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of Picard modular groups
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Abstract

Given an imaginary quadratic extension K of Q, we classify the maximal nonele-
mentary subgroups of the Picard modular group PUp1, 2; OKq preserving a totally
real totally geodesic plane in the complex hyperbolic plane H2

C. We prove that these
maximal R-Fuchsian subgroups are arithmetic, and describe the quaternion algebras
from which they arise. For instance, if the radius ∆ of the corresponding R-circle

lies in N ´ t0u, then the stabiliser arises from the quaternion algebra
´ ∆ , |DK |

Q

¯

.

We thus prove the existence of infinitely many orbits of K-arithmetic R-circles in the
hypersphere of P2pCq.1

1 Introduction

Let h be a Hermitian form with signature p1, 2q on C3. The projective unitary Lie group
PUp1, 2q of h contains exactly two conjugacy classes of connected Lie subgroups locally
isomorphic to PSL2pRq. The subgroups in one class are conjugate to PpSUp1, 1q ˆ t1uq
and they preserve a complex projective line for the projective action of PUp1, 2q on the
projective plane P2pCq, and those of the other class are conjugate to POp1, 2q and preserve
a maximal totally real subspace of P2pCq. The groups PSL2pRq and PUp1, 2q act as the
groups of holomorphic isometries, respectively, on the upper halfplane model H2

R of the real
hyperbolic space and on the projective model H2

C of the complex hyperbolic plane defined
using the form h.

If Γ is a discrete subgroup of PUp1, 2q, the intersections of Γ with the connected Lie
subgroups locally isomorphic to PSL2pRq are its Fuchsian subgroups. The Fuchsian sub-
groups preserving a complex projective line are called C-Fuchsian, and the ones preserving
a maximal totally real subspace are called R-Fuchsian. In [16], we gave a classification
of the maximal C-Fuchsian subgroups of the Picard modular groups, and we explicited
their arithmetic structures, completing work of Chinburg-Stover (see Theorem 2.2 in ver-
sion 3 of [3] and [4, Theo. 4.1]) and Möller-Toledo in [11], in analogy with the result of
Maclachlan-Reid [10, Thm. 9.6.3] for the Bianchi subgroups in PSL2pCq. In this paper,
we prove analogous results for R-Fuchsian subgroups, thus completing an arithmetic de-
scription of all Fuchsian subgroups of the Picard modular groups. The classification here

1Keywords: Picard group, ball quotient, arithmetic Fuchsian groups, Heisenberg group, quaternion
algebra, complex hyperbolic geometry, R-circle, hypersphere. AMS codes: 11F06, 11R52, 20H10,
20G20, 53C17, 53C55



is more involved, as in some sense, there are more R-Fuchsian subgroups than C-Fuchsian
ones. Our approach is elementary, some of the results can surely be obtained by more
sophisticated tools from the theory of algebraic groups.

Let K be an imaginary quadratic number field, with discriminant DK and ring of
integers OK . We consider the Hermitian form h defined by

pz0, z1, z2q ÞÑ ´
1

2
z0 z2 ´

1

2
z2 z0 ` z1z1 .

The Picard modular group ΓK “ PUp1, 2q X PGL3pOKq is a nonuniform arithmetic lattice
of PUp1, 2q.2 In this paper, we classify the maximal R-Fuchsian subgroups of ΓK , and
we explicit their arithmetic structures. The results stated in this introduction do not
depend on the choice of the Hermitian form h of signature p2, 1q defined over K, since the
algebraic groups over Q whose groups of Q-points are PUp1, 2q X PGL3pKq depend up to
Q-isomorphism only on K and not on h, see for instance [20, § 3.1], so that the Picard
modular group ΓK is well defined up to commensurability.

Let I3 be the identity matrix and let I1,2 be the matrix of h. Let

AHIpQq “ tY P M3pKq : Y ˚I1,2Y “ I1,2 and Y Y “ I3u

be the set of Q-points of an algebraic subset defined over Q, whose real points consist
of the matrices of the Hermitian anti-holomorphic linear involutions z ÞÑ Y z of C3. For
instance,

Y∆ “

¨

˝

0 0 1
∆

0 1 0
∆ 0 0

˛

‚

belongs to AHIpQq for every ∆ P Kˆ. The group Up1, 2q acts transitively on AHIpRq by

pX,Y q ÞÑ X Y X
´1

for all X P Up1, 2q and Y P AHIpRq. In Section 4, we prove the following result that
describes the collection of maximal R-Fuchsian subgroups of the Picard modular groups
ΓK .

Theorem 1.1. The stabilisers in ΓK of the projectivized rational points in AHIpQq are
arithmetic maximal nonelementary R-Fuchsian subgroups of ΓK . Every maximal nonele-
mentary R-Fuchsian subgroup of ΓK is commensurable up to conjugacy in PUp1, 2q X
PGL3pKq with the stabiliser ΓK,∆ in ΓK of the projective class of Y∆, for some ∆ P

OK ´ t0u.

A nonelementary R-Fuchsian subgroup Γ of PUp1, 2q arises from a quaternion algebra
Q over Q if Q splits over R and if there exists a Lie group epimorphism ϕ from QpRq1 to
the conjugate of POp1, 2q containing Γ such that Γ and ϕpQpZq1q are commensurable. In
Section 5, we use the connection between quaternion algebras and ternary quadratic forms
to describe the quaternion algebras from which the maximal nonelementary R-Fuchsian
subgroups of the Picard modular groups ΓK arise.

2See for instance [6, Chap. 5] and subsequent works of Falbel, Parker, Francsics, Lax, Xie, Wang, Jiang,
Zhao and many others, for information on these groups, using different Hermitian forms of signature (2,1)
defined over K.



Theorem 1.2. For every ∆ P OK´t0u, the maximal nonelementary R-Fuchsian subgroup
ΓK,∆ of ΓK arises from the quaternion algebra with Hilbert symbol

`2 TrK{Q ∆, NK{Qp∆q |DK |

Q
˘

if TrK{Q ∆ ‰ 0 and from
`

1, 1
Q
˘

» M2pQq otherwise.

This arithmetic description has the following geometric consequence. Recall that an
R-circle is a topological circle which is the intersection of the Poincaré hypersphere

HS “ trzs P P2pCq : hpzq “ 0u

with a maximal totally real subspace of P2pCq. It is K-arithmetic if its stabiliser in ΓK
has a dense orbit in it.

Corollary 1.3. There are infinitely many ΓK-orbits of K-arithmetic R-circles in the hy-
persphere HS .

The figure below shows the image under vertical projection from B8H2
C to C of part

of the ΓQpiq-orbit of the standard infinite R-circle, which is Qpiq-arithmetic. The image of
each finite R-circle is a lemniscate. We refer to Section 3 and [5, §4.4] for an explanation of
the terminology. See the main body of the text for other pictures of K-arithmetic R-circles.

2 The complex hyperbolic plane

Let h be the nondegenerate Hermitian form on C3 defined by

hpzq “ z˚I1,2z “ ´Repz0z2q ` |z1|
2 ,

where I1,2 is the antidiagonal matrix

I1,2 “

¨

˝

0 0 ´1
2

0 1 0
´1

2 0 0

˛

‚ .



A point z “ pz0, z1, z2q P C3 and the corresponding element rzs “ rz0 : z1 : z2s P P2pCq (us-
ing homogeneous coordinates) is negative, null or positive according to whether hpzq ă 0,
hpzq “ 0 or hpzq ą 0. The negative/null/positive cone of h is the subset of nega-
tive/null/positive elements of P2pCq.

The negative cone of h endowed with the distance d defined by

cosh2 dprzs, rwsq “
|xz, wy|2

hpzqhpwq
,

where x¨ , ¨y is the sesquililnear form associated with h, is the complex hyperbolic plane H2
C.

The distance d is the distance of a Riemannian metric with pinched negative sectional
curvature ´4 ď K ď ´1. The null cone of h is the Poincaré hypersphere HS , which is
naturally identified with the boundary at infinity of H2

C.
The Hermitian form h in this paper differs slightly from the one we used in [15, 17, 16]

and from the main Hermitian form used by Goldman and Parker (see [5, 13, 14]). Hence we
will need to give some elementary computations that cannot be found in the literature. This
form is a bit more appropriate for arithmetic purposes concerning R-Fuchsian subgroups,
as it allows us to consider Z-points of our linear algebraic groups and not their 2Z-points.

Let Up1, 2q be the linear group of 3 ˆ 3 invertible matrices with complex coefficients
preserving the Hermitian form h. Let PUp1, 2q “ Up1, 2q{Up1q be its associated projective
group, where Up1q “ tζ P C : |ζ| “ 1u acts by scalar multiplication. We denote by
rXs “ raijs1ďi,jďn P PUp1, 2q the image of X “ paijq1ďi,jďn P Up1, 2q. The linear action of
Up1, 2q on C3 induces a projective action of PUp1, 2q on P2pCq that preserves the negative,
null and positive cones of h in P2pCq, and is transitive on each of them.

If

X “

¨

˝

a γ b
α A β

c δ d

˛

‚P M3pCq, then I´1
1,2X

˚I1,2 “

¨

˚

˝

d ´2β b

´ δ
2 A ´

γ
2

c ´2α a

˛

‹

‚

.

The matrix X belongs to Up1, 2q if and only if X is invertible with inverse I´1
1,2X

˚I1,2, that
is, if and only if

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ad` bc´ 1
2δγ “ 1

dα` cβ ´ 1
2Aδ “ 0

cd` dc´ 1
2 |δ|

2 “ 0

AA´ 2αβ ´ 2βα “ 1

ab` ba´ 1
2 |γ|

2 “ 0

bα` aβ ´ 1
2Aγ “ 0 .

(1)

Remark 2.1. A matrix X P Up1, 2q in the above form is upper triangular if and only if
c “ 0. Indeed, then the third equality in Equation (1) implies that δ “ 0. The first two
equations then become ad “ 1 and dα “ 0, so that α “ 0.

The Heisenberg group

Heis3 “
 

rw0 : w : 1s P P2pCq : Rew0 “ |w|
2
(

with law rw0 : w : 1srw10, w
1 : 1s “ rw0 ` w10 ` 2w1w,w ` w1 : 1s is identified with C ˆ R

by the coordinate mapping rw0 : w : 1s ÞÑ pw, Imw0q “ pζ, vq. It acts isometrically on H2
C



and simply transitively on HS ´ tr1 : 0 : 0su by Heisenberg translations

tζ,v “

»

–

1 2 ζ |ζ|2 ` iv
0 1 ζ
0 0 1

fi

fl P PUp2, 1q

with ζ P C and v P R. Note that t´1
ζ,v “ t´ζ,´v and tζ,v “ tζ,´v. The Heisenberg dilation

with factor λ P Cˆ is the element

hλ “

»

–

λ 0 0
0 1 0
0 0 1

λ

fi

fl P PUp1, 2q ,

which normalizes the group of Heisenberg translations. The subgroup of PUp1, 2q gener-
ated by Heisenberg translations and Heisenberg dilations is called the group of Heisenberg
similarities.

We end this subsection by defining the discrete subgroup of PUp1, 2q whose R-Fuchsian
subgroups we study in this paper.

LetK be an imaginary quadratic number field, with DK its discriminant, OK its ring of
integers, Tr : z ÞÑ z` z its trace and N : z ÞÑ |z|2 “ z z its norm. Recall3 that there exists
a squarefree positive integer d such that K “ Qpi

?
dq, that DK “ ´d and OK “ Zr1`i

?
d

2 s

if d ” ´1 mod 4, and that DK “ ´4d and OK “ Zri
?
ds otherwise. Note that OK is

stable under conjugation, and that Tr and N take integral values on OK . A unit in OK is
an invertible element in OK . Since N : Kˆ Ñ Rˆ is a group morphism, we have Npxq “ 1
for every unit x in OK .

The Picard modular group

ΓK “ PUp1, 2; OKq “ PUp1, 2q X PGL3pOKq

is a nonuniform lattice in PUp1, 2q.

3 The space of R-circles

A (maximal) totally real subspace V of the Hermitian vector space pC3, hq is the fixed point
set of a Hermitian antiholomorphic linear involution of C3, or, equivalently, a 3-dimensional
real linear subspace of C3 such that V and JV are orthogonal, where J : C3 Ñ C3 is
the componentwise multiplication by i. The intersection with H2

C of the image under
projectivization in P2pCq of a totally real subspace is called an R-plane in H2

C. The group
PUp1, 2q acts transitively on the set of R-planes, the stabiliser of each R-plane being a
conjugate of POp1, 2q. Note that POp1, 2q is equal to its normaliser in PUp1, 2q.

An R-circle C is the boundary at infinity of an R-plane. See [12], [5, §4.4] and [7, §9]
for references on R-circles (introduced by E. Cartan). An R-circle is infinite if it contains
8 “ r1 : 0 : 0s and finite otherwise. The group of Heisenberg similarities acts transitively
on the set of finite R-circles and on the set of infinite R-circles.

The standard infinite R-circle is

C8 “
 

rx0 : x1 : x2s : x0, x1, x2 P R, x2
1 ´ x0x2 “ 0

(

,

3See for instance [18].



which is the boundary at infinity of the intersection with H2
C of the image in P2pCq of

R3 Ă C3. For every D P Cˆ, the set

CD “
 

rz0 : x1 : D z0s : z0 P C, x1 P R, x2
1 ´ RepDz2

0q “ 0
(

is a finite R-circle, which is the boundary at infinity of the intersection with H2
C of the

fixed point set of the projective Hermitian anti-holomorphic involution

rz0 : z1 : z2s ÞÑ r
z2

D
: z1 : D z0s .

We call C1 the standard finite R-circle.
Let C be a finite R-circle. The center cenpCq of C is the image of 8 “ r1 : 0 : 0s by

the unique projective Hermitian anti-holomorphic involution fixing C. The radius radpCq
of C is λ2 where λ P Cˆ is such that there exists a Heisenberg translation t mapping
0 “ r0 : 0 : 1s to the center of C with C “ t ˝ hλpC1q. For instance, cenpCDq “ 0 and
radpCDq “

1
D
, since the Heisenberg dilations preserve 0 and CD “ h 1?

D

pC1q. For every

Heisenberg translation t, we have cenptCq “ t cenpCq and radptCq “ radpCq. For every
Heisenberg dilation hλ, we have cenphλCq “ hλ cenpCq and radphλCq “ λ2 radpCq.

The image of a finite R-circle under the vertical projection pζ, vq ÞÑ ζ from Heis3 “

B8H2C´ t8u to C is a lemniscate, see [5, §4.4.5]. The figure below shows on the left six
images of the standard infinite R-circle under transformations in ΓQpωq where ω “ ´1`i

?
3

2
is the usual third root of unity, and on the right their images in C under the vertical
projection.

Let us introduce more notation in order to describe the space of R-circles, see [5,
§2.2.4] for more background. A 3ˆ 3 matrix Y with complex coefficients is called unitary-
symmetric if it is Hermitian with respect to the Hermitian form h and invertible with
inverse equal to its complex conjugate, that is, if Y ˚I1,2Y “ I1,2 and Y Y “ I3, where I3



is the 3ˆ 3 identity matrix. Note that for instance I3 and, for every D P Cˆ, the matrix

YD “

¨

˝

0 0 1
D

0 1 0
D 0 0

˛

‚

is unitary-symmetric.
Let

AHI “ tY P M3pCq : Y ˚I1,2Y “ I1,2 and Y Y “ I3u

be the set of unitary-symmetric matrices, which is a closed subset of Up1, 2q, identified
with the set of Hermitian anti-holomorphic linear involutions z ÞÑ Y z of C3. Note that
| detY | “ 1 for any Y P AHI. Let

PAHI “ trY s P PUp1, 2q : Y Y “ I3u

be the image of AHI in PUp1, 2q, that is, the quotient Up1qzAHI of AHI modulo scalar
multiplications by elements of Up1q. The group Up1, 2q acts transitively on AHI by

pX,Y q ÞÑ X Y X
´1

for all X P Up1, 2q and Y P AHI, and the stabiliser of I3 is equal to Op1, 2q.
For every Y P AHI, we denote by PY the intersection with H2

C of the image in P2pCq
of the set of fixed points of z ÞÑ Y z. Note that PY is an R-plane, which depends only on
the class rY s of Y in PUp1, 2q. We denote by CY “ B8PY the R-circle at infinity of PY ,
which depends only on rY s. For instance, C8 “ CI3 and CD “ CYD .

Let CR be the set of R-circles, endowed with the topology induced by the Hausdorff
distance between compact subsets of B8H2

C,
4 and let PR be the set of R-planes5 endowed

with the topology of the Hausdorff convergence on compact subsets of H2
C.

The projective action of PUp1, 2q on the set of subsets of P2pCq induces continuous
transitive actions on CR and PR, with stabilisers of C8 “ CI3 and PI3 equal to POp1, 2q.
We hence have a sequence of PUp1, 2q-equivariant homeomorphisms

PUp1, 2q{POp1, 2q ÝÑ PAHI ÝÑ PR ÝÑ CR

rXsPOp1, 2q ÞÝÑ
“

XX
´1‰

P ÞÝÑ B8P .

rY s ÞÝÑ PY

(2)

Lemma 3.1. Let Y “

¨

˝

a γ b
α A β

c δ d

˛

‚P AHI.

(1) For every rXs P PUp1, 2q, we have rXsCY “ C
XY X

´1 .

(2) The R-circle CY is infinite if and only if c “ 0.
4for any Riemannian distance on the smooth manifold B8H2

C
5which are closed subsets of H2

C



(3) If the R-circle CY is finite, then its center is

cenpCY q “ rY s8 “ ra : α : cs ,

and its radius is

radpCY q “
Ac´ α δ

c 2 “ ´
c

c 2 detY .

In particular,
ˇ

ˇ radpCY q
ˇ

ˇ “ |c|´1.

Proof. (1) This follows from the equivariance of the homeomorphisms in Equation (2).

(2) Recall that CY is the intersection with B8H2
C of the image in the projective plane of

the set of fixed points of the Hermitian anti-holomorphic linear involution z ÞÑ Y z. Hence
8 “ r1 : 0 : 0s belongs to CY if and only if the image of p1, 0, 0q by Y is a multiple of
p1, 0, 0q, that is, if and only if α “ c “ 0. Using Remark 2.1, this proves the result.

(3) The first claim follows from the fact that the center of the R-circle CY is the image of
8 “ r1 : 0 : 0s under the projective map associated with z ÞÑ Y z. In order to prove the
second claim, we start by the following lemma.

Lemma 3.2. For every rY s P PAHI, the center of CY is equal to 0 “ r0 : 0 : 1s if and only
if there exists D P Cˆ such that rY s “ rYDs.

Proof. We have already seen that cenpCYDq “ cenpCDq “ 0. By the first claim of Lemma
3.1 (3), if cenpCY q “ 0, we have a “ α “ 0. By the penultimate equality in Equation (1),
we have γ “ 0. Since Y Y “ I3, we have b c “ 1, b δ “ 0, b d “ 0 and β c “ 0, so that

Y “

¨

˝

0 0 1
c

0 A 0
c 0 0

˛

‚with |A| “ 1. Since rY s “ r 1
AY s, the result follows with D “ c

A .

Now, let ζ “ α
c , v “ Im a

c and X “

¨

˝

1 2 ζ |ζ|2 ` iv
0 1 ζ
0 0 1

˛

‚. Note that since Y P Up1, 2q,

we have
|α|2 ´ Repa cq “ hpa, α, cq “ hpY p1, 0, 0qq “ hp1, 0, 0q “ 0 .

Hence
Re

`a

c

˘

“
1

|c|2
Repa cq “

ˇ

ˇ

ˇ

α

c

ˇ

ˇ

ˇ

2
“ |ζ|2 .

The Heisenberg translation tζ,v “ rXs maps 0 “ r0 : 0 : 1s to rac : αc : 1s “ cenpCY q. Since

cenpCX´1Y Xq “ cenpt´1
ζ,vCY q “ t´1

ζ,v cenpCY q “ 0 ,

and by Lemma 3.2, the element X´1Y X P AHI is anti-diagonal. A simple computation
gives

X´1Y X “

¨

˝

0 0 1
c

0 A´ ζδ 0
c 0 0

˛

‚.

If D “ c
A´ζδ

, we hence have rX´1Y Xs “ rYDs. Therefore

radpCY q “ radpt´1
ζ,vCY q “ radpCX´1Y Xq “ radpCYDq “

1

D
.



Since detX “ 1, we have detY “ ´ c
c pA ´ ζδq, so that D “ ´ c2

c detY . The result
follows.

We end this section by describing the algebraic properties of the objects in Equation
(2). We refer for instance to [23, §3.1] for an elementary introduction to algebraic groups
and their Zariski topology.

Let G be the linear algebraic group defined over Q, with set of R-points PUp1, 2q and
set of Q-points

PUp1, 2;Kq “ PUp1, 2q X PGL3pKq .

We identify G with its image under the adjoint representation for integral point purposes,
so that GpZq “ ΓK .

Since I1,2 has rational coefficients, the set PAHI of unitary-symmetric matrices modulo
scalars is the set of real points PAHI “ PAHIpRq of an affine algebraic subset PAHI defined
over Q of G, whose set of rational points is

PAHIpQq “ PAHIXGpQq “ PAHIXPGL3pKq .

The action of G on PAHI defined by prXs, rY sq ÞÑ rX Y X
´1
s is algebraic defined over Q.

This notion of rational point in PAHI will be a key tool in the next section in order to
describe the maximal nonelementary R-Fuchsian subgroups of ΓK .

4 A description of the R-Fuchsian subgroups of ΓK

Our first result relates the nonelementary R-Fuchsian subgroups of the Picard modular
group ΓK to the rational points in PAHI. The proof of this statement is similar to the one
of its analog for C-Fuchsian subgroups in [16].

Proposition 4.1. The stabilisers in ΓK of the rational points in PAHI are maximal
nonelementary R-Fuchsian subgroups of ΓK . Conversely, any maximal nonelementary R-
Fuchsian subgroup Γ of ΓK fixes a unique rational point in PAHI and Γ is an arithmetic
lattice in the conjugate of POp1, 2q containing it.

Proof. Let rY s P PAHIpQq be a rational point in PAHI. Since the action ofG on PAHI is al-
gebraic defined over Q, the stabiliserH of rY s in G is algebraic defined over Q. Note thatH
is semi-simple with set of real points a conjugate of (the normaliser of POp1, 2q in PUp1, 2q,
hence of) POp1, 2q. Therefore by the Borel-Harish-Chandra theorem [2, Thm. 7.8], the
group StabΓK

rY s “ HpZq is an arithmetic lattice in HpRq, and in particular is a maximal
nonelementary R-Fuchsian subgroup of ΓK .

Conversely, let Γ be a maximal nonelementary R-Fuchsian subgroup of ΓK . Since it is
nonelementary, its limit set ΛΓ contains at least three points. Two R-circles having three
points in common are equal. Hence Γ preserves a unique R-plane P . Let Y P AHI be such
that P “ PY . By the equivariance of the homeomorphisms in Equation (2), rY s is the
unique point in PAHI fixed by Γ.

Let H be the stabiliser in G of rY s, which is a connected algebraic subgroup of G
defined over R, whose set of real points is conjugated to POp1, 2q. Since a nonelementary
subgroup of a connected algebraic group whose set of real points is isomorphic to PSL2pRq
is Zariski-dense in it, and since the Zariski-closure of a subgroup of GpZq is defined over Q
(see for instance [23, Prop. 3.1.8]), we hence have that H is defined over Q. The action of



the Q-group G on the Q-variety PAHI is defined over Q, and the Galois group GalpC|Qq
acts on PAHI and on G commuting with this action. For every σ P GalpC|Qq, we have
Hσ “ H. Hence by the uniqueness of the point in PAHI fixed by a conjugate of POp1, 2q,
we have that rY sσ “ rY s for every σ P GalpC|Qq. Thus rY s is a rational point.

An R-circle C is K-arithmetic if its stabiliser in ΓK has a dense orbit in C. Proposition
4.1 explains this terminology: The stabiliser in ΓK of a K-arithmetic R-circle is arithmetic
(in the conjugate of POp1, 2q containing it). With ω “ ´1`i

?
3

2 , the figure below shows
part of the ΓQpωq-orbit of the standard infinite R-circle C8, which is K-arithmetic.

The next result reduces, up to commensurability and conjugacy in PUp1, 2;Kq, the
class of nonelementary R-Fuchsian subgroups that we will study. Note that PUp1, 2;Kq is
the commensurator of ΓK in PUp1, 2q, see [1, Theo. 2].

Proposition 4.2. Any maximal nonelementary R-Fuchsian subgroup Γ of ΓK is com-
mensurable up to conjugacy in PUp1, 2;Kq with the stabiliser in ΓK of the rational point
rY∆s P PAHI6 for some ∆ P OK . If ∆ P N´ t0u and if

γ0 “

»

—

–

1`i
2
?

∆
0 1´i

2
?

∆

0 1 0
p1´iq

?
∆

2 0 p1`iq
?

∆
2

fi

ffi

fl

,

then γ0 P PUp1, 2q and we have StabΓK
rY∆s “ γ0 POp1, 2qγ´1

0 X ΓK .

Proof. Let Γ be as in the statement. By Proposition 4.1, there exists a rational point
rY s P PAHIpQq in PAHI such that Γ “ StabΓK

rY s “ StabΓK
CY . Up to conjugating Γ by

6or equivalently to the stabiliser in ΓK of the R-circle C∆



an element in ΓK , we may assume that the R-circle CY is finite. The center of the finite
R-circle CY belongs to P2pKqXpB8H2

C´t8uq by Lemma 3.1 (3). The group of Heisenberg
translations with coefficients in K acts (simply transitively) on P2pKq X pB8H2

C ´ t8uq.
Hence up to conjugating Γ by an element in PUp1, 2;Kq, we may assume that the center of
the R-circle CY is 0 “ r0 : 0 : 1s. By Lemma 3.2 (and its proof), there exists ∆ P K ´ t0u

such that rY s “ rY∆s. Since for every λ P Cˆ we have hλrY∆s hλ
´1

“ rY
∆λ

´2s, up
to conjugating Γ by a Heisenberg dilation with coefficients in K, we may assume that
∆ P OK .

Fixing square roots of ∆ and ∆ such that
?

∆ “
?

∆ , let

γ10 “

»

—

–

1`i

2
?

∆
0 1´i

2
?

∆

0 1 0
p1´iq

?
∆

2 0 p1`iq
?

∆
2

fi

ffi

fl

.

One easily checks using Equation (1) that γ10 P PUp1, 2q. An easy computation proves that
γ10rI3s γ10

´1
“ γ10 γ

1
0

´1
“ rY∆s. Since the stabiliser of rI3s for the action of PUp1, 2q on

PAHI is equal to POp1, 2q, the fact that

StabΓK
rY∆s “ γ10 POp1, 2qγ10

´1
X ΓK

follows from the equivariance properties of the homeomorphisms in Equation (2). Further-
more, γ10 is the only element of PUp1, 2q satisfying this formula, up to right multiplication
by an element of POp1, 2q. The last claim of Proposition 4.2 follows since γ0 “ γ10 when
∆ P N´ t0u.

Here is a geometric interpretation of the invariant ∆ introduced in Proposition 4.2:
Since radpCY∆

q “ radpC∆q “
1
∆

for every ∆ P Cˆ, the above proof shows that if the
R-circle CΓ preserved by Γ is finite, then we may take ∆ P OK ´ t0u squarefree (uniquely
defined modulo a square unit, hence uniquely defined if DK ‰ ´4,´3) such that

∆ P

´

radpCΓq

¯´1
pKˆq2 .

5 Quaternion algebras, ternary quadratic forms and R-Fuchsian
subgroups

In this section, we describe the arithmetic structure of the maximal nonelementary R-
Fuchsian subgroups of ΓK . By Proposition 4.2, it suffices to say from which quaternion
algebra the R-Fuchsian subgroup

ΓK,∆ “ StabΓK
rY∆s

arises for any ∆ P OK ´ t0u.
Let D,D1 P Qˆ. The quaternion algebra Q “

´

D,D1

Q

¯

is the 4-dimensional central
simple algebra over Q with standard generators i, j, k satisfying the relations i2 “ D,
j2 “ D1 and ij “ ´ji “ k. If x “ x0 ` x1i` x2j ` x3k is an element of Q, we denote its
conjugate by

x “ x0 ´ x1i´ x2j ´ x3k ,



its (reduced) trace by
trx “ x` x “ 2x0 ,

and its (reduced) norm by

npx0 ` x1i` x2j ` x3kq “ xx “ x2
0 ´Dx

2
1 ´D

1x2
2 `DD

1x2
3 .

The group of elements in QpZq “ Z` iZ` jZ` kZ with norm 1 is denoted by QpZq1. We
refer to [22] and [10] for generalities on quaternion algebras.

The quaternion algebra Q splits over R if the R-algebra QpRq “ QbQR is isomorphic
to the R-algebra M2pRq of 2-by-2 matrices with real entries. We say that a nonelementary
R-Fuchsian subgroup Γ of PUp1, 2q arises from the quaternion algebra Q “

`

D,D1

Q
˘

if Q

splits over R and if there exists a Lie group epimorphism ϕ from QpRq1 to the conjugate
of POp1, 2q containing Γ, with kernel the center ZpQpRq1q of QpRq1, such that Γ and
ϕpQpZq1q are commensurable.

Let AQ be the set of isomorphism classes of quaternion algebras over Q. For every
A P AQ, we denote by

A0 “ tx P A : trx “ 0u

the linear subspace of A of pure quaternions, generated by i, j, k. Let TQ be the set of
isometry classes of nondegenerate ternary quadratic forms over Q with discriminant7 a
square. It is well known (see for instance [10, §2.3–2.4] and [22, §I.3]) that the map Φ from
AQ to TQ, which associates to A P AQ the restricted norm form n|A0

, is a bijection. The
map Φ has the following properties, for every A P AQ.

(1) If a, b P Qˆ and A is (the isomorphism class of)
`

a,b
Q
˘

, then ΦpAq is (the equivalence
class of) ´a x2

1 ´ b x
2
2 ` ab x

2
3, whose discriminant is pabq2.

(2) If a, b, c P Qˆ with abc a square in Q and if q P TQ is (the equivalence class of)
´a x2

1 ´ b x2
2 ` c x2

3, then Φ´1pqq is (the isomorphism class of)
`

a,b
Q
˘

, since if abc “ λ2

with λ P Q, then the change of variables px11, x12, x13q “ px1, x2,
λ
abx3q over Q turns q to the

equivalent form ´a x2
1 ´ b x

2
2 ` ab x

2
3.

(3) The quaternion algebra A splits over R if and only if ΦpAq is isotropic over R (that
is, if the real quadratic form ΦpAq is indefinite), see [22, Coro I.3.2].

(4) The map ΘA from ApRqˆ to the special orthogonal group SOΦpAq of ΦpAq, sending
the class of an element a in ApRqˆ to the linear map a0 ÞÑ aa0a

´1 from A0 to itself,
is a Lie group epimorphism with kernel the center of ApRqˆ (see [10, Th. 2.4.1]). If
ApZq “ Z ` Zi ` Zj ` Zk is the usual order in A, then ΘA sends ApZq1 to a subgroup
commensurable with SOΦpAqpZq.

Proof of Theorem 1.2. The set P∆ of fixed points of the linear Hermitian anti-holomorphic
involution z ÞÑ Y∆ z from C3 to C3 is a real vector space of dimension 3, equal to

P∆ “ tz P C3 : z “ Y∆z u “
 

pz0, z1, z2q P C3 : z1 “ z1, z2 “ ∆z0

(

.

Let V be the vector space over Q such that V pRq “ C3 and V pQq “ K3. Since the
coefficients of the equations defining P∆ are in Q, there exists a vector subspace W “W∆

7the determinant of the associated matrix



of V over Q such thatW pRq “ P∆. The restriction toW of the Hermitian form h, which is
defined over Q, is a ternary quadratic form q “ q∆ defined over Q, that we now compute.

Since K “ Q` i
a

|DK |Q, we write

∆ “ u` i
a

|DK | v

with u, v P Q, and the variables zj “ xj ` i
a

|DK | yj with xj , yj P R for j P t0, 1, 2u. If
pz0, z1, z2q P P∆, we have

hpz0, z1, z2q “ ´Repz2z0q ` |z1|
2 “ ´Rep∆z0

2q ` |z1|
2

“ ´ux2
0 ` u|DK | y

2
0 ´ 2|DK |v x0y0 ` x

2
1 .

The right hand side of this formula is a ternary quadratic form q “ q∆ on P∆, whose
coefficients are indeed in Q. It is nondegenerate and has nonzero discriminant ´w, where

w “ v2D2
K ` u

2|DK | “ Np∆q|DK | P Q´ t0u .

By equivariance of the homeomorphisms in Equation (2) and as StabPUp1,2qrY∆s is equal
to its normaliser, the map from StabPUp1,2qrY∆s to the projective orthogonal group POq

of the quadratic space pP∆, qq, induced by the restriction map from StabUp1,2q P∆ to Opqq,
sending g to g|P∆

, is a Lie group isomorphism. It sends the lattice ΓK,∆ to a subgroup
commensurable with the lattice POqpZq in POq. If we find a nondegenerate quadratic
form q1 “ q1∆ equivalent to q over Q up to a rational scalar multiple, whose discriminant
is a rational square, and which is isotropic over R, then ΓK,∆ arises from the quaternion
algebra Φ´1pq1q, by Properties (3) and (4) of the bijection Φ.

First assume that u “ 0. By an easy computation, we have

q “ ´
´

´ x2
1 ´

|DK |v

2
px0 ´ y0q

2 `
|DK |v

2
px0 ` y0q

2
¯

.

The quadratic form q1 “ ´X2
1 ´

|DK |v
2 X2

2 `
|DK |v

2 X2
3 over Q is equivalent to q over Q up

to sign. Its discriminant is the rational square p |DK |v
2 q2, and q1 represents 0 over R. By

Property (2) of the bijection Φ, we have Φ´1pq1q “
`1,

|DK |v

2
Q

˘

“
`

1, 1
Q
˘

. Therefore if u “ 0,
then ΓK,∆ arises from the trivial quaternion algebra M2pQq.

Now assume that u ‰ 0. By an easy computation, we have

q “´
1

u

`

´ ux2
1 ´ pv

2D2
K ` u

2|DK |qy
2
0 ` pux0 ` |DK |v y0q

2
˘

“´
1

u2w

`

´ u2w x2
1 ´ uw

2 y2
0 ` uwpux0 ` |DK |v y0q

2
˘

.

The quadratic form q1 “ ´uw2X2
1 ´ wu2X2

2 ` uwX2
3 is equivalent to q over Q up to a

scalar multiple in Q. Its discriminant is the rational square puwq4 and it represents 0 over
R. By Property (2) of the bijection Φ, we have Φ´1pq1q “

`

uw2, wu2

Q
˘

“
`

u,w
Q

˘

. Therefore
if u ‰ 0, since u “ 1

2 Tr ∆ and w “ Np∆q|DK |, then ΓK,∆ arises from the quaternion
algebra

`2 Tr ∆, Np∆q|DK |

Q
˘

. This concludes the proof of Theorem 1.2.

Corollary 5.1. Let ∆,∆1 P OK ´ t0u with nonzero traces. The maximal nonelementary
R-Fuchsian subgroups ΓK,∆ and ΓK,∆1 are commensurable up to conjugacy in PUp1, 2q if
and only if the quaternion algebras

`2 Tr ∆, Np∆q |DK |

Q
˘

and
`2 Tr ∆1, Np∆1q |DK |

Q
˘

over Q are
isomorphic.



Proof. Since the action of PUp1, 2q on the set of R-planes PR is transitive, this follows
from the fact that two arithmetic Fuchsian groups are commensurable up to conjugacy in
PSL2pRq if and only if their associated quaternion algebras are isomorphic (see [21]).

To complement Theorem 1.2, we give a more explicit version of its proof in the special
case when ∆ P N´ t0u.

Proposition 5.2. Let ∆ P N ´ t0u. The maximal nonelementary R-Fuchsian subgroup
ΓK,∆ arises from the quaternion algebra

`∆, |DK |

Q
˘

.

Proof. Let ∆ P N ´ t0u. Let D “
|DK |

4 if DK ” 0 mod 4 and D “ |DK | otherwise, so
that OK X R “ Z and OK X iR “ i

?
DZ. Let D1 “ D∆. We have D,D1 P N ´ t0u. Let

Q “
`

D,´D1

Q
˘

.
The matrices

e0 “

ˆ

0 ´1
0 0

˙

, e1 “

ˆ

1 0
0 ´1

˙

, e2 “

ˆ

0 0
1 0

˙

form a basis of the Lie algebra sl2pRq “
"ˆ

x1 ´x0

x2 ´x1

˙

: x0, x1, x2 P R
*

of PSL2pRq. Note

that
´detpx0e0 ` x1e1 ` x2e2q “ ´x0x2 ` x

2
1

is the quadratic form restriction of h to R3 Ă C3. We thus have a well known exceptional
isomorphism between PSL2pRq and the identity component SO0p1, 2q of Op1, 2q, which
associates to g P PSL2pRq the matrix in the basis pe0, e1, e2q of the linear automorphism
Adpgq : X ÞÑ gXg´1, which belongs to GLpsl2pRqq. We denote by Θ : PSL2pRq Ñ PUp1, 2q
the group isomorphism onto its image POp1, 2q obtained by composing this exceptional iso-
morphism first with the inclusion of SO0p1, 2q in Up1, 2q, then with the canonical projection
in PUp1, 2q. Explicitly, we have by an easy computation

Θ :

„

a b
c d



ÞÑ

»

–

a2 2ab b2

ac ad` bc bd
c2 2cd d2

fi

fl .

We have a map σD,´D1 : Q Ñ M2pRq defined by

px0 ` x1i` x2j ` x3kq ÞÑ

ˆ

x0 ` x1

?
D px2 ` x3

?
Dq
?
D1

´px2 ´ x3

?
Dq
?
D1 x0 ´ x1

?
D

˙

.

As is well-known8, the induced map σ : QpRq1 Ñ PSL2pRq is a Lie group epimorphism
with kernel ZpQpRq1q, such that σpQpZq1q is a discrete subgroup of PSL2pRq. With
γ0 as in Proposition 4.2, for all x0, x1, x2, x3 P Z, a computation gives that the element
γ0 Θ

`

σpx0 ` x1i` x2j ` x3kq
˘

γ´1
0 of PUp1, 2q is equal to

»

—

—

–

apxq bpxq cpxq{∆

dpxq
?

∆ npxq dpxq {
?

∆

cpxq∆ bpxq apxq

fi

ffi

ffi

fl

,

8see for instance [8]



where

apxq “ x2
0 `Dx

2
1 ` p2D

1x2x3qi
?
D ,

bpxq “ 2px1x2 ` x0x3 ` px1x3 `
x0x2

D
qi
?
Dq

?
DD1
?

∆
,

cpxq “ DD1x2
3 `D

1x2
2 ` 2x0x1 i

?
D ,

dpxq “ px0x3 ´ x1x2 ` p
x0x2

D
´ x1x3qi

?
Dq
?
DD1 .

Let us consider the order O of Q defined by

O “ tx0 ` x1i` x2j ` x3k P QpZq : x1, x2, x3 ” 0 mod Du .

Since
?
DD1?

∆
“ D P Z and

?
DD1∆ “ D1 P Z, the above computation shows that the

subgroup γ0 ΘpσpO1qq γ´1
0 of PUp1, 2q is contained in ΓK . Since

´D, ´D1

Q

¯

“

´

|DK |,´|DK |∆

Q

¯

“

´

|DK |,∆

Q

¯

,

the result follows.

Remark. Note that by Hilbert’s Theorem 90, if ∆1 P K satisfies |∆1| “ 1, then there exists
∆2 P OK ´ t0u such that ∆1 “ ∆2

∆2
, so that the Heisenberg dilation h∆2´1 commensurates

ΓK,∆1 to ΓK,Np∆2q and Np∆2q belongs to N ´ t0u. Hence Proposition 5.2 implies that
ΓK,∆1 arises from the quaternion algebra

`Np∆2q, |DK |

Q
˘

.

We conclude this paper by a series of arithmetic and geometric consequences of the
above determination of the quaternion algebras associated with the maximal nonelemen-
tary R-Fuchsian subgroups of the Picard modular groups. Their proofs follow closely the
arguments in [9] pages 309 and 310, and a reader not interested in the arithmetic details
may simply admit that they follow by formally replacing ´d by d in the statements of
loc. cit.

Recall that given a P Z´t0u and p an odd positive prime not dividing a, the Legendre
symbol

`

a
b

˘

is equal to 1 if a is a square mod p and to ´1 otherwise. Recall9 that if
d P Z´ t0u is squarefree, a positive prime p is either
‚ ramified in Qp

?
dq when p � d if p is odd, and when d ” 2, 3 r4s if p “ 2,

‚ split in Qp
?
dq when p ffl d and

`

d
p

˘

“ 1 if p is odd, and when d ” 1 r8s if p “ 2,
‚ inert in Qp

?
dq when p ffl d, and

`

d
p

˘

“ ´1 if p is odd, and when d ” 5 r8s if p “ 2.
Recall that a quaternion algebra A over Q is determined up to isomorphism by the finite
(with even cardinality) set RAMpAq of the positive primes p at which A ramifies, that is,
such that AbQ Qp is a division algebra.

Proposition 5.3. Let A be an indefinite quaternion algebra over Q. If the positive primes
at which A is ramified are either ramified or inert in Qp

a

|DK |q, then there exists a maximal
nonelementary R-Fuchsian subgroup of ΓK whose associated quaternion algebra is A.

9See for instance [18, page 91].



Proof. Recall10 that for all a, b P Z ´ t0u and for all positive primes p, the (p-)Hilbert
symbol pa, bqp, equal to ´1 if

`

a, b
Qp

˘

is a division algebra and 1 otherwise, is symmetric in
a, b, and satisfies pa, bcqp “ pa, bqppa, cqp and

pa, bqp “

#

p´1q
u´1

2
v´1

2
`α v2´1

8
`β u2´1

8 if p “ 2, a “ 2αu, b “ 2βv, with u, v odd
`

a
p

˘

if p ‰ 2, p ffl a, p � b, p2 ffl b .
(3)

Let d “ |DK |

4 if DK ” 0 r4s and d “ |DK | otherwise, so that d P N´ t0u is squarefree.
Given A as in the statement, we may write RAMpAq “ tp1, . . . , pr, r1, . . . , rsu with pi inert
inQp

?
dq, and ri ramified inQp

?
dq, so that the prime divisors of d are r1, ¨ ¨ ¨ , rs, s1, ¨ ¨ ¨ , sk,

unless some ri, say r1, is equal to 2 and d ” 3 r4s, in which case the prime divisors of d are
r2, ¨ ¨ ¨ , rs, s1, ¨ ¨ ¨ , sk. As in [9, page 310], let q be an odd prime different from all pi, ri, si
such that
‚ q ” p1 ¨ ¨ ¨ pr r8s if no ri is equal to 2, q ” 5 p1 ¨ ¨ ¨ pr r8s if ri “ 2 and d ” 2 r4s and

q ” 3 p1 ¨ ¨ ¨ pr r8s if ri “ 2 and d ” 3 r4s,
‚ for every i “ 1, . . . , s, if ri is odd, then

`

q
ri

˘

“ ´
`

p1¨¨¨ pr
ri

˘

,
‚ for every i “ 1, . . . , k, if si is odd, then

`

q
si

˘

“
`

p1¨¨¨ pr
si

˘

.
With ∆ “ p1 ¨ ¨ ¨ prq, which is a positive squarefree integer, let us prove that A is

isomorphic to
`

d,∆
Q

˘

. This proves the result by Proposition 5.2. By the characterisation
of the quaternion algebras over Q, we only have to prove that for every positive prime
t not in RAMpAq, we have pd,∆qt “ 1 and for every positive prime t in RAMpAq, we
have pd,∆qt “ ´1. We distinguish in the first case between t “ q, t “ si, t “ 2 and
t ‰ q, s1, ¨ ¨ ¨ , sk, 2, and in the second case between t “ pi and t “ ri. By using several
times Equation (3) and the fact that

`

d
q

˘

“ 1 since r ` s is even as A is indefinite, the
result follows (see the Appendix for details).

Recall that the wide commensurability class of a subgroup H of a given group G is the
set of subgroups of G which are commensurable up to conjugacy to H. Two groups are
abstractly commensurable if they have isomorphic finite index subgroups.

Corollary 5.4. Every Picard modular group ΓK contains infinitely many wide commen-
surability classes in PUp1, 2q of (uniform) maximal nonelementary R-Fuchsian subgroups.

Corollary 1.3 of the introduction follows from Corollary 5.4. Note that there is only one
wide commensurability class of nonuniform maximal nonelementary R-Fuchsian subgroups
of ΓK , by [10, Thm. 8.2.7].

Proof. As seen in Corollary 5.1, two maximal nonelementary R-Fuchsian subgroups are
commensurable up to conjugacy in PUp1, 2q if and only if their associated quaternion
algebras are isomorphic. Two such quaternion algebras are isomorphic if and only if they
ramify over the same set of primes. By Proposition 5.3, for every finite set I with even
cardinality of positive primes which are inert over Qp

a

|DK |q, the quaternion algebra
with ramification set equal to I is associated with a maximal nonelementary R-Fuchsian
subgroup. Since there are infinitely many inert primes over Qp

a

|DK |q, the result follows.

10See for instance [22], in particular pages 32 and 37, and [19, Chap. III].



Corollary 5.5. Any arithmetic Fuchsian group whose associated quaternion algebra A is
defined over Q has a finite index subgroup isomorphic to an R-Fuchsian subgroup of some
Picard modular group ΓK .

Proof. As in [9] page 310, if RAMpAq “ tp1, ¨ ¨ ¨ , pnu, let d P N´t0u be such that
`

d
pi

˘

“ ´1

if pi is odd and d ” 5 r8s if pi “ 2, so that p1, . . . , pn are inert in Qp
?
dq, and take

K “ Qp
?
´dq.

Corollary 5.6. For all quadratic imaginary number fields K and K 1, there are infinitely
many abstract commensurability classes of Fuchsian subgroups with representatives in both
Picard modular groups ΓK and ΓK1 .

Proof. There are infinitely many primes p such that
`

|DK |

p

˘

“
` |DK1 |

p

˘

“ ´1, hence infinitely
many finite subsets of them with an even number of elements.
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A Details on the proof of Proposition 5.3

Let us prove in preamble that
`d

q

˘

“ 1 . (4)

By using the quadratic reciprocity law for the Jacobi symbol, and its multiplicativity
properties, by the second and third assumptions on q, since the p`’s are inert in Qp

?
dq,

since r ` s is even and q ´ p1 . . . pr ” 0 r4s by the first assumption on q, we have if the
rj ’s, si’s and p`’s are odd

`d

q

˘

“ p´1q
q´1

2
d´1

2

`q

d

˘

“ p´1q
q´1

2
d´1

2

ź

j

` q

rj

˘

ź

i

` q

si

˘

“ p´1qs`
q´1

2
d´1

2

ź

j

`p1 . . . pr
rj

˘

ź

i

`p1 . . . pr
si

˘

“ p´1qs`
q´1

2
d´1

2

`p1 . . . pr
d

˘

“ p´1qs`p
q´1

2
´

p1...pr´1
2

q d´1
2

` d

p1 . . . pr

˘

“ p´1qs`p
q´p1...pr

2
q d´1

2

r
ź

`“1

` d

p`

˘

“ p´1qr`s`p
q´p1...pr

2
q d´1

2 “ 1 .

Recall that the Jacobi symbol satisfies
`

2
n

˘

“ p´1q
n2´1

8 for every odd positive integer n.
Similarly, if some si is not odd (which implies that the rj ’s and p`’s are odd), say s1 “ 2,



then with d1 “ d{2 which is odd, since q2 ´ pp1 . . . prq
2 ” 0 r16s by the first assumption on

q, we have

`d

q

˘

“
`2

q

˘`d1

q

˘

“ p´1q
q2´1

8
`

q´1
2

d1´1
2

` q

d1
˘

“ p´1q
q2´1

8
`

q´1
2

d1´1
2

ź

j

` q

rj

˘

ź

i‰1

` q

si

˘

“ p´1qs`
q2´1

8
`

q´1
2

d1´1
2

ź

j

`p1 . . . pr
rj

˘

ź

i‰1

`p1 . . . pr
si

˘

“ p´1qs`
q2´1

8
`

q´1
2

d1´1
2

`p1 . . . pr
d1

˘

“ p´1qs`
q2´1

8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2

` d1

p1 . . . pr

˘

“ p´1qs`
q2´1

8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2

` 2

p1 . . . pr

˘` d

p1 . . . pr

˘

“ p´1qs`
q2´1

8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2
´
pp1...prq

2´1
8

` d

p1 . . . pr

˘

“ p´1qs`p
q´p1...pr

2
q d
1´1
2
`

q2´pp1...prq
2

8

r
ź

`“1

` d

p`

˘

“ p´1qr`s`p
q´p1...pr

2
q d
1´1
2
`

q2´pp1...prq
2

8 “ 1 .

Similarly, if some p` is not odd (which implies that the rj ’s and si’s are odd), say
p1 “ 2, then d ” 5 r8s since p1 is inert in Qp

?
dq, hence d´1

2 ” 0 r2s and d2´1
8 ” 1 r2s.

Therefore

`d

q

˘

“ p´1q
q´1

2
d´1

2

`q

d

˘

“ p´1q
q´1

2
d´1

2

ź

j

` q

rj

˘

ź

i

` q

si

˘

“ p´1qs`
q´1

2
d´1

2

ź

j

`p1 . . . pr
rj

˘

ź

i

`p1 . . . pr
si

˘

“ p´1qs`
q´1

2
d´1

2

`p1 . . . pr
d

˘

“ p´1qs`
q´1

2
d´1

2

`2

d

˘`p2 . . . pr
d

˘

“ p´1qs`
d2´1

8
`p

q´1
2
´

p2...pr´1
2

q d´1
2

` d

p2 . . . pr

˘

“ p´1qs`
d2´1

8
`p

q´p2...pr
2

q d´1
2

r
ź

`“2

` d

p`

˘

“ p´1qr´1`s` d2´1
8
`p

q´p2...pr
2

q d´1
2 “ 1 .

Similarly, assume that some ri is not odd (which implies that the si’s and p`’s are
odd), say r1 “ 2. Since r1 is ramified in Qp

?
dq, we have either d ” 2 r4s or d ” 3 r4s.

Assume first that d ” 2 r4s. Then with d1 “ d{2 which is odd, since the first assumption
q ” 5 p1 . . . pr r8s on q implies that q ´ p1 . . . pr ” 0 r4s and that q2´pp1...prq2

8 ” 1 r2s as the



p`’s are then odd, we have
`d

q

˘

“
`2

q

˘`d1

q

˘

“ p´1q
q2´1

8
`

q´1
2

d1´1
2

` q

d1
˘

“ p´1q
q2´1

8
`

q´1
2

d1´1
2

ź

j‰1

` q

rj

˘

ź

i

` q

si

˘

“ p´1qs´1` q2´1
8
`

q´1
2

d1´1
2

ź

j‰1

`p1 . . . pr
rj

˘

ź

i

`p1 . . . pr
si

˘

“ p´1qs´1` q2´1
8
`

q´1
2

d1´1
2

`p1 . . . pr
d1

˘

“ p´1qs´1` q2´1
8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2

` d1

p1 . . . pr

˘

“ p´1qs´1` q2´1
8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2

` 2

p1 . . . pr

˘` d

p1 . . . pr

˘

“ p´1qs´1` q2´1
8
`p

q´1
2
´

p1...pr´1
2

q d
1´1
2
´
pp1...prq

2´1
8

` d

p1 . . . pr

˘

“ p´1qs´1`p
q´p1...pr

2
q d
1´1
2
`

q2´pp1...prq
2

8

r
ź

`“1

` d

p`

˘

“ p´1qr`s´1`p
q´p1...pr

2
q d
1´1
2
`

q2´pp1...prq
2

8 “ 1 .

Assume secondly that d ” 3 r4s, so that as already said we have d “ r2 . . . rss1 . . . sk which
is odd. Then d´1

2 is odd and q´p1...pr
2 is odd by the first assumption on q, hence as above

`d

q

˘

“ p´1q
q´1

2
d´1

2

`q

d

˘

“ p´1q
q´1

2
d´1

2

ź

j‰1

` q

rj

˘

ź

i

` q

si

˘

“ p´1qs´1` q´1
2

d´1
2

ź

j‰1

`p1 . . . pr
rj

˘

ź

i

`p1 . . . pr
si

˘

“ p´1qs´1` q´1
2

d´1
2

`p1 . . . pr
d

˘

“ p´1qs´1`p q´1
2
´

p1...pr´1
2

q d´1
2

` d

p1 . . . pr

˘

“ p´1qs´1`p
q´p1...pr

2
q d´1

2

r
ź

`“1

` d

p`

˘

“ p´1qr`s´1`p
q´p1...pr

2
q d´1

2 “ 1 .

This proves Equation (4).

Let t be a positive prime. First assume that t does not belong to RAMpAq. Then one
of the following case occurs: t “ q, t “ si ‰ 2 for some i, t “ si “ 2 for some i, t “ 2 ‰ si
for every i, or t ‰ q, s1, ¨ ¨ ¨ , sk, 2.

If t “ q, then t ‰ 2, t ffl d, t � ∆, t2 ffl ∆, so that by the second claim of Equation (3)
and by Equation (4), we have as wanted

pd,∆qt “
`d

q

˘

“ 1 .

If t “ si ‰ 2 for some i “ 1, . . . , k, by the second claim of Equation (3) since si � d,
s2
i ffl d, and by the third assumption on q, we have as wanted

pd,∆qt “ pd, p1 . . . prqsipd, qqsi “
`p1 ¨ ¨ ¨ pr

si

˘` q

si

˘

“
` q

si

˘2
“ 1 .



If t “ si “ 2 for some i “ 1, . . . , k, then d, which is squarefree, is equal to 2d1 for some
odd d1. The pi’s are odd, and q ” p1 ¨ ¨ ¨ pr r8s by the first assumption on q, hence ∆ is
odd, of the form p2∆1 ` 1q2 ` 8∆2 “ 1` 8∆3 for some ∆1,∆2,∆3 P N. By the first claim
of Equation (3), we have as wanted

pd,∆qt “ p´1q
d1´1

2
∆´1

2
`p∆2´1q{8 “ p´1q

d1´1
2
p4∆3q`2∆3`8∆32

“ 1 .

If t “ 2 ‰ si for every i “ 1, . . . , k, then ∆ and d are odd, and ∆ ” pp1 . . . prq
2 r8s by

the first assumption on q so that ∆ ” 1 r4s since the pi’s are odd. Hence by the first claim
of Equation (3), we have as wanted

pd,∆qt “ p´1q
d´1

2
∆´1

2 “ 1 .

Now assume that t belongs to RAMpAq. In particular t is equal either to pi for some
i “ 1, . . . , r or to ri for some i “ 1, . . . , s.

If t “ pi ‰ 2, then t does not divide d since pi is inert in Qp
?
dq, and t divides ∆ which

is squarefree. Hence by the second claim of Equation (3), since pi is inert in Qp
?
dq, we

have as wanted
pd,∆qt “

` d

pi

˘

“ ´1 .

If t “ pi “ 2, then d ” 5 r8s since pi is inert in Qp
?
dq, hence d is odd, d´1

2 is even and
d2´1

8 is odd. Moreover ∆ “ 2∆1 with ∆1 odd. Therefore by the first claim of Equation (3),
we have as wanted

pd,∆qt “ p´1q
d´1

2
∆1´1

2
`pd2´1q{8 “ ´1 .

If t “ ri ‰ 2 for some i “ 1, . . . , k, then t divides d which is squarefree and does not
divide ∆, hence by the second assumption on q, we have as wanted

pd,∆qt “ pd, p1 . . . prqripd, qqri “
`p1 . . . pr

ri

˘` q

ri

˘

“ ´1 .

Assume at last that t “ ri “ 2 for some i “ 1, . . . , s. Since ri is ramified in Qp
?
dq, we

have either d ” 2 r4s or d ” 3 r4s. If d ” 2 r4s, then t divides d which is equal to 2d1 with
d1 odd. But t does not divide ∆ which is odd and, by the first assumption on q, we have
∆ “ 5p2∆1 ` 1q2 ` 8∆2 “ 5 ` 8∆3 for some ∆1,∆2,∆3 P N. Hence by the first claim of
Equation (3), we have as wanted

pd,∆qt “ p´1q
d1´1

2
∆´1

2
`p∆2´1q{8 “ p´1q

d1´1
2
p2`4∆3q`3`2∆3`8∆32

“ ´1 .

If d ” 3 r4s, then d and ∆ are odd and, by the first assumption on q, we have ∆ “

3p2∆1 ` 1q2 ` 8∆2 ” 3 r4s. Hence by the first claim of Equation (3), we have as wanted

pd,∆qt “ p´1q
d´1

2
∆´1

2 “ ´1 .
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