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Abstract: Johannes Kohal, Scale function approach to exit problems of refracted
Lévy risk processes, Master’s thesis in mathematics, 54 pages, University of Jyväskylä,
Department of Mathematics and Statistics, autumn 2018.

In this masters’s thesis we start by introducing a family of functions called scale
functions. Scale functions are defined with the help of Laplace transform and they are
unique with respect to the corresponding spectrally negative Lévy process. Spectrally
negative Lévy processes are Lévy processes which can only jump downwards. With the
help of scale functions we inspect the behaviour of spectrally negative Lévy processes.
Principally in the case of spectrally negative Lévy processes we are interested in
problems concerning boundary crossings, called exit problems, of intervals [a, b] and
[b, c], where a, b, c ∈ R and a ≤ b ≤ c. Hence we present results for exit problems of
spectrally negative Lévy processes in which we use scale functions.

After this we start consider refracted Lévy processes and connect those to spec-
trally negative Lévy processes and scale functions. In our case a refracted Lévy process
is defined such that it is a process which has been deducted by a linear drift when it
is above a pre-specified level. Mathematically we define a refracted Lévy process to
be the strong solution of the stochastic differential equation

dUt = dXt − α1{Ut>b}dt, for t ≥ 0,

where X = (Xt)t≥0 is a spectrally negative Lévy process and b ∈ R. For fixed X0 = x
we have that a unique strong solution exists and the solution is a strong Markov
process. If we define the spectrally negative Lévy process Y = (Yt)t≥0 such that
Yt := Xt − αt, we get a stochastic differential equation which is equivalent to the
earlier stochastic differential equation:

dUt = dYt + α1{Ut<b}dt, for t ≥ 0.

We derive the equalities considering the exit problems of refracted Lévy process by
using the scale functions of the corresponding spectrally negative Lévy processes X
and Y .

In the main theorem we give the representations for the joint Laplace transforms
of (

κ−a ,

∫ κ−a

0

1{Us<b}ds

)
and

(
κ+c ,

∫ κ+c

0

1{Us<b}ds

)
,

where κ−a and κ+c are optional times of the exit problems of interval [a, c] related to
the refracted Lévy process U = (Ut)t≥0 and a ≤ b ≤ c. From these representations we
derive an expression for the expected time that the process U spends inside the set
[a, b) before crossing c or a. Finally we present a risk model, in which we can apply
the main result. In the risk model we consider the set [a, b) to be the red zone, which
we consider to be the set inside of which the company, which financial situation the
refracted Lévy process U represents, is in financial distress. This paper is based on
the Jean-François Renaud’s paper On the time spent in the red by a refracted Lévy
risk process (J. Appl. Prob. 51, 1171-1188 (2014)).



Tiivistelmä: Johannes Kohal, Skaalafunktioiden käyttö taivutettujen Lévy-riski-
prosessien poistumisongelmissa, matematiikan pro gradu -tutkielma, 54 sivua, Jyväs-
kylän yliopisto, Matematiikan ja tilastotieteen laitos, syksy 2018.

Opinnäytetyö aloitetaan esittelemällä skaalafunktiot (englanniksi scale function).
Skaalafunktiot määritellään Laplace-muunnoksen avulla ja ne ovat yksikäsitteisiä an-
netun spektraalisti negatiivisen Lévy-prosessin suhteen. Spektraalisti negatiivinen
Lévy-prosessi (englanniksi spectrally negative Lévy process) on Lévy-prosessi, jolla on
vain negatiivisia hyppyjä. Skaalafunktioiden avulla tutkitaan spektraalisti negatiivis-
ten Lévy-prosessien käyttäytymistä. Tässä työssä keskitytään pääasiassa tutkimaan
spektraalisti negatiivisten Lévy-prosessien arvojoukkovälien [a, b] ja [b, c], missä
a, b, c ∈ R ja a ≤ b ≤ c, päätepisteiden ylityksiin liittyviä ongelmia eli poistu-
misongelmia (englanniksi exit problems). Tästä syystä työssä esitetään tuloksia spekt-
raalisti negatiivisten Lévy-prosessien poistumisongelmille, joissa käytetään skaala-
funktioita.

Tämän jälkeen käsitellään taivutettuja Lévy-prosesseja ja nämä yhdistetään spekt-
raalisti negatiivisiin Lévy-prosesseihin ja skaalafunktioihin. Taivutettu Lévy-prosessi
(englanniksi refracted Lévy process) määritellään tässä työssä siten, että se on prosessi,
jota taivutetaan alaspäin lineaarisen suoran avulla prosessin ollessa annetun arvon
yläpuolella. Matemaattisesti taivuttu Lévy-prosessi määritellään olevan stokastisen
differentiaaliyhtälön

dUt = dXt − α1{Ut>b}dt, t ≥ 0,

missä X = (Xt)t≥0 on spektraalisti negatiivinen Lévy-prosessi ja b ∈ R, vahva
ratkaisu. Annetulla alkuarvolla X0 = x yksikäsitteinen ratkaisu on olemassa ja
ratkaisu on vahva Markov-prosessi. Mikäli määritellään spektraalisti negatiivinen
Lévy-prosessi Y = (Yt)t≥0 siten, että Yt := Xt − αt, saadaan yllä olevan stokastisen
differentiaaliyhtälön kanssa ekvivalentti stokastinen differentiaaliyhtälö, joka on

dUt = dYt + α1{Ut<b}dt, t ≥ 0.

Taivutettuihin Lévy-prosesseihin liittyvien poistumisongelmien yhtälöt johdetaan
käyttämällä vastaavien spektraalisti negatiivisten Lévy-prosessien X ja Y skaalafunk-
tioita.

Työn päätulos antaa satunnaismuuttujien(
κ−a ,

∫ κ−a

0

1{Us<b}ds

)
ja

(
κ+c ,

∫ κ+c

0

1{Us<b}ds

)
,

yhdistettyjen Laplace-muunnosten esitykset, missä κ−a ja κ+c ovat taivutetun Lévy-
prosessin (Ut)t≥0 välin [a, c] poistumisongelmiin liittyvät optionaaliset hetket (englan-
niksi optional times) ja a ≤ b ≤ c. Näistä esityksistä johdetaan yhtälö odotetulle
ajalle, jonka prosessi U viettää välillä [a, b) ennen arvon c ylittämistä tai arvon a alit-
tamista. Lopuksi esitellään riskimalli, jossa voidaan soveltaa työn päätulosta. Riski-
mallissa väliä [a, b) pidetään punaisena alueena. Kun prosessi U on tämän alueen
sisällä, sanotaan, että yritys, jonka taloudellista tilannetta prosessi U mallintaa, on
taloudellisessa ahdingossa. Tämä työ pohjautuu Jean-François Renaud’n työhön On
the time spent in the red by a refracted Lévy risk process (J. Appl. Prob. 51,
1171-1188 (2014)).
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Introduction

In classical ruin theory it is usually assumed that ruin occurs if the given risk
process falls too low. In many cases it is said that the risk process falls too low if
it falls below 0. A way to refine the classical ruin definition is to define a boundary
b such that ruin happens if the risk process spends too much time below b. If we
consider the case that the given risk process describes the financial situation of some
company it is natural to think that when the risk process is below b some kind of
restructuring should happen. Since in classical ruin theory the restructuring is not
considered, we want to build such a model where restructuring can occur. This gives
us the motivation to study refracted Lévy processes.

A refracted Lévy process is introduced as a process which dynamics is changed
while it is above a pre-specified level by subtracting off a fixed linear drift. Formally
we define that the refracted Lévy process is the strong solution of the stochastic
differential equation

(0.1) dUt = dXt − α1{Ut>b}dt,

where b is now the pre-specified level above of which we subtract off the linear drift,
and X is spectrally negative Lévy process. For fixed X0 = x we have that the strong
solution exists and it is a strong Markov process. Another way to define the process
U is

(0.2) dUt = dYt + α1{Ut<b}dt,

where Yt = Xt − αt. A consequence from (0.1) and (0.2) is that the process U is
described by the process X when it is below b, and by the process Y when it is above
b. Clearly the definitions (0.1) and (0.2) are equivalent when we define Y as above.
The only difference is that on (0.1) the process U is refracted above b and on (0.2) it
is refracted when it is below b.

The processes which are of the type as U are used to describe for example an
insurance company’s surplus. Refraction in this situation can thought to be the
consequence from, for example, the following action: when the insurance company is
in financial distress, that is when the process is above the level of which ruin occurs
but below b, it increases its premiums. When the company is in financial distress, we
say that the risk process U is in the red zone, which is the interval [0, b) if we assume
that ruin occurs when the risk process falls under 0, as in classical ruin theory.

The main results of this paper gives us representations for the joint Laplace trans-
forms of

(0.3)

(
κ−a ,

∫ κ−a

0

1{Us<b}ds

)
and

(
κ+c ,

∫ κ+c

0

1{Us<b}ds

)
,

where a ≤ b ≤ c, and κ−a := inf{t ≥ 0 : Ut < a} and κ+c := inf{t ≥ 0 : Ut > c} are the

1



INTRODUCTION

optional times of the refracted Lévy process U . With help of the representations in
(0.3) we derive the ruin probability of the risk process U .

To get knowledge about the behaviour of refracted Lévy processes, namely about
the representations in (0.3), we need to inspect the corresponding spectrally negative
Lévy processes. Spectrally negative Lévy processes are defined to be Lévy processes
which can only jump downwards. This type of processes are very commonly used in
risk theory. Because the refracted Lévy process changes its dynamics we are inter-
ested in exit problems of the corresponding spectrally negative Lévy processes, which
are used in (0.1) and (0.2), with which we can investigate the boundary crossing,
especially for the boundaries of the red zone. In the results for the exit problems we
are constantly using a function class called scale functions. This class of functions is
defined with help of Laplace transform. One of the properties that scale functions
possess is that they are unique with respect to the corresponding spectrally negative
Lévy process. This function class is well studied and has many applications in risk
theory.

The paper is organised in the following way. On the first chapter we go through the
basics of the probability theory and give the important base knowledge regarding to
our main theory. In the beginning of the second chapter we introduce scale functions
and give an example how to compute the scale function of given spectrally negative
Lévy process. After that we start to consider the exit problems of spectrally negative
Lévy processes and proceed with exit problems of refracted Lévy processes. In the
final chapter, chapter three, we give our main result which gives us the time spent
in the red zone. After that we present a risk model and define the probability of
bankruptcy. In the computations of the probability of bankruptcy we apply the main
result. This paper is mainly based on the paper of Jean-François Renaud [10]. Also
the book of Kyprianou [6] and results from Kyprianou and Loeffen [7] are strongly
used.
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CHAPTER 1

Preliminaries

We start with introducing some of the basic concepts of probability theory. For
more information about the basics of probability theory see for example [4], [9] and
[1].

Definition 1.1 (σ-algebra). Let Ω be a non-empty set. A collection F of subsets
of Ω is called a σ-algebra if the following assertions are true:

(i) Ω ∈ F and ∅ ∈ F .
(ii) If A ∈ F then A{ ∈ F .
(iii) If A1, A2, A3 . . . ∈ F then

⋃∞
n=1An ∈ F .

The pair (Ω,F) such as in Definition 1.1 is called measurable space.

Definition 1.2 (Probability measure). Let (Ω,F) be a measurable space. A map
P : F −→ [−∞,∞] is called a probability measure if following assertions are true:

(i) P(A) ≥ 0 for all A ∈ F .
(ii) P(∅) = 0.
(iii) P(Ω) = 1.
(iv) P

(⋃∞
n=1An

)
=
∑∞

n=1 P(An) for A1, A2, A3, . . . ∈ F such that Ai ∩ Aj = ∅
when i 6= j.

A map P from definition 1.2 is called measure, if the condition (iii) is omitted, and
is usually denoted by µ in the literature. The triplet (Ω,F ,P) such that it satisfies
Definitions 1.1 and 1.2 is called probability space.

Definition 1.3 (σ-finite measure). Let (Ω,F) be a measurable space and µ be
a measure on Ω. The measure µ is called σ-finite if there exists a countable set
(Ei)i∈I ⊆ F such that µ(Ei) <∞ for all i ∈ I and

⋃
i∈I Ei = Ω.

Definition 1.4 (Filtration). Let (Ω,F) be a measurable space. The sequence of
σ-algebras (Ft)t≥0 such that Ft ⊆ F for all t ≥ 0 and Ft ⊆ Fs for all s ≥ t ≥ 0 is
called a filtration of F .

Definition 1.5 (Stochastic basis). A probability space (Ω,F ,P) equipped with
the filtration (Ft)t≥0 of F is called stochastic basis and denoted by (Ω,F , (Ft)t≥0,P).

Definition 1.6 (Random variable). Let (Ω,F) be a measurable space. A map
X : Ω −→ R is called a random variable if {ω ∈ Ω : X(ω) ∈ B} ∈ F for all B ∈ B(R),
where B(R) denotes a Borel σ-algebra on R.

We denote the expected value of a random variable X by E[X]. The definition
and the properties of the expected value, that are used in this paper, can be found
for example in [1, Chapter 2]. For a random variable X and an event A, we define
E[X;A] := E[X1A].

Definition 1.7 (Stopping time). A map τ : Ω −→ [0,∞) ∪ {∞} is called a
(Ft)t≥0-stopping time if {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t ≥ 0.

Definition 1.8 (Optional time). A map τ : Ω −→ [0,∞) ∪ {∞} is called a
(Ft)t≥0-optional time if {ω ∈ Ω : τ(ω) < t} ∈ Ft for all t ≥ 0.
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1.1. PROCESSES AND PROPERTIES

1.1. Processes and properties

In this section we define the processes that will be used. For more information
about the used processes see for example [2]. Let us begin with the definition of a
stochastic process.

Definition 1.9 (Stochastic process). Let (Ω,F ,P) be a probability space and I
an arbitrary set. A family X := {Xt; t ∈ I}, where Xt : Ω −→ R is a random variable
for all t ∈ I, is called a stochastic process with index set I.

Remark 1.10. If X0(ω) = x for all ω ∈ Ω we denote the law of the process
X = (Xt)t≥0 by Px and its corresponding expectation by Ex.

From now on we use [0,∞) or the extended positive real line [0,∞] as the index
set of stochastic processes. Let us now present the Lévy process. This process is used
for example in risk modelling and in that context it is called a Lévy risk process.
The following definition and other properties of Lévy processes can be found in [2,
Chapter 3].

Definition 1.11 (Lévy process). Let (Ω,F ,P) be a probability space. A right-
continuous stochastic process X := (Xt)t≥0 with X0 = 0, which has left limits, is
called a Lévy process if the following assertions are true:

(i) Independent increments: for every increasing sequence of times t0, t1, . . . , tn
the random variables Xt0 , Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−Xtn−1 are indepen-
dent.

(ii) Stationary increments: for any h ≥ 0, the law of Xt+h−Xt does not depend
on t ≥ 0.

The most well-known examples of Lévy processes are Brownian motion and Pois-
son process. They are defined as follows.

Definition 1.12 (Brownian motion). Let (Ω,F ,P) be a probability space. A
stochastic process B := (Bt)t≥0, with B0 = 0, is called Brownian motion if the
following assertions are true:

(i) B is continuous.
(ii) B has independent increments.
(iii) Bt −Bs ∼ N (0, t− s) for all 0 ≤ s ≤ t.

Definition 1.13 (Poisson process). Let (Ω,F ,P) be a probability space, (Yi)i≥1
be a sequence of independent exponential random variables with parameter λ > 0
and Tn =

∑n
i=1 Yi. The process (Nt)t≥0 defined by

Nt :=
∑
n≥1

1{Tn≤t} = max{n;Tn ≤ t}, t ≥ 0,

is called a Poisson process with intensity λ.

With use of the above two stochastic processes it is easy to get examples of other
Lévy processes. In Lévy risk models the jump part of a given Lévy risk process can
be described by a compound Poisson process. It is defined as follows.

4



1.2. LAPLACE TRANSFORMS

Definition 1.14 (Compound Poisson process). Let (Ω,F ,P) be a probability
space. A stochastic process X := (Xt)t≥0 defined as

Xt :=
Nt∑
i=1

ξi, t ≥ 0,

where jump sizes ξi are independent and identically distributed with distribution
f = Pξ1 and (Nt)t≥0 is a Poisson process with intensity λ, independent from (ξi)i≥1,
is called a compound Poisson process with intensity λ and jump size distribution f .

For the next theorem we define the natural filtration of a process X.

Definition 1.15 (Natural filtration). Let (Ω,F ,P) be a probability space and
X := (Xt)t≥0 be a stochastic process. The filtration FX := {FXt ; t ≥ 0}, where
FXt := σ{Xs; 0 ≤ s ≤ t}, is called the natural filtration of the process X.

The next theorem follows from Definition 1.11. This is one of the most used
properties of Lévy processes here.

Theorem 1.16 (Strong Markov property for a Lévy process). Let (Ω,F ,P) be a
probability space, X := (Xt)t≥0 a Lévy process and assume that τ is an FX-optional
time. Define the process Z := (Zt)t≥0 by

Zt := 1{τ<∞}(Xt+τ −Xτ ).

Then on {τ <∞} the process Z is independent of FXτ+ and Z has the same distribution
as X.

Proof. See for example [6, Theorem 3.1]. �

What earlier theorem says is that the distribution of the given Lévy process does
not change if we shift time and the conditional probability distribution of future states
depends only upon the present state of the process. The general formulation of the
strong Markov property is as follows. This is a modification of [4, Definition 6.2].

Definition 1.17 (Strong Markov property). Let (Ω,F ,P) be a probability space,
(M,M) a measurable space and X := (Xt)t≥0 a stochastic process such that
Xt : Ω −→ M for all t ≥ 0 and it is adapted to the filtration FX . If for all A ∈ M,
FX-optional times τ and t ≥ 0 it holds almost surely that

1{τ<∞}P(Xτ+t ∈ A|FXτ+) = 1{τ<∞}P(Xτ+t ∈ A|Xτ ),

then X is called strong Markov.

1.2. Laplace transforms

In the next chapter we need the Laplace transform of a function. In general the
range of a Laplace transform is a subset of the complex plane. Later on we see that
in our case only the real valued codomain occurs. Let us begin with the definition of
the Laplace transform.
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1.3. SPECTRALLY NEGATIVE LÉVY PROCESSES

Definition 1.18 ([9], Chapter 1, Section 1.2). Let f : [0,∞) −→ R be a function.
Then the Laplace transform of f is defined by

L{f}(s) =

∫ ∞
0

e−sxf(x)dx

for the range of values of s ∈ C for which the integral exists as a finite number.

If we have that F is the Laplace transform of f , then f is called the inverse
Laplace transform of F . There are many known results for both Laplace transform
and inverse Laplace transform which can be found in the literature. For a random
variable X the Laplace transform is defined as follows.

Definition 1.19 (Laplace (Laplace-Stieltjes) transform of a probability distri-
bution or of a random variable). Let X be a non-negative random variable with
distribution function

fX(x) = P(X ≤ x).

The Laplace transform FX of the distribution function fX is defined for s ≥ 0 by

FX(s) =

∫ ∞
0

e−sxdfX(x).

We shall see that Definition 1.19 also gives the ”Laplace transform of a random
variable X”, when X has a density.

Remark 1.20. For a non-negative random variable X one has that

FX(s) = E[e−sX ] =

∫ ∞
0

e−stdPX(t), s ≥ 0,

and FX(0) = 1. For non-negative random variables, the Laplace transform FX(s)
exists for all s ≥ 0, and FX uniquely describes the distribution of X. Suppose that
X has a density hX(x) = f ′X(x). Then one has that

(1.1) FX(s) =

∫ ∞
0

e−sxhX(x)dx, s ≥ 0.

This is the ordinary Laplace transform L{hX}(s) from Definition 1.18 of the density
function hX .

1.3. Spectrally negative Lévy processes

In this section we consider the case that the Lévy process has no positive jumps.
These type of processes are used for example in insurance risk models. In that case
jumps usually present claims that a company gets. Let us begin the section with the
following definition.

Definition 1.21 (Spectrally negative Lévy process). Let (Ω,F ,P) be a proba-
bility space. The process X is called a spectrally negative Lévy process if it satisfies
the properties of Definition 1.11 and has no positive jumps.

Compound Poisson and gamma processes can be used to create spectrally negative
Lévy processes. Later in this paper we are going to use a spectrally negative Lévy
process which is of form Xt = µt + σBt − St, where µ, σ ∈ R, (Bt)t≥0 is a Brownian
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1.3. SPECTRALLY NEGATIVE LÉVY PROCESSES

motion and (St)t≥0 is a compound Poisson process which jumps only up. Next we
recall the moment generating function for a spectrally negative Lévy process.

Proposition 1.22 (The moment generating function of a spectrally negative Lévy
process). Let (Ω,F ,P) be a probability space and (Xt)t≥0 a spectrally negative Lévy
process. Then for X we have that

E[eλXt ] <∞ and E[eλXt ] = etψ(λ)

for all t, λ ≥ 0, where function ψ : [0,∞) −→ R is of the form

(1.2) ψ(λ) = µλ+
σ2λ2

2
+

∫ ∞
0

(e−λx − 1 + λx1{|x|<1})Π(dx), λ ≥ 0,

where µ ∈ R, σ ≥ 0 and Π is a σ-finite measure on (0,∞) such that∫∞
0

(1 ∧ x2)Π(dx) <∞.

Proof. This follows from the Lévy-Khintchine formula for a Lévy process, which
can be found in [2, Theorem 3.1], by change of variable λ = iθ. �

The function ψ(λ) is called the Laplace exponent of the process X and it is unique
and the triplet (µ, σ2,Π) from Proposition 1.22 is called the Lévy triplet of the process
X.

Remark 1.23. The Lévy triplet (µ, σ2,Π) uniquely defines the distribution of
a Lévy process, if the same cut-off function 1{|x|<1} is used in the Lévy-Khintchine
formula or in (1.2). The measure Π is called the Lévy measure. Notice that in
general for Lévy processes, one would use the measure given by −Π(−B), where
B ∈ B(R\{0}), as Lévy measure.

Proposition 1.24. Assume that X is non-trivial spectrally negative Lévy pro-
cess. For process X the Laplace exponent ψ(λ) is strictly convex and lim

λ→∞
ψ(λ) =∞

for λ ≥ 0. Therefore there exists a function φ : [0,∞)→ [0,∞) defined by

(1.3) φ(q) := sup{λ ≥ 0 : ψ(λ) = q}
so that ψ[φ(q)] = q for q ≥ 0. This function is called inverse Laplace transform.

Proof. One can verify the strict convexity of the Laplace exponent ψ(λ) of a
spectrally negative Lévy process by differentiating it twice and checking that
ψ′′(λ) > 0 for all λ ≥ 0. This also implies that φ(q) = 0 if and only if q = 0 and
ψ′(0+) > 0. Note that convexity and lim

λ→∞
ψ(λ) = ∞ imply that there are at most

two solutions to the equation ψ(λ) = q for λ ≥ 0. �
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CHAPTER 2

Scale functions and exit problems

In this chapter we introduce scale functions. These functions will be our main tool
when we start considering boundary crossings. After presenting the scale functions
we continue with identities that create a connection between scale functions and exit
problems. Our first observations considers the exit problems of spectrally negative
Lévy processes. With the help of exit problems of spectrally negative Lévy processes
we derive the equalities for exit problems of refracted Lévy processes. These identities
are used to describe refracted Lévy risk processes. In the end of this chapter we give
some useful results for the scale functions.

2.1. The concept of scale functions

Scale functions got their name from the analogous role they play in the identity

(2.1) Ex[e−qτ
+
a ; τ+a < τ−0 ] =

W (q)(x)

W (q)(a)
,

where τ+a and τ−0 are certain stopping times of the stochastic process X := (Xt)t≥0
and W (q) is the q-scale function of X. This identity first appeared for the case q = 0
in [11]. Later in this chapter we prove a more general form of identity (2.1). Now let
us begin with the definition of a scale function.

Proposition 2.1 (Scale function). Let X := (Xt)t≥0 be a spectrally negative
Lévy process with the Lévy triplet (µ, σ2,Π). Then there exists a unique function
W (q) : R −→ [0,∞), q ≥ 0, such that W (q)(x) = 0 if x < 0, and otherwise W (q) is
characterised as a strictly increasing and continuous function with Laplace transform

(2.2)

∫ ∞
0

e−λzW (q)(z)dz =
1

ψ(λ)− q
, λ > φ(q),

where ψ(λ) is the Laplace exponent of the process X and φ is defined as in (1.3).

Proof. The proof can be found in [6, Theorem 8.1 (i)]. �

Lemma 2.2. For all q ≥ 0, the initial value of W (q)(0) := lim
x→0+

W (q)(x) is

W (q)(0) =

{
1
c
, when σ = 0 and

∫ 1

0
zΠ(dz) <∞,

0, otherwise,

where c := µ+
∫ 1

0
zΠ(dz).

Proof. The proof can be found in [6, Lemma 8.6]. Note that in case W (q)(0) = 1
c

the process X has paths of bounded variation. Otherwise X has paths of unbounded
variation. �

Occasionally we use the function Z(q) which is defined as

(2.3) Z(q)(x) := 1 + q

∫ x

0

W (q)(z)dz, x ∈ R.
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2.1. THE CONCEPT OF SCALE FUNCTIONS

The functions {W (q) : q ≥ 0} and {Z(q) : q ≥ 0} are called q-scale functions.
Now we give an example how to calculate the scale functions of a spectrally negative
Lévy process.

Example 2.3 (Evaluating scale functions). This example follows from [5, Exam-
ple 1.3]. Let (Ω,F ,P) be a probability space and X the spectrally negative Lévy
process defined by

(2.4) Xt := σBt + µt−
Nt∑
i=1

ξi, t ≥ 0,

where (Bt)t≥0 is a Brownian motion, (ξi)
∞
i=1 are independent, identically distributed

random variables, which are exponentially distributed with parameter ρ > 0. The
process (Nt)t≥0 is a Poisson process independent from (ξi)

∞
i=1 with intensity a > 0 and

σ > 0 and µ ∈ R.
In order to calculate scale functions, we need first to find the Laplace exponent

of the process X. We notice that the Lévy measure of X is finite, and hence we can
replace the function 1{|x|<1} by h(x) ≡ 0 in the representation (1.2). This changes the

value of µ into µ̂ = µ+
∫ 1

0
xΠ(dx), but gives us a more simple expression of Laplace

exponent of X, which is

(2.5) ψ(z) = µ̂z +
σ2z2

2
+

∫ ∞
0

(e−zx − 1)Π(dx) = µ̂z +
σ2z2

2
− az

ρ+ z
for z ≥ 0.

We see that the equation ψ(z) = q can be written as

(2.6) µ̂z +
σ2z2

2
− az

ρ+ z
− q = 0.

By considering the behavior of ψ(z)− q we see that

lim
z→±∞

ψ(z)− q = ±∞, ψ(−ρ)− q > 0 and ψ(0)− q < 0.

Therefore, there exist exactly three solutions for the equation (2.6). Clearly one
solution is φ(q) ≥ 0, where φ is defined as in Proposition 1.24. Let the other solutions
be −η1 < −ρ < −η2 < 0 ≤ φ(q).

By using the solutions and partial fraction decomposition we get the representation

(2.7)
1

ψ(z)− q
=

1

(z + η1)(z + η2)(z − φ(q))
=

C1

z + η1
+

C2

z + η2
+

C3

z − φ(q)

for some C1, C2, C3 ∈ R. Next we use the inverse Laplace transform which gives us
that

(2.8) W (q)(x) = C1e
−η1x + C2e

−η2x + C3e
φ(q)x.

Now we need to find C1, C2 and C3. By using the second equality of (2.7) we get that

(z + η2)(z − φ(q))C1 + (z + η1)(z − φ(q))C2 + (z + η1)(z + η2)C3 = 1.

10



2.1. THE CONCEPT OF SCALE FUNCTIONS

Rewriting the equation into az2 + bz + c = 1 leads us to the following simultaneous
equations: 

C1 + C2 + C3 = 0

(η2 − φ(q))C1 + (η1 − φ(q))C2 + (η1 + η2)C3 = 0

η1η2C3 − φ(q)η2C1 − φ(q)η1C2 = 1.

Solving the equations gives that
C1 = [(η1 − η2)(φ(q) + η1)]

−1

C2 = −[(η1 − η2)(φ(q) + η2)]
−1

C3 = [(φ(q) + η1)(φ(q) + η2)]
−1.

This result combined with the first equality of (2.7) and the fact d
dz

(
ψ(z)−q

)
= ψ′(z)

gives us that C1 = ψ′(−η1)−1, C2 = ψ′(−η2)−1 and C3 = ψ′(φ(q))−1.
Now we insert the expressions for C1, C2 and C3 into the formula (2.8) and get that
the scale functions of X are

W (q)(x) =
e−η1x

ψ′(−η1)
+

e−η2x

ψ′(−η2)
+

eφ(q)x

ψ′(φ(q))
, x ≥ 0

and

Z(q)(x) = 1− q(e−η1x − 1)

η1ψ′(−η1)
− q(e−η2x − 1)

η2ψ′(−η2)
+
q(eφ(q)x − 1)

φ(q)ψ′(φ(q))
, x ≥ 0.

One can calculate explicit expressions of W (q)(x) and Z(q)(x) by applying Cardano’s
formula for (2.6) and get the exact values of −η1, −η2 and φ(q). Recall that µ̂ is
implied by the representation (2.5).

Other examples of scale functions can be found for example in [3, Chapter 2]. Let
us now start considering the exit problems of the hitting times
τ+c := inf{t > 0 : Xt > c} and τ−a := inf{t > 0 : Xt < a}. Note that in general the
first hitting time of an open set is an optional time. For the proof see for example
[4, Problem 2.6]. The next theorem gives us the first identity that connects scale
functions to exit problems. It is a generalization of equality (2.1).

Theorem 2.4 (Solution to the two-sided exit problem τ+c < τ−a ). Let (Ω,F , (Ft)t≥0,P)
be a stochastic basis and X a spectrally negative Lévy process and define the following
optional times

τ−a := inf{t > 0 : Xt < a}
τ+c := inf{t > 0 : Xt > c}

for a, c ∈ R. For all a ≤ x ≤ c the solution to the two-sided exit problem for X is
given by

Ex[e−qτ
+
c ; τ+c < τ−a ] =

W (q)(x− a)

W (q)(c− a)
.

Proof. We follow here the proofs of [6, Theorem 8.1 (i) and (iii)], and show the
result for the case q = 0 and ψ′(0+) > 0, which implies that X drifts to +∞. For

11



2.1. THE CONCEPT OF SCALE FUNCTIONS

case x = c, we have that

Ex[e−qτ
+
c ; τ+c < τ−a ] = 1 =

W (q)(c− a)

W (q)(c− a)
.

Hence we can assume, that a ≤ x < c. Let X∞ := inft≥0Xt and define the increasing
function

(2.9) x 7−→ H(x− a) :=
Px−a(X∞ ≥ 0)

ψ′(0+)
.

Note that for process X we have that P(X∞ ≤ 0) = 1. In this case, by using the
tower property and the law of total probability, we get that

H(x− a)ψ′(0+) = Px−a(X∞ ≥ 0) = Px(X∞ ≥ a)(2.10)

= Px(inf
t≥0

Xt ≥ a) = Ex
[
Px(inf

t≥0
Xt ≥ a|F(τ+c )+)

]
= Ex

[
1{τ+c <τ−a }Px( inf

t≥τ+c
Xt ≥ a, inf

t<τ+c

Xt ≥ a|F(τ+c )+)
]

+ Ex
[
1{τ−a <τ+c }Px( inf

t≥τ−a
Xt ≥ a, inf

t<τ−a

Xt ≥ a|F(τ+c )+)
]

= Ex
[
1{τ+c <τ−a }Ex[1{inft≥τ+c Xt≥a,inft<τ+c

Xt≥a}|F(τ+c )+]
]

+ Ex
[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a,inft<τ−a

Xt≥a}|F(τ+c )+]
]
.

The fact that 1{τ+c <τ−a } and 1{τ−a <τ+c } are F(τ+c )+-measurable, see [4, Lemma 2.15],

combined with the tower property, gives us, since Fτ−a ⊆ F(τ+c )+ when τ−a < τ+c , that

Ex
[
1{τ+c <τ−a }Ex[1{inft≥τ+c Xt≥a,inft<τ+c

Xt≥a}|F(τ+c )+]
]

+ Ex
[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a,inft<τ−a

Xt≥a}|F(τ+c )+]
]

= Ex
[
Ex[1{τ+c <τ−a }1{inft≥τ+c Xt≥a,inft<τ+c

Xt≥a}|F(τ+c )+]
]

+ Ex
[
Ex[1{τ−a <τ+c }1{inft≥τ−a Xt≥a,inft<τ−a

Xt≥a}|Fτ−a ]
]
.

From the definitions of τ−a and τ+c it follows that the event {inft<τ−a Xt ≥ a} = Ω
and that {τ+c < τ−a } ⊆ {inft<τ+c Xt ≥ a}. Hence we get by using the strong Markov
property of X and the fact, that Xτ+c

= c, that

Ex
[
Ex[1{τ+c <τ−a }1{inft≥τ+c Xt≥a,inft<τ+c

Xt≥a}|F(τ+c )+]
]

+ Ex
[
Ex[1{τ−a <τ+c }1{inft≥τ−a Xt≥a,inft<τ−a

Xt≥a}|Fτ−a ]
]

= Ex
[
Ex[1{τ+c <τ−a }1{inft≥τ+c Xt≥a}|F(τ+c )+]

]
+ Ex

[
Ex[1{τ−a <τ+c }1{inft≥τ−a Xt≥a}|Fτ−a ]

]
= Ex

[
1{τ+c <τ−a }Ex[1{inft≥τ+c Xt≥a}|F(τ+c )+]

]
+ Ex

[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a}|Fτ−a ]

]
= Ex

[
1{τ+c <τ−a }Ex[1{infs≥0(Xτ+c +s

−X
τ+c

)+c≥a}|F(τ+c )+]
]

+ Ex
[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a}|Fτ−a ]

]
= Ex

[
1{τ+c <τ−a }Ec[1{infs≥0Xs≥a}]

]
+ Ex

[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a}|Fτ−a ]

]
.

12



2.1. THE CONCEPT OF SCALE FUNCTIONS

Since τ−a = inf{t > 0 : Xt < a} we get that Ex[1{inf
t≥τ−a

Xt≥a}|Fτ−a ] = 0 and

therefore

Ex
[
1{τ+c <τ−a }Ec[1{infs≥0Xs≥a}]

]
+ Ex

[
1{τ−a <τ+c }Ex[1{inft≥τ−a Xt≥a}|Fτ−a ]

]
= Ex

[
1{τ+c <τ−a }Ec[1{infs≥0Xs≥a}]

]
= Ex[1{τ+c <τ−a }]Ec[1{infs≥0Xs≥a}]

= Ex[1{τ+c <τ−a }]Pc(inf
s≥0

Xs ≥ a)

= Ex[1{τ+c <τ−a }]H(c− a)ψ′(0+).(2.11)

From (2.10) and (2.11) it follows that

(2.12) H(x− a) = Ex[1{τ+c <τ−a }]H(c− a).

If we can show that H is the scale function of X, the proof is done. For that we
need the Wiener-Hopf factorization, which is introduced in [6, Chapter 6]. For the
function H, we first notice that

ψ′(0+)

∫ ∞
0

e−βxH(x)dx =

∫ ∞
0

e−βxPx(inf
t≥0

Xt ≥ 0)dx =

∫ ∞
0

e−βxP(inf
t≥0

Xt ≥ −x)dx

=

∫ ∞
0

e−βxP(− inf
t≥0

Xt ≤ x)dx =

∫ ∞
0

e−βxP({− inf
t≥0

Xt ∈ (0, x]} ∪ {− inf
t≥0

Xt = 0})dx

=

∫ ∞
0

e−βxP(− inf
t≥0

Xt ∈ (0, x])dx+
P(− inft≥0Xt = 0)

β

=

∫∞
0
e−βxdP(− inft≥0Xt ∈ (0, x])

β
+

P(− inft≥0Xt = 0)

β

=

∫∞
0
e−βxdP(− inft≥0Xt ∈ [0, x])

β
=

∫
[0,∞)

e−βxdP(− inft≥0Xt ≤ x)

β

=
E[eβX∞ ]

β
,

where equality from third line to fourth line follows from integration by parts. From
the Wiener-Hopf factorization, presented in [6, Theorem 6.16], it follows that

E[eβX∞ ] = ψ′(0+)
β

ψ(β)
,

where ψ is the Laplace exponent of X. Now by Proposition 2.1 function H is the
scale function of X. Hence we have that H(c − a) > 0 for c > a. Now by dividing
both sides of the equality (2.12) with H(c− a) we get what we wanted and the proof
is finished. For the cases q = 0 and ψ′(0+) ≤ 0 see for example [6, Theorem 8.1]. �

For q = 0 Theorem 2.4 gives the probability, that a spectrally negative Lévy
process X, with X0 = x, hits the interval (c,∞) before it hits (−∞, a). Later on we
also use the following theorem which is generalization of the second part of Theorem
8.1 (iii) in [6].
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

Theorem 2.5 (Solution to the two-sided exit problem τ−a < τ+c ). Assume the
same setting as in Theorem 2.4. Then for all a ≤ x ≤ c

Ex[e−qτ
−
a ; τ−a < τ+c ] = Z(q)(x− a)− Z(q)(c− a)

W (q)(c− a)
W (q)(x− a).

Proof. Proof is similar to the proof of Theorem 2.4. For more details see for
example the proof of [6, Theorem 8.1 (iii)]. �

2.2. Exit problems of refracted Lévy processes

We start this section with the definition of refracted Lévy process and continue
with an existence and uniqueness result for refracted Lévy processes.

Definition 2.6 (Refracted Lévy process). Let X := (Xt)t≥0 be a spectrally neg-
ative Lévy process with triplet (µ, σ2,Π). If the process U := (Ut)t≥0 satisfies

Ut := Xt − α
∫ t

0

1{Us>b}ds, t ≥ 0,

it is called a refracted Lévy process.

Theorem 2.7 (Existence and uniqueness of refracted Lévy process). The refracted
Lévy process U := (Ut)t≥0 is the unique strong solution to the stochastic differential
equation

dUt = dXt − α1{Ut>b}dt, t ≥ 0,

which is equivalent to

(2.13) Ut = Xt − α
∫ t

0

1{Us>b}ds, t ≥ 0,

where X, with X0 = 0, is a spectrally negative Lévy process with triplet (µ, σ2,Π),

satisfying 0 ≤ α < µ+
∫ 1

0
xΠ(dx), if X has paths of bounded variation. Moreover, U

is a strong Markov process.

Proof. For the existence of the unique strong solution see [7, Theorem 1, Remark
2 and Remark 3]. �

As it can be seen from Definition 2.6, a refracted Lévy process is a process whose
dynamics changes by subtracting off a fixed linear drift whenever the process is above
a pre-specified level b. When the refracted Lévy process is below the pre-specified
level it is equal to the corresponding spectrally negative Lévy process.

From now on, we let (Ω,F , (Ft)t≥0,P) be a stochastic basis, X = (Xt)t≥0 be a
spectrally negative Lévy process with triplet (µ, 0,Π), which has paths of bounded
variation, and assume that ψ is its Laplace exponent. Define the scale functions W (q)

and Z(q) to be the scale functions related to X.
For 0 ≤ α < µ+

∫ 1

0
xΠ(dx), we define the process Y = (Yt)t≥0 such that

(2.14) Yt := Xt − αt.
Since X is a spectrally negative Lévy process and has paths of bounded variation we
clearly have that the process Y is also a spectrally negative Lévy process and has
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

paths of bounded variation. Let Ψ be the Laplace exponent of Y and define the scale
functions W(q) and Z(q) to be the scale functions related to Y .

For processes X and Y we define the following optional times:

τ+b := inf{t > 0 : Xt > b} and ν+c := inf{t > 0 : Yt > c}(2.15)

τ−a := inf{t > 0 : Xt < a} and ν−b := inf{t > 0 : Yt < b}(2.16)

for a, b, c ∈ R.
We also define a refracted Lévy process U := (Ut)t≥0 such that

(2.17) Ut := Yt + α

∫ t

0

1{Us<b}ds.

From (2.14) and (2.17) it follows that

(2.18) Ut = Xt − α
∫ t

0

1{Us>b}ds.

For the process U we define optional times

(2.19) κ−a := inf{t > 0 : Ut < a} and κ+c := inf{t > 0 : Ut > c}.

The following theorem gives us the first results for exit problems related to the
process U .

Theorem 2.8 ([7], Theorem 6). Fix a Borel set B ⊆ R.

(i) For 0 < α < µ+
∫ 1

0
xΠ(dx), q ≥ 0 and x, b ∈ [0, a],

Ex
[ ∫ ∞

0

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a }dt

]
=

∫
B

⋂
[b,a]

{
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

W(q)(a− y)−W(q)(x− y)

}
dy

+

∫
B

⋂
[0,b)

{
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

×
(
W (q)(a− y) + α

∫ a

b

W(q)(a− z)W (q)′(z − y)dz

)
−
(
W (q)(x− y) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z − y)dz

)}
dy.
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(ii) For 0 < α < µ+
∫ 1

0
xΠ(dx), x, b ≥ 0 and q > 0

Ex
[ ∫ ∞

0

e−qt1{Ut∈B,t<κ−0 }dt

]
=

∫
B

⋂
[b,∞)

{
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− z)W (q)′(z)dz

α
∫∞
b
e−ϕ(q)zW (q)′(z)dz

e−ϕ(q)y −W(q)(x− y)

}
dy

+

∫
B

⋂
[0,b)

{∫∞
b
e−ϕ(q)zW (q)′(z − y)dz∫∞
b
e−ϕ(q)zW (q)′(z)dz

(
W (q)(x) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z)dz

)
−
(
W (q)(x− y) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z − y)dz

)}
dy,

where ϕ(q) is the inverse Laplace exponent of the spectrally negative Lévy
process related to W(q) from Proposition 1.24.

For the proof we need the following two theorems.

Theorem 2.9 ([7], Theorem 23). For a spectrally negative Lévy process X let

τ+a = inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}.

(i) For q ≥ 0 and 0 ≤ x ≤ a we have

Ex[e−qτ
+
a 1{τ−0 >τ

+
a }] =

W (q)(x)

W (q)(a)
.

(ii) For any a > 0, x, y ∈ [0, a], q ≥ 0∫ ∞
0

e−qtPx(Xt ∈ dy, t < τ+a ∧ τ−0 )dt

=

{
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y)

}
dy.

(iii) Let a > 0, x ∈ [0, a], q ≥ 0 and f , g be positive, bounded measurable
functions. Further, suppose that X is of bounded variation or f(0)g(0) = 0.
Then

Ex[e−qτ
−
0 f(Xτ−0

)g(Xτ−0 −
)1{τ−0 <τ

+
a }]

=

∫ a

0

∫
(y,∞)

f(y − θ)g(y)

{
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y)

}
Π(dθ)dy.

Proof. Part (i) is a special case of Theorem 2.4. The proofs of other identities
can be found in [6, Chapter 8]. �

Theorem 2.10 ([7], Theorem 16). Suppose that X is a spectrally negative Lévy
process that has paths of bounded variation and let 0 < α < c, where
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c = µ+
∫
(0,1)

xΠ(dx). Then for v ≥ u ≥ m ≥ 0

∫ ∞
0

∫
(z,∞)

W (q)(z − θ +m)Π(dθ)

[
W(q)(v −m− z)

W(q)(v −m)
W(q)(u−m)−W(q)(u−m− z)

]
dz

= −W(q)(u−m)

W(q)(v −m)

(
W (q)(v) + α

∫ v

m

W(q)(v − z)W (q)′(z)dz

)
+W (q)(u) + α

∫ u

m

W(q)(u− z)W (q)′(z)dz.

Proof. The proof can be found in [7, Theorem 16]. �

Now we can go back to the proof of Theorem 2.8. For the proof recall that the
process X has paths of bounded variation.

Proof. The proof is derived in the same way as the proof of Theorem 6 in [7].
Part (i):
Define the function

(2.20) V (q)(x,B) := Ex
[ ∫ ∞

0

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a }dt

]
.

Let us first assume that x ≤ b ≤ a. We notice that

V (q)(x,B) = Ex
[ ∫ ∞

0

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a }dt

]
= Ex

[ ∫ τ+b

0

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a }dt

]
(2.21)

+ Ex
[ ∫ ∞

τ+b

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a ,τ

+
b <τ

−
0 }

dt

]
.(2.22)

Since from (2.18) it follows that U = X when U ≤ b, we have that κ+b = τ+b and
κ−0 = τ−0 . Also, because x ≤ b ≤ a, we have that κ+b ≤ κ+a . Hence we get for the
component (2.21), by using the Fubini’s theorem, that

Ex
[ ∫ τ+b

0

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a }dt

]
= Ex

[ ∫ τ+b

0

e−qt1{Ut∈B,t<τ−0 ∧κ
+
a }dt

]
= Ex

[ ∫ τ+b

0

e−qt1{Xt∈B,t<τ−0 ∧κ
+
b }

dt

]
= Ex

[ ∫ τ+b

0

e−qt1{Xt∈B,t<τ−0 ∧τ
+
b }

dt

]
=

∫ ∞
0

e−qtPx(Xt ∈ B, t < τ−0 ∧ τ+b )dt.(2.23)
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For the component (2.22) we get, by using the change of variable and the tower
property, that

Ex
[ ∫ ∞

τ+b

e−qt1{Ut∈B,t<κ−0 ∧κ
+
a ,τ

+
b <τ

−
0 }

dt

]
= Ex

[ ∫ ∞
0

e−q(s+τ
+
b )1{U

s+τ+
b
∈B,s+τ+b <κ

−
0 ∧κ

+
a ,τ

+
b <τ

−
0 }

ds

]
= Ex

[
Ex
[ ∫ ∞

0

e−q(s+τ
+
b )1{U

s+τ+
b
∈B,s+τ+b <κ

−
0 ∧κ

+
a ,τ

+
b <τ

−
0 }

ds

∣∣∣∣F(τ+b )+

]]
= Ex

[
Ex
[ ∫ ∞

0

e−qse−qτ
+
b 1{U

s+τ+
b
∈B,s+τ+b <κ

−
0 ∧κ

+
a }1{τ+b <τ

−
0 }

ds

∣∣∣∣F(τ+b )+

]]
= Ex

[
1{τ+b <τ

−
0 }
e−qτ

+
b Ex

[ ∫ ∞
0

e−qs1{U
s+τ+

b
∈B,s+τ+b <κ

−
0 ∧κ

+
a }ds

∣∣∣∣F(τ+b )+

]]
,

where in the last equality we used that e−qτ
+
b and 1{τ+b <τ

−
0 }

are F(τ+b )+-measurable.

By using the strong Markov property of U and that Uτ+b
= Xτ+b

= b, since U can not

jump upwards, we get that

Ex
[
1{τ+b <τ

−
0 }
e−qτ

+
b Ex

[ ∫ ∞
0

e−qs1{U
s+τ+

b
∈B,s+τ+b <κ

−
0 ∧κ

+
a }ds

∣∣∣∣F(τ+b )+

]]
= Ex

[
1{τ+b <τ

−
0 }
e−qτ

+
b Ex

[ ∫ ∞
0

e−qs1{U
s+τ+

b
−U

τ+
b
+U

τ+
b
∈B,s+τ+b <κ

−
0 ∧κ

+
a }ds

∣∣∣∣F(τ+b )+

]]
= Ex

[
1{τ+b <τ

−
0 }
e−qτ

+
b Eb

[ ∫ ∞
0

e−qs1{Us∈B,s<κ−0 ∧κ
+
a }ds

]]
.

By using Fubini’s theorem, we get that

Ex
[
1{τ+b <τ

−
0 }
e−qτ

+
b Eb

[ ∫ ∞
0

e−qs1{Us∈B,s<κ−0 ∧κ
+
a }ds

]]
= Ex

[
1{τ+b <τ

−
0 }
e−qτ

+
b

∫ ∞
0

e−qsEb[1{Us∈B,s<κ−0 ∧κ+a }]ds
]

= Ex
[
1{τ+b <τ

−
0 }
e−qτ

+
b

∫ ∞
0

e−qsPb(Us ∈ B, s < κ−0 ∧ κ+a )ds

]
= Ex[1{τ+b <τ−0 }e

−qτ+b ]

∫ ∞
0

e−qsPb(Us ∈ B, s < κ−0 ∧ κ+a )ds

= Ex[1{τ+b <τ−0 }e
−qτ+b ]V (q)(b, B).(2.24)

Now, by using Theorem 2.9 for (2.23) and (2.24), V (q)(x,B) turns into

V (q)(x,B)

=

∫ ∞
0

e−qtPx(Xt ∈ B, t < τ−0 ∧ τ+b )dt+ Ex[1{τ+b <τ−0 }e
−qτ+b ]V (q)(b, B)

=

∫
B

(
W (q)(x)W (q)(b− y)

W (q)(b)
−W (q)(x− y)

)
dy +

W (q)(x)

W (q)(a)
V (q)(b, B).(2.25)
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

To get an expression for V (q)(b, B) with help of W and W, we need to continue
and consider the case b ≤ x ≤ a. First we notice that before the hitting time ν−b , we
have that U = Y . Hence for V (q)(x,B) it follows that

V (q)(x,B)

= Ex
[ ∫ ν−b ∧ν

+
a

0

e−qt1{Yt∈B
⋂
[b,a]}dt

]
(2.26)

+ Ex
[
1{ν−b <ν

+
a }

∫ κ+a ∧κ−0

ν−b

e−qt1{Ut∈B}dt

]
.(2.27)

For the component (2.26), by using Theorem 2.9 and the Fubini’s theorem, we get
that

Ex
[ ∫ ν−b ∧ν

+
a

0

e−qt1{Yt∈B
⋂
[b,a]}dt

]
= Ex

[ ∫ ∞
0

e−qt1{Yt∈B
⋂
[b,a],t<ν−b ∧ν

+
a }dt

]
=

∫ ∞
0

e−qtEx[1{Yt∈B⋂
[b,a],t<ν−b ∧ν

+
a }]dt

=

∫ ∞
0

e−qtPx(Yt ∈ B ∩ [b, a], t < ν−b ∧ ν
+
a )dt

=

∫
B∩[b,a]

(
W(q)(a− y)W(q)(x− b)

W(q)(a− b)
−W(q)(x− y)

)
dy.(2.28)

For the component (2.27), by using a change of variable, the tower property and the

fact that e−qν
−
b and 1{ν−b <ν

+
a } are F(ν−b )+-measurable, it follows that

Ex
[
1{ν−b <ν

+
a }

∫ κ+a ∧κ−0

ν−b

e−qt1{Ut∈B}dt

]
= Ex

[
1{ν−b <ν

+
a }

∫ ∞
ν−b

e−qt1{Ut∈B,t<κ+a ∧κ−0 }dt

]
= Ex

[
1{ν−b <ν

+
a }

∫ ∞
0

e−q(s+ν
−
b )1{U

s+ν−
b
∈B,s+ν−b <κ

+
a ∧κ−0 }

ds

]
= Ex

[
Ex
[
1{ν−b <ν

+
a }

∫ ∞
0

e−q(s+ν
−
b )1{U

s+ν−
b
∈B,s+ν−b <κ

+
a ∧κ−0 }

ds

∣∣∣∣F(ν−b )+

]]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }Ex

[ ∫ ∞
0

e−qs1{U
s+ν−

b
∈B,s+ν−b <κ

+
a ∧κ−0 }

ds

∣∣∣∣F(ν−b )+

]]
.
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

Now, by using the strong Markov property, the fact that Uν−b
= Yν−b

by (2.17) and

Fubini’s theorem, we get that

Ex
[
e−qν

−
b 1{ν−b <ν

+
a }Ex

[ ∫ ∞
0

e−qs1{U
s+ν−

b
∈B,s+ν−b <κ

+
a ∧κ−0 }

ds

∣∣∣∣F(ν−b )+

]]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }Ex

[ ∫ ∞
0

e−qs1{U
s+ν−

b
−U

ν−
b
+U

ν−
b
∈B,s+ν−b <κ

+
a ∧κ−0 }

ds

∣∣∣∣F(ν−b )+

]]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }EYν−

b

[ ∫ ∞
0

e−qs1{Us∈B,s<κ+a ∧κ−0 }ds

]]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }

∫ ∞
0

e−qsEY
ν−
b

[1{Us∈B,s<κ+a ∧κ−0 }]ds

]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }

∫ ∞
0

e−qsPY
ν−
b

(Us ∈ B, s < κ+a ∧ κ−0 )ds

]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }V

(q)(Yν−b
, B)

]
.

Since Y has paths of bounded variation it follows from the definition of ν−b that
Yν−b

< b. Hence we can use the expression (2.25) for V (q)(Yν−b
, B), which gives us that

Ex
[
e−qν

−
b 1{ν−b <ν

+
a }V

(q)(Yν−b
, B)

]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }

(∫
B

(
W (q)(b− y)W (q)(Yν−b

)

W (q)(b)
−W (q)(Yν−b

− y)

)
dy

+ EY
ν−
b

[1{τ+b <τ
−
0 }
e−qτ

+
b ]V (q)(b, B)

)]
.

By using Theorem 2.9 (iii), for ν−b , ν+a and process Y instead of τ−0 , τ+a and X so
that W is used instead of W and x− a and a− b instead of x and a, for the equation
above it follows that

Ex
[
e−qν

−
b 1{ν−b <ν

+
a }

(∫
B

(
W (q)(b− y)W (q)(Yν−b

)

W (q)(b)
−W (q)(Yν−b

− y)

)
dy

+ EY
ν−
b

[1{τ+b <τ
−
0 }
e−qτ

+
b ]V (q)(b, B)

)]
= Ex

[
e−qν

−
b 1{ν−b <ν

+
a }

(∫
B

(
W (q)(b− y)W (q)(Yν−b

)

W (q)(b)
−W (q)(Yν−b

− y)

)
dy

+
W (q)(Yν−b

)V (q)(b, B)

W (q)(b)

)]
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

=

∫ ∞
0

∫
(z,∞)

{∫
B

(
W (q)(b− y)

W (q)(b)
W (q)(z − θ + b)−W (q)(z − θ + b− y)

)
dy(2.29)

+
V (q)(b, B)

W (q)(b)
W (q)(z − θ + b)

}[
W(q)(x− b)W(q)(a− b− z)

W(q)(a− b)

−W(q)(x− b− z)

]
Π(dθ)dz.

Note that above we can use the integration with respect to dz on (0,∞) instead of
(0, a− b) since W(q)(a− b− z) = W(q)(x− b− z) = 0 for z > a− b. To simplify the
expression above let us denote

A =

[
W(q)(x− b)W(q)(a− b− z)

W(q)(a− b)
−W(q)(x− b− z)

]
.

We abbreviate (2.29) by D and write D as a sum and change the terms using Fubini:

D :=

∫ ∞
0

∫
(z,∞)

{∫
B

(
W (q)(b− y)

W (q)(b)
W (q)(z − θ + b)−W (q)(z − θ + b− y)

)
dy

+
V (q)(b, B)

W (q)(b)
W (q)(z − θ + b)

}
AΠ(dθ)dz

=

∫ ∞
0

∫ ∞
z

W (q)(z − θ + b)Π(dθ)

∫
B

W (q)(b− y)

W (q)(b)
dyAdz

−
∫ ∞
0

∫ ∞
z

∫
B

W (q)(z − θ + b− y)dyΠ(dθ)Adz

+

∫ ∞
0

∫ ∞
z

V (q)(b, B)

W (q)(b)
W (q)(z − θ + b)Π(dθ)Adz

=

∫
B∩[0,b)

W (q)(b− y)

W (q)(b)

∫ ∞
0

∫ ∞
z

W (q)(z − θ + b)Π(dθ)Adzdy

−
∫
B∩[0,b)

∫ ∞
0

∫ ∞
z

W (q)(z − θ + b− y)Π(dθ)Adzdy

+
V (q)(b, B)

W (q)(b)

∫ ∞
0

∫ ∞
z

W (q)(z − θ + b)Π(dθ)Adz.

Now for (2.29), by taking into consideration that W (q)(b− y) = 0 and
W (q)(z − θ + b− y) = 0 for y > b, and using Theorem 2.10 twice by setting first that
u = x, m = b and v = a and after that setting m = b− y, u = x− y and v = a− y,
we have that
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2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

D =

∫
B∩[0,b)

W (q)(b− y)

W (q)(b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)(2.30)

+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
dy

−
∫
B∩[0,b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a− y) + α

∫ a−y

b−y
W(q)(a− y − z)W (q)′(z)dz

)
+W (q)(x− y) + α

∫ x−y

b−y
W(q)(x− y − z)W (q)′(z)dz

]
dy

+
V (q)(b, B)

W (q)(b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
.

Now V (q)(x,B) can be written by using (2.28), which coinsides with term (2.26),
and (2.30), which is D and stands for (2.27). This leads us to the following equality

V (q)(x,B)

(2.31)

=

∫
B∩[b,a]

(
W(q)(a− y)W(q)(x− b)

W(q)(a− b)
−W(q)(x− y)

)
dy

+

∫
B∩[0,b)

W (q)(b− y)

W (q)(b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
dy

−
∫
B∩[0,b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a− y) + α

∫ a−y

b−y
W(q)(a− y − z)W (q)′(z)dz

)
+W (q)(x− y) + α

∫ x−y

b−y
W(q)(x− y − z)W (q)′(z)dz

]
dy

+
V (q)(b, B)

W (q)(b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
.

Setting x = b in equation (2.31) causes several terms to vanish and leads us to a linear
equation for V (q)(b, B) of the form
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V (q)(b, B) = A1 + V (q)(b, B)

[
1− W(q)(0)

W(q)(a− b)W (q)(b)
(2.32)

×
(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)]
,

which we solve and get that

V (q)(b, B)

=

{∫
B∩[b,a]

(
W(q)(a− y)W(q)(0)

W(q)(a− b)

)
dy +

∫
B∩[0,b)

W (q)(b− y)

W (q)(b)

×
[
− W(q)(0)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(b)

]
dy

−
∫
B∩[0,b)

[
− W(q)(0)

W(q)(a− b)

(
W (q)(a− y) + α

∫ a−y

b−y
W(q)(a− y − z)W (q)′(z)dz

)
+W (q)(b− y)

]
dy

}
×
{

W (q)(b)W(q)(a− b)
W(q)(0)[W (q)(a) + α

∫ a
b
W(q)(a− z)W (q)′(z)dz]

}

=

∫
B∩[b,a]

(
W(q)(a− y)W (q)(b)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

)
dy −

∫
B∩[0,b)

W (q)(b− y)dy

(2.33)

+

∫
B∩[0,b)

[
W (q)(b)[W (q)(a− y) + α

∫ a−y
b−y W(q)(a− y − z)W (q)′(z)dz]

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy.

Now, by inserting (2.33) into (2.31) and simplifying the expression, we get that

V (q)(x,B)

(2.34)

=

∫
B∩[b,a]

(
W(q)(a− y)W(q)(x− b)

W(q)(a− b)
−W(q)(x− y)

)
dy

+

∫
B∩[0,b)

W (q)(b− y)

W (q)(b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
dy

−
∫
B∩[0,b)

[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a− y) + α

∫ a−y

b−y
W(q)(a− y − z)W (q)′(z)dz

)
+W (q)(x− y) + α

∫ x−y

b−y
W(q)(x− y − z)W (q)′(z)dz

]
dy
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−
∫
B∩[b,a]

W(q)(a− y)W(q)(x− b)
W(q)(a− b)

dy

+

∫
B∩[b,a]

W(q)(a− y)[W (q)(x) + α
∫ x
b
W(q)(x− z)W (q)′(z)dz]dy

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

−
∫
B∩[0,b)

W (q)(b− y)[W (q)(x) + α
∫ x
b
W(q)(x− z)W (q)′(z)dz]dy

W (q)(b)

+

∫
B∩[0,b)

[
[W (q)(a− y) + α

∫ a−y
b−y W(q)(a− y − z)W (q)′(z)dz]

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

×
[
− W(q)(x− b)

W(q)(a− b)

(
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz

)
+W (q)(x) + α

∫ x

b

W(q)(x− z)W (q)′(z)dz

]
=

∫
B

⋂
[b,a]

{
W (q)(x) + α

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

W(q)(a− y)−W(q)(x− y)

}
dy

+

∫
B

⋂
[0,b)

{
W (q)(x) + α

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

×
(
W (q)(a− y) + α

∫ a

b

W(q)(a− z)W (q)′(z − y)dz

)
−
(
W (q)(x− y) + α

∫ x

b

W(q)(x− z)W (q)′(z − y)dz

)}
dy

for all b ≤ x ≤ a. By inserting the expression (2.33) into (2.25) and noticing that

1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z − y)dz = 0

and

1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z)dz = 0

for all x ≤ b, we get that

V (q)(x,B)

=

∫
B

⋂
[0,b)

{
W (q)(x)W (q)(b− y)

W (q)(b)
−W (q)(x− y)

}
dy

+
W (q)(x)

W (q)(b)

[ ∫
B∩[b,a]

(
W(q)(a− y)W (q)(b)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

)
dy −

∫
B∩[0,b)

W (q)(b− y)dy

+

∫
B∩[0,b)

[
W (q)(b)[W (q)(a− y) + α

∫ a−y
b−y W(q)(a− y − z)W (q)′(z)dz]

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

]
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=

∫
B

⋂
[b,a]

{
W (q)(x)W(q)(a− y)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

}
+

∫
B∩[0,b)

{
W (q)(x)W (q)(b− y)

W (q)(b)
− W (q)(x)W (q)(b− y)

W (q)(b)

+
W (q)(x)

[
W (q)(a− y) + α

∫ a−y
b−y W(q)(a− y − z)W (q)′(z)dz

]
W (q)(a) + α

∫ a
b
W(q)(a− z)W (q)′(z)dz

−W (q)(x− y)

}

=

∫
B

⋂
[b,a]

{
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

W(q)(a− y)−W(q)(x− y)

}
dy

(2.35)

+

∫
B

⋂
[0,b)

{
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

×
(
W (q)(a− y) + α

∫ a

b

W(q)(a− z)W (q)′(z − y)dz

)
−
(
W (q)(x− y) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z − y)dz

)}
dy

for all x ≤ b ≤ a. From (2.20) and equalities (2.34) and (2.35) it follows that the part
(i) holds for all x, b ∈ [0, a] and the proof is done.

Part (ii): By using part (i) and letting a→∞, we get the wanted result by using
the Monotone Convergence Theorem. Note that here we need the fact, presented in
[6, Lemma 8.4], that scale functions can be written as

W (q)(x) = eφ(q)xWφ(q)(x),

where φ is the inverse Laplace exponent of X, defined in Proposition 1.24 and function

Wφ(q)(x) := Pφ(q)x (X∞ ≥ 0) stands for 0-scale function. The measure Pφ(q)x is the
measure defined as

dPφ(q)x

dPx

∣∣∣∣
Ft

= eφ(q)Xt+ψ(φ(q))t.

�

The expected values, which we introduced in Theorem 2.8, give us the discounted
measure of how long the process U stays inside a given set on average. Hence they
are also called q-potential measures in the literature. Also the expected values, which
are of the same form as in Theorem 2.8, are called q-potential measures. Let us now
consider the case that the process U crosses one boundary before the other.

Theorem 2.11 ([7], Theorem 4). For q ≥ 0, x, b ∈ [0, a] and

0 < α < µ+
∫ 1

0
xΠ(dx) we have

(i)

Ex[e−qκ
+
a 1{κ+a <κ−0 }

] =
W (q)(x) + α1{x≥b}

∫ x
b
W(q)(x− y)W (q)′(y)dy

W (q)(a) + α
∫ a
b
W(q)(a− y)W (q)′(y)dy

.

25



2.2. EXIT PROBLEMS OF REFRACTED LÉVY PROCESSES

(ii)

Ex[e−qκ
−
0 1{κ−0 <κ

+
a }]

= Z(q)(x) + αq1{x≥b}

∫ x

b

W(q)(x− y)W (q)(y)dy

−
Z(q)(a) + αq

∫ a
b
W(q)(a− y)W (q)(y)dy

W (q)(a) + α
∫ a
b
W(q)(a− y)W (q)′(y)dy

(
W (q)(x) + α1{x≥b}

∫ x

b

W(q)(x− y)W (q)′(y)dy

)
.

Proof. Part (i): First we prove the equality for q > 0. Let eq, q > 0, be an
exponentially distributed random variable with rate q such that eq is independent from
U . Recall the optional times κ−0 := inf{t > 0 : Ut < 0} and κ+a := inf{t > 0 : Ut > a}
and that the corresponding spectrally negative Lévy processes X and Y have paths
of bounded variation. From the definitions of κ−0 and κ+a it follows for the process U
that

{U t ≥ 0} = { inf
0≤s≤t

Us ≥ 0} = {κ−0 > t} and {U t > a} = { sup
0≤s≤t

Us > a} = {κ+a < t}.

Hence it follows, by using the independence of U and eq and the tower property, that

Px(U eq ≥ 0, U eq > a) = Ex
∫ ∞
0

1{Ut≥0,Ut>a}qe
−qtdt(2.36)

= Ex
∫ ∞
0

1{κ−0 >t,κ
+
a <t}qe

−qtdt = Ex
∫ ∞
κ+a

1{κ−0 >t}
qe−qtdt

= Ex
[
Ex
[ ∫ ∞

κ+a

1{κ−0 >t}
(1{κ−0 <κ

+
a } + 1{κ+a <κ−0 }

)qe−qtdt

∣∣∣∣F(κ+a )+

]]
.

Since {κ+a < t < κ−0 }
⋂
{κ−0 < κ+a } = ∅, the strong Markov property and measurability

give us that

Ex
[
Ex
[ ∫ ∞

κ+a

1{κ−0 >t}
(1{κ−0 <κ

+
a } + 1{κ+a <κ−0 }

)qe−qtdt

∣∣∣∣F(κ+a )+

]]
= Ex

[
Ex
[ ∫ ∞

κ+a

1{κ−0 >t}
1{κ+a <κ−0 }

qe−qt−q(κ
+
a −κ+a )dt

∣∣∣∣F(κ+a )+

]]
= Ex

[
1{κ+a <κ−0 }

e−qκ
+
a Ex

[ ∫ ∞
κ+a

1{κ−0 >t}
qe−q(t−κ

+
a )dt

∣∣∣∣F(κ+a )+

]]
= Ex

[
1{κ+a <κ−0 }

e−qκ
+
a Ex

[ ∫ ∞
κ+a

1{inf0≤r≤t Ur≥0,t≥κ+a }qe
−q(t−κ+a )dt

∣∣∣∣F(κ+a )+

]]
= Ex

[
1{κ+a <κ−0 }

e−qκ
+
a Ex

[ ∫ ∞
0

1{inf0≤r≤t Ur+κ+a
−U

κ+a
+a≥0,t≥0}qe

−qtdt

∣∣∣∣F(κ+a )+

]]
= Ex

[
1{κ+a <κ−0 }

e−qκ
+
a Ea

[ ∫ ∞
0

1{inf0≤r≤s Ur≥0}qe
−qsds

]]
= Ex[1{κ+a <κ−0 }e

−qκ+a ]Ea
[ ∫ ∞

0

1{inf0≤r≤s Ur≥0}qe
−qsds

]
= Ex[1{κ+a <κ−0 }e

−qκ+a ]Pa(U eq ≥ 0).(2.37)
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Combining (2.36) and (2.37) gives that

(2.38) Px(U eq ≥ 0, U eq > a) = Ex[1{κ+a <κ−0 }e
−qκ+a ]Pa(U eq ≥ 0).

For the probabilities above we have that

Px(U eq ≥ 0, U eq > a) = Px(U eq ≥ 0)− Px(U eq ≥ 0, U eq ≤ a)

= q

∫ ∞
0

e−qtPx(Ut ∈ R, t < κ−0 )dt− q
∫ ∞
0

e−qtPx(Ut ∈ [0, a], t < κ−0 ∧ κ+a )dt

and

Pa(U eq ≥ 0) = q

∫ ∞
0

e−qtPa(Ut ∈ R, t < κ−0 )dt.

From Theorem 2.8 (ii) it follows that for all q > 0∫ ∞
0

e−qtPa(Ut ∈ R, t < κ−0 )dt

=
[
W (q)(a) + α

∫ a

b

W(q)(a− z)W (q)′(z)dz
](2.39)

×
{∫

[b,∞)

[
e−ϕ(q)y

α
∫∞
b
e−ϕ(q)zW (q)′(z)dz

− W(q)(a− y)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

+

∫
[0,b)

[∫∞
b
e−ϕ(q)zW (q)′(z − y)dz∫∞
b
e−ϕ(q)zW (q)′(z)dz

−
W (q)(a− y) + α

∫ a
b
W(q)(a− z)W (q)′(z − y)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

}
.

Moreover Theorem 2.8 (i) and (ii) imply∫ ∞
0

e−qtPx(Ut ∈ R, t < κ−0 )dt−
∫ ∞
0

e−qtPx(Ut ∈ [0, a], t < κ−0 ∧ κ+a )dt

=
[
W (q)(x) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z)dz
](2.40)

×
{∫

[b,∞)

[
e−ϕ(q)y

α
∫∞
b
e−ϕ(q)zW (q)′(z)dz

− W(q)(x− y)

W (q)(x) + α1{x≥b}
∫ x
b
W(q)(x− z)W (q)′(z)dz

]
dy

+

∫
[0,b)

[∫∞
b
e−ϕ(q)zW (q)′(z − y)dz∫∞
b
e−ϕ(q)zW (q)′(z)dz

]
dy −

∫
[b,a]

[
W(q)(a− y)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

− W(q)(x− y)

W (q)(x) + α1{x≥b}
∫ x
b
W(q)(x− z)W (q)′(z)dz

]
dy

−
∫
[0,b)

[
W (q)(a− y) + α

∫ a
b
W(q)(a− z)W (q)′(z − y)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

}
.
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We notice that because of W(q)(a − y) = 0 for y > a we can extend the integration
from [b, a] to [b,∞). Hence expression (2.40) turns into[
W (q)(x) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z)dz
]

×
{∫

[b,∞)

[
e−ϕ(q)y

α
∫∞
b
e−ϕ(q)zW (q)′(z)dz

− W(q)(x− y)

W (q)(x) + α1{x≥b}
∫ x
b
W(q)(x− z)W (q)′(z)dz

]
dy

+

∫
[0,b)

[∫∞
b
e−ϕ(q)zW (q)′(z − y)dz∫∞
b
e−ϕ(q)zW (q)′(z)dz

]
dy −

∫
[b,∞)

[
W(q)(a− y)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

− W(q)(x− y)

W (q)(x) + α1{x≥b}
∫ x
b
W(q)(x− z)W (q)′(z)dz

]
dy

−
∫
[0,b)

[
W (q)(a− y) + α

∫ a
b
W(q)(a− z)W (q)′(z − y)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

}

=
[
W (q)(x) + α1{x≥b}

∫ x

b

W(q)(x− z)W (q)′(z)dz
](2.41)

×
{∫

[b,∞)

[
e−ϕ(q)y

α
∫∞
b
e−ϕ(q)zW (q)′(z)dz

− W(q)(a− y)

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

+

∫
[0,b)

[∫∞
b
e−ϕ(q)zW (q)′(z − y)dz∫∞
b
e−ϕ(q)zW (q)′(z)dz

−
W (q)(a− y) + α

∫ a
b
W(q)(a− z)W (q)′(z − y)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

]
dy

}
.

Substituting (2.39) and (2.41) into equation (2.38) gives after rearranging that

Ex[1{κ+a <κ−0 }e
−qκ+a ] =

W (q)(x) + α1{x≥b}
∫ x
b
W(q)(x− z)W (q)′(z)dz

W (q)(a) + α
∫ a
b
W(q)(a− z)W (q)′(z)dz

,

which is what we wanted. The result for q = 0 follows from the limit behaviour of the
case q > 0 as q → 0. Note here that for scale functions we have the representation

W (q)(x) = eφ(q)xWφ(q)(x),

where φ is the inverse Laplace exponent of X. The representation is presented in [6,
Lemma 8.4].

Part (ii): The proof is similar to the proof of part (i). For more details see for
example the proof of [8, Theorem 7].

�

For the process U we define the following functions:

w(q)(x; a) := W (q)(x− a) + α1{x≥b}

∫ x

b

W(q)(x− y)W (q)′(y − a)dy(2.42)

z(q)(x; a) := Z(q)(x− a) + αq1{x≥b}

∫ x

b

W(q)(x− y)W (q)(y − a)dy.(2.43)

The function Z(q) in (2.43) is defined as in (2.3). Notice that if x ≤ b, then
w(q)(x; a) = W (q)(x − a) and z(q)(x; a) = Z(q)(x − a). In the next theorem we use
the functions w(q) and z(q) to generalize Theorem 2.4. Hence we can think that these
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functions are the scale functions of the refracted Lévy process U . The proof of the
next theorem follows [10, Theorem 2].

Theorem 2.12 ([10], Theorem 2). For q ≥ 0 and x, b ∈ [a, c], we have that

Ex[e−qκ
+
c ;κ+c < κ−a ] =

w(q)(x; a)

w(q)(c; a)
.

and

Ex[e−qκ
+
c ;κ−a < κ+c ] = z(q)(x; a)− z(q)(c; a)

w(q)(c; a)
w(q)(x; a).

Proof. Let a, c ∈ R, a < c and x, b ∈ [a, c]. Define the refracted Lévy process
(Ũt)t≥0 such that Ũt := Ut − a and optional times

κ̃−0 := inf{t > 0 : Ũt < 0} and κ̃+c−a := inf{t > 0 : Ũt > c− a}.
By using quasi-space homogeneity property for U , we get that

Ex[e−qκ
+
c ;κ+c < κ−a ] = Ex−a[e−qκ̃

+
c−a ; κ̃+c−a < κ̃−0 ].

By Theorem 2.11 (i) and a change of variable it follows that

Ex−a[e−qκ̃
+
c−a ; κ̃+c−a < κ̃−0 ]

=
W (q)(x− a) + α1{x−a≥b−a}

∫ x−a
b−a W(q)(x− a− y)W (q)′(y)dy

W (q)(c− a) + α
∫ c−a
b−a W(q)(c− a− y)W (q)′(y)dy

=
W (q)(x− a) + α1{x≥b}

∫ x
b
W(q)(x− y)W (q)′(y − a)dy

W (q)(c− a) + α
∫ c
b
W(q)(c− y)W (q)′(y − a)dy

=
w(q)(x; a)

w(q)(c; a)
,

where for the last equality we used (2.42) and (2.43).
The other part of the proof is similar to the first part. One just needs to use

Theorem 2.11 (ii) and does the same steps as in the proof of the first part. �

2.3. Scale function equalities

In this section we present some equalities which we are going to use in the last
chapter. Let us begin with the main equality from which we derive the other results.

Lemma 2.13. Let p, q, x ≥ 0 and define α as in Theorem 2.7. Then

α

∫ x

0

W(p)(x− y)W (q)(y)dy + (p− q)
∫ x

0

∫ y

0

W(p)(y − z)W (q)(z)dzdy(2.44)

=

∫ x

0

W(p)(y)dy −
∫ x

0

W (q)(y)dy.

Proof. Let us first consider the left hand side of (2.44). We notice that by taking
the Laplace transform and using the convolution theorem, we get that
(2.45)∫ ∞

0

e−λxα

∫ x

0

W(p)(x− y)W (q)(y)dydx = α

∫ ∞
0

e−λxW(p)(x)dx

∫ ∞
0

e−λyW (q)(y)dy.
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In the same way we get by integration by parts for the integral with respect to dx
that

(p− q)
∫ ∞
0

e−λx
∫ x

0

∫ y

0

W(p)(y − z)W (q)(z)dzdydx

=
(p− q)
λ

∫ ∞
0

e−λx
∫ x

0

W(p)(x− y)W (q)(y)dydx

=
(p− q)
λ

∫ ∞
0

e−λxW(p)(x)dx

∫ ∞
0

e−λyW (q)(y)dy,(2.46)

where the last line can be seen by changing the order of integration and using that
W(p) = 0 for x < y. By Proposition 2.1 we have for (2.45) and (2.46) that

(2.47) α

∫ ∞
0

e−λxW(p)(x)dx

∫ ∞
0

e−λyW (q)(y)dy = α · 1

Ψ(λ)− p
· 1

ψ(λ)− q
and
(2.48)

(p− q)
λ

∫ ∞
0

e−λxW(p)(x)dx

∫ ∞
0

e−λyW (q)(y)dy =
(p− q)
λ

· 1

Ψ(λ)− p
· 1

ψ(λ)− q
.

Let us consider now the right hand side of (2.44). Again by taking the Laplace
transform and integrating by parts we get that∫ ∞

0

e−λx
∫ x

0

W(p)(y)dydx−
∫ ∞
0

e−λx
∫ x

0

W (q)(y)dydx

=
1

λ

∫ ∞
0

e−λxW(p)(x)dx− 1

λ

∫ ∞
0

e−λxW (q)(x)dx

=
1

λ
· 1

Ψ(λ)− p
− 1

λ
· 1

ψ(λ)− q
,(2.49)

where in the end we used again Proposition 2.1. From (2.14) if follows that

Ψ(λ)− p = ψ(λ)− αλ− p.

We use (2.47) and (2.48) to compute the Laplace transform of the left hand side of
(2.44) as follows

α · 1

Ψ(λ)− p
· 1

ψ(λ)− q
+

(p− q)
λ

· 1

Ψ(λ)− p
· 1

ψ(λ)− q

=

(
α +

(p− q)
λ

)
· 1

Ψ(λ)− p
· 1

ψ(λ)− q

=

(
ψ(λ)− q − ψ(λ) + αλ+ p

λ

)
· 1

Ψ(λ)− p
· 1

ψ(λ)− q

=

(
(ψ(λ)− q)− (Ψ(λ)− p)

λ

)
· 1

Ψ(λ)− p
· 1

ψ(λ)− q

=
1

λ
· 1

Ψ(λ)− p
− 1

λ
· 1

ψ(λ)− q
.(2.50)
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Now from (2.49) and (2.50) it follows that the Laplace transforms of the left and right
hand side of (2.44) are equal. Since the Laplace transform describes a continuous
function uniquely, we get that equality holds in (2.44), and the proof is done. �

From Lemma 2.13 we can derive the following corollaries.

Corollary 2.14. Let p, q, x ≥ 0 and define α as in Theorem 2.7. Then

(q − p)
∫ x

0

W(p)(x− y)W (q)(y)dy

= W (q)(x)−W(p)(x) + α
[
W (q)(0)W(p)(x) +

∫ x

0

W(p)(x− y)W (q)′(y)dy
]
.

Proof. The relation follows from Lemma 2.13 by differentiating both sides with
respect to x and integration by parts. �

Note that Corollary 2.14 holds for all p, q, x ≥ 0 and α as in Theorem 2.7. Later
on we are going to use this corollary for example in cases like q = p and α = 0. In
the case q = p we get that

(2.51) W (q)(x)−W(q)(x) + α

(
W (q)(0)W(q)(x) +

∫ x

0

W(q)(x− y)W (q)′(y)dy

)
= 0.

It is important to notice that from α = 0 it follows by (2.14) and uniqueness of the
scale functions that W(q) = W (q). Hence when α = 0 Corollary 2.14 gets into the
form

(2.52) (q − p)
∫ x

0

W (p)(x− y)W (q)(y)dy = W (q)(x)−W (p)(x).

Corollary 2.15. Let q, x ≥ 0 and define α as in Theorem 2.7. Then for x > b
it holds

w(q)(x; 0) =
[
1− αW (q)(0)

]
W(q)(x)− α

∫ b

0

W(q)(x− y)W (q)′(y)dy.

Proof. This follows from (2.42) and (2.51). �
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CHAPTER 3

Risk model

In this chapter we present a risk model, in which we apply a refracted Lévy process.
We begin with the section which presents equations which give us the expected time
that a given process spends in the so called red zone. After that we continue with a
risk model where we compute the probability of bankruptcy.

3.1. Time spent in the red zone

Now we are interested in how long the given refracted Lévy process stays below
the given boundary, which we later consider as a red zone. To get into this problem
let us first state the following lemma.

Lemma 3.1 ([10], Lemma 1). For all q, p ≥ 0 and b ≤ x ≤ c, one has that

Ex[e−pν
−
b W (q)(Yν−b

); ν−b < ν+c ]

= w(q)(x; 0)− (q − p)
∫ x

b

W(p)(x− y)w(q)(y; 0)dy

− W(p)(x− b)
W(p)(c− b)

(
w(q)(c; 0)− (q − p)

∫ c

b

W(p)(c− y)w(q)(y; 0)dy

)
,

and

Ex[e−pν
−
b Z(q)(Yν−b

); ν−b < ν+c ]

= z(q)(x; 0)− (q − p)
∫ x

b

W(p)(x− y)z(q)(y; 0)dy

− W(p)(x− b)
W(p)(c− b)

(
z(q)(c; 0)− (q − p)

∫ c

b

W(p)(c− y)z(q)(y; 0)dy

)
.

Proof. See for example the proof of Lemma 1 in [10]. �

Next we present the theorem which gives us the representations for the joint
Laplace transforms

(3.1)

(
κ−a ,

∫ κ−a

0

1{Us<b}ds

)
and

(
κ+c ,

∫ κ+c

0

1{Us<b}ds

)
.

Notice that for example
∫ κ−a
0

1{Us<b}ds stands for the time that the process U spent
below b before going below a. These representations give us the expected time that
the given refracted Lévy process spent below b. Let us now begin with the theorem.

Theorem 3.2 ([10], Theorem 3). For all q, p ≥ 0 and x, b ∈ [a, c] it holds

(i)

Ex[e−pκ
+
c −q

∫ κ+c
0 1{Us<b}ds;κ+c < κ−a ]

=
w(p+q)(x; a)− q1{x≥b}

∫ x
b
W(p)(x− y)w(p+q)(y; a)dy

w(p+q)(c; a)− q
∫ c
b
W(p)(c− y)w(p+q)(y; a)dy

.
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(ii)

Ex[e−pκ
−
a −q

∫ κ−a
0 1{Us<b}ds;κ−a < κ+c ]

= z(p+q)(x; a)− q1{x≥b}
∫ x

b

W(p)(x− y)z(p+q)(y; a)dy

+
z(p+q)(c; a)− q

∫ c
b
W(p)(c− y)z(p+q)(y; a)dy

w(p+q)(c; a)− q
∫ c
b
W(p)(c− y)w(p+q)(y; a)dy

×
(
w(p+q)(x; a)− q1{x≥b}

∫ x

b

W(p)(x− y)w(p+q)(y; a)dy

)
.

Proof. The proof follows the proof of Theorem 3 in [10].
Part (i): Let us begin with the case that a ≤ x < b ≤ c. Since process U can not
jump up and x < b ≤ c, we have that

Ex
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
= Ex

[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }1{κ+b <κ

−
a }

]
= Ex

[
e
−pκ+c −q

∫ κ+
b

0 1{Us<b}ds−q
∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }1{κ+b <κ

−
a }

]
= Ex

[
e
−pκ+c −qκ+b −q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }1{κ+b <κ

−
a }

]
= Ex

[
e
−pκ+c −qκ+b −pκ

+
b +pκ

+
b −q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }1{κ+b <κ

−
a }

]
= Ex

[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }e
−p(κ+c −κ+b )−q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }

]
.

By using the tower property, the fact that e−(q+p)κ
+
b and 1{κ+b <κ

−
a } are F(κ+b )+

-measurable

and the strong Markov property of U we get that

Ex
[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }e
−p(κ+c −κ+b )−q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }

]
= Ex

[
Ex
[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }e
−p(κ+c −κ+b )−q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }

]∣∣∣∣F(κ+b )+

]
= Ex

[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }Ex

[
e
−p(κ+c −κ+b )−q

∫ κ+c
κ+
b

1{Us<b}ds
1{κ+c <κ−a }

]∣∣∣∣F(κ+b )+

]
= Ex

[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }Eb

[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]]
= Ex

[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }

]
Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
.(3.2)
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Let us now consider the case that b ≤ x ≤ c. First we notice that

Ex
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
= Ex

[
e−pκ

+
c 1{κ+c <κ−b }

]
+ Ex

[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ−b <κ

+
c }1{κ+c <κ−a }

]
.(3.3)

For the second component in (3.3) we get by using the tower property, the fact that

e−pκ
−
b and 1{κ−b <κ

+
c } are F(κ−b )+-measurable and the strong Markov property of U that

Ex
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ−b <κ

+
c }1{κ+c <κ−a }

]
= Ex

[
e
−pκ+c −q

∫ κ+c
κ−
b

1{Us<b}ds
1{κ−b <κ

+
c }1{κ+c <κ−a }

]
= Ex

[
e
−pκ+c +pκ−b −pκ

−
b −q

∫ κ+c
κ−
b

1{Us<b}ds
1{κ−b <κ

+
c }1{κ+c <κ−a }

]
= Ex

[
Ex
[
e
−pκ+c +pκ−b −pκ

−
b −q

∫ κ+c
κ−
b

1{Us<b}ds
1{κ−b <κ

+
c }1{κ+c <κ−a }

]∣∣∣∣F(κ−b )+

]
= Ex

[
e−pκ

−
b 1{κ−b <κ

+
c }Ex

[
e
−p(κ+c −pκ−b )−q

∫ κ+c
κ−
b

1{Us<b}ds
1{κ+c <κ−a }

]∣∣∣∣F(κ−b )+

]
= Ex

[
e−pκ

−
b 1{κ−b <κ

+
c }EUκ−

b

[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]]
,

where in the first equality we used that b ≤ x and 1{Us<b} = 0 before hitting time κ−b .
Now for the inside expected value we can use the equality (3.2) and hence it follows
by using Theorem 2.4 that

Ex
[
e−pκ

−
b 1{κ−b <κ

+
c }EUκ−

b

[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]]
= Ex

[
e−pκ

−
b 1{κ−b <κ

+
c }EUκ−

b

[
e−(q+p)κ

+
b 1{κ+b <κ

−
a }

]
Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]]
= Ex

[
e−pκ

−
b 1{κ−b <κ

+
c }

W (q+p)(Uκ−b
− a)

W (q+p)(b− a)
Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]]

=

Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
W (q+p)(b− a)

Ex
[
e−pκ

−
b 1{κ−b <κ

+
c }W

(q+p)(Uκ−b
− a)

]
.

(3.4)

Since U = Y above b, we get from Theorem 2.4 that

Ex
[
e−pκ

+
c 1{κ+c <κ−b }

]
= Ex

[
e−pν

+
c 1{ν+c <ν−b }

]
=

W(p)(x− b)
W(p)(c− b)

.
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Applying above equation and (3.4) in (3.3) it follows that

Ex
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]

=
W(p)(x− b)
W(p)(c− b)

+

Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
W (q+p)(b− a)

Ex
[
e−pκ

−
b 1{κ−b <κ

+
c }W

(q+p)(Uκ−b
− a)

]
.

(3.5)

Setting x = b in above equation we get that

(3.6) Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
=

W(p)(0)

W(p)(c−b)

1−
(

Eb[e
−pκ−

b 1{κ−
b
<κ+c }

W (q+p)(U
κ−
b
−a)]

W (q+p)(b−a)

) .

Since U = Y when U > b, we get by using the spatial homogeneity of Y , Lemma 3.1
and the change of variable that

Ex[e−pκ
−
b 1{κ−b <κ

+
c }W

(q+p)(Uκ−b
− a)] = Ex[e−pν

−
b 1{ν−b <ν

+
c }W

(q+p)(Yν−b
− a)]

= Ex−a[e−pν
−
b−a1{ν−b−a<ν

+
c−a}

W (q+p)(Yν−b−a
)]

= w(q+p)(x− a; 0)− (q + p− p)
∫ x−a

b−a
W(p)(x− a− y)w(q+p)(y; 0)dy

− W(p)(x− a− b+ a)

W(p)(c− a− b+ a)

(
w(q+p)(c− a; 0)− (q + p− p)

∫ c−a

b−a
W(p)(c− a− y)w(q+p)(y; 0)dy

)

= w(q+p)(x; a)− q
∫ x

b

W(p)(x− y)w(q+p)(y; a)dy

(3.7)

− W(p)(x− b)
W(p)(c− b)

(
w(q+p)(c; a)− q

∫ c

b

W(p)(c− y)w(q+p)(y; a)dy

)
.

Applying (3.7) in (3.6) and setting x = b we get, by using (2.42), after reducing that

Eb
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]
(3.8)

=
W (q+p)(b− a)

w(q+p)(c; a)− q
∫ c
b
W(p)(c− y)w(q+p)(y; a)dy

.

36
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Inserting (3.8) into (3.5) and using (3.7) leads us to following expression

Ex
[
e−pκ

+
c −q

∫ κ+c
0 1{Us<b}ds1{κ+c <κ−a }

]

=
W(p)(x− b)
W(p)(c− b)

+

Ex
[
e−pκ

−
b 1{κ−b <κ

+
c }W

(q+p)(Uκ−b
− a)

]
w(q+p)(c; a)− q

∫ c
b
W(p)(c− y)w(q+p)(y; a)dy

=
W(p)(x− b)
W(p)(c− b)

+
w(q+p)(x; a)− q

∫ x
b
W(p)(x− y)w(q+p)(y; a)dy

w(q+p)(c; a)− q
∫ c
b
W(p)(c− y)w(q+p)(y; a)dy

−
W(p)(x− b)[w(q+p)(c; a)− q

∫ c
b
W(p)(c− y)w(q+p)(y; a)dy]

W(p)(c− b)[w(q+p)(c; a)− q
∫ c
b
W(p)(c− y)w(q+p)(y; a)dy]

=
w(q+p)(x; a)− q

∫ x
b
W(p)(x− y)w(q+p)(y; a)dy

w(q+p)(c; a)− q
∫ c
b
W(p)(c− y)w(q+p)(y; a)dy

,

which is what we wanted to show.
The proof of part (ii) can be derived in the same way as the part (i). �

With Theorem 3.2 we can compute the expected time that the given process,
which can describe for example some insurance company’s financial situation, spent
below the given boundary b but above a before crossing c or a.

In risk theory the boundary b is in many cases chosen to be the level below which
our company is in financial distress. The boundaries a and c are usually chosen in
the following way. If the process U goes below a, then ruin occurs, and if U crosses
c, the company has financial solvency.

3.2. Probability of bankruptcy

In this section we apply the knowledge about scale functions and exit problems and
give the probability of bankruptcy. We start by giving an example of a situation where
one can apply refracted Lévy processes. Let us assume that we want to describe the
financial situation of some insurance company. Assume that the spectrally negative
Lévy process (Yt)t≥0 describes the surplus of the company. Now the jumps can be
taught to be the consequence from the claims that the company gets. For small
claim sizes it is usually assumed that jumps are exponentially distributed and that is
what we assume here too. If we assume that the company becomes bankrupt when
the surplus goes below 0 it is natural to think that we want the company’s surplus
to be above some artificial level b such that for example with high probability one
claim can not cause bankruptcy. In this case we have that the level b depends on the
claim size distribution. If the company’s surplus is between 0 and b we say that the
company is in financial distress. When the company is in financial distress it is natural
to think that some restructuring should happen. One solution for restructuring, so
the company has better chances to overcome financial distress, would be to increase
premiums, which can be modelled with linear drift. Now we have the new process
which describes the surplus of our company which is same as process (Yt)t≥0 above b
and below b it is process (Yt)t≥0 increased by a linear drift. This process is actually
the refracted Lévy process (Ut)t≥0 from Definition 2.6 if we define Xt := Yt + αt. Let
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3.2. PROBABILITY OF BANKRUPTCY

us now present the model with which we can compute the probability of bankruptcy,
when the surplus is described by refracted Lévy process. For more information about
the model see for example [10, Remark 4].

Recall the processes (Ut)t≥0, (Xt)t≥0 and (Yt)t≥0, the scale functions and the cor-
responding optional times from the beginning of Section 2.2. The definition of bank-
ruptcy is borrowed from [10] and is as follows: bankruptcy happens, if the process
U spends too much time in the interval (−∞, b) or drops too deep. We clarify the
definition with the following functions. For q > 0 define the function ω : R −→ [0,∞]
such that

ω(x) =


0, if x ≥ b,

q, if 0 ≤ x < b,

∞, if x < 0.

For the function ω define the corresponding bankruptcy time ρω by

(3.9) ρω = inf{t ≥ 0;

∫ t

0

ω(Us)ds > e1},

where e1 is an exponentially distributed random variable with rate 1 that is indepen-
dent of U .

We assume that the condition, which in literature is called the net profit condition,
E[X1] > α holds, in which case the probability of bankruptcy is less than 1 and

(3.10) lim
c→∞

W(c) =
1

ψ′(0+)− α
=

1

E[X1]− α
.

In our model, if bankruptcy occurs, it occurs when the process U is in set [0, b) or
drops below 0. By using the law of total probability we get that

(3.11) Px(0 ≤ Uρω < b, ρω <∞) + Px(Uρω < 0, ρω <∞) + Px(ρω =∞) = 1,

where for first two probabilities we get that

Px(0 ≤ Uρω < b, ρω <∞) = Px
(∫ κ−0

0

ω(Us)ds > e1

)
(3.12)

= 1− Ex
[
e−q

∫ κ−0
0 1{Us<b}ds

]
and

Px(Uρω < 0, ρω <∞) = Px
(∫ κ−0

0

ω(Us)ds ≤ e1, κ
−
0 <∞

)
(3.13)

= Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 <∞

]
.

The equality (3.12) describes the probability of bankruptcy while surplus is between 0
and b and the equality (3.13) gives the probability of bankruptcy when surplus drops
below 0 with the initial capital x ≥ 0. The probability Px(ρω = ∞) in (3.11) gives
us the so called survival probability, that is the probability that bankruptcy does not
occur with the initial capital x ≥ 0. The probabilities in (3.11) can be calculated
with help of the following corollary.

38



3.2. PROBABILITY OF BANKRUPTCY

Corollary 3.3 ([10], Corollary 1). Assume the net profit condition E[X1] > α
is verified. Then for q > 0 and x, b ≥ 0 the following assertions are true:

(i)

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 <∞

]
= z(q)(x; 0)− q

∫ x

b

W(x− y)z(q)(y; 0)dy

+
(E[X1]− α) + q

∫ b
0
(Z(q)(y)− αW (q)(y)Z(q)(b− y))dy

Z(q)(b)− αW (q)(b)

×
(
w(q)(x; 0)− q

∫ x

b

W(x− y)w(q)(y; 0)dy

)
.

(ii)

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 =∞

]
= (E[X1]− α)

w(q)(x; 0)− q
∫ x
b
W(x− y)w(q)(y; 0)dy

Z(q)(b)− αW (q)(b)
.

Proof. Part (i): First we notice that

(3.14) Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 <∞

]
= lim

c→∞
Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 < κ+c

]
.

Since from Theorem 3.2 (ii) it follows that

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 < κ+c

]
= z(q)(x; 0)− q

∫ x

b

W(x− y)z(q)(y; 0)dy(3.15)

+
z(q)(c; 0)− q

∫ c
b
W(c− y)z(q)(y; 0)dy

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

×
(
w(q)(x; 0)− q

∫ x

b

W(x− y)w(q)(y; 0)dy

)
,

the only thing we need to show is that

lim
c→∞

z(q)(c; 0)− q
∫ c
b
W(c− y)z(q)(y; 0)dy

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

(3.16)

=
(E[X1]− α) + q

∫ b
0
(Z(q)(y)− αW (q)(y)Z(q)(b− y))dy

Z(q)(b)− αW (q)(b)
.
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For c > b, by using Corollary 2.15, we have that

w(q)(c; 0)− q
∫ c

b

W(c− y)w(q)(y; 0)dy

= (1− αW (q)(0))W(q)(c)− α
∫ b

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)

[
(1− αW (q)(0))W(q)(y)− α

∫ b

0

W(q)(y − z)W (q)(z)dz

]
dy

= (1− αW (q)(0))

[
W(q)(c)− q

∫ c

b

W(c− y)W(q)(y)dy

](3.17)

− α
[ ∫ b

0

W(q)(c− y)W (q)′(y)dy −
∫ b

0

W (q)′(z)q

∫ c

b

W(c− y)W(q)(y − z)dydz

]
.

From (2.52) it follows that

q

∫ c

b

W(c− y)W(q)(y)dy

= q

∫ c

0

W(c− y)W(q)(y)dy − q
∫ b

0

W(c− y)W(q)(y)dy

= W(q)(c)−W(c)− q
∫ b

0

W(c− y)W(q)(y)dy(3.18)

and

q

∫ c

b

W(c− y)W(q)(y − z)dy = q

∫ c−z

b−z
W(c− y − z)W(q)(y)dy

= q

∫ c−z

0

W(c− y − z)W(q)(y)dy − q
∫ b−z

0

W(c− y − z)W(q)(y)dy

= W(q)(c− z)−W(c− z)− q
∫ b−z

0

W(c− y − z)W(q)(y)dy.(3.19)

Applying (3.18) and (3.19) in (3.17) gives that

(1− αW (q)(0))

[
W(q)(c)− q

∫ c

b

W(c− y)W(q)(y)dy

]
− α

[ ∫ b

0

W(q)(c− y)W (q)′(y)dy −
∫ b

0

W (q)′(z)q

∫ c

b

W(c− y)W(q)(y − z)dydz

]
= (1− αW (q)(0))

[
W(c) + q

∫ b

0

W(c− y)W(q)(y)dy

]
− α

∫ b

0

W (q)′(z)

[
W(c− z) + q

∫ b−z

0

W(c− z − y)W(q)(y)dy

]
dz.
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Since the function W is non-decreasing, we can use the monotone convergence
theorem together with the definition

(3.20) Z(q)(x) = 1 + q

∫ x

0

W(q)(y)dy

and lim
c→∞

W(c− y)

W(c)
= 1, which follows from the fact that scale functions are continu-

ous, non-degreasing and W(x) <∞ for x ≥ 0, and get that

lim
c→∞

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

W(c)

= lim
c→∞

{
(1− αW (q)(0))

[
W(c) + q

∫ b
0
W(c− y)W(q)(y)dy

]
W(c)

−
α
∫ b
0
W (q)′(z)

[
W(c− z) + q

∫ b−z
0

W(c− z − y)W(q)(y)dy
]
dz

W(c)

}
= (1− αW (q)(0))Z(q)(b)− α

∫ b

0

W (q)′(z)Z(q)(b− z)dz.

By using integration by parts, relation (3.20), Lemma 2.13 for case p = q and
relation (2.3) we get that

(1− αW (q)(0))Z(q)(x)− α
∫ x

0

W (q)′(y)Z(q)(x− y)dy

= (1− αW (q)(0))Z(q)(x) + αW (q)(0)Z(q)(x)− αW (q)(x)− α
∫ x

0

W (q)(y)qW(q)(x− y)dy

= Z(q)(x)− αW (q)(x)− qα
∫ x

0

W(q)(x− y)W (q)(y)dy

= 1 + q

∫ x

0

W(q)(y)dy − αW (q)(x)− qα
∫ x

0

W(q)(x− y)W (q)(y)dy

= 1 + q

∫ x

0

W(q)(y)dy − αW (q)(x)− q
∫ x

0

W(q)(y)dy + q

∫ x

0

W (q)(y)dy

= 1− αW (q)(x) + q

∫ x

0

W (q)(y)dy

= Z(q)(x)− αW (q)(x).

Now we have that

(3.21) lim
c→∞

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

W(c)
= Z(q)(x)− αW (q)(x).
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Also for c > b, by using Corollary 2.15 and the definitions of z and Z, which we
presented in (2.43) and (2.3), we have that

z(q)(c; 0)− q
∫ c

b

W(c− y)z(q)(y; 0)dy

= Z(q)(c) + αq

∫ c

b

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)

[
Z(q)(y) + αq

∫ y

b

W(q)(y − z)W (q)(z)dz

]
dy

= 1 + q

∫ c

0

W (q)(y)dy + αq

∫ c

b

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)

[
1 + q

∫ y

0

W (q)(z)dz + αq

∫ y

b

W(q)(y − z)W (q)(z)dz

]
dy

= 1 + q

∫ c

0

W (q)(y)dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy − αq
∫ b

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)dy − q
∫ c

b

W(c− y)

[
q

∫ y

0

W (q)(z)dz + αq

∫ y

b

W(q)(y − z)W (q)(z)dz

]
dy.

By using (3.20) we get that

1 + q

∫ c

0

W (q)(y)dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy − αq
∫ b

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)dy − q
∫ c

b

W(c− y)

[
q

∫ y

0

W (q)(z)dz + αq

∫ y

b

W(q)(y − z)W (q)(z)dz

]
dy

= 1 + q

∫ b

0

W(c− y)Z(q)(y)dy − q
∫ b

0

W(c− y)dy − q
∫ b

0

W(c− y)q

∫ y

0

W(q)(z)dzdy

+ q

∫ c

0

W (q)(y)dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy − αq
∫ b

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)dy − q
∫ c

b

W(c− y)q

∫ y

0

W (q)(z)dzdy

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy.

By setting p = 0 and α = 0, which means that W and W are equal, we get from
Corollary 2.14 that

q

∫ x

0

W(x− z)W(q)(z)dz = W(q)(x)−W(x)

so that

− αq
∫ b

0

W(q)(c− y)W (q)(y)dy

(3.22)

= −αq
∫ b

0

W(c− y)W (q)(y)dy − αq
∫ b

0

q

∫ c−y

0

W(c− y − z)W(q)(z)dzW (q)(y)dy
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By using the relation (3.22) and the fact that
∫ c
0
W(c− y)dy =

∫ c
0
W(z)dz, by change

of variable, we get that

1 + q

∫ b

0

W(c− y)Z(q)(y)dy − q
∫ b

0

W(c− y)dy − q
∫ b

0

W(c− y)q

∫ y

0

W(q)(z)dzdy

+ q

∫ c

0

W (q)(y)dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy − αq
∫ b

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

b

W(c− y)dy − q
∫ c

b

W(c− y)q

∫ y

0

W (q)(z)dzdy

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy

= 1 + q

∫ b

0

W(c− y)Z(q)(y)dy − αq
∫ b

0

W(c− y)W (q)(y)dy

+ q

∫ c

0

W (q)(y)dy − q
∫ c

0

W(y)dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

0

W(c− y)q

∫ y

0

W(q)(z)dzdy − αq
∫ b

0

q

∫ c−z

0

W(c− y − z)W(q)(y)dyW (q)(z)dz

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy.

= 1 + q

∫ b

0

W(c− y)Z(q)(y)dy − αq
∫ b

0

W(c− y)W (q)(y)dy

(3.23)

− αq2
∫ b

0

W (q)(z)

∫ b−z

0

W(c− y − z)W(q)(y)dydz

+

[
αq2

∫ b

0

W (q)(z)

∫ b−z

0

W(c− y − z)W(q)(y)dydz

+ q

∫ c

0

[
W (q)(y)−W(y)

]
dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

0

W(c− y)q

∫ y

0

W(q)(z)dzdy − αq2
∫ b

0

W (q)(z)

∫ c−z

0

W(c− y − z)W(q)(y)dydz

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy

]
.

From (3.23) it follows that

z(q)(c; 0)− q
∫ c

b

W(c− y)z(q)(y; 0)dy(3.24)

= 1 + q

∫ b

0

W(c− y)Z(q)(y)dy − αq
∫ b

0

W(c− y)W (q)(y)dy

− αq2
∫ b

0

W (q)(z)

∫ b−z

0

W(c− y − z)W(q)(y)dydz,
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if we only can show that the expression in
[ ]

is equal to 0. This is what we do next.
Putting in Corollary 2.14 p = 0 and integrating the equation, then using Fubini and
integration by parts with respect to z, we get that

q

∫ c

0

[
W (q)(y)−W(y)

]
dy

= q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy − q
∫ c

0

α

[
W (q)(0)W(y) +

∫ y

0

W(y − z)W (q)′(z)dz

]
dy

= q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy

− qα
∫ c

0

W (q)(0)W(y)dy − qα
∫ c

0

∫ y

0

W(y − z)W (q)′(z)dzdy

= q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy

− qα
∫ c

0

W (q)(0)W(y)dy − qα
∫ c

0

∫ c

z

W(y − z)W (q)′(z)dydz

= q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy

− qα
[ ∫ c

0

W (q)(0)W(y)dy +

∫ c

0

W (q)′(z)

∫ c−z

0

W(y)dydz

]
= q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy − αq
∫ c

0

W(c− z)W (q)(z)dz.

With the help of above equality proceed with
[ ]

from (3.23) as follows:

A :=αq2
∫ b

0

W (q)(z)

∫ b−z

0

W(c− y − z)W(q)(y)dydz

(3.25)

+ q

∫ c

0

[
W (q)(y)−W(y)

]
dy + αq

∫ c

0

W(q)(c− y)W (q)(y)dy

− q
∫ c

0

W(c− y)q

∫ y

0

W(q)(z)dzdy − αq2
∫ b

0

W (q)(z)

∫ c−z

0

W(c− y − z)W(q)(y)dydz

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy

= αq2
∫ b

0

W (q)(z)

∫ b−z

0

W(c− y − z)W(q)(y)dydz

+ q

∫ c

0

q

∫ y

0

W(y − z)W (q)(z)dzdy

− q
∫ c

0

W(c− y)q

∫ y

0

W(q)(z)dzdy − αq2
∫ b

0

W (q)(z)

∫ c−z

0

W(c− y − z)W(q)(y)dydz

− q
∫ c

b

W(c− y)αq

∫ y

b

W(q)(y − z)W (q)(z)dzdy
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= −αq2
∫ b

0

W (q)(z)

∫ c−z

b−z
W(c− y − z)W(q)(y)dydz

− αq2
∫ c

b

W(c− y)

∫ y

b

W(q)(y − z)W (q)(z)dzdy

+ q2
∫ c

0

∫ y

0

W(y − z)W (q)(z)dzdy − q2
∫ c

0

W(c− y)

∫ y

0

W(q)(z)dzdy.

We substitute y = y − z and then use Fubini and change y = y again to get

= −αq2
∫ b

0

W (q)(z)

∫ c−z

b−z
W(c− y − z)W(q)(y)dydz

= −αq2
∫ b

0

W (q)(z)

∫ c

b

W(c− y)W(q)(y − z)dydz

= −αq2
∫ c

b

W(c− y)

∫ b

0

W(q)(y − z)W (q)(z)dzdy,

so that we get

A = −αq2
∫ c

b

W(c− y)

∫ y

0

W(q)(y − z)W (q)(z)dzdy(3.26)

+ q2
∫ c

0

∫ y

0

W(y − z)W (q)(z)dzdy − q2
∫ c

0

W(c− y)

∫ y

0

W(q)(z)dzdy.

By using Corollary 2.14 for p = q, Fubini and integration by parts we get that

q2
∫ c

0

W(c− y)

∫ y

0

W(q)(z)dzdy

= q2
∫ c

0

W(c− y)

∫ y

0

[
W (q)(z) + α

(
W (q)(0)W(q)(z) +

∫ z

0

W(q)(z − r)W (q)′(r)dr

)]
dzdy

= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy + q2
∫ c

0

W(c− y)

∫ y

0

αW (q)(0)W(q)(z)dzdy

+ q2
∫ c

0

W(c− y)

∫ y

0

α

∫ z

0

W(q)(z − r)W (q)′(r)drdzdy

= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy + q2
∫ c

0

W(c− y)

∫ y

0

αW (q)(0)W(q)(z)dzdy

+ q2
∫ c

0

W(c− y)

∫ y

0

αW (q)′(r)

∫ y

r

W(q)(z − r)dzdrdy

= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy + q2
∫ c

0

W(c− y)

∫ y

0

αW (q)(0)W(q)(z)dzdy

+ q2
∫ c

0

W(c− y)

∫ y

0

αW (q)′(r)

∫ y−r

0

W(q)(z)dzdrdy
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= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy + q2
∫ c

0

W(c− y)

∫ y

0

αW (q)(0)W(q)(z)dzdy

− q2
∫ c

0

W(c− y)αW (q)(0)

∫ y

0

W(q)(z)dzdy − q2
∫ c

0

αW(c− y)

∫ y

0

W (q)(r)W(q)(y − r)drdy

= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy − αq2
∫ c

0

W(c− y)

∫ y

0

W(q)(y − r)W (q)(r)drdy.

(3.27)

Inserting (3.27) in to (3.26) and by using Fubini and integration by parts it follows
that

− αq2
∫ c

b

W(c− y)

∫ y

0

W(q)(y − z)W (q)(z)dzdy

+ q2
∫ c

0

∫ y

0

W(y − z)W (q)(z)dzdy − q2
∫ c

0

W(c− y)

∫ y

0

W(q)(z)dzdy.

= q2
∫ c

0

∫ y

0

W(y − z)W (q)(z)dzdy − q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy

= q2
∫ c

0

W (q)(z)

∫ c

z

W(y − z)dydz − q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy

= q2
∫ c

0

W (q)(z)

∫ c−z

0

W(y)dydz − q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy

= q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy − q2
∫ c

0

W(c− y)

∫ y

0

W (q)(z)dzdy

= 0,

which is what we wanted. Now we have that the equality (3.24) holds. By using
monotone convergence and the definition of Z it follows that

lim
c→∞

z(q)(c; 0)− q
∫ c
b
W(c− y)z(q)(y; 0)dy

W(c)

= lim
c→∞

1 + q
∫ b
0
W(c− y)Z(q)(y)dy

W(c)

+ lim
c→∞

αq
∫ b
0
W (q)(z)

[
W(c− z) + q

∫ b−z
0

W(c− z − y)W(q)(y)dy
]
dz

W(c)

= lim
c→∞

1

W(c)
+ q

∫ b

0

Z(q)(y)dy − αq
∫ b

0

W (q)(z)
[
1 + q

∫ b−z

0

W(q)(y)dy
]
dz

=
(
E[X1]− α

)
+ q

∫ b

0

[
Z(y)− αW (q)(y)Z(q)(b− y)

]
dy,(3.28)

where in the last equality we also used the equality (3.10). From (3.21) and (3.28) it
follows that the equality (3.16) holds and hence the proof is done.

Part (ii): First we notice that

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 =∞

]
= lim

c→∞
Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 > κ+c

]
.
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From Theorem 3.2 (i) it follows that

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 > κ+c

]
=
w(q)(x; 0)− q

∫ x
b
W(x− y)w(q)(y; 0)dy

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

.

In part (i) we have shown that

lim
c→∞

w(q)(c; 0)− q
∫ c
b
W(c− y)w(q)(y; 0)dy

W(c)
= Z(q)(x)− αW (q)(x).

Hence we get by using the equality (3.10) that

lim
c→∞

Ex
[
e−q

∫ κ−0
0 1{Us<b}ds;κ−0 > κ+c

]
= lim

c→∞

1

W(c)

W(c)
[
w(q)(x; 0)− q

∫ x
b
W(x− y)w(q)(y; 0)dy

]
w(q)(c; 0)− q

∫ c
b
W(c− y)w(q)(y; 0)dy

= (E[X1]− α)
w(q)(x; 0)− q

∫ x
b
W(x− y)w(q)(y; 0)dy

Z(q)(x)− αW (q)(x)
,

which is what we needed to show. �

In the model given in the beginning of this section we have that the probability
of bankruptcy with the initial capital x ≥ 0 is

(3.29) Px(ρω <∞) = Px(0 ≤ Uρω < b, ρω <∞) + Px(Uρω < 0, ρω <∞),

where for the probabilities on the right hand side we have the equalities (3.12) and
(3.13) which we can now compute with Corollary 3.3. Consequently we can also derive
the survival probability of the risk process U , which is

(3.30) Px(ρω =∞) = 1− Px(ρω <∞),

where in the right hand side we can apply (3.29).

47





Bibliography

[1] E. Cinlar: Introduction to Stochastic Processes. Courier Corporation, 2013.
[2] R. Cont, P. Tankov: Financial Modelling With Jump Processes. Chapman and Hall/CRC,

2004.
[3] F. Hubalek, A. E. Kyprianou: Old and New Examples of Scale Functions for Spec-
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