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Sub-Finsler geodesics on the Cartan group∗

A.Ardentov†, E. Le Donne‡, Yu. Sachkov§

October 15, 2018

Abstract

This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-
Finsler `∞ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories.
Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal
extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we
prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound
on the number of such pieces.

1 Introduction

There are several motivations for studying sub-Finsler geometry on Lie groups, especially in geometric group theory
and in harmonic analysis. We only mention the prominent articles [10, 6, 4] and then we refer to the introductions
of [15, 17] for a broad explanation of the reasons and for several references of the state-of-the-art.

On the one hand, as in sub-Riemannian geometry, distributions of step 2 are easier to study and there is already
some good understanding of the lower dimensional cases, see [15]. On the other hand, sub-Finsler structures defined
by smooth norms have a similar theory that in the sub-Riemannian case. For these reasons the challenge is to study
step-3 sub-Finsler groups with a non-strictly convex norm. The lower dimensional examples are the Engel group
and the Cartan group, which both have step 3 and rank 2.

In this paper we study the Cartan group, since it is the free-nilpotent group of rank 2 and step 3 (so the
Engel group is a quotient of this group), equipped with the `∞ sub-Finsler structure. In our previous paper [17],
adopting the point of view of time-optimal control theory, we characterized extremal curves via Pontryagin maximum
principle, we described abnormal and singular arcs, and we constructed the bang-bang flow.

The Cartan distribution can be expressed by the span of two vector fields X1, X2. We consider the `∞ norm
with respect to X1, X2. Hence, every admissible trajectory is characterized by two controls. A summary of the
results of this paper is given by the following statements.

Theorem 1. In the `∞ sub-Finsler structure on the Cartan group the length-minimizing trajectories are of three
not-mutually-exclusive types:

(i) one component of the control is constantly equal to 1 or −1,

(ii) bang-bang trajectory,

(iii) piecewise smooth concatenation of trajectories of types (i) and (ii).

The length-minimizers that are of type (ii) but not of type (i) have at most 12 arcs. The length-minimizers of type
(iii) have at most 14 arcs. All curves of type (i) are length-minimizers. Moreover, for every trajectory of type (i)
there exists a piecewise-smooth length-minimizing trajectory connecting the same two points and having at most 5
smooth pieces.

∗Sections 1, 2 and 6 of the paper are written by E. Le Donne, and Sections 3–5 and 7, 8 are written by A. Ardentov and Yu. Sachkov.
The work of A. Ardentov and Yu. Sachkov is supported by the Russian Science Foundation under grant 17-11-01387 and performed
in Ailamazyan Program Systems Institute of Russian Academy of Sciences. E. Le Donne was partially supported by the Academy
of Finland (grant 288501 ‘Geometry of subRiemannian groups’) and by the European Research Council (ERC Starting Grant 713998
GeoMeG ‘Geometry of Metric Groups’).
†Program Systems Institute, Pereslavl-Zalessky, Russia, aaa@pereslavl.ru
‡Department of Mathematics and Statistics, P.O. Box 35, FI-40014, University of Jyväskylä, Finland, ledonne@msri.org
§Program Systems Institute, Pereslavl-Zalessky, Russia, yusachkov@gmail.com
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As a corollary, we deduce that any pair of points can be connected by an optimal piecewise-smooth trajectory
with at most 14 arcs.

The paper has the following structure. In Sec. 2 we recall the problem statement and the main results on it
obtained in previous paper [17]. Section 3 is devoted to detailed study of structure of bang-bang extremal trajectories
implied by Pontryagin Maximum Principle. In Sec. 4 we prove upper bounds on the number of switchings on bang-
bang minimizers. In Sec. 5 we prove that any normal extremal is either bang-bang, or singular, or mixed. Further,
Sec. 6 is devoted to the study of mixed extremals, including upper bound on the number of switchings. Finally, in
Sec. 7 we obtain a uniform bound on the number of smooth pieces on minimizers connecting arbitrary points in
the Cartan group.

2 Problem statement and previous results

Consider the 5-dimensional free nilpotent Lie algebra with 2 generators, of step 3. There exists a basis L =
span(X1, . . . , X5) in which the product rule in L takes the form

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5, adX4 = adX5 = 0.

The Lie algebra L is called the Cartan algebra, and the corresponding connected simply connected Lie group M is
called the Cartan group. We will use the following model:

M = R5
x,y,z,v,w,

with the Lie algebra L modeled by left-invariant vector fields on R5

X1 =
∂

∂x
− y

2

∂

∂z
− x2 + y2

2

∂

∂w
,

X2 =
∂

∂y
+
x

2

∂

∂z
+
x2 + y2

2

∂

∂v
,

X3 =
∂

∂z
+ x

∂

∂v
+ y

∂

∂w
,

X4 =
∂

∂v
,

X5 =
∂

∂w
.

The product rule in the Cartan group M in this model is given in [11].
Left-invariant `∞ sub-Finsler problem on the Cartan group is stated as the following time-optimal problem:

q̇ = u1X1 + u2X2, q ∈M, u ∈ U = {u ∈ R2 | ‖u‖∞ ≤ 1}, (2.1)

‖u‖∞ = max(|u1|, |u2|),
q(0) = q0 = Id = (0, . . . , 0), q(T ) = q1, (2.2)

T → min . (2.3)

Problem (2.1)–(2.3) was considered first in paper [17]. We recall the main results of that paper.
Existence of optimal controls follows from Rashevsky-Chow and Filippov theorem [12].
Pontryagin Maximum Principle implies that optimal abnormal controls are constant.
Introduce linear-on-fibers Hamiltonians hi(λ) = 〈λ,Xi〉, λ ∈ T ∗M , i = 1, . . . , 5. A normal extremal arc

λt, t ∈ I = (α, β) ⊂ [0, T ] is called:

• a bang-bang arc if
card{t ∈ I | h1h2(λt) = 0} <∞,

• a singular arc if one of the condition holds:

h1(λt) ≡ 0, t ∈ I (h1-singular arc), or

h2(λt) ≡ 0, t ∈ I (h2-singular arc),

• a mixed arc if it consists of a finite number of bang-bang and singular arcs.
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Singular controls have one of components constantly equal to 1 or −1, thus they are optimal. The fix-time
attainable set along singular trajectories was explicitly described and was shown to be semi-algebraic.

Bang-bang extremal trajectories satisfy the Hamiltonian system with the Hamiltonian function H = |h1|+ |h2|:

ḣ1 = −s2h3,

ḣ2 = s1h3,

ḣ3 = s1h4 + s2h5,

ḣ4 = ḣ5 = 0,

q̇ = s1X1 + s2X2.

(2.4)

The dual of the Lie algebra L∗ = T ∗IdM has Casimir functions h4, h5, E =
h2
3

2 + h1h5 − h2h4, thus Hamiltonian
system (2.4) has integrals h4, h5, E, and H.

The mapping (λ, q) 7→ (kλ, q), k > 0, preserves extremal trajectories, thus we can consider only the reduced case

H(λ) ≡ 1.

With the use of the coordinate θ ∈ S1 = R/2πZ:

h1 = sgn(cos θ) cos2 θ, h2 = sgn(sin θ) sin2 θ,

the vertical part of Hamiltonian system (2.4) reduces to the following system:{
θ̇ = h3

| sin 2θ| , θ 6= πn
2 ,

ḣ3 = s1h4 + s2h5, s1 = sgn cos θ, s2 = sgn sin θ.
(2.5)

System (2.5) is preserved by the group of symmetries of the square {(h1, h2) ∈ R2 | |h1| + |h2| = 1}. Thus in
the study of system (2.5) we can restrict ourselves by the case h4 ≥ h5 ≥ 0. This case obviously decomposes into
the following sub-cases:

1) h4 > h5 > 0,

2) h4 > h5 = 0,

3) h4 = h5 > 0,

4) h4 = h5 = 0.

3 Structure of bang-bang trajectories

In this section we consider, case by case, the structure of bang-bang trajectories implied by Pontryagin Maximum
Principle.

3.1 Case 1)

Let h4 > h5 > 0. Then system (2.5) has the phase portrait given in Fig. 1, see Subsubsec. 7.2.1 [17].
The domain {λ ∈ C | h4 > h5 > 0} of the cylinder C = L∗ ∩ {H = 1} admits a decomposition defined by the

energy integral E:

{λ ∈ C | h4 > h5 > 0} = ∪8
i=1Ci,

C1 = E−1(−h4), C2 = E−1(−h4,−h5), C3 = E−1(−h5), C4 = E−1(−h5, h5),

C5 = E−1(h5), C6 = E−1(h5, h4), C7 = E−1(h4), C8 = E−1(h4,+∞).

3.1.1 Case 1), level set C1

Let h4 > h5 > 0, E = −h4. Then θ ≡ π
2 , h3 ≡ 0. Thus h1(λt) ≡ 0, h2(λt) ≡ 1, i.e., the extremal λt is h1-singular

and not bang-bang.
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-π/2 π/2 π 3π/2

Figure 1: Phase portrait of system
(2.5) in case 1)

3.1.2 Case 1), domain C2

Let h4 > h5 > 0, E ∈ (−h4,−h5). The corresponding bang-bang extremal is shown in Figs. 2, 3.

π/2 π

Figure 2: (θ(t), h3(t)): Case 1), domain C2
-5 -4 -3 -2 -1

2

4

6

8

10

Figure 3: (x(t), y(t)): Case 1), domain C2

Denote by τ1, τ2, the time intervals between successive switchings of control:

θ(0) =
π

2
, θ(t) ∈

(
0,
π

2

)
for t ∈ (0, τ1), θ(τ1) =

π

2
,

θ(0) =
π

2
, θ(t) ∈

(π
2
, π
)

for t ∈ (0, τ2), θ(τ2) =
π

2
.

Compute the interval τ1 via the Casimirs E, h4, h5:

θ ∈
[
0,
π

2

]
⇒ E =

h2
3

2
+ h5 cos2 θ − h4 sin2 θ,

θ =
π

2
⇒ E =

h2
3

2
− h4, h3 = ±

√
2(E + h4),

h3(0) = −
√

2(E + h4), h3(τ1) =
√

2(E + h4),

h3(t) = h3(0) + (h4 + h5)t,

τ1 =
h3(τ1)− h3(0)

h4 + h5
=

2
√

2(E + h4)

h4 + h5
.
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We compute similarly τ2 =
2
√

2(E + h4)

h4 − h5
> τ1. The rule of switchings of controls ui(t) = si = sgnhi(t), i = 1, 2,

follows from the phase portrait in Fig. 2. Thus we obtain a general form of a bang-bang trajectory in the case 1),
C2.

Proposition 1. In case 1), domain C2 : h4 > h5 > 0, E ∈ (−h4,−h5), a bang-bang control is obtained by choosing
a finite segment of the following two-side infinite periodic sequence:

(u1, u2) : . . . (+,+) (−,+) (+,+) (−,+) . . .
τ1 τ2 τ1 τ2

Duration of all segments of constancy of controls (except the first and the last ones) is equal to

τ1 =
2
√

2(E + h4)

h4 + h5
, τ2 =

2
√

2(E + h4)

h4 − h5
> τ1.

The first and the last segments may take arbitrary values in the corresponding intervals (0, τi].

The subsequent analysis of the structure of bang-bang trajectories is completely analogous to the preceding one,
thus we omit analogous computations and arguments in the following subsubsections.

3.1.3 Case 1), level line C3

Let h4 > h5 > 0, E = −h5, the corresponding extremal is shown in Figs. 4, 5.

π/2 π

Figure 4: (θ(t), h3(t)): Case 1), level line C3

-6 -4 -2

2

4

6

8

10

12

14

Figure 5: (x(t), y(t)): Case 1), level line C3

Then the control has the form

(u1, u2) : . . . (+,+) (−,+) (+,+) (−,+) . . .
τ1 τ2 τ1 τ2

with

τ1 =
2
√

2(h4 − h5)

h4 + h5
, τ2 =

2
√

2(h4 − h5)

h4 − h5
= 2

√
2

h4 − h5
> τ1.

Notice that despite the fact that h2(λt) vanishes when θ = π, h3 = 0, the control u2(t) does not switch at such
points since h2(λt) preserves sign near these points.

3.1.4 Case 1), domain C4

Let h4 > h5 > 0, E ∈ (−h5, h5), the corresponding trajectory is shown in Figs. 6, 7.
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π/2 π 3π/2

Figure 6: (θ(t), h3(t)): Case 1), domain C4

-5/2 -2 -3/2 -1 -1/2 1/2

1

2

3

4

Figure 7: (x(t), y(t)): Case 1), domain C4

Then the control has the form:

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) . . .
τ1 τ2 τ3 τ2 τ1

with

τ1 =
2
√

2(E + h4)

h4 + h5
, τ2 =

√
2(E + h4)−

√
2(E + h5)

h4 − h5
=

2√
2(E + h4) +

√
2(E + h5)

,

τ3 =
2
√

2(E + h5)

h4 + h5
< τ1.

3.1.5 Case 1), level line C5

Let h4 > h5 > 0, E = h5, the corresponding trajectory is shown in Figs. 8, 9.

π/2 π 3π/2

Figure 8: (θt, h3(t)): Case 1), level line C5

-15 -10 -5

5

10

15

Figure 9: (x(t), y(t)): Case 1), level line C5

Then the control has the form:

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) . . .
τ1 τ2 τ3 τ2 τ1
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with

τ1 = 2

√
2

h4 + h5
, τ2 =

√
2(h4 + h5)− 2

√
h5

h4 − h5
, τ3 =

4
√
h5

h4 + h5
.

The control u1(t) does not switch when θ = 0, h3 = 0.

3.1.6 Case 1), domain C6

Let h4 > h5 > 0, E ∈ (h5, h4), the corresponding trajectory is shown in Figs. 10, 11.

-π/2 π/2 π 3π/2

Figure 10: (θ(t), h3(t)): Case 1), domain C6

-3/2 -1 -1/2 1/2 1 3/2

-3

-2

-1

Figure 11: (x(t), y(t)): Case 1), domain C6

Then the control has the form:

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) (+,−) (+,+) . . .
τ1 τ2 τ3 τ2 τ1 τ4 τ1

with

τ1 =

√
2(E + h4)−

√
2(E − h5)

h4 + h5
=

2√
2(E + h4) +

√
2(E − h5)

,

τ2 =

√
2(E + h4)−

√
2(E + h5)

h4 − h5
=

2√
2(E + h4) +

√
2(E + h5)

,

τ3 =
2
√

2(E + h5)

h4 + h5
, τ4 =

2
√

2(E − h5)

h4 − h5
.

3.1.7 Case 1), level line C7

Let h4 > h5 > 0, E = h4, the corresponding phase portrait is shown in Fig. 12.
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-π/2 π/2 π 3π/2

Figure 12: (θ(t), h3(t)): Case 1), level line C7

1/2 1 3/2 2 5/2

-5

-4

-3

-2

-1

Figure 13: (x(t), y(t)): Case 1), level line C7

The level line C7 is defined in the domains {θ ∈ (−π2 , 0)} and {θ ∈ (π, 3π
2 )} by the equations

h3 = ±
√

2(h4 − h5) cos θ and h3 = ±
√

2(h4 + h5) cos 2θ.

Thus the level line C7 is homeomorphic to figure 8, with self-intersection at the point (θ, h3) = ( 3π
2 , 0). The

intersections C+
7 = C7 ∩ {h3 ≥ 0}, C−7 = C7 ∩ {h3 ≤ 0} are continuous curves homeomorphic to S1, with the only

singularity — the corner point (θ, h3) = (3π
2 , 0).

Each bang-bang control is obtained by choosing a finite segment from the following infinite periodic graph:

τ1 τ2 τ3 τ4 τ1

C+
7 · · · // (+,+) // (−,+) // (−,−) //

$$

(+,−) // (+,+) // · · ·

C−7 · · · // (−,+) // (+,+) // (+,−) //

::

(−,−) // (−,+) // · · ·

τ2 τ1 τ4 τ3 τ2

We have

τ1 =
2
√
h4 −

√
2(h4 − h5)

h4 + h5
, τ2 =

2
√
h4 −

√
2(h4 + h5)

h4 − h5
,

τ3 =

√
2

h4 + h5
, τ4 =

√
2

h4 − h5
.

The curves (x(t), y(t)) corresponding to the curves C+
7 and C−7 are shown in Figs. 14 and 15 respectively. An

example of curve (x(t), y(t)) corresponding to two curves C+
7 and two curves C−7 is given in Fig. 13.
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-1 -1/2 1/2 1 3/2

-3

-2

-1

1/2

Figure 14: (x(t), y(t)): Case 1), curve C+
7

1/2 1 3/2

-3

-2

-1

Figure 15: (x(t), y(t)): Case 1), curve C−7

3.1.8 Case 1), domain C8

Let h4 > h5 > 0, E > h4, the corresponding trajectory is shown in Figs. 16, 17.

-π/2 π/2 π 3π/2

Figure 16: (θ(t), h3(t)): Case 1), domain C8

-1/2 1/2

-1/2

1/2

Figure 17: (x(t), y(t)): Case 1), domain C8

In the case h3 > 0 the bang-bang control has the form

(u1, u2) : . . . (+,+) (−,+) (−,−) (+,−) (+,+) . . .
τ1 τ2 τ3 τ4 τ1

9



In the case h3 < 0 the order of switchings is opposite. We have

τ1 =

√
2(E + h4)−

√
2(E − h5)

h4 + h5
=

2√
2(E + h4) +

√
2(E − h5)

,

τ2 =

√
2(E + h4)−

√
2(E + h5)

h4 − h5
=

2√
2(E + h4) +

√
2(E + h5)

,

τ3 =

√
2(E + h5)−

√
2(E − h4)

h4 + h5
=

2√
2(E + h5) +

√
2(E − h4)

,

τ4 =

√
2(E − h5)−

√
2(E − h4)

h4 − h5
=

2√
2(E − h5) +

√
2(E − h4)

.

3.2 Case 2)

Let h4 > h5 = 0. Then system (2.5) has the phase portrait given in Fig. 18, see Subsubsec. 7.2.2 [17].

-π/2 π/2 π 3π/2

Figure 18: Phase portrait of sys-
tem (2.5) in case 2)

The domain {λ ∈ C | h4 > h5 = 0} of the cylinder C = L∗ ∩ {H = 1} admits a decomposition defined by the
energy integral E:

{λ ∈ C | h4 > h5 = 0} = ∪6
i=1Ci,

C1 = E−1(−h4), C2 = E−1(−h4, 0), C3 = E−1(0),

C4 = E−1(0, h4), C5 = E−1(h4), C6 = E−1(h4,+∞).

3.2.1 Case 2), level set C1

Let h4 > h5 = 0, E = −h4. Then θ ≡ π
2 , h3 ≡ 0, and the corresponding trajectory is h1-singular.

3.2.2 Case 2), domain C2

We have h4 > h5 = 0, E ∈ (−h4, 0), the corresponding trajectory is shown in Figs. 19, 20.
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π/2 π

Figure 19: (θ(t), h3(t)): Case 2), domain C2
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14

Figure 20: (x(t), y(t)): Case 2), domain C2

The control has the form

(u1, u2) : . . . (+,+) (−,+) (+,+) . . .
τ1 τ1 τ1

with

τ1 =
2
√

2(E + h4)

h4
.

3.2.3 Case 2), level line C3

We have h4 > h5 = 0, E = 0, the corresponding trajectory is shown in Figs. 21, 22.

π/2 π

Figure 21: (θ(t), h3(t)): Case 2), level line C3

-1 1/2
-1/2

2

4

6

8

10

12

14

Figure 22: (x(t), y(t)): Case 2), level line C3

The control has the form
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(u1, u2) : . . . (+,+) (−,+) (+,+) . . .
τ1 τ1 τ1

with

τ1 = 2

√
2

h4
.

3.2.4 Case 2), domain C4

We have h4 > h5 = 0, E ∈ (0, h4), the corresponding trajectory is shown in Figs. 23, 24.

-π/2 π/2 π 3π/2

Figure 23: (θ(t), h3(t)): Case 2), domain C4

-2 -3/2 -1 -1/2

-3/2

-1

-1/2

1/2

Figure 24: (x(t), y(t)): Case 2), domain C4

The control has the form

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) (+,−) (+,+) . . .
τ1 τ1 τ2 τ1 τ1 τ2 τ1

with

τ1 =

√
2(E + h4)−

√
2E

h4
=

2√
2(E + h4) +

√
2E

, τ2 =
2
√

2E

h4
.

3.2.5 Case 2), level line C5

We have h4 > h5 = 0, E = h4, the corresponding level line is shown in Fig. 25.
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-π/2 π/2 π 3π/2

Figure 25: Case 2), level line C5

-3/2 -1 -1/2 1/2 1 3/2

-4

-3

-2

-1

Figure 26: (x(t), y(t)): Case 2), level line C5

There are decompositions

C5 = C+
5 ∪ C

−
5 , C+

5 = C5 ∩ {h3 ≥ 0}, C−5 = C5 ∩ {h3 ≤ 0}.

The curves C+
5 , C−5 are homeomorphic to S1, with the only singularity — a corner point (θ, h3) = (3π

2 , 0).
Bang-bang controls are obtained by choosing a finite segment of the following periodic graph:

τ1 τ1 τ2 τ2 τ1

C+
5 · · · // (+,+) // (−,+) // (−,−) //

$$

(+,−) // (+,+) // · · ·

C−5 · · · // (−,+) // (+,+) // (+,−) //

::

(−,−) // (−,+) // · · ·

τ1 τ1 τ2 τ2 τ1

We have

τ1 =
2−
√

2√
h4

, τ2 =

√
2

h4
.

The curves (x(t), y(t)) corresponding to the curves C+
5 and C−5 are shown in Figs. 27 and 28 respectively. An

example of curve (x(t), y(t)) corresponding to two curves C+
5 and two curves C−5 is given in Fig. 26.
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-1 -1/2

-2

-1

1/2

Figure 27: (x(t), y(t)): Case 2), level line C+
5

1/2 1

-3

-2

-1

Figure 28: (x(t), y(t)): Case 2), level line C−5

3.2.6 Case 2), domain C6

We have h4 > h5 = 0, E > h4, the corresponding trajectory is shown in Figs. 29, 30.

-π/2 π/2 π 3π/2

Figure 29: (θ(t), h3(t)): Case 2), domain C6

-1/2

-1/2

1/2

Figure 30: (x(t), y(t)): Case 2), domain C6

If h3 > 0, then the control is given by

(u1, u2) : . . . (+,+) (−,+) (−,−) (+,−) (+,+) . . .
τ1 τ1 τ2 τ2 τ1

If h3 < 0, then the order of switchings is opposite. We have

τ1 =

√
2(E + h4)−

√
2E

h4
=

2√
2(E + h4) +

√
2E

,

τ2 =

√
2E −

√
2(E − h4)

h4
=

2√
2E +

√
2(E − h4)

.
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3.3 Case 3)

Let h4 = h5 > 0. Then system (2.5) has the phase portrait given in Fig. 31, see Subsubsec. 7.2.3 [17].

-π/2 π/2 π 3π/2

Figure 31: Phase portrait of system (2.5)
in case 3)

The domain {λ ∈ C | h4 = h5 > 0} of the cylinder C = L∗ ∩ {H = 1} admits a decomposition defined by the
energy integral E:

{λ ∈ C | h4 = h5 > 0} = ∪4
i=1Ci,

C1 = E−1(−h4), C2 = E−1(−h4, 0), C3 = E−1(h4), C4 = E−1(h4,+∞).

3.3.1 Case 3), level set C1

Let h4 = h5 > 0, E = −h4. Then θ ≡ const ∈ [π/2, π], h3 ≡ 0.
If θ ∈ (π/2, π), then (x(t), y(t)) = (−t, t). And if θ = π/2 (θ = π), we get an h1-singular (resp. h2-singular)

trajectory.

3.3.2 Case 3), domain C2

We have h4 = h5 > 0, E ∈ (−h4, h4), the corresponding trajectory is shown in Figs. 32, 33.

π/2 π 3π/2

Figure 32: (θ(t), h3(t)): Case 3), domain C2

-2 -3/2 -1 -1/2 1/2

1/2

1

3/2

2

5/2

Figure 33: (x(t), y(t)): Case 3), domain C2

Then the control has the form

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) . . .
τ1 τ2 τ1 τ2 τ1
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with

τ1 =

√
2(E + h4)

h4
, τ2 =

1√
2(E + h4)

.

3.3.3 Case 3), level line C3

We have h4 = h5 > 0, E = h4, the corresponding trajectory is shown in Figs. 34, 35.

-π/2 π/2 π 3π/2

Figure 34: (θ(t), h3(t)): Case 3), level line C3

-2 3/2 -1 -1/2 1/2

1/2

1

-3/2

2

Figure 35: (x(t), y(t)): Case 3), level line C3

The level line C3 consists of the segment {θ ∈ [−π2 , 0], h3 = 0} and the curve {(θ, h3) | h3 = ±2
√
h4 sin θ, θ ∈

[0, 3π
2 ]} homeomorphic to S1, with two singularities — corner points (θ, h3) = (0, 0) and (θ, h3) = (3π

2 , 0).
The bang-bang control is given by:

(u1, u2) : . . . (+,+) (−,+) (−,−) (−,+) (+,+) . . .
τ1 τ2 τ1 τ2 τ1

with

τ1 =
2√
h4

, τ2 =
1

2
√
h4

.

3.3.4 Case 3), domain C4

We have h4 = h5 > 0, E > h4, the corresponding trajectory is shown in Figs. 36, 37.

-π/2 π/2 π 3π/2

Figure 36: (θ(t), h3(t)): Case 3), domain C4

-1/2 1/2 1 3/2

-3/2

-1

-1/2

1/2

Figure 37: (x(t), y(t)): Case 3), domain C4

If h3 > 0, then the control is given by:
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(u1, u2) : . . . (+,+) (−,+) (−,−) (+,−) (+,+) . . .
τ1 τ2 τ1 τ3 τ1

If h3 < 0, then the order of switchings is opposite. We have

τ1 =

√
2(E + h4)−

√
2(E − h4)

2h4
=

2√
2(E + h4) +

√
2(E − h4)

,

τ2 =
1√

2(E + h4)
, τ3 =

1√
2(E − h4)

.

3.4 Case 4)

Let h4 = h5 = 0. Then system (2.5) has the phase portrait given in Fig. 38, see Subsubsec. 7.2.4 [17].

-π/2 π/2 π 3π/2

Figure 38: Phase portrait of sys-
tem (2.5) in case 4)

The domain {λ ∈ C | h4 = h5 = 0} of the cylinder C = L∗ ∩ {H = 1} admits a decomposition defined by the
energy integral E:

{λ ∈ C | h4 = h5 = 0} = C1 ∪ C2,

C1 = E−1(0), C2 = E−1(0,+∞).

3.4.1 Case 4), level set C1

We have h4 = h5 = 0, E = 0. The level set C1 consists of fixed points (θ, h3), h3 = 0, θ 6= πn
2 that correspond

to bang trajectories (which are simultaneously abnormal), and fixed points (θ, h3) = (πn2 , 0) that correspond to
singular trajectories (which are simultaneously abnormal as well).

3.4.2 Case 4), domain C2

We have h4 = h5 = 0, E > 0, the corresponding trajectory is shown in Figs. 39, 40.

-π/2 π/2 π 3π/2

Figure 39: (θ(t), h3(t)): Case 4), domain C2

-1 -1/2

-1/2

1/2

Figure 40: (x(t), y(t)): Case 4), domain C2

If h3 > 0, then the control u is given by:
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(u1, u2) : . . . (+,+) (−,+) (−,−) (+,−) (+,+) . . .
τ1 τ1 τ1 τ1 τ1

If h3 < 0, then the order of switchings is opposite. We have

τ1 =
1√
2E

.

On the basis of the results obtained in this section we obtain the following statement.

Corollary 1. For all bang-bang trajectories, duration of bang arcs is a function of Casimirs: τi = τi(h4, h5, E),
except the first and the last arcs.

4 Optimality of bang-bang trajectories

In this section we obtain upper bounds on the number of switchings on bang-bang minimizers.

4.1 Bang-bang trajectories with low energy E

Theorem 2. If a bang-bang extremal λt, t ∈ [0,+∞), satisfies the inequality

min(−|h4|,−|h5|) < E ≤ max(−|h4|,−|h5|) (4.1)

then it is optimal, i.e., tcut(λ0) = +∞.

Proof. All three functions min(−|h4|,−|h5|), E, max(−|h4|,−|h5|) are invariant w.r.t. the group of symmetries of
the square {|h1|+ |h2| = 1} (see Sec. 7.1 [17]), thus it suffices to prove this theorem for the fundamental domain of
this group {h4 ≥ h5 ≥ 0}. On this domain inequality (4.1) turns into the inequality −h4 < E ≤ −h5 ≤ 0, which is
equivalent to the union of the following inequalities:

(a) −h4 < E ≤ −h5 ≤ 0,

(b) −h4 < E ≤ −h5 = 0.

Case (a) is exactly Case 1), domain C2 (Subsec. 3.1.2) and Case 1), level line C3 (Subsec. 3.1.3). And case (b) is
exactly Case 2), domain C2 (Subsec. 3.2.2) and Case 2), level line C3 (Subsec. 3.2.3). In all these cases θ(t) ∈ [0, π],
and θ(t) takes extreme values 0, π at isolated instants of time t. Thus h2(λt) > 0 for almost all t, whence u2(t) ≡ 1
for almost all t. By Lemma 2 [17], the control u(t) is optimal.

The domain in the phase cylinder of system (2.5) corresponding to inequalities (4.1) is shown in Fig. 41.

π/2 π

Figure 41: Domain (4.1)
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Remark. It is easy to see that under condition (4.1) a bang-bang trajectory is simultaneously a singular trajectory,
i.e., q(t) = π(λ̃t), while λ̃t is an h1-singular extremal linearly independent of λt. One can show that there exists
also a bang-bang extremal λ̄t, linearly independent of λt and λ̃t, such that q(t) = π(λ̄t). Thus the trajectory q(t)
is a projection of at least three linearly independent extremals (in this case the extremal trajectory is said to have
corank not less than 3 [12]). Thus the below necessary optimality condition (Th. 3) is not applicable to a trajectory
q(t) under condition (4.1).

4.2 Bound of the number of switchings on bang-bang trajectories
with high energy E

4.2.1 Some necessary results

We obtain an upper bound on the number of switchings on optimal bang-bang trajectories via the following theorem
due to A. Agrachev and R. Gamkrelidze.

Theorem 3 ([14, 15]). Let (q(·), u(·)) be an extremal pair for problem (2.1)–(2.3) and let λ· be an extremal lift
of q(·). Assume that λ· is the unique extremal lift of q(·), up to multiplication by a positive scalar. Assume that
there exist 0 = t0 < t1 < t2 < · · · < tk < τk+1 = T and u0, . . . , uk ∈ U such that u(·) is constantly equal to uj on
(τj , τj+1) for j = 0, . . . , k.

Fix j = 1, . . . , k. For i = 0, . . . , k let Yi = ui1X1 + ui2X2 and define recursively the operators

Pj = Pj−1 = IdVec(M),

Pi = Pi−1 ◦ e(ti−ti−1) adYi−1 , i = j + 1, . . . , k,

Pi = Pi+1 ◦ e−(ti+2−ti+1) adYi+1 , i = 0, . . . , j − 2.

Define the vector fields
Zi = Pi(Yi), i = 0, . . . , k.

Let Q be the quadratic form

Q(α) =
∑

0≤i<l≤k

αiαl〈λtj , [Zi, Zl](q(tj))〉,

defined on the space

W =

{
α = (α0, . . . , αk) ∈ Rk+1 |

k∑
i=0

αi = 0,

k∑
i=0

αiZi(q(tj)) = 0

}
.

If Q is not negative-semidefinite, then q(·) is not optimal.

We will check the sign of the quadratic form Q|W via the following test.
Consider a quadratic form

A(x) =

n∑
i,j=1

aijxixj , aij = aji, xi ∈ R.

Denote a minor

A

(
i1 i2 . . . ip
i1 i2 . . . ip

)
=

∣∣∣∣∣∣∣∣
ai1i1 ai1i2 . . . ai1ip
ai2i1 ai2i2 . . . ai2ip
. . . . . . . . . . . . . . . . . . . . . . .
aipi1 aipi2 . . . aipip

∣∣∣∣∣∣∣∣ .
Theorem 4 ([16]). A quadratic form A(x) is negative-semidefinite iff the following inequalities hold:

(−1)pA

(
i1 i2 . . . ip
i1 i2 . . . ip

)
≥ 0, 1 ≤ i1 < i2 < · · · < ip ≤ n, p = 1, 2, . . . , n.
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4.2.2 Case 1), domain C4

Theorem 5. Let h4 > h5 > 0, E ∈ (−h5, h5). Then any bang-bang control with 8 switchings is not optimal.

Proof. Consider a control starting from (1,−1) and having k = 8 switchings (controls starting from other values
are considered similarly). We apply Th. 3 and show that such control is not optimal. We have 0 = t0 < t1 < · · · <
t9 = T , where

t1 ∈ (0, τ1], t2 − t1 = t4 − t3 = t6 − t5 = t8 − t7 = τ2,

t3 − t2 = t7 − t6 = τ3, t5 − t4 = τ1, t9 − t8 ∈ (0, τ1],

and the values τ1, τ2, τ3 are defined in Subsec. 3.1.4. Further, we have

u|(t0,t1) = u|(t4,t5) = u|(t8,t9) = (1, 1),

u|(t1,t2) = u|(t3,t4) = u|(t5,t6) = u|(t7,t8) = (−1, 1),

u|(t2,t3) = u|(t6,t7) = (−1,−1),

see Fig. 6. We apply Th. 3 in the case k = 8, j = 1. We use the basis (X+, X−, X3, X++, X−−) in the Lie algebra L,
where X+ = X1 +X2, X− = X1 −X2, X++ = X4 +X5, X−− = X4 −X5. Then

Y0 = −Y2 = Y4 = −Y6 = Y8 = X+, Y1 = Y3 = Y5 = Y7 = −X−.

Further,

P1 = P0 = Id, P5 = P4 ◦ eτ1 adX+ ,

P2 = e−τ2 adX− , P6 = P5 ◦ e−τ2 adX− ,

P3 = P2 ◦ e−τ3 adX+ , P7 = P6 ◦ e−τ3 adX+ ,

P4 = P3 ◦ e−τ2 adX− , P8 = P7 ◦ e−τ2 adX− .

Thus

Z0 = X+,

Z1 = −X−,
Z2 = −X+ + 2τ2X3 − τ2

2X−−,

Z3 = −X− − 2τ3X3 + τ2
3X++ + 2τ2τ3X−−,

Z4 = X+ − 4τ2X3 + 2τ2τ3X++ + 4τ2
2X−−,

Z5 = −X− + (2τ1 − 2τ3)X3 + (τ2
1 − 2τ1τ3 + τ2

3 )X++ + (2τ2τ3 − 4τ1τ2)X−−,

Z6 = −X+ + 6τ2X3 + (2τ1τ2 − 4τ2τ3)X++ − 9τ2
2X−−,

Z7 = −X− + (2τ1 − 4τ3)X3 + (4τ2
3 − 4τ1τ3 + τ2

1 )X++ + (8τ2τ3 − 4τ1τ2)X−−,

Z8 = X+ − 8τ2X3 + (8τ2τ3 − 4τ2τ1)X++ + 16τ2
2X−−.

Introduce the notation:
c = h3, a = h4 + h5, b = h4 − h5.
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Then Q(α) =
∑8
i,l=0 σilαiαl, where

σ01 = 2c, σ16 = 2c− 6τ2b, σ37 = (2τ3 − 2τ1)b,

σ02 = 2τ2a, σ17 = (4τ3 − 2τ1)b, σ38 = −2c+ 2τ3a+ 8τ2b,

σ03 = 2c− 2τ3a, σ18 = −2c+ 8τ2b, σ45 = 2c+ (2τ1 − 2τ3)a− 4τ2b,

σ04 = −4τ2a, σ23 = −2c+ 2τ3a+ 2τ2b, σ46 = 2τ2a,

σ05 = 2c+ (2τ1 − 2τ3)a, σ24 = 2τ2a, σ47 = 2c− 4τ2b+ (2τ1 − 4τ3)a,

σ06 = 6τ2a, σ25 = −2c− (2τ1 − 2τ3)a+ 2τ2b, σ48 = −4τ2a,

σ07 = 2c+ (2τ1 − 4τ3)a, σ26 = −4τ2a, σ56 = 2c+ (2τ1 − 2τ3)a− 6τ2b,

σ08 = −8τ2a, σ27 = −2c− (2τ1 − 4τ3)a+ 2τ2b, σ57 = 2τ3b,

σ12 = 2c− 2τ2b, σ28 = 6τ2a, σ58 = −2c+ (2τ3 − 2τ1)a+ 8τ2b,

σ13 = 2τ3b, σ34 = −2c+ 2τ3a+ 4τ2b, σ67 = −2c+ (4τ3 − 2τ1)a+ 6τ2b,

σ14 = −2c+ 4τ2b, σ35 = −2τ1b, σ68 = 2τ2a,

σ15 = (2τ3 − 2τ1)b, σ36 = 2c− 2τ3a− 6τ2b, σ78 = −2c+ (4τ3 − 2τ1)a+ 8τ2b.

Further,

W =

{
(α0, . . . , α8) ∈ R9 |

8∑
i=0

αi = 0,

8∑
i=0

αiZi(q(t1)) = 0

}
= {(α0, . . . , α8) ∈ R9 | α3 = (4τ2α0 + (2τ3 − τ1)α1 − 2τ2α2)/τ1,

α5 = (−4τ2α0 + (τ1 − 2τ3)α1 + 2τ2α2)/τ1 − 2τ2α4/τ3,

α6 = −α2, α7 = −α1 + 2τ2α4/τ3, α8 = −α0 − α4},

Q|W =
4

τ1τ3

∑
i,j=0,1,2,4

aijαiαj ,

a00 = 2τ2τ3(−aτ1 + 4bτ2), a02 = 2τ2τ3(aτ1 − 2bτ2),

a11 = bτ2
3 (−τ1 + 2τ3), a04 = 2τ2τ3(−c+ 2bτ2 + a(τ3 − τ1)),

a22 = τ2τ3(−aτ1 + 2bτ2), a12 = −τ3(τ1 − 2τ3)(aτ1 − 2bτ2)/2,

a44 = −τ1τ2(2bτ2 + aτ3), a14 = τ3(2bτ2(τ1 + 2τ3) + τ3(−2c− aτ1 + 2aτ3))/2,

a01 = 4bτ2τ
2
3 , a24 = −τ2(−2aτ2

1 + 6bτ1τ2 + aτ1τ3 + 4bτ2τ3 + 2aτ2
3 − 2c(τ1 + τ3))/2.

Then

A

(
0 1
0 1

)
=

∣∣∣∣a00 a01

a01 a11

∣∣∣∣ =
512(1 + Y )(X + Y )

(
X + Y −

√
(1 + Y )(X + Y )

)
h4(1 +X)4

,

X =
h5

h4
∈ (0, 1), Y =

E

h4
∈ (−X,X).

Thus A

(
0 1
0 1

)
< 0, i.e., the quadratic form Q|W is not negative semidefinite. By Th. 3, the control u is not

optimal.

4.2.3 Bound of the number of switchings in the general case of high energy E

The rest cases are considered similarly to Th. 5:

• Case 1), ∪8
i=5Ci,

• Case 2), ∪6
i=4Ci,

• Case 3),

• Case 4).
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In all these cases Th. 3 and Th. 4 imply that k = 12 switchings are not optimal.
Passing from the fundamental domain {h4 ≥ h5 ≥ 0} of the group G to the whole plane (h4, h5), we get the

following general bound of the number of switchings.

Theorem 6. If E > max(−|h4|,−|h5|), then optimal bang-bang trajectories have no more than 11 switchings.
In particular, in this case tcut(λ) < +∞.

5 General form of normal extremals

Now we prove that the list of types of normal extremals given in Sec. 2 is complete.

Theorem 7. If λt, t ∈ [0, T ], is a normal extremal, then there exist 0 ≤ t1 < t2 < · · · < tn ≤ T , for which the
following conditions hold:

• h1h2(λti) = 0, i = 1, . . . , n,

• for any i = 1, . . . , n− 1, one of the following conditions is satisfied:

h1h2(λt)|(ti,ti+1) 6= 0 or

h1(λt)|[ti,ti+1] ≡ 0, h2(λt)|(ti,ti+1) 6= 0 or

h2(λt)|[ti,ti+1] ≡ 0, h1(λt)|(ti,ti+1) 6= 0.

Proof. Introduce the sets
Z = {t ∈ [0, T ] | h1h2(λt) = 0}, N = [0, T ]\Z.

The set N is open in [0, T ], thus it consists of a finite or countable number of open intervals (and, may be, two
half-open intervals near the endpoints of [0, T ]). We prove that N consists of a finite number of intervals. By
contradiction, suppose that N is a countable union of non-intersecting intervals. Choosing a point in each interval,
construct a sequence {τn | n ∈ N} ⊂ N . Passing to a subsequence, we can assume that ∃ limn→∞ τn = t̄ ∈ [0, T ],
and τn < t̄ for all n ∈ N (or τn > t̄ for all n ∈ N, which is considered similarly). Since the points τn belong to
different connected components of N , there exists a sequence {sn}, n ∈ N, such that sn ∈ Z, τn < sn < τn+1 <
sn+1 < · · · < t̄, n ∈ N. Thus limn→∞ sn = t̄. Since h1h2(λτn) 6= 0, there exists an interval (αn, βn) 3 τn such
that h1h2(λt)|(αn,βn) 6= 0, n ∈ N. Each extremal arc λt|(αn,βn), n ∈ N, is a bang arc, and the Casimirs h4, h5, E
take the same value on each of these arcs. Thus duration of all bang arcs is separated from zero: βn−αn ≥ C > 0,
C = C(h4, h5, E), see Cor. 1. Then sn−1 − sn ≥ βn − αn ≥ C > 0, which contradicts the equality limn→∞ sn = t̄.
Thus N consists of a finite number of intervals.

Let h1h2(λt)|[ti,ti+1] ≡ 0. Notice that if hj(λt) = 0, then h3−j(λt) 6= 0, j = 1, 2, sinceH(λt) = (|h1|+|h2|)(λt) > 0
for a normal extremal λt. Take any t̄ ∈ [ti, ti+1], then we can assume that h1(λt̄) = 0, h2(λt̄) 6= 0 (the case h2(λt̄) =
0, h1(λt̄) 6= 0 is considered similarly). Then there exists a neighborhood O(t̄) ⊂ [t1, t2] such that h2(λt)|O(t̄) 6= 0,
thus h1(λt)|O(t̄) ≡ 0. Thus the set {t ∈ [ti, ti+1] | h1(λt) = 0} is open and closed in [ti, ti+1], so it coincides with
[ti, ti+1]. In other words,

h1(λt)|[ti,ti+1] ≡ 0, h2(λt)|(ti,ti+1) 6= 0.

Summing up, any normal extremal is either bang-bang, or singular, or mixed.

6 Mixed extremals

Consider an extremal λt, t ∈ [0, T ], and let 0 ≤ α < β < γ ≤ T . Let the arc λt|[α,β] be bang-bang, and let the arc
λt|[β,γ] be singular. Then we say that the bang-bang arc λt|[α,β] adjoins the singular arc λt|[β,γ] at the point λβ .
Similarly in the case when a singular arc precedes a bang-bang arc.

Notice that singular arcs of types (a), (b) were described in Theorems 3, 4 [17].

Proposition 2. Let h4 ≥ h5 ≥ 0.
A singular arc can adjoin a bang-bang arc only at points λt̄ that satisfy the following conditions:

• θ = 3π
2 , h3 = 0, 0 ≤ h5 ≤ h4

(h1-singular arc of type (b) adjoins a bang-bang arc),
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• θ = 0, h3 = 0, 0 < h5 = h4

(h2-singular arc of type (b) adjoins a bang-bang arc).

Proof. Singular arcs of type (a) cannot adjoin bang-bang arcs since these singular arcs satisfy the equalities h3 =
h4 = h5 = 0 (see Th. 3, 4 [17]), but these equalities cannot hold on bang-bang extremals (see Subsec. 3.4).

h1-singular arcs of type (b) satisfy the conditions:

θ =
π

2
+ πn, h3 = 0, 0 < h5 ≤ h4.

The point θ = π
2 , h3 = 0 is an equilibrium point of the phase portrait of the reduced Hamiltonian system of PMP,

thus the equality (θ, h3) = (π2 , 0) cannot hold on a bang-bang extremal. Similarly, h2-singular arc of type (b)
satisfies the conditions

θ = πn, h3 = 0, h4 = h5 = 0,

and the equality (θ, h3) = (π, 0) cannot hold on a bang-bang extremal.

Notice that singular controls that adjoin bang-bang controls are constant. Thus all mixed controls are piecewise
constant, and Th. 3 can be used for bounding the number of switchings on optimal mixed trajectories.

Mixed extremals are schematically shown in Figs. 42-46. Small dashed circles near the points (θ, h3) = ( 3π
2 , 0)

and (θ, h3) = (0, 0) denote singular arcs that adjoin bang-bang arcs. Singular arcs are shown by dashed segments.

-π/2 π/2 π 3π/2

Figure 42: Mixed extremals (θ(t), h3(t)) with h4 >
h5 > 0

-1/2 1/2 1
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-3

-2

-1

1/2

Figure 43: Example of mixed trajectory (x(t), y(t))
with h4 > h5 > 0
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-π/2 π/2 π 3π/2

Figure 44: Mixed extremals (θ(t), h3(t)) with h4 >
h5 = 0
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Figure 45: Example of mixed trajectory (x(t), y(t))
with h4 > h5 = 0

-π/2 π/2 π 3π/2

Figure 46: Mixed extremals (θ(t), h3(t)) with h4 =
h5 > 0

-1/2 1/2 1 3/2 2 5/2

1/2

1

-3/2

Figure 47: Example of mixed trajectory (x(t), y(t))
with h4 = h5 > 0

Notice that singular arcs, unlike bang-bang ones, may have arbitrary durations.
Mixed extremals for h4 ≥ h5 ≥ 0 arise in the following cases:

• Case 1): h4 > h5 > 0, θ = 3π
2 , h3 = 0, level line C6, see Figs. 42, 43,

• Case 2): h4 > h5 = 0, θ = 3π
2 , h3 = 0, level line C5, see Figs. 44, 45,

• Case 3): h4 = h5 > 0, θ ∈ {0, 3π
2 }, h3 = 0, level line C2, see Figs. 46, 47.

Theorem 3 yields the following bound.

Theorem 8. Optimal mixed controls have not more that 13 switchings.

Notice that mixed extremals λt are not uniquely determined by the initial covector λ0 and time t, because of
arbitrary duration of singular arcs. Thus exponential mapping cannot be defined for mixed extremals, as it was
defined for bang-bang ones.

7 Bound on the number of arcs of minimizers

Important questions for applications of sub-Finsler geometry in metric group theory are the following:

• given any pair of points in a sub-Finsler manifold, does there exist a piecewise-smooth minimizer that connects
these points?
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• is there a uniform bound on the number of smooth arcs for piecewise smooth minimizers that connect arbitrary
points in the manifold?

On the basis of our results we can provide affirmative answer for the both questions for the `∞ sub-Finsler
problem studied in this paper.

Corollary 2. Any two points in the Cartan group can be connected by a piecewise smooth minimizer with not more
than 14 smooth arcs.

Proof. By Th. 7, any two points in the Cartan group can be connected by a minimizer that belongs to the following
(mutually not excluding) classes:

1. abnormal,

2. singular,

3. bang-bang,

4. mixed.

Abnormal trajectories are smooth (see Th. 2 [17]). If two points can be connected by a singular trajectory,
then they can be connected by a piecewise smooth singular trajectory with not more than 5 smooth arcs (see
Prop. 1 [17]). Bang-bang minimizers are piecewise smooth with up to 12 smooth arcs (see Th. 6). Finally, mixed
minimizers are piecewise smooth with up to 14 smooth arcs (see Th. 8).

Moreover, we can now prove Th. 1 as a corollary of previously obtained results.

Proof. Classification of minimizers into types (i)–(iii) follows from Th. 7. The bound on the number of switchings
on minimizers of type (ii) and not of type (i) is given by Th. 6; a similar bound for type (iii) is obtained by Th. 8.
The length-minimizing property of trajectories of type (i) follows from Lemma 2 [17]. Existence of a piecewise
smooth minimizer with up to 5 smooth arcs for every trajectory of type (i) follows from Prop. 1 [17].

8 Conclusion

In this paper we continued a study of the `∞ sub-Finsler problem on the Cartan group. Many questions remain
unsolved, e.g.:

• cut time along bang-bang and mixed trajectories,

• cut locus,

• regularity of sub-Finsler distance and sphere.

We postpone study of these questions to forthcoming papers.
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