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Abstract: Since the mid 2000’s, deep learning has received much attention and today its ap-

plications are almost everywhere. Around the same timespan the amount of freely available

satellite data has grown, especially after Sentinel-2 missions started. This data has a lot of

remote sensing applications, but the amount of produced data is practically impossible for

humans to analyze or process. This thesis tested the viability of U-Net, a well-known neu-

ral network architecture, in land cover classification from multispectral satellite images to

different classification levels in the Rakkolanjoki river drainage basin area. Classification re-

sults from only visible light bandwidths, all Sentinel-2 bands, precomputed spectral indices

and all available features were compared, and best results were achieved with all available

features. Even with next to none fine-tuning and short training time, implemented version

of U-Net managed to accurately classify over 90% of the pixels for the easiest classification

level (CORINE land cover level 1), and around 75% for the hardest level. Produced seg-

mentation maps were also visually observed and compared to both ground truth labels and

RGB-composites of the satellite image. As as conclusion, U-Net is a viable baseline for the

needs of Finnish Environment Institute, and will later be developed further.
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Suomenkielinen tiivistelmä: Syväoppiminen saanut paljon huomiota 2000-luvun puolivä-

listä alkaen, ja tänä päivänä sen sovelluksia on lähes kaikkialla. Samalla aikavälillä avoimen

satelliittikuvadatan määrä on kasvanut, erityisesti Sentinel-2 satelliittien laukaisujen jälkeen.

Tätä dataa voidaan hyödyntää useissa kaukokartoitussovellutuksissa, mutta tämän datamää-

rän analysointi ja käsittely on ihmisille käytännössä mahdotonta. Tässä tutkielmassa testat-

tiin erään tunnetun neuroverkkoarkkitehtuurin, U-Netin, suorituskykyä Rakkolanjoen valuma-

alueen maanpeiteluokittelussa monispektrisatelliittikuvista eri luokittelutarkkuuksille. Eri

lähtodatoilla saatuja luokittelutarkkuuksia vertailtiin keskenään, ja parhaat luokittelutulok-

set saatiin hyödyntämällä sekä kaikkea Sentinel-2 dataa että erikseen laskettuja spektri-

indeksejä. Huolimatta lähes olemattomasta verkkojen hienosäädöstä ja lyhyestä koulutusa-

jasta saadut luokittelutulokset ovat varsin lupaavia helpoimman luokittelutason (CORINE

land cover taso 1) tarkkuuden ollessa yli 90% ja haastavimmallakin yli 75%. Tuotettuja

maanpeitekarttoja vertailtiin myös visuaalisesti sekä lähtötietoihin että satelliittikuviin. Jo-

htopäätöksenä voidaan todeta, että U-Net on käyttökelpoinen malli Suomen Ympäristökeskuk-

sen tarpeisiin, ja kehitettyä mallia tullaan jatkokehittämään edelleen.

Avainsanat: Maanpeiteluokittelu, koneoppiminen, neuroverkot, kaukokartoitus
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Glossary

CLC CORINE Land Cover

CNN Convolutional Neural network

CORINE ”Coordination of information on the environment” programme

coordinated by European Union

ESA European Space Agency

HSI Hyperspectral imaging

JI Jaccard index, intersection over union

LiDAR Light Detection and Ranging

LULC Land use and land cover

MSI Multispectral imaging

NDBI Normalized Difference Built-up Index NDBI = SWIR−NIR
SWIR+NIR

NDMI Normalized Difference Moisture Index NDMI = NIR−SWIR1.5
NIR+SWIR1.5

NDSI Normalized Difference Snow Index, NDSI = GREEN−SWIR1.5
GREEN+SWIR1.5

NDTI Normalized Difference Tillage Index NDT I = SWIR1.5−SWIR2.0
SWIR1.5+SWIR2.0

NDVI Normalized Difference Vegetation Index NDV I = RED−NIR
RED+NIR

NIR Near-infrared

ReLU Rectified linear unit

ROI Region of interest

SAR Synthetic Aperture Radar

SYKE Suomen ympäristökeskus, Finnish Environment Institute

SWIR Short-wave infrared

VNIR Visible light and near infrared
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1 Introduction

This chapter gives an overview about the thesis topic, present the research problem and

provide some use cases for remote sensing data. This chapter also briefly presents some

recent results related to this thesis and describes the overall structure of this thesis.

Historically one of the biggest challenges in remote sensing has been the limited availability

of viable data and lack of both storage space and computing power to analyze such data.

This has changed during the last few years, and for instance European Space Agency pro-

vides pre-processed data collected with Sentinel-2 satellites. These satellites have temporal

resolution of five days, totalling over 70 images each year from almost any location in the

world. However, the amount of data has grown so much that it is impossible for humans to

process and interpret even a fraction of it (Lillesand, Kiefer, and Chipman 2008; European

Space Agency 2018c). Imagine trying to visually interpret all of Europe from images with

spatial resolution of 10×10m, and add the fact that some land use and land cover classes are

very hard to distinguish from each other. Lucky for us, different machine learning methods

are viable for interpreting these images, and during the last few years deep learning has been

applied to remote sensing tasks. These methods, unlike our eyes, can process and classify

multi- and hyperspectral data and thus gain better results.

Artificial intelligence and deep learning have received a lot of hype in the past few years.

Even though deep learning dates back in 1940s, it didn’t have much attention before mid

2000s. First commercial applications of deep learning were presented in 1990s, but they

were not considered to be a viable technology. Because computing power was much lower

than nowadays and available datasets were too small for easy training, managing to suc-

cessfully train a neural network required specialized expertise. During the mid 2000s a few

breakthroughs in deep learning research reignited the interest, and neural network implemen-

tations started to beat classical machine learning methods in several artificial intelligence

tasks. After AlexNet dominated ImageNet competition in 2012, interest in deep learning

and convolutional neural networks started growing rapidly, and now their applications are

everywhere (Goodfellow, Bengio, and Courville 2016; Krizhevsky, Sutskever, and Hinton

2012).
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It is of course possible to perform land use and land cover classification with classical ma-

chine learning methods like K nearest neighbors or support vector machines, using each

pixel’s spectral signature as features. Unlike deep learning methods which are more or less

”black boxes”, it’s possible to find out which features affect classifications the most. How-

ever, these methods don’t necessarily utilize the spatial information of each location, such

as that water pixels are typically surrounded by other water pixels rather than for instance

broad-leaved forest. It is possible to modify these to use both spectral and spatial information

and thus improve classification results (Fauvel et al. 2013). Even though classical machine

learning methods are nowadays still used in land cover classification tasks, in the past few

years deep learning has started to become the go-to choice due to their success in other vi-

sual recognition tasks. Especially previously mentioned convolutional neural networks have

gained attention because of their natural ability to classify images and automatically detect

hierarchical features from input data (Li, Zhang, and Shen 2017; Nogueira, Penatti, and

Santos 2017).

While land cover classification could be performed like typical image classification, so that a

centroid pixel of one smaller image is classified, this has same problems than pixel-by-pixel

classification described earlier. Recently developed autoencoder-type networks, such as U-

Net and SegNet solve these problems by classifying whole image at once (Ronneberger,

Fischer, and Brox 2015; Badrinarayanan, Kendall, and Cipolla 2015). This thesis test the

viability of U-Net, a network originally produced for grayscale medical image segmentation,

in multispectral land cover classification.

Aside from land cover classification and change monitoring, large scale remote sensing data

has its uses in other areas. Data from agricultural areas can be used to both classify differ-

ent crops grown there and estimate the crop yield from these fields, and forestry has similar

applications. Perhaps the area with most new uses for remote sensing data is ecosystems

management, in which the land cover classification belongs. It’s possible to estimate bio-

diversity of different areas partly based on satellite images, due to certain vegetation covers

being often associated with high biodiversity and vice versa. As a last example, remote sens-

ing data is used to estimate damages of some natural disaster, like heavy thunderstorm or

wildfire (Jones and Vaughan 2010). For example, the route of a heavy thunderstorm that

2



occurred on the end of July 2010 can be detected by comparing satellite images taken before

and after the event (Härmä et al. 2014).

I received the topic for this thesis by coincidence. In March 2018, after traditional ice-fishing

contest of SYKE Jyväskylä (which yours truly won overwhelmingly by catching both the

most and the biggest fish) and the following post-competition dinner, one researcher asked

me about the status of my studies. When I responded that I might be in a need of a master’s

thesis topic, possibly from the field of optimization, machine learning or data analysis, the

response was practically ”I might have one for you”. Fast forward about three weeks and I

was presented with broader topic ”machine learning methods in land cover classification”,

which later was fined down into the current one. At that point, I had next to none experience

in deep learning, remote sensing or spectral imaging. I started the thesis process on July

2018, and original goal was to finish it during autumn 2018. From July to September, I was

employed full-time by SYKE as as thesis worker, and after that I finished this thesis as an

external researcher.

1.1 Research problem

According to Lillesand, Kiefer, and Chipman (2008, 48-51), successful application of remote

sensing involves at least the following steps:

1. Clear definition of a problem at hand

2. Evaluation of the potential for addressing the problem with remote sensing techniques

3. Identification of the remote sensing data acquisition procedures appropriate to the task

4. Determination of the data interpretation procedures to be employed and the reference

data needed

5. Identification of the criteria by which the quality of information collected can be

judged

First of all: do we have a clear definition of a problem? Finnish Environment Institute

(SYKE) has at least two practical needs for land cover classification: land cover classifica-

tion for Finnish Corine Land Cover 2018 project and acquiring suitable land cover classifi-

cation in Rakkolanjoki river drainage basin area in order to calculate nutrient loads. While
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it would be unreasonable to provide perfect classifier for these (and all future) needs in one

master’s thesis (or even in one dissertation), at least proof-of-concept or simple baseline can

be expected to be acquired and later expanded.

Data acquisition is not a problem any more, because since the launch of Sentinel-2A satellite

in 2015, and more so after Sentinel-2B was launched in 2017, European Space Agency

(ESA) has provided high-resolution multispectral data in regular intervals for open use. By

having a method to interpret this data regularly it is possible to monitor land cover change

and agriculture effectively, along with other possible remote sensing applications.

Identification of the remote sensing data and determination of the interpretation procedures

are the topics for sections 3.1 and 3.2 respectively, whereas chapter 4 will be focused on

judgement of criteria and quality of information collected.

To sum it up, the following research questions can be raised:

1. Does using more features (spectral bands, spectral indices) improve classification re-

sults?

2. Are autoencoder networks trained from scratch viable classifiers for Sentinel-2 data?

3. Is the quality of classifications good enough for remote sensing applications, such as

nutrition load calculations?

4. Which land cover classes can be accurately classified?

In order to answer these questions, this thesis presents a workflow and method for land cover

classification with convolutional neural networks using multispectral data as an input. Addi-

tionally, classification results for Rakkolanjoki drainage basin area are produced for multiple

different classification levels. Usability of this method for other areas will be evaluated with

classification results from region of interest.

Convolutional autoencoder-type networks have successfully been applied to land use and

land cover classification. However, many of these implementations use only RGB-images or

at most 4 or 5 channel images rather than full Sentinel-2 spectrum. One objective for this

thesis is to present a method usable with multispectral satellite data utilizing multiple spectral

bands and possibly spectral indices, especially from Sentinel-2 data. Kemker, Salvaggio, and
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Kanan (2018) present one method and dataset for multispectral remote sensing, but scale and

usage of their data is very different than needed in environmental monitoring. Also, neural

network architecture used here is different than used by both Li, Zhang, and Shen (2017) and

Ji et al. (2018).

As for the last two questions, the third one needs to be answered by another expert, as I

am not nearly competent enough to answer that question. Thankfully, several of those are

employed by SYKE, and feedback from them was collected. The fourth question can be

answered by observing both the numerical results, such as metrics and confusion matrices,

but also by looking at satellite images and comparing results to them.
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2 Theory

This chapter is structured as follows: First section is a short primer for spectral imaging,

with main focus being on multispectral imaging. Remote sensing and its applications are in-

troduced briefly in section 2.2, with land use and land cover classification being introduced

more thoroughly. Finally, in section 2.3 basic theory about neural networks and more specif-

ically convolutional neural networks is presented. Note that section 2.3 is written under the

assumption that the reader has basic knowledge of machine learning, but is not necessar-

ily familiar with neural networks. Overall, this chapter is meant to give the reader such an

understanding that methods used in this thesis can be followed through.

Main sources for sections 2.1 and 2.2 are ”Remote sensing and image interpretation” (Lille-

sand, Kiefer, and Chipman 2008) and ”Remote sensing of vegetation” (Jones and Vaughan

2010). Theory background for section 2.3 is mainly based on ”Deep learning book” (Good-

fellow, Bengio, and Courville 2016) and lectures from Stanford University School of Engi-

neering course ”CS231n: Convolutional neural networks for visual recognition” (Li, John-

son, and Yeung 2018). These are supplemented by recent scientific articles and research

papers related spectral imaging, remote sensing and modern convolutional neural networks.

2.1 Spectral imaging

Like the name suggests, spectral imaging is a combination of spectroscopy and imaging.

While imaging is the science of acquiring both spatial and temporal data from objects in the

form of images, and spectroscopy is the science of observing electromagnetic spectrum (Fig-

ure 1), spectral imaging is simply acquiring and observing data with spectral pixel values.

”Normal” images, like everyday photographs, are composed of three bands from the visible

light area of the electromagnetic spectrum, namely red, green and blue bands. So, for RGB

images, each pixel has only three separate intensity values, but spectral images can have

tens or even hundreds different values for each pixel, depending on the spectral resolution

of the image. Perhaps the easiest way to visualize spectral images is as a three dimensional

datacube, as seen in figure 2. This cube can be interpreted as several images taken from a
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certain wavelength, or a collection of pixels that each have their own spectra (Garini, Young,

and McNamara 2006).

Figure 1. Electromagnetic spectrum (Commons 2018)

All surfaces both absorb and reflect electromagnetic radiation. If you have a blue coffee mug,

it absorbs red and green wavelengths of the visible light part of the spectrum, and reflects

blue wavelengths, thus making it look blue to you. Likewise, objects colored black absorb all

of the visible (white) light and white objects reflect everything. All colors can be thought as

a combination of the three main colors, that correspond to the three main bands from visible

light: red, green and blue. However, if previously mentioned blue mug were to be put into

a green light, it would look black, because there is no wavelength to reflect. Human eye has

a receptor for each of these colors, and thus humans are able to differentiate between these

colors and their combinations (Jones and Vaughan 2010).

The motivation for observing other wavelengths than those in the area visible to a human

eye is that they usually hold valuable information about the object. Different materials may

look the same to a human observer, such as artificial turf and natural grass both being green.

If ones task would be to differentiate them from an aerial photograph, it would be almost
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Figure 2. Comparison between spectral image (left) and rgb image (right) (Lua and Feia

2014)

impossible. However, their spectral signature is completely different, because only natural

grass contains chlorophyll and thus reflects heavily in near infrared band (approximately

700nm, so called red edge). By having access to just one additional band, otherwise invisible

to human eye, this task becomes trivial (Lillesand, Kiefer, and Chipman 2008).

Processing and analyzing images with more than three separate bands is called either mul-

tispectral imaging (MSI) or hyperspectral imaging (HSI). Electromagnetic spectrum can be

thought as a collection of different bands, that in turn are a collection of different wave-

lengths within the bandwidth. If a band has a central wavelength of 560nm (green light)

and a bandwidth of 45nm, then all wavelengths between 515nm and 605nm would belong to

that band. MSI differs from HSI mainly in the bandwidth of acquired data and in the num-

ber of bands recorded. One definition for these terms is that multispectral imagers record

more than three separate spectral bands, superspectral imagers record more than ten, and

hyperspectral imagers record more than fifty. Because of that, hyperspectral bands have very

low bandwidth, even as low as 0.1nm. This high spectral resolution enables construction of

practically continuous reflectances from hyperspectral data. (Lillesand, Kiefer, and Chipman

2008; Jones and Vaughan 2010). According to Goetz (2009), bands being contiguous is the

defining factor that separates HSI from MSI, not the number of spectral bands. Continuous

data guarantees, that any possibly vital information is not lost.

For regular images, the resolution of the image typically means the spatial resolution, which

is the minimum size of a distinguishable object. Typically spatial resolution is equal to pixel
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size. For spectral images, especially ones that are gathered from earth-orbiting satellites,

resolution can also mean other things. Spectral resolution is the smallest difference between

distinguishable wavelengths, and temporal resolution is the temporal difference between

images (Jones and Vaughan 2010).

2.2 Remote sensing

Remote sensing means acquiring information about an object by analyzing data gathered

with some external device that is not in contact with the object under investigation. Remote

sensing as a term was first coined in 1960, meaning that the field is still rather new in the

sense of research of it. Originally remote sensing referenced to observing an object without

touching it, but it has since changed to be almost exclusively used related to earth observa-

tion. Nowadays it is most frequently performed by interpreting optical imagery, for example

aerial photographs or satellite imagery. Data can also be acquired via microwave or LiDAR

(light detection and ranging) sensing. Due to the topic of and methods used in this thesis, this

section mostly focuses on multi- and hyperspectral sensing (Lillesand, Kiefer, and Chipman

2008; Jones and Vaughan 2010).

At first the only source for remote sensing data were aerial photographs, which were first

taken from hot-air balloons and later, after airplanes had been invented, from planes. After

that, cameras first moved to rockets, then to ballistic missiles and later to satellites. First

satellite images of the earth were taken in around 1960s, and in 1972 ERTS-1, later known

as Landsat-1, was launched. Landsat-1 was the first satellite solely designed to observe earth,

and because it was also equipped with multispectral scanner, although only a four band one,

it also started the age of spectral data in remote sensing. Interpretation of remote sensing data

has also changed during the years. When only aerial photographs and such were available,

only way to interpret images was naturally to look at them. Later, when digital images

and more powerful computers became widespread, machine learning (K-means, Gaussian

maximum likelihood etc) and later deep learning methods started to be used for different

classification tasks (Goetz 2009; Lillesand, Kiefer, and Chipman 2008).

The advantage of using spectral data is the addition of infrared spectrum. Different sur-
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faces, such as vegetation, water or barren soil each have their own distinct characteristic

absorbance. For instance, vegetation can be detected by sharp increase of reflectance around

the so called red-edge (700nm) between red and near infrared (NIR) bands of spectrum.

(Jones and Vaughan 2010). This can be observed in figure 3, which contains two images of

same agricultural area. Left one is composed of red, green and blue Sentinel-2 bands, and

right one of NIR, red and green bands. In NIR-red-green -image most of the areas are col-

ored red, because vegetation reflects this band heavily. Likewise, barren soil in the middle

of the image doesn’t reflect infrared, so it is colored green in false-color infrared image.

Figure 3. Left: RGB-image composed of red, green and blue bands. Right: False-color

infrared -image composed of NIR, red and green bands (Copernicus Sentinel Data[2018],

processing: SYKE)

These kinds of reflectance differences enable the derivation of spectral indices from two

(or sometimes more) spectral bands. One of the most commonly used index is Normalized

Difference Vegetation Index (NDVI), which is derived from NIR and red bands as shown in

formula 2.1. This index has the advantages of being well-behaved, normalized and having

values between -1 and 1, with values less than zero occurring in cloud, water or snowy

surfaces. It also has the advantage of greatly simplifying data. Instead of inspecting whole

spectrum, relevant information can be acquired from only one set of variables (Jones and

Vaughan 2010). Several different spectral indices can be computed similarly, and in this

thesis a total of five different indices are used. They are presented in section 3.1.

NDV I =
NIR−RED
NIR+RED

(2.1)
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2.2.1 Land use and land cover classification

One of the subfields of remote sensing is land use and land cover mapping (LULC). Land

cover means the type of the feature covering the surface of the earth, whereas land use means

the types of human activity. For example, lakes, fields or highways are types of land cover,

and housing or agriculture are types of land use. Having knowledge about land use and land

cover is essential for planning different activities (Lillesand, Kiefer, and Chipman 2008).

For instance, original objective for this thesis was to perform land cover classification for

Rakkolanjoki river drainage basin area. This information would be used to calculate nutrient

loads from land areas affecting Rakkolanjoki river.

In remote sensing, typical objective of image classification is not to find out whether the im-

age is a picture of a lake, but rather segment each pixel of the image into one predetermined

land cover classes - precisely what LULC is. Each pixel has their own spectral pattern, which

is the collection of reflectance measurements in available wavelengths. Image classification

can be performed using only this pattern, so that pixels with similar patterns belong to the

same class. However, pixels also have their own spatial pattern and temporal pattern, latter

in case there are multiple measurements from different dates. Spatial pattern recognition

utilizes the information from the neighboring pixels to classify one. For instance, if a pixel is

surrounded by other pixels that have the spectral pattern of water, it is highly likely that the

centroid is also water. Temporal pattern recognition, on the other hand, utilizes observations

from different dates to classify. Disregarding snow, one way to distinguish coniferous and

deciduous trees from each other could be, that coniferous trees are green all year, whereas

deciduous trees shed their leaves on winter (Lillesand, Kiefer, and Chipman 2008).

LULC methods utilize multiple pattern recognition techniques rather than only one. For

instance, previous example about coniferous and deciduous trees is almost impossible with

just temporal pattern, but when combined with spectral pattern it becomes rather trivial.

Historically most common combination has been spectral and spatial, but final combination

depends on available data and other resources (Lillesand, Kiefer, and Chipman 2008).

Most often LULC is performed as hard classification, meaning that each pixel can have only

one label. However, because spatial resolution for large-scale remote sensing data is typically
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so coarse that in reality each pixel contains multiple different land cover classes. These so

called mixed pixels are often a source of classification error, because their spectral signature

can more closely resemble different classes. This can be solved by either performing soft

classification or subpixel classification. Soft classification assigns each pixel a probability

value for belonging in certain class and subpixel classification outputs the fraction of each

label in corresponding pixel (Jones and Vaughan 2010). Even though approach utilized in

this thesis outputs probability distribution for each pixel, all segmentation maps are produced

with hard classification method.

The most significant LULC project in Europe is CORINE (Coordination of information on

the environment). CORINE programme was initialized by European Environment Agency

in 1985. The three main objectives of the programme are

• to compile information on the state of the environment with regard to certain topics

which have priority for all the Member States of the Community

• to coordinate the compilation of data and the organization of information within the

Member States or at international level

• to ensure that information is consistent and that data are compatible

CORINE land cover project (CLC) is one part of the CORINE programme. Previously, there

has been four CLC projects, and CLC 2018 is now active. Spatial resolution for classification

is 100 meters and the smallest unit mapped must be at least 25 hectares (European Environ-

ment Agency 1985; Härmä et al. 2014). However, this resolution is not usable for many use

cases, and higher resolution data is typically produced for national use. In CLC2012 project

the Finnish Environment Institute produced high resolution data in addition to CLC2012

data. This high resolution data has spatial resolution of 20 meter, and some CLC classes

are aggregated to fourth level. Also, some CLC classes that aren’t found in Finland, such as

”glaciers”, are removed from national data (Härmä et al. 2014).

Finnish CLC products are not produced from only one source, but rather gathered from exist-

ing national databases. For instance, forest data is gathered from National Forest Inventory

(updated by Forest Research Institute), buildings from the databases of Population Register

Centre and roads from Finnish Transport Agency. European-wide CLC data is then produced
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Level 1 Level 2 Level 3 Level 4

3. Forests and semi-

natural areas

3.1. Forests 3.1.1. Broad-leaved

forest

3.1.1.1 Broad-leaved

forest in mineral soil

3.1.1.2. Broad-

leaved forest in peat

soil

3.1.2. Coniferous

forest

3.1.2.1. Coniferous

forest in mineral soil

3.1.2.2. Coniferous

forest in peat soil

3.1.2.3. Coniferous

forest in bedrock

Table 1. Example of aggregating CLC classes for class 3. Forests (European Environment

Agency 1985; Härmä et al. 2014)

from these national produts (Härmä et al. 2014).

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a specific type of deep learning methods, which

in turn is a specific type of machine learning methods. The basic example of deep learn-

ing is a deep feedforward network or feedforward neural network, also known as multilayer

perceptron (MLP). Simply put, MLPs are functions mapping a set of input values to some

output values. The difference between linear machine learning functions and MLPs is that

the functions MLPs represented are a chain of simpler functions. For example, consider

a simple linear score function f = Wx, where W is arbitrary weight matrix and x a vector

so that Wx is defined. This can be ”expanded” into a two-layer neural network simply by

chaining another function, so the scores are calculated with f =W2max(0,W1x). By adding

another function, this then becomes a three-layer network, and the scores are given with

f = W3max(0,W2max(0,W1x)) and so on. The last layer of the network, the output layer,

gives the final result of the network, such as class scores for classification tasks. The num-
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ber of these hidden layers between input and output layers define the depth of the network

(Goodfellow, Bengio, and Courville 2016; Li, Johnson, and Yeung 2018).

It’s unusual for real world problems to be correctly represented with linear functions, and

for those that are can be solved without deep learning methods. Neural networks apply

non-linearity usually with affine transformation W>x+b, where W is the matrix containing

learned weights and b is a vector containing the biases. This transformation is followed by

fixed nonlinear function, the activation function that is applied to each element of vector

W>x + c. This forms an affine transformation from vector x to vector y: y = g(W>x +

c). Most commonly used and the ”default” activation function is called rectified linear unit

(ReLU), which is simply g(x) = max(0,x). This function is partially linear. Other widely

used activation functions are for example leaky ReLU (g(x) = max(αx,x),α usually 0.01

or smaller), sigmoid (g(x) = 1
1+e−x ) and tanh (g(x) = tanh(x)) (Goodfellow, Bengio, and

Courville 2016). Different activation functions and their plots in interval [-5,5] are visualized

in figure 4.

1

0

1
Sigmoid Tanh

5.0 2.5 0.0 2.5 5.0
0

2

4

ReLU

5.0 2.5 0.0 2.5 5.0

Leaky ReLU

Figure 4. Plots of different activation functions

As it was mentioned previously, the matrix W> in the equation contains the learned weights,

but how does the network learn these weights? First of all, weights are usually initialized ran-

domly, for example with He normal initialization (He et al. 2015). Classification scores are

then calculated using these weights, and the function that measures the difference between

these classifications and correct ones is called cost function. When cost function reaches
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zero, then classifier does perfect work. Minimizing cost function is usually performed by

gradient-based optimization, gradient descent. Because the local minimum of a function

is in the direction of the negative gradient, adjusting the weights like so drives the cost

function down. However, weights are not adjusted with full value of the negative gradient,

and it is adjusted with learning rate (either static or decreasing over time) before comput-

ing new weights. Typically gradient descent is not performed for the whole dataset, but for

some minibatch of it. This algorithm for is called stochastic gradient descent (SGD). SGD

combined with backpropagation (BP) is an effective way to learn the weights (Goodfellow,

Bengio, and Courville 2016). BP is, simply put, recursively applying the chain rule of cal-

culus, let y = g(x) and z = f (g(x)) = f (y). Then dz
dx =

dz
dy

dy
dx , to calculate gradients for each

weight of neural network (Goodfellow, Bengio, and Courville 2016; Rumelhart, Hinton, and

Williams 1986).

Goodfellow, Bengio, and Courville (2016) define CNNs to be neural networks that use con-

volution instead of general matrix multiplication in at least one of their layers. This greatly

reduces the computational cost for training the network. Convolution operation is usually de-

noted with ∗, and mathematical formula for it is shown in equation 2.2 (Goodfellow, Bengio,

and Courville 2016).

s(t) = (x∗w)(t) =
∫

∞

−∞

x(a)w(t−a)da (2.2)

Here, the argument x is known as input, w is called kernel or filter, and output is called

feature map. For machine learning applications, it can be assumed that both x and w are

zero everywhere else but on a finite number of points, and variable t can only take integer

values. Because of this, the integral can be computed as a summation over finite elements.

Also, because machine learning data is usually at least two dimensional array, called tensor,

both image and kernel are at least two dimensional. Equation 2.3 shows this operation with

two-dimensional input I and two-dimensional kernel K. Note that kernel is usually smaller

than input (Goodfellow, Bengio, and Courville 2016).
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S(i, j)= (I∗K)(i, j)=∑
m

∑
n

I(m,n)K(i−m, j−n)=∑
m

∑
n

I(i−m, i−n)K(m,n)= (K∗I)(i, j)

(2.3)

Equation 2.3 shows also the commutative property of convolution. This property is attained

by ”flipping” the kernel relative to the input. Before kernel-flip the index into the input

decreases and index into the kernel increases, and afterwards it is vice versa. However,

there is no reason to flip the kernel except attaining commutative property which is useful

for mathematical proofs but not at all relevant for machine learning purposes. Because of

that, machine learning libraries usually implement cross-correlation (Equation 2.4), which

is the same as convolution without the kernel-flip. In machine learning frameworks however,

both of these operations are usually called convolution. Because convolution is typically

used with non-commutative functions, the combination doesn’t commute regardless whether

convolution or cross-correlation is used (Goodfellow, Bengio, and Courville 2016).

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n) (2.4)

CNNs were first presented by LeCun (1989), and first commercial applications of CNNs

were developed in early 1990’s, when AT&T utilized CNNs for bank check reading sys-

tem, and later, motivated by this according to LeCun, Kavukcuoglu, Farabet, et al. (2010),

Microsoft developed handwriting recognition system with CNNs. It is worth noticing, that

computational effiency of CNNs was an important factor of their success in 1990’s (Good-

fellow, Bengio, and Courville 2016; LeCun, Kavukcuoglu, Farabet, et al. 2010). CNNs are

mainly used for image classification and processing tasks, but they have also been utilized

in natural language processing, such as speech recognition and text classification (Bhandare

et al. 2016; Goodfellow, Bengio, and Courville 2016).

A major breakthrough for CNNs in image recognition was AlexNet (Krizhevsky, Sutskever,

and Hinton (2012)), which was first CNN to win ILSVRC (ImageNet Large Scale Visual

Recognition Competition) in 2012. Their implementation, containing eight layers, managed

to reduce top-5 test error rate to 15.6%, compared to 26.2% that previous non-CNN imple-

mentations had performed. Since then CNNs have been utilized in each winning implemen-
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tation of the competition, and by 2014 error rate had dropped to less than 7% (Russakovsky

et al. 2015). 2017 competition was won by a model called SENet (Hu, Shen, and Sun (2017))

with classification error of approximately 2.2%. For reference, according to Russakovsky et

al. (2015), human annotator is able to have classification error of around 5%.

Convolutional layers consist of three stages: Convolution, detector and pooling stages. De-

pending on terminology used, these stages can also be referred as layers. Convolution stage

differ from traditional networks fully connected layers by usually having sparse interactions.

Because kernel is made to be smaller than input image, convolutional layers both store signif-

icantly smaller amount of parameters and have smaller runtime compared to fully connected

layers. For example, if we have m inputs and n outputs, then matrix multiplication stores

m×n parameters and has runtime of O(m×n), but by limiting the number of connections by

making the kernel have a size of k× k, these numbers are now m× k and O(m× k) respec-

tively. Other ways convolutional layers improve from traditional hidden layers are parameter

sharing (same parameter is utilized more than once) and equivariance ( f (x) is equivariant to

g if f (g(x)) = g( f (x))) (Goodfellow, Bengio, and Courville 2016).

Convolutional stages each contain K kernels, also known as filters, which are typically of

size 3×3 or 5×5. These filters are ”slided” across the input, with stride of S and padding of

P. Stride means the amount of cells kernel is moving at once. Padding is the number of zeros

added to each side of input. By varying these variables, it is possible to control the size of

the output. An example summary of a two-dimensional convolutional layer is summarized

in table 2 and figure 5.

After convolution has been performed, output is run through a detector stage, which applies

the activation function, typically ReLU to output values. Third stage of a convolutional

layer is pooling stage, which is typically performed as max pooling. Pooling stage has two

hyperparameters: spatial extent of a neighborhood F and stride S, which are similar than

in convolution stage. Max pooling outputs the maximum value of a neighborhood and then

moves S steps. Aside from max pooling, also for example average pooling or L2 norm

pooling are possible. (Goodfellow, Bengio, and Courville 2016). An example of a max

pooling layer with F = 2 and S = 2 is summarized in table 3 and figure 6.
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Description symbol example

Input volume W1×H1×D1 4×4×3

Number of kernels K 2

Spatial extent of a kernel F 3

Stride S 1

Amount of zero padding P 1

Output width W2 =
W1−F+2P

S +1 4 = 4−3+2·1
1 +1

Output height H2 =
H1−F+2P

S +1 4 = 4−3+2·1
1 +1

Output depth D2 = K 2

Output volume W2×H2×D2 4×4×2

New weights per kernel F ·F ·D1 3 ·3 ·3 = 27

Total new parameters from layer (F ·F ·D1) ·K (3 ·3 ·3) ·2 = 54

Table 2. Summary of a convolutional stage performing 2D convolution to three-channel data

(Goodfellow, Bengio, and Courville 2016)

Description symbol example

Input volume W1×H1×D1 4×4×2

Spatial extent of neighborhood F 2

Stride S 2

Output width W2 =
W1−F

S +1 2 = 4−2
2 +1

Output height H2 =
H1−F

S +1 2 = 4−2
2 +1

Output depth D2 = D1 2

Output volume W2×H2×D2 2×2×2

Table 3. Summary of a two dimensional max pooling stage (Goodfellow, Bengio, and

Courville 2016)

After desired number of convolutional layers, the feature maps are then processed into a

classifiable form. This can be done for instance by flattening the spatial dimensions and

feeding the result to a feedforward network or with specified pooling operation. In any case,

for classification tasks the last step is acquiring a probability distribution for possible classes,

usually with softmax function (Equation 2.5). Softmax function is normalized exponential
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Input Kernel 1 Kernel 2 Output

0 0 0 0 0 0

0 1 2 1 1 0

0 1 2 1 2 0

0 2 1 1 2 0

0 1 2 1 1 0

0 0 0 0 0 0

1 0 -1

0 0 1

1 -1 0

1 0 0

0 1 -1

0 1 0

6 2 6 2

2 6 10 3

1 8 10 5

4 6 1 8

0 0 0 0 0 0

0 2 0 0 1 0

0 2 1 1 2 0

0 1 0 2 1 0

0 1 1 0 1 0

0 0 0 0 0 0

1 0 0

-1 1 1

0 1 0

1 -1 -1

0 1 1

0 1 1

5 6 4 6

5 14 8 8

2 7 7 7

-1 6 1 8

0 0 0 0 0 0

0 2 1 0 0 0

0 1 1 2 0 0

0 0 1 1 1 0

0 1 0 2 1 0

0 0 0 0 0 0

1 0 1

0 0 -1

0 1 1

1 1 -1

1 0 1

0 -1 0

Figure 5. 2D convolution stage for three-channel data

Green and yellow cells show the areas and kernels that correspond certain output value. Red

cell highlights a value that changes to 0 after ReLU.

function which rescales its input vector so that all entries add up to 1 (Goodfellow, Bengio,

and Courville 2016).

so f tmax(x)i =
exi

∑
n
j=1 ex j

(2.5)
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Input Output

6 2 6 2

2 6 10 3

1 8 10 5

4 6 1 8

6 10

8 10

5 6 4 6

5 14 8 8

2 7 7 7

0 6 1 8

14 8

7 8

Figure 6. Two dimensional max pooling stage

Colors correspond to neighborhoods

2.3.1 Image segmentation with CNNs

Image segmentation can be divided into two different subcategories: semantic segmentation,

which aims to label all pixels in the image into predetermined subclasses, and instance seg-

mentation, which in addition to labeling all pixels into subclasses, also aims to differentiate

between different instances of same subclass, such as labeling them as ”animal 1” and ”ani-

mal 2”. Land cover classification can be considered to be one form of semantic segmentation,

so this section focuses on it.

Labelling pixels can be thought as a classification task, where each pixel is labelled one-by-

one, with some amount of surrounding pixels as a spatial pattern to help to classify it. This

approach, also known as sliding window approach, while successful has some shortcom-

ings, such as performance speed. Recent research has shown that pooling stages and fully

connected layers can be replaced with convolution stages and thus improve performance,

at least in image segmentation tasks. As described earlier, by varying stride S and padding

P in convolution stage it is possible to alter the output size. Fully connected layers can

be replaced by 1× 1 convolutions, and by averaging this layer the classification scores are

achieved (Springenberg et al. 2015).
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It is possible to upsample images with transposed convolution (known as backwards convolu-

tion or deconvolution), so this kind of approach is applicable also for different segmentation

tasks (Long, Shelhamer, and Darrell 2015). After up-sampling the output is not a single label

for one image, but rather an array of labels. Another way to upsample images is simply just

expand regions into larger areas, such as each cell in 2× 2 matrix into 4 cells in 4× 4 ma-

trix. However, transposed convolution has the advantage of learning how to upsample input

instead of it being fixed (Long, Shelhamer, and Darrell 2015).

One of the most successful implementations of this kind of encoder-decoder (autoencoder)

type networks is U-Net by Ronneberger, Fischer, and Brox (2015), which was originally

developed for biomedical image segmentation. This network consists of encoding and de-

coding paths. Encoding path follows the standard CNN structure: repeated 3×3 unpadded

convolutions with ReLU as activation functions and standard 2× 2 max pooling operations

with different number of kernels. Decoding path, however, replaces max pooling opera-

tions with transpose convolutions, which doubles the resolution of each feature map. In

addition, each upsampled feature map is concatenated with cropped feature maps from the

”same level” of encoding path. Feature maps from encoding path must be cropped, because

unpadded convolutions reduce size by two. Final layer of U-Net is 1x1 convolution with

softmax activation, which produces a segmentation map for the image. Full architecture for

Ronneberger, Fischer, and Brox (2015) implementation can be seen in image 7.

Figure 7. U-Net architecture (Ronneberger, Fischer, and Brox 2015)

Even though the original purpose of U-Net is biomedical image segmentation, it has been
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successfully applied to other fields, such as remote sensing (Zhang, Liu, and Wang 2018)

and segmentation of photographs (Siam et al. 2018). Other commonly used autoencoder-

type networks are Fully-Convolutional Network (FCN) introduced by Long, Shelhamer, and

Darrell (2015) and SegNet by Badrinarayanan, Kendall, and Cipolla (2015), which differ

slightly from U-Net. However, the basic principle is the same: Encoding path follows some

typical CNN structure (VGG16 in the case of U-Net), and decoding path upsamples images

in some way, producing full segmentation mask as output.
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3 Materials and methods

In this chapter, the workflow to produce segmentation maps is presented. Section 3.1 presents

materials used, how they were acquired and what preprocessing steps were performed to

them. In addition, labels are inspected and their aggregation from original labels is described.

Section 3.2 presents implemented neural network structure and metrics for evaluating its

performance. Hardware and tools used are also described there, as well as monitored training

and validation losses for trained neural networks. Even though several LULC segmentation

works perform some kind of postprocessing for segmentation masks, such as edge enhancing

or removing areas smaller than some threshold, in this thesis only ”raw” segmentation masks

are presented and inspected in chapter 4.

3.1 Materials

Multispectral satellite images used in this thesis are Sentinel-2 products. Sentinel-2 (S2)

mission consists of two polar-orbiting satellites Sentinel-2A (S2A) and Sentinel-2B (S2B).

S2A was launched first, on 25 June 2015 and S2B later, on 7 March 2017. Both satel-

lites carry an optical instrument sampling 13 spectral bands (Table 4), ranging from VNIR

to SWIR. These images are divided into different levels of products. Of these, levels 0

through 1B are raw data not available to end users. Level-1C product contains top of at-

mosphere (TOA) reflectance values, and Level-2A contains bottom of atmosphere (BOA)

generated from Level-1C products. S2 band B10 is used only for cirrus cloud detection,

and thus it’s absent from Level-2A products. Both Level-1C and 2A products are composed

of 100x100m2 tiles. Level-1C products can be downloaded from Copernicus Open Access

Hub, along with some amount of Level-2A data. Level-2A data can also be generated with

Sentinel Application Platform (SNAP) and Sen2Cor extension. All Sentinel-2 products can

be used for non-commercial uses, regulated and allowed under EU law, provided that ESA

is credited properly (European Space Agency 2018c).

Processed satellite data was stored in University of Jyväskylä network drives and SYKE

network drives, as well as laptop provided by SYKE. The research data policy of SYKE
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aims, that the data will be shared through SYKE Metadata and Research Data services with

CC BY 4.0 license, but at the time of writing the sharing process is still uncertain. This thesis

doesn’t use any non-open data, nor any data that uses personal information.

Band number S2A S2B Spatial resolution Name

B1 443.9 ± 13.5nm 442.3 ± 22.5nm 60m Aerosol

B2 496.6 ± 49nm 492.1 ± 49nm 10m Blue

B3 560.0 ± 22.5nm 559.0 ± 23nm 10m Green

B4 664.5 ± 19nm 665.0 ±19.5nm 10m Red

B5 703.9 ± 9.5nm 703.8 ± 10nm 20m Red-edge 1

B6 740.2 ± 9nm 739.1 ± 9nm 20m Red-edge 2

B7 782.5 ± 14nm 779.7 ± 14nm 20m Red-edge 3

B8 835.1 ± 72.5nm 833.0 ± 66.5nm 10m NIRwide

B8a 864.8 ± 16.5nm 864.0 ± 16nm 20m NIRnarrow

B9 945.0 ± 13nm 943.2 ± 13.5nm 60m Water vapor

B10 1373.5 ± 37.5nm 1376.9 ± 38nm 60m Cirrus

B11 1613.7 ± 71.5nm 1610.4 ± 141nm 20m SWIR 1

B12 2202.4 ± 121nm 2185.7 ± 119nm 20m SWIR 2

Table 4. Overview of Sentinel-2A and Sentinel-2B multispectral instruments (European

Space Agency 2018c)

Acquiring data for this thesis was pretty straightforward, because research engineer Markus

Törmä from SYKE Geoinformatics Research generously Sen2Cor processed several im-

ages from April-October 2016 and 2017. In addition, Törmä provided different mosaics for

NDVI, NDTI, NDMI, NDBI and NDSI dated similarly than Level-2 products, and CLC2012

Level 4 labels for the region of interest (ROI). These indices are rescaled between 0 and 200

instead of -1 and 1. Most of Level-2 products are heavily covered in clouds, and finding even

one cloudless image is almost impossible. In order to get cloudless mosaics (Level-3 prod-

uct), these images were then processed with Sen2Three processor tool. Sen2Three processes

a time series of Sen2Cor corrected images by replacing all bad pixels (for example clouds

and cloud shadows) with better pixels. Depending on the algorithm used, bad pixels are

replaced either with the good pixels from later scenes or with the average of all good pixels
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(European Space Agency 2018b). Mosaic used in this thesis was generated with temporal

homogeneity algorithm. While Sen2Three doesn’t produce perfect mosaics, it still makes a

satisfactory job at removing clouds and making usable images for this purpose. After gener-

ating the cloudless mosaic, due to the spatial resolution of labels being 10m pixels, all other

bands were then downscaled to this resolution using SNAP. Images were then exported to

GeoTIFF format.

Final training and testing dataset contains both cloudless 12 band reflectance mosaic and

pre-computed spectral index mosaic from summer 2017 composed from images from June

to August. Spectral index values are selected according to maximum NDVI value observed

during this period. Summer mosaic was selected because it contains all of the target classes

and they are able to be distinguished. For instance, water vegetation may not be present

during spring or autumn, and agricultural areas can be identified. Description of provided

spectral indices is presented in table 5.

Spectral index Derivation Usage

NDVI RED−NIR
RED+NIR Green vegetation detection

NDTI SWIR1.5−SWIR2.0
SWIR1.5+SWIR2.0 Dry vegetation detection

NDBI SWIR−NIR
SWIR+NIR Urban area detection

NDMI NIR−SWIR1.5
NIR+SWIR1.5 Water detection

NDSI GREEN−SWIR1.5
GREEN+SWIR1.5 Snow/ice detection

Table 5. Provided spectral indices

As mentioned before, the main reason for ROI being in the Finnish-Russian border is Rakkolan-

joki river. Land cover classification in this drainage basin area could be used to calculate nu-

trient loads, provided it exists. While this classification is available in the Finnish side of the

border, due to Russia not being part of EU and CORINE almost half of the drainage basin

area is unclassified. Target land cover classes are selected to be suitable for water quality

modelling, meaning their nutrient loads are different from each other, and areas producing

similar loads are grouped together.

ROI contains approximately 18 million labelled pixels and out of 48 CLC level 4 classes,

ROI contains pixels from 41 of them. These labels were reduced to 11 target classes, and
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Figure 8. Left: Map of the region of interest. (Copernicus Sentinel Data[2018]). Right: CLC

level 1 labels for ROI.

also to CLC level 1 and CLC level 2 labels for testing and comparison purposes. Each of

these classifications is heavily unbalanced, with most common CLC level 1 and CLC level

2 label being ”Forest”, around 60% of all labels, and most common target class label being

”Coniferous forest”, around 38% of all labels. Rarest classes are wetlands for CLC level

1 (around 1.7% of labels), pastures for CLC level 2 (around 0.03 %) and water vegetation

for target classes (around 0.6%). Because some classes are extremely underrepresented,

classifying them correctly will be very difficult. Distributions of classes are presented in

figure 9, and aggregation of CLC level 4 classes to CLC level 1, CLC level 2 and target

classes is presented in appendix A.

CLC level 1 classes are possibly the easiest ones to distinguish from each other using only

average reflectance values, which is understandable due to there being only five of them, and

each of those have different spectral signature, with next to none overlap between average

reflectance values. Out of these, most absorbent class is, not surprisingly, water and most

reflective is arable land. Normalized spectral indices show similar behavior. Due to water

being absorbent for all bandwidths, values for it hover near zero, whereas other classes have
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Figure 9. Distribution of land cover class labels in ROI

values over 0.5 for NDVI, but almost -1.0 for NDBI.
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Figure 10. Average reflectances and normalized spectral index values for CLC level 1 classes

CLC level 2 classes show much more overlap than CLC level 1 classes, which is understand-

able due to there being 13 different classes instead of 5. Water still behaves similarly than

before, and classes aggregated from arable land are the most reflective ones. Some classes

aggregated from same CLC level 1 class show a lot of overlap, such as permanent crops and

pastures, and it would be reasonable to expect them to mix up or be correctly classified at

all, especially because they are so underrepresented.
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Figure 11. Average reflectances and normalized spectral index values for CLC level 2 classes

Target classes are a bit simpler to distinguish than CLC level 2 classes, at least based on

average values. Even though there are three different forest types, their spectral signatures

differ clearly. Coniferous forest is least reflective, and broad-leaved forest the most with

mixed forest in between. Classes with most overlap are broad-leaved forest and transitional

woodland shrub. It is worth noticing, that these classes may contain subclasses from multiple

CLC level 1 classes. For example, class bare areas consist of dumps and construction sites

(CLC level 1: Artificial surfaces) but also of peat production areas (CLC level 1: Wetlands),

and grasslands contains both golf courses (CLC level 1: Artificial surfaces) and pastures

(CLC level 1: Arable land).

From this dataset, a smaller subset was extracted near Lappeenranta, seen in figure 13. This

subset, sized 19.2× 38.4 km contains approximately 30% of all provided labels. Smaller

128×128 px (1.28km) images were extracted with 64px stride from this area. This window

size is chosen rather arbitrary, and larger windows may work better. This was then augmented

so that each image was flipped both horizontally and vertically, and also rotated 90 degrees

both ways, thus fivefolding the size of all sets. All values were then cast to 32 bit floating

point numbers, and S2 bands were divided with 10 000 and spectral indices with 200 in

order to get the values approximately between 0 and 1. Afterwards, this set was divided into

training, validation and test sets sized 5760, 1440, and 1800 images respectively. Of course,

all remaining data outside training and validation sets can and will later be used for testing.
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Figure 12. Average reflectances and normalized spectral index values for target classes
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Figure 13. Area used in network training process. Notice small errors due to Sen2Three

processing (Copernicus Sentinel Data[2018]).

3.2 Methods

Aside from resampling and subsetting performed with SNAP, all data preprocessing and

network training were performed with platforms provided by University of Jyväskylä Faculty

of Information Technology using Anaconda distribution of Python 3.6. Jupyter Notebook
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was heavily used, especially for inspecting data. All graphs and visualizations were produced

with matplotlib and Seaborn Python libraries (Hunter 2007; Waskom et al. 2017). Networks

were implemented with Keras using Tensorflow as backend (Chollet et al. 2015; Abadi et

al. 2016) and trained with Nvidia GeForce GTX 1080 GPU.

3.2.1 Evaluation metrics

For semantic segmentation, the most common measures are accuracy, precision, recall, Jac-

card index and F1-score. Of these, accuracy can be calculated as overall pixel accuracy (OP)

or per-class accuracy (PC). OP is just a proportion of correctly labelled pixels, and PC is OP

averaged with the number of classes. Precision tells the proportion of correct positive predic-

tions (true positives, TP) from all TP and FP (false positives), while recall is the proportion of

TP from all positive labels (TP and false negative (FN) predictions). The de-facto standard of

segmentation tasks is Jaccard index (JI), also known as intersection over union (IoU), which

accounts also the false alarms and missed values unlike different accuracy measurements.

For multiclass problems, JI is not only computed for each class separately, but also for the

whole dataset by calculating the arithmetic mean of JI scores for each class. F1-score (also

known as Dice coefficient) is the harmonic mean of precision and recall (Csurka et al. 2013).

Equations for different metrics are show in equation 3.1.

OP =
T P+T N

T P+FP+FN +T N
, PC =

1
L

OP

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

F1(Dice) =
2 · precision · recall
precision+ recall

, JI(IoU) =
T P+T N

T P+FP+FN

(3.1)

Out of the metrics provided here, it is possible to calculate micro, macro and weighted scores

for Pre, Rec, and F1-score when evaluating the full dataset. Macro calculates the mean of

these metrics with each class having equal weight, whereas micro sums the dividends and

divisors that contribute to each labelwise score and uses them to compute the overall metric.

Weighted simply weights each score with corresponding classes presence in the full data

sample. Micro-averaging scores favors bigger classes and macro-averaging treats all classes

30



equally (Sokolova and Lapalme 2009). In this thesis, if not mentioned otherwise, all overall

Pre, Rec and F1-scores presented are micro scores.

Map view CLC 2012 level 1 labels

Figure 14. Example of ground truth labelling error. Black areas correspond to CLC-1

class ”Artificial surfaces” and are labelled to be larger than in reality (Copernicus Sentinel

Data[2018]).

Even though ground truth labels are provided, they should not be trusted blindly. First of all,

labels are from CLC 2012 project which ended in 2015, and it is highly likely that since then

some changes have already happened. Also, CLC2012 labels are not 100% accurate. Com-

pared to LUCAS 2012 (Land use and land cover survey by Eurostat), CLC level 1 classes

have overall accuracy of 93%, CLC level 2 classes have 83% and CLC level 3 classes have

61%, while compared to Finnish National Forest Inventory sample points, the overall accu-

racy was around 92% (Härmä et al. 2014). Due to how these classifications are produced,

some built-up areas are marked as being larger than they are in reality, as seen in figure 14.

Because of this, metrics using provided labels as ground truth should be considered as a

guideline, not a certain truth.

Because JI accounts also the incorrect predictions for each class, it is considered to be the

de-facto evaluation metric for segmentation tasks. However, it has the problem of not neces-

sarily evaluating how accurate the segmentation borders are Csurka et al. (2013). Because of

this, and also the slight uncertainty of ground truth labels, results will be evaluated based on
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accuracy, precision, recall, JI-score and F1-score, but also by visually interpreting segmen-

tation masks and comparing them to CLC 2012 masks.

3.2.2 Neural network implementation and training

At first, I tried to utilize 3D CNNs, sliding window approach and time series of data for

classification, as described in (Ji et al. 2018). However, while classification results for sin-

gle points were promising, full image classification was both slow and inaccurate, even for

CLC level 1 classes. Because of that, the method was changed from sliding window to fully

convolutional network. For the new network architecture baseline, U-Net was chosen due to

its ability to get good results with limited data. Ronneberger, Fischer, and Brox (2015) orig-

inally trained their model with only 30 labelled images sized 512×512 pixels. Even though

my dataset is much larger, for land cover mapping it is not always the case, so network

should be able to learn from limited data. Also, U-Net and its variations have been succes-

fully used in remote sensing tasks. Another reason to use fully-convolutional architecture is

that it can be adapted to work with arbitrary input size as long as all pooling operations are

performed for even-numbered height and width, whereas model containing fully-connected

layers needs to have fixed input size due to matrix multiplications instead of convolutions.

There are few differences between original U-Net and presented implementation. First of

all, while original U-Net is developed for binary classification, presented network performs

multi-class classification. This means that output mask is multidimensional instead of being

true-false mask. Second, presented network utilized padded convolutions in each layer, so

that output mask has same size than original image. This also means that cropping the

feature maps is not needed when concatenating them. Third, the number of kernels is halved

for each convolution and deconvolution block in order to reduce the number of parameters

of the network. Finally, there are some differences between hyperparameters, such as input

image and batch size. The original U-Net had an input size of 572×572 pixels and batch size

of one, but presented network was trained with smaller 128×128px images and batch size of

four. Batch normalization was also added to each convolution block. Both networks use SGD

as optimizer function, but U-Net has constant momentum of 0.99 while presented network

utilizes Nesterov momentum. Both implementations use categorical crossentropy as loss
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function and He normal (He et al. 2015) initializer for weight initialization (Ronneberger,

Fischer, and Brox 2015). Used network summary is presented in table 6. Its structure follows

the original, but because of added zero padding, it is able to process arbitrary sized images

as long as both height and width can be halved four times so that each step is an integer.

Number of layers Trainable parameters Non-trainable parameters Total parameters

36 7,765,661 2,840 7,768,501

Table 6. Used neural network summary

Each network was trained from scratch for 100 epochs, and it took between one hour (CLC

level 1 classes) to two hours (CLC level 2 classes) to train each of them. Overall, each

network improved their performance until the end of training without strong signs of overfit-

ting, even though improvement on validation metrics slowed down during the end. Graphs

of training metrics for each networks are presented in appendices B, C and D. Best models

were selected according to lowest validation loss during training, which occurred during the

last few epochs for all networks.
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4 Results

In this chapter, the results from neural network classification are presented and inspected.

For each classification level, different results acquired with only red (B04), green (B03)

and blue (B02) bands, all S2-Bands, precomputed spectral indices, and both S2-bands and

spectral indices combined are compared to each other and evaluated according to the metrics

presented in section 3.2.1. In addition, different segmentation maps are visually observed

and compared.

Networks were first evaluated with previously described test set, and afterwards the full

dataset is classified using the best performing model. This final evaluation provides not only

predictions that can be compared with existing labels, but also classifications from unlabelled

area. The quality of the classifications for the Russian side of the border can be estimated

with results from the Finnish side. For all classification levels, best results were acquired with

S2 bands and spectral indices as input features, and therefore all full dataset classifications

produced with only those neural networks.

Because original data has such dimensions that selected window size is unable to fully clas-

sify it without overlapping, data was extrapolated with mirroring. For instance, for used

window size of 128× 128px, image was padded with 57 pixels on top and bottom and 38

pixel on left and right, making the total image have size of 5248× 6656 pixels. These

paddings were removed after classification. It is also worth noticing that spectral indices are

not provided for the full image, so for full image classification it’s likely that borders regions

are incorrectly classified even after removing areas without spectral index data.
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4.1 Results for CLC level 1 classification

Identifier Class Support

1 Artificial surfaces 3014061

2 Agricultural areas 5791164

3 Forests and seminatural areas 16359436

4 Wetlands 505891

5 Water bodies 3820648

Total 29491200

Table 7. CLC level 1 class distribution in the test set

Training Validation Testing

Features Acc Loss Acc Loss Acc Loss

RGB bands 0.92 0.20 0.90 0.27 0.90 0.27

All bands 0.92 0.20 0.90 0.25 0.90 0.25

Indices 0.93 0.19 0.90 0.26 0.90 0.26

Combined 0.93 0.18 0.92 0.22 0.92 0.22

Table 8. Accuracy and loss for different features in CLC level 1 classification

RGB only Bands only Indices only Combined

Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU

1 0.74 0.69 0.71 0.56 0.76 0.68 0.72 0.56 0.74 0.74 0.74 0.59 0.78 0.71 0.74 0.59

2 0.89 0.89 0.89 0.81 0.89 0.92 0.90 0.82 0.88 0.91 0.90 0.81 0.91 0.92 0.92 0.85

3 0.92 0.93 0.92 0.86 0.92 0.93 0.93 0.87 0.93 0.92 0.92 0.86 0.92 0.95 0.94 0.88

4 0.84 0.64 0.73 0.57 0.81 0.69 0.74 0.59 0.76 0.72 0.74 0.59 0.84 0.66 0.74 0.59

5 0.96 0.96 0.96 0.92 0.96 0.96 0.96 0.92 0.97 0.96 0.96 0.93 0.97 0.96 0.97 0.94

Mic 0.90 0.90 0.90 - 0.90 0.90 0.90 - 0.90 0.90 0.90 - 0.91 0.91 0.91 -

Mac 0.87 0.82 0.84 0.74 0.87 0.84 0.85 0.75 0.86 0.85 0.85 0.75 0.89 0.84 0.86 0.77

Wei 0.90 0.90 0.90 - 0.90 0.90 0.90 - 0.90 0.90 0.90 - 0.91 0.91 0.91 -

Table 9. Test set results for CLC level 1 classes

CLC level 1 classes are by far the easiest to classify, which is, of course, not surprising at all.

No matter which features were used for classification, overall accuracies, precision, recall

and F1-score were at least 0.9 or higher. Labelwise results are also promising, with three
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out of five classes having F1-score 0.9 or higher, and other two classes having satisfactory

performance with F1-score of around 0.74. Easiest class to predict is ”Water bodies” and

toughest one either ”Artificial surfaces” or ”Wetlands” depending on features used. mIoU

varies between 0.75 and 0.77 for whole dataset, and labelwise IoU between 0.56 (”Artificial

surfaces” using only S2-bands) and 0.93 (”Water bodies” using both bands and spectral in-

dices). All results are presented in tables 8 and 9. These show that network using both S2

bands and spectral indices outperforms other networks, but only by a little.
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Figure 15. Confusion matrices for CLC level 1 classes

As results show, different classes for this level can be distinguished from each other quite

well. Compared to provided labels, most common mix-ups between ”Forests and seminat-

ural areas” and ”Artificial surfaces”, which can for some part be explained with labelling

errors seen in figure 14, but much larger factor are narrow roads as seen in figure 16. Also,

no matter what features were used, around 20% of pixels with true label ”Wetlands” were

classified with label ”Forests and seminatural areas”. Confusion matrices for CLC level 1

classifications provided in figure 15.
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Map view CLC2012 labels Prediction with RGB-bands

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Figure 16. An example of CLC level 1 classifications in non-urban area

Visual observation shows more differences between different networks. As seen in figure 16,

all classifiers have problems labelling the roads in the scene. All classifiers manage to more

or less find the biggers road running across, but all predict it to be a little bit wider than in

labels. None of the classifiers manage to find the northernmost road, but all of them are able

to label the road in the lower part of the scene. Water bodies, forests and agricultural areas

are classified similarly between different classifiers, and they mostly follow both CLC2012

labels and ground truth from map.

Map view CLC2012 labels Prediction with RGB-bands

Artificial surfaces
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Forests and seminatural areas

Wetlands

Water Bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Figure 17. An example of CLC level 1 classifications in urban area

Figure 17 shows an example of a typical challenge for these networks. Densely populated
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urban areas are classified as large clusters, and some forests inside these areas stay unde-

tected. Also, the bridge in the middle of the image is tough to classify, except for RGB only

classifier. Classifier using both bands and indices manages to label most of the bridge, while

other classifiers miss it entirely.

Map view CLC2012 labels Prediction with RGB-bands

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Figure 18. An example of differences with label borders for CLC level 1 classes

Figure 18 shows a situation where borders between different classes are more or less straight

lines, and they are also separated by a straight road. Each classifier manages to give accurate

predictions for borders between forests and agricultural areas, but borders between wetlands

and forests are a lot trickier. Like before, the road on the middle remains undetected. Even

though image has some anomalies from sen2three processing, they don’t seem to have any

effect in classification.

Classification results for full dataset are presented in table 10. Even though micro and

weighted overall scores are a bit better than for the test set, macro score is significantly

worse. Only forests and water bodies have equal or better scores than for the test set, and all

other labels have their scores decrease. One possible explanation for this is that full dataset

and augmented test set have different proportions of data. For instance, test set has almost

twice the amount of pixels labelled as wetlands than the full dataset. Nevertheless, overall

accuracy is still almost 0.92, albeit mostly because of high accuracy for forests.

Confusion matrix (Figure 19) looks mostly identical to the one for the test set. About a third
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Class Pre Rec F1 IoU Support

1 0.73 0.63 0.67 0.50 1385998

2 0.90 0.89 0.89 0.81 2430871

3 0.93 0.96 0.94 0.89 11445516

4 0.72 0.50 0.59 0.41 297871

5 0.97 0.97 0.97 0.94 3414808

Micro 0.92 0.92 0.92 - 18975064

Macro 0.85 0.79 0.81 0.71 18975064

Weighted 0.92 0.92 0.92 - 18975064

Table 10. Results for full image classification for CLC level 1 classes

of wetlands are classified as a forest, and around a quarter of artificial surfaces are confused

with forests, most likely due to reasons stated previously. As expected, CLC level 1 classes

are rather easy to classify correctly, even with minimal preprocessing or postprocessing.
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CLC Level 1 classifications for the full dataset

Figure 19. Confusion matrix for CLC level 1 full dataset classification
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From full segmentation map, seen in figure 20, it can be observed that predictions match CLC

2012 labels pretty well. On the upper right corner of the image, few parts of lake Saimaa are

incorrectly labelled as wetlands. This is constant for all classification levels and it is due to

spectral index data being corrupted there. This behaviour is expanded more in section 5.2.

Classification differences are visualized in figure 21, and as theorized previously, most of the

misclassifications are either narrow roads or border regions between two different classes

rather than large misclassified areas. It also seems that anomalies from sen2three processing

don’t affect classifications significantly. Also, as expected, borders of the labelled area have

a lot of misclassifications due to missing spectral indices outside of them.

27°55'E 28°50'E

61°15'N

60°39'N

N

CLC 2012 classes

27°55'E 28°50'E

61°15'N

60°39'N

N

Predicted classes

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Figure 20. Left: CLC 2012 level 1 segmentation mask. Right: Predicted CLC level 1

segmentation mask
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Figure 21. L2 distances between CLC 2012 labels and predictions.
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4.2 Results for CLC level 2 classification

Identifier Class Support

1 Urban fabric 1140489

2 Industrial, commercial and transport units 1335162

3 Mine, dump and construction sites 238805

4 Artificial, non-agricultural vegetated areas 299605

5 Arable land 5533164

6 Permanent crops 17403

7 Pastures 14698

8 Heterogenous agricultural areas 225899

9 Forests 12915108

10 Scrub and/or herbaceous vegetation associations 3429604

11 Open spaces with little or no vegetation 14724

12 Inland wetlands 505891

13 Inland waters 3820648

Total 29491200

Table 11. CLC level 2 classes in the test set

CLC level 2 classes are far more challenging than CLC level 1 classes. While ”Water bodies”

and ”Inland wetlands” are equal to CLC level 1 classes in this area, other classes are divided

into three or five subclasses. Also, three of these labels are almost non-existent both in the

test set and even in the whole area, so they can be expected to be poorly classified.

Training Validation Testing

Features Acc Loss Acc Loss Acc Loss

RGB bands 0.85 0.39 0.82 0.52 0.82 0.52

All bands 0.85 0.41 0.83 0.49 0.82 0.50

Indices 0.86 0.38 0.82 0.50 0.82 0.50

Combined 0.86 0.38 0.84 0.45 0.84 0.45

Table 12. Accuracy and loss for different features in CLC level 2 classification
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RGB only Bands only Indices only Combined

Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU

1 0.69 0.64 0.67 0.50 0.69 0.65 0.67 0.50 0.67 0.70 0.69 0.52 0.69 0.70 0.69 0.53

2 0.61 0.57 0.59 0.42 0.63 0.52 0.57 0.40 0.64 0.59 0.62 0.45 0.64 0.62 0.63 0.46

3 0.72 0.62 0.67 0.50 0.77 0.63 0.69 0.53 0.80 0.61 0.69 0.53 0.84 0.61 0.70 0.54

4 0.57 0.34 0.43 0.27 0.61 0.33 0.43 0.27 0.64 0.31 0.42 0.27 0.59 0.37 0.46 0.30

5 0.87 0.90 0.89 0.80 0.87 0.92 0.90 0.81 0.86 0.92 0.89 0.80 0.90 0.93 0.91 0.84

6 0.77 0.42 0.54 0.37 0.77 0.39 0.51 0.34 0.76 0.40 0.52 0.35 0.83 0.42 0.56 0.39

7 0.58 0.09 0.15 0.08 0.87 0.00 0.01 0.00 0.64 0.02 0.05 0.02 0.59 0.18 0.28 0.16

8 0.56 0.27 0.37 0.22 0.51 0.31 0.38 0.24 0.54 0.34 0.42 0.26 0.57 0.34 0.43 0.27

9 0.82 0.91 0.86 0.76 0.83 0.91 0.87 0.77 0.84 0.91 0.87 0.77 0.85 0.91 0.88 0.78

10 0.67 0.45 0.54 0.37 0.68 0.48 0.56 0.39 0.65 0.46 0.53 0.36 0.67 0.52 0.58 0.41

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.84 0.61 0.71 0.55 0.79 0.69 0.74 0.59 0.78 0.69 0.73 0.58 0.81 0.70 0.75 0.60

13 0.95 0.96 0.96 0.92 0.96 0.96 0.96 0.92 0.96 0.96 0.96 0.93 0.97 0.97 0.97 0.94

Mic 0.82 0.82 0.82 - 0.82 0.82 0.82 - 0.82 0.82 0.82 - 0.84 0.84 0.84 -

Mac 0.67 0.52 0.57 0.44 0.69 0.52 0.56 0.44 0.68 0.53 0.57 0.45 0.69 0.56 0.60 0.48

Wei 0.81 0.82 0.81 - 0.81 0.82 0.82 - 0.81 0.82 0.81 - 0.83 0.84 0.83 -

Table 13. Test set results for CLC level 2 classes

As expected, overall results (Tables 12 and 13) are worse than for CLC level 1 classifications,

but not by a lot considering that there are over twice as many labels. Overall accuracies are

all over 0.8, and as before network using all available features produces the best accuracies

and lowest loss. Labelwise results, on the other hand, vary a lot. Easiest classes are still

similar than before (”Water bodies”, ”Arable land” and ”Forests”), and interestingly ”Water

bodies” are classified here more accurately than for CLC level 1 classes. Of the three most

underrepresented classes, ”Open spaces with little or no vegetation” is totally undetected,

while ”Pastures” has F1-score of 0.56 and IoU of 0.39 and ”Permanent crops” has scores

0.28 and 0.16 respectively.

Confusion matrices (Figure 22) show that most common mix-ups are between ”Forest” and

”Scrub and/or herbaceous vegetation associations”, which is understandable due to them

both being aggregated from same CLC level 1 class. Misclassifications are similar for each

network, but the exact amounts differ. For instance, no matter what features are used, around

50% of all ”Scrubs etc” are classified as a ”Forest”.
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Figure 22. Confusion matrices for CLC level 2 classes
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Figure 23. An example of CLC level 2 classifications in non-urban area
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Figure 23 shows classifications for same image than figure 16, but for CLC level 2 classes,

and the results are similar. The northernmost road stays undetected, middle road is detected

but labelled to be wider than CLC 2012 labels suggest, and only some parts of the south-

ernmost road are detected. Water bodies, forests and arable land are both labelled fairly

correctly compared to CLC 2012 and satellite image.
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Inland Waters

Figure 24. An example of CLC level 2 classifications in urban area

Likewise, figure 24 is from the same area than figure 17 but with different labels. Urban areas

(”Urban fabric” and ”Industrial, commercial and transport units”) are still tough to classify

similarly to for CLC2012 labels, and the bridge in the middle is still tough for most of the

networks. While previously RGB only classifier was able to more or less detect this bridge

and label it correcly, now it labels approximately half of it as ”Forest”. All classifiers agree,

that there are ”Scrubs etc” at the lower-middle part of the image, above the arable land, but

the size and shape of them differ from each other.
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Figure 25. An example of differences with label borders for CLC level 2 classes

Scene with straight borders shows several differences between networks. Surprisingly RGB

only classifier has the best result for wetlands, but it entirely misses the road running across

the image. Only classifier that even somehow manages to detect the road is the one using all

available features, but even that only finds less than half of it. Like for CLC level 1, small

anomalies on the upper right corner don’t seem to influence classification at all.

Full classification results are presented in table 14 and confusion matrix in figure 26. Com-

pared to testing results, each class except ”Forest” has worse performance in at least one

metric when classifying full image. Also, micro and weighted overall accuracies are equal

to testing results, but macro averages and mIoU show significant drop. Macro Rec and F1-

score are now less than 0.5, but it can be explained by looking at support counts of the worst

performing classes. Classes with F1-score less than 0.5 represent only 2.1% of all pixels,

and are here even more underrepresented than in the test set (again, due to data augmenta-

tion). Other classes have rather moderate changes in their scores. Typically these classes

are mixed with some similar, more common class, such as ”Mine, dump and construction

sites” are mixed with ”Industrial, commercial and transport units”. Reasons for their mis-

classification may be that the test set contains only the easiest instances to detect, and after

augmentation there are multiple instances of those.

Overall segmentation map (27) looks at first glance mostly identical to CLC 2012 labels, with
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Class Pre Rec F1 IoU Support

1 0.64 0.66 0.65 0.48 520640

2 0.55 0.50 0.52 0.35 592446

3 0.39 0.31 0.35 0.21 110602

4 0.33 0.14 0.20 0.11 162310

5 0.87 0.90 0.88 0.79 2305136

6 0.62 0.19 0.29 0.17 9748

7 0.25 0.07 0.10 0.05 6356

8 0.28 0.12 0.17 0.09 109631

9 0.85 0.92 0.89 0.80 9398660

10 0.60 0.46 0.52 0.36 2035020

11 0.00 0.00 0.00 0.00 11836

12 0.72 0.51 0.60 0.43 297871

13 0.97 0.98 0.97 0.95 3414808

Micro 0.84 0.84 0.84 - 18975064

Macro 0.54 0.44 0.47 0.37 18975064

Weighted 0.82 0.84 0.83 - 18975064

Table 14. Results for full image classification for CLC level 2 classes

similar problems than CLC level 1 labels. Small, narrow areas are misclassified, although

for some it may also be because of land cover change. Anomaly in the upper right corner is

now smaller than previously, and interestingly classified as a ”Mine, dump and construction

sites” instead of wetlands. Misclassified points are, again, mostly along the roads or between

different land cover classes, with only few larger areas. These large areas are more common

than for CLC level 1 classes, which is natural with over twice as many classes to predict.

4.3 Results for target level classification

Target level classes are in some ways tougher than CLC level 2 classes, mostly because of

multiple different forest types. On the other hand, some rarer classes have been combined
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CLC Level 2 classifications for the full dataset

Figure 26. Confusion matrix for CLC level 2 full dataset classification
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Figure 27. Left: CLC 2012 level 2 segmentation mask. Right: Predicted CLC level 2

segmentation mask

into one and total number of classes is smaller. Comparing these results straight to other

predictions is not straightforward, because as stated before target level classes are not aggre-

gated from other CLC classes, but rather combine several of them.
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Figure 28. L2 distances between CLC 2012 labels and level 2 predictions.

Both accuracy and loss scores are worse for these classes than for CLC level 2 classes,

with best overall accuracy and F1-score for test set both being 0.76. Even though overall

accuracy and F1-score are lower than for CLC level 2 classes, mean IoU score and overall

macro averages are better. One possible explanation for this is different number of forest

type classes, as well as predicted results for CLC level 2 omitting some classes totally. Like

for other classification levels, best results are acquired by using all Sentinel-2 bands and

precomputed spectral indices and worst results with only RGB bands.

Best performing classes follow the trend from previous classifications. Water bodies are still

the easiest ones to classify, followed by fields and then coniferous forest. Hardest classes

are broad-leaved forest and mixed forest, followed by grasslands. Overall, F1-scores and
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Identifier Class Support

1 Built-up areas 2655204

2 Bare areas 411277

3 Grasslands 378052

4 Fields 5533164

5 Broad-leaved forest 1190813

6 Coniferous forest 8390724

7 Mixed forest 3333571

8 Transitional woodland shrub 3429604

9 Inland marshes 189864

10 Water vegetation 158279

11 Water bodies 3820648

Total 29491200

Table 15. Target level classes in the test set

Training Validation Testing

Features Acc Loss Acc Loss Acc Loss

RGB bands 0.77 0.61 0.74 0.73 0.73 0.74

S2 bands 0.77 0.61 0.75 0.70 0.75 0.70

Indices 0.78 0.59 0.75 0.71 0.75 0.71

Combined 0.79 0.58 0.76 0.65 0.76 0.65

Table 16. Accuracy and loss for different features in target level classification

IoU-scores are much more even than for CLC level 2 classes, partly due to there not being

any extremely underrepresented class among target classes. Also, highest precision score

for each class is at least 0.5. Given that class imbalance was not taken into account when

training neural networks, these results are promising. All results are presented in tables 16

and 17.
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RGB only Bands only Indices only Combined

Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU Pre Rec F1 IoU

1 0.67 0.72 0.69 0.53 0.67 0.73 0.70 0.54 0.71 0.72 0.71 0.56 0.69 0.78 0.73 0.57

2 0.80 0.65 0.72 0.56 0.85 0.66 0.74 0.59 0.84 0.67 0.74 0.59 0.82 0.74 0.78 0.64

3 0.68 0.36 0.47 0.31 0.68 0.40 0.50 0.33 0.60 0.37 0.46 0.29 0.65 0.47 0.55 0.38

4 0.86 0.92 0.89 0.80 0.84 0.95 0.89 0.81 0.86 0.92 0.89 0.80 0.89 0.94 0.91 0.84

5 0.52 0.30 0.38 0.23 0.55 0.31 0.40 0.25 0.52 0.33 0.41 0.25 0.56 0.37 0.44 0.28

6 0.75 0.81 0.78 0.64 0.76 0.82 0.79 0.65 0.77 0.83 0.80 0.67 0.80 0.82 0.81 0.68

7 0.46 0.38 0.42 0.26 0.48 0.42 0.44 0.29 0.48 0.45 0.46 0.30 0.52 0.41 0.46 0.30

8 0.57 0.58 0.58 0.40 0.62 0.56 0.59 0.42 0.57 0.55 0.56 0.39 0.58 0.65 0.61 0.44

9 0.69 0.53 0.60 0.43 0.65 0.56 0.61 0.43 0.71 0.51 0.59 0.42 0.69 0.58 0.63 0.46

10 0.68 0.43 0.53 0.36 0.64 0.54 0.59 0.41 0.72 0.47 0.57 0.40 0.66 0.61 0.64 0.47

11 0.95 0.96 0.95 0.91 0.95 0.96 0.96 0.92 0.96 0.96 0.96 0.92 0.97 0.96 0.97 0.94

Mic 0.73 0.73 0.73 - 0.75 0.75 0.75 - 0.75 0.75 0.75 - 0.76 0.76 0.76 -

Mac 0.69 0.60 0.64 0.49 0.70 0.63 0.65 0.51 0.70 0.62 0.65 0.51 0.71 0.67 0.68 0.55

Wei 0.72 0.73 0.73 - 0.74 0.75 0.74 - 0.74 0.75 0.74 - 0.76 0.76 0.76 -

Table 17. Test set results for target level classification
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1912440 14554 12495 179716 11462 268854 69342 156379 77 981 28904

20045 268744 2672 20619 1254 22808 10808 50390 2461 1908 9568

57191 2323 135558 101650 5304 19056 11032 43643 318 350 1627

121757 13281 18180 5086614 10329 99818 60583 118776 2742 391 693
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Combined

Figure 29. Confusion matrices for target level classes
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Confusion matrixes (Figure 29) show clear mix-ups between different forest types. Broad-

leaved forest is most commonly confused with mixed forest or transitional woodland shrub,

but each network manages to differentiate between broad-leaved and coniferous forest sur-

prisingly well. Mixed forest and coniferous forest are sometimes confused with each other,

with mixed forest being labelled as coniferous forest more often than vice versa. Otherwise

matrices show similar results than previous ones: classes that are typically next to each other

are also mixed up (for instance built-up areas and coniferous forest), while classes that are

geographically far from each other are not (for instance bare areas and water vegetation).

Map view CLC2012 labels Prediction with RGB-bands

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Figure 30. An example of target level classifications in non-urban area

As seen in figure 30, similar challenges than before occur for target level classifiers. Roads

are still labelled wider than CLC 2012 labels and only middle road is found constantly. How-

ever, it seems that this level finds the other roads better than other levels, at least when all

available features are used. Almost all of the bottom road is labelled, along with approx-

imately half of the topmost one. Different forest types are tough to distinguishing from

satellite image, but all classifiers somewhat agree on them, and compared to CLC2012 they

look believable. One thing common in all classification levels for this scene is that network

using all available features detects large area labelled either ”Artificial surfaces”, ”Industrial,

commercial and transport units” or ”Built-up areas” on the upper-right beach area, while

according to CLC2012 labels that area is really marshland.
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Map view CLC2012 labels Prediction with RGB-bands

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Figure 31. An example of target level classifications in urban area

Comparing figure 31 to figures 17 and 24, similar challenges as before can be observed. Ur-

ban areas are still classified to be larger clusters that hide smaller non-urban locations inside

them. This behaviour is even more noticeable for this classification level. Forests between

urban area and water are more narrow than for either CLC level, as are forest locations inside

built-up areas. Network using all features is able to detect some grasslands inside built-up

areas that remain undetected for other networks. It is also able to find the bridge on the

middle and label it correctly, whereas for instance network using S2 bands labels a part of it

as ”Coniferous forest”

Map view CLC2012 labels Prediction with RGB-bands

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Prediction with S2-bands Prediction with spectral indices Prediction with both

Built-up areas
Bare areas
Grasslands
Fields
Broad-leaved forest
Coniferous forest
Mixed forest
Transitional woodland shrub
Inland marshes
Water vegetation
Water bodies

Figure 32. An example of differences with label borders for target level classes
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In figure 32, peat production area has before been in the same class than marshes near it, but

for target level it has been moved to the class ”Bare areas”. Most of the classifiers manage

to distinguish between these classes and also find the borders between marsh and different

forests. One thing that remains constant for each classification level is the inability to detect

the road running in the middle. Networks here also differ in forest labels, with RGB only

and index only predictions being mostly coniferous forest and others having noticeably more

transitional woodland shrub. All networks seem to agree, that smaller rectangular areas of

”Transitional woodland shrub” are non-existent inside forest located on the lower-middle

part of this scene.

Class Pre Rec F1 IoU Support

1 0.63 0.70 0.66 0.50 1236696

2 0.70 0.52 0.60 0.43 185754

3 0.33 0.17 0.22 0.13 164435

4 0.86 0.91 0.88 0.79 2305136

5 0.53 0.32 0.40 0.25 611135

6 0.81 0.85 0.83 0.71 6755063

7 0.50 0.38 0.43 0.27 2032462

8 0.52 0.61 0.56 0.39 2035020

9 0.60 0.44 0.51 0.34 133825

10 0.53 0.36 0.43 0.27 100730

11 0.98 0.97 0.97 0.94 3414808

Micro 0.76 0.76 0.76 - 18975064

Macro 0.64 0.57 0.59 0.46 18975064

Weighted 0.75 0.76 0.75 - 18975064

Table 18. Results for full image classification for target level classes

Again, full image classification has at least one metric deteriorate for most of the classes,

and as before the classes with the worst performance are typically those with lowest support

count. Micro and weighted averages are similar than before, but macro averages are signif-

icantly better than for CLC level 2 classes. Out of classes that are identical with some CLC
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level 2 levels, namely ”Fields” and ”Water bodies”, performance is almost identical for both

networks. Like for the test set, broad-leaved and coniferous forests are distinguished from

each other pretty well, and also other forest type mix ups are still similar.
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1184 167 67 1476 182 15330 3161 2067 3537 36343 37216

11749 938 605 1366 166 53241 1820 779 593 21505 3322046

Target level classifications for the full dataset

Figure 33. Confusion matrix for target level full dataset classification

Predicted segmentation map is, at least for the main features (water bodies, urban areas

etc) similar to CLC 2012 labels. Similar classification differences can still be detected than

for example in CLC level 2 classification. On the western side of Lappeenranta there’s

an area that according to CLC 2012 labels is ”Bare areas”, but is predicted as ”Built-up

areas” (Figure 35). For CLC level 2, this classification change was from ”Mine, dump and

construction sites” into ”Industrial, commercial and transport units”. This may indicate that

there was a construction zone in the time of CLC 2012 project which has now finished.

Interestingly, misclassification in the upper right corner of the segmentation map is smallest

for this classification level.

Because overall accuracy for this level is about 75%, much more than only border regions

between different classes are misclassified. Because CLC 2012 labels have a large number
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Figure 34. Left: CLC 2012 target level segmentation mask. Right: Predicted target level

segmentation mask

Map view CLC 2012 labels Predicted labels
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Figure 35. Example of classification differences that can be explained with land cover change

of lone pixels of one forest type inside another (typically broad-leaved or mixed forest inside

coniferous forest) and network used here has problems with narrow areas, many misclassifi-

cations are made because of this. In addition, for this classification level there are also larger

areas that are classified differently than in CLC 2012 labels. A lot of misclassifications are

located in the areas between water and land, possibly due to ”Water vegetation” differences.

56



27°55'E 28°50'E

61°15'N

60°39'N

N

Target level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 36. L2 distances between CLC 2012 labels and target level predictions.
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5 Discussion

In this chapter, the conclusions from acquired results are presented briefly, and possible ways

to improve classification results are theorized. Ways to improve are based on recent research

of utilization of deep learning in remote sensing tasks. Challenges for this kind of dataset

are also discussed, and some ideas about how to solve them are presented.

5.1 Advantages in using multiple features

Neural networks using all available features outperformed other tested neural networks for

all classification levels, and networks using only red, green and blue S2 bands had the worst

performance. Amount of improvement depends on the classification level, but overall F1-

scores improved by one or two percent and IoU improved by two to four percent points.

Networks using only spectral indices or only all S2 bands had pretty much identical overall

results, and both outperform other for some classes and some metrics. Typically spectral

index networks yield better recall, while S2 band network had better precision scores and

thus their F1-scores are similar.

Comparing RGB classifications and S2 band classifications, there is no single class that

shows clear benefit from using more features, but rather all classes improve by a few per-

cent points. Adding spectral indices to features doesn’t change this behavior, and again all

class scores improve by a couple of percent points. Largest improvement for F1-score when

moving from S2 bands to S2 bands and indices is 6%, which occurs for CLC level 2 class

”Industrial, commercial and transport units”. However, difference between index only and

combined classifier for this class is only 1%. It is worth to keep in mind, that these results

are acquired with pretty much untuned neural network, and section 5.3 focuses on how to

improve further.
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5.2 Challenges of the used dataset

As stated in 3.2.1, training data labels are not 100% accurate, and estimated accuracy drops

quickly when classification level becomes more specific. In addition to this, land cover clas-

sification sets are always extremely unbalanced and dataset used here is no exception. For

instance, in Finland almost 75% of all land cover belongs to CLC level 1 class ”Forests and

seminatural areas” (Härmä et al. 2014). For the dataset used in this thesis, even though labels

are provided in 10×10m spatial resolution, these labels are produced in 20×20m resolution

and then resampled to 10× 10m resolution. 3.2.1 also presents some other problems with

original labels, such as faulty built-up area labels. These factors, along with possible land

cover changes after initial classification, make analyzing the results very difficult. For exam-

ple, while I can be certain that water labels are almost 100% correct (some borders between

water and land may be incorrectly classified due to different resolution), same can’t be said

for agricultural areas.

One of the reasons to use deep learning methods for land cover classification is their robust-

ness to labelling errors. Rolnick et al. (2017) show that instead of just memorizing noise,

CNNs are able to generalize and acquire over 90% accuracy on MNIST dataset even with

100 randomly labelled images for each correctly labelled one. Of course, this is true only

when training set is sufficiently large, and having more errors also means that batch size

should be decreased.

As with all remote sensing tasks using satellite data, there’s always the problem with clouds

and cloud shadows. Even though I had over 30 satellite images to choose from, only two

of three of them were even close to being usable. In this thesis this was solved by generat-

ing synthetic cloudless mosaic from several atmospheric corrected images, but for accurate,

low-interval LULC monitoring it would be better to be able to classify images with clouds.

After all, S2A and S2B produce images every five days, so theoretically almost real-time

monitoring is possible. Sen2cor produces cloud confidence masks that give each pixel some

probability value of containing clouds, so it could be possible to set all points with cloud con-

fidence value larger than some threshold. Sen2cor version 2.4 however has a known problem

of assigning large cloud confidence values for built-up areas, so it might mask non-clouded,

built-up areas in addition to clouds. This has been partially fixed in later versions (European
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Space Agency 2018a). It may be that clouds and built-up areas have similar spectral sig-

natures, because networks trained here always classify clouds as some artificial surface, as

shown in figure 37. Another way is to train a network with images containing clouds, and

classify them as their own class ”Clouds or unknown”.

Map view CLC2012 labels Prediction

Artificial surfaces

Agricultural Areas

Forests and seminatural areas

Wetlands

Water Bodies

Figure 37. Example classification of a clouded scene

5.3 How to improve classification results

In this section ways to improve these results are theorized and presented, both from neural

network tuning and input data perspective. While the results presented above show that this

kind of method is suitable for LULC from multispectral images, but how could these results

be improved? Common baseline for LULC accuracy assessment is 85% overall accuracy

with no class having accuracy less than 70% (Foody 2002), and presented method doesn’t

quite reach that even for CLC level 1 classes. Note that while presented neural network

classifies multiple classes at once, but another possible method is to form an ensemble of

classifier that each perform binary classification for some of the classes. Binary classifica-

tion is in some ways easier to evaluate than multiclass classification, because for instance

ROC (receiver operating charasteristic) curve and AUC (Area under curve) metrics are well

defined and easier to use for binary classification. On the other hand, multiclass classification

confusion matrices give clear information about which classes are hard to distinguish from

each other. Nevertheless, ensemble classification might improve results.

Even though proposed neural networks acquired rather good results, at least for the easiest

classification level, in all honesty they are completely untuned for this task. Used loss func-

tion, unweighted categorical cross entropy, is not well-suited for datasets with an extreme
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imbalance like in dataset used here. This can be observed from the results, where larger

classes have better and smaller correspondingly worse results. By changing the loss function

to be either weighted categorical cross entropy or to either recently introduced loss func-

tions focal loss (Lin et al. 2017) or Lovasz-Softmax loss (Matthew and Blaschko 2018) and

retraining networks it is likely that better classification results are achieved. How much do

they improve is uncertain and worth testing.

Another way to improve network performance is to use pretrained weights from some well-

performing model in the encoding path rather than train networks from scratch. For instance,

Nogueira, Penatti, and Santos (2017) show that using pretrained model and then fine tuning

it produces better results than fully training a new network. This approach has also the

advantage of being a lot less time-consuming and computational resource intensive, because

now only the transposed convolutions and final layers need to be trained from scratch.

A vital part of neural network implementation and training is the choice of hyperparameters.

Presented network mostly follows original U-Net identically with only slight modifications

under the assumption that developers of U-Net have tuned this architecture well enough.

Still, possible ways to improve training process is to adjust some of these, such as learning

rate and gradient optimizer, as well as vary input image size. Presented network is trained

with only 128× 128px images, but it’s able to process almost arbitrary sized images with

good success. Presented network also doesn’t incorporate any regularization, like dropout

layers, or decay of weights and learning rate. Networks were also trained for only 100 epochs

and even though validation metrics started to slow down during the end of training, they were

still improving slowly. Now that presented network has shown to be a good baseline, next

logical step would be to fine-tune the hyperparameters.

As a side note about window sizes, while networks were trained with 128×128px windows,

for some reason using larger window sizes may actually lead to better results. I quickly tested

classifications with 64× 64px, 256× 256px, 512× 512px, 1024× 1024px, 2048× 2048px

windows and full image at once. Overall metrics for target level classification are presented

in table 19, and as seen there, overall metrics first improved a little, but stayed the same for

512×512px and larger. Even if 128×128px window had the second-worst performance, I

still decided to use same window size for final classification than used for training, because
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the results would then be easier to compare to each other. One possible way to utilize this

networks’ ability to process (almost) arbitrary sized images could be to train the network

different sized images. For instance, use 128×128px images as input for the first 100 epochs.

After this, change the input data to be size 256×256px and continue training for sufficient

amount of epochs.

Size OA Pre Rec F1 mIoU

64 0.76 0.64 0.55 0.58 0.45

128 0.76 0.64 0.57 0.59 0.46

256 0.76 0.64 0.58 0.60 0.47

512 0.76 0.64 0.59 0.61 0.47

1024 0.76 0.64 0.59 0.61 0.47

2048 0.77 0.64 0.59 0.61 0.47

Full image 0.77 0.64 0.59 0.61 0.47

Table 19. Full classification results for target level classification using different window

sizes. Precision, recall and F1-score are macro averages

Segmentation maps presented in this thesis were produced by making predictions of smaller

images and then assembling them into a grid. However, as seen in figure 38, especially in

CLC level 2 classes, window borders can be clearly seen. One way get rid of this would be

to extract the images with smaller strides, such as half of the image width and average the

predictions for each pixel. Rakhlin et al. (2018) use this kind of approach, and they also have

several other steps that could improve these results, such as equibatch sampling (making sure

that each class is present once every C batches) and utilizing previously mentioned Lovasz-

softmax loss function. Their classification task is a bit harder than CLC level 1, but way

easier than target level classification task, and they managed to get pretty much as good

results with only RGB-images as I did with S2-bands and indices.

Despite all hype about deep learning and neural networks, it may very well be that classical

machine learning methods perform better for this kind of tasks. De Alban et al. (2018) utilize

random forests in a large land cover change analysis combining multispectral satellite data

and L-band SAR data with good success. They show that combining these features improve
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Figure 38. Without overlap sliding window borders can be detected on the left side of the

scene.

classification compared to only Landsat satellite data. However, they also mention that recent

improvements in CNN development should be tested with similar features. Neural network

structure presented in this thesis combined with either L-band SAR or LiDAR data would,

according to results presented in De Alban et al. (2018), improve classification even further.

Last point I’d like to highlight is the temporal dimension for classification. This thesis origi-

nally tried to use 3D CNNs and image stacks containing images from several different time

steps, but that strategy yielded poor results outside of testing set. While there have been 3D

implementations of U-Net, they are meant for volumetric segmentation of 3D images and

thus are not suited for land cover classification. However, there are a couple of ways to uti-

lize scenes from different times for U-Net type of classifier. The first and most simple one is

to stack images from different time steps and classify those stacks. Second option is to train

separate classifiers for each time step, be it month or season, and average the predictions to

acquire segmentation maps. Third and in my opinion the most promising one is to combine

recurrent neural networks (RNNs) with U-Net architecture, like R2U-Net proposed by Alom

et al. (2018). RNNs are special kind of neural networks that are meant for sequential data

processing (Goodfellow, Bengio, and Courville 2016). Like original U-Net, R2U-Net is also

developed for medical image segmentation, but it doesn’t mean that it can’t be used in other

fields. After all, U-Net has been adopted almost as a de-facto standard for segmentation

networks. By adding the temporal dimension to images, it can be expected that for instance

distinguishing between coniferous and deciduous trees will improve.
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6 Conclusions

In this chapter, overall thesis process is reflected and successful application steps from sec-

tion 1.1 are rechecked and evaluated. Even though I decided to completely change the used

network structure and the type of classification performed in the midway of the thesis pro-

cess, overall process was rather straightforward. Typical time allocation in data mining tasks

is often described such as 80% of the time taken is spent on interpreting and processing data

and all other steps take the remaining 20%, and this work was not an exception to this. Most

of the time went to choosing viable images, preprocessing them and generating synthetic

images.

In section 1.1 I stated that there is a clear definition of a problem, or rather several of those.

I set the goal to test the viability of U-Net type classifier for LULC tasks using multispectral

input data, and as a side product get segmentation maps for Rakkolanjoki drainage basin.

As a conclusion for this question I can say, that U-Net is an excellent method for LULC

tasks, and after testing and incorporating the improvements from section 5.3 it could improve

even further. Questions two and three are nowadays almost trivial, because large amounts

of exellent quality satellite images are freely available. However, for some tasks satellite

images are not enough, but either SAR or LiDAR data is needed. For large scale LULC

tasks Sentinel-2 or other satellite images are, in my opinion, sufficient enough.

I was lucky to have large amounts of training data for this task. In addition, this data was

not from some well known LULC dataset that has been analyzed and classified thorouhgly.

Had this testing been done in for example Pavia University dataset, same accuracies than I

achieved with Kaakonkulma could have been considered a failure. Using non-estabilished

dataset has some difficulties, because the accuracy of the training data is not as good as in

some estabilished sets. This challenge was solved with comparing the produced segmenta-

tions to satellite images in addition to ”ground truth” segmentations and confusion matrices.

These results still need more analyzing, because at least for me it’s practically impossible to

distinguish between different forest types from satellite images, especially if they are only

few pixels in size.
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If I had to highlight two of the most important factors to focus in order to improve these

results, they would be to test different loss functions more viable for unbalanced data and

test some pretrained model for encoding path. After the model achieved the baseline for

results (85% overall accuracy, all classes at least 70% accurate), then it would be reasonable

to implement RNNs to it and see if temporal dimension improves these results even further.

Deep learning has many applications in different remote sensing tasks, and the development

in last ten years has been fast. Lillesand, Kiefer, and Chipman (2008) mention artificial

neural networks with only a few paragraphs, considering them to be a subject of continuing

research in image interpretation. Ten years later neural networks, especially CNNs, are the

default method for image interpretation, and new ways to utilize them in different areas are

constantly found. In the near future, I’ll possibly be researching new applications for neural

networks in remote sensing. Around a week after I held a short presentation for SYKE Ma-

chine Learning network about CNNs and their usage in land cover classification, one of the

senior researchers contacted me and asked if I was interested in participating in an Academy

of Finland funding application as a Ph.D. student. If the application is approved, then I’ll

continue to work with this subject and implement the suggestions presented in section 5.3,

and test method presented here for hyperspectral and LiDAR data.
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Appendices

A Aggregation of classification labels

If a cell is empty, then the label is same than the previous one.

CLC2012 level 4 CLC2012 Level 2 CLC2012 Level 1 Target

Continuous urban

fabric

Urban fabric Artificial Surfaces Built-up areas

Discontinuous

urban fabric

Commercial units Industrial,

commercial, and

transport units

Industrial units

Road and rail

networks and

associated land

Port areas

Airports

Mineral extraction

sites

Mine, dump and

construction sites

Bare areas

Open cast mines

Dump sites

Construction sites

Summer cottages Artificial

non-agricultural

vegetated areas

Grasslands

Sport and leisure

areas

Golf courses
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Trotting tracks

Non-irrigated arable

land

Arable land Agricultural areas Fields

Fruit trees and berry

plantations

Permanent crops Grasslands

Pastures Pastures

Natural pastures

Land principally

occupied by

agriculture

Heterogenous

agricultural areas

Agro-forestry areas

Broad-leaved forest

on mineral soil

Forests Forests and

semi-natural areas

Broad-leaved forest

Broad-leaved forest

on peatland

Coniferous forest

on mineral soil

Coniferous forest

Coniferous forest

on peatland

Mixed forest on

mineral soil

Mixed forest

Mixed forest on

peatland

Mixed forest on

rocky soil

Natural grassland Shrub and/or

herbaceous

vegetation

associations

Transitional

woodland shrub
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Moors and

heathland

Transitional

woodland shrub (all

cc)

Beaches, dunes and

sand plains

Open spaces with

little or no

vegetation

Bare areas

Bare rock

Sparsely vegetated

areas

Inland marshes,

terrestrial

Inland wetlands Wetlands Wetlands

Inland marshes,

aquatic

Water vegetation

Peatbogs Wetlands

Peat production

sites

Bare areas

Water courses Inland waters Water bodies Water bodies

Water bodies

B Training and validation metrics for CLC level 1 classes

This appendix contains the training and validation metrics for CLC level 1 neural network

training. Graphs are presented in the following order: RGB, S2-bands, spectral indices,

combined.
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C Training and validation metrics for CLC level 2 classes

This appendix contains the training and validation metrics for CLC level 2 neural network

training. Graphs are presented in the following order: RGB, S2-bands, spectral indices,

combined.
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D Training and validation metrics for target level classes

This appendix contains the training and validation metrics for target level neural network

training. Graphs are presented in the following order: RGB, S2-bands, spectral indices,

combined.
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