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Abstract. A parallel splitting-up method (or the so called alternating-direction method) is
proposed in this paper. The method not only reduces the original linear and nonlinear problems
into a series of one dimensional linear problems, but also enables us to compute all these
one dimensional linear problems by parallel processors. Applications of the method to linear
parabolic problem, steady state and nonsteady state Navier-Stokes problems are given.

1. INTRODUCTION

The classical splitting-up method [1] is efficient for solving physical problems. However it is
not suitable for parallel computing, as the computing of the present fractional step (or so
called intermediate step) always needs the value of the previous fractional step. Here we pro-
pose a splitting-up method, for which the computing of the fractional steps are independent
of each other, and consequently they can be computed by parallel processors.

We also apply the proposed method to steady state and nonsteady state Navier-Stokes
problems. By the method we can reduce the Navier-Stokes problem into a series of indepen-
dent one dimensional linearized problems; moreover, we are able to solve the Navier-Stokes
equation by using only the usual one dimensional finite element space (not the zero-divergent
FE space as usual) and to use parallel processors in solving all these one dimensional linear
problems.

2. PARALLEL SPLITTING UP METHOD FOR
THE EVOLUTION EQUATIONS

In this section, we will consider the following linear evolution equation:
o¢ .
Ft+Ap=f inQr=0x[1]
$(0) = do.

Here Q is a bounded domain in R™, A can be both a linear operator or a matrix. We assume
that A is time independent and that A and f can be split as:

(2.1)

A=A1+A2+"'+Am
f=h+frt -+ fm
For example, if A¢ = div(agradg), then we can split A as:

(2.2)

A=) A,  with Ai¢ = Di(aD;g).

i=1
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In the following, we propose a splitting-up method, for which the computing of the frag
tional steps are independent of each other. Consequently they can be computed by paralle)
processors, Also, because of this, it may avoid the complicated boundary correction proce.
dure [1,§3) in order to achieve the higher order convergence.

The classical splitting-up method can be regarded as a perturbation of the Crank-Nicolsop
scheme. But it seems the scheme proposed here cannot be regarded as a perturbation of
Crank-Nicolson scheme.

ALGORITHM 2.1. (Parallel splitting up method for evolution equations)

Step 1. Choose step size T > 0. If ¢/ is already computed, we parallelly compute ¢t
as

il SN @3) |
Here f{ = fi((F+ 3)7)- 4
Step 2. Set ¢'t1 = L 3 it
=1

1=
Step 3. If T = (j + 1)7 stop, otherwise go to Step 1. |
If A;,i =1,...,m, are given as in the example, then as in [5], (2.3) can again be solved
by parallel processors for a series of one dimensional problems.

THEOREM 2.1. If A is the infinitesimal generator of a Cy-semigroup and A; > 0,i =
1,2,...,m then for any 7 > 0 Algorithm 2.1 is stable and the error is:
e = ¢(jr) — ¢t = o(7). (24)

We can achieve, as well, second order convergence:

ALGORITHM 2.2. (Second order parallel splitting up method)
Step 1. Assume ¢7 is known. Compute ¢/ ¥ parallelly as:

(I+ %TAZ-)&H'# S (I— Z %TA)‘,) ¢J +'T—;-Tf'7 t=1,...,m. (25)

k=1k#4

Step 2. Set

Pt %5 [(%Z_m)w’ +Z¢f+%m]. (2.6)
i=1

Similarly, if A;,i =1,2,...,m, are given as in the example, (2.5) can be solved by parallel
processors for a series of one dimensional problems as in [5).

THEOREM 2.2. Ifr > 0 is small enough, then Algorithm 2.2 is stable and is globally second |
order convergent. |

REMARK 2.1. We assumed that A is time independent which is not essential to the problem.
When A is related to t, Algorthms 2.1-2.2 are still valid. Then we compute ¢*! by taking
A((G+1/2)7) as A.

3. PARALLEL SPLITTING UP METHOD FOR
THE NAVIER-STOKES EQUATION

3.1. Steady state Navier-Stokes problems.
It is well known (see [7], for example) that the m-dimensional steady state incompressible
fluid flow can be described by the following Navier-Stokes equation:

—vAu+ E:’;I u;Dju + grad p = f, in
div u =0, in
u=0, on 9%Q.
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domain @ C R™ (m = 2 or 3) is bounded and open, u = (u1,u2,...,Unm) is the
B.theof the fluid which is a m-dimensional vector function, p is the pressure which is a
"""'B:?::.bgunct.ion, D; = 32:—.. Let L2(Q2) be a vector Hilbert space with inner product and norm
:-"“: (,v) = i fo u,;v',:da;, |u|? = (u, u). Let H3() be the closure of C3°(Q) = C§°(£2) x
f:xC(S”(Q) under the inner product ((u,v)) = Y i~ ,(Diu, D;v), and we also denote the norm
A ]|u||2 = ((u,u)). Here and also later | < ,|IF]l and (:,-),((:,+)) will be used to qenote the
norms and inner products respectively as we defined here. Set V = {u € C§°() |div v = 0}.

H is the closure of V in the sense of L2(R) norm. V is the closure of V in the sense of

H}(Q) norm (12,7).
The Navier-Stokes equation (3.1) has the following variational formulation: find u € V

" such that
v((u,v)) + b(u,u,v) = (f,v) YveV, (3.2)

where the trilinear form b(-, -, ) is defined as:
= ow

b(u, w,v) = Z/ u;%—vd:ﬂ Yu,v,w € Hi(Q).
i=1 2 i

We can easily see that there exists a constant which is only related to m, such that
lb(u, v, w)| < C(m)uf|||v]] {|w]|-

Here we will use the splitting up method to solve (3.1) in such a way that when we are
going to use the finite element method to solve (3.1), we do not need to construct a finite
element space for V. Moreover, in the proposed method the computing can also be done by
parallel processors.

The application of the splitting-up method to Navier-Stokes problems was originally in-
troduced by Teman [6]. In [7], more information about this application can be found. In
[6,7], the splitting up method was applied to solve the nonstationary Navier-Stokes prob-
lem. For steady state problems, it seems that no results are available yet. In this section,
we will propose the splitting up method for the steady state Navier- Stokes problem (3.1).
The Algorithm 3.1 given below is a two-step iteration scheme: in the first step, it solves a
nonlinear elliptic system, and in the second step, it solves a Poisson equation. In Algorithm
3.2, we split the problem into a series of independent 1-D problems.

ALGORITHM 3.1. (Nonlinear splitting up method for Navier-Stokes equation)
Step 1. Choose an initial function ul/? ¢ H}(Q), parameter T > 0 and the error tolerance

e > 0.
Step 2. If we have w/=1/2 j > 0, then we solve the following Poisson equation:

f Ap =divui=1/2) inQ
| o0 (3.3)
Zz==0, on 69Q.

Here %‘% denotes the outer normal derivative to 0%Q.
Step 3. Let v = u/~1/2 — grad p.
If f{w/ — w/=1| < ¢y then stop, otherwise go to Step 4.
_ Step 4. Solve the following nonlinear elliptic system: find w/*1/2 ¢ H}(Q) such that

(wi/z _ W, v) + (W2 0)) 4+ rh(w Y2 W2 v) = 7(f,v) Vo € HY(Q), (3.4)

t A
0 Step 2. Here b(u, v, w) = %(b(u,v,w) - b(u,w,v)), u,v,w € HQ).

3. :
e ke IFm < 4 and b s large enough or f “small” enough such that v? > C(m)

Al T
) hen 8 T — 0 and nr — 00, ”Un = u”Lz(ﬂ) - 0.
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ALGORITHM 3.2. (A parallel linear splitting up method for Navier-Stokes equation)
Step 1, Step 2 and Step 3 are the same as Algorithm 3.1.
Step 4. Solve parallelly wit1/1 € H{(Q),¢ = 2(m + 1) such that

(W= v) 4 (W, 0))i 4 Thi(W, T 0) = r(fi0) Yo € HY(Q),  (3.5)
i=1,...,m, where ((u,v)); = (D;su, D;v) and
1 dw 1 v
bi(u, w,v) = 5 nuga—zivda: - §/nuiw6_x,;dm'
Step 5. Set w/*1/2 = LS i+i/4 and go to Step 2.

For every i, (3.5) can be solved parallelly by the 1-D method as in [5], especially by a one
dimensional finite element method. In order to get the convergence of Algorithm 3.2, we
need the following assumption:

(A1) Suppose that||u||§’°° + ||u||ioo < vy,

Here 7o = min 1<;<n(1,7;) and 4; is the Sobolev constant such that [D;v| > y;|v|>? Vv €
HY(Q).

In correspondence with (A1), we also assume that u satisfies the needed regularity prop-
erties of (Al).

THEOREM 3.2. Under condition (A1) Algorithm 3.2 is convergent in the same sense as in
Theorem 3.1.

REMARK 3.1. In condition (A1), we need u € Wy (Q) N H2(Q) N H}(Q) and ”ullg,oo +
llull; o < v2y¢. As u is also related to v we should show that these conditions are not

“empty conditions.” It is easy to show that iIf Q is smooth, f regular and small enough or
v big enough then condition (A1) can be satisfied (see [4,7]).

3.2. The evolution Navier-Stokes equation.
In this section, we consider the evolution Navier-Stokes equation:

m
%—vAu+;u,—Diu+gradp:f in Qr =Q x [0,7]
divu=0 in Qr (3.6)
u=0 on 682 x [0, T
u(z,0) = up(z) in Q.

We will use the same notations as in Chapter 3.1. We will also restrict our attention to only
two and three dimensional problems, i.e., m = 2 or 3.

The application of the splitting up method to evolution Navier-Stokes problems can be
found in Temam [6,7]. In the following, we will use the parallel splitting-up method for the
Navier-Stokes equation. It reduces the Navier-Stokes equation into a series of one dimen-
sional linearized problems, and so enables us to solve the Navier-Stokes equation by only
using the usual one dimensional finite element spaces. All the one dimensional problems are
independent of each other and can be computed by parallel processors.

ALGORITHM 3.3. (Linearized one dimensional splitting up method)
Step 1. Choose T > 0. Set ul = ug and split f = fi + -+ f.
Step 2. If w/ is known then find v */¢ € H}(Q)(q = 2(m + 1)) such that

(witile _ ! v) + mrv((u e, )i + mrbi(uf, w9 v)

=mr(f;((G+1)7),v) YveHy(Q), i=12...,m (3.7)

—y———

AML
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Step 3. Set ui+1/2 = Ly™m i+ilq,
Step 4. Solve p/ :

{ Apf =divei-V2 inQ (38)

%%. =0, on 09,

Step 5. Set ui*! = w+/2 _ grad pi+l If (j + 1)7 = T stop, otherwise go to Step 2.

Similar to Algorithm 3.2, (3.7) is a series of independent one dimensional problems. We
can use a one dimensional finite element method as in [5] to solve all these one dimensional
problems parallelly.

' THEOREM 3.3. If u(t) is regular and (A1) is valid for every t € [0,T, then Algorithm 3.3
is convergent and

| [[u” = u(n7)||32¢qy < C,
where the constant C is independent of .
For the proofs of above presented theorems we refer to [4].

REMARK 3.2. In paper [3] by Lions and Temam, the same parallel splitting idea, as proposed
in Algorithm 2.1, was discovered and used in connection with the optimization problems
(with applications to variational inequalities).
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