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Abstract: In the paper counterexamples to the Kalman conjecture with smooth nonlinearity basing on
the Fitts system, that are periodic solution or hidden chaotic attractor are presented. It is shown, that
despite the fact that Kalman’s conjecture (as well as Aizerman’s) turned out to be incorrect in the case
of n > 3, it had a huge impact on the theory of absolute stability, namely, the selection of the class of
nonlinear systems whose stability can be studied with linear methods.
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1. INTRODUCTION

In the middle of the past century the theory of absolute sta-
bility was rapidly developed [Lurie and Postnikov, 1944, Bul-
gakov, 1943, Aizerman, 1949, Letov, 1965, Pliss, 1958, LaSalle
and Lefschetz, 1961, Yakubovich, 1958, Aizerman and Gant-
makher, 1963, Andronov et al., 1966, Gelig et al., 1978].history

For continuous and discontinuous nonlinearities one of the
challenging problems is the selection of classes of systems for
which it is possible to obtain a necessary and sufficient condi-
tion for absolute stability. The history of attempts to solve this
problem is connected with the Aizermans’ [Aizerman, 1949]
and Kalmans’ [Kalman, 1957] conjectures about absolute sta-
bility of control systems with nonlinearity satysfying Routh-
Hurwitz criterion. In the present paper the differences in the
behavior of systems with continuous and discontinuous nonlin-
earities that are counterexamples to the Kalman conjecture are
considered.

Aizerman’s conjecture was complitely investigated in two-
dimensional case [Malkin, 1952, Erugin, 1952, Krasovsky,
1952]. It turned out to be true except for the special case when
trajectories tend to infinity.

In 1957 R.E. Kalman, being unaware of Aizerman’s research,
proposed a statement concerning restrictions on the derivative
of nonlinearity to be in the Hurwitz angle.

Kalman conjecture is more rigorous than Aizermans’ one, so
it turned out to be valid for two- and three-dimensional cases
[Leonov et al., 1996]. These cases are natural for applied
mechanical problems, so it is necessary to emphasize Kalmans’
scientific intuition.

Unlike the continuous-time case, Kalman conjecture is false
in general for two-dimensional discrete-time systems [Alli-Oke
et al., 2012].
� This work was supported by the grant NSh-2858.2018.1 for the Leading
Scientific Schools of Russia (2018-2019).

By now Kalman conjecture remains unsolved in the general
case.

2. KALMAN CONJECTURE

Consider the following system with one scalar non-linearity in
the Lur’e form

ẋ = Ax+bϕ(σ), σ = c∗x, (1)
where A is a constant n × n matrix, b and c - constant n-
dimensional vectors, all quantities are real, ∗ is the sign of
transposition, ϕ is a smooth scalar function with ϕ(0) = 0 and
the following condition is satisfied at differentiability points:

k1 ≤ ϕ ′(σ)≤ k2, σ ∈ (−∞,+∞), (2)
where k1 is a number or −∞, k2 is a number or +∞.

In 1957, R.E. Kalman formulated the following conjecture:
if a linear system ẋ = Ax + kbc∗x, k ∈ [k1,k2], is globally
asymptotically stable, then the system (1) is also globally
asymptotically stable. Let us recall that a system is globally
asymptotically stable if its zero solution is Lyapunov stable and
limt→+∞ |x(t,x0)|= 0 for any x0 ∈ Rn.

3. HISTORY

The first counterexample to the Kalman conjecture were ob-
tained due to experiments by Fitts [1966], who studied oscilla-
tions in nonlinear feedback systems.

Further attempts to construct counterexamples were mainly
related to the consideration of systems with discontinuous
piecewise-linear nonlinearities and integration of such systems
in sections of linearity [Andronov et al., 1966].

In the beginning of the past century the concept of discontin-
uous system appeared in study of various applied mechanical
problems, e.g. vibrations in a mechanical model with dry fric-
tion [den Hartog, 1930], damping flutter in aircraft control sys-
tems with dry friction [Keldysh, 1944], autopilot construction
problem [Andronov and Bautin, 1955].
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related to the consideration of systems with discontinuous
piecewise-linear nonlinearities and integration of such systems
in sections of linearity [Andronov et al., 1966].

In the beginning of the past century the concept of discontin-
uous system appeared in study of various applied mechanical
problems, e.g. vibrations in a mechanical model with dry fric-
tion [den Hartog, 1930], damping flutter in aircraft control sys-
tems with dry friction [Keldysh, 1944], autopilot construction
problem [Andronov and Bautin, 1955].
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Andronov et al. [1966] introduced the idea of trajectory
“sewing” and developed all the necessary “ingredients” of dis-
continuous systems theory. Later, the elements of the discontin-
uous systems theory were rigorously formulated in [Wazewski,
1961, Filippov, 1988].

At first the development of the theory of absolute stability was
related to the names of its founders Lurie and Postnikov [1944].
They tried to solve the problem of absolute stability of auto-
matic control systems using Lyapunov function method. Popov
[1961, 1973] developed original and effective criterion in the
form of frequency sufficient condition for absolute stability.
The conjecture that sufficient conditions of absolute stability,
obtained by using of frequency methods, are also necessary
conditions was refuted by Yakubovich [1967], who constructed
an absolutely stable system, for which the Popov’s frequency
condition is not satisfied, and later by Pyatnitsky [1973]. Impor-
tant results by Yakubovich [1962] and Kalman [1963] resulted
in a well-known Kalman-Yakubovich-Popov lemma (see [Bara-
banov et al., 1996]).

Also it was natural to generalize various concepts of Lya-
punov’s stability theory and frequency approach to the discon-
tinuous systems theory. The first corresponding results and new
different approaches were obtained by representatives of the
scientific school of V.A. Yakubovich ([Yakubovich, 1967, 1975,
Gelig et al., 1978, Barabanov et al., 1996]).

Mention that similar results independently obtained in [Shevitz
and Paden, 1994].

Later results given in [Gelig et al., 1978] were developed
and new methods of stability analysis of discontinuous control
systems were presented. Note that only sufficient conditions for
absolute stability of discontinuous systems were stated [Gelig
et al., 1978].

Now let us consider two counterexamples to Kalman conjecture
and verify the fulfillment of analytical sufficient conditions for
global asymptotic stability of corresponding systems.

4. FITTS COUNTEREXAMPLE

As already mentioned, the first counterexample to the Kalman
conjecture was proposed by Fitts [Fitts, 1966], who performed
the computer simulation of system (1) with the transfer function

W (p) =
p2

((p+β )2 +0.92)((p+β )2 +1.12)
(3)

and the cubic nonlinearity ϕ(σ) = Kσ3. As a result of the
simulation, Fitts discovered periodic solutions of the system
(1) for the values of parameters m1 = 0.9, m2 = 1.1, K = 10
and β ∈ (0.01, 0.75). However, later N.E. Barabanov showed
in [Barabanov, 1988] that the results of the experiments were
incorrect for a part of the parameters that Fitts considered,
specifically, for β ∈ (0.572,0.75). The Kalman conjecture was
further discussed and doubts in the counterexamples of Fitts
and Barabanov were raised in [Bernat and Llibre, 1996, Glut-
syuk, 1998, Meisters, 1996].

4.1 Fitts’ counterexample variation

Let us present the following novel variation of Fitts’ coun-
terexample. Consider system (1) with n = 4 defined by transfer
function (3) from Fitts’ counterexample with the nonlinearity

x1

x2 x3= x4= 0

a
0 x

1  + a
1 x

2 = 1
0 1/a0-1/a0

a
0 x

1  + a
1 x

2 = -1
Fig. 1. Sliding mode manifold {(x1,x2,x3,x4) ∈ R4

∣∣ x3 = x4 =
0,−1≤ a0x1+a1x2 ≤ 1} for the Fitts system (4). Arrowed
lines define the motion on the surface, thick green line
defines the rest segment.

ϕ(σ) = sign(σ). Deriving the system from transfer function
(3), one obtains [Leonov, 2001]:

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = x4,
ẋ4 =−a0x1 −a1x2 −a2x3 −a3x4 + sign(−x3),

(4)

where a0 = (m2
1 + β 2)(m2

2 + β 2), a1 = 2β (m2
1 + m2

2 + 2β 2),
a2 = m2

1 +m2
2 +6β 2, a3 = 4β .

Here

A =




0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3


 ,b =




0
0
0
1


 ,c =




0
0
−1
0


 . (5)

Sliding mode manifold for the system (4) is given by:

Dfitts = {(x1,x2,x3,x4) ∈ R4 ∣∣ x3 = x4 = 0,
−1 ≤ a0x1 +a1x2 ≤ 1},

Moreover, a sliding mode is described by the equations
ẋ1 = x2, ẋ2 = 0, ẋ3 = 0, ẋ4 = 0, (6)

so for the point (x01,x02,0,0) ∈ Dfitts one gets x1(t) = x02t +
x01,x2(t)≡ x02. The rest segment is

Λfitts = {(x1,x2,x3,x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0, (7)

− 1
a0

≤ x1 ≤ 1
a0
}. (8)

4.2 Stability of Rest Segment

If there are trajectories that tend to some periodic solution of
the system or infinity, then one can say that the system is not
globally asymptotically stable.

Hidden and self-excited classification. Since is not proven
that system (4) is globally asymptotically stable, one can expect
the existence of a nontrivial attractor in the phase space. First
let us recall the definition of attractor.

Consider system
ẋ = f (x, t), (9)

where x ∈ Rn, f : Rn → Rn Define by x(t,x0) a solution of (9)
such that x(0,x0) = x0.
Definition 1. For system (9), a bounded closed invariant set K
is

(i) a (local) attractor if it is a locally attractive set (i.e.
limt→+∞ dist(K,x(t,x0)) = 0 ∀x0 ∈ K(ε), where K(ε) is
a certain ε-neighborhood of set K),
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(ii) a global attractor if it is a globally attractive set (i.e.
limt→+∞ dist(K,x(t,x0)) = 0 ∀x0 ∈ Rn),

where dist(K,x) = infv∈K ||v−x|| is the distance from the point
x ∈ Rn to the set K ⊂ Rn (see, e.g. [Leonov et al., 2015]).

Since the whole phase space is a global attractor and any
finite union of attractors is again an attractor, it is reasonable
to consider only minimal global and local attractors, i.e. the
smallest bounded closed invariant set possessing the property
(ii) or (i).

Localization and analysis of attractors is one of the main tasks
of the investigation of dynamical systems. While trivial attrac-
tors (stable equilibrium points) can be easily found analytically,
the search of periodic and chaotic attractors can turn out to be a
challenging problem. For numerical localization of an attractor
one needs to choose an initial point in the basin of attraction
and observe how the trajectory, starting from this initial point,
after a transient process visualizes the attractor. Leonov and
Kuznetsov introduced in [Leonov et al., 2011, Leonov and
Kuznetsov, 2011, Kuznetsov and Leonov, 2014] a classification
of attractors based on the simplicity of finding the basins of
attraction in the phase space.
Definition 2. An attractor is called a self-excited attractor if its
basin of attraction intersects with any open neighborhood of an
equilibrium, otherwise, it is called a hidden attractor.

Self-excited attractors can be easily visualized because its basin
of attraction is connected with an unstable equilibrium and,
therefore, can be localized numerically. For a hidden attractor,
its basin of attraction is not connected with equilibria and, thus,
the search and visualization of hidden attractors in the phase
space may be a difficult task.

Further using a special computational package [Piiroinen and
Kuznetsov, 2008] and Andronov’s point-mapping method [An-
dronov and Maier, 1947], it will be shown that in system (4), for
certain values of the β parameter it is possible to localize hidden
attractors. Also it will be shown that this hidden attractors
coexist with periodic solutions.

4.3 Trajectories computation

We performed numerical simulation in the vicinity ε = 0.1
of the rest segment (7) in the subspace (x1,x4) while x2 =
x3 = 0. In our experiment for integration of solutions we used
computational package from [Piiroinen and Kuznetsov, 2008].
Trajectories with initial point in the vicinity tended to a periodic
solution (see Fig. 2).

4.4 Trajectories sewing

Let’s write down the solutions of linear systems ẋ = Ax + b
and ẋ = Ax−b given by (5) in the corresponding regions Σ+ =
{x = (x1,x2,x3,x4) ∈ R4 | x3 < 0}, Σ− = {x = (x1,x2,x3,x4) ∈
R4 | x3 > 0}. Trajectories of (4) in three regions of phase
space as the solutions of the linear systems may be obtained
analytically without using numerical methods for solving or-
dinary differential equations and sewing them when switch-
ing modes. This gives the trajectory released from the point
(x01,x02,x03,x04) = (10,10,10,10) for parameters values m1 =
0.9,m2 = 1.1,β = 0.03 on the time interval t ∈ [0,500] and
precision of 32 digits. Calculation shows that this trajectory
attracts to the periodic orbit (see Fig. 3).

Fig. 2. Trajectory (gray) released from the point (-
1.105017,0,0,0.05) (yellow) from vicinity of rest segment
Λfitts tends to periodic solution (blue). β = 0.03
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Fig. 3. Modeling of the system (4) for β = 0.03. Trajectories
of the system ẋ = Ax+ b (red) are being sewed with the
trajectories of the system ẋ=Ax−b (blue) at the switching
mode points (black).

4.5 Point-mapping method

This result can be clarified using Andronov’s point-mapping
method [Andronov and Maier, 1947]. Note that periodic so-
lution of the system (4) consists of two parts: x+(t,x+0 ) ∈ Σ+,
t ∈ [0,T sw

+ ] (mode I) and x−(t,x−0 ) ∈ Σ−, t ∈ [0,T sw
− ] (mode

II). Wherein x±(0,x±0 ) = x±0 = (x±01,x
±
02,0,x

±
04), where x+04 < 0,

x−04 > 0 and x±(T sw
± ,x±0 )= x∓0 . Therefore the following equality

holds:
x−(T sw

− ,x−0 ) = x+0 = x+(−T sw
+ ,x−0 ). (10)

By the analogy with Sec. 4.4 for solutions x±(t,x±0 ), the so-
lution can be found analytically. For parameters m1 = 0.9,
m2 = 1.1, β = 0.03 the values, found with the help of MATLAB
software, are given in Tab. 1. Using the coordinates of the initial
point (x−01,x

−
02,0,x

−
04) we can localize orbitally asymptotically

stable periodic solution (see Fig. 8). Note that this periodic
solution coexists with periodic solution obtained in 4.3.

4.6 Strange attractor

Now we are going to use continuation method for numerical
localization of nonperiodic strange attractor in the system (4).
It is often used for hidden attractors localization [Leonov et al.,
2010, Bragin et al., 2011, Leonov and Kuznetsov, 2011, 2013].
In this method, a sequence of systems is considered and each
corresponds to a specially chosen parameter with values in a
certain interval. It is assumed that for the first (initial) sys-
tem the initial data for numerical localization of periodic (or
chaotic) solutions can be obtained analytically. Thus, we can
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(ii) a global attractor if it is a globally attractive set (i.e.
limt→+∞ dist(K,x(t,x0)) = 0 ∀x0 ∈ Rn),

where dist(K,x) = infv∈K ||v−x|| is the distance from the point
x ∈ Rn to the set K ⊂ Rn (see, e.g. [Leonov et al., 2015]).

Since the whole phase space is a global attractor and any
finite union of attractors is again an attractor, it is reasonable
to consider only minimal global and local attractors, i.e. the
smallest bounded closed invariant set possessing the property
(ii) or (i).

Localization and analysis of attractors is one of the main tasks
of the investigation of dynamical systems. While trivial attrac-
tors (stable equilibrium points) can be easily found analytically,
the search of periodic and chaotic attractors can turn out to be a
challenging problem. For numerical localization of an attractor
one needs to choose an initial point in the basin of attraction
and observe how the trajectory, starting from this initial point,
after a transient process visualizes the attractor. Leonov and
Kuznetsov introduced in [Leonov et al., 2011, Leonov and
Kuznetsov, 2011, Kuznetsov and Leonov, 2014] a classification
of attractors based on the simplicity of finding the basins of
attraction in the phase space.
Definition 2. An attractor is called a self-excited attractor if its
basin of attraction intersects with any open neighborhood of an
equilibrium, otherwise, it is called a hidden attractor.

Self-excited attractors can be easily visualized because its basin
of attraction is connected with an unstable equilibrium and,
therefore, can be localized numerically. For a hidden attractor,
its basin of attraction is not connected with equilibria and, thus,
the search and visualization of hidden attractors in the phase
space may be a difficult task.

Further using a special computational package [Piiroinen and
Kuznetsov, 2008] and Andronov’s point-mapping method [An-
dronov and Maier, 1947], it will be shown that in system (4), for
certain values of the β parameter it is possible to localize hidden
attractors. Also it will be shown that this hidden attractors
coexist with periodic solutions.

4.3 Trajectories computation

We performed numerical simulation in the vicinity ε = 0.1
of the rest segment (7) in the subspace (x1,x4) while x2 =
x3 = 0. In our experiment for integration of solutions we used
computational package from [Piiroinen and Kuznetsov, 2008].
Trajectories with initial point in the vicinity tended to a periodic
solution (see Fig. 2).

4.4 Trajectories sewing

Let’s write down the solutions of linear systems ẋ = Ax + b
and ẋ = Ax−b given by (5) in the corresponding regions Σ+ =
{x = (x1,x2,x3,x4) ∈ R4 | x3 < 0}, Σ− = {x = (x1,x2,x3,x4) ∈
R4 | x3 > 0}. Trajectories of (4) in three regions of phase
space as the solutions of the linear systems may be obtained
analytically without using numerical methods for solving or-
dinary differential equations and sewing them when switch-
ing modes. This gives the trajectory released from the point
(x01,x02,x03,x04) = (10,10,10,10) for parameters values m1 =
0.9,m2 = 1.1,β = 0.03 on the time interval t ∈ [0,500] and
precision of 32 digits. Calculation shows that this trajectory
attracts to the periodic orbit (see Fig. 3).

Fig. 2. Trajectory (gray) released from the point (-
1.105017,0,0,0.05) (yellow) from vicinity of rest segment
Λfitts tends to periodic solution (blue). β = 0.03
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Fig. 3. Modeling of the system (4) for β = 0.03. Trajectories
of the system ẋ = Ax+ b (red) are being sewed with the
trajectories of the system ẋ=Ax−b (blue) at the switching
mode points (black).

4.5 Point-mapping method

This result can be clarified using Andronov’s point-mapping
method [Andronov and Maier, 1947]. Note that periodic so-
lution of the system (4) consists of two parts: x+(t,x+0 ) ∈ Σ+,
t ∈ [0,T sw

+ ] (mode I) and x−(t,x−0 ) ∈ Σ−, t ∈ [0,T sw
− ] (mode

II). Wherein x±(0,x±0 ) = x±0 = (x±01,x
±
02,0,x

±
04), where x+04 < 0,

x−04 > 0 and x±(T sw
± ,x±0 )= x∓0 . Therefore the following equality

holds:
x−(T sw

− ,x−0 ) = x+0 = x+(−T sw
+ ,x−0 ). (10)

By the analogy with Sec. 4.4 for solutions x±(t,x±0 ), the so-
lution can be found analytically. For parameters m1 = 0.9,
m2 = 1.1, β = 0.03 the values, found with the help of MATLAB
software, are given in Tab. 1. Using the coordinates of the initial
point (x−01,x

−
02,0,x

−
04) we can localize orbitally asymptotically

stable periodic solution (see Fig. 8). Note that this periodic
solution coexists with periodic solution obtained in 4.3.

4.6 Strange attractor

Now we are going to use continuation method for numerical
localization of nonperiodic strange attractor in the system (4).
It is often used for hidden attractors localization [Leonov et al.,
2010, Bragin et al., 2011, Leonov and Kuznetsov, 2011, 2013].
In this method, a sequence of systems is considered and each
corresponds to a specially chosen parameter with values in a
certain interval. It is assumed that for the first (initial) sys-
tem the initial data for numerical localization of periodic (or
chaotic) solutions can be obtained analytically. Thus, we can

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

156

Table 1. Coordinates of the point on the periodic
solution of the system (4) for β = 0.03 and the

duration of the modes I and II.

x−01 −0.62520516260693109534342362490723

x−02 −3.7324097072650610465825278562594

x−04 3.4754169728697120793989274111636

T sw
+ 6.0861163299591904401929427933543

T sw
− 3.2558143241394617470571435917368

consider a system with an initial self-excited attractor as an
initial system. Then we can numerically trace the transforma-
tion of the initial solution in the transition from one system to
another. At the same time, the initial data for the solution of
the next system is the endpoint of the solution of the previous
system. The latter system corresponds to a system for which
a hidden attractor is sought. As a result, if there is no loss of
stability bifurcation, then it is possible to find hidden attractor.

Consider an interval β ∈ [0.03,0.1] and choose the partition
with the step 0.0175. For fixed m1 = 0.9, m2 = 1.1 and for
each β = β j = 0.03+ 0.0175 j, j = 0, . . . ,4 we will integrate
the solution x j(t) of the system (4) on the time interval [0,T ],
T = 2000.

We use as initial data for the system with β = β j+1 the endpoint
of the solution with β = β j, i.e. x j+1(0) := x j(T ). Here we can
integrate the solutions both using the procedure described in
Sec. 4.3 and special computational package described in [Pi-
iroinen and Kuznetsov, 2008] for modeling solutions in Filip-
pov sense. Using the second option and performing the contin-
uation method we localized strange nonperiodic attractor (see
Fig. 6,Fig. 7). Also note that this attractor coexist with periodic
solution (see Fig. 9, Fig. 10).

This strange attractor (as well as periodic solution for β = 0.03)
remains under the reverse scenario of discontinuous Aizerman
– Pyatnitsky approximation [Aizerman and Pyatnitskiy, 1974],
i.e. transition from nonlinearity ϕ(σ) = ψ0(σ) = signσ to
ϕ(σ) = ψN(σ) nonlinearity where

ϕ(σ) = ψN(σ)≡





−1, σ ≤−N,
1
N σ , −N ≤ σ ≤ N,

1, σ ≥ N
(11)

for sufficiently small values of N (e.g. for N = 0.05) in the
system (4).

Then using continuation method we consider nonlinearity
ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N)−ψN(σ)) for ε in-
creasing from 0 to 1 with the step 0.1 to implement transition
from piecewise-differentiable nonlinearity (11) (corresponding
to ϕ(σ) = χ0(σ) = ψN(σ)) to smooth nonlinearity ϕ(σ) =
χ1(σ) = tanh(σ/N). During this transition the local strange
attractor obtained in the previous steps is preserved (see Fig. 4–
5).

Thus in the system (1) with ϕ(σ) = tanh(σ/N) for sufficient
small values of N there is strange attractor and for k1 < 0 and
k2 =+∞ Kalman conjecture is wrong.

5. BARABANOV SYSTEM

In 1988 N.E. Barabanov constructed the following counterex-
ample to the Kalman conjecture:
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ϕ(σ) = χ
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Fig. 4. Strange attractor in the system (4) for β = 0.1 and
ϕ(σ) = χε(σ) ≡ ψN(σ)+ ε (tanh(σ/N)−ψN(σ)), N =
0.01, ε = 0.5.
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Fig. 5. Strange attractor in the system (4) for β = 0.1 and
ϕ(σ) = χε(σ) ≡ ψN(σ)+ ε (tanh(σ/N)−ψN(σ)), N =
0.01, ε = 1.
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Fig. 6. Projection of the strange attractor in the system (4) for
β = 0.1 in the subspace (x1,x2,x3).
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Fig. 7. Projection of the strange attractor in the system (4) for
β = 0.1 in the subspace (x1,x3,x4).

ẋ1 = x2,
ẋ2 =−x4,
ẋ3 = x1 −2x4 −ϕ(x4),
ẋ4 = x1 + x3 − x4 −ϕ(x4),

(12)

where ϕ = sign(σ). In this case

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

157



142	 N.V. Kuznetsov  et al. / IFAC PapersOnLine 51-33 (2018) 138–143

970 975 980 985 990 995 1000 1005

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t

x3

Fig. 8. Periodic solution of the system (4) for β = 0.03.

Fig. 9. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x1,x3,x4)

Fig. 10. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x2,x3,x4)

A =




0 1 0 0
0 0 0 −1
1 0 0 −2
1 0 1 −1


 , b =




0
0
−1
−1


 , c =




0
0
0
1


 .

Sliding mode manifold for system (12) is

Dbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x4 = 0, x2 =C1,

x1 =C1t +C2, x3 =C3e−t ,−1 ≤ x1 + x3 ≤ 1}

Rest segment for the system (12) is

Λbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0,
−1 ≤ x1 ≤ 1}.

Fig. 11. Trajectory (black) released from the point (0,0,0,ε)
(green) and tends to the periodic solution (red) in the
subspace (x1,x3,x4). T = 5000.

5.1 Trajectories computation

For the Barabanov system the trajectories released from the
vicinity of the rest segment have been numerically found by
a simulation. In our experiment vicinity radius is ε = 0.1 in
the space (x1,x4) (in this case we take x2 = x3 = 0). Resulting
trajectories tended to the periodic solutions of the system (12),
see Fig. 11.

6. CONCLUSION

In this paper we presented counterexamples to the Kalman con-
jecture with smooth nonlinearity basing on the Fitts system, that
are periodic solution or hidden chaotic attractor. However, de-
spite the fact that Kalman’s conjecture (as well as Aizerman’s)
turned out to be incorrect in the case of n > 3, it had a huge
impact on the theory of absolute stability, namely, the selection
of the class of nonlinear systems whose stability can be studied
with linear methods.
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Fig. 8. Periodic solution of the system (4) for β = 0.03.

Fig. 9. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x1,x3,x4)

Fig. 10. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x2,x3,x4)

A =




0 1 0 0
0 0 0 −1
1 0 0 −2
1 0 1 −1


 , b =




0
0
−1
−1


 , c =




0
0
0
1


 .

Sliding mode manifold for system (12) is

Dbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x4 = 0, x2 =C1,

x1 =C1t +C2, x3 =C3e−t ,−1 ≤ x1 + x3 ≤ 1}

Rest segment for the system (12) is

Λbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0,
−1 ≤ x1 ≤ 1}.

Fig. 11. Trajectory (black) released from the point (0,0,0,ε)
(green) and tends to the periodic solution (red) in the
subspace (x1,x3,x4). T = 5000.

5.1 Trajectories computation

For the Barabanov system the trajectories released from the
vicinity of the rest segment have been numerically found by
a simulation. In our experiment vicinity radius is ε = 0.1 in
the space (x1,x4) (in this case we take x2 = x3 = 0). Resulting
trajectories tended to the periodic solutions of the system (12),
see Fig. 11.

6. CONCLUSION

In this paper we presented counterexamples to the Kalman con-
jecture with smooth nonlinearity basing on the Fitts system, that
are periodic solution or hidden chaotic attractor. However, de-
spite the fact that Kalman’s conjecture (as well as Aizerman’s)
turned out to be incorrect in the case of n > 3, it had a huge
impact on the theory of absolute stability, namely, the selection
of the class of nonlinear systems whose stability can be studied
with linear methods.
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