
Max Salminen

A METADATA MODEL FOR HYBRID DATA
PRODUCTS ON A MULTILATERAL DATA

MARKETPLACE

UNIVERSITY OF JYVÄSKYLÄ
FACULTY OF INFORMATION TECHNOLOGY

2018

ABSTRACT

Salminen, Max
A metadata model for hybrid data products on a multilateral data marketplace
Jyväskylä: University of Jyväskylä, 2018, 81p.
Information systems science, Master’s Thesis

Multilateral data marketplaces provide a platform where organizations and indi-
viduals can buy, trade, sell, and combine data into hybrid data products. On such
marketplaces, multiple different vendors can offer equivalent products in terms
of functionality, but different in attributes such as pricing, quality and licensing;
attributes that could be contained in metadata. Furthermore, hybrid data products
introduce an additional challenge: How can metadata regarding the origin and
attributes of data be contained?

In this thesis, we propose a metadata model based on W3C PROV that is able
to contain both provenance and relevant metadata related to data products. In
addition, the functionality of the metadata model is demonstrated and evaluated
through a prototype implementation.

Keywords: Data marketplaces, DaaS, Metadata, W3C PROV

TIIVISTELMÄ

Salminen, Max
Metadatamalli hybrididatatuotteille multilateraalisella datamarkkinapaikalla
Jyväskylä: Jyväskylän yliopisto, 2018, 81s.
Tietojärjestelmätiede, pro gradu -tutkielma

Monitahoiset datamarkkinapaikat tarjoavat alustan, jolla organisaatiot ja yksi-
tyishenkilöt voivat ostaa, vaihtaa, myydä ja yhdistää datatuotetteita hybrididata-
tuotteiksi. Datatuotteilla voi kuitenkin olla useita tarjoajia, jotka saattavat erota
toisistaan laadullisten ominaisuuksien tai lisenssiehtojen suhteen. Hybrididata-
tuotteen muodostamisessa toteutuneen tapahtumaketjun, provenienssin, seuraa-
minen voisi mahdollistaa hybrididatatuotteen muodostaneiden datatuotteiden
ominaisuuksien todentamisen.

Tässä tutkielmassa muodostetaan W3C PROV-määritelmään perustuva metadata-
malli, joka mahdollistaa sekä provenienssin, että hybrididatatuotteisiin liittyvän
yleisen metadatan seuraamisen. Tutkielmassa kehitettyä metadata-mallia hyödyn-
netään prototyypissä, jota käytetään myös mittaaman metadata-mallin vaikutusta
suorituskykyyn.

Avainsanat: Datamarkkinapaikat, Data palvelumuotona, Metadata, W3C PROV

FIGURES

Figure 1. Ad hoc vs. centralized . 7
Figure 2. DSRM Process Model. 10
Figure 3. Phases of a market transaction . 13
Figure 4. Hierarchy of marketplace structures . 19
Figure 5. JSON Example . 27
Figure 6. Batch processing. 29
Figure 7. Stream processing . 29
Figure 8. Examples of provenance graph . 37
Figure 9. PROV essentials . 38
Figure 10. PROV metadata model for data marketplace . 48
Figure 11. Forming a hybrid data product in PROV syntax . 49
Figure 12. Prototype architecture .51
Figure 13. TfL departure event data . 53
Figure 14. Data flow in the prototype . 55
Figure 15. Data flow in the prototype . 56
Figure 16. Output data volume. 57
Figure 17. Latency without network requests . 58
Figure 18. Latency with network requests . 58
Figure 19. Simultaneous pipelines . 59
Figure 20. Message rate without network requests. 60
Figure 21. Message rate with network requests. 60

TABLES

Table 1. Data products . 16
Table 2. Data marketplace users . 17
Table 3. Data contract metadata terms . 22
Table 4. PROV core syntax . 40
Table 5. PROV abbreviations. 40
Table 6. Evaluation methods . 45
Table 7. Metadata model namespaces and attributes . 47
Table 8. Comparison of transport authority APIs . 52
Table 9. TfL Stream APIs . 52

CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES
TABLES

1 INTRODUCTION.. 6
1.1 Research problem, research questions, and limitations. 8
1.2 Research method . 9

2 DATA MARKETPLACES . 12
2.1 Introduction to data marketplaces . 12
2.2 Categories of products and users on data marketplaces 15
2.3 Data marketplace structures . 18
2.4 Requirements of multilateral data marketplaces . 19
2.5 Data contracts . 20
2.6 Summary . 22

3 DATA-AS-A-SERVICE . 24
3.1 Introduction to Data-as-a-Service . 24
3.2 Properties and processing of data. 26

3.2.1 Data formats and their structures . 26
3.2.2 Properties of big data. 27
3.2.3 Stream Processing . 28

3.3 Summary .31

4 PROVENANCE . 33
4.1 Open Provenance Model and PROV . 35
4.2 Earlier PROV research and implementations .41
4.3 Summary . 42

5 A DATA MARKETPLACE METADATA MODEL . 43
5.1 Requirements, Objectives and Evaluation . 43

5.1.1 Objectives . 43
5.1.2 Evaluation and metrics . 44

5.2 Development of metadata model . 46
5.3 Demonstration . 49

5.3.1 Prototype architecture. 50
5.3.2 Data sources and the scenario .51
5.3.3 Executing the prototype . 55

5.4 Evaluation . 56
5.4.1 Evaluation environment . 57
5.4.2 Measurement: Output data volume . 57
5.4.3 Measurement: Latency . 57
5.4.4 Measurement: Simultaneous pipelines . 58
5.4.5 Measurement: Message rates . 59

5.5 Conclusion .61

4

6 DISCUSSION . 62

REFERENCES . 65

APPENDICES . 73
A Metadata model example extract . 74
B Data extracts from prototype . 76

B.1 Data . 76
B.2 Metadata . 77

1 INTRODUCTION

Data from different sources can have inter-dependencies that can be used to dis-
cover correlations and other surprising insights. Air pollution metrics require
combining data from traffic, weather conditions, and industrial emissions. Simi-
larly a restaurant recommendation algorithm would also need data from multiple
sources: restaurant locations, customer reviews and user preferences (Du, Huang,
Chen, Xie, Liang, Lv, and Ma 2016). However, an organization might not always
possess the required data assets or know-how to implement such algorithms
themselves. Data marketplaces address this issue by providing a platform where
organizations and individuals can trade data. Trading data can create synergetic
benefits for all participants that operate on the platform while also enabling new
innovative business models (Schomm, Stahl, and Vossen 2013; Muschalle, Stahl,
Löser, and Vossen 2012). Sharing data assets could also highly enhance analytical
capabilities of organizations (Arafati, Dagher, Fung, and Hung 2014). The more
varied and vast the data assets, the better chance there is to find interesting cor-
relations that could lead to creation of new value. To mention a few examples,
industrial IoT data from infrastructure companies could be used by a maintenance
company to better understand when and where to dispatch workers using pre-
dictive analytics. Car companies could share diagnostic data from vehicles to
accelerate development on self-driving cars. Finally, somewhat controversially,
advertising firms can combine data from multiple sources to create more accurate
advertising profiles on consumers.

There are multiple approaches to trading data between organizations. At
simplest, organizations could expose ports on their databases or simply transmit
the data for a single, non-generalizable purpose. Although such approach of
ad hoc data trading is viable for the most basic use cases, the approach becomes
unsustainable at scale. Additionally, such approach provides no solid method
of tracking the origin and provenance of data and other metadata related to it.
Data marketplaces provide a mechanism for trading data between organizations
allowing data to be be repurposed for new purposes with minimal use of manage-
ment and development resources. The difference between the two approaches is
visualized in Figure 1. When executed correctly, a data trading platform can lower
costs of data management (Arafati et al. 2014). By utilizing capabilities provided
by cloud computing, the platform can scale freely to save resources when there
is little load on the system, and scale up when there is higher demand. Similarly,
cloud services provide high-capacity storage as a service and application service
provisioning that further simplify the management of IT infrastructure (Stahl,
Schomm, Vossen, and Vomfell 2016). Furthermore, sharing a data marketplace
platform with other organizations reduces the need for other organizations to
redundantly create similar infrastructures.

Managing a data marketplace platform has multiple and diverse challenges
(Koutroumpis, Leiponen, and Thomas 2017). In this thesis, the focus is on pro-
viding a metadata model for hybrid data products. A metadata model provides

6

a

b

c

d

e

(a) Ad hoc data sharing

Platform

a

b

c

d

e

(b) Data sharing on a platform

Figure 1: Ad hoc data trading in comparison to trading facilitated by a centralized
platform. Nodes (e.g. a, b, c) represent organizations, and arrows represent
interactions

a data structure that contains information about the data itself. When multiple
data products are combined on a marketplace, a hybrid data product is created.
To track the provenance of data, metadata related to the original data sources must
somehow be included in the derivative data set.

The issues with tracking provenance of hybrid data products is highlighted
by Koutroumpis et al. (2017). In a situation where there are multiple data vendors
with multiple different licences, all derivative hybrid data products must comply
with the terms of every data product from which the hybrid data product consists
of. Assume a scenario with following data providers: Data provider A offers a
free and open data product, data provider B provides a proprietary data product
with contractual term that requires royalties from derivate data products, data
provider C provides hybrid data product that combines data from A and B, and
lastly data provider D provides a hybrid data product that uses data from C in
addition to D’s own proprietary data. Both C and D have to be sure that their
hybrid data products are compliant with the contractual terms of both A and B (In
addition to C in the case of D). Lastly, all data product sales from C and D require
part of the cost being transferred to B in the form of royalties.

There exists many concepts in literature that relate to the data marketplaces:
A Data marketplace is a platform where data can be sold, bought or traded
(Muschalle et al. 2012). A Data as a Service (DaaS) is a Cloud Computing service
that provides data. The data is most typically accessed via internet through a set
of endpoints that allow various types of operations on the data, such as querying
and filtering. A set of these endpoints form an Application Programming Interface
(API) that can be used by clients to build new types of services and applications,
including higher level platforms for trading data, such as data marketplaces (Vu,
Pham, Truong, Dustdar, and Asal 2012; Muschalle et al. 2012). Stream data is data
that arrives gradually, typically in the form of events, and is potentially infinite

7

(Kleppmann 2017). For instance, smart meters send the electricity usage readings
of customers daily or even hourly, forming a data stream for each customer. An
Event is a data record that contains the details of something that happened at
some point of time (Kleppmann 2017). An event could be a single reading from a
smart meter, an overheating warning from a power system, or even a notification
that lights have been flicked on in. Stream processing is an approach where data
is processed as it arrives with minimal latency, as opposed to gathering the data in
arbitrarily sized batches and processing them in bulk (Kleppmann 2017). Stream
processing enables reacting to data faster in comparison to batch methods, enabling
use cases that require low reaction times, such as fraud detection (Stonebraker,
Çetintemel, and Zdonik 2005). Metadata, at it’s most general form, is data about
data. As the definition is very broad, Deelman, Berriman, Chervenak, Corcho,
Groth, and Moreau (2010) defines metadata to be “structured data about an object
that supports functions associated with the designated object”. Provenance is a
record of events that can be used to determine the history of an object of interest
(Moreau, Clifford, Freire, Futrelle, Gil, Groth, Kwasnikowska, Miles, Missier,
Myers, Plale, Simmhan, Stephan, and den Bussche 2011).

1.1 Research problem, research questions, and limitations

The research problem was inspired by issues that were encountered in a certain
local company. Collaborating with other organizations and finding ways to share
and reuse data had an incentive problem: How to motivate other organizations
to share their data? This problem could largely be addressed with a platform
that provides a way for organizations to share data in exchange for monetary
compensation, or in other words, a data marketplace.

One specific use case of such data marketplace is the enrichment of informa-
tion with data from different sources. If organization A has a dataset that could
be combined with a dataset from organization B, how would a data marketplace
ensure that both organizations are fairly compensated when the data is bought?
Additionally, how would it work with industrial IoT devices that provide data in
the form of real-time streams, generating new data every second?

In order to fairly compensate all parties on a data marketplace, the origin
of the data and the conditions of use must be known. Solving provenance is an
open research problem in the field of data marketplaces (Koutroumpis et al. 2017).
The main research question of the thesis is: “How to track provenience of hybrid data
products on a multilateral data marketplace?”. The question lead into investigating the
concept of data marketplaces that are concerned with the business models and
organizational aspects of such platforms, the concept of Data as a Service which
provides perspective to technical and architectural concepts of data marketplaces,
and finally provenience that introduces the challenges and approaches to tracking
origin of data. Existing literature is used as a base for a metadata model that can
be used to track provenience of hybrid data products and other metadata relevant
to data marketplaces.

8

1.2 Research method

The thesis follows Design Science Research Model by Peffers, Tuunanen, Rothen-
berger, and Chatterjee (2007). The resulting artifact from the thesis is an instanti-
ation of the metadata model, which is evaluated using a prototype that demon-
strates the use of artifact in an example scenario. Using the definition by Peffers,
Rothenberger, Tuunanen, and Vaezi (2012), a prototype is an implementation of the
artifact that is used to demonstrate its utility using illustrative scenarios. Scenarios
are used to apply the artifact in synthetic or real world situations to demonstrate
its applicability.

DSRM is built around six steps where each of the steps have an output that is
used as an input for the next step. The flow of the research process is demonstrated
in Figure 2, while the specific DSRM steps are listed and described in order in the
following list (Peffers et al. 2007):

1. Problem identification and motivation: In the first DSRM step, the research
problem is defined and justified. Clearly defining the problem and the
concepts related to it helps digesting the complexity of the problem domain.
Justifying why the problem should be solved provides insight to the line of
reasoning of the researcher and provides motivation by communicating the
value of the solution. This is the focus of the chapter 1, as we introduce the
problem of data marketplaces and motivate how provenance might be able
to solve it.

2. Define the objectives for a solution: The problem definition is used to infer
objectives that can be used to measure the solution. These objectives can
be either qualitative or quantitative. Qualitative objectives are similar to
functional requirements found in engineering disciplines by describing how
the solution would address the problem through its functionality. Quantita-
tive objectives, on the other hand, reflect non-functional requirements that
measure specific metrics, such as speed or performance, and can be directly
benchmarked against other solutions. After describing the background the-
ory in chapter 2, chapter 3, and chapter 4, we introduce a concrete list of
objectives in the form of requirements at the beginning of chapter 5.

3. Design and development: Using the theory created in the previous step, the
artifact is created and the reproducible steps to recreate it are documented in
a manner that fits the type of the artifact. There are many possible artifact
types that can be created in the process. To mention a few, an artifact can
be a concrete instantiation, a model, a construct, or a method for doing
something. A software-based artifact, for instance, could include activities
of determining artifact’s functionality, forming an architecture, and lastly
creating an instantiation based on the architecture. In this thesis, we form our
own data model based on PROV and design the components that support its
function in the context of data marketplaces after defining the requirements
in chapter 5. The data model is described in section 5.2.

4. Demonstration: The artifact (How to knowledge) and its capability of solving
a problem is demonstrated with one or more applications that are applicable
to the nature of the artifact. Some of these include case studies, proofs,

9

simulations, and experiments. The data model created in this thesis is tested
using a prototype application, with the process being detailed in section 5.3.

5. Evaluation: Lastly, the performance and applicability of the artifact in solv-
ing the problem is evaluated using metrics, analysis and knowledge gained
from the demonstration. As with the earlier steps, the method of evaluation
that best fits the nature of artifact should be chosen. The results and insight
obtained during design, development and demonstration of the metadata
model are discussed in section 5.4.

Identify problem & Motivate

Define objectives of a solution

Design & Development

Demonstration

Evaluation

Communication

Inference

Theory

How to knowledge

Metrics, analysis & knowledge

Disciplinary knowledge

IterateIterate

Figure 2: DSRM Process Model by Peffers, Tuunanen, Rothenberger, and Chatter-
jee (2007).

Although the model appears linear, it provides flexibility by allowing the
research to enter the process from later steps, and giving an opportunity to iterate
to earlier steps when necessary. By allowing multiple entry points, DSRM can also
be applied to research where objectives have already been defined in some other
context (Objective-centered solution), or situations where an artifact already exists,
but is not used in specific problem context (Design and Development centered
approach), or lastly, when the research simply observes a practical solution and

10

how it works (Client/context initiated solution). In this thesis, however, we follow
DSRM from the very first step.

Iteration in the DSRM process can occur at evaluation and communication
steps if the nature of the research allows it. A researcher might, for instance, return
backwards in order to improve or build on the solution, or find an entirely different
approach that solves the problem. The new solution could be benchmarked against
the earlier solution to discover whether an improvement was made. Additionally,
some researchers might choose to pursue an iterative search process in the design
and development phase of the artifact. (Peffers et al. 2007)

11

2 DATA MARKETPLACES

Finding the appropriate data sources with the right types of data can sometimes
be challenging. Either the data is not available in the open, access to it is hidden
behind obscure interfaces, or it’s simply not in a usable form. In the early years of
the web, there were even professionals whose sole task was to search the Web for
the desired information and return the results to the client (Schomm et al. 2013).
As the technology evolved, so did the methods of information exchange. Websites
known as “mashups” that combine information sources from multiple sites became
popular, enabling users to combine prices for products from different stores, or
trip prices between different airlines (Zhu and Madnick 2009). Data marketplaces
take this a step further by making the data itself into a product and by providing
a way to trade this information on a single platform. These platforms typically
operate in the internet and can be structured in multiple different ways. (Schomm
et al. 2013)

In this chapter, we will investigate the concept of Data marketplaces from
organizational perspective. The literature used in this chapter was mostly discov-
ered with search engines (kirjasto.jyu.fi, scholar.google.com) using
relevant keywords (e.g. "Data marketplace(s)"). Additional sources were found by
following and investigating papers that had cited the literature discovered with
search engines.

2.1 Introduction to data marketplaces

To understand data marketplaces, it should first be understood what is meant
with the basic economical terms behind the concept of data marketplaces. Markets
are places where the interactions of buyers and sellers set prices and quantities
of goods and services. Marketplaces are concrete locations that facilitate markets:
Explicit places at an explicit time, where market participants can prepare and
execute transactions. By facilitating the interactions between market participants,
marketplaces provide the fundamental infrastructure for trading. (Stahl et al. 2016)

In general, the market serves three key functions: Firstly, the market serves
as an institution: A framework of rules that govern behavior for the participants at
the market. Institution assigns roles, expectations, and protocols for trading on
the medium. Second, markets provide a pricing mechanism for buyers and sellers,
the condition of exchange, which operates as an equalizer of supply and demand.
If the demand rises above supply, prices rise to compensate. Accordingly, a large
surplus with little demand would lead to prices decreasing. Finally, the market
defines the process of transactions.

According to Richter and Nohr (2002) (as cited by Schomm et al. (2013)),
transactions can be broken down to four distinct phases (visualized in Figure 3):
Information phase Market participant seeks information on the goods and create

an intention of exchange with bids and offers.

12

Negotiation phase Negotiate on the goods between buyer and seller. Set contract
terms and price for the good, which forms a contract

Transaction phase Fulfillment of contract, where the good is exchanged from
seller to buyer

After-sales phase After the contract has been fulfilled, the buyers satisfaction and
commitment can be enhanced from the side of seller with customer support.

Figure 3: Phases of a market transaction according to Schmid and Lindemann
(1998)

With marketplaces also appearing in the Web, Schmid and Lindemann (1998)
(as cited by Stahl et al. (2016)) defined the concept of electronic marketplaces
to be the an electronic medium that is based on the new digital communication
and transaction infrastructure. In comparison to traditional markets, electronic
markets have major advantages in terms of high accessibility, low entry barriers,
ubiquity, and lower transaction costs. However, ubiquity can also complicate the
effort needed to maintain an electronic market as rules, legislation and language
might vary between different areas of operation. (Stahl et al. 2016)

For a market to be considered at least partially electronic, at least one phase
needs to be done electronically. Some researchers also consider an electronically
performed information phase to be the absolute minimum for an electronic mar-
ketplace as it enables participation to the market without the conventional limits
of location and time. (Schomm et al. 2013)

Data marketplaces extend on the concept of electronic marketplaces by pro-
viding a marketplace where the commodity is data. At the most general level, the
three main categories of data marketplace users are data consumers (buyers) who
use the data to their needs, data providers (sellers) who give an access to data,
and data marketplace owners who own the infrastructure on which the trading
occurs (Muschalle et al. 2012). Data marketplaces provide a method of accessing
variety of information through a single platform that makes it easier for partici-
pants trade data. To access the data, data marketplaces must have infrastructure to
enable the browsing, uploading, and downloading the data while also facilitating
transactions (i.e. buying and selling) between the participants of the platform. The

13

origin of the data must also be tracked: It must be clear from where the data is
public or property of a member who is exchanging data on the platform. (Stahl
et al. 2016)

Data is an abstract digitized good which makes estimating it’s value difficult.
One way to approach the problem of how to valuate data is through commoditiza-
tion, a process of product standardization. The level of commoditization dictates
how much a product diverges from other similar products. In the case of data,
a highly commoditized data would be in a standardized format and it could be
used with the same tools and applications as similar data from an alternative data
provider. Machine-readability of data is one of the main indicators of commoditi-
zation. Uncommoditized data, however, would be highly different from other data
sets without a specific standardized way to access it. The more commoditized the
data product is, the more perfect the market will be in terms of competition and
freedom. There are cases where uncommditized data might be a more appropriate
choice as perfect markets might not be the goal for those services: Wikipedia is
an example of an uncommoditized data market where data is shared for altru-
istic purposes so that everyone can benefit from it. The sharing and browsing
of data occurs through the browser, but is not easily read by machine due to its
unstructured form. (Stahl, Schomm, Vomfell, and Vossen 2015)

Data products on the data marketplace are sold by data providers. In order
to fulfill the definition of a data provider, at least one of the four prerequisites that
must be true Stahl et al. (2015):

• The primary business model of the provider must be providing data.
• Provider owns or makes a platform available for others where data can be

browsed, uploaded or downloaded in a machine-readable format. The data
on the platform must be hosted by the provider and the origin of data must
be detailed.

• Provider offers or sells proprietary data hosted by themselves. Similar to
previous item, the origin of data must be traceable and transparent. In
addition, data that has been processed must include the original sources and
details on the method for achieving the result.

• Providers who offer data processing services in the form of data analysis
tools must be web-based and provide storable data as their main offering.
Furthermore, government agencies and providers who host their data for

free are typically excluded from this definition. This is due to them offering the
data as a side effect of their other operations, and they are typically not interested
commoditizing data or finding new business models to transform their data into
a business. One example of this is the Open Government movement that seeks
to provide access to data from governments to increase transparency and citizen
participation. (Stahl et al. 2015)

Pricing on the data marketplaces varies largely based on the overall market
situation (Muschalle et al. 2012). According to the survey by Muschalle et al. (2012),
there exists multiple different types of pricing models that tie into the business
model of the data provider. Usage based pricing model is used to put a price
for each unit (be at data, bandwidth, or time) that the customer uses. This might
include pricing the data by the amount of times that the customer queries the
data service, or time and effort that it takes for data provider to produce the data

14

customer desires. Pricing per usage does, however, has a weakness of losing its
attractiveness as the marginal costs to produce the data approaches zero – at the
time of the research there didn’t exist a single data provider who would offer
pure per-usage pricing with queries. Package pricing is used to provide fixed
amount of service for a single payment. This might limit the usage of data in a
certain time window (e.g. 1000 queries in a day) or have some other restrictions
for the usage of data. Package pricing is a popular choice and is being offered by
many data providers. Flat fee tariffs are used to give a full access to the offering
for a specified amount of time. Although the pricing model is simple and gives
guarantees of continued income for the provider, the pricing model is not very
flexible from the perspective of consumer as it requires planning into future. To
address the concerns of consumers, the provider might offer more flexible short-
term contracts. Two-part tariffs extend on the previous model: In addition to
the fixed fee, the consumers also pay a per-use fee for each consumed unit. The
pricing model can, for example, be used from the side of the provider in a way
that the fixed part covers the running costs, while the per-use prices bring in the
profit. Some software licensing models also use the model: consumers might pay a
fixed fee for the base product, and an additional fee based on the amount of users
that use the product. Freemium model provides two-tier service the consumers
by offering the basic service for free, and adding a price to premium features such
as data integration. The pricing model of premium features may be any of the
formerly mentioned models. Lastly, one of the pricing approaches is also not
asking a price at all. Data can be given for free, but providers often use it as a way
to attract customer towards their other offerings that do have a price.

Aside from the pricing models discovered in the survey by Muschalle et
al. (2012), there also exists alternative pricing models in literature. Koutris, Upad-
hyaya, Balazinska, Howe, and Suciu (2015) presents a framework for query-based
pricing that can be used to automatically assign a price to more complex and
custom ad-hoc queries, allowing data providers to extend their offering beyond
a limited set of views on the data. Tang, Wu, Bao, Bressan, and Valduriez (2013)
created a generic pricing model that builds on the ideas of Koutris et al. (2015) and
assigns a value to each tuple (or a row) on the database, with each query priced
based on the set of results included in the query. In addition, another paper by
Tang, Amarilli, Senellart, and Bressan (2014) details an algorithm based on the
idea of setting the price based on the completeness of the requested data – the
consumer would pay less if they asked for a limited sample of the whole query.

2.2 Categories of products and users on data marketplaces

Currently existing data marketplaces provide a base for investigating the taxon-
omy of data products and data users. Surveys done by Muschalle et al. (2012),
Schomm et al. (2013), Stahl, Schomm, and Vossen (2014), and Stahl et al. (2015)
investigated the various data markets and formed categorizations based on the
findings. The first category is the types of data offerings that data providers
provide, listed in Table 1. The data offerings are not mutually exclusive allow-

15

ing a single provider to have multiple offerings from different categories of data
products.

Table 1: Different data offerings according to Schomm, Stahl, and Vossen (2013)

Data product Description
Web crawler Web crawlers are services that seek and gather data from

websites automatically based on pre-specified rules. Web
crawlers have two categories: Focused crawlers that are typ-
ically bound to one specific area of domain (e.g. blogs or
social media) and customizable crawlers that can be config-
ured by the customer to gather data from any arbitrary web
source.

Search engine Search engines are services that provide an interface simi-
lar to web search engines such as Google. Search engines
query the data sources they are attached to based on a set of
keywords that are given by the customer.

Raw data Raw data is data in an unprocessed form typically in the
format of lists or tables.

Complex data Complex data is data that has been processed or refined in
some manner.

Data matching Data matching is a service for correcting or verifying data
that the customer already has. Instead of providing complete
data sets, data matching can be used to cross-reference data
of the customer to their internal data set to discover any dis-
crepancies. One example use case could be checking validity
of customer shipping addresses by comparing it to various
address databases.

Data enrich-
ment

Data enrichment provides different methods for increasing
the value of data itself by altering it (e.g. adding additional
information to the data). Data enrichment has three subcate-
gories: Firstly, data tagging adds additional information to
the input data in the form of tags, which is typically used to
find details about unstructured text data. Second, sentiment
analysis can be used to get data on how people feel about
products, services and other matters of interests to the cus-
tomer of sentiment analysis provider. Lastly, data analysis
can be used investigate and enrich input data with insights
like future trends and forecasts.

Data market-
place

Data marketplaces are also considered a data offering as they
facilitate a service where customers can buy, sell and trade
data.

Similarly, there exists multiple different users for the data products listed in
Table 1. Some of the users are more technical, using the platforms programmati-
cally through APIs, while others abstract the details behind user interfaces and use

16

data products in order to discover insights that interest them. In a set of interviews
over organizations that use data markets, Muschalle et al. (2012) discovered seven
different groups of data marketplace users. These users are listed in Table 2.

Table 2: Different users of data marketplaces according to Muschalle et al. (2012)

Data user Description
Analysts Analysts try to discover trends and insights from data. This

leads them to utilize multiple sources of data ranging from
public data sets on the web, search engines for discovery,
private internal data from enterprises, and data acquired from
other services such as data markets. As analysts seek insight
by combining data with exploratory techniques, they also
create a demand for data relevant to their needs. Members
of this group include business analysts, marketing managers,
sales executives, and other roles that benefit from analytical
techniques.

Application ven-
dors

Application vendors develop applications that make the use
of data from data markets easier based on the requirements
from analysts. Applications might provide easy-to-use in-
terfaces that lower the barrier of access and allow a broader
group of users to take advantage of data from a data mar-
ket. Alternatively, they might simply provide procedures to
query and aggregate data so that it can be used elsewhere.
Some example applications include business analytics appli-
cations, customer relationship management applications, and
enterprise resource planning systems.

Developers of
data associated
algorithms

To get the data in a form that is usable by analysts and appli-
cation vendors, it might have to be transformed or otherwise
processed into a desired format. Developers of data associ-
ated algorithms create pipelines for various tasks, such as
data mining, cleaning, matching, and other purposes. These
pipelines could also be integrated to the data marketplace as
custom functionality that could be bought similarly to the
data on the platform.

Data providers Data providers store, sell and advertise data. In addition,
some data providers might also have data integration offer-
ings similar to the developers of data associated algorithms.
There exists commercial and non-commercial providers: Non-
commercial providers range from web search engines such
as Google and Bing, to free-to-access web archives. Commer-
cial providers include companies like Reuters and Bloomberg
who sell financial and geographical data.

Consultants Consultants act as support for organizations that require as-
sistance with tasks related to the selection, integration, and
evaluation of data for analysts and product development.

17

Licensing and
certification
entities

Licensing and certification entities are sometimes used by
the data providers to ensure that data sets, applications and
algorithms on the platform are appropriately licensed, or
conform to a certain certification. This is also used to assist
the customer in choosing data related products.

Owner of the
data market-
place

The entity that owns the market. Owner of the data market
is responsible for the technical, ethical, legal, and economical
challenges that rise from the users of the platform, technical
details of the platform, and legal aspects for areas on which
the platform operates on.

2.3 Data marketplace structures

The structure of marketplaces affects how people interact on the platform. In
this thesis, we describe the overall market structures based on the findings of
Muschalle et al. (2012), and a later classification for more specific marketplaces
that was founded on electronic marketplace research by Stahl et al. (2016).

Muschalle et al. (2012) divides the market into three categories: Monopolies,
oligopolies and strong competition. Monopolies in data markets imply situations
where a data provider has no competition. As there exists no alternative data
products, the provider can set prices freely to maximize their profits. This allows
the provider to do selective pricing, otherwise known as price discrimination, to
set different prices for different types of customers to optimize profits earned
from each customer. Oligopolies are the next step from monopolies. When one or
more competitors exist, monopolistic pricing no longer works as the customers
would simply move to the competitors offerings. In a competition for market
share, providers might adjust pricing competitively (“races to the bottom”) or try
to compromise with each other to improve profits. A strong level of competition
will shift the market towards the ideal of perfect markets as prices of offerings
will approach their marginal cost. Transparency between competing providers
is improved as consumers of data will want to compare offerings between the
different available providers. Providers themselves will no longer have the market-
power to set prices (as nobody would buy their product) and must abide by the
trends set by the market. However, this market situation carries risks for the data
provider: Even if the gross margins from trading data would be profitable, the
overall costs of the provider might not be covered by margins that are too thin.
To counter this, a provider would have to either add unique value propositions
to their products to stand out from competition and justify larger margins, or
alternative cut overall costs to avoid loss of profits.

Stahl et al. (2016) created a classification framework for data marketplaces
that identifies six data marketplace Business Models on the scale of orientation.
The classification is used to indicate how freely users of the marketplace are
allowed to trade with each other on the platform; market-oriented structures
allow greater freedom of interaction, while hierarchical structures restrict users of
the platform to predefined interactions. In addition, Stahl et al. (2016) identified
three ownership structures that can affect the neutrality of the platform: Privately

18

owned, consortia-based, and independent. Private and consortia-based platforms
might have vested interests on the platform that can lead to bias towards the
owners themselves. Independent platforms, however, are run without connections
to providers or consumers which leads to a more even market situation.

The Figure 4 illustrates potential ways to structure a data marketplace based
on the ownership model. Starting from the hierarchical private ownership model,
the structures in this category are highly restrictive one-to-many or many-to-one
relations, limiting the interactions to either procuring or selling data between third
parties and the data provider (or the data buyer) who also owns the platform.
Consortium-based marketplaces, however, offer more freedom internally with
many-to-many relations between both the owner-providers of the platform and
the third parties. Even so, consortium-based platforms are typically collaborative
efforts by multiple companies and are typically closed by nature and inaccessible
by the public. Stahl et al. (2016) also describes many-to-many platforms where
the owners participate by trading and selling their own data to be in the same
category as consortia-based marketplaces. Although such a marketplace would
not be a consortia-based, it would still behave like one due to the bias towards
the owners. Finally, the independent data marketplaces operate closer to the
principles of free markets by having little to no restrictions for entry and simply
acting as a mediators between the consumers and providers. It should be noted
that, according to Stahl et al. (2016), there exists little empirical research on data
marketplaces aside from few surveys. However, the model provides a base for
observing new marketplaces that emerge from new applications made possible by
technologies such as cloud computing.

Figure 4: Hierarchy of marketplace structures (Stahl, Schomm, Vossen, and Vomfell
2016)

2.4 Requirements of multilateral data marketplaces

The requirements of data marketplaces can be summarized with findings of
Koutroumpis et al. (2017). As the focus of the thesis is on multilateral marketplaces,

19

we will not discuss requirements for other categories of data marketplaces. For
the general structure of the marketplace Koutroumpis et al. (2017) identified five
key requirements.

1. "Thickness" or the liquidity of market indicates the number of participants on
the data marketplace – or a strong enough networking effect – to ensure that
there is enough diversity in the offerings and channels of trade. Without
a sufficient amount of market participants, the market is unable to reach a
critical mass that is required for it to grow in a meaningful manner.

2. Performance and efficiency are required to ensure small enough latencies in
fulfilling transactions, and to provide enough througput so that the transac-
tions will not slow down as the amount of participants rises. Technological
choices and implementation details of the platform are used to address this
requirement. Some approaches to performance and efficiency are discussed
in chapter 3.

3. Perception of safeness affects the degree of trust between market participants.
The marketplace should have controls to provide sufficient deterrence for
bad actors. Without necessary measures, it might be possible to manipulate
the market or otherwise take an advantage over other participants in ways
that reduces trust on the marketplace.

4. Provenance of information should be provided by the data marketplace. The
origin, quality and other attributes of data should be made available to
the buyer in order to prevent information asymmetry where the seller of
data will know the details and quality of the data better than the buyer.
Provenance is investigated with more detail in chapter 4.

5. Conforming to social and legal restrictions affects the attraction of the data
marketplace from the perspective of the market participants. Trading infor-
mation with privacy implications, for instance, is a conflicting topic that has
many societal and regulative barriers.
The general requirements are fundamental for a data marketplace to stay

healthy and maintain growth. To facilitate the transactions on the platform itself,
the data marketplace must provide the two functional capabilities. Firstly, a data
marketplace must be capable of matching buyers with sellers, requiring either a
manual mechanism that allows browsing, buying or selling data on-demand, or
alternatively an algorithmic matching mechanism that will automatically connect
sellers with buyers. Optionally, a functionality of excludability can be used to
prevent undesirable trades. Second, a data marketplace must be able to support
provenance with metadata in order to protect data and enable data providers to
control their data assets while still allowing for innovative reuses of data.

2.5 Data contracts

One method of supporting the instititution of a data marketplace is through
data contracts, providing a framework for marketplace rules and pricing with
metadata. Data contracts are a type of service contracts that provide information
and guarantees on the nature of the data. The concept is otherwise known as data
agreements, and the terms are used interchangeably (H. L. Truong, Dustdar, Gotze,

20

Fleuren, Muller, Tbahriti, Mrissa, and Ghedira 2011). Current research on data
contracts is scarce (Koutroumpis et al. 2017) with the exception of H. L. Truong
and Dustdar (2009) applying the concept of data contracts in the context of data
marketplaces, and then following it with research on different models of data
contracts (H. L. Truong et al. 2011; H.-L. Truong, Comerio, Paoli, Gangadharan,
and Dustdar 2012). Currently most of the data marketplaces use human-readable
data agreements that have limitations in terms of automation and usage in hybrid
data products, to which data contracts provide an alternative solution (H. L.
Truong et al. 2011).

H.-L. Truong et al. (2012) analyzed properties that are relevant for data
contracts in data marketplaces, leading to the formulation of five data contract
terms.

• Data rights declares the rights that the data provider grants to the consumer
of that specific data. This includes the rights of Derivation – allowing mod-
ifications to the data asset that lead to a creation of a “derivative work”,
Collection – permitting the consumer of data to include the specific data set as
a part of a collection of independent data sets, Reproduction – giving a right
to create temporary or permanent reproductions of the data set, Attribution –
how the original provider of data set is attributed for the use of data, and
finally Noncommercial use – whether the right to use data in non-commercial
or commercial use is either denied or allowed.

• Quality of data metrics may be included in the contract, including specifi-
cations such as completeness, reliability, accuracy, consistency and inter-
pretability. The metrics should be based on common agreements that are
established on the specific domain of the data set.

• Regulatory compliance provides a list of regulations with a set of specifications
that describes how the data complies specific regulations. As an example,
handling personally identifiable information necessitates strict security mea-
sures due to compliance regulations.

• Pricing model defines the method of pricing and the cost that the user of data
must pay to the data provider.

• Control and relationship provides information on contractual obligations, such
as warranty, indemnity, liability, and jurisdiction.
These concepts were materialized in a data contract metadata model pre-

sented in Table 3.

21

Table 3: Data contract terms and values in the metadata model by H.-L. Truong,
Comerio, Paoli, Gangadharan, and Dustdar 2012

Category Term representation Examples

Data rights termName={val1, val2, . . . ,
valn}

termName={Derivation,
Collection, Reproduction,
Attribution,
Noncommercialuse},
vali={Undefined, Null,
Allowed, Required, True,
False}

Quality of
Data

val1 ≤ termName ≤ valu vall, valu ∈ [0,1]

termName={Accuracy,
Completeness,
Uptodateness}

Regulatory
compliance

termName={val1, val2, . . . ,
valn}

e.g. termName={PrivacyCompliance}
termValue={Sarbanes-Oxley
(SOX) Act}

Pricing model termName=(cost=val1,
usagetime=tal2,
maximumusage=tal3

e.g. termName={MonthlyPayment},
val1 ∈ IR (e.g. cost=50C),
val2={(endt - startt) or UNLIMITED}
where startt, endt ∈ datetime

Control & Re-
lationship

termName=val Any key/value string e.g.
termName={Liability,
LawandJurisdiction},
val={US, Austria}

2.6 Summary

In this chapter we introduced the basics of markets. A market provide rules, roles,
protocols and pricing mechanisms for market transactions (Stahl et al. 2016). A
market transaction has four phases: First the user of the market seeks information
on the goods, second the price is negotiated between the buyer and seller, third the
transaction is fulfilled and the good is transferred from seller to buyer, and fourth
customer support might be provided by the seller after the transaction. (Schomm
et al. 2013)

Data marketplaces are electronic marketplaces that operate in the Web, pro-
viding infrastructure for trading, browsing, uploading and downloading data
(Stahl et al. 2016). Data is an intangible digitized good that makes estimating its
value challenging. However, the level of commodization, or the machine readabil-
ity of the data can help determining its value. Data products on data marketplaces

22

can be priced in multiple different ways, including usage based pricing, package
pricing, flat fee tariffs, two-part tariffs, and freemium models.

A data marketplace has three general categories of users: Data consumers,
data providers, and data marketplace owners (Muschalle et al. 2012). Data providers
may have multiple different data product offerings (listed in Table 1) and data
marketplaces have multiple different subcategories of users (seen in Table 2).

Data marketplaces can be structured in different ways, affecting the way in
which users of the data marketplace can interact with each other. The structure
of the data marketplace depends on the business model of the data marketplace.
Hierarchical data marketplaces have more strictly defined interactions, while
market-oriented data marketplaces place little to no restrictions for user interac-
tions. (Stahl et al. 2016)

The most general requirements for a successful multilateral data marketplace
are market liquidity, performance and efficiency, perception of safeness, provenance of
information, and conforming to social and legal restrictions (Koutroumpis et al. 2017).
The requirement of performance and efficiency is investigated through data-as-a-
Service concepts in chapter 3 and provenance of information is further discussed
in chapter 4. Lastly, data contracts provide a framework for data marketplaces that
can be used to provide relevant information and guarantees about data products.
H.-L. Truong et al. (2012) identified five necessary data contract terms for data
marketplaces: Data rights, quality of data, regulatory compliance, pricing model, and
control and relationship.

23

3 Data-as-a-Service

Data marketplaces provide platforms to trade data, but how is the trading facili-
tated via internet? This chapter describes what Data-as-a-Service is and how it fits
into the current taxonomy of “x-as-a-service” landscape originating from Cloud
Computing. In order to understand the data that can move within DaaS platforms,
the chapter investigates data formats and the concepts of big data, providing
insight on the challenges of data processing on DaaS platforms. In addition to
using academic literature found from search engines using relevant keywords,
technical literature was used to support some concepts. As much of the technical
literature is not freely available, the technical sources were chosen simply based
on their available to the author.

3.1 Introduction to Data-as-a-Service

With the introduction of Cloud Computing, abbreviations such as SaaS (Software-
as-a-Service), PaaS (Platform-as-a-Service), and IaaS (Infrastructure-as-a-Service)
have become well known. Cloud computing moves storage and computation to
large data centers with leased services where economies of scale increase efficiency
over typical on-premise servers. Service-oriented strategies have a longer history
in manufacturing industry, where the approach of finding competitive advantage
through service-oriented strategies is known as “servitization”. An example
of this is provided by Opresnik and Taisch (2015): Hilti International, a drill
manufacturing company, created a new product that soon faced competition from
another company with a similar product at a lower price. To create a competitive
advantage, Hilti International transformed its drill into a service with a “per
hole” pricing model. Service-oriented models enable a more economical approach
to computing: Services can be scaled up or down depending on the level of
workload, and instead of clients doing all the processing separately, services can
reduce redundant processing by serving precomputed data to clients or move
some computations entirely to the cloud (Dikaiakos, Katsaros, Mehra, Pallis, and
Vakali 2009).

Online data marketplaces are DaaS platforms. A DaaS platform can facilitate
trading of data through a set of endpoints that communicate via internet. However,
not all DaaS are necessarily data marketplaces, as some of them might not have
all the prerequisites to be called a data market. For instance, Stahl et al. (2016)
suggests that in addition to providing data from machine-readable endpoints,
the service provider’s primary business model also needs to be centered around
providing data and data-related services to be classified a data marketplace.

DaaS platforms seeks to alleviate challenges that come from using data
from multiple sources. Different data sources may use different formats, which
requires additional engineering effort to integrate together. Standard formats and
interfaces are a requirement for enabling economies of scale as they reduce costs
of integration for all users of the service (Assunção, Calheiros, Bianchi, Netto,

24

and Buyya 2015). DaaS platforms solve this by providing a generic API that
can be used for multiple independent data sources for common operations (i.e.
searching, downloading, uploading and updating), or through a specialized API
that operates over the otherwise fragmented data sources (Vu et al. 2012).

There exists various types of DaaS platforms, which tend to differ due to the
use cases and requirements of the service. One way to categorize DaaS platforms is
the amount of data assets provided on the platform, and the relations between the
assets. Based on this categorization, Vu et al. (2012) have observed three abstract
types of services:
Generic A generic DaaS platform contains multiple independent data sets that

have own APIs and properties. DaaS platforms are centered around data
assets and APIs to access them, either using a generic or data asset specific
API. Some examples of these include Amazon Data Sets and Microsoft Azure
data marketplace.

Specialized Specialized DaaS platforms are either centered around a single, or a
limited amount of data assets. The API describes the DaaS platform and its
services as a whole, and many operations that can be performed through the
API work on the data assets collectively. Additionally, some specialized data
assets can be manipulated through their API. A DaaS framework proposed
in research such as Active CTDaaS: A Data Service Framework Based on
Transparent IoD in City Traffic (Du et al. 2016) could be considered an
example of a specialized DaaS, although without the capability of modifying
the internal structure due to the immutable form of data.

Hybrid A hybrid DaaS platform is an in-between model between Generic and
Specialized DaaS approaches where an otherwise generic DaaS platform
is used to provide access to data from a Specialized DaaS platform. The
data from a Hybrid DaaS could be retrieved using either using a generic
API provided by the DaaS platform or the API provided by the underlying
Specialized DaaS platform.
The requirements set to DaaS platforms are closely related to requirements

set to big data systems. Yin and Kaynak (2015) provides an example of a manu-
facturing company that gathers sensor data from their machines: A single device
alone generates 5000 data samples every 33ms which results in 150 000 samples
in a minute, or total of four trillion samples per year. If the company would, for
example, want to sell the data from their machines to a maintenance company, the
DaaS platform used to facilitate the exchange of data would have to be capable of
fulfilling the same requirements as those in Big Data systems.

Building a functional DaaS platform requires use of various technologies.
According to Chen, Kreulen, Campbell, and Abrams (2011), there are four cate-
gories of technologies that must sufficiently be covered for a DaaS platform to be
successful:
Data Modeling tools A DaaS platform will handle data in multiple formats and

schemas, which can make it difficult for users to understand and make use
of the data. Data Modeling tools allow the data to be modeled and presented
consistently, allowing users of the DaaS take advantage of various data
sources more efficiently.

25

Common query language and API A DaaS will be accessed by a variety of users,
devices, and applications. For this reason, a single unified API and query
language is essential: Firstly, it makes the cost of creating and updating
applications that connect to DaaS as low as possible. Second, it separates
the internal complexity of the platform away from the users. And third, the
concern of generating low-level queries is moved to the DaaS itself, allowing
queries to be automatically optimized.

Massive scale data management The scale of data handled by DaaS should be as-
sumed to be massive, requiring massive scale data management. To mention
a few examples, issues of scale can be managed with replication of server
nodes in order to respond to varying load, partitioning between geographi-
cal areas, and by ensuring backups and successful restoration of databases
in case of errors.

Data cleansing and processing technologies As DaaS typically provide a com-
mon API and query language, it must also have methods of ensuring that
the data from a variety of different sources conforms to a similar schema.
A range of data cleansing and processing services is therefore required to
convert data to the desired schema.

3.2 Properties and processing of data

A DaaS platform must be able to process data with different properties (Chen
et al. 2011). In this section, we look at attributes of data, and the constraints
placed on handling data as the amount of data grows towards the scale of big
data – high-volume, high-velocity and high-variety data that requires innovative
approaches to use it properly (Kleppmann 2017).

3.2.1 Data formats and their structures

For data to be readable by computers, it has to conform to some type of schema
while preferably staying readable to humans as well. There exists multiple data
formats that can be used to transfer and store data on web. The more structured
the data structure is, the easier it is to process using automated tools. Assunção
et al. (2015) define the following four categories of structuredness of data:
Structured Data that is modeled and follows a certain schema. Easier for com-

puters to process, but not necessarily readable by humans. Li, Ooi, Feng,
Wang, and Zhou (2008) mention relational databases as a prime example of
a structured data source.

Unstructured Data that has no specified schema or structure (e.g. natural lan-
guage, video audio etc.). Text documents are a good example of this: Easily
read by humans, but a challenge for computers to correctly understand.

Semi-structured Data that might have some structure, but lacks strict guarantees.
As an example, many XML- and JSON-documents belong into this category.
(Li et al. 2008; Gandomi and Haider 2015).

Mixed A combination of multiple categories of structuredness. For instance, a
data format could include both structured fields (e.g. time, location), but

26

also unstructured data fields (e.g. “description” field writted in natural
language).
The two most commonly used data formats are JSON (Javascript Object

Notation) and XML (Extensible Markup Language). Both of the formats can
contain data in either semi-structured or mixed manner (Kleppmann 2017). In this
thesis, the scope will be limited to only briefly introducing the JSON notation.

JSON is a flexible data format, providing support for encoding both key-
value objects and lists. Figure 5 shows a structure of a simple JSON document.
Key-value objects are surrounded with curly braces and can contain an arbitrary
number of key-value pairs. List structures, on the other hand, are indicated with
brackets. All text strings are to be surrounded with quotation marks, but numerical
values do not have a similar requirement. (Kleppmann 2017)

1 {
2 "name": "Elli Esimerkki",
3 "address": "Katuosoite 123",
4 "age": 52,
5 "children": [
6 {
7 "name": "Erkki Esimerkki"
8 },
9 {

10 "name": "Emma Esimerkki"
11 }
12]
13 }

Figure 5: Example of a JSON document

The key-value property of JSON allow nesting of data in a tree-like structure.
For instance, in the example Figure 5, children could have additional children of
their own with each of them having their unique details and attributes. The depth
of nested data is only limited by the capability and performance of the software
reading the JSON document. (Kleppmann 2017)

3.2.2 Properties of big data

With the production and storage of increasing amount of data, the key competitive
advantage for many organizations can now be derived from the capability of
managing and finding insights from those otherwise overwhelmingly large and
complex pools of data. Sensors, finance, accounting and user activity are some
of the most major sources of this data, and contribute to the phenomenon also
known as “data deluge” (Yin et al. 2015), a downpour of data capable of drowning
IT infrastructure that is not properly prepared for it. Similarly, any service that acts
as an intermediary for such data at a similar scale has to respond to constraints set
by big data.

In this thesis, we will use the definition of big data by Assunção et al. (2015)
However, it should be noted that there is not a single universal metric that can be

27

used to determine whether a certain data set falls into the dimensions of big data
as it depends on the size, industry, and location of the organization, and how the
definition of big data changes over time (Gandomi et al. 2015). According to some
definitions, even exceptionally large, but otherwise mundane files (e.g. a 40MB
PowerPoint presentation) could be considered to be big data (Zaslavsky, Perera,
and Georgakopoulos 2013).
Variety The amount of different types of data. A large variety of data formats

translates into more complex requirements for software used to process the
data, as logic for handling different formats must be included (Yin et al. 2015).

Velocity The rate in which the data arrives and is processed, often varying de-
pending on the data source, processing, and network capabilities of the big
data systems (Assunção et al. 2015). Processing capability is required in
order to transform data into another format or otherwise refine it to some
other form, while network limits the total bandwidth that can be used for
transferring the raw data (Yin et al. 2015). The highest velocity is real-time
where a stream of data is received, processed and pushed forward with
minimal delays. A step below this is near time, which is similar to real-time,
but with minor delays. Lastly, batches process the data in large chunks,
which leads to a noticeable delay. (Assunção et al. 2015)

Volume The total size of data. The larger the data, the more there is overhead in
moving data from place to place. This introduces the performance benefits
of data locality. With larger data sets it might be preferable to process the data
as close as possible to the data source in terms of network distance. This
maintains the ratio between the time it takes to transfer data, and the time it
takes to process the data.

Veracity How well the data can be trusted. As an example, data on subjective
opinions of people might not objectively correct (e.g. customer reviews,
feedback), but still provide valuable information (Gandomi et al. 2015). In
the context of DaaS and data markets, veracity indicates the trustworthiness
of specific data sources.

Value The value of data in comparison to its volume (“value density”). big data
typically has low value density, but has the capability of being transformed
to high value with enough volume (Gandomi et al. 2015). However, the
metric of value also depends on the organization’s capability of finding
value from data (Assunção et al. 2015).

3.2.3 Stream Processing

Stream processing is an approach where data is processed instantly as it arrives
(Figure 7) as opposed to batch processing where data is processed in chunks or
intervals (Figure 6). Traditionally, gathering and processing data from multiple
different sources has been facilitated using ETL (Extract, Transform, Load) tools
that move data to data warehouses in a batch-type fashion. Stream processing
systems provide an alternative to the traditional model (Kleppmann 2017).

In many real-world applications, such as financial transactions and IoT
devices, data is created in continuous streams of events. An event represents
a single, self-contained object that contains details about something that has

28

Figure 6: Batch processing (Allen, Jankowski, and Pathirana 2015)

happened at some point of time (Kleppmann 2017). Although such data could also
be processed in batches, in some cases it would be more appropriate to process
it without delays. Stream processing addresses some drawbacks of processing
analytics in batches: When using batches, the data is never processed real-time,
which affects the timeliness of the discovered insights. This becomes a problem
with “perishable” data: The longer it takes to analyze data points, the less value
they provide (Flannagan 2016). Furthermore, stream processing can be used to
solve issues of scalability: Handling data at scale for systems such as airline ticket
booking or retail systems is difficult because they rely on multiple different and
distributed systems that might end up in conflicting states. Stream processing
can be used to solve some of the problems as the abstraction of events provides
capabilities for resolving those conflicts. (Friedman and Tzoumas 2016).

Figure 7: Stream processing (Allen, Jankowski, and Pathirana 2015)

Ideas behind stream processing are partially related to an earlier technology
called Complex Event Processing (CEP) Narkhede, Shapira, and Palino (2017).
CEP was developed in the 1990s for analyzing streams with certain patterns that
were defined with query languages such as SQL. Unlike traditional databases that
would respond with a one-time response, the queries would define channels with
potentially infinite events. Although the concepts are similar to each other, the
main difference is found from the analytics part of stream processing: Instead of
discovering specific event chains, stream processing is more focused in statistics
and averages. However, features such as defining streams with SQL are being
adapted by modern stream processing frameworks. Some of those stream pro-
cessing frameworks include Apache Samza that introduced SamzaSQL in 2016
(Pathirage, Hyde, Pan, and Plale 2016), Apache Kafka that released their preview

29

of KSQL in 2017 (Akidau, Chernyak, and Lax 2018), and Apache Flink that features
a CEP library as a part of the framework (Friedman et al. 2016). (Kleppmann 2017)

There are three possible ways to use stream data sources: Firstly, The stream
can be written into different types of storages (e.g. databases, caches) where it can
be used as the application state. This can involve updating a traditional database,
or taking an advantage of a technique called event sourcing that provides an
alternative for storing state. In a banking application, for instance, the state could
include user accounts, balances and transfers. With event sourcing, however, that
same state could also be contained as a series of events that could be used to form
the state itself on demand. Using the same banking example, a balance of a bank
account could be kept as a single column of data in a database that is updated at
each transaction. Alternatively, the balance could be calculated every time on the
fly by summing together all the events where money is transferred to an account
and negating the sum of transactions where money was moved away from the
account. Another approach is taking an advantage of both databases and event
sources: A database can be used to reflect the current state while also retaining
the log of events for other purposes. Second, the events of stream data can be sent
directly to users in form of real-time dashboard or notifications. And third, the
input stream can be transformed with other streams to form new kinds of output
streams; an approach that can also be applied to data marketplaces and hybrid
data products. (Friedman et al. 2016; Kleppmann 2017)

According to Stonebraker et al. (2005), there are eight rules that stream
processing systems must follow:
Keep the Data Moving The system must be able to handle message processing

with minimal latency. This means avoiding bottlenecks in the processing
path (e.g. costly storage operations). The messages should be processed "on
the fly" as they arrive.

Query using SQL on Streams It’s desirable to process real-time data using a high-
level language like SQL instead of relying on lower application programming
languages (such as Java and C++) as it results in shorter development cycles
and lower maintenance costs. As SQL is primarily intended for use with
relational databases, it needs additional features to fulfill needs of stream
processing systems.

Handle stream imperfections The stream system must be able to handle situa-
tions where the stream data might arrive late, out of order, or with some data
missing entirely. Although some processing might rely on waiting for all
data to arrive, the data might never arrive, leading to a standstill. Therefore
every function in the stream system should have a time out period that
allows continuing even with incomplete data.

Generate predictable outcomes The output of the stream processing system should
be deterministic and repeatable. In other words, providing the same input
data in the same order should always lead to the same results. In addition to
ensuring the correctness of the system, deterministic and repeatable results
are necessary when the system has to recover from a failure and the same
application state before the crash has to be replicated.

Integrate stored and streaming data The stream processing system must be ca-
pable of combining stored and stream data together. This is commonly used

30

in applications where messages that happened in the past are used together
with current data (e.g. fraud detection). In addition to maintaining history
in the format it arrived in, another approach is to maintain signatures of
“normal” and unusual data based on past behavior as a summarization of
earlier messages. Additionally, stored data is useful during the development
of applications, allowing the developer to conduct repeatable experiments
with past data before switching to live data. It should be noted that inter-
facing with external databases can add notable latency to the pipeline, and
would conflict with the rule of “Keeping the data moving”.

Guarantee data safety and availability For the sake of reliability and fault toler-
ance, the stream processing system must, by design, be highly available. In
a case of hardware failure, the stream processing system should be able to
restore itself with little to no delay. Longer downtimes are unacceptable for
real-time processing systems, as the system would not be “real-time” for the
period of the downtime.

Partition and scale application automatically It should be possible to distribute
the stream processing system over multiple machines due to the scalability
and price-performance benefits offered by clusters built with commodity
hardware. The system should be able to scale automatically and transpar-
ently to available machines depending on the system load. Additionally,
the stream processing system should support multiple threads to take full
advantage of multiple processor cores in modern hardware.

Process and respond instantaneously The processing system must be able to pro-
cess high volumes of data with very low latency, typically in the range of
microseconds to milliseconds on commodity off-the-shelf hardware. This
requires that all the system components are designed with performance in
mind to prevent bottlenecks. However, the performance of the system might
also vary depending on the type of workload, making this rule workload-
dependent.

3.3 Summary

Online data marketplaces are Data as a Service (DaaS) platforms that facilitate
trading of data via internet. DaaS provides a framework of standard formats and
interfaces that enable operating data products through an API. There exists three
general categories of DaaS platforms: Generic platforms with multiple independent
data sets, specialized platforms that are centered around a single (or limited amount
of) domain specific dataset(s), and hybrid platforms that may provide an access to
specialized datasets in addition to a generic API. (Vu et al. 2012)

As the data products on a DaaS platform might extend to the scale of big
data, a DaaS platform must be capable of handling big data. Technologies required
by a DaaS platform include data modeling tools for humans to handle the com-
plexity of data, common query language and API to access and manipulate the data
programmatically, massive scale data management to respond to challenges of big
data, and data cleansing and processing technologies to process, clean, and transform
data if necessary. (Chen et al. 2011)

31

Data handled by a DaaS platform can have different properties. The level
of structuredness of data determines how easily it is handled with automated
tools. The two most commonly used data formats, JSON and XML, can contain
both semi-structured and mixed data. JSON is a flexible data format that can
contain data in a tree-like structure using key-value pairs. (Assunção et al. 2015;
Kleppmann 2017)

Properties of big data include variety that describes the diversity of processed
data, velocity as the speed or throughput of data, volume representing the total size
of data, veracity determining the trustworthiness of data, and value of data in terms
of density of valuable information in comparison to noise (Assunção et al. 2015).
Data can be processed using batch or stream processing, with latter approach being
the more viable choice for real-time use cases (Kleppmann 2017; Flannagan 2016).
Stream processing systems must keep data moving, be able to use SQL on Streams,
handle stream imperfections, generate predictable outcomes, integrate stored and streaming
data, guarantee data safety and availability, partition and scale application automatically,
and process and respond instantaneously (Stonebraker et al. 2005).

32

4 PROVENANCE

The second chapter provided details of data marketplaces and their special re-
quirements. The third chapter introduced the concepts of DaaS, properties of
data, and stream processing. In this chapter, we introduce concepts of provenance,
investigate how provenance reflects to data, and discover what existing solutions
exist for tracking provenance. Some literature used in this chapter was discovered
on search engines using relevant keywords, while references to W3C specifications
were gathered directly from the source.

The concept of provenance has been used in the context of art to preserve
history of artifacts, denoting the lineage of ownership for objects. The provenance
record is used by scholars and collectors to verify the origin of art, its authenticity,
and its price (Deelman et al. 2010). Likewise, the concept of provenance has been
used in digital libraries to document the usage history and life cycle of digital
books and documents (Moreau, Freire, Futrelle, McGrath, Myers, and Paulson
2008).

When applied to data, provenance refers to the origin of data in terms of
time and place. It answers the questions of how was data created or generated,
what intermediate processing steps have occurred to the data, and through which
parties has the data passed through (Lim, Moon, and Bertino 2009; Deutch, Frost,
and Gilad 2018). The questions are important in order to understand the properties
of data that originate from multiple sources. Provenance becomes increasingly
important as the complexity and the amount of different data sources rise, as
tracking the origin of data would become more and more challenging (Deutch
et al. 2018). Provenance is also a useful concept for scientists as it can be used to
ensure reproducibility of data analysis. Provenance can indicate how the results
of the research were derived, with what parameters, and from which data sets
(Moreau et al. 2008; Deelman et al. 2010). Provenance of data has applications in
diverse range of different domains. Lim et al. (2009) provides an example of a
situation where provenance of data is vital in order to ensure that correct decisions
are made in life and death scenarios:

“A battlefield monitoring system gathers enemy locations from various
sensors deployed in vehicles, aircrafts, and satellites and processes
the monitoring queries over these streaming data. In this system, we
need to assess the collected data since we must make sure that mis-
sion critical applications only access highly trustworthy data in order
to guarantee accurate decisions by these applications. Since sensors
and communication lines have different accuracy and confidence, it is
essential to know the provenance of each data for assessing its trust-
worthiness level.”
Being able to track provenance is helpful for ensuring quality of results,

enforcing policies and ensuring trust in the system (Deutch et al. 2018). When
extended to data marketplaces, data provenance has a crucial role of linking data
back to the data providers where the data originated from. The value of the data on

33

a data marketplace is directly linked to data provenance as it provides information
quality and legality of data (Koutroumpis et al. 2017).

Provenance data is contained within metadata. Metadata, as defined in the
introduction, is “structured data about an object that supports functions associated
with the designated object” (Deelman et al. 2010). In other words, metadata can
be used to contain information that is not part of the data itself, but that can
be used to support and compliment the operations and processes related to the
data. Metadata is organized in a set of attributes that belong to a specific schema.
A schema can be an application specific practice or a commonly used standard,
that dictates the names of the attributes, the type of data that is expected to be
found from those attributes, and when and how should the attributes be used.
Deelman et al. (2010) provides some general metadata categories that are found
from various metadata schemas used by scientific applications:

• Logical file metadata, metadata related to files that, for example, includes
logical file names, data types, and creation and modification timestamps.

• Logical collection metadata, metadata on collections of files or other data,
including data on collection name, collection contents, creator, modifiers,
and audits.

• Logical view metadata, metadata on the logical files, collections and other
views that are used to form a specific presentation to data

• Authorization metadata, metadata on who is allowed to access the data (i.e.
access permissions)

• User metadata, metadata on the users of data, including names, phone num-
bers and addresses

• User-defined metadata, custom metadata attributes that have been defined by
the users of metadata, extending the schema onto which the metadata is
based on.

• Annotation attributes, metadata in the form of unstructured text written by
the user to describe data or its attributes.

• Creation and transformation history, provenance metadata on how data was
created, and what type of transformations were performed to the data.

• External catalog metadata, linking to metadata that is available from an external
resources.
The concept of provenance has been investigated at multiple different levels

of abstraction where each domain has its own challenges. Herschel, Diestelkämper,
and Ben Lahmar (2017) classified provenance research to four different categories.
The categories can be placed to a hierarchy according to granularity, how specific
the domain is, and how high the level of instrumentation available for collecting
provenance for that type is. We first start from the most fine-grained category, and
move upward to less strict categories.
Data provenance The highest resolution of provenance tracking that allows track-

ing of individual data items and the operations that they go through. The
level is typically viable only for structured data models and declarative query
languages (e.g. SQL) as they allow highest possible degrees of instrumenta-
tion with clearly defined semantics and operators. Data provenance research
is divided to two categories: Provenance of existing results that detail prove-
nance of data that was given out as a result, and missing results, providing

34

provenance to data that was left out of the results, and more specifically,
explaining why it was left out. Provenance of existing results seek to answer
three main questions: where does the data originate from, why were they
included in the result, and how was the data processed or modified in order
to provide the given result.

Workflow provenance Instead of observing individual data, workflow prove-
nance covers inputs, processes, and outputs of systems. Workflow prove-
nance can be presented as a directed graph, with processes being nodes of
the graph, and edges connecting them to form the workflow. The level of
granularity of the provenance can vary between solutions. Some solutions
might track provenance at the level of individual data items, while others
are more coarse and are not concerned with individual changes to data.
Fine-grained workflow provenance is close to data provenance, but does not
necessarily fulfill the requirement of having operators with clearly defined
semantics.

Information system provenance Information system provenance is metadata about
processes that belong to an information system and have the role of storing,
communicating or distributing information. Information system provenance
generally considers all processing steps as "black boxes", but may use input,
output and the parameters of the process to collect provenance. One exam-
ple of information system provenance is provenance-aware storage systems
(PASS) (Muniswamy-Reddy, Holland, Braun, and Seltzer 2006) that track
provenance of files and documents through metadata. PASS is also a valid
example of provenance tracking on level of the operating system (Carata,
Akoush, Balakrishnan, Bytheway, Sohan, Seltzer, and Hopper 2014).

Provenance metadata The most general category of provenance that includes
any arbitrary provenance related metadata. As a "catch-all" category, no
assumptions or restrictions are made regarding how provenance is defined,
collected, or modeled. The only requirement is that the metadata must be
intended for purposes of provenance. Proprietary provenance solutions
typically fall into this category as their internals are not publicly disclosed,
and therefore their mode of operation can’t be assessed.
Concepts of both data provenance and workflow provenance are both highly

specific to the domain of databases and workflow system (Herschel et al. 2017),
but the categories of information system provenance and provenance metadata
are flexible enough to be used in multiple different scenarios. In the following
section, we investigate an existing provenance metadata model.

4.1 Open Provenance Model and PROV

Open Provenance Model is a model collaboratively designed by groups of re-
searchers from various disciplines with the shared goal of attempting to find a
standard a model for provenance (Moreau et al. 2011). After the model reached
sufficient maturity, it cornered enough support to form a base for a W3C (World
Wide Web Consortium) specification. The model was implemented by W3C
Provenance Group in the form of PROV, a concrete data model and technical

35

specification (Moreau, Groth, Cheney, Lebo, and Miles 2015) that can be used to
build applications that use provenance metadata.

Open provenance model was designed to fulfill the following requirements:
1. The model must allow sharing provenance information between different

systems with means of a shared provenance model
2. The model must allow for development and sharing of tools that operate on

the model
3. Provenance in the model must be defined precisely, but without describing a

specific technical implementation
4. The model must be able provide a digital representation of provenance

regardless of the nature of the thing being observed
5. The model must allow for multiple levels of detail that can coexist
6. The model must define set of core rules that can be used to identify and infer

relationships
To address these requirements, the group opted for a representation in the

form of directed graph, and defined a set of semantics and rules for the nodes,
edges, and their composition. There are three types of nodes. Firstly, Artifacts
denote a state, representing a physical object, or a set of data. Artifacts are rep-
resented as circles. Second, Processes represent actions that are performed on
artifacts (or due to them), resulting in new artifacts. Processes are denoted as
squares. Third, Agents are entities in the process that facilitate, control or affect its
execution. Agents are represented as octagons. Nodes are linked together with
edges, represented with arrows, that communicate a relationship between each of
the linked nodes. Some of the common relationships include derived from, when
the artifact is derived from an earlier state, and triggered by when an agent or
process has a causal effect to something. A basic example is provided in Figure 8,
where a provenance graph of an incrementing operator is modeled at two levels
of granularity. Thin and dotted arrows denote the direction of actions, while thick
arrows represent derivation relationships. Although the graphs are different, they
both observe the same events. In the context of OPM, these are considered a two
related accounts observed from different perspectives. (Moreau et al. 2011)

The OPM specification provides a generic set of concepts and tools, but also
provides freedom to extend the model for practical domain specific problems.
OPM provides two mechanisms for this in the specification: OPM annotation
framework and OPM profiles. (Moreau et al. 2011)

OPM annotation framework allows arbitrary information to be attached
to relations, entities, agents, edges, and even other annotations. Annotations
in OPM are simply a special class of OPM entities that can also have their own
relationships and chain of provenance. An annotation entity must contain a) an
identifier that allows linking it with the annotated object, b) A set of key-value
pairs to contain the additional information provided by the annotation, and c) the
subset of accounts from the annotated entity in which the annotation is relevant.
(Moreau et al. 2011)

OPM profiles allows building extensions or specializations on top of OPM,
while still staying compatible with the general principles and graph features. OPM
profiles provide a tool for communities to create their own best practices and
usage guidelines that best fit the specific domain to which the profile is applied on.

36

Figure 8: Examples of a provenance graph (Moreau, Clifford, Freire, Futrelle,
Gil, Groth, Kwasnikowska, Miles, Missier, Myers, Plale, Simmhan, Stephan, and
den Bussche 2011)

An OPM profile consist of a unique global identifier and contains one or multiple
components. (Moreau et al. 2011)

1. Controlled vocabulary for annotations: Defining a set of key-value pairs, and the
allowed types for values. Allowed values can be a predefined set (e.g. a key
with the name "entrance" could only have values "open" or "closed"), or a
general type (string, boolean, numeric etc.). The controlled vocabulary can be
used to create custom types and add an arbitrary amount of domain-specific
properties to nodes and edges.

2. General guidance to expressing OPM graphs: Guidance is used to provide
instructions on the level of granularity, the level of expressiveness, and
providing instructions for which types of nodes and edges should be present
in the graph.

3. Profile expansion rules: Providing a set of rules that can be used to translate an
OPM graph using the profile into a generic "profile expanded" OPM graph
that requires no knowledge of the profile.

4. Serialization specific syntax: Instruction for serializing and deserializing the
OPM graph. The component must explain how syntactic operations convert
the graph into an arbitrary form of data, and how the data can be used to
reconstruct the graph.

37

The core of Open Provenance Model created a foundation for W3C PROV, a
W3C specification for a data model that enables provenance interchange on the
Web (Gil, Miles, Belhajjame, Deus, Garijo, Missier, Soiland-Reyes, and Zednik
2013). Similar to Open Provenance Model, PROV expresses provenance in the
form of entities and relationships between them, but without the same focus in
graphical representation. Instead, PROV is mostly concerned with the concrete
model of the data and how it can be used to accommodate provenance data
through multiple different perspectives. Some of these perspectives include agent-
centered provenance, where provenance is formed through interactions of people
and organizations, object-centered provenance that follows the origin of documents
or data, and process-centered provenance that focuses on actions and processes used
to generate and handle data or objects. The choice of perspective depends on
the view and the type of provenance information required by the use case. (Gil
et al. 2013)

To enable enough flexibility for various use cases, the PROV data model
(PROV-DM) features additional concepts that were not present in Open Prove-
nance Model, but also simplifies the model of extending and customizing by
allowing domain-specific information to be embedded more freely along with the
rest of the data model. PROV-DM has six conceptual categories that can be used
as building blocks for provenance metadata models, but in this thesis we will only
focus on the most vital three concepts that form the core of PROV-DM that are
also illustrated in Figure 9 (Gil et al. 2013):

Figure 9: Essential PROV components and their relationships (Moreau, Missier,
Belhajjame, B’Far, Cheney, Coppens, Cresswell, Gil, Groth, Klyne, McCusker,
Miles, Myers, Sahoo, and Tilmes 2013)

Entities and activities Entities and activities are conceptually same as artifacts
and processes of OPM. As described by Moreau, Missier, Belhajjame, B’Far,
Cheney, Coppens, Cresswell, Gil, Groth, Klyne, McCusker, Miles, Myers,
Sahoo, and Tilmes (2013), “an entity is a physical, digital, conceptual, or other
kind of thing with some fixed aspects; entities may be real or imaginary”.

38

Activities actions that can occur alongside with other activities, typically
either generating or using entities, or communicating with other activities.

Derivation When an entity is altered or transformed into a new entity, it can be
said that the new entity was derived from the former entity. Derivation is used
to preserve the chain of transformations so that the origin of data can be
inferred later. Some examples of derivation include creating a painting from
a canvas, melting ice into water, and modifying data in a relational database
to a new form. (Moreau et al. 2013)

Agents An agent is something that has influence on entities, activities, or other
agents. An agent could, for instance, be a person, an organization or a
software program. The concept of agents is used to signify the effect that
different agents could have to the outcome. PROV recognizes that an entity
can be attributed to an agent, agents can be associated with actions, and
agents can delegate actions to other agents (Moreau et al. 2013). For instance,
information that is attributed to a reputable news organization is more likely
to be reliable than information that is attributed to a rumor circulating in
social media.
These three concepts are codified to a syntax seen in the Table 4. The syntax

can be used to generate a provenance record as part of a software program when
the data is being processed. Although we will demonstrate the usage of PROV with
pseudocode, PROV has bindings to multiple different programming languages,
including Python, Java and Javascript (K. C. London 2018). In the following
pseudocode example, we create a provenance record where an action action1
took an entity example1 yesterday and finished transforming it to example2
today:

1 entity(example1, [])
2 activity(action1, now(), yesterday(), [])
3 used(action1, example1)
4 entity(example2, [])
5 wasDerivedFrom(example2, example1, action1)

39

Table 4: Core syntax of PROV and basic usage. Abbreviations are expanded
in Table 5. Bold parameters indicate that they must be present, while those
with normal weight are optional. (Moreau, Missier, Belhajjame, B’Far, Cheney,
Coppens, Cresswell, Gil, Groth, Klyne, McCusker, Miles, Myers, Sahoo, and
Tilmes 2013)

Category Name Syntax

Entities /
Activities

Entity entity(id, attrs)

Activity activity(id, st, et, attrs)

Generation wasGeneratedBy(e, a, t, attrs)

Usage used(a, e, t, attrs)

Communication wasInformedBy(a1, a2, attrs)

Derivations

Derivation wasDerivedFrom(e2, e1, a, g, u1,
attrs)

Agents,
Responsibility,
Influence

Agent agent(id, attrs)

Attribution wasAttributedTo(e, ag, attrs)

Association wasAssociatedWith(a, ag, pl,
attrs)

Delegation actedOnBehalfOf(ag2, ag1, a,
attrs)

Table 5: Explanations for abbreviations used in Table 4.

e Entity
a Activity
ag Agent
pl Plan
attrs Attributes (e.g. [name="example"])
id Unique identifier
t Timestamp
st Starting timestamp
et Ending timestamp

40

4.2 Earlier PROV research and implementations

PROV has been used as a foundation for provenance metadata implementations
at many different domains. In this subsection, we list some of them and discuss
how they defined the requirements of the provenance model, and how the model
was evaluated. This subsection provides background and additional reasoning for
our custom implementation.

In the course of investigating existing solutions, it was found that provenance
systems have been investigated from multiple perspectives, including usability,
performance, and applicability. Both qualitative metrics have been used in the
form of interviews (Ramchurn, Huynh, Wu, Ikuno, Flann, Moreau, Fischer, Jiang,
Rodden, Simpson, Reece, Roberts, and Jennings 2016), and quantitative metrics in
the form of benchmarks (Mohamed Jehad Baeth and Aktas 2017; Tas, Baeth, and
Aktas 2016). The following list provides some examples of how PROV has been
used in different domains:

• A Disaster Response System based on Human-Agent Cooperation Ram-
churn et al. (2016) developed a provenance model for tracking information
from disaster sites. Requirements of the system were gathered through in-
teractions with emergency responders, and it was found that a provenance
system should be able to 1) tell the source of information 2) explain how that
information was transformed into decisions 3) link complimetary sources of
information together. The system was evaluated by describing the system to
focus groups, demonstrating the functionalities in rescue scenarios, and by
gathering feedback.

• Recommending Energy Tariffs and Load Shifting Based on Smart House-
hold Usage Profiling Fischer, Ramchurn, Osborne, Parson, Huynh, Alam,
Pantidi, Moran, Bachour, Reece, Costanza, Rodden, and Jennings (2013) pre-
sented a system for personalized energy-related recommendations. In order
to increase confidence of recommendations, provenance was implemented
with the requirements of being able to 1) justify why data was required for
privacy reasons, and 2) how data how the presented information was com-
puted. The system was evaluated with data gained from semi-structured
interviews of the users.

• Modeling Information Diffusion in Social Media as Provenance with W3C
PROV Taxidou, De Nies, Verborgh, Fischer, Mannens, and Van de Walle
(2015) proposes a model known as PROV-SAID, an extended model of prove-
nance based on PROV that is able to track the spread of information in social
media (i.e. Information diffusion). The objective of PROV-SAID is to provide
as high expressive capability for information diffusion as possible, but the
model is not tested.

• A Large Scale Synthetic Social Provenance Database Mohamed Jehad Baeth
et al. (2017) created a synthetic database for storing provenance of social
interaction on social media in standard PROV notation. The requirements
were derived from provenance database requirements and usability. Lastly,
the database was evaluated through synthetic benchmarks.

• An Approach to Standalone Provenance Systems for Big Social Prove-
nance Data Tas et al. (2016) contributes to provenance research by providing

41

test suite to evaluate provenance systems, and by proposing a software archi-
tecture for a decentralized and scalable provenance management system to
manage big social provenance data. The requirements were defined accord-
ing to the constraints of big data, requiring high scalability and performance.
Although the proposed architecture was not evaluated, existing provenance
systems were benchmarked using the test suite.

4.3 Summary

Provenance answers the questions of how, when, and by whom has the object
of interest been handled (Lim et al. 2009). Provenance metadata encodes the
provenance information as a record alongside the object of interest. In the context
of data marketplaces, provenance metadata can contain information on when the
data was created, how it has been transformed, and through which parties has the
data passed through (Lim et al. 2009). Provenance information is vital for linking
data back to its source and providing details regarding the quality and legality of
data (Koutroumpis et al. 2017).

Metadata is data that is not part of the data of interest, but is able to support
operations and processes related to it (Deelman et al. 2010). However, usage
of metadata is not the only approach for tracking provenance. In addition to
provenance metadata, provenance can be tracked through data provenance, workflow
provenance, and information system provenance (Herschel et al. 2017).

There exists a standard model for expressing provenance – Open Provenance
Model (OPM) provides a set of building blocks that can be used to model prove-
nance through graphs. The provenance graph consists of three different types
of nodes: artifacts denoting state, processes representing actions, and agents being
entities that factilitate, control or affect execution of processes. The generic OPM
concepts can be extended to domain specific problems using either OPM annotation
framework or OPM profiles. (Moreau et al. 2011)

W3C PROV is an implementation of OPM, providing a framework and a
syntax for creating provenance documents using the programming language of
choice. PROV both extends OPM by providing additional building blocks for
more complex use cases, and simplifies it by allowing embedding of domain
specific information (Gil et al. 2013). W3C PROV has been used in multiple
different domains in earlier research, and the resulting implementations have been
evaluated either with qualitative and quantitative metrics.

42

5 A DATA MARKETPLACE METADATA MODEL

In the second chapter we looked into what data marketplaces are and what re-
quirements they have. In the third chapter, we looked at DaaS and the general
technical concepts behind them. Based on those insights, we form a metadata
model that can be used to track provenance and other attributes required on data
marketplaces. Finally, the metadata model is evaluated empirically by applying
it to a prototype where data from multiple sources is used to form a hybrid data
product. The model is evaluated based on objectives derived from literature and a
set of benchmarks.

5.1 Requirements, Objectives and Evaluation

Following the principles of DSRM, we first infer objectives that can be used to
measure the solution. These objectives can be either qualitative or quantitative.
Qualitative objectives are similar to functional requirements found in engineering
disciplines by describing how the solution would address the problem through its
functionality. Quantitative objectives, on the other hand, reflect non-functional
requirements that measure specific metrics, such as speed or performance, and
can be directly benchmarked against other solutions. With the background theory
described in earlier chapters, we can define the objectives of the solution based on
existing literature and the reasoning behind each decision. The requirements are
described according to RFC 2119 (Bradner 1997) that provides an industry standard
manner for wording: Requirements that ‘must’ be fulfilled are vital components
of the model, while requirements worded with ‘should’ are opinionated choices
or complimentary features of the model.

5.1.1 Objectives

In the most general form, the two main requirements of the data marketplace
provenance metadata model are:

1. The metadata model must be able to represent the chain of provenance of
hybrid data products According to Koutroumpis et al. (2017), maintaining
provenance of data is one of the key functionalities of a data marketplace. In
this thesis, we constrain the definition of provenance to only include events
that occur in the context of a data marketplace, and more specifically, in
the creation of hybrid data products. The constraints are made in order to
firstly to keep the scale of the thesis reasonable, and second, to restrict the
resolution of the model, as provenance interactions at the level of server
hardware and network transmission are uninteresting in the context of the
thesis.

2. The metadata model must be able to contain metadata relevant to data
marketplaces In addition to tracking provenance, data marketplaces must

43

track the metadata related to data products (Koutroumpis et al. 2017) in order
to support institution of the marketplace discussed in section 2.1. In this
thesis, we define “metadata relevant to data marketplace” to be equivalent
with data contract terms provided by H.-L. Truong et al. (2012) (discussed
in section 2.5). The data contract terms include data rights, quality of data,
regulatory compliance, pricing model, and control & relationship.

3. The performance cost of the metadata model must not hinder the the sys-
tem by a significant degree The performance drawback of the metadata
model should be reasonable in real-world scenario. A metadata model that
hinders the usage of a data marketplace is unlikely to be useful in prac-
tice. As creation of hybrid data products require accessing resources found
from external resources, we consider significant latency to be in tens of
milliseconds; latency similar to a hard drive disk seek or a network request.
In addition to the two base requirements, we introduce two additional re-

quirements that further distinguish the thesis from earlier research:
• The metadata model should apply to both stream and static data There

already exists models that can apply to static data sets (Vu et al. 2012; H.-L.
Truong et al. 2012). To provide a new perspective, we apply the model in
streaming context.

• The metadata model should be JSON based As an opinionated choice,
JSON provides a less verbose format of data in comparison to XML (Klepp-
mann 2017). Earlier research has used XML (Vu et al. 2012) and Resource
Description Framework (RDF) (H.-L. Truong et al. 2012) in their metadata
representations. Using JSON as a base of the metadata model might provide
unique insight as using different data formats may have different challenges
and implementation details.

5.1.2 Evaluation and metrics

The evaluation approach and type of artifact was chosen based on the authors
preferences and on the findings of Peffers et al. (2012) that charted the prevalence
between various evaluation techniques and artifact types. The evaluation methods
that have been used in other literature are listed in the Table 6. From these, the
prototyping method was chosen to be the evaluation approach for the thesis. As
the goal of the artifact is to demonstrate functionality of the metadata model
through a novel use case, an example that is grounded in a potential real-world
application would demonstrate the utility of the artifact effectively.

An expert review was also considered as a method for evaluating the result-
ing artifact in this thesis. Although the combination of instantiation and expert
review in design science has not been commonly used in information system and
computer science research (Peffers et al. 2012), PROV models have been evaluated
with interviews and other qualitative methods (Ramchurn et al. 2016; Fischer
et al. 2013). A subject-based experiment would also have been an option if the
thesis would have investigated the desirability of the concept instead of focusing
on the technical aspects. However, a qualitative approach was not viable due to
the time constraints set to the thesis and a lack of contacts in the data marketplace
industry.

44

Table 6: Evaluation methods used with instantiation (Peffers, Rothenberger, Tuu-
nanen, and Vaezi 2012).

Evaluation Method Description
Technical experiment Evaluate performance of an implementation (op-

tionally using synthetic or real-world data) to eval-
uate the technical performance of the system.

Prototype Create an implementation to demonstrate the util-
ity or sustainability of the artifact.

Subject-Based Experiment Evaluate theory using test subjects
Illustrative scenario Apply artifact to a synthetic or real-world situation

to illustrate suitability or utility of the artifact.

In addition to subjectively evaluating whether the metadata model was suffi-
ciently able to represent provenance of hybrid data products in the prototype data
pipeline, the approach of using benchmarks was chosen to provide quantitative
metrics on the impact of the metadata model. This approach is supported by
earlier research where PROV artifacts have been evaluated by benchmarking the
system impact (De Nies, Taxidou, Dimou, Verborgh, Fischer, Mannens, and Van
de Walle 2015; Mohamed Jehad Baeth et al. 2017; M. J. Baeth and Aktas 2017; Tas
et al. 2016). A test suite for measuring standalone provenance systems provided
by Tas et al. (2016) was adapted to fit the purposes of this thesis. The original
suite is specifically aimed to provenance databases, but it can be made suitable for
evaluation streaming pipelines with slight modifications. Tas et al. (2016) intro-
duces three suites: latency, simultaneous client connections, and message rate. In
addition, we introduce a fourth metric, event volume to better measure the effect
of the metadata model itself. Although insignificant at a smaller scale, the volume
of the handled data affects the efficacy of systems at scale of big data. Larger data
volumes lead to higher requirements for disk space and network throughput, mak-
ing the metric relevant (Kleppmann 2017). Each of the tests measure performance
from different perspectives:
Latency Measure the time it takes for system to produce an output from the input.

Latency tests responsiveness of the system, with low latency being a general
requirement of real-time systems (Kleppmann 2017). In the context of this
thesis, latency is tested by comparing latencies when metadata model is
enabled in comparison to when it’s disabled.

Simultaneous pipelines Adapted from “Simultaneous client connections”, we
instead evaluate how many pending pipelines the system can handle with
the given system resources.

Message rates Test how the rate of incoming messages affects the latency and sta-
bility of the system. In the thesis, we test this by sending artificial messages
through the pipeline. To remove bottlenecks from querying external systems,
we mock the behavior to test the raw processing capability with the given
system resources.

45

Event volume Test how the metadata model affects the volume of data contained
in a single event. This is measured by comparing data payload sizes with
and without metadata.

5.2 Development of metadata model

During design and development phase of DSRM, the requirements and objectives
created in the section 5.1 are used to develop an artifact. The reproducible steps
to recreate it are documented in a manner that fits the type of the artifact. In this
thesis, we form our own data model based on PROV by mapping concepts of
data marketplaces to PROV concepts, and by applying the data contract metadata
model of H.-L. Truong et al. (2012) in a new context.

In chapter 4, we investigated both the Open Provenance Model that provides
a semantic base for building provenance models, and PROV, implementing Open
Provenance Model with a concrete data modal and syntax. These solutions provide
a base for building domain specific provenance models, which makes creation
of an entirely new provenance metadata model redundant. We follow the same
approach of mapping hybrid data product interactions to PROV as Taxidou et
al. 2015 did in the domain of information diffusion.

We propose an extension to PROV in categories of entities, actions, agents, and
attributes associated to them. Beginning with entities, or the objects of interest on
data marketplace, we recognize the following taxonomy of data products:

• DataProduct: An abstract base class for data products that includes at-
tributes common to all data products. Extended by OriginDataProduct
and HybridDataProduct.

• OriginDataProduct: Data product from a specific origin that includes no
earlier provenance information. Can be derived into hybrid data products
when used by an action. OriginDataProduct is indicated by assigning
entity’s prov:type attribute to datamarket:OriginDataProduct.

• HybridDataProduct: A composite data product that is derived from mul-
tiple data products, such as OriginDataProduct or HybridDataProduct.
A HybridDataProduct is generated by an action that uses data products.
Similar to OriginDataProduct, a HybridDataProduct is defined by
setting prov:type attribute to datamarket:HybridDataProduct.
Metadata relevant to data marketplaces can be embedded into these entities

through attributes. As there already exists metadata models that have identified
relevant attributes to data marketplaces (Vu et al. 2012; H.-L. Truong et al. 2012),
one of these models can be applied to the provenance metadata model without
conducting redundant research. In this thesis, a data contract metadata model by
H.-L. Truong et al. (2012) was chosen to represent data marketplace metadata. The
model by H.-L. Truong et al. (2012) was discussed more in detail in section 2.5. As
data contract metadata terms were identified as simple key/value pairs, the terms
could be directly mapped into the attributes of PROV. The resulting attribution
mapping can be seen in Table 7.

46

Table 7: Metadata model namespaces and attributes including data contract terms
mapped to PROV

Category Attribute Value(s)

Naming &
Identification

dataproduct:<name>
N/A

dataprovider:<name>

PROV Types

datamarket:OriginDataProduct

N/A
datamarket:HybridDataProduct

datamarket:DataProvider

datamarket:createHybridDataProduct

Data rights

rights:derivation {Undefined,
Null,
Allowed,
Required,
True,
False}

rights:collection

rights:reproduction

rights:attribution

rights:nonCommercialUse

Data quality
dataquality:accuracy

Number
∈ [0,1]dataquality:completeness

dataquality:timeliness

Regulatory
Compliance

compliance:PrivacyCompliance
String

compliance:<compliance>

Pricing
model

pricing:cost Number ∈ IR

pricing:currency String

pricing:model String

pricing:usageTime Datetime

pricing:maximumUse Datetime

Control &
relationship

control:Liability

Stringcontrol:LawandJurisdiction

control:<control>

As the focus of the thesis is in the formation of hybrid data products, we
are only interested in the action of creating a hybrid data product. This is codified
in a generic manner as createHybridDataProduct. In addition, the origin to
which the data product is attributed to is recognized as an agent DataProvider.
The more specific interactions between entities, agents and actions in the metadata
model are documented in the Figure 10. Specific attributes are not defined for
DataProvider, because discovering relevant metadata related to providers was
deemed out of scope for this thesis.

47

Figure 10: Extension of PROV for tracking provenance on data marketplace.

With all the elements of the metadata model described, we demonstrate how
the PROV metadata model can be used in conjunction with PROV syntax in Table
Figure 11. As a reference, the details of PROV syntax were earlier specified in
Table 4. For brevity, the resulting metadata is included in Appendix section A.

48

1 agent(dataprovider:UniversityOfJyvaskyla,
2 [prov:type=’datamarket:DataProvider’])
3 entity(dataproduct:exampleData1,
4 [prov:type=’datamarket:OriginDataProduct’,
5 prov:time=now(),
6 pricing:model=’perUse’,
7 pricing:cost=’0.001’,
8 pricing:currency=’EUR’,
9 control:LawandJurisdiction=’FI’])

10 entity(dataproduct:exampleData2,
11 [prov:type=’datamarket:OriginDataProduct’,
12 prov:time=now(),
13 pricing:model=’perUse’,
14 pricing:cost=’0.001’,
15 pricing:currency=’EUR’,
16 control:LawandJurisdiction=’FI’])
17 wasAttributedTo(dataproduct:exampleData1,
18 dataprovider:UniversityOfJyvaskyla)
19 wasAttributedTo(dataproduct:exampleData2,
20 dataprovider:UniversityOfJyvaskyla)
21 activity(dataproduct:combineExampleData, start_time, end_time,
22 [prov:type=’createHybridDataProduct’])
23 used(dataproduct:combineExampleData,
24 dataproduct:exampleData1, start_time)
25 used(dataproduct:combineExampleData,
26 dataproduct:exampleData2, start_time)
27 entity(dataproduct:exampleHybridData,
28 [pricing:model=’perUse’,
29 pricing:cost=’0.002’,
30 pricing:currency=’EUR’,
31 prov:type=’datamarket:HybridDataProduct’]);
32 wasGeneratedBy(dataproduct:exampleHybridData,
33 dataproduct:combineExampleData, now())
34 wasDerivedFrom(dataproduct:exampleHybridData,
35 dataproduct:exampleData1)
36 wasDerivedFrom(dataproduct:exampleHybridData,
37 dataproduct:exampleData2)

Figure 11: Example of PROV syntax that is used to define two data prod-
ucts (exampleData1,exampleData2) attributed to University Of Jyvä skylä
that are combined to hybrid data product exampleHybridData through
combineExampleData action.

5.3 Demonstration

In the demonstration step of DSRM, we apply the designed artifact to a prototype
scenario in order to understand how it would work in practice and what is its
capability for solving a problem. In this thesis, we apply the provenance metadata

49

model to a prototype data marketplace pipeline that models a specific scenario.
The section is organized to three parts: 1. illustrating a prototype data application
that uses the metadata model, 2. introducing available data, chosen data sets and
the scenario, and 3. implementing the scenario with the prototype application.

5.3.1 Prototype architecture

In order to test the metadata model, a prototype data pipeline was created to
simulate transactions of a data marketplace supported by concepts of DaaS in
chapter 3. Due to the scope of the thesis, the prototype was not designed for scale
and applies only to four of the eight requirements set by Stonebraker et al. (2005)
to stream processing systems:
Keep the Data Moving The prototype should be able to process events with min-

imal latency, and "on the fly" as the events arrive. The prototype should not
have bottlenecks in the processing path that lead to notable delays.

Handle stream imperfections The prototype must be able to handle situations
where the data might arrive late, out of order, or with some data missing en-
tirely. This requirements also applies to intermediary steps of the processing
pipeline, where data is enriched from external sources. In case that the data
is notably delayed, each step of the processing pipeline should have a time
out period to prevent standstills.

Integrate stored and streaming data The prototype must be capable of combin-
ing stored and stream data together. As multiple data sources are used in
the prototype, it’s expected that some of them are most likely stored at some
external location. However, interfacing with external data sources can add
latency to the pipeline, which is deemed acceptable in the context of this
thesis.

Process and respond instantaneously The processing system must be able to pro-
cess high volumes of data with very low latency, typically in the range of
microseconds to milliseconds on commodity off-the-shelf hardware. This
requires that all the system components are designed with performance in
mind to prevent bottlenecks.
In the course of writing this thesis, multiple different approaches to im-

plementing the prototype were considered. In the beginning, industrial stream
processing frameworks, such as Apache Kafka and Apache Flink were considered
as implementation technologies. However, these technologies are not very suitable
for prototying purposes as creating implementations with them require time and
expertise. The second approach considered during the writing was Apache Nifi as
it provides a graphical user interface for composing stream processing pipelines
in a manner that enables fast prototyping. The critical drawback of Apache Nifi
was that it lacks documentation and instructions for more complicated use cases.
Although creating simple prototypes with Nifi is easy, the system becomes ex-
ceedingly complicated if the user wishes to use more complex features. Lastly,
the option of programming a custom solution was chosen as the most viable
alternative.

The custom solution is created using NodeJS. NodeJS is a programming
language that has a relatively simple, but powerful core abstractions, making it

50

a viable choice for fast prototyping. The prototype application is built around
a pipeline that is formed from an asynchronous chain of operations that can act
parallel to other running data pipeline instances. When data is requested from
an external source, a data provider for that type of data is randomly chosen from
a list of available providers, and queried for the information requested by the
pipeline. The fetched data is associated with metadata of the data provider. The
data pipeline architecture is similar to the general approach with stream processing
systems, where a set of tasks is continuously executed on each incoming event
(Vijayakumar and Plale 2006).

The architecture of the prototype is kept simple by using functional program-
ming principles. Instead of creating and composing objects according to principles
of object oriented programming, we merely focus on composing functions in
the data pipeline. The general architectural of the data pipeline can be seen in
Figure 12.

Task
Task

Task
Pipeline operations

New event creates a new pipeline

Web

Fetch external data

File system

Combine data into
hybrid data product

and update
provenance metadata

Figure 12: Architecture of the prototype data pipeline

5.3.2 Data sources and the scenario

In the course of the thesis, two major sources of data were considered as the
base of the prototype: Transport for London and Transport for Luxembourg. The
reason behind this decision was that a) both data providers offer open APIs that
can freely be used by developers and researchers alike, and b) both London and
Luxembourg have a comprehensive open data program that allows combining
data sets in order to fulfill the requirement of composing a hybrid data product.

51

The APIs offered by Transport for Luxembourg (Duton and Degeling 2018) and
Transport for London (T. f. London 2017) are compared in the Table 8.

Table 8: Comparison of open APIs between transport authorities of London and
Luxembourg (Duton and Degeling 2018; T. f. London 2017)

Data type Description London Luxembourg
Air quality Level of pollutants and weather data 3 3

Bike points Data from rental bike docks 3 3

Car parks Data and occupancy of parking slots 3 3

Bus data Data on bus departures and lines 3 3

Airport data Departing and arriving flights 7 3

Highway data Data on roads and congestion 3 3

Place data Data on arbitary locations within
city

3 7

Taxi data Data on available taxis within area 3 7

London offers a repository of open data at https://data.london.gov.
uk/ and Luxembourg provides their repository at https://data.public.lu/
en/datasets/. Both of the data repositories have highly diverse data sets in
varying formats that range from typical spreadsheet files to geospatial data sets
that associate data with geographical locations. Although both of the data portals
provide a comparable amount of data sets, with London portal featuring 740
datasets and Luxembourg having 669 data sets, the accessibility of Luxembourg
data is constrained due to the website and data being provided in an arbitary mix
of English, French and German.

In the end, a decision to use Luxembourg data was made on the basis that
Transport for Luxembourg provides open and freely accessible stream data APIs.
Although Transport for London also features a stream data API, it’s restricted to
paying customers and specific use cases only. Choosing to use data available from
London would have required simulating a stream data environment.

Transport for Luxembourg provides five stream data APIs that are listed in
the Table 9 (Duton et al. 2018). However, only the bus departure API seems to be
truly real time while other endpoints merely provide hourly updates. Due to this,
the departure API was considered the main candidate for the illustrative scenario.

Table 9: Stream data APIs provided by Transport for Luxembourg

Data type Description Update frequency
Weather Level of pollutants and weather data Hourly
Bike points Data from rental bike docks Hourly
Car parks Data and occupancy of parking slots Hourly
Departures Data on bus and train departures Real-time
Highway data Data on roads and congestion Hourly

52

https://data.london.gov.uk/
https://data.london.gov.uk/
https://data.public.lu/en/datasets/
https://data.public.lu/en/datasets/

A data payload provided by departure API can be seen in Figure 13. The
structure is based on the REST specification documented by Duton et al. (2018),
where the "type" key indicates whether new data was created, old data was
updated, or if some data was deleted from the resource. In the experiment, we only
use rows with the "new" type that indicate new departures. The payload under
"data" key is categorized according to stations. In the example from Figure 13,
one new departure was recorded from station with the ID of 220902004.

1 {
2 "type": "new",
3 "data": {
4 "220902004": [
5 {
6 "id": "1|1533|8|82|16032017",
7 "type": "bus",
8 "trainId": null,
9 "lineId": "4:TIC---:13",

10 "line": "13",
11 "number": 180,
12 "departure": 1489658400,
13 "delay": 0,
14 "live": true,
15 "departureISO": "2017-03-16T11:00:00+01:00",
16 "destination": "Esch/Alzette, Gare",
17 "destinationId": 220402034
18 },
19 ...
20]
21 }
22 }

Figure 13: JSON data payload from a Transport for Luxembourg departure event

As the data is somewhat incomplete, referring to entities by their ID, but not
by their content, we can start building an imaginary data marketplace scenario
that is used to provide a more complete picture of each departure to the consumers
of the data.

To demonstrate a scenario built onto this data, let us first assume that the
following organizations would exist as seperate entities and would interact with
each other on a data marketplace:

• Autonomous transport provider Autonomous transport provider manages
a network of vehicles that have no pre-scheduled lines or timetables. Instead,
users of the vehicles can request for a pick-up, and a vehicle is routed to the
destination autonomously, forming an ‘ad hoc’ transportation line where
other passengers heading to the same location can also be picked on the
way. In order to have up-to-date data on traffic conditions every time a
vehicle departs, the autonomous transport provider joins a data marketplace
to create a data pipeline with data sources provided by station authority

53

and distance matrix providers. This entity is simulated by the the stream
departure API provided by Transport for Luxembourg (Duton et al. 2018).

• Station authority A station authority manages stations and stops that are
used by the autonomous transport provider. Station authority provides a
REST API that can be used to query details regarding each station. Most
importantly for autonomous vehicles, the API provides exact coordinates of
the stop. If station authority is not reachable, a local backup is used. Similar
to transport authority, the REST API of Transport for Luxembourg is used to
simulate this actor. (Duton et al. 2018)

• Distance Matrix provider(s) Distance matrix calculation is used for optimiz-
ing logistics and finding optimal routes between two or more locations. Due
to the scope of the thesis, we limit this feature only to distance and duration
properties between two locations that can be used to provide an estimated
time of arrival to the users of autonomous transport provider. At the time
of writing this thesis, free or easily accessible trials of Distance Matrix APIs
were offered by Google (2018), HERE (2018), OpenRouteService (2017), and
MapQuest (2018).
In the scenario, the autonomous transport provider creates a data pipeline

that forms hybrid data products from the station authority. The steps of the
pipeline can be seen in Figure 14. To simulate randomness, the use of different
sources is randomized to varying degrees. Retrieving data from station authority
will fail and fall over to a local backup 15% of the time, but the distance matrix
provider is chosen randomly without favoring any specific provider.

54

Figure 14: Steps of enrichment in the prototype

The resulting hybrid data product and it’s record of provenance is valuable
to the autonomous transport authority. If the estimated time of arrival or the
station coordinates are incorrect, the reason why can be deducted later from the
provenance record. It might be that one of the distance matrix provider is less
accurate than the others. Alternatively, the autonomous vehicle might’ve gotten
lost, which could be explained if the departure used a stale local copy of the
station data in a situation where the station had been temporarily closed due to
maintenance.

5.3.3 Executing the prototype

The prototype was programmed according to the architecture described in sub-
section 5.3.1 and the scenario found from subsection 5.3.2. The prototype data
pipeline was designed to run from command line and features no user inteface.

Every time a departure event happens, a new pipeline is spawned that will
retrieve data from data providers, combine it to a hybrid data product, and update

55

the metadata on the fly. The resulting data product is written to filesystem for
inspection. A screenshot of the program can be seen in Figure 15.

Figure 15: Steps of enrichment in the prototype

In order to properly evaluate the performance impact of the metadata model,
some features of the prototype had to be toggleable in order to control for external
factors:

• Metadata model: To compare performance of the prototype with and with-
out metadata model, the metadata model had to be toggleable.

• Network requests: Network requests are costly and introduce randomness
to the prototype. In order to control for the effect of network request latency,
a toggle was created that disables network requests and provides mock data
instead.

5.4 Evaluation

In evaluation phase of DSRM, the performance and applicability of the artifact is
evaluated using metrics, analysis, and knowledge gained from the demonstration
(section 5.3). In this thesis, we use quantitative metrics gained from the proto-
type to evaluate how the metadata model affected performance in the prototype
scenario.

56

5.4.1 Evaluation environment

The benchmarks were conducted on a quad-core X86 CPU (AMD 2200g) with
16GB of DDR4 memory. The system was running Ubuntu 18.04 bionic on Linux
kernel 4.15.0-34 with the NodeJS environment at version 8.10.0. The testing library
used during evaluation was Benchmark.js (Tan, Dalton, Cambridge, and Bynens
2018) that can be used to gain statistically significant results.

To provide more complete results, metrics were gathered both with and
without network calls enabled. When network calls were enabled, the real-world
scenario based on the prototype application described in Figure 14 was fully
emulated. When network calls were disabled, the same steps were followed
as in the scenario, but all network calls provided mock data. Network calls
were controlled in order to gain accurate data on the performance impact of
the metadata model itself. Enabling network calls, on the other hand, provided
perspective on whether the impact of metadata model was meaningful in practice.

For tests where network requests were disabled, Benchmark.js was config-
ured to a minimum sample size of 1000. In order to prevent throttling problems in
the real-world tests, the minimum sample size in those tests was restricted to 100.

5.4.2 Measurement: Output data volume

Output data volume was measured by forming a JSON record and investigating
its total file size. As seen from Figure 16, provenance metadata increased the total
volume roughly ×5.4 in the prototype scenario. The total volume will, however,
depend both on the complexity of provenance record and the size of actual data.

0

2

4

6

8 7.6

1.4vo
lu

m
e

(i
n

K
B)

With metadata Without metadata

Figure 16: Volume of the data payload, including metadata and actual data

5.4.3 Measurement: Latency

Latency measure the time it takes for system to produce an output from the input.
The metric is used to measure the impact of the metadata model on the “length”
of the pipeline in terms of time.

57

The test results seen in Figure 17 indicate that including provenance metadata
into the pipeline relatively increases the latency by a significant degree. The
median latency of 125µs with metadata is roughly ×7.8 (109 µs) larger than 16µs
it takes without metadata.

0 20 40 60 80 100 120 140 160 180 200

With

Without

Latency (microseconds)

Figure 17: Latency with network requests disabled

To investigate how the increase in latency affects the scenario in practice,
we ran the same benchmark again with network requests enabled. At first, a
measure at minimum sample size of 1000 was attempted. However, this caused
Transport for Luxembourg API to refuse service due to the prototype exceeding a
request quota. This lead to the decision to restrict minimum sample size to 100 for
real-world tests.

As seen from Figure 18, the latency increase of roughly 109µs witnessed in
Figure 17 has little impact on the latency of the pipeline with network requests
enabled: The total latency of the pipeline is multiple orders of magnitude higher
than the impact caused by the metadata model. The difference between the
two bars in Figure 18 are explained by the significant element of randomness
introduced by the network calls.

100 200 300 400 500 600 700 800 900 1,000 1,100

With

Without

Latency (milliseconds)

Figure 18: Latency with network requests enabled

5.4.4 Measurement: Simultaneous pipelines

To test the limit of simultaneous parallel pipelines, a benchmark was created where
network requests were disabled, and an infinitely blocking operation was added
at the end of the pipeline. After this, artificial departure events were spawned in a
loop with an incrementing counter to quickly pile up simultaneous pipelines.

58

It was discovered that NodeJS virtual machine halts due to a heap out of
memory error once the memory usage of the virtual machine reaches 1.76GB. This
is a design choice made in the V8 javascript virtual machine used by NodeJS in
order to prevent memory leaks and garbage collection slowdowns (Degenbaev,
Payer, Lippautz, and Kozyatinskiy 2017). Although it might be possible to bypass
the limit, we will comply with the recommended standard heap limit.

Figure 19 displays the resulting limits to simultaneous pipelines using the
standard V8 memory limits. When metadata was enabled, the benchmark was
able to handle roughly half the number of simultaneous pipelines. It should be
noted, however, that the limit is correlated to memory usage of the metadata and
actual data combined, and will most likely vary between different scenarios. The
difference of results between Figure 16 and Figure 19 is explained with different
internal and external representations of the PROV metadata: When processed
inside the application, the data structure of metadata is kept in a format that
requires less space.

0

2

4

·105

2.46 · 105

5.16 · 105

Si
m

ul
ta

ne
ou

s
pi

pe
lin

es

With metadata Without metadata

Figure 19: Limit of simultaneous pipelines in the benchmark

5.4.5 Measurement: Message rates

Message rates, or throughput of the system, was measured by investigating the
amount of rows that the prototype is able to process in a second. Similar to earlier
metrics, the throughput is first tested with network requests disabled before testing
the throughput in the real-world environment by enabling network requests.

As the application is not multithreaded, the results in Figure 20 are in line
with results from the latency test and Figure 17. When network requests were
disabled, the metadata model reduces the message rate of prototype application
by a significant degree with an approximate message rate of ×0.16 in comparison
to when metadata model is disabled.

59

0

2

4

6

·104

7,883

62,129

M
es

sa
ge

s
pe

r
se

co
nd

With metadata Without metadata

Figure 20: Message rate with network requests disabled. Relative margin of error
(With: ±0.41%) (Without: ±0.56%)

To prevent exceeding a usage threshold with external service providers
similar to the problems encountered in latency tests, parallellism of pipelines
had to be disabled when running the benchmark with network requests enabled.
Although this caused the throughput to be highly constrained in comparison to
the theoretical maximum of the prototype, the resulting data can still be used as a
representative metric of throughput.

As with the latency test and Figure 18 the results of the benchmark with
network requests enabled at Figure 21 show little to no difference whether meta-
data model is enabled or disabled. The variation between the throughput when
metadata model was enabled and when it was disabled can be explained with the
high margin of error.

0

1

2

2.33 2.3

M
es

sa
ge

s
pe

r
se

co
nd

With metadata Without metadata

Figure 21: Message rate with network requests enabled, Relative margin of error
(With: ±4.8%), (Without: ±5.71%)

60

5.5 Conclusion

The metadata model was able to fulfill the functional requirements set to it: It’s
both able to represent the chain of provenance of hybrid data products with the
syntactical framework provided by PROV, and able to contain data relevant to
marketplaces in the form of data contract terms formulated by H.-L. Truong et
al. (2012), fulfilling requirements 1. and 2. described in section 5.1. Provenance
events that occured in the formation of hybrid data products are encoded to
metadata alongside with marketplace metadata, as seen in extracts at section B.

The metadata model was applied to a non-trivial prototype where a hybrid
data product was created from multiple different data sources, demonstrating
its applicability in a practical scenario that involves both static and stream data.
In addition to providing JSON output, PROV also enables the metadata model
to be presented in XML format. Benchmarks with network requests disabled in
subsection 5.4.3, and subsection 5.4.5 display that handling and updating metadata
model in the prototype has a performance impact. However, the latency of 109µs
is well below the significant latency threshold of 10ms set in requirement 3. of
section 5.1. To support the chosen latency threshold, the benchmarks where
network requests were enabled demonstrate that the performance cost caused by
the metadata model is negligible in practice. The performance impact measured
in hunders of microseconds is unlikely to affect performance of typical stream
processing systems where latencies are measured in milliseconds (Kleppmann
2017; Kleppmann and Kreps 2015; Wang 2016).

61

6 Discussion

In this thesis, a metadata model for data marketplaces was proposed, enabling
tracking of provenance and metadata of hybrid data products. The metadata
model was implemented in a functional prototype to investigate its viability and
to evaluate the performance impact of the metadata model through a set of bench-
marks. The research was performed according to the steps of design science
research method (DSRM) that also provided the general structure of the thesis.
From the perspective of the author, DSRM was a fitting choice as it helped narrow-
ing the scope of the thesis to a problem area that was still feasible to evaluate. The
resulting metadata model was successfully able to fulfill its requirements without
causing a considerable performance impact.

At the time of writing this thesis, research on data marketplaces was still
scarce, but sufficient to provide background. Academic sources were prioritized in
the writing of the thesis, but for topics that discussed technical and implementation
details, non-academic sources were more relevant and available. Even when
academic sources were not used, we attempted to use literature sources that were
highly regarded by the software developer community.

The scope of the metadata model was restricted to only cover hybrid data
products and the data sources they originate from. Additionally, the definition of
data marketplace metadata was restricted to data contract terms of H.-L. Truong et
al. (2012). It is likely that the model can be both extended with new concepts in the
future, and made more complete by adding additional metadata attributes. Doing
so, however, would require additional insight to data marketplaces and their
needs. This thesis was constrained by the lack of literature, but future research
might enable formulation of more comprehensive metadata models.

The PROV model provided a suitable base for building the metadata model,
and it seems to also have been used in non-academic contexts (K. C. London 2018).
In the development of the prototype, however, it felt that some implementations
of PROV have received more attention than others. Although the JavaScript
implementation of PROV, ProvJS, was advertised in (K. C. London 2018), it’s not
mentioned in W3C specification (Gil et al. 2013). Additionally, ProvJS did not
have documentation on its usage and only provides example code snippets in its
repository. Based on this, it might be preferable to develop future PROV solutions
using implementations made for other languages.

To measure the performance of metadata model, a benchmark for prove-
nance systems by (Tas et al. 2016) was adapted for the purposes of this thesis; a
benchmark that has also been used for other provenance systems. In addition to
the three metrics provided the benchmark, including latency, message rate and
simultaneous connections (pipelines), a fourth metric of filesize was included to
represent the volume of metadata model. The benchmarks were conducted using
consumer hardware, on a single machine, and without multi-threading. Although
the benchmarking environment was not similar to cloud computation environ-
ment that favors multi-threading and distributed computation (Koutroumpis

62

et al. 2017), we believe the metrics to be sufficiently valid in the context of this
thesis. The relative performance impact of the metadata model should should
not vary significantly between environments because the PROV-JS library used
in the prototype is not parallellized and gains no performance benefits in server
environments.

The thesis and the prototype source code is hosted on gitlab at https:
//gitlab.com/duics/gradu where the results of the benchmarks can be in-
dependently verified for as long the APIs that the prototype relies on are still
available. However, unless the benchmark environment is identical, it’s likely that
the results are nonidentical. Regardless, relative performance differences between
when metadata is enabled and when metadata is disabled should still remain
approximately same.

The performance of the metadata model relied highly on the NodeJS run-
time and ProvJS library provided by K. C. London (2018). Although the tests
where network requests were enabled in section 5.4 indicated that the perfor-
mance impact of the metadata model was negligible in that specific scenario, there
might be use cases where sub-millisecond latencies are required. it might be
possible that PROV libraries designed for other programming languages are more
performant. Additionally, it might be possible to improve performance of the
metadata model by using binary encoded formats, such as Protocol Buffers or
Apache Trift (Kleppmann 2017). Both of these encodings trade flexibility for higher
performance, leading to additional design constraints in the metadata model. In
addition to potentially allowing the metadata model to be used in scenarios where
sub-millisecond latencies are a requirement, such approaches might also be use-
ful in systems that encounter very high traffic where even a minor performance
increases can lead to notable savings on processor time.

At an earlier time at the writing of the thesis, an alternative perspective of
investigating architecture of a data marketplace was also considered. Currently
there exists little research on how one might build a data marketplace or a Data
as a Service (DaaS) platform while taking into notion the special requirements
set by those specific services. Stream processing and event-based architectures
have recently become more commonplace in the industry due to their capability of
handling real-time data with simple abstractions (Kleppmann 2017), leading to an
abundance of technologies that can be used to facilitate the technical architecture of
a stream data marketplace. Although the challenges of scalability and adaptability
of data marketplace architecture are interesting, investigating such a broad topic
would not have been viable in the limited context of a master’s thesis. The idea
could, however, be applicable in other contexts.

The topic of data marketplaces in general has many potential branching
directions for future research. As the concept of a metadata is ubiquitous on data
marketplaces, there is potential in developing the metadata model alongside the
new research topics. Koutroumpis et al. (2017) suggests two major future research
topics for data marketplaces: Creation of data contract management systems for
managing and enforcing contractual terms and conditions for data transactions
and distributed data marketplaces that require no central authority.

Koutroumpis et al. (2017) suggests that a data contract management system
would require a data contract clearance service to generate contractual terms to

63

https://gitlab.com/duics/gradu
https://gitlab.com/duics/gradu

hybrid data products. The contractual terms of the hybrid data product would be
generated from the derived sources based on the contractual logic of each data
source. The idea was experimented with in the prototype created during the
empiric part of the thesis: A hybrid data product derived from multiple sources
was ‘priced’ according to the cost of each source used in the generation of hybrid
data product. However, applying similar logic to other data contract terms would
require investigating and applying contractual law: A topic that was out of scope
in this thesis. Future research could include investigating how contractual terms
could be inherited by hybrid data products.

Research on distributed data marketplaces is closely related to blockchains
and distributed ledgers (Koutroumpis et al. 2017). Distributed marketplaces might
require adjustments to the metadata model described in this thesis, or possibly
an entirely different approach to metadata. Depending on how a distributed mar-
ketplace is built, provenance information could even be deferred from blockchain
transactions themselves. As distributed marketplaces have no central authority
that manages the data marketplace, transactions and metadata related to them has
to be shared with all participants of the data marketplace. This would allow each
participant to verify trustworthiness of other actors. However, the transparency of
blockchain also has privacy and security concerns as none of the transactions on
the blockchain are anonymous. A decentralized marketplace would, in essence,
just provide the communication structures that facilitate operations of a decentral-
ized market (Koutroumpis et al. 2017). Another possible alternative to distributed
data marketplaces could be found in secure Multi-party Computation (MPC) ar-
chitecture. In a secure MPC architecture, the trusted middleman is "emulated"
through cryptographic interactions (Goldreich 1998), but there exists no earlier
research on how the concept could be applied to data marketplaces.

In this thesis data marketplaces were discussed as a platform to facilitate
interactions between organizations that seek to trade information with each other.
However, Kortuem and Kawsar (2010) suggest that, with the growth of Internet of
Things, even consumers might be incentivized to take part in the data markets.
There exists some research that points towards the willingness of consumers to
share data from IoT devices. Research by Foster (2009) and Foster, Blythe, Cairns,
and Lawson (2010) indicates that consumers are willing to share data on their
electricity usage. Additionally, the findings of Grossklags, Hall, and Acquisti
(2007) point towards consumers having a high preference of giving up private
information for monetary gain. In future, this could enable data marketplaces
where consumers could trade their private data as a commodity. Companies
could then use that data to provide services to the consumers, or use that data
in exchange for monetary compensation to the user. To maintain metadata and
provenance of data products in such data marketplaces, the metadata model
would have to be extended with agents that represent the consumers while still
remaining compliant with privacy regulations.

Common to all future research directions, it might be preferrable to develop
a metadata model in cooperation with data marketplaces themselves. This would
likely lead to an interesting metadata model, as it would be closely aligned with
requirements and practices of the industry.

64

REFERENCES

Akidau, Tyler, Slava Chernyak, and Reuven Lax. 2018. Streaming Systems. ISBN:
978-1-4919-8387-4, visited on August 9, 2018. http://shop.oreilly.com/
product/0636920073994.do.

Allen, Sean T., Matthew Jankowski, and Peter Pathirana. 2015. Storm Applied:
Strategies for Real-Time Event Processing. OCLC: ocn907676623. Shelter Island, NY:
Manning Publications Co. ISBN: 978-1-61729-189-0.

Arafati, M., G. G. Dagher, B. C. M. Fung, and P. C. K. Hung. 2014. ”D-Mash: A
Framework for Privacy-Preserving Data-as-a-Service Mashups”. In 2014 IEEE
7th International Conference on Cloud Computing, 498–505. Visited on February 20,
2018. doi:10.1109/CLOUD.2014.73. http://ieeexplore.ieee.org/
document/6973779/.

Assunção, Marcos D., Rodrigo N. Calheiros, Silvia Bianchi, Marco A. S. Netto,
and Rajkumar Buyya. 2015. ”Big Data Computing and Clouds: Trends and Future
Directions”. Journal of Parallel and Distributed Computing, Special Issue on Scalable
Systems for Big Data Management and Analytics, 79-80 (): 3–15. ISSN: 0743-7315,
visited on February 20, 2018. doi:10.1016/j.jpdc.2014.08.003. http://w
ww.sciencedirect.com/science/article/pii/S0743731514001452.

Baeth, M. J., and M. S. Aktas. 2017. ”Detecting Misinformation in Social Net-
works Using Provenance Data”. In 2017 13th International Conference on Semantics,
Knowledge and Grids (SKG), 85–89. doi:10.1109/SKG.2017.00022.

Baeth, Mohamed Jehad, and Mehmet S Aktas. 2017. ”A Large Scale Synthetic
Social Provenance Database”. In Proceedings of the Ninth International Conference on
Advances in Databases, Knowledge, and Data Applications, 16–22.

Bradner, Scott. 1997. ”Key Words for Use in RFCs to Indicate Requirement Levels”.
Visited on September 15, 2018. https://tools.ietf.org/html/rfc2119.

Carata, Lucian, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bytheway, Rip-
duman Sohan, Margo Seltzer, and Andy Hopper. 2014. ”A Primer on Prove-
nance”. Queue 12, number 3 (): 10:10–10:23. ISSN: 1542-7730, visited on September 8,
2018. doi:10.1145/2602649.2602651. http://doi.acm.org/10.1145/
2602649.2602651.

Chen, Y., J. Kreulen, M. Campbell, and C. Abrams. 2011. ”Analytics Ecosystem
Transformation: A Force for Business Model Innovation”. In 2011 Annual SRII
Global Conference, 11–20. doi:10.1109/SRII.2011.12.

65

http://shop.oreilly.com/product/0636920073994.do
http://shop.oreilly.com/product/0636920073994.do
http://dx.doi.org/10.1109/CLOUD.2014.73
http://ieeexplore.ieee.org/document/6973779/
http://ieeexplore.ieee.org/document/6973779/
http://dx.doi.org/10.1016/j.jpdc.2014.08.003
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://dx.doi.org/10.1109/SKG.2017.00022
https://tools.ietf.org/html/rfc2119
http://dx.doi.org/10.1145/2602649.2602651
http://doi.acm.org/10.1145/2602649.2602651
http://doi.acm.org/10.1145/2602649.2602651
http://dx.doi.org/10.1109/SRII.2011.12

De Nies, Tom, Io Taxidou, Anastasia Dimou, Ruben Verborgh, Peter M. Fischer,
Erik Mannens, and Rik Van de Walle. 2015. ”Towards Multi-Level Provenance
Reconstruction of Information Diffusion on Social Media”. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
1823–1826. CIKM ’15. New York, NY, USA: ACM. ISBN: 978-1-4503-3794-6, visited
on September 11, 2018. doi:10.1145/2806416.2806642. http://doi.acm.
org/10.1145/2806416.2806642.

Deelman, Ewa, Bruce Berriman, Ann Chervenak, Oscar Corcho, Paul Groth, and
Luc Moreau. 2010. ”Metadata and Provenance Management” (). Visited on Septem-
ber 8, 2018. arXiv: 1005.2643 [astro-ph]. http://arxiv.org/abs/1005.
2643.

Degenbaev, Ulan, Hannes Payer, Michael Lippautz, and Alexey Kozyatinskiy.
2017. ”One Small Step for Chrome, One Giant Heap for V8 · V8”. Visited on
September 25, 2018. https://v8.dev/blog/heap-size-limit.

Deutch, Daniel, Nave Frost, and Amir Gilad. 2018. ”Provenance for Non-Experts”.
IEEE Data Eng. Bull. 41:3–14.

Dikaiakos, M. D., D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. 2009. ”Cloud
Computing: Distributed Internet Computing for IT and Scientific Research”. IEEE
Internet Computing 13, number 5 (): 10–13. ISSN: 1089-7801, visited on February 20,
2018. doi:10.1109/MIC.2009.103. http://ieeexplore.ieee.org/
document/5233607/.

Du, B., R. Huang, X. Chen, Z. Xie, Y. Liang, W. Lv, and J. Ma. 2016. ”Active
CTDaaS: A Data Service Framework Based on Transparent IoD in City Traffic”.
IEEE Transactions on Computers 65, number 12 (): 3524–3536. ISSN: 0018-9340, visited
on February 20, 2018. doi:10.1109/TC.2016.2529623. http://ieeexplore.
ieee.org/document/7406757/.

Duton, Daniel, and Thierry Degeling. 2018. ”Streaming APIs · TfL”. Visited on
September 11, 2018. https://docs.api.tfl.lu/v1/en/Streaming_APIs.
html.

Fischer, Joel E., Sarvapali D. Ramchurn, Michael A. Osborne, Oliver Parson, Trung
Dong Huynh, Muddasser Alam, Nadia Pantidi, et al. 2013. ”Recommending
Energy Tariffs and Load Shifting Based on Smart Household Usage Profiling”, 383–
394. ISBN: 978-1-4503-1965-2, visited on September 11, 2018. https://eprints.
soton.ac.uk/346991/.

Flannagan, Mike. 2016. ”Maximize the Value of Your Perishable Data”. Visited on
October 5, 2017. http://data-informed.com/maximize-the-value-of-
your-perishable-data/.

Foster, Derek. 2009. ”Social Networking Sites as Platforms to Persuade Behaviour
Change in Domestic Energy Consumption” (September): 116–116.

66

http://dx.doi.org/10.1145/2806416.2806642
http://doi.acm.org/10.1145/2806416.2806642
http://doi.acm.org/10.1145/2806416.2806642
http://arxiv.org/abs/1005.2643
http://arxiv.org/abs/1005.2643
http://arxiv.org/abs/1005.2643
https://v8.dev/blog/heap-size-limit
http://dx.doi.org/10.1109/MIC.2009.103
http://ieeexplore.ieee.org/document/5233607/
http://ieeexplore.ieee.org/document/5233607/
http://dx.doi.org/10.1109/TC.2016.2529623
http://ieeexplore.ieee.org/document/7406757/
http://ieeexplore.ieee.org/document/7406757/
https://docs.api.tfl.lu/v1/en/Streaming_APIs.html
https://docs.api.tfl.lu/v1/en/Streaming_APIs.html
https://eprints.soton.ac.uk/346991/
https://eprints.soton.ac.uk/346991/
http://data-informed.com/maximize-the-value-of-your-perishable-data/
http://data-informed.com/maximize-the-value-of-your-perishable-data/

Foster, Derek, Mark Blythe, Paul Cairns, and Shaun Lawson. 2010. ”Competitive
Carbon Counting”. Proceedings of the 28th of the international conference extended
abstracts on Human factors in computing systems - CHI EA ’10: 4039–4039. ISSN:
9781605589305. doi:10.1145/1753846.1754099. http://www.scopus.
com/inward/record.url?eid=2-s2.0-77953096794&partnerID=
tZOtx3y1.

Friedman, Ellen, and Kostas Tzoumas. 2016. Introduction to Apache Flink: Stream
Processing for Real Time and Beyond. 1 edition. Sebastopol, CA: O’Reilly Media. ISBN:
978-1-4919-7658-6.

Gandomi, Amir, and Murtaza Haider. 2015. ”Beyond the Hype: Big Data Con-
cepts, Methods, and Analytics”. International Journal of Information Management 35,
number 2 (): 137–144. ISSN: 0268-4012, visited on March 26, 2018. doi:10.1016/j.
ijinfomgt.2014.10.007. http://www.sciencedirect.com/science/
article/pii/S0268401214001066.

Gil, Yolanda, Simon Miles, Khalid Belhajjame, Helena Deus, Daniel Garijo, Paolo
Missier, Stian Soiland-Reyes, and Stephan Zednik. 2013. ”PROV Model Primer”.
Visited on September 8, 2018. https://www.w3.org/TR/2013/NOTE-prov-
primer-20130430/.

Goldreich, Oded. 1998. ”Secure Multi-Party Computation” (): 109. Visited on
August 9, 2018. https://www.researchgate.net/profile/Oded_Gol
dreich/publication/2934115_Secure_Multi-Party_Computation/
links/00b7d52bb04f7027d4000000.pdf.

Google. 2018. ”Get Started | Distance Matrix API”. Visited on September 11, 2018.
https://developers.google.com/maps/documentation/distance-
matrix/start.

Grossklags, Jens, South Hall, and Alessandro Acquisti. 2007. ”When 25 Cents Is
Too Much : An Experiment on Willingness-To-Sell and Willingness-To-Protect
Personal Information”. Information Security: 7–8. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.137.696&rep=rep1&type=pdf.

HERE. 2018. ”Calculate Matrix - Routing API”. Visited on September 11, 2018.
https://developer.here.com/documentation/routing/topics/
resource-calculate-matrix.html.

Herschel, Melanie, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. ”A Sur-
vey on Provenance: What for? What Form? What From?” The VLDB Journal 26,
number 6 (): 881–906. ISSN: 0949-877X, visited on September 8, 2018. doi:10.1007/
s00778-017-0486-1. https://doi.org/10.1007/s00778-017-0486-
1.

Kleppmann, Martin. 2017. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. 1 edition. Cambridge: O’Reilly Media.
ISBN: 978-1-4493-7332-0.

67

http://dx.doi.org/10.1145/1753846.1754099
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953096794&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953096794&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953096794&partnerID=tZOtx3y1
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://www.sciencedirect.com/science/article/pii/S0268401214001066
http://www.sciencedirect.com/science/article/pii/S0268401214001066
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.researchgate.net/profile/Oded_Goldreich/publication/2934115_Secure_Multi-Party_Computation/links/00b7d52bb04f7027d4000000.pdf
https://www.researchgate.net/profile/Oded_Goldreich/publication/2934115_Secure_Multi-Party_Computation/links/00b7d52bb04f7027d4000000.pdf
https://www.researchgate.net/profile/Oded_Goldreich/publication/2934115_Secure_Multi-Party_Computation/links/00b7d52bb04f7027d4000000.pdf
https://developers.google.com/maps/documentation/distance-matrix/start
https://developers.google.com/maps/documentation/distance-matrix/start
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.696&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.696&rep=rep1&type=pdf
https://developer.here.com/documentation/routing/topics/resource-calculate-matrix.html
https://developer.here.com/documentation/routing/topics/resource-calculate-matrix.html
http://dx.doi.org/10.1007/s00778-017-0486-1
http://dx.doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1007/s00778-017-0486-1

Kleppmann, Martin, and Jay Kreps. 2015. ”Kafka, Samza and the Unix Philosophy
of Distributed Data.” IEEE Data Eng. Bull. 38 (4): 4–14. Visited on January 4, 2018.
https://martin.kleppmann.com/papers/kafka-debull15.pdf.

Kortuem, G., and F. Kawsar. 2010. ”Market-Based User Innovation in the Internet
of Things”. In 2010 Internet of Things (IOT), 1–8. doi:10.1109/IOT.2010.56784
34.

Koutris, Paraschos, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and
Dan Suciu. 2015. ”Query-Based Data Pricing”. Journal of the ACM 62, number 5 ():
1–44. doi:10.1145/2770870. http://dl.acm.org/citation.cfm?doid=
2841330.2770870.

Koutroumpis, Pantelis, Aija Leiponen, and Llewellyn D. W. Thomas. 2017. The
(Unfulfilled) Potential of Data Marketplaces, ETLA Working Papers 53. The Research
Institute of the Finnish Economy. Visited on June 19, 2018. https://ideas.
repec.org/p/rif/wpaper/53.html.

Li, Guoliang, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.
2008. ”EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-
Structured and Structured Data”. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data, 903–914. SIGMOD ’08. New York, NY,
USA: ACM. ISBN: 978-1-60558-102-6, visited on March 23, 2018. doi:10.1145/
1376616.1376706. http://doi.acm.org/10.1145/1376616.1376706.

Lim, Hyo-Sang, Yang-Sae Moon, and Elisa Bertino. 2009. ”Research Issues in Data
Provenance for Streaming Environments”. In Proceedings of the 2Nd SIGSPATIAL
ACM GIS 2009 International Workshop on Security and Privacy in GIS and LBS, 58–62.
SPRINGL ’09. New York, NY, USA: ACM. ISBN: 978-1-60558-853-7, visited on
August 18, 2018. doi:10.1145/1667502.1667516. http://doi.acm.org/
10.1145/1667502.1667516.

London, King’s College. 2018. ”Provenance Web Services”. Visited on Septem-
ber 24, 2018. https://openprovenance.org/.

London, Transport for. 2017. ”Unified API”. Visited on October 5, 2017. https:
//www.tfl.gov.uk/info-for/open-data-users/unified-api.

MapQuest. 2018. ”Route Matrix API”. Visited on September 11, 2018. https://
developer.mapquest.com/documentation/directions-api/route-
matrix/post/.

Moreau, Luc, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,
Natalia Kwasnikowska, et al. 2011. ”The Open Provenance Model Core Spec-
ification (v1.1)”. Future Generation Computer Systems 27, number 6 (): 743–756.
ISSN: 0167-739X, visited on September 8, 2018. doi:10.1016/j.future.2010.
07.005. http://www.sciencedirect.com/science/article/pii/
S0167739X10001275.

68

https://martin.kleppmann.com/papers/kafka-debull15.pdf
http://dx.doi.org/10.1109/IOT.2010.5678434
http://dx.doi.org/10.1109/IOT.2010.5678434
http://dx.doi.org/10.1145/2770870
http://dl.acm.org/citation.cfm?doid=2841330.2770870
http://dl.acm.org/citation.cfm?doid=2841330.2770870
https://ideas.repec.org/p/rif/wpaper/53.html
https://ideas.repec.org/p/rif/wpaper/53.html
http://dx.doi.org/10.1145/1376616.1376706
http://dx.doi.org/10.1145/1376616.1376706
http://doi.acm.org/10.1145/1376616.1376706
http://dx.doi.org/10.1145/1667502.1667516
http://doi.acm.org/10.1145/1667502.1667516
http://doi.acm.org/10.1145/1667502.1667516
https://openprovenance.org/
https://www.tfl.gov.uk/info-for/open-data-users/unified-api
https://www.tfl.gov.uk/info-for/open-data-users/unified-api
https://developer.mapquest.com/documentation/directions-api/route-matrix/post/
https://developer.mapquest.com/documentation/directions-api/route-matrix/post/
https://developer.mapquest.com/documentation/directions-api/route-matrix/post/
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
http://www.sciencedirect.com/science/article/pii/S0167739X10001275

Moreau, Luc, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers, and Patrick
Paulson. 2008. ”The Open Provenance Model: An Overview”. In Provenance and
Annotation of Data and Processes, 5272:323–326. Berlin, Heidelberg: Springer Berlin
Heidelberg. ISBN: 978-3-540-89964-8 978-3-540-89965-5, visited on September 8,
2018. doi:10.1007/978-3-540-89965-5_31. http://link.springer.
com/10.1007/978-3-540-89965-5_31.

Moreau, Luc, Paul Groth, James Cheney, Timothy Lebo, and Simon Miles. 2015.
”The Rationale of PROV”. Web Semantics: Science, Services and Agents on the World
Wide Web 35 (): 235–257. ISSN: 1570-8268, visited on September 8, 2018. doi:10.
1016/j.websem.2015.04.001. http://www.sciencedirect.com/
science/article/pii/S1570826815000177.

Moreau, Luc, Paolo Missier, Khalid Belhajjame, Reza B’Far, James Cheney, Sam
Coppens, Stephan Cresswell, et al. 2013. ”PROV-DM: The PROV Data Model”.
Visited on September 10, 2018. https://www.w3.org/TR/2013/REC-prov-
dm-20130430/.

Muniswamy-Reddy, Kiran-Kumar, David A. Holland, Uri Braun, and Margo
Seltzer. 2006. ”Provenance-Aware Storage Systems”. In Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, 4–4. ATEC ’06. Boston, MA:
USENIX Association. http://dl.acm.org.ezproxy.jyu.fi/citation.
cfm?id=1267359.1267363.

Muschalle, Alexander, Florian Stahl, Alexander Löser, and Gottfried Vossen. 2012.
”Pricing Approaches for Data Markets”. In Enabling Real-Time Business Intelligence,
129–144. Lecture Notes in Business Information Processing. Springer, Berlin, Hei-
delberg. ISBN: 978-3-642-39871-1 978-3-642-39872-8, visited on March 29, 2018.
doi:10.1007/978- 3- 642- 39872- 8_10. https://link- springer-
com.ezproxy.jyu.fi/chapter/10.1007/978-3-642-39872-8_10.

Narkhede, Neha, Gwen Shapira, and Todd Palino. 2017. Kafka - The Definitive Guide.
O’Reilly. ISBN: 978-1-4919-3616-0.

OpenRouteService. 2017. ”OpenRouteService API Documentation (Isochrones,
Directions, Matrix, Geocode)”. Visited on September 11, 2018. https://openro
uteservice.org/documentation/.

Opresnik, David, and Marco Taisch. 2015. ”The Value of Big Data in Servitization”.
International Journal of Production Economics 165 (): 174–184. ISSN: 0925-5273, visited
on March 29, 2018. doi:10.1016/j.ijpe.2014.12.036. http://www.
sciencedirect.com/science/article/pii/S0925527314004307.

Pathirage, M., J. Hyde, Y. Pan, and B. Plale. 2016. ”SamzaSQL: Scalable Fast
Data Management with Streaming SQL”. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 1627–1636. doi:10.1109/
IPDPSW.2016.141.

69

http://dx.doi.org/10.1007/978-3-540-89965-5_31
http://link.springer.com/10.1007/978-3-540-89965-5_31
http://link.springer.com/10.1007/978-3-540-89965-5_31
http://dx.doi.org/10.1016/j.websem.2015.04.001
http://dx.doi.org/10.1016/j.websem.2015.04.001
http://www.sciencedirect.com/science/article/pii/S1570826815000177
http://www.sciencedirect.com/science/article/pii/S1570826815000177
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://dl.acm.org.ezproxy.jyu.fi/citation.cfm?id=1267359.1267363
http://dl.acm.org.ezproxy.jyu.fi/citation.cfm?id=1267359.1267363
http://dx.doi.org/10.1007/978-3-642-39872-8_10
https://link-springer-com.ezproxy.jyu.fi/chapter/10.1007/978-3-642-39872-8_10
https://link-springer-com.ezproxy.jyu.fi/chapter/10.1007/978-3-642-39872-8_10
https://openrouteservice.org/documentation/
https://openrouteservice.org/documentation/
http://dx.doi.org/10.1016/j.ijpe.2014.12.036
http://www.sciencedirect.com/science/article/pii/S0925527314004307
http://www.sciencedirect.com/science/article/pii/S0925527314004307
http://dx.doi.org/10.1109/IPDPSW.2016.141
http://dx.doi.org/10.1109/IPDPSW.2016.141

Peffers, Ken, Marcus Rothenberger, Tuure Tuunanen, and Reza Vaezi. 2012. ”De-
sign Science Research Evaluation”. Design Science Research in Information Systems.
Advances in Theory and Practice: 398–410. ISSN: 978-3-642-29863-9. doi:10.1007/
978-3-642-29863-9_29. http://link.springer.com/10.1007/978-
3-642-29863-9_29.

Peffers, Ken, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. 2007.
”A Design Science Research Methodology for Information Systems Research”. J.
Manage. Inf. Syst. 24, number 3 (): 45–77. ISSN: 0742-1222, visited on March 15, 2018.
doi:10.2753/MIS0742-1222240302. http://dx.doi.org/10.2753/
MIS0742-1222240302.

Ramchurn, Sarvapali D., Trung Dong Huynh, Feng Wu, Yukki Ikuno, Jack Flann,
Luc Moreau, Joel E. Fischer, et al. 2016. ”A Disaster Response System Based on
Human-Agent Collectives”. Journal of Artificial Intelligence Research 57 (): 661–708.
ISSN: 1076-9757, visited on September 8, 2018. doi:10.1613/jair.5098. https:
//jair.org/index.php/jair/article/view/11037.

Richter, Katja, and Holger Nohr. 2002. Elektronische Marktplätze: Potenziale, Funk-
tionen Und Auswahlstrategien. Aachen: Shaker. ISBN: 978-3-8265-9890-6. http:
//www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=
8&ISBN=978-3-8265-9890-6.

Schmid, Beat F. B.F., and M.a. Lindemann. 1998. ”Elements of a Reference Model for
Electronic Markets”. In Proceedings of the Thirty-First Hawaii International Conference
on System Sciences, 4:193–201. IEEE Comput. Soc. ISBN: 0-8186-8255-8. doi:10.
1109/HICSS.1998.655275. http://ieeexplore.ieee.org/document/
655275/.

Schomm, Fabian, Florian Stahl, and Gottfried Vossen. 2013. ”Marketplaces for
Data”. ACM SIGMOD Record 42 (1): 15–15. doi:10.1145/2481528.2481532.
http://dl.acm.org/citation.cfm?doid=2481528.2481532.

Stahl, Florian, Fabian Schomm, Lara Vomfell, and Gottfried Vossen. 2015. ”Market-
places for Digital Data : Quo Vadis ?” Working Papers, ERCIS-European Research Cen-
ter for Information Systems. https://www.ercis.org/sites/ercis/files/
structure/network/research/ercis-working-papers/ercis_wp_
24.pdf.

Stahl, Florian, Fabian Schomm, and Gottfried Vossen. 2014. ”Data Marketplaces:
An Emerging Species”. Frontiers in Artificial Intelligence and Applications Databases
(August 2013): 145–158. ISSN: 9781614994572. doi:10.3233/978-1-61499-458-
9-145. http://ebooks.iospress.nl/publication/38196.

Stahl, Florian, Fabian Schomm, Gottfried Vossen, and Lara Vomfell. 2016. ”A
Classification Framework for Data Marketplaces”. Vietnam Journal of Computer
Science 3, number 3 (): 137–143. ISSN: 2196-8888, 2196-8896, visited on March 29,
2018. doi:10.1007/s40595- 016- 0064- 2. https://link- springer-
com.ezproxy.jyu.fi/article/10.1007/s40595-016-0064-2.

70

http://dx.doi.org/10.1007/978-3-642-29863-9_29
http://dx.doi.org/10.1007/978-3-642-29863-9_29
http://link.springer.com/10.1007/978-3-642-29863-9_29
http://link.springer.com/10.1007/978-3-642-29863-9_29
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.1613/jair.5098
https://jair.org/index.php/jair/article/view/11037
https://jair.org/index.php/jair/article/view/11037
http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8265-9890-6
http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8265-9890-6
http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8265-9890-6
http://dx.doi.org/10.1109/HICSS.1998.655275
http://dx.doi.org/10.1109/HICSS.1998.655275
http://ieeexplore.ieee.org/document/655275/
http://ieeexplore.ieee.org/document/655275/
http://dx.doi.org/10.1145/2481528.2481532
http://dl.acm.org/citation.cfm?doid=2481528.2481532
https://www.ercis.org/sites/ercis/files/structure/network/research/ercis-working-papers/ercis_wp_24.pdf
https://www.ercis.org/sites/ercis/files/structure/network/research/ercis-working-papers/ercis_wp_24.pdf
https://www.ercis.org/sites/ercis/files/structure/network/research/ercis-working-papers/ercis_wp_24.pdf
http://dx.doi.org/10.3233/978-1-61499-458-9-145
http://dx.doi.org/10.3233/978-1-61499-458-9-145
http://ebooks.iospress.nl/publication/38196
http://dx.doi.org/10.1007/s40595-016-0064-2
https://link-springer-com.ezproxy.jyu.fi/article/10.1007/s40595-016-0064-2
https://link-springer-com.ezproxy.jyu.fi/article/10.1007/s40595-016-0064-2

Stonebraker, Michael, Uǧur Çetintemel, and Stan Zdonik. 2005. ”The 8 Require-
ments of Real-Time Stream Processing”. SIGMOD Rec. 34, number 4 (): 42–47. ISSN:
0163-5808, visited on December 30, 2017. doi:10.1145/1107499.1107504.
http://doi.acm.org/10.1145/1107499.1107504.

Tan, Benjamin, John-David Dalton, Kit Cambridge, and Mathias Bynens. 2018.
”Benchmark.Js”. Visited on September 25, 2018. https://benchmarkjs.com/.

Tang, Ruiming, Antoine Amarilli, Pierre Senellart, and Stéphane Bressan. 2014.
”Get a Sample for a Discount”, 20–34. Springer, Cham. doi:10.1007/978-3-
319-10073-9_3. http://link.springer.com/10.1007/978-3-319-
10073-9_3.

Tang, Ruiming, Huayu Wu, Zhifeng Bao, Stéphane Bressan, and Patrick Valduriez.
2013. ”The Price Is Right”. In Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8056
LNCS, 380–394. Springer, Berlin, Heidelberg. ISBN: 978-3-642-40172-5. doi:10.
1007/978-3-642-40173-2_31. http://link.springer.com/10.1007/
978-3-642-40173-2_31.

Tas, Y., M. J. Baeth, and M. S. Aktas. 2016. ”An Approach to Standalone Provenance
Systems for Big Social Provenance Data”. In 2016 12th International Conference on
Semantics, Knowledge and Grids (SKG), 9–16. doi:10.1109/SKG.2016.010.

Taxidou, Io, Tom De Nies, Ruben Verborgh, Peter M. Fischer, Erik Mannens, and
Rik Van de Walle. 2015. ”Modeling Information Diffusion in Social Media As
Provenance with W3C PROV”. In Proceedings of the 24th International Conference
on World Wide Web, 819–824. WWW ’15 Companion. New York, NY, USA: ACM.
ISBN: 978-1-4503-3473-0, visited on September 11, 2018. doi:10.1145/2740908.
2742475. http://doi.acm.org/10.1145/2740908.2742475.

Truong, H. L., and S. Dustdar. 2009. ”On Analyzing and Specifying Concerns for
Data as a Service”. In 2009 IEEE Asia-Pacific Services Computing Conference (APSCC),
87–94. Visited on February 20, 2018. doi:10.1109/APSCC.2009.5394136.
http://ieeexplore.ieee.org/document/5394136/.

Truong, H. L., S. Dustdar, J. Gotze, T. Fleuren, P. Muller, S. E. Tbahriti, M. Mrissa,
and C. Ghedira. 2011. ”Exchanging Data Agreements in the DaaS Model”. In 2011
IEEE Asia-Pacific Services Computing Conference, 153–160. doi:10.1109/APSCC.
2011.59.

Truong, Hong-Linh, Marco Comerio, Flavio De Paoli, G. R. Gangadharan, and
Schahram Dustdar. 2012. ”Data Contracts for Cloud-Based Data Marketplaces”. Int.
J. Comput. Sci. Eng. 7, number 4 (): 280–295. ISSN: 1742-7185, visited on August 19,
2018. doi:10.1504/IJCSE.2012.049749. http://dx.doi.org/10.1504/
IJCSE.2012.049749.

Vijayakumar, Nithya N., and Beth Plale. 2006. ”Towards Low Overhead Prove-
nance Tracking in Near Real-Time Stream Filtering”. In Provenance and Annotation
of Data, 4145:46–54. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN: 978-3-540-
46302-3 978-3-540-46303-0, visited on August 18, 2018. doi:10.1007/11890850_
6. http://link.springer.com/10.1007/11890850_6.

71

http://dx.doi.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
https://benchmarkjs.com/
http://dx.doi.org/10.1007/978-3-319-10073-9_3
http://dx.doi.org/10.1007/978-3-319-10073-9_3
http://link.springer.com/10.1007/978-3-319-10073-9_3
http://link.springer.com/10.1007/978-3-319-10073-9_3
http://dx.doi.org/10.1007/978-3-642-40173-2_31
http://dx.doi.org/10.1007/978-3-642-40173-2_31
http://link.springer.com/10.1007/978-3-642-40173-2_31
http://link.springer.com/10.1007/978-3-642-40173-2_31
http://dx.doi.org/10.1109/SKG.2016.010
http://dx.doi.org/10.1145/2740908.2742475
http://dx.doi.org/10.1145/2740908.2742475
http://doi.acm.org/10.1145/2740908.2742475
http://dx.doi.org/10.1109/APSCC.2009.5394136
http://ieeexplore.ieee.org/document/5394136/
http://dx.doi.org/10.1109/APSCC.2011.59
http://dx.doi.org/10.1109/APSCC.2011.59
http://dx.doi.org/10.1504/IJCSE.2012.049749
http://dx.doi.org/10.1504/IJCSE.2012.049749
http://dx.doi.org/10.1504/IJCSE.2012.049749
http://dx.doi.org/10.1007/11890850_6
http://dx.doi.org/10.1007/11890850_6
http://link.springer.com/10.1007/11890850_6

Vu, Q. H., T. V. Pham, H. L. Truong, S. Dustdar, and R. Asal. 2012. ”DEMODS:
A Description Model for Data-as-a-Service”. In 2012 IEEE 26th International Con-
ference on Advanced Information Networking and Applications, 605–612. Visited on
February 20, 2018. doi:10.1109/AINA.2012.91. http://ieeexplore.ieee.
org/document/6184925/.

Wang, Yangjun. 2016. Stream Processing Systems Benchmark: StreamBench. Visited on
December 30, 2017. https://aaltodoc.aalto.fi:443/handle/12345678
9/20991.

Yin, S., and O. Kaynak. 2015. ”Big Data for Modern Industry: Challenges and
Trends [Point of View]”. Proceedings of the IEEE 103, number 2 (): 143–146. ISSN:
0018-9219, visited on March 23, 2018. doi:10.1109/JPROC.2015.2388958.
http://ieeexplore.ieee.org/document/7067026/.

Zaslavsky, Arkady, Charith Perera, and Dimitrios Georgakopoulos. 2013. ”Sensing
as a Service and Big Data” (). Visited on January 24, 2018. arXiv: 1301.0159 [cs].
http://arxiv.org/abs/1301.0159.

Zhu, Hongwei, and Stuart E Madnick. 2009. ”Finding New Uses For Information”.
MIT Sloan Management Review 50 (4): 18–21.

72

http://dx.doi.org/10.1109/AINA.2012.91
http://ieeexplore.ieee.org/document/6184925/
http://ieeexplore.ieee.org/document/6184925/
https://aaltodoc.aalto.fi:443/handle/123456789/20991
https://aaltodoc.aalto.fi:443/handle/123456789/20991
http://dx.doi.org/10.1109/JPROC.2015.2388958
http://ieeexplore.ieee.org/document/7067026/
http://arxiv.org/abs/1301.0159
http://arxiv.org/abs/1301.0159

Appendices

73

A Metadata model example extract

Output data of the example in Figure 11.

1 {
2 "prefix":{
3 "prov":"http://www.w3.org/ns/prov#",
4 "xsd":"http://www.w3.org/2001/XMLSchema",
5 "datamarket":"N/A",
6 "rights":"N/A",
7 "pricing":"N/A",
8 "dataquality":"N/A",
9 "dataproduct":"N/A",

10 "dataprovider":"N/A",
11 "compliance":"N/A",
12 "control":"N/A"
13 },
14 "agent":{
15 "dataprovider:UniversityOfJyvaskyla":{
16 "prov:type":"datamarket:DataProvider"
17 }
18 },
19 "entity":{
20 "dataproduct:exampleData1":{
21 "prov:type":"datamarket:OriginDataProduct",
22 "prov:time":"2018-09-24T12:07:34.891Z",
23 "pricing:cost":{
24 "$":0.001,
25 "type":"xsd:float"
26 },
27 "pricing:currency":"EUR",
28 "pricing:model":"perUse",
29 "control:LawandJurisdiction":"FI"
30 },
31 "dataproduct:exampleData2":{
32 "prov:type":"datamarket:OriginDataProduct",
33 "prov:time":"2018-09-24T12:07:34.891Z",
34 "pricing:cost":{
35 "$":0.001,
36 "type":"xsd:float"
37 },
38 "pricing:currency":"EUR",
39 "pricing:model":"perUse",
40 "control:LawandJurisdiction":"FI"
41 },
42 "dataproduct:exampleHybridData":{
43 "pricing:cost":{
44 "$":0.002,
45 "type":"xsd:float"
46 },
47 "pricing:currency":"EUR",

74

48 "pricing:model":"perUse",
49 "prov:type":"datamarket:HybridDataProduct"
50 }
51 },
52 "wasAttributedTo":{
53 "_:id1":{
54 "prov:entity":"dataproduct:exampleData1",
55 "prov:agent":"dataprovider:UniversityOfJyvaskyla"
56 },
57 "_:id2":{
58 "prov:entity":"dataproduct:exampleData2",
59 "prov:agent":"dataprovider:UniversityOfJyvaskyla"
60 }
61 },
62 "activity":{
63 "dataproduct:combineExampleData":{
64 "prov:startTime":"2018-09-24T12:07:34.891Z",
65 "prov:endTime":"2018-09-24T12:07:34.891Z",
66 "prov:type":"datamarket:createHybridDataProduct"
67 }
68 },
69 "used":{
70 "_:id3":{
71 "prov:activity":"dataproduct:combineExampleData",
72 "prov:entity":"dataproduct:exampleData1",
73 "prov:time":"2018-09-24T12:07:34.891Z"
74 },
75 "_:id4":{
76 "prov:activity":"dataproduct:combineExampleData",
77 "prov:entity":"dataproduct:exampleData2",
78 "prov:time":"2018-09-24T12:07:34.891Z"
79 }
80 },
81 "wasGeneratedBy":{
82 "_:id5":{
83 "prov:entity":"dataproduct:exampleHybridData",
84 "prov:activity":"dataproduct:combineExampleData",
85 "prov:time":"2018-09-24T12:07:34.893Z"
86 }
87 },
88 "wasDerivedFrom":{
89 "_:id6":{
90 "prov:generatedEntity":"dataproduct:exampleHybridData",
91 "prov:usedEntity":"dataproduct:exampleData1",
92 "prov:type":"prov:PrimarySource"
93 },
94 "_:id7":{
95 "prov:generatedEntity":"dataproduct:exampleHybridData",
96 "prov:usedEntity":"dataproduct:exampleData2"
97 }

75

98 }
99 }

B Data extracts from prototype

This section contains raw data snippets extracted from the prototype data
pipeline that is used in the demonstration phase in section 5.3.

B.1 Data

Example of JSON hybrid data product generated by the prototype data
pipeline:

1 {
2 "id":"1|2674|0|82|23092018",
3 "type":"bus",
4 "trainId":null,
5 "lineId":"3:RGTR--:555",
6 "line":"555",
7 "number":3413,
8 "departure":1537693260,
9 "delay":60,

10 "live":true,
11 "departureISO":"2018-09-23T11:01:00+02:00",
12 "destination":"Huldange, Schmitt",
13 "destinationId":110605006,
14 "departureId":"110307001",
15 "departureStation":{
16 "type":"Feature",
17 "geometry":{
18 "type":"Point",
19 "coordinates":[
20 6.082928,
21 50.118251
22]
23 },
24 "properties":{
25 "id":110307001,
26 "name":"Lausdorn"
27 }
28 },
29 "destinationStation":{
30 "type":"Feature",
31 "geometry":{
32 "type":"Point",
33 "coordinates":[
34 6.024526,
35 50.180537

76

36]
37 },
38 "properties":{
39 "id":110605006,
40 "name":"Huldange, Schmitt"
41 }
42 },
43 "distanceMatrix":{
44 "distance":9515.68,
45 "duration":550.82
46 }
47 }

B.2 Metadata

Example of JSON W3C PROV metadata generated by the prototype data
pipeline:

1 {
2 "prefix":{
3 "prov":"http://www.w3.org/ns/prov#",
4 "xsd":"http://www.w3.org/2001/XMLSchema",
5 "datamarket":"N/A",
6 "rights":"N/A",
7 "dataquality":"N/A",
8 "dataproduct":"N/A",
9 "datacompliance":"N/A",

10 "datacontrol":"N/A"
11 },
12 "entity":{
13 "dataproduct:departure":{
14 "datamarket:source":"https://api.tfl.lu/v1/stream/

StopPoint/Departures",
15 "rights:derivationRights":true,
16 "rights:commercialUse":false,
17 "dataquality:accuracy":{
18 "$":1.0,
19 "type":"xsd:float"
20 },
21 "dataquality:completeness":{
22 "$":1.0,
23 "type":"xsd:float"
24 },
25 "dataquality:uptodateness":{
26 "$":1.0,
27 "type":"xsd:float"
28 },
29 "datacontrol:LawandJurisdiction":"LUX",
30 "prov:type":"datamarket:OriginDataProduct",

77

31 "prov:time":"2018-09-23T08:00:00.951Z"
32 },
33 "dataproduct:station-departureStation":{
34 "datamarket:cost":"0.001",
35 "datamarket:source":"https://api.tfl.lu/v1/StopPoint/11030

7001",
36 "rights:derivationRights":true,
37 "rights:commercialUse":true,
38 "dataquality:accuracy":{
39 "$":1.0,
40 "type":"xsd:float"
41 },
42 "dataquality:completeness":{
43 "$":1.0,
44 "type":"xsd:float"
45 },
46 "dataquality:uptodateness":{
47 "$":1.0,
48 "type":"xsd:float"
49 },
50 "control:LawandJurisdiction":"LUX",
51 "prov:type":"datamarket:OriginDataProduct",
52 "prov:time":"2018-09-23T08:00:01.197Z"
53 },
54 "dataproduct:station-destinationStation":{
55 "datamarket:cost":"0.001",
56 "datamarket:source":"https://api.tfl.lu/v1/StopPoint/11060

5006",
57 "rights:derivationRights":true,
58 "rights:commercialUse":true,
59 "dataquality:accuracy":{
60 "$":1.0,
61 "type":"xsd:float"
62 },
63 "dataquality:completeness":{
64 "$":1.0,
65 "type":"xsd:float"
66 },
67 "dataquality:uptodateness":{
68 "$":1.0,
69 "type":"xsd:float"
70 },
71 "control:LawandJurisdiction":"LUX",
72 "prov:type":"datamarket:OriginDataProduct",
73 "prov:time":"2018-09-23T08:00:01.356Z"
74 },
75 "dataproduct:departureWithCoords":{
76 "datamarket:cost":"0.002",
77 "prov:type":"datamarket:HybridDataProduct"
78 },

78

79 "dataproduct:distanceMatrix":{
80 "datamarket:cost":"0.001",
81 "datamarket:source":"https://api.openrouteservice.org/

matrix",
82 "rights:derivationRights":true,
83 "rights:commercialUse":true,
84 "dataquality:accuracy":{
85 "$":0.9,
86 "type":"xsd:float"
87 },
88 "dataquality:completeness":{
89 "$":1.0,
90 "type":"xsd:float"
91 },
92 "dataquality:uptodateness":{
93 "$":1.0,
94 "type":"xsd:float"
95 },
96 "control:LawandJurisdiction":"EU",
97 "prov:type":"datamarket:OriginDataProduct",
98 "prov:time":"2018-09-23T08:00:01.659Z"
99 },

100 "dataproduct:departureWithDistanceMatrix":{
101 "datamarket:cost":"0.003",
102 "prov:type":"datamarket:HybridDataProduct"
103 }
104 },
105 "activity":{
106 "dataproduct:enrichCoordinates":{
107 "prov:startTime":"2018-09-23T08:00:00.958Z",
108 "prov:endTime":"2018-09-23T08:00:01.356Z",
109 "prov:type":"datamarket:createHybridDataProduct"
110 },
111 "dataproduct:enrichDistanceMatrix":{
112 "prov:startTime":"2018-09-23T08:00:01.359Z",
113 "prov:endTime":"2018-09-23T08:00:01.659Z",
114 "prov:type":"datamarket:createHybridDataProduct"
115 }
116 },
117 "wasDerivedFrom":{
118 "_:id1":{
119 "prov:generatedEntity":"dataproduct:departureWithCoords",
120 "prov:usedEntity":"dataproduct:departure",
121 "prov:type":"prov:PrimarySource"
122 },
123 "_:id2":{
124 "prov:generatedEntity":"dataproduct:departureWithCoords",
125 "prov:usedEntity":"dataproduct:station-departureStation"
126 },
127 "_:id3":{

79

128 "prov:generatedEntity":"dataproduct:departureWithCoords",
129 "prov:usedEntity":"dataproduct:station-destinationStation"
130 },
131 "_:id8":{
132 "prov:generatedEntity":"dataproduct:

departureWithDistanceMatrix",
133 "prov:usedEntity":"dataproduct:departureWithCoords",
134 "prov:type":"prov:PrimarySource"
135 }
136 },
137 "used":{
138 "_:id4":{
139 "prov:activity":"dataproduct:enrichCoordinates",
140 "prov:entity":"dataproduct:departureWithCoords",
141 "prov:time":"2018-09-23T08:00:00.958Z"
142 },
143 "_:id5":{
144 "prov:activity":"dataproduct:enrichCoordinates",
145 "prov:entity":"dataproduct:dataset1",
146 "prov:time":"2018-09-23T08:00:01.356Z"
147 },
148 "_:id6":{
149 "prov:activity":"dataproduct:enrichCoordinates",
150 "prov:entity":"dataproduct:dataset2",
151 "prov:time":"2018-09-23T08:00:01.356Z"
152 },
153 "_:id9":{
154 "prov:activity":"dataproduct:enrichDistanceMatrix",
155 "prov:entity":"dataproduct:departureWithCoords",
156 "prov:time":"2018-09-23T08:00:01.359Z"
157 }
158 },
159 "wasGeneratedBy":{
160 "_:id7":{
161 "prov:entity":"dataproduct:departureWithCoords",
162 "prov:activity":"dataproduct:enrichCoordinates",
163 "prov:time":"2018-09-23T08:00:01.356Z"
164 },
165 "_:id10":{
166 "prov:entity":"dataproduct:departureWithDistanceMatrix",
167 "prov:activity":"dataproduct:enrichDistanceMatrix",
168 "prov:time":"2018-09-23T08:00:01.659Z"
169 }
170 }
171 }

80

	1 INTRODUCTION
	1.1 Research problem, research questions, and limitations
	1.2 Research method

	2 DATA MARKETPLACES
	2.1 Introduction to data marketplaces
	2.2 Categories of products and users on data marketplaces
	2.3 Data marketplace structures
	2.4 Requirements of multilateral data marketplaces
	2.5 Data contracts
	2.6 Summary

	3 Data-as-a-Service
	3.1 Introduction to Data-as-a-Service
	3.2 Properties and processing of data
	3.2.1 Data formats and their structures
	3.2.2 Properties of big data
	3.2.3 Stream Processing

	3.3 Summary

	4 PROVENANCE
	4.1 Open Provenance Model and PROV
	4.2 Earlier PROV research and implementations
	4.3 Summary

	5 A DATA MARKETPLACE METADATA MODEL
	5.1 Requirements, Objectives and Evaluation
	5.1.1 Objectives
	5.1.2 Evaluation and metrics

	5.2 Development of metadata model
	5.3 Demonstration
	5.3.1 Prototype architecture
	5.3.2 Data sources and the scenario
	5.3.3 Executing the prototype

	5.4 Evaluation
	5.4.1 Evaluation environment
	5.4.2 Measurement: Output data volume
	5.4.3 Measurement: Latency
	5.4.4 Measurement: Simultaneous pipelines
	5.4.5 Measurement: Message rates

	5.5 Conclusion

	6 Discussion
	REFERENCES
	Appendices
	A Metadata model example extract
	B Data extracts from prototype
	B.1 Data
	B.2 Metadata

