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Abstract. We characterize analytic curves that contain non-trivial self-affine sets. We also

prove that compact algebraic surfaces do not contain non-trivial self-affine sets.

1. Introduction

Self-similar and self-affine sets are among the most typical and important fractal
objects; see e.g. [2]. They can be generated by the so-called iterated function systems;
see Section 2. Although these sets can be very irregular as one expects, they often
have very rigid geometric structure.

It is not surprising that typical non-flat smooth manifolds do not contain any
non-trivial self-similar or self-affine set. For instance, circles are such examples. To
see this, suppose to the contrary that a circle C contains a non-trivial self-affine set
E. Let f be a contractive affine map in the defining iterated function system of E.
Then f(E) ⊂ E and thus f(E) is contained in both C and f(C). However, since
f(C) is an ellipse with diameter strictly smaller than that of C, the intersection of
f(C) and C contains at most two points. This is a contradiction since f(E) is an
infinite set.

The above general phenomena was first clarified by Mattila [6] in the self-similar
case. He proved that a self-similar set E satisfying the open set condition either lies
on an m-dimensional affine subspace or Ht(E ∩ M) = 0 for every m-dimensional
C1-submanifold of R

n. Here t is the Hausdorff dimension of E and Ht is the t-
dimensional Hausdorff measure. This result was later generalized to self-conformal
sets in [4, 5, 7]. As a related work, Bandt and Kravchenko [1] showed that if E is
a self-similar set which spans R

n and x ∈ E, then there does not exist a tangent
hyperplane of E at x.

As an easy consequence of the result of Mattila or that of Bandt and Kravchenko,
an analytic planar curve does not contain any non-trivial self-similar set unless it is
a straight line segment. In a private communication, Mattila asked which kind of
analytic planar curves can contain a non-trivial self-affine set. The main purpose of
this article is to answer this question.

We first remark that any closed parabolic arc is a self-affine set. This interesting
fact was first pointed out by Bandt and Kravchenko [1]. In that paper, they con-
sidered self-affine planar curves consisting of two pieces E = f1(E) ∪ f2(E). They
showed that if a certain condition on the eigenvalues of f1 and f2 holds, then the
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curve E is differentiable at all except for countably many points. They also intro-
duced a stronger condition on the eigenvalues which guarantees the curve E to be
continuously differentiable. This result implies that there exist many continuously
differentiable self-affine curves. However, Bandt and Kravchenko furthermore showed
that self-affine curves cannot be very smooth: the only simple C2 self-affine planar
curves are parabolic arcs and straight lines.

In our main result, instead of self-affine curves, we consider general self-affine
sets and examine when they can be contained in an analytic curve.

Theorem A. An analytic curve in R
n, n ≥ 2, which cannot be embedded in a

hyperplane contains a non-trivial self-affine set if and only if it is an affine image of

η : [c, d] → R
n, η(t) = (t, t2, . . . , tn), for some c < d.

The above result gives a complete answer to the question of Mattila: the only
analytic planar curves that contain non-trivial self-affine sets are parabolic arcs and
straight line segments. As explained by Mattila, the question is related to the study
of singular integrals and self-similar sets in Heisenberg groups. In such groups, self-
similar sets are self-affine in the Euclidean metric. From the singular integral theory
point of view, it is thus important to understand when a self-affine set is contained
in an analytic manifold.

Concerning manifolds, we study an analogue of Mattila’s question. We examine
which kind of algebraic surfaces can contain self-affine sets. Our result shows that
this cannot happen on compact surfaces.

Theorem B. A compact algebraic surface does not contain non-trivial self-affine

sets.

It is easy to see that non-compact surfaces, such as paraboloids, can contain
non-trivial self-affine sets; see Example 4.2. To finish the article, we introduce in
Proposition 4.4 a sufficient condition for the inclusion of a self-affine set in an algebraic
surface.

2. Preliminaries

In this section, we introduce the basic concepts to be used throughout in the
article. A mapping f : Rn → R

n is affine if f(x) = Tx + c for all x ∈ R
n, where T

is a n× n matrix and c ∈ R
n. The matrix T is called the linear part of f . It is easy

to see that an affine map is invertible if and only if its linear part is non-singular.
A mapping f : Rn → R

n is strictly contractive if |f(x) − f(y)| < |x − y| for all
x, y ∈ R

n. Note that an affine mapping f is strictly contractive if and only if its
linear part T has operator norm ‖T‖ strictly less than 1. A non-empty compact set

E ⊂ R
n is called self-affine if E =

⋃ℓ

i=1 fi(E), where {fi}ℓi=1 is an affine iterated
function system (IFS), i.e. a finite collection of strictly contractive invertible affine
maps fi : R

n → R
n; see [3]. Moreover, E is called self-similar if all the fi’s are

similitudes. We say that a self-affine set is non-trivial if it is not a singleton.
If a < b, then a non-constant continuous function γ : [a, b] → R

n is called a curve.
We denote the set γ([a, b]) ⊂ R

n by Img(γ) and refer to it also as a curve. By saying
that a curve γ contains a set A we obviously mean that A ⊂ Img(γ). A curve γ
is simple if γ(s) 6= γ(t) for a ≤ s < t < b. We say that a curve γ : [a, b] → R

n,
γ(t) = (x1(t), . . . , xn(t)), is analytic if xi : [a, b] → R is continuous on [a, b] and real
analytic on (a, b) for all i ∈ {1, . . . , n}. Recall that a function is real analytic on
an open set U ⊂ R if, at any point t ∈ U , it can be represented by a convergent
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power series on some interval of positive radius centered at t. Similarly, if xi’s are Ck

functions for some k ∈ N, then the curve γ is called Ck curve. The k-th derivative of

a Ck curve γ is γ(k)(t) = (x
(k)
1 (t), . . . , x

(k)
n (t)). If f : Rn → R

n is an invertible affine
mapping and γ : [a, b] → R

n is a curve, then f ◦ γ is the affine image of the curve.
Let P : Rn → R be a non-constant polynomial with real coefficients. The set

S(P ) = {x ∈ R
n : P (x) = 0}

is called an algebraic surface. The degree of P , denoted by deg(P ), is the highest
degree of its terms, when P is expressed in canonical form. The degree of a term is
the sum of the exponents of the variables that appear in it.

3. Self-affine sets and analytic curves

In this section, we prove Theorem A. Our arguments are inspired by the proof
of [1, Theorem 3(i)]. We will first show that an affine image of η : [c, d] → R

n,
η(t) = (t, t2, . . . , tn), contains a non-trivial self-affine set. This follows immediately
from the following lemma.

Lemma 3.1. If η : [c, d] → R
n is given by η(t) = (t, t2, . . . , tn), then Img(η) is a

non-trivial self-affine set for all c < d.

Proof. Let

0 < λ < (2n
√
nmax{(2|c|+ 1)n, (|c|+ |d|+ 1)n})−1 < 1

and choose t1, . . . , tℓ ∈ [c, d] with ℓ ∈ N such that the self-similar set of {x 7→
λ(x− c) + ti}ℓi=1 is [c, d]. Write ci,k,j =

(

k

j

)

( ti
λ
− c)k−j and observe that

(

t−
(

c− ti
λ

))k

=

k
∑

j=1

ci,k,j

(

tj −
(

c− ti
λ

)j)

for all k ∈ {1, . . . , n}, i ∈ {1, . . . , ℓ}, and t ∈ R.
Defining for each i ∈ {1, . . . , ℓ} a lower-triangular matrix by

Ti =













λci,1,1 0 0 · · · 0
λ2ci,2,1 λ2ci,2,2 0 · · · 0
λ3ci,3,1 λ3ci,3,2 λ3ci,3,3 · · · 0

...
...

...
. . .

...
λnci,n,1 λnci,n,2 λnci,n,3 · · · λnci,n,n













,

we see, by the choice of λ and the fact that ti ∈ [c, d], that

‖Ti‖ ≤
√
n max

k∈{1,...,n}

k
∑

j=1

|λkci,k,j| =
√
n max

k∈{1,...,n}

k
∑

j=1

λk

(

k

j

)

∣

∣

∣

ti
λ
− c

∣

∣

∣

k−j

≤
√
n max

k∈{1,...,n}

k
∑

j=1

λj

(

k

j

)

(|ti|+ |c|+ 1)k−j ≤ λ
√
n max

k∈{1,...,n}
(|ti|+ |c|+ 1)k2k < 1.

Therefore, the affine map fi : R
n → R

n defined by

fi(x1, . . . , xn) = Ti(x1, . . . , xn)− Ti

(

c− ti
λ
,
(

c− ti
λ

)2

, . . . ,
(

c− ti
λ

)n)
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is contractive and satisfies

fi(t, t
2, . . . , tn) = Ti

(

t−
(

c− ti
λ

)

, t2 −
(

c− ti
λ

)2

, . . . , tn −
(

c− ti
λ

)n)

=
(

λ
(

t−
(

c− ti
λ

))

, λ2
(

t−
(

c− ti
λ

))2

, . . . , λn
(

t−
(

c− ti
λ

))n)

= (λ(t− c) + ti, (λ(t− c) + ti)
2, . . . , (λ(t− c) + ti)

n)

for all t ∈ [c, d]. Hence the self-affine set of {fi}ℓi=1 is the curve Img(η). �

Remark 3.2. The key fact implicitly used in the above proof is that η(t) =
(t, t2, . . . , tn) defined on R is invariant under homotheties diag(s, s2, . . . , sn) and
translations (t, t2, . . . , tn) 7→ (t− a, (t− a)2, . . . , (t− a)n).

Let us next focus on the opposite claim.

Theorem 3.3. If an analytic curve which cannot be embedded in a hyperplane

contains a non-trivial self-affine set, then it is an affine image of η : [c, d] → R
n,

η(t) = (t, t2, . . . , tn), for some c < d.

Proof. Let γ : [a, b] → R
n be an analytic curve such that Img(γ) is not contained

in a hyperplane. Suppose that E is a non-trivial self-affine set of an affine IFS
{fi}ℓi=1 such that E ⊂ Img(γ). Let S be the semigroup generated by f1, . . . , fℓ under
composition.

By analyticity and the assumption that Img(γ) is not contained in a hyperplane,
without loss of generality, we may assume that E ⊂ γ((a, b)) and γ′(t) 6= 0 for all
t ∈ (a, b). Since (a, b) has a countable cover of open intervals Ii such that γ(Ii) has no
intersection points, we have E ⊂ ⋃

i E ∩ γ(Ii) and therefore, by the Baire Category
Theorem, there exist i and an open set U such that ∅ 6= E ∩ U ⊂ E ∩ γ(Ii). Since
E ∩ U contains a non-trivial self-affine set, we see that no generality is lost if we
assume the curve γ to be simple.

Fix ϕ ∈ S and write

(3.1) ϕ(x) = M(x− x0) + x0

for all x ∈ R
n, where x0 ∈ R

n is the fixed point of ϕ and M is an n × n invertible
matrix. Note that x0 ∈ E. Since E ⊂ γ((a, b)) there exists t0 ∈ (a, b) such that
x0 = γ(t0). Hence we may rewrite (3.1) as

(3.2) ϕ(x) = M(x − γ(t0)) + γ(t0).

Since E is non-trivial, there exists a sequence (ti)i∈N of distinct numbers in (a, b)
such that ti → t0 as i → ∞ and γ(ti) ∈ E for all i ∈ N. Furthermore, since
ϕ(E) ⊂ E ⊂ γ((a, b)), we see that ϕ(γ(ti)) ∈ Img(γ) and therefore, for each i ∈ N

there exists t′i ∈ (a, b) such that

(3.3) ϕ(γ(ti)) = γ(t′i).

Recalling that γ is simple and ϕ(γ(t0)) = γ(t0), we see that t′i → t0 as i → ∞. By
(3.2) and (3.3), we have

(3.4) M(γ(ti)− γ(t0)) = ϕ(γ(ti))− γ(t0) = γ(t′i)− γ(t0)

and therefore,

M

(

γ(ti)− γ(t0)

ti − t0

)

=
γ(t′i)− γ(t0)

t′i − t0
· t

′
i − t0
ti − t0

.
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Letting i → ∞, we have

(3.5) Mγ′(t0) = λγ′(t0),

where λ = limi→∞(t′i − t0)/(ti − t0) 6= 0 by the invertibility of M .
Let J be an invertible matrix such that

J−1γ′(t0) = (1, 0, . . . , 0)

and

J−1MJ =









A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am









is a real canonical Jordan form of M . Write A = J−1MJ and recall that if λi is a
real eigenvalue of M , then

Ai =

















λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi

















,

and if λi is a non-real eigenvalue of M with real part ai and imaginary part bi, then

Ai =

















Ci I 0 · · · 0 0
0 Ci I · · · 0 0
0 0 Ci · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Ci I
0 0 0 · · · 0 Ci

















,

where

Ci =

(

ai bi
−bi ai

)

and I =

(

1 0
0 1

)

.

Note that by (3.5), we have λ1 = λ ∈ R. Moreover by (3.4),

(3.6) AJ−1(γ(ti)− γ(t0)) = J−1(γ(t′i)− γ(t0))

for all i ∈ N.
Defining γ̃ : [a, b] → R

n by

(3.7) γ̃(t) = J−1(γ(t)− γ(t0)),

we clearly have γ̃(t0) = 0 and γ̃′(t0) = J−1γ′(t0) = (1, 0, . . . , 0). Write γ̃(t) =
(x̃1(t), . . . , x̃n(t)). Then x̃1(t0) = 0 and x̃′

1(t0) = 1 6= 0. By the inverse function
theorem, the function x̃1(t) has a local inverse t = t(x̃1) which is analytic on (−ε, ε)
for some ε > 0. Write x∗

1 = x̃1 and x∗
k(x

∗
1) = x̃k(t(x

∗
1)) for k ∈ {2, . . . , n}. Clearly

x∗
k(·) is analytic on (−ε, ε) for all k ∈ {2, . . . , n}. Note that

(3.8) x∗
k(0) = x̃k(t0) = 0, (x∗

k)
′(0) = x̃′

k(t0) · t′(0) = 0

for all k ∈ {2, . . . , n} and x∗
2, . . . , x

∗
n are not constant functions. Indeed, if x∗

k is
constant for some k, then so is x̃k; by the fact that each x̃k is a linear combination of
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x1, . . . , xn (see (3.7)), the curve γ would be contained in a hyperplane in R
n, leading

to a contradiction. Let ξ : (−ε, ε) → R
n be defined by

(3.9) ξ(x∗
1) = (x∗

1, x
∗
2(x

∗
1), . . . , x

∗
n(x

∗
1)).

Then ξ is a re-parametrization of the curve γ̃ restricted on a neighborhood of t0. The
goal of the proof is to show that an affine image of the curve ξ will be of the claimed
form.

Let us next collect three facts related to the above defined setting.

Fact 1. Write A = (aij)1≤i,j≤n and let Y = a11x
∗
1 +

∑n

j=2 a1jx
∗
j (x

∗
1). Then

(3.10) A(x∗
1, x

∗
2(x

∗
1), . . . , x

∗
n(x

∗
1)) = (Y, x∗

2(Y ), . . . , x∗
n(Y ))

for all x∗
1 ∈ (−ε, ε).

Proof. By (3.6), Aγ̃(ti) = γ̃(t′i) for all i ∈ N. Hence the equality (3.10) holds
for infinitely many different values of x∗

1 in a small closed neighborhood of 0. By
analyticity, (3.10) holds on the whole interval (−ε, ε). �

The next fact concerns the shape of the matrix A.

Fact 2. The matrix A is diagonal. In other words, all the block matrices Ai have
dimension 1.

Proof. Let us first show that A1 has dimension 1. Suppose to the contrary that
d1 = dim(A1) > 1. Since the eigenvalue associated to A1 is λ ∈ R, we have

A1 =













λ 1 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ 1
0 0 · · · 0 λ













.

By Fact 1, we see that

(3.11) λx∗
d1
(x∗

1) = x∗
d1
(λx∗

1 + x∗
2(x

∗
1)).

By (3.8) and the fact that x∗
k, k ∈ {2, . . . , n}, is not a constant, there exist integers

p2, . . . , pn ≥ 2 and reals c2, . . . , cn 6= 0 such that for each k ∈ {2, . . . , n}
(3.12) x∗

k(x
∗
1) = ck(x

∗
1)

pk + o(x∗
1)

pk

as x∗
1 → 0. Plugging (3.12) into (3.11), and comparing the coefficients of Taylor

series in x∗
1 on both sides, we get

λcd1 = cd1λ
pd1

which implies that pd1 = 1, a contradiction. Hence we have dim(A1) = 1 and therefore
Y = λx∗

1.
Let us next assume inductively that for some k ∈ {1, . . . , n − 1} the matrices

A1, . . . , Ak are of dimension 1 and show that dim(Ak+1) = 1. Suppose to the contrary
that d = dim(Ak+1) > 1. Now there are two cases: either λk+1 is real or not. First
suppose that λk+1 is real. Let ℓ = k + d. By (3.10) we have

λk+1x
∗
ℓ−1(x

∗
1) + x∗

ℓ(x
∗
1) = x∗

ℓ−1(λx
∗
1),(3.13)

λk+1x
∗
ℓ(x

∗
1) = x∗

ℓ(λx
∗
1).(3.14)
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Plugging (3.12) into (3.14), and comparing the coefficients of Taylor series in x∗
1 on

both sides, we get λk+1 = λpℓ . Then plug (3.12) into (3.13) to obtain

λpℓcℓ−1(x
∗
1)

pℓ−1 + cℓ(x
∗
1)

pℓ = λpℓ−1cℓ−1(x
∗
1)

pℓ−1 + o((x∗
1)

pℓ−1 + (x∗
1)

pℓ)

as x∗
1 → 0. That is,

(3.15) (λpℓ − λpℓ−1)cℓ−1(x
∗
1)

pℓ−1 + cℓ(x
∗
1)

pℓ = o((x∗
1)

pℓ−1 + (x∗
1)

pℓ)

as x∗
1 → 0. Since 0 < |λ| < 1 and cℓ−1, cℓ 6= 0, one easily derives a contradiction from

(3.15) by considering the cases pℓ < pℓ−1, pℓ = pℓ−1, and pℓ > pℓ−1 separately.
Hence we may assume that λk+1 = a+ib with b 6= 0. The matrix Ak+1 is therefore

of the form

Ak+1 =





















a b 1 0 · · · 0 0
−b a 0 1 · · · 0 0
0 0 a b · · · 0 0
0 0 −b a · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · a b
0 0 0 0 · · · −b a





















.

Again let ℓ = k + d. Applying (3.10), we see that

ax∗
ℓ−1(x

∗
1) + bx∗

ℓ(x
∗
1) = x∗

ℓ−1(λx
∗
1),

−bx∗
ℓ−1(x

∗
1) + ax∗

ℓ(x
∗
1) = x∗

ℓ(λx
∗
1).

Using the above identities and comparing the coefficients of (x∗
1)

pℓ and (x∗
1)

pℓ−1 in the
Taylor expansions of x∗

ℓ and x∗
ℓ−1, we see that pℓ = pℓ−1; and moreover,

acℓ−1 + bcℓ = cℓ−1λ
pℓ,

−bcℓ−1 + acℓ = cℓλ
pℓ,

or, equivalently,
(

a b
−b a

)(

cℓ−1

cℓ

)

= λpℓ

(

cℓ−1

cℓ

)

.

This means that the real number λpℓ is an eigenvalue of the above matrix, a contra-
diction. �

By Fact 2, we may now write

(3.16) A = diag(λ1, λ2, . . . , λn),

where λ1 = λ ∈ (−1, 1) \ {0}. With this observation, we can examine how the curve
ξ defined in (3.9) looks like.

Fact 3. There exist integers 2 ≤ p2 < p3 < · · · < pn such that a piece of the
curve Img(γ), namely γ : (t0−δ1, t0+ δ2) → R

n for some δ1, δ2 > 0, is an affine image
of the curve η : (−ε, ε) → R

n defined by

η(t) = (t, tp2, . . . , tpn).

More precisely, there exists an invertible n×n matrix B such that the above defined
η is the re-parametrization of the curve B(γ(t)− γ(t0)), t ∈ (t0 − δ1, t0 + δ2).

Proof. We first examine the curve ξ defined in (3.9). By (3.16) and (3.10), we
have for 2 ≤ k ≤ n,

(3.17) x∗
k(λx

∗
1) = λkx

∗
k(x

∗
1)
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and hence, by (3.12), there exist integers p2, . . . , pn ≥ 2 and reals c2, . . . , cn 6= 0 such
that

ck(λx
∗
1)

pk = λkck(x
∗
1)

pk + o((x∗
1)

pk).

This implies that λk = λpk and thus x∗
k(λx

∗
1) = λpkx∗

k(x
∗
1). Taking pk-th derivative

on both sides gives (x∗
k)

(pk)(λx∗
1) = (x∗

k)
(pk)(x∗

1). Hence (x∗
k)

(pk)(λjx∗
1) = (x∗

k)
(pk)(x∗

1)
for all j ∈ N. Letting j → ∞, we get (x∗

k)
(pk)(x∗

1) ≡ (x∗
k)

(pk)(0) = ckpk!. Combining
this with (3.12) yields

x∗
k(x

∗
1) = ck(x

∗
1)

pk .

Since the curve γ̃ is not contained in a hyperplane, we see that, for any non-
zero vector (b1, . . . , bn), the sum

∑n

k=1 bkx
∗
k is not identically zero. Thus the in-

tegers p2, . . . , pn are mutually distinct. Hence the curve ξ : (−ǫ, ǫ) → R
n is of

the form ξ(x∗
1) = (x∗

1, c2(x
∗
1)

p2, . . . , cn(x
∗
1)

pn). Without confusion, we simply write
ξ(t) = (t, c2t

p2, . . . , cnt
pn).

We have now proved that, possibly after a permutation on coordinate axis, the
curve γ̃ : (t0 − δ1, t0 + δ2) → R

n for some δ1, δ2 > 0, can be re-pararemtrized by

t 7→ (t, c2t
p2 , . . . , cnt

pn), t ∈ (−ǫ, ǫ)

for some integers 2 ≤ p2 < p3 < · · · < pn and reals c2, . . . , cn 6= 0. Applying a
further affine transformation (u1, u2, . . . , un) 7→ (u1, u2/c2, . . . , un/cn), we see that
γ : (t0 − δ1, t0 + δ2) → R

n, for some δ1, δ2 > 0, is an affine image of the curve η. This
completes the proof of Fact 3. �

By Fact 3, it suffices to show that pk = k for all k ∈ {2, . . . , n}. Observe
that η : (−ε, ε) → R

n given by Fact 3 is an analytic simple curve which cannot be
embedded in a hyperplane and it contains a non-trivial self-affine set, say F . Then
there exists t1 ∈ (−ε, ε) \ {0} such that η(t1) is the fixed point of a mapping of
the affine IFS defining F . Therefore, applying the previous argument (Fact 3) once
more (in which γ is replaced by η), we find integers 2 ≤ q2 < q3 < · · · < qn and an
interval (t1−δ′1, t1+δ′2) ⊂ (−ǫ, ǫ) for some some δ′1, δ

′
2 > 0 such that, under a suitable

invertible linear transformation B′, the curve

t 7→ B′(η(t)− η(t1))

defined on (t1 − δ′1, t1 + δ′2) can be re-parametrized by

t 7→ (t, tq2, . . . , tqn).

This means that, writing B′ = (bkj)1≤k,j≤n, we have

(3.18)

n
∑

j=1

bkj(t
pj − t

pj
1 ) =

( n
∑

j=1

b1j(t
pj − t

pj
1 )

)qk

for all t ∈ (t1 − δ′1, t1 + δ′2) and k ∈ {2, . . . , n}, where p1 = 1. By analyticity, (3.18)
holds for all t ∈ R.

We will next compare the degrees of polynomials of t on both sides of (3.18)
for all k ∈ {2, . . . , n}. Let d = deg(

∑n

j=1 b1j(t
pj − t

pj
1 )) ∈ {1, p2, . . . , pn}. When k

runs over {2, . . . , n}, the degrees of the right-hand side of (3.18) are dq2, dq3, . . . , dqn,
whereas the left-hand side has degree in {1, p2, . . . , pn}. Therefore,

{dq2, dq3, . . . , dqn} ⊂ {1, p2, . . . , pn}
which implies that

(3.19) pk = dqk
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for all k ∈ {2, . . . , n}. Since d ∈ {1, p2, . . . , pn}, we must have d = 1 (otherwise, by
(3.19), qk = 1 for some k ∈ {2, . . . , n} which is a contradiction). But since d = 1, we
may write (3.18) as

n
∑

j=1

bkj(t
pj − t

pj
1 ) = (c(t− t1))

pk

for all k ∈ {2, . . . , n}. In particular, this shows that (t− t1)
pn is a linear combination

of (t − t1), (t
p2 − tp21 ), . . . , (tpn − tpn1 ). Since t1 6= 0, all powers tj , j ∈ {1, . . . , pn},

appear in (t − t1)
pn with non-degenerate coefficients, and it follows that pk = k for

all k ∈ {2, . . . , n}. �

Remark 3.4. (1) Bandt and Kravchenko showed that there are plenty of C1

planar self-affine curves (i.e. self-affine sets that are C1 planar curves); see [1, The-
orem 2]. Furthermore, in [1, Theorem 3(ii)], they showed that parabolic arcs and
straight line segments are the only simple C2 planar self-affine curves. This result
also follows from Theorem A by a simple modification. It would be interesting to
know that if a self-affine set E is contained in a C2 planar curve, then does there
exists an analytic curve containing E?

(2) The analyticity assumption in Theorem A is well motivated since for each
k ∈ N it is easy to construct a non-parabolic Ck planar curve containing a self-affine
set. To see this, start from a piece of parabolic curve and change a small part of it
so that the new curve is Ck. Clearly the obtained curve still contains a self-affine
set. Due to this, it would be interesting to know if there exists a self-affine set E
which is a subset of a strictly convex C2 planar curve, but is not a subset of any
parabolic curve. Also, when can a self-affine set intersect an analytic curve in a set
of positive measure for some relevant measure such as the self-affine measure? In
the self-conformal case, this property implies that the whole set is contained in an
analytic curve; see [4, Theorem 2.1].

4. Self-affine sets and algebraic surfaces

In this section, we prove Theorem B and introduce self-affine polynomials.

Proof of Theorem B. Let P : Rn → R be a non-constant polynomial with real
coefficients such that S(P ) is compact. Suppose to the contrary that there exists a
non-trivial self-affine set E contained in S(P ). Let f be one of the mappings of the
affine IFS defining E and set Pj = P ◦f−j for all j ∈ N. Observe that the degree of Pj

is at most deg(P ). It is easy to see that S(Pj) = f j(S(P )) for all j ∈ N and therefore
diam(S(Pj)) → 0 as j → ∞. By the assumption, we have f j(E) ⊂ f j(S(P )) = S(Pj)
for all j ∈ N, and by the invariance, we have f j(E) ⊂ f j−1(E) ⊂ · · · ⊂ E for all
j ∈ N.

Since the ring of polynomials having degree at most deg(P ) is finite dimensional
there exist Pk1 , . . . , Pkm such that each Pj is a linear combination of these polynomials.
Choose j so large that

diam(S(Pj)) < min
i∈{1,...,m}

diam(fki(E)) = diam

( m
⋂

i=1

fki(E)

)

.

But since Pj =
∑m

i=1 ciPki for some ci, we have
m
⋂

i=1

fki(E) ⊂
m
⋂

i=1

S(Pki) ⊂ S(Pj).
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This contradiction finishes the proof. �

Remark 4.1. By slightly modifying the above argument, we can prove the fol-
lowing stronger result: If S(P ) is an algebraic surface and there exists a contractive

affine map f such that S(P ) contains the fixed point z of f and a non-periodic orbit

{fn(x)} for some x, then S(P ) is unbounded. To see this, choose k1 < . . . < km
so that each Pn is a linear combination of the polynomials Pk1, . . . , Pkm. If S(P ) is
bounded, then we can pick j large enough so that diam(S(Pj)) < |z − fkm(x)|. This
is a contradiction since S(Pj) ⊃

⋂m

i=1 S(Pki) ⊃ {z, fkm(x)}.
Example 4.2. It is clear that a hyperplane can contain a non-trivial self-affine

set. In this example, we show that also other kinds of non-compact algebraic surfaces
can have this property. Let P : Rn → R, P (x1, . . . , xn) = x2

1 + · · ·+ x2
n−1 − xn, and

observe that, by Lemma 3.1, the parabola {(x1, . . . , xn) ∈ R
n : xn = x2

1 and x2 =
· · · = xn−1 = 0} ⊂ S(P ) contains non-trivial self-affine sets. It is also easy to see
that S(P ) contains self-affine sets having dimension larger than one. Fix an interval
[a, b] ⊂ R and define a mapping η : [a, b]n−1 → R

n by setting η(x1, . . . , xn−1) =
(x1, . . . , xn−1, x

2
1+ · · ·+x2

n−1). Let {ci(x1, . . . , xn−1)+(di, . . . , di)}ℓi=1 be an affine IFS
on R

n−1 so that [a, b]n−1 is the self-affine set generated by it. Define fi : R
n → R

n

by setting

fi(x1, . . . , xn) =













ci 0 · · · 0 0
0 ci · · · 0 0
...

...
. . .

...
...

0 0 · · · ci 0
2cidi 2cidi · · · 2cidi c2i

























x1

x2
...

xn−1

xn













+













di
di
...
di

(d− 1)d2i













for all (x1, . . . , xn) ∈ R
n and i ∈ {1, . . . , ℓ}. Since fi(η(x1, . . . , xn−1)) = η(cix1 +

di, . . . , cixd−1 + di) the image η([a, b]n−1) ⊂ S(P ) is invariant under the affine IFS
{fi}ℓi=1.

We shall next introduce a general condition which guarantees the algebraic sur-
face to contain self-affine sets. Suppose that P : Rn → R is a non-constant poly-
nomial with real coefficients. We say that a contractive invertible affine map f is a
scaling factor for P if there exists a constant C ∈ R such that

(4.1) P ◦ f = CP.

A polynomial P is called self-affine if it has two scaling factors with distinct fixed
points.

Example 4.3. Let P : R2 → R, P (x1, x2) = x2 − x1. It is easy to see that
f : R2 → R

2, f(x1, x2) =
1
2
(x1, x2), and g : R2 → R

2, g(x1, x2) =
1
2
(x1 + 1, x2 + 1),

are scaling factors for P and have distinct fixed points.

The following proposition shows that a polynomial P being self-affine is sufficient
for the inclusion of self-affine sets.

Proposition 4.4. If P : Rn → R is a self-affine polynomial, then S(P ) contains

a non-trivial self-affine set.

Proof. Let f be a scaling factor for P with a constant C. Note that there exists
a non-singular d × d matrix M with ‖M‖ < 1 and a ∈ R

n so that f(x) = Mx + a
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for all x ∈ R
n. Observe that

f j(x) = M jx+

j−1
∑

i=0

M ia →
∞
∑

i=0

M ia =: x0

as j → ∞, where x0 ∈ R
n is the fixed point of f . Choose x ∈ R

n such that

|P (x0)|+ 1 < |P (x)|.
Such a point x exists since P is not bounded. Since

CjP (x) = P ◦ f j(x) → P (x0)

as j → ∞ we may choose j large enough so that |CjP (x)| < |P (x0)| + 1. Thus
|C| < 1.

Let h and g be scaling factors for P with distinct fixed points. If f is any finite
composition of the mappings h and g, then f is a scaling factor for P . If C is
the constant associated to the scaling factor f , then the above reasoning implies that
|C| < 1. Furthermore, if x0 is the fixed point of f , then P (x0) = P ◦f(x0) = CP (x0).
Since |C| < 1, this implies P (x0) = 0 and x0 ∈ S(P ). Recalling that S(P ) is closed
it thus contains the self-affine set generated by the affine IFS {h, g}. �

Remark 4.5. It would be interesting to characterize all the algebraic surfaces
associated to self-affine polynomials. For example, in the two-dimensional case, is
the surface always contained in a line through the origin? Of course, the ultimate
open question here is to characterize all the algebraic surfaces containing self-affine
sets.
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