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Abstract
Control and utilization of coherent states ofmicrowave photons is a ubiquitous requirement for the
present and near-future implementations of solid-state quantum computers. The rate at which the
photon state responds to external driving is limited by the relaxation rate of the storage resonator,
which poses a trade-off between fast control and long storage time.Here, we present a control scheme
that is designed to drive an unknown photon state to a desired coherent statemuch faster than the
resonator decay rate. Ourmethod utilizes a tunable environmentwhich acts on an ancillary qubit
coupled to the resonator. By periodically resetting the qubit and tuning it into resonancewith the
resonator, possible photon loss and dephasing of the resonatormode are correctedwithout
measurements or active feedback. In general, ourmethod is suitable for accelerating the control of
coherent states in high-fidelity resonators.

1. Introduction

The storage andmanipulation of the quantum state of photons is an integral part of the implementation of
quantum information processing [1–3] in thefield of quantum electrodynamics [4]. In particular, coherent
states of photons serve as the starting point or a reference state in various applications including dispersive
readout of qubits [5], state tomography of itinerant photon fields [6], and encoding of quantum information
[7–9].

Coherent states are typically inserted andmaintained in a superconducting resonator or cavity by coherently
driving the device until the out-going photonflux equals the intensity of the in-coming signal. However, this
involves a trade-off between long lifetime of the stored state after driving and fast response to control, because
both of these properties are tied to the quality factor of the device. Some speed upmay be obtained by
temporarily increasing the drive power, but this is advantageous only if the initial state is accurately known.
Severalmethods to tackle this trade-off have been demonstrated recently. These include the adjustment of the
external quality factor of the storage resonator using a tunable coupler [10, 11] or aflux-driven Josephson
junction [12], and conversion from stationary to propagating photons using a driven transmon qubit [13] or a
Josephson ringmodulator [14].

There have also been recent efforts [15, 16] to rapidly reset the resonatormode to the vacuum state which
coincides with a coherent state of zero amplitude. The combination of coherent driving and dissipation has been
utilized to stabilize also non-classical cat states [17, 18].

In this work, we tackle the trade-off problemby utilizing tunable electromagnetic environments such as the
recently demonstrated quantum-circuit refrigerator [19, 20] (QCR). Coupled to a quantumdevice such as a
resonator or a qubit, theQCR allows fast and flexible control over the relaxation rate of the coupled element.
Consequently, itmay be used to reset a qubit to the ground state in a time scalemuch shorter than the natural
lifetime.

In our stabilization protocol, wemaintain the state of a slowly dissipating resonatormodewithout active
monitoring. The stabilizing effect arises from resonant interactions with a qubit that is driven at a constant
amplitude and is periodically reset to the ground state by, for example, aQCR. As a result, the resonator state
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converges towards a chosen coherent state at a rate that is proportional to the increased relaxation rate of the
qubit. This rate can be tuned to be several orders ofmagnitude higher than the natural decay rate of a high-
quality resonator and is primarily limited by the qubit–resonator coupling strength. Notably, any losses,
excitations, or phase shifts that occur in the resonator are corrected significantly faster than a simple continuous
drive allows.

Ourmethod serves to speed up the preparation andmanipulation of resonator states which are themost
time-consuming tasks ofmany quantum information protocols. It is particularly well suited tomitigate errors
from slowdecay and dephasing of the resonator state. In addition, the stabilization protocol can be used to
reduce the amount of thermal photons in a resonator by transferring them to the qubit and subsequently to the
tunable environment. In contrast to the recently demonstrated reset schemes [15, 16], our approach does not
require any prior information about the state of the system. This allows resonator initialization in systemswhere
directly coupling the storage resonator to a cold bath is not desirable. Interestingly, our approach evacuates the
thermal photons alsowhile stabilizing to afinite-amplitude coherent state, a feature whichmay render a separate
cooling phase unnecessary in resonator state control.

Moreover, our stabilizationmethod presents a complementary application for the tunable response rate of a
resonator.Whereas recent experiments that have realized effectively tunable quality factors aremotivated by fast
injection of arbitrary photon states to the resonator [11–13], we envisage protocols where ancillary coherent
states are repeatedly stabilized and reused for various tasks.On the other hand, in previous work [21]wehave
shown thatmaintaining a coherent state in thismannermay be beneficial in reducing harmful heat loads subject
to quantum circuits. To this end, the present work potentially offers a faster andmore conveniently realizable
approach.

This work is organized in the followingway. In section 2, we describe our physical system and derive an
approximatemodel from the full Hamiltonian. In section 3, we introduce the stabilization sequence and use
both numerical simulations and the simplifiedmodel to calculate the effective stabilization rate, i.e., the rate at
which themode converges towards the target state.We also apply ourmethod to the problemof resetting a
resonator to the vacuum state, evacuating initial photons at a rate that is independent of the decay rate of the bare
resonator. The stabilization results are summarized and discussed in section 4.

2. Theory

Weconsider a system consisting of a tunable qubit coupled to a transmission line and a singlemode of a
microwave resonator, as depicted infigure 1(a).We treat themode as a harmonic oscillator with angular
frequencyω, and the qubit as a two-level systemwith transition frequencyωq(t)=ω+Δ(t), whereΔ(t) is the
controllable detuning. The qubit is driven through the transmission line at angular frequencyωwith complex
amplitudeΩ. In addition, the qubit can be exposed on demand to the strongly dissipative environment of a
QCR.We do not analyze the dynamics of theQCR in this work explicitly, but instead assume that the relaxation
rate of the qubit is a dynamically controllable variableΓq(t).

Figure 1. (a) Schematic diagramof a qubit coupled to a resonatormode â with coupling strength g, driven through a transmission line
with amplitudeΩ. The decay rateΓq of the qubit is dynamically adjusted by a tunable electromagnetic environment. (b)The
pendulum analogy of the system. The state vector of the qubit (black pendulum) oscillates on the surface of the Bloch sphere spanned
by the axes s s s{ }, ,x y z and is determined by the polar angle θ and the azimuthal anglef. The angular velocity of the pendulum,
denoted by the blue arrow in angleΦ in the projected xy-plane, corresponds to the deviation from the target amplitude of the
resonator, d = á ñ - Wâ g . Here, we have chosen planar oscillation for simplicity, for whichf=Φ. After a quarter period of free
oscillation beginning from the ground qubit state, θ≈0, the angular velocity isminimized, i.e., the target resonator state is reached.
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2.1.Displaced reference framedue to a driven qubit
Before investigating this setup in full detail in section 3, we analyze the unitary evolution of our systemwithout
detuning and damping. In the frame rotatingwith angular frequencyω, wherewemake the rotating-wave
approximation, the system is described by the Jaynes–CummingsHamiltonian

* s s s s= Ä + Ä + Ä W + W+ - + -ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( ˆ ˆ ) ( )†H g a a I , 1

where g denotes the coupling strength between themode and the qubit, Î is the identity operator, and â and
s = ñá-ˆ ∣ ∣g e are the annihilation operators of themode and the qubit, respectively. Here, ñ∣g and ñ∣e denote the
ground and excited state of the qubit, respectively.

By re-grouping the terms as

*
 s s= +

W
Ä + +

W
Ä+ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )†H g a
g

I g a
g

I , 2

and noting that the unitary displacement operator * = -ˆ ( ) ( ˆ ˆ)†x xa x aexp acts on â as

  = -ˆ ( ) ˆ ˆ ( ) ˆ ˆ†
x a x a xI , wemay interpret Ĥ as the Jaynes–Cummings interaction term in a frame displaced by

αT≡−Ω/g. Thus driving the qubit at the resonance frequencyω effectively shifts the origin of the resonator
phase space to point aT in the non-displaced frame. A useful consequence is that a coherent state
a d+ ñÄ ñ∣ ∣gT , where δ is an arbitrary complex number, naturally evolves towards another state a yñÄ ñ∣ ∣T ,
where yñ ¹ ñ∣ ∣g . This is intuitively understood in the displaced frame, where the state dñÄ ñ∣ ∣g evolves towards
the vacuum yñÄ ñ∣ ∣0 as themode exchanges an excitationwith the qubit. This is the coremechanism of the
stabilizationmethod introduced in section 3.

2.2. Approximation assuming separable states
Todescribe the above-mentioned dynamics analytically, we approximate the system as two separable
components, such that the states of the components are represented by vectors of the respective uncoupled
Hilbert spaces. Furthermore, we assume that themode is fully described by a coherent state, the amplitude of
which deviates fromαT by a complex number d d= F( ) ∣ ( )∣ ( )t t e ti , that is,
a d a d a d+ ñ = + + ñˆ∣ ( ) [ ( )]∣ ( )a t t tT T T .We parametrize the qubit state vector as

q qñ = ñ - ñf∣ ( ) [ ( ) ]∣ [ ( ) ]∣ ( )( )t t tq cos 2 g ie sin 2 e , 3ti

where θ andf denote the polar and azimuthal angles of the Bloch vector, as shown infigure 1(b). Thus the
degrees of freedom in the system are reduced to the complex deviation δ(t) and the two real angles θ(t) andf(t).

The resonatormode and the qubit are separately controlled by the effectiveHamiltonians

*

 q

a a

=á ñ =

´ - - -f f-

ˆ ( ) ( )∣ ˆ ∣ ( ) [ ( )]

[ ( ˆ ) ( ˆ )] ( )( ) ( ) †

H t t H t g t

a a

q q
i

2
sin

e e , 4t
T

t
T

r

i i

* 
a d a d

d s d s

= á + + ñ

= ++ -

ˆ ( ) ( )∣ ˆ ∣ ( )
( ) ˆ ( ) ˆ ( )

H t t H t

g t g t , 5

T Tq

respectively.We note that Ĥq describes driving the qubit with an effective complex amplitude gδ(t)which rotates
the Bloch vector at an angular frequency d∣ ( )∣g t2 about an axis that lies on the xy-planewith the azimuthal angle
Φ(t). Furthermore, theHamiltonian Ĥr is a driving term that displaces the center of the coherent distribution at
a rate

d q= - f˙ ( ) [ ( )] ( )( )t g t
1

2
sin e . 6ti

For our purposes, it is sufficient to restrict our following solution to initial conditionf(0)=Φ(0), i.e., ˆ ( )H 0q

will rotate the Bloch vector about an axis that is perpendicular to its initial great circle. Consequently, the phases
of both the qubit and the deviationwill remain constant,f(t)=Φ(t)=Φ(0). Using equation (6)with
q d=˙ ( ) ∣ ( )∣t g t2 and choosing the correct sign yields

q q= -( ) ( ) ( )t g t¨ sin , 72

which is the equation of a simple pendulum. The closed-form solution for the relevant initial conditions is
presented in appendix A.

For d d= <∣ ∣ ∣ ( )∣0 10 , the systemwill oscillate about the equilibrium state δ=θ=0 in away similar to a
simple pendulum that does not have enoughmomentum to tip over the apex, see figure 1(b). The sign of
θ0=θ(0)determines whether the oscillation is advanced or delayed comparedwith the case where q = 00 . In
terms of this analogy, the stabilizationmethod is designed to let the system freely oscillate close to the turning

3

New J. Phys. 20 (2018) 103047 J Ikonen andMMöttönen



point where q dµ »˙ 0, and then reset the qubit to θ=0. Repeating the process eventually drives the system to
the equilibrium state.

2.3. Numerical verification of the simplifiedmodel
Wenumerically simulate the full dynamics of theHamiltonian in equation (1) and compare the results to our
simplifiedmodel. Figure 2 shows the temporal evolution of the amplitude deviation for an initial coherent state
a d+ ñ∣ T 0 , evaluated as d a= á Ä ñ -( ) ˆ ˆ ( )t a I t T .We observe that the simplifiedmodel accurately describes the
dynamics for for small δ0. For δ0 close to unity, the differences are largely explained by the increased
entanglement between the two subsystemswhich is ignored in the simplifiedmodel. Note that according to the
simplifiedmodel, themagnitude of aT has no effect on the dynamics, and poses only negligible differences in the
numerical solution. The interaction times in our stabilizationmethod below are limited to the quarter period
interval tg�π/2.

3. State stabilizationmethod

3.1.Master equation for the full stabilization sequence
Wedetune the qubit in and out of resonance to control the duration of the resonant interaction discussed above.
This is represented by the addition of a term sD( ) ˆt z

1

2
to theHamiltonian in equation (1), where

Δ(t)=ωq(t)−ω is the time-controllable frequency detuning of the qubit. Additionally, the decay rateΓq(t) of
the qubit can be dynamically increased up to Gq,max using aQCRbut is bound frombelow to reflect thefinite
natural lifetime of the qubit.With experimentally realistic parameters, the decay rate provided by theQCR
ranges from G = 10q,min

3 1

s
to G = ´5 10q,max

8 1

s
.We also assume a constant decay rateΓr of the resonator

mode. The latter two assumptions are not necessary for the stabilization sequence but are included to simulate
themethod in amore realistic setting. The cross-coupling of the resonatormode to theQCR and the qubit drive
line are assumed negligible. By neglecting the corrections on the dissipation arising from the effect of the drive
and the qubit–resonator coupling, the total temporal evolution of the density operator r̂ ( )t of the system is
given by themaster equation


 

r s r

s r r

= +
D

Ä

+ G Ä + G Ä-

⎡
⎣⎢

⎤
⎦⎥˙̂ ( ) ˆ ( ) ˆ ˆ ˆ ( )

( ) [ ˆ ˆ ] ˆ ( ) [ ˆ ˆ] ˆ ( ) ( )

t
i

H
t

I t

t I t a I t

1

2
,

, 8

z

q r

where  r r r r= - -[ ˆ] ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
A A A A A A A1

2

1

2
is the Lindblad superoperator. In the following sections, we solve

this systemnumerically in a truncatedHilbert space [22].

Figure 2.The inset presents the numerically simulated trajectories of δ(t) during the resonant interaction for an initial state
a dñÄ + ñ∣ ∣g T 0 , whereαT=10. Trajectories of certain color correspond to different initial deviations d0 markedwith a cross. The

main panel shows the trajectories, divided by the complex factor d d = F∣ ∣ e0 0
i 0, as a function of dimensionless interaction time. The

dashed lines show the evolution predicted by the simplifiedmodel.
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3.2. Stabilization
The purpose of the stabilization sequence is to drive themode towards a chosen coherent state a ñ∣ T without
active feedback. A single cycle of the sequence consists of an interaction phase and a reset phase, whereΔ(t) and
Γq(t) assume values as illustrated in the inset offigure 3. Throughout the sequence, the qubit is drivenwith a
constant amplitudeΩ=−gαT at the resonator angular frequencyω. During the interaction phase,D =( )t 0
and according to the results in section 2, a possible deviation δ in the resonator amplitude is expected to
approach zero. In the reset phase, the qubit is detuned to off-resonance and exposed to strong dampingwhich
allows a controlled reset of the qubit towards the ground state while the resonatormode is ideally unaffected.
The duration of the two phases, tint and treset are required to be long enough to significantly reduce the deviation
δ and to faithfully reset the qubit to the ground state. To this end, tint and treset are chosen in section 3.3 to
maximize the effective rate at which the deviation approaches zero.

An example simulation of the full stabilization sequence is shown infigure 3.We observe that the deviation,
evaluated by calculating the trace d r a= Ä -( ) [ ˆ ( ) ˆ ˆ]t t a ITr T , faithfully decreases during the interaction
phases and halts during resets. Importantly, themode converges to the target state at a rate three orders of
magnitude higher than the natural decay rate of the resonator.We also study the overlap between the system
density operator and the coherent state of concurrent expectation value, namely

a d r a d= - á + + ñ( ) ( )∣ [ ˆ ( )]∣ ( )P t t t t1 TrT Tq , where Trq denotes a partial trace over the qubit degrees of
freedom. The fast decrease ofP(t) confirms that the state indeed converges to the coherent state a ñ∣ T instead of
any other state that satisfies aá ñ =â T .

As discussed above, the temporal evolution in the interaction phase and hence the rate of convergence are
independent ofαT. Eventually, δ(t) reaches a plateauwhere the improvement gained during an interaction phase
is lost owing to the constant decay of themode during the following reset phase. Consequently, the deviation
eventually oscillates between d a» G∣ ∣ ∣ ∣ tTmin

1

2 r int and d a» G∣ ∣ ∣ ∣ tTmax
1

2 r cycle, where tcycle=tint+treset.
Interestingly however, the overlap increases evenwhen δ has reached the plateau.

Note that the above-made assumption of negligible crosstalk between the transmission line and the
resonator is reasonable.We estimate this by adding to the above simulation a constant resonator drive term. The
error caused by this leakage becomes comparable to the saturated error dmax if the additional drive term is
greater than 10−4×Ω. In addition to isolating the qubit drive from the resonator, wemay nullify the effect of
the crosstalk by a compensation tone.Namely, we drive the resonator exactly at the frequency of the qubit drive
and choose the drive amplitude and phase such that it exactly cancels the crosstalk.

3.3. Effective stabilization rate
Wedefine ourfigure ofmerit, the effective stabilization rate Geff , as the rate at which the deviation exponentially
approaches zero,

Figure 3.Amplitude deviation δ(t) from the target state (blue curve) and the lack of overlap P(t)with the coherent state a d+ ñ∣ ( )tT

(green curve), during a numerical simulation of the stabilization sequence applied to an initial state a - ñÄ ñ∣ ∣0.8 gT with a = 10T

. The sequence consists of alternating interaction and reset phases, indicated by pink andwhite backgrounds, respectively, during
which the decay rate and the detuning of the qubit are varied as shown in the inset. The dashed line shows an exponential fit
corresponding to an effective stabilization rate G » 76 MHzeff . The parameters used in the simulation are w p =2 6 GHz,

p = = =g t t2 50 MHz, 9.8 ns, 3.6 nsreset int and G = 30 kHzr .
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d d= -G∣ ( )∣ ∣ ∣ ( )t e . 9t
0

eff

Wederive an analytical estimate for the effective rate from the simplifiedmodel under the following
assumptions. In the interaction phase, the system evolves according to equations (6) and (7). During a reset
phase, the qubit decays at an increased rate Gq,max and acquires a phase shift relative to the resonant oscillation
due to the increased detuning. Allowing for the typical dispersive shift of the resonatormode frequency, the total

phase shift between themode and the qubit is proportional to D +
D( )t2
g

reset

2

. In appendix B, we show that the

stabilization rate in the limit of small deviations δ, θ=1 and infinite number of cycles is given by

m mG =
G

-  -∣ ∣ ( )t

t t4

1
ln 1 , 10eff

q,max reset

cycle cycle

2

for m( )Re 0, where

m =
G

-
D

-
D

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( ) ( )g

t gtcosh
4

i
2

i cos . 11
q,max

2

reset int

This shows that the rate of stabilization is essentially proportional to the tunable decay rate of the qubit. This is in
contrast to a continuously driven resonator, where the stabilization rate is limited to the resonator decay rateΓr

and thereforemay be orders ofmagnitude lower than than themaximum rate achievable using theQCR.
We test the validity of equation (10) by numerically simulating the system as for figure 3 andfitting an

exponential decay to the temporally decreasing deviation. To eliminate the effect of the plateau on thefit, only
points where δ(t) has decreased during all previous interaction phases are included in the fit. The effective rate
obtained this way is shown as a function of treset and tint infigure 4 together with the analytical estimate. The
agreement between the simulated and analytical rates suggests that the simplifiedmodel successfully captures
the essential features of the fullmaster equation (8). The simplifiedmodel is less accurate in regionswhere the
attempted stabilization steps are the largest and the assumption δ, θ=1 does not hold.

The oscillatory behavior as function of treset is explained by the phase shiftmentioned above. In the
interaction phase, the complex phase of the qubit state, accumulated during the reset phase due to the dispersive
shift, determines the initial direction of the oscillatorymotion of the resonator state. The initial directionmay be
aligned towards the target state or away from it, corresponding to the peaks and valleys infigure 4(a),
respectively. Regardless of the alignment of this small initial kick, the state tends to stabilize towards a ñ∣ T .

3.4. Resonator initialization by stabilization
Recently, different schemes [15, 16, 19] have been investigated to quickly reset a resonator to the vacuum state.
While this ismore conveniently achieved by coupling aQCRdirectly to the resonator, we note that our
stabilization sequencemay be used for the same purpose in a complementary setupwhere theQCR is connected
to the qubit instead of the resonator. To this end, we apply our stabilization protocol with a target amplitude
a = 0T .We study how the stabilization protocol performs if the resonator and the qubit are exposed to heat
baths offinite temperaturesTr andTq, respectively.We consider three cases of experimental interest: (i) the
temperature of the bath coupled to the qubit equalsTr; (ii) the qubit bath is cooled by theQCR toTq=Tr/2; (iii)
the qubit bath is cooled to a significantly lower temperature that is independent ofTr. The case (i) ismet in an
experiment where the qubit is initialized using a heat sink to a heat bath at the same temperature as the
electromagnetic environment of the resonator. In case (ii), we assume that the electron temperature of theQCR
equals that of the resonator environment, and since theQCR can cool to half of its electron temperature [20], we

Figure 4.Effective stabilization rate as a function of (a) reset time treset and (b) interaction time tint. Themarkers denote values
obtained by exponential fits to deviations d ( )t that are numerically simulated according tomaster equation (8). Themarkers of
different colors correspond to different initial deviations δ0 as indicated. The dashed black line shows the analytical estimate for the
rate, equation (10). The other parameters are as infigure 3.
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obtainTq=Tr/2. In case (iii), we assume that theQCRor the heat sink is well thermalizedwith a very low
temperature environment such as the phonon bath of the cryostat (see, e.g., [23]), whichmay be achieved since
theQCR electronsmay be shielded from any rf excitation.

We simulate the systemby adding the Lindblad terms  s rG Ä
+( ) [ ˆ ˆ ] ˆ ( )t I tq and  rG Ä [ ˆ ˆ] ˆ ( )†a I tr to the

master equation (8). Here, the excitation rates are given by the detailed balance conditions


G = G -
w ⎡

⎣⎢
⎤
⎦⎥( ) ( ) ( )

t t exp
t

k Tq q
q

B q
and G = G - w ⎡⎣ ⎤⎦exp

k Tr r
B r

, where kB is the Boltzmann constant.We assess the

performance of the stabilization sequence on an initial thermal statewith amean thermal occupation of
á ñ = G G -( ) ( )n 0 1 1r r by evaluating the remaining amount of photons in the resonator afterM cycles of

stabilization, rá ñ = Ä( ) [( ˆ ˆ ˆ) ˆ ( )]†n M a a I MtTr cycle .Wefind that after 5 ormore iterations of the sequence, the
thermal occupation saturates to a level shown infigure 5 for each case.

The results suggest that the stabilization sequence can be utilized to decrease the thermal occupation of the
resonator several orders ofmagnitude below the initial equilibrium value, provided that the environment that is
coupled to the qubit is colder than the resonator, as in cases (ii) and (iii). Hence, our protocol alsoworks for
thermal states, a result that is not evident from the simplifiedmodel of coherent states. In case (i), themodest
cooling of the resonator is explained by the periodic detuning of the qubit. Changing the qubit frequency
abruptly by+Δ or−Δ changes the effective temperature of the qubit to be higher or lower compared to the
unchanged frequency, respectively, which leads to cooling of the resonator after each interaction phase.

4.Discussion

The results presented above suggest that ourmethod is able to stabilize a coherent or the vacuum state
significantly faster than a simple continuous drive. Coupling the resonator to the qubit, and hence indirectly to
the tunable electromagnetic environment, allows effective removal of entropy from the resonatormodewithout
directly exposing it to a cold bath. Themethod is therefore suitable for accelerating state control in cavities or
other resonators that are designed for relatively long storage times. As a special case, themethod can also be used
to reduce the amount of thermal photons in a resonator and thus could be utilized in a resonator initialization
protocol in systemswheremore direct approaches are elusive.

Previously we designed a protocol which also steers the resonator state towards a specific coherent state by
employing a series of resonant rotation gates between the resonator and ancillary qubits. In [21], the photon
number difference between the target and concurrent resonator states leads to slightlymodified rotations and
ultimately to a convergence towards the target state. However, the deviation from the target state decreases only
polynomially with increasing number of iterationsM and individual iterations become less effective for an
increasing target photon number. The stabilization sequence presented in this work features three
improvements over the previousmethod: the state convergences exponentially withM, the stabilization rate is
ideally independent of the target amplitude, and the sequence can be realized experimentally using readily
available devices. Ultimately, themainmotivation for the state stabilization in [21] is to reduce the amount of

Figure 5. Saturated thermal occupation á ñn sat in the stabilized resonator as a function of the resonator bath temperatureTr. The
dashed line shows the average number of photons in the initial thermal state, towhich 15 iterations of the stabilization sequence are
applied to reach á ñn sat (solid lines). The temperature Tq of the bath that is coupled to the qubit is studied in the three cases presented in
the text, as indicated. The parameters used in the simulation equal those in figure 3.
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energy needed in the implementation of quantum gates by repairing the photon state instead of regenerating it
for each operation. The currentmethod carries out the same task and scales well in terms of required iterations,
but is not optimized to reduce energy consumption. Such study is left for future research.

The stabilization protocol and its approximatemodel presented here are verifiable using currently available
experimental techniques. The temporal decrease of δ(t) can be assessed bymeans of a full state reconstruction or
bymeasuring thefirstmoment á ñâ , which can be routinely carried out [6]with a precision of at least 10−3. As
discussed in section 3.2, possible crosstalk can be reduced to a tolerable level for the stabilization protocol. In
addition to testing the proposedmethod experimentally, wewill investigate ways to extend the theoretical
framework for creation of cat states.
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AppendixA. Solution of the pendulumequation

In this appendix, we present the closed-form solutions of equations (6) and (7) that are used to derive the
analytical result of appendix B. For initial conditions θ(0)=θ0 and q d d= =˙ ( ) ∣ ( )∣ ∣ ∣g g0 2 0 2 0 , the solutions are
expressed as

d t= + -( ) ( ∣ ∣ ∣ ∣ ) ( )t k gt k kdn , , A12

q t= + -( ) ( ∣ ∣ ∣ ∣ ) ( )t gt k k2am , , A22

where ( )x kdn , and am(x, k) are Jacobi elliptic functions [24] and

d d q= + -∣ ∣ ( ) ( )k 1 sin 2 , A30 0
2 2

0

t q= -( ∣ ∣ ) ( )F k2, , A40
2

with F(x, k) being the incomplete elliptic integral of thefirst kind [24].

Appendix B. Analytical approximation for the stabilization rate

In this appendix, we provide the derivation of equation (10) for the analytical approximation of the effective
stabilization rate. In the following, we define the deviation after the nth interaction phase to be d d= ( )tn n , and

the corresponding qubit-related variable as = f q( ) ( )s e sinn
t ti

2
n n ,with = -t nt tn cycle reset. In the interaction

phase, δn and ∣ ∣sn evolve according to equations (A1) and (A2), which neglect the dissipation in the system.We

first expand equations (A1) and (A2) in the limit of small errors assuming d= + ∣ ∣ ∣ ∣ ∣ ∣k s 1n n
2 2 . A

straightforward Taylor expansion to thefirst order in k yields the coupled equations

d d= -- -( ) ( ) ( )gt s gtcos sin , B1n n n1 int 1 int

d= +- -( ) ( ) ( )s gt s gtsin cos . B2n n n1 int 1 int

Weobserve that the effect of the interaction phase is to rotate the vector d= ( )v s,n n n
T by an angle gtint.

In the reset phase, the probability amplitude sn of the excited qubit state decays with the increased rate

G 2q,max and gains a phase shift f f- = D +- D( )( ) ( )t t tn n
g

1 reset

2

due to the dispersion. Accounting for the

additional dispersive shift-
D

t
g

reset

2

gained by themode, the system state after n cycles is therefore expressed as

= =- ( )v Uv U v , B3n n
n

1 0

where

=
-k

-
-D ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( ) ( )U
gt gt

gt gt
e 1 0

0 e

cos sin

sin cos
, B4t

t
i int int

int int

g2
reset

reset

is the action of a single stabilization cycle. Here, k = G - D -
D

i 2i
g1

2 q,max

2

.

To accessΓeff, we calculate δn from vnwith the initial condition
d= ⎜ ⎟⎛

⎝
⎞
⎠v

0
0

0 .
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The eigenvalues ofU are given by

l m m=  -
- +k

D( ) ( ) ( )e 1 , B5
i t 2

g
2

2
reset

where

m k= ⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )t gtcosh

1

2
cos , B6reset int

and the corresponding unnormalized eigenvectors are

l= - k

 
+ D

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )( )
( )

( )v gt

gt

cos e

sin
. B7

t
int

i

int

g2
reset

Wedecompose the initial vector as = -d
- + -

+ -
( )

∣ ∣
v v v

v v0
0 and insert it into equation (B3). This yields

d d d

l l

= =
-

´ - + -
+ -

+ + - + - - + -

⎜ ⎟⎛
⎝

⎞
⎠( )

∣ ∣
[ (∣ ∣ ) (∣ ∣ )] ( )† †

U
v v

v v v v v v

1 0
0

. B8

n
n

n n

0 0
2

2 2

In agreement with equation (9), we define the effective stabilization rate after n cycles of stabilization as

d
d

G =
-( ) ( )n

nt

1
ln . B9n

eff
cycle 0

We insert equation (B8) into equation (B9). In the limit  ¥n , the only non-vanishing factor is l-
∣ ∣ln

nt
n1

cycle

for m( )Re 0. Thus

lG » - ∣ ∣ ( )
t

1
ln B10eff

cycle

m m=
G

-  -∣ ∣ ( )t

t t4

1
ln 1 B11

q,max reset

cycle cycle

2

which is the result claimed in equation (10).
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