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In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently
proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE).
We map out the full two-particle wave function for a wide range of bond distances and interaction strengths
and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak
interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation
(Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation
energies. We study an approximation based on adiabatic SCE (ASCE) theory which was shown to display a
particular feature of the exact Hxc kernel, namely, a spatial divergence as function of the bond distance. This
makes the ASCE kernel a candidate for correcting a notorious failure of the commonly used adiabatic local
density approximation (ALDA) in the calculation of excitation energies of dissociating molecules. Unlike the
ALDA, we obtain nonzero excitation energies from the ASCE kernel in the dissociation regime but they do not
correspond to those of the true spectrum unless the interaction strength is taken to be very large such that the
SCE theory has the right regime of validity, in which case the excitation energies become exact and represent the
so-called zero-point oscillations of the strictly correlated electrons. The commonly studied physical dissociation
regime, namely, large molecular separation at intermediate interaction strength, therefore remains a challenge
for density functional approximations based on SCE theory.

DOI: 10.1103/PhysRevA.99.022501

I. INTRODUCTION

Density functional theory (DFT) is a commonly used elec-
tronic structure method. Its ground-state version is mainly
used to calculate energies and structures of electronic sys-
tems [1], while its time-dependent (TD) counterpart TDDFT
also allows for the calculation of dynamic properties and
excitation energies [2]. Virtually all density functional cal-
culations are based on the Kohn-Sham (KS) system, a non-
interacting system that produces the same electronic density
as the true system of interest. The KS system provides a
considerable simplification of the many-body problem which
is advantageous for numerical implementations. However, all
the complications of the true many-body system are hidden
in the effective potential of the KS system. This KS potential
is typically expressed as a sum of the external potential of
the interacting system of interest and the Hartree-exchange-
correlation (Hxc) potential containing implicitly the many-
body effects of the interacting system. The KS formalism is
equally applicable in ground-state and time-dependent DFT,
but in this work we will focus on the calculation of excita-
tion energies which are obtained in TDDFT using a linear
response formalism. For this purpose, it is enough to know
the functional derivative of the Hxc potential with respect
to the density which yields a quantity known as the Hxc
kernel. The simplest possible approximation for the Hxc
kernel is the adiabatic local density approximation (ALDA),
for which the kernel is local in space and time. Although this
approximation has been used successfully [2], it has a number

of important deficiencies, such as the inability to reproduce
Born-Oppenheimer surfaces of excited states in dissociating
molecules [3,4].

When a molecule separates into fragments, its excitation
energies should approach those of the separate fragments.
This behavior is not reproduced by the ALDA since upon
dissociation the gap between the bonding and antibonding
KS eigenvalues decreases exponentially fast with the bond
distance, and the ALDA kernel is unable to correct for this
thereby rendering many of the excitation energies to become
zero in the dissociation limit. To correct for this, asymptotic
corrections have been devised [3,4] that introduce exponen-
tially growing terms in the kernel that compensate for the
closing of the bonding-antibonding gap. Although such cor-
rections can reproduce the main features of the exact bonding
curve for the lowest excited state [3,4], there is no systematic
way to construct such functionals. Other more systematic
approximations often rely on perturbative expansions, which
makes them questionable in the multiconfiguration regime
required to describe molecular dissociation.

In recent work [5], an approximate kernel was derived
within the framework of so-called strictly correlate electrons
(SCE). This is a ground-state DFT formalism that becomes
exact in the limit of very large two-body interactions. When
the simplest approximation within this formalism is applied
within the adiabatic approximation, an approximate Hxc ker-
nel can be derived. This so-called adiabatic SCE (ASCE)
kernel was shown to have a number of desirable features.
It was shown to obey the so-called zero-force theorem [2,6]

2469-9926/2019/99(2)/022501(11) 022501-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.022501&domain=pdf&date_stamp=2019-02-04
https://doi.org/10.1103/PhysRevA.99.022501


CORT, NIELSEN, AND VAN LEEUWEN PHYSICAL REVIEW A 99, 022501 (2019)

and it was shown that in the case of molecular dissociation,
it exhibits an exponential growth with the bond distance [5].
The kernel therefore displays a very nonlocal spatial behavior
that has the potential to cure the deficiency of the ALDA
kernel for molecular dissociation. We recently investigated the
ASCE kernel [7] in a model system for which the exchange-
correlation kernel can be obtained exactly for various two-
body interaction strengths. It was found that the leading order
and the next to leading order of the asymptotic expansion for
the exact Hxc kernel in terms of the interaction strength agreed
with that one predicted by the adiabatic SCE formalism. This
result shows that the SCE formalism is a promising method
for describing the linear response properties in the strong
interaction limit. Moreover, these terms were also shown
to be frequency independent in the exact theory such that
the adiabatic approximation in this limit is in fact exact. In
view of these favorable properties of the ASCE kernel, the
natural question arises as to whether this kernel can be used
to correctly predict the excitation energies of dissociating
molecules. Answering this question is the main aim of this
work.

To attack this problem, we developed a simplified one-
dimensional model of a diatomic molecule having the main
physical characteristics of a real three-dimensional hydrogen
molecule and for which we can perform analytical and numer-
ical calculations for arbitrary bond distance and interaction
strength. In particular, the KS orbitals and eigenvalues are
known analytically, a feature that is very desirable as it pro-
vides an analytic expression for the KS gap upon dissociation.
The model is used to benchmark the performance of the
ASCE kernel as well as to discuss many features of the SCE
formalism in the limit of large interactions.

The paper is organized as follows: In Sec. II we give a
brief introduction to the main elements of SCE theory that we
need. In Sec. III we introduce the model system and discuss
its properties. In Sec. IV we discuss the ASCE kernel for our
model density and obtain the excitation energies. In Sec. V we
present our conclusions.

II. DENSITY FUNCTIONAL THEORY IN THE LARGE
INTERACTION LIMIT

The main motivation of this work is to benchmark the re-
cently proposed approximations for the exchange-correlation
(xc) potential and xc kernel based on the so-called the-
ory of strictly correlated electrons [5,7]. To provide a self-
contained minimal background for the reader, we briefly
review some basic aspects of DFT. Our starting point is the
time-independent N-body Hamiltonian of a system which we
write as [1]

Ĥλ = T̂ + V̂λ + λŴ , (1)

where T̂ is the kinetic energy and Ŵ the two-body interaction,
the strength of which is regulated by a real parameter λ.
Finally, V̂λ represents the external potential and is the sum
of one-body potentials vλ(r). The latter potential depends
on the interaction strength λ via the requirement that for
each value of λ, the same electronic density n(r) is obtained
from the ground state of Eq. (1). This makes vλ a functional
of the density via the Hohenberg-Kohn theorem [8] and we

will therefore sometimes write vλ[n] to stress this fact when
necessary.

Typically, the Hamiltonian is given at λ = 1 with a known
external potential and the key many-body problem is to solve
for its eigenstates. However, consideration of the full λ depen-
dence is useful in formal derivations in DFT and is particularly
relevant for this work. An important limit is obtained by taking
λ = 0, in which case the system becomes noninteracting while
retaining the density of the interacting system. This system
is denoted as the Kohn-Sham (KS) system and its external
potential is commonly denoted by vs(r). The ground state of
the KS system is a Slater determinant consisting of KS orbitals
ϕi satisfying(− 1

2∇2 + vs[n](r)
)
ϕi(r, σ ) = εi ϕi(r, σ ), (2)

where σ is a spin index. The KS equations are a device for
obtaining the density of the interacting system by solving one-
particle equations. However, to make the procedure useful,
we need to make a connection to the interacting system
which we will take at a general interaction strength λ. To do
this, we define the Hxc potential as

vλ
Hxc[n](r) = vs[n](r) − vλ[n](r). (3)

A given approximation for this quantity allows us to obtain
the density of the interacting system by using the potential
vKS[n, vλ] = vλ + vλ

Hxc[n] in Eq. (2) instead of vs[n] where vλ

is a given and known potential of the interacting system at
interaction strength λ (which is commonly taken to be λ = 1
but we would like here to use a general interaction strength
for the discussion below) [9]. The central object of DFT is
therefore the Hxc potential. This quantity in turn is given by
the functional derivative of the Hxc energy with respect to
the density vλ

Hxc(r) = δEλ
Hxc/δn(r). The Hxc energy can be

obtained from

Eλ
Hxc[n] =

∫ λ

0
dλ′Wλ′[n], (4)

where we defined

Wλ[n] = 〈�λ[n]|Ŵ |�λ[n]〉, (5)

where �λ[n] is the ground state of Hamiltonian (1). The
quantity Wλ has been studied in limiting cases. For small
values of λ it is accessible via perturbation theory, while in the
limit of large values of λ there is an asymptotic expansion that
is derived from SCE theory. This expansion has the form [10]

Wλ[n] = VSCE[n] + VZPE[n]√
λ

+ O(λ−3/2), (6)

where the leading term is the interaction energy of the strictly
correlated electrons and the next term arises from their zero-
point energy (ZPE) in vibrations around their equilibrium
positions. Correspondingly, the asymptotic expansion of the
Hxc energy for large λ is given by

Eλ
Hxc[n] = λVSCE[n] + 2

√
λVZPE[n] + E2[n] + O(λ−1/2),

(7)

as can be checked by differentiation with respect to λ and
comparison to Eq. (6). This expression further introduces
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a density functional E2[n], the relevance of which will be-
come clear later. The functional derivative with respect to the
density gives an expansion of the Hxc potential in powers
of

√
λ:

vλ
Hxc(r) = λvSCE(r) +

√
λvZPE(r) + v2(r) + O(λ−1/2) (8)

which is valid for large value of λ. A very interesting point
is that, at least for one-dimensional many-electron systems,
the two leading terms are explicitly known functionals of the
density and can be calculated explicitly in a rather simple way
from so-called co-motion functions [11]. Before we discuss
the applicability of this expansion, let us further define the
adiabatic Hxc kernel by

f λ
Hxc(r, r′) = δvλ

Hxc(r)

δn(r′)
(9)

which according to Eq. (8) has the expansion

f λ
Hxc(r, r′) = λ

δvSCE(r)

δn(r′)
+ O(

√
λ). (10)

The first term on the right-hand side represents the so-called
adiabatic SCE kernel λ f ASCE

Hxc which has been studied in detail
in Refs. [5,7] which we refer to for more details. So far, our
discussion has been very general and, apart from the adia-
batic approximation to the time-dependent kernel of TDDFT
in Eq. (10), no approximations have been used. The main
question is, however, how reliable the asymptotic expansions
in Eqs. (7) and (8) are for values close to the physically
relevant interaction strength λ = 1. Since the expansion is
asymptotic, retaining higher-order terms typically worsen the
approximation unless we increase the value of λ. This means
that for values of λ close to one, the best approximation
may be obtained by only retaining the term vSCE. Indeed, it
was pointed out in Ref. [12] that in this interaction regime
adding the ZPE contribution generally will give a worsening
of the result. It was found that at the lowest SCE level for a
model one-dimensional diatomic molecule the bonding curve
is correct at large separation but inaccurate at equilibrium
separation, while adding the ZPE contribution gives an overall
worse result for the bonding curve. The asymptotic expansion
can therefore not been applied as such and, consequently,
Ref. [12] considers various amendments. A similar conclusion
was obtained from our previous work on the model system of
a quantum ring [7] where we found the ZPE contribution to
worsen the results at smaller interaction strengths. This work
was done for a homogeneous system in which we mainly
studied the properties of the kernel itself. In this work, we
extend that work to an inhomogeneous model system in which
again the kernel will be at the focus of attention. The equations
derived in the present section will be referenced in later
sections.

III. MOLECULAR MODEL

A. Definition of the model

For our description of the simplified molecular model, we
consider two electrons with spatial coordinates x1 and x2 both
in the domain [− L

2 , L
2 ] on a ring of length L. The Hamiltonian

of our system is given by

Ĥλ = −1

2

(
∂2

x1
+ ∂2

x2

) + vλ(x1) + vλ(x2)

+ λ cos2

[
π

L
(x1 − x2)

]
, (11)

where the first two terms are the kinetic energy of each
electron, vλ is the one-body external potential, and w(x) =
λ cos2(πx/L) is the electron-electron repulsion. We impose
periodic boundary conditions such that the particles effec-
tively move on a ring which is commonly referred to as a
quantum ring (QR) system [9]. The strength of the interaction
λ is a parameter which we will take to be positive. The
interaction tends to keep particles on opposing parts of the
ring and has a convenient form for numerical considerations.
In accordance with Eq. (1), the potential vλ is chosen in such
a way that for each value of λ the same ground-state density
is produced. For our model, it turns out to be useful to specify
the external potential at λ = 0 which corresponds to the KS
potential. In this way, we can choose the potential in such a
way that we obtain an analytic solution for the KS orbitals.
The potential at all other interaction strengths, including the
physically relevant case λ = 1, is subsequently determined by
the constraint that the density is the same for all values of λ as
we will discuss in more detail later.

B. Kohn-Sham system

The KS system is obtained from Eq. (11) by taking λ = 0
and we adopt the common notation of denoting the KS po-
tential by vs, i.e., vs = vλ=0. In this limit, the Hamiltonian of
Eq. (11), which we now denote by Ĥs, attains the form

Ĥs = − 1
2

(
∂2

x1
+ ∂2

x2

) + vs(x1) + vs(x2). (12)

We now specify an explicit choice for vs which we take to be

vs(x) = V0

[
1 + cos

(
4πx

L

)]
, (13)

where V0 is a constant with units of energy. This potential has
two minima located at x0 = ±L/4 where vs(x0) = 0 and is
positive everywhere else. The ground-state density has two
maxima at the potential minima and therefore represents a
simple model of a diatomic molecule in which the atoms are
separated by a bond distance L/2. We want to use this model
to describe molecular dissociation and therefore vary the bond
length L. While doing this we want to guarantee that the width
of each atomic density remains fixed upon separation, which
can be achieved by requiring that the curvature of the potential
at x0 = ±L/4 is independent of L. This condition reads as

v′′
s (x0) =

(
4π

L

)2

V0 = α, (14)

where α is length independent which gives V0 = α(L/(4π ))2

for an arbitrary α (in this paper we will always take α = 1).
The KS orbitals of our system satisfy the eigenvalue equation[− 1

2∂2
x + vs(x)

]
ϕ±

l (x) = ε±
l ϕ±

l (x), (15)

where we added a symmetry label ± for orbitals that are
even or odd with respect to reflection in the origin, i.e.,
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FIG. 1. The ground-state density n as a function of the dimen-
sionless coordinate z = 2πx/L. The densities for various L values
are denoted by nL in the plot. The corresponding KS potential vs/L2

[Eq. (13)] is plotted in arbitrary units for comparison and indicated
by a dashed line. For large L, we obtain two peaks of fixed width
while for small L the system becomes homogeneous.

ϕ±
l (−x) = ±ϕ±

l (x). These equations must be solved together
with the boundary conditions ϕl (−L/2) = ϕl (L/2) and the
same for their first derivatives. It is convenient to define
the dimensionless coordinate z = 2πx/L and use the explicit
form of the potential to rewrite Eq. (15) as[−∂2

z + 2ν cos(2z)
]
M±

l (z) = a±
l (ν)M±

l (z), (16)

where we have defined the following constants:

a±
l (ν) = 2

(
L

2π

)2

(ε±
l − V0), (17)

ν(L) = α

4

(
L

2π

)4

. (18)

We recover the KS orbitals from ϕ±
l (x) = M±

l (2πx/L). Equa-
tion (16) is the well-known Mathieu equation and its eigen-
functions and eigenvalues have been intensively studied [13].
The functions M+

l and M−
l are commonly denoted as the

Mathieu-cosine Cl and the Mathieu-sine Sl functions, respec-
tively, while the values a±

l are called the Mathieu characteris-
tic values. The convention is that the label of the even states
start at l = 0 whereas the labels of the odd states start at l = 1.
The Mathieu functions satisfy M±

l (z + π ) = (−1)lM±
l (z) and

are therefore 2π periodic. They are commonly normalized as
follows: ∫ π

−π

dz(M±
l (z))2 = π. (19)

Correspondingly, the normalized (to one) KS orbitals are
expressed in terms of Mathieu functions as

ϕ+
l (x) =

√
2

L
Cl

(
2πx

L
; ν

)
, (20)

ϕ−
l (x) =

√
2

L
Sl

(
2πx

L
; ν

)
, (21)

while the Kohn-Sham eigenenergies can be recovered from
the Mathieu characteristic values by means of Eq. (17). In
Fig. 1 we plot the KS potential and the ground-state density
for different bond distances to illustrate the main features that
we mentioned, in particular, the fact that the width of the

FIG. 2. Selected KS orbitals as a function of the dimension-
less coordinate z = 2πx/L ∈ [−π, π ] plotted for the bond distance
L/2 = 10.5. We display the ground state and first few excited states
corresponding to the bonding and antibonding orbital pairs repre-
sented by the pair of Mathieu functions C0 and S1 as well as the
pair C1 and S2. For this bond distance, the bonding and antibonding
orbitals coincide for positive z.

maxima becomes independent of the bond distance for large
L. Although we are not particularly interested in the case of
very short bond distances, we note that in the limit L → 0 the
parameter ν becomes equal to zero and the ground-state KS
orbital is given by the constant function ϕ0(x) = 1/

√
L repre-

senting a system of constant density. We will not investigate
this limit in detail; a homogenous QR at various interaction
strength has been studied in detail in Ref. [7].

In Fig. 2 we plot the ground state and the first few excited-
state KS orbitals. Of particular interest for our later discussion
of the Hxc kernel is the lowest pair of bonding and antibond-
ing states represented by the pair of Mathieu functions C0 and
S1. The corresponding energy gap between the KS eigenvalues
closes exponentially fast with increasing bond distance:

ε−
1 − ε+

0 = 2π2

L2
[a−

1 (ν) − a+
0 (ν)] (22)

= 32

L2
(2π )3/2ν3/4e−4

√
ν −−−→

L→∞
0, (23)

where we used the asymptotic expansion for the Mathieu
characteristic value given in Appendix A. We remind the
reader that ν is an increasing function of L given by Eq. (18).
The density in the bond midpoint has a similar exponential
decay [see Eq. (A6) in Appendix A] given by

n(0) = 16

L
(2π )

1
2 ν1/4e−4

√
ν (L → ∞). (24)

The knowledge of this precise behavior of the KS gap as well
as the density in the bond midpoint will facilitate considerably
the calculation of the excitation energy from the ASCE kernel
in Sec. IV.

C. Exact solution of the model

After having considered the model in the KS limit, we
will now consider the case of finite interaction strength λ.
The potential vλ in Eq. (11) can not be obtained analytically
except in some limiting cases that we will discuss below. We
therefore obtain vλ directly from the constraint that the density
is independent of λ using the numerical algorithm outlined in
Ref. [14]. In our case, the density is given by the ground-state
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KS orbital from Eq. (20) to be

n(x) = 2|ϕ+
0 (x)|2 = 4

L
C2

0

(
2πx

L
; ν

)
(25)

for all λ where we remind the reader that ν depends on L
via Eq. (18). Therefore, for a given value of L we have the
numerical task to find vλ for a range of interaction strengths
of interest. The ground state is a spin-singlet state and, con-
sequently, we will mostly be interested in the singlet excited
states. The singlet wave function has the structure

�(x1σ1, x2σ2) = ψ (x1, x2)
1√
2

(
δσ1↑δσ2↓ − δσ1↓δσ2↑

)
,

where σi for i = 1, 2 are spin variables and where the spatial
part of the wave function is symmetric ψ (x1, x2) = ψ (x2, x1)
to ensure antisymmetry of the full space-spin wave function.
To obtain deeper insight in the results, we will also derive
analytic results in the regime of large bond distance L/2 for
fixed interaction strength λ, which is the common molecular
dissociation regime, and the complementary regime of large
interaction strength λ for fixed bond distance L/2, which is
the SCE regime. We will start in the next subsection with the
first regime.

1. Large bond distance for fixed interaction strength

We first consider the regime of large bond distance L/2
at fixed values of λ. In this regime, the molecule is typically
dissociated in two one-electron atoms (unless the interacting
strength λ is very small such that there are contributions from
the ionic states with two or zero electrons on each atom).
For a one-electron atom, the KS potential is equal to the true
external potential and therefore we have vλ(x) = vs(x) for x
in the neighborhood of each atom at large separation. The
ground-state atomic orbitals A(x) and B(x) on atoms A and
B are localized around x = ±L/4 and can be expressed in
terms of the first bonding and antibonding molecular KS or-
bitals as A(x) = [ϕ+

0 (x) + ϕ−
1 (x)]/

√
2 and B(x) = [ϕ+

0 (x) −
ϕ−

1 (x)]/
√

2 (see, for example, Fig. 2). The exact ground-state
(GS) wave function for the large bond distance limit is the
well-known Heitler-London (HL) wave function

�GS
λ (x1, x2) = 1√

2
[A(x1)B(x2) + B(x1)A(x2)]

= 1√
2

[ϕ+
0 (x1)ϕ+

0 (x2) − ϕ−
1 (x1)ϕ−

1 (x2)]. (26)

The ground-state energy is given by

EGS
λ = 2ε+

0 = √
α − π2

L2
+ O(L−4) (L → ∞), (27)

where we used that ε+
0 = ε−

1 in the large-L limit and the
asymptotic expansion of the Mathieu characteristic values
in Appendix A. This result is easy to understand. Since at
the atomic positions x0 = ±L/4 we have that v′′

s (x0) = α the
potential around each atom is given by vs(x) = α(x − x0)2/2
which corresponds to a harmonic well with harmonic fre-
quency

√
α. Each atomic oscillator has ground-state energy√

α/2, thereby adding up to the molecular ground-state en-
ergy

√
α.

FIG. 3. The ground- and first-excited-state wave functions for
interaction strength λ = 1 plotted for L = 9 and 21. The rightmost
panels display the corresponding ground-state densities.

Let us now consider the first excited state which in the
large-L limit is given by

�
(1)
λ (x1, x2) = 1

2 [ϕ+
1 (x1)ϕ−

1 (x2) + ϕ−
1 (x1)ϕ+

1 (x2)

−ϕ+
0 (x1)ϕ−

2 (x2) − ϕ−
2 (x1)ϕ+

0 (x2)]. (28)

The orbitals used in this expression are displayed in Fig. 2. For
large L the states ϕ+

0 and ϕ−
1 become degenerate and the same

is true for the states ϕ+
1 and ϕ−

2 . These orbitals can be used to
construct localized ground- and excited-state atomic orbitals
from the combinations ϕ+

0 ± ϕ−
1 and ϕ+

1 ± ϕ−
2 if desired. The

energy of the two-particle state of Eq. (28) is given by

E (1)
λ = ε+

0 + ε+
1 = 2

√
α − 3π2

L2
+ O(L−4) (L → ∞).

(29)

Again, it is straightforward to interpret the energy. The system
is a superposition of two states in which one atom is a ground-
state oscillator with energy

√
α/2 and the other one a first

excited oscillator with energy 3
√

α/2 giving a total molecular
energy of 2

√
α.

To judge the accuracy of these limiting wave functions, we
plot the exact ψλ for λ = 1 and L = 9 and 21 (corresponding
to bond lengths 4.5 and 10.5) in Fig. 3. We see that for L = 21
the wave functions (26) and (28) are a good approximation
to the true wave functions (as we also checked numerically).
At L = 9 the system still has a considerable density at the
bond midpoint and the HL-type wave functions are a less good
approximation.

Finally, we compare in Fig. 4 the exact external potential
vλ to vs. We see that around the atoms both potentials agree,
but that around the bond midpoint there is a considerable
deviation. This amounts to a peak in the Hxc potential vλ

Hxc =
vs − vλ at the bond midpoint. This is a well-known feature of
the Hxc potential [15] and is related to the so-called left-right
correlation in the system. We refer to the cited reference for a
more in-depth discussion.
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FIG. 4. The potential vλ for λ = 1 for L = 21 compared to vs.

2. Large interaction strength at fixed bond distance

We now turn our attention to the complementary regime of
larger interaction strength λ for fixed bond distance. This is
the regime in which SCE become exact. From our numerical
work we find that in this limit the two-particle wave function
localizes in a region where |x1 − x2| ≈ L/2 as displayed in
Fig. 5. This is in accordance with SCE theory which tells
that in the very strong interaction limit, the position of a
single electron determines the positions of the remaining elec-
trons uniquely. For this reason, it is convenient to introduce
the center of mass R = (x1 + x2)/2 and relative coordinate
r = x1 − x2, where R ∈ [−L/2, L/2] and r ∈ [−L, L]. The
Hamiltonian (11) in the new coordinates attains the form

Ĥλ = −1

4
∂2

R − ∂2
r + vλ

(
R + r

2

)
+ vλ

(
R − r

2

)

+ λ cos2

(
πr

L

)
. (30)

We want to give an explicit approximate expression of the
Hamiltonian (11) for the limit λ → ∞ for any fixed bond
distance L/2. Since the wave function is localized around the

FIG. 5. The ground- and excited-state wave functions at large
interaction strength λ = 1000 for the bond distances L/2 = 3 and
10.5. We note that the wave function localizes in narrow strips
along the lines |x1 − x2| = L/2. The rightmost panels display the
corresponding ground-state densities.

lines r = ±L/2, it is natural to expand the external potential
vλ around these values. For example, for r = L/2 we have to
second order

vλ

(
R + r

2

)
+ vλ

(
R − r

2

)

= v̄λ(R) + βλ(R)

(
r − L

2

)2

, (31)

where we defined

v̄λ(R) = 2 vλ

(
R + L

4

)
, (32)

βλ(R) = ∂2vλ(R ± r/2)

∂r2

∣∣∣∣
r=L/2

(33)

with an essentially identical result for the expansion around
r = −L/2, and where we used the property vλ(x) = vλ(x +
L/2) in the definitions of v̄λ and βλ and in the cancellation of
the linear term. With the expansion of Eq. (31), the Hamilto-
nian becomes

Ĥλ = −1

4
∂2

R − ∂2
r + v̄λ(R) + βλ(R)

(
r − L

2

)2

+ λ cos2

(
πr

L

)
(34)

with a similar expansion around r = −L/2. We see that
this Hamiltonian becomes separable when we neglect the
term βλ. However, the two-body interaction has form w(r) =
λ(π/L)2(r − L/2)2 around r = L/2 and the question is there-
fore whether we can neglect βλ compared to λ(π/L)2. From
our calculation we find that vλ and therefore also βλ converge
to a finite value for large λ. Therefore, for fixed L and large
enough λ we can neglect βλ and the system becomes approxi-
mately separable. If we write the wave function in this limit as
�λ(r, R) = χλ(r)ϕλ(R), then its factors are determined from
the equations

[
−1

4
∂2

R + 2 vλ

(
R + L

4

)]
ϕλ(R) = ε ϕλ(R), (35)

[
−∂2

r + λ cos2

(
πr

L

)]
χλ(r) = ε̃ χλ(r). (36)

These equations determine all the eigenstates in the large-λ
limit. Let us, however, focus on the ground state and take χλ

and ϕλ to be ground states of their corresponding Hamiltoni-
ans. The ground-state density is then obtained from

n(x1) = 2
∫ L/2

−L/2
dx1

∣∣∣∣ϕλ

(
x1 + x2

2

)∣∣∣∣
2

|χλ(x1 − x2)|2. (37)

The function |χλ(r)|2 becomes very narrowly peaked around
r = ±L/2 as λ becomes very large. We can therefore normal-
ize it such that for the limit that λ → ∞,

|χλ(r)|2 → δ

(
r − L

2

)
+ δ

(
r + L

2

)
(38)
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FIG. 6. The potential vλ for λ = 1000 for L = 21 compared to
vs/4.

from which we obtain, using Eq. (37), that for large interaction
strength

n(x) = 2

[∣∣∣∣ϕλ

(
x + L

4

)∣∣∣∣
2

+
∣∣∣∣ϕλ

(
x − L

4

)∣∣∣∣
2
]

= 4

∣∣∣∣ϕλ

(
x − L

4

)∣∣∣∣
2

. (39)

The ground-state density is also given by n(x) = 2|ϕ+
0 (x)|2 in

which ϕ+
0 (x) solves Eq. (15). Comparison of this equation to

Eq. (35) then immediately yields that

vλ(x) = vs(x)

4
= V0

4

[
1 + cos

(
4πx

L

)]
(40)

and ϕ+
0 (x) = √

2 ϕλ(x − L/4). From our derivation we there-
fore deduce that in our system

lim
λ→∞

vλ(x) = vs(x)

4
. (41)

A comparison with the general Eq. (8) from SCE theory shows
that in our case vSCE and vZPE are zero and that v2(x) = vs −
vλ = 3vs(x)/4. The fact that vSCE and vZPE vanish can also be
directly derived from SCE theory and is a consequence of the
symmetry of our system. In Fig. 6 we compare vλ to vs/4 for
various large values of λ and note a good agreement between
them with the exception of some deviations around the bond
midpoint. This discrepancy becomes smaller for higher values
of λ.

Let us now consider the energies of the system. The
eigenenergies of the two-particle state are given by E = ε + ε̃

where ε and ε̃ are the eigenvalues of the Hamiltonians in
Eqs. (35) and (36). From the fact that vλ = vs/4 in Eq. (35)
we see that the eigenvalues ε are half of the KS eigenvalues of
Eq. (15). These eigenvalues correspond to an excitation which
only involves a change of the center-of-mass wave function
without changing the relative wave function. The eigenvalues
ε̃ are calculated from Eq. (36). The transformation z = πr/L
transforms this Hamiltonian to[−∂2

z + 2q cos(2z)
]
M(z) = a(q)M(z), (42)

FIG. 7. The ASCE kernel for L = 1, 10, 20. We see that with
growing L plateaus develop the heights of which grow exponentially
with L.

where

q = λ

(
L

2π

)2

, (43)

a(q) = L2

π2
ε̃ − 2q. (44)

Equation (42) is again the Mathieu equation with this time
a parameter q that depends on the interaction strength. The
eigenvalues in the limit of large interactions have the form

ε̃l = π2

L2
[2q + a+

l (q)] =
(

l + 1

2

)
2π

L

√
λ (λ → ∞), (45)

which is a harmonic spectrum with harmonic frequency ωλ =
2π

√
λ/L. These excitations of involve a change of the relative

wave function and represent the zero-point vibrations of the
strictly correlated electrons of SCE theory. The lowest excita-
tion energy for this mode is therefore ωλ. This will be relevant
of our discussion of the excitation energy obtained from the
ASCE kernel.

IV. ADIABATIC SCE KERNEL

A. Definition and properties

We have studied in detail the excitation properties of our
model system in two different regimes. We will now inves-
tigate the adiabatic SCE kernel (Fig. 7). As was discussed
below Eq. (10), the ASCE kernel is defined as

f ASCE(x, x′) = δvSCE(x)

δn(x′)
. (46)

The SCE potential vanishes for our system, but its functional
derivative does not. As was discussed in detail in Refs. [5,7],
it is explicitly given by the expression

f ASCE(x, x′) =
∫ x

−L/2
dy

w′′[y − f (y)]

n( f (y))
(47)

×{θ (y − x′) − θ [ f (y) − x′]}, (48)

where θ is the usual Heaviside function and w(x) the two-
body interaction. The function f (x) is the so-called comotion
function which specifies the position of another electron given
the position of a reference electron. For our system, the
comotion function attains the simple form

f (x) =
{

x − L
2 if x > 0,

x + L
2 if x � 0.

(49)
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If we define the function P (x) to be

P (x) =
∫ x

−L/2
dy

w′′[y − f (y)]

n( f (y))
, (50)

then the integrand contains dP/dx and we can obtain f ASCE

by partial integration while usefully manipulating the results
using the fact that P (x) − P (0) is an odd function. In the
quadrant x, x′ > 0 we obtain

f ASCE(x, x′) = P (−x)θ (x − x′) + P (−x′)θ (x′ − x), (51)

while in the quadrant x < 0, x′ > 0 we have

f ASCE(x, x′) = [P (x) − P (x′) + P (0)]θ [ f (x) − x′]. (52)

The function in the remaining quadrants is determined from
the symmetry f ASCE(x, x′) = f ASCE(−x,−x′). For our sys-
tem, the function P (x) can be written more explicitly as

P (x) = w′′
(

L

2

)∫ x

−L/2

dy

n(y)
, (53)

where for our two-body potential w′′(L/2) = 2π2/L2. In Ap-
pendix B we show that

lim
L→∞

P (x) = P (0)

[
1

2
+ θ (x)

]
(54)

for x = 0. This equation implies that for large values of L, the
kernel assumes the form

f ASCE(x, x′) = 1
2P (0)[θ (x)θ (x′) + θ (−x)θ (−x′)] (55)

for x, x′ = 0. The function exhibits plateaus of height P (0) in
the quadrants in which both coordinates have the same sign
and is zero otherwise. In Appendix B we show that this height
grows exponentially fast with L according to

P (0) = w′′
(

L

2

)
L2

16(2π )3/2ν3/4
e4

√
ν (L → ∞) (56)

[we remind the reader that ν depends on L according to
Eq. (18)]. With these results we are ready to calculate exci-
tation energies from the ASCE kernel.

Lowest excitation energy

We now address the issue of calculating the excitation en-
ergy of the system. To make our point, it is sufficient to restrict
ourselves to the so-called small matrix approximation [2] in
which the singlet excitation energy � from an occupied state
i to an unoccupied state a is given by

�2 = ω2
ia + 4ωiaKia,ia, (57)

where ωia = εa − εi is the difference in KS energies, and

Kia,ia =
∫

dx dx′�ia(x) fHxc(x, x′)�ia(x′), (58)

where �ia(x) = ϕi(x)ϕa(x) is an excitation function (in which
we take the orbitals to be real for simplicity) and fHxc the Hxc
kernel which we took in an adiabatic approximation relevant
to the discussion below. In our particular case we consider the
excitation from the lowest KS orbital ϕ+

0 to ϕ−
1 . For ease of

notation and to be in accordance with adopted language we

denote the orbitals by the gerade and ungerade sigma orbitals
σg(x) and σu(x) and their eigenvalues by εg and εu. We know
that in the dissociation limit, the KS gap ωgu vanishes. The
excitation energy is therefore given by

�2 = lim
L→∞

4ωguKgu,gu. (59)

In the ALDA this expression vanishes as the kernel can not
compensate for the decay of the KS gap. However, as we
will show now, the ASCE kernel [we remind the reader of
Eq. (10)] will lead to a finite contribution. The matrix element
in the large separation limit is readily calculated from Eq. (55)
to be

Kgu,gu = λ

4
P (0), (60)

where we used the symmetry and normalization of the KS
orbitals. If we use this in Eq. (59), we find that in the large-L
limit

�2 = λ(εu − εg)P (0) = 2λw′′
(

L

2

)
(L → ∞). (61)

For our system we have w′′(L/2) = 2π2/L2 and we obtain
� = 2π

√
λ/L which is exactly the harmonic frequency of

the zero-point oscillation of Eq. (45). We therefore deduce
that the excitations that we recover from the ASCE kernel are
exactly the ones that correspond to the zero-point oscillations.
With hindsight, this may not be surprising as, after all, the
zero-point oscillations represent an always present set of ex-
citations in SCE theory. Note that in the derivation of Eq. (61),
it is important to consider a fixed but arbitrary large L and then
take the limit λ → ∞, i.e., the standard SCE regime, and not
the other way around otherwise � = 2π

√
λ/L → 0.

B. ASCE kernel in the conventional molecular
dissociation regime

In the previous subsection we found that in the limit that
the interaction strength λ becomes very large at fixed bond
distance L/2, the lowest excitation energy is that of the lowest
zero-point oscillation of the strictly correlated electrons, and
in that regime the ASCE kernel gives an exact result. Let
us now see how the ASCE kernel performs in the opposite
regime in which the bond distance becomes large at fixed
interaction strength, in particular for the chemically relevant
case of interaction strength λ = 1. This is the conventional
dissociation regime as commonly studied in bond breaking in
chemistry. Note that we now apply the ASCE kernel outside
its formal range of applicability and, therefore, the approxima-
tion becomes uncontrolled. The consideration is nevertheless
illuminating as it illustrates the reasons for the breakdown of
the approximation. For λ = 1, the matrix element (60) of the
ASCE kernel is given by P (0)/4 and we have for the lowest
excitation energy

�ASCE =
[

2w′′
(

L

2

)] 1
2

(L → ∞). (62)

Let us compare this to the exact excitation energy

�exact = √
α (L → ∞) (63)
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as follows directly from Eqs. (27) and (29). We remind the
reader that the parameter α [see Eq. (14)] is given by the
curvature of the external potential at its minima (as vs be-
comes the true external potential around the atoms in the
dissociation limit). Since upon dissociation the separate atoms
become independent single-particle oscillators, Eq. (63) is a
natural result. If we consider the ASCE approximation, on
the other hand, we see that according to Eq. (62) the lowest
excitation energy is determined solely by the curvature of the
interaction potential w′′(L/2). This is because, by using the
ASCE kernel, we pretend that the separated atoms still be-
have as strictly correlated electrons with an excitation energy
determined by the zero-point oscillations. This is the wrong
physical picture in this regime and, therefore, the ASCE
approximation fails to describe the right physics. In fact, in our
system w′′(L/2) = 2π2/L2 → 0 for L → ∞ and therefore
the ASCE excitation energy becomes zero in the dissociation
limit. For other forms of the two-body interaction this may not
be the case, but this does not change our conclusion regarding
the physical picture. The ASCE approximation is therefore not
an improvement over the ALDA in the dissociation regime.
Both approximations attain the wrong dissociation limit; in
the case of the ALDA the excitation energy becomes zero,
whereas in the case of the ASCE approximation the excitation
energy is determined by the two-body interaction potential
rather than by the external potential of the separated atoms.
This result is not surprising as we have used the ASCE
kernel outside its regime of applicability. The ASCE kernel is
therefore not of use if one is interested in the regime of large
bond length at intermediate interaction strength, which is the
relevant case for bond breaking in most common chemical
applications. To correct these problems within the present
formalism, a natural way to proceed would be include ZPE
and higher-order kernels in the expansion of the Hxc kernel
as was done in Ref. [7]. However, that work showed that the
extra terms lead to worse approximation than just the ASCE
approximation for low interaction strengths, as is typical for
an asymptotic expansion. The description of the conventional
dissociation regime using density functional methods there-
fore remains a challenging task.

V. CONCLUSIONS

In this work, we studied the properties of an approximate
adiabatic Hxc kernel based on the theory of strictly correlated
electrons. To benchmark this approximation, we studied a
numerically and analytically solvable system which is able
to simulate the main features of a dissociating molecule.
We studied in detail the two-particle eigenstates in various
limits and calculated the excitation spectrum in the limit
of large interaction strength. The ASCE kernel was shown
to reproduce the so-called zero-point oscillation part of the
spectrum. The attainment of this exact result shows that
the ASCE kernel becomes exact in this regime as we also
concluded from earlier work [7]. However, most current in-
terest in molecular dissociation in chemistry is devoted to the
complementary regime of large bond distance at intermedi-
ate interaction strength. In this regime, the ASCE kernel is
not suitable for obtaining the excitation spectrum. We con-
clude that the description of molecular dissociation based on

functionals founded on SCE theory remains a challenge for
the future.

APPENDIX A: PROPERTIES OF MATHIEU FUNCTIONS

In this Appendix we describe a few useful properties of
the Mathieu functions and their characteristic values that
we use in the main text. Many properties of these functions
can be found in Ref. [13]. The Mathieu characteristic values
have the following expansion for large q (where q is the
parameter in the Mathieu equation):

a+
l (q), a−

l+1(q) = −2q + 2(2l + 1)
√

q − 1

4
(2l2 + 2l + 1)

+ (2l + 1)

128
√

q
[(2l + 1)2 + 3] + O(q−1).

(A1)

The difference a−
l+1(q) − a+

l (q) is exponentially small in the
large-q limit [13]

a−
l+1(q) − a+

l (q) = 24l+5

l!

(
2

π

) 1
2

q
l
2 + 3

4 e−4
√

q

×
[

1 − 6l2 + 14l + 7

32
√

q
+ O(q−1)

]
.

(A2)

We note that in our previous work [7] we denoted a−
l+1 by a−

l
in the asymptotic formula (A1) which amounts to a different
labeling convention for the characteristic values. Here, we
stick to a more common convention.

For this work we need an accurate representation of
C0(z; q) for small values of z. A representation that is valid
for large q in the interval |z| < π/2 is given by

C0(z, q)= C0(0, q)√
2

× e2
√

q sin(z) cos
(

z
2 + π

4

) + e−2
√

q sin(z) sin
(

z
2 + π

4

)
cos z

.

(A3)

To determine this function, we also need to know its prefactor
C0(0; q) which is given by [16]

C0(0, q) = C0

(
π

2
; q

)
23/2e−2

√
q

[
1 + 1

16q1/2
+ 9

256q

]
.

(A4)

This equation involves yet another prefactor which is obtain-
able from Sips’ expansion [7] and given in leading order in q
to be

C0

(
π

2
; q

)
=

(
π

√
q

2

)1/4(
1 + 1

8
√

q
+ 27

512q
+ · · ·

)−1/2

.

(A5)

In particular, we find that

C2
0 (0, q) = 4(2π )1/2q1/4e−4

√
q (q → ∞) (A6)
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from which we obtain the density in the bond midpoint of
Eq. (24).

APPENDIX B: ANALYSIS OF THE FUNCTION P (x)

We study here the properties of the function P (x) defined
in Eq. (53) which we rewrite here as

P (x) = w′′
(

L

2

)
L

4

∫ x

−L/2

dy

C2
0 (2πy/L; ν)

= γ

∫ 2πx/L

−π

f (t, ν)dt, (B1)

where we used the explicit form of the density and we defined

f (z, ν) = C2
0 (0, ν)

C2
0 (z, ν)

,

γ = L2

8π

w′′( L
2

)
C2

0 (0; ν)
. (B2)

It will be convenient to further introduce the functions

I (z, ν) =
∫ z

0
dt f (t ; ν) (B3)

and J (ν) = I (π/2, ν) such that we can write

P (x) = γ

[
2J (ν) + I

(
2πx

L
, ν

)]
, (B4)

where we used the symmetry of the integrand. Using then the
asymptotic expansion of Mathieu functions functions (A3),
the f (t ; ν) reads as

f (z, ν)= 2 cos2 z[
e2

√
ν sin(z) cos

(
z
2 + π

4

) + e−2
√

ν sin(z) sin
(

z
2 + π

4

)]2 .

(B5)

For ν very large this function has its main contributions from
z = 0 and we can approximate

f (z, ν) = cos z

cosh2(2
√

ν sin z)
(B6)

FIG. 8. The function P (x)/P (0) for L = 10 (left panel) and L =
20 (right panel) where we clearly see a step structure appearing for
increasing L.

which inserted into Eq. (B3) gives

I (z, ν) = tanh(2
√

ν sin z)

2
√

ν
(B7)

and, consequently,

J (ν) = tanh(2
√

ν)

2
√

ν
= 1

2
√

ν
(ν → ∞). (B8)

From this we can evaluate P (0). Using Eqs. (A6) and (B2),
we find

P (0)=2γJ (ν)=w′′
(

L

2

)
L2

16(2π )3/2ν3/4
e4

√
ν (L → ∞),

(B9)

which yields Eq. (56). Finally, we consider the quantity

P (x) − P (0)

P (0)
= I (2πx/L, ν)

2J (ν)

= tanh(2
√

ν sin(2πx/L))

2 tanh(2
√

ν)

= θ (x) − 1

2
(L → ∞) (B10)

and, therefore,

P (x) = P (0)
[

1
2 + θ (x)

]
(L → ∞). (B11)

This behavior of the function P (x) is illustrated in Fig. 8
where we plotted P (x)/P (0). In this figure, we clearly see
the step appearing with increasing L.
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