasets, PubMed Central abstracts and 20
newsgroups, respectively (see [37]). For each dataset we compute the log-likelihood of 10 held-out
documents. The box-plots are for 50 independent runs of each algorithm, for different number
of particles. As pointed out above, due to the unbiasedness of the SMC likelihood estimates it is
typically the case that “higher is better”. This is also supported by the fact that the estimates increase
on average as we increase the number of particles. With this in mind, we see that EP-based twisting
significantly improves the performance of the SMC algorithm. Furthermore, even with as few as 50
particles, SMC-Twist clearly improves the results of the EP algorithm itself, showing that twisted
SMC can successfully correct for the bias of the EP method.

6.3 Conditional autoregressive model with Binomial observations

Consider a latent GMRF x1:T ∼ N(0, τQ−1), where Qtt = nt + d, Qtt′ = −1 if t ∼ t′, and
Qtt′ = 0 otherwise. Here nt is the number of neighbors of xt, τ = 0.1 is a scaling parameter, and
d = 1 is a regularization parameter ensuring a positive definite precision matrix. Given the latent
field we assume binomial observations yt ∼ Binomial(10, logit−1(xt)). The spatial structure of the
GMRF corresponds to the map of Germany obtained from the R package INLA [21], containing
T = 544 regions. We simulated one realization of x1:T and y1:T from this configuration and then
estimated the log-likelihood of the model 10 000 times with a baseline SMC using a bootstrap
proposal, as well as with twisted SMC where the twisting functions were computed using a Laplace
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Figure 3: Results for GMRF likelihood evaluation. See text for details.

approximation (see details in the supplementary material). To test the sensitivity of the algorithms to
the ordering of the latent variables, we randomly permuted the variables for each replication. We
compare this random order with approximate minimum degree reordering (AMD) of the variables,
applied before running the SMC. We also varied N , the number of particles, from 64 up to 1024. For
both SMC approaches, we used adaptive resampling based on effective sample size with threshold of
N/2. In addition, we ran a twisted sequential importance sampler (SIS), i.e., we set the resampling
threshold to zero.

Figure 3 shows the log-likelihood estimates for SMC-Base, SIS and SMC-Twist with N = 64 and
N = 1024 particles, with dashed lines corresponding to the estimates obtained from a single SMC-
Twist run with 100 000 particles, and dotted lines to the estimates from the Laplace approximation.
SMC-Base is highly affected by the ordering of the variables, while the effect is minimal in case of
SIS and SMC-Twist. Twisted SMC is relatively accurate already with 64 particles, whereas sequential
importance sampling and SMC-Base exhibit large variation and bias still with 1024 particles.

7 Conclusions

The twisted SMC method for PGMs presented in this paper is a promising way to combine deter-
ministic approximations with efficient Monte Carlo inference. We have demonstrated how three
well-established methods can be used to approximate the optimal twisting functions, but we stress
that the general methodology is applicable also with other methods.

An important feature of our approach is that it may be used as ‘plug-in’ module with pseudo-marginal
[1] or particle MCMC [3] methods, allowing for consistent hyperparameter inference. It may also
be used as (parallelizable) post-processing of approximate hyperparameter MCMC, which is based
purely on deterministic PGM inferences [cf. 34].

An interesting direction for future work is to investigate which properties of the approximations
that are most favorable to the SMC sampler. Indeed, it is not necessarily the case that the twisting
functions obtained directly from the most accurate deterministic method result in the most efficient
SMC sampler. It is also interesting to consider iterative refinements of the twisting functions, akin to
the method proposed by [14], in combination with the approach taken here.
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