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Agile deep learning UAVs operating in
Smart Spaces: Collective Intelligence vs.
”Mission-Impossible”

Michael Cochez1, Jacques Periaux2, Vagan Terziyan3, Tero 
Tuovinen4

Abstract The environments, in which we all live, are known to be complex 
and unpredictable. The complete discovery of these environments aiming to 
take full control over them is a “mission-impossible”, however, still in our 
common agenda. People intend to make their living spaces smarter utilizing 
innovations from the Internet of Things and Artificial Intelligence. Unmanned 
aerial vehicles (UAVs) as very dynamic, autonomous and intelligent things 
capable to discover and control large areas are becoming important “inhab-
itants” within existing and future smart cities. Our concern in this paper is 
to challenge the potential of UAVs in situations, which are evolving fast in 
a way unseen  before, e.g., emergency situations. To address such  challenges,  
UAVs have to be “intelligent” enough to be capable to autonomously and in 
near real-time evaluate the situation and its dynamics. Then, they have to 
discover their own missions and set-up suitable own configurations to per-
form it. This configuration is the result of flexible plans which are created in 
mutual collab oration . Finally, the UAVs execute  the plans  and learn from the 
new experiences for future reuse. However, if to take into account also the 
Big Data challenge, which is naturally associated with the smart cities, UAVs 
must be also “wise” in a sense that the process of making autonomous and 
responsible real-time decisions must include continuous search for a com-
promise between efficiency (acceptable time frame to get the decision and
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reasonable resources spent for that) and effectiveness (processing as much of
important input information as possible and to improve the quality of the
decisions). To address such a “skill” we propose to perform the required com-
putations using Cloud Computing enhanced with Semantic Web technologies
and potential tools (“agile” deep learning) for compromising, such as, e.g.,
focusing, filtering, forgetting, contextualizing, compressing and connecting.

1 Introduction

What is a Smart City? From the time of first buildings made by humans up
to this day, we have considered buildings as being static and stable struc-
tures, which provide local functionality, like shelter and warmth. They were
constructed with a given purpose which, of course, could change slowly over
time. However, the buildings in a city did themselves not have any direct
interactions with - or understanding of - each other. The revolution of in-
formation technology has changed this set-up dramatically. Today we can
discuss about environments which have a consciousness, i.e., building and
structures with some level of understanding about themselves and others.
Obviously, this understanding is artificial and based on algorithms developed
by programmers, but will anyway change our conception about the place we
life today.

Smart cities can be identified on many levels. The identification can be
close to daily life, like a smart environment, mobility, and living, or more
abstract like a smart economy and governance or even smart people. The
practical focus of recent studies are the growing amount of information and
data and how to analyze and use it. We regard a smart city as a large mul-
tilevel construction where the buildings, streets, shops, bridges, traffic lights
and so on, can discuss, collaborate, make decisions, and perform actions with
or without human intervention. Using conventional technology, like e.g. the
Internet, it allows to objects a possibility to share and gain information from
their environment. This knowledge can be harvested by using multiple sen-
sors, like, for instance, cameras and thermometers. Combining and analyzing
this jointly collected information could potentially enrich the sense of the
situation for each individual object and allow more accurate responding. All
in all, this could provide more cost-effective solutions and real-time services
for humankind.

When we also consider moving sensors and actuators, like unmanned aerial
vehicles (UAVs), the amount of collected data and possible actions will in-
crease dramatically. Earlier, discussions were focused on static objects gaining
capabilities by having some form of consciousness. Next, we can think about
what the opportunities are when these objects would gain the ability to move.
It is a known fact, that static sensors and cameras suffer from their limited
degrees of freedom. Further, special measurement equipment is, even today,



still quite expensive and there is no way to insert them everywhere where
needed. For these reasons, in large areas, there is no possibility to cover the
area densely enough for reliable automatic decision making. Therefore, there
is an evident benefit when employing devices which carry the sensors around,
like UAVs or fleet of UAV’s.

Worldwide there is a growing interest in the use of mobile robots and dif-
ferent types of moving sensors. Popular examples of applications of that type
of devices are found not only in homeland security, border protection, and
vessel tracking but also in logistics and crisis management (fires, accidents,
floods...). Perhaps the most versatile type of devices are UAVs. These de-
vices, sometimes called drones, have a high degree of mobility, can carry a
wide range of sensors, and are able to perform a wide range of actions in the
environment using actuators.

In this paper, we discuss aspects of using a fleet of collaborative unmanned
aerial vehicles to complete missions. Especially, we consider a possible strat-
egy at how these devices can be employed during emergency situations in
smart cities and how Cloud Computing technologies can be used to aid their
working. The idea is to inspire the audience to take actual steps for prac-
tical implementation of the proposed automated services. This article is an
extension of previous work, published in (Cochez et al. 2014).

For illustrative purposes we will use the following scenario:

• There is a big fire in the forests close to a major city. Firemen are fighting
the fire using helicopters and specialized UAVs. Further, cameras placed
on other UAVs are used to observe the area. The observations of the
UAVs are collected in a server which is hosted in the Cloud.

• At some point it starts to rain heavily and thanks to the water the fire
gets extinguished.

• There is, however, so much rainfall that the city is threatened by it.
However, based on the readings from sensors placed in the rivers and
observations made by UAVs, the people in the city are warned in time.

In the next section 2, we will give a broader description of the problem. Then
we describe how the actions needed in emergency situations can be regarded
as an optimization problem in section 3. In section 4 we will discuss the
potential of using Cloud Computing as a resource of computational power.
Next, in section 5 we discuss how we use agents, which use a semantic model
for reasoning and data storage, to help the UAVs to perform their tasks. The
amount of data collected by the UAVs is of such volume, arrives at such a
velocity and is of such nature that we can consider it a Big Data problem for
which we provide a solution in section 6. In the last section 7 we will conclude
and describe future research directions.



2 Emergency Management in Smart Cities

In this section, we will focus on one challenging application area, namely,
emergency management in smart cities. These situations, which usually
evolve in an unpredictable manner, will require real-time optimization, and
the deployment and coordination of a temporary, adaptive fleet of intelligent
UAVs. There is also a need for a strategy which optimizes the Cloud-driven
data collection and the distribution of data between populations, ground
support and control centers.

Past studies have been mainly focused on the cases where there is only one
vehicle without any dynamic cooperation, see for instance (Gonzalez et al.
2009). In some cases cooperation has been implemented using pre-planned
routes and tasks. In the paper by (Doherty et al. 2013), the authors acknowl-
edge that in order to increase autonomy in heterogeneous UAV systems, there
is a need for automatic generation, execution and partial verification of mis-
sion plans. We would like to augment this statement by saying that also
validation of the plans is needed, i.e., it is not enough if the plan complies
with a given specification, it must also be assured that the plan meet the
needs of all stakeholders.

The robots or drones can use each others’ observations to decide upon
their own actions and hence disable some of their own sensors in order to save
energy. Furthermore, a UAV squadron can be seen as a toolbox with several
tools, where one can be used for the collection of information, the other
will encrypt everything for secure communication, one can provide specific
information for optimization calculations and yet another one can ensure
communication with the Cloud. In our example scenario we have UAVs, which
are specifically designed for extinguishing fire; this group of UAVs has specific
physical properties, which make them a perfect tool for the given task.

UAVs could also be used for preventive observations. Therefore, it is desired
that a UAV can be instructed to limit how disturbing it is. This can be done
by lowering its visibility and noise level, as opposed to the loud and visible
activities which are likely during fast operation. In another situation, there
could be a ‘mother ship’ with reloading capabilities and the ability to fly long
distances. The number of options is enormous and the choice depends on the
mission at hand.

The dynamic nature of this problem makes this system most interesting.
There are plenty of possibilities for failure and a human programmer cannot
take each and every aspect into account before the mission, especially because
the mission will evolve over time. Actually, the kind of situations which we
are talking about are very much like the ‘Black Swan’ as described by (Taleb
2010), i.e., an event which lies outside the realm of regular expectations, has
a high impact, and is retrospectively predictable. The predictability of the
situation can be disputed, but at least the first two properties imply that it is
not feasible to create static plans to cope with the situation. In our running



example, a static plan could perhaps not have predicted that the rainfall
would be so heavy that it would flood the city.

Missions should not fail if one UAV breaks or gets inhibited, nor if network
communication does not complete as assumed. Therefore, we need a hierar-
chical model for different kinds of situations. This model depends on the
additional information available during missions. At the low levels, we do not
consider collaboration at all, the idea is that each UAV survives the mission
as a ’lonely wolf’. At higher levels there will be an increase in the amount of
information and collaboration available and more computational intelligence
can be used in the mission control. At the highest level, the squadron works
as a one big creature which limb are connected using information bonds. Dur-
ing the mission, we have to dynamically move up and down in this hierarchy
and, at the same time, single UAVs have to learn how to survive and accom-
plish their mission. Clearly, one of the main questions is how to assign tasks
and resources while controlling this complex system. From our example, one
could imagine what happens when a UAV full of water looses the connection
with other UAVs and the central control system. It should most likely take
the autonomous decision to drop the water of at the location with most fire
which it can observe and get back to get more water.

Operating multiple UAVs gives the possibility of fusing their combined
capabilities, potentially leading to rich insights regarding the environment.
However, combining the data to generate new knowledge and making the
UAVs to react accordingly in a coordinated fashion leads to a high computa-
tional overhead. It is clear that the processing power which can be carried on
board of the drone will not be adequate for making optimal coordinated deci-
sions. Further, events registered by the UAVs or inferred from analysis of the
collected data will lead to bursts of high near real-time computational need.
The UAVs should collect as many data as needed about the situation which
need to be analyzed to infer the actions which should be taken. Most likely in
collaboration with human experts. In our example, UAVs should collect data
from the fire situation using, for instance, infrared cameras. These measure-
ments are then collected and a system should filter out the most interesting
ones for human consideration. It is important to also keep a record of past
observations, as they can, when combined with maps of the area and weather
information, be used to make a prognosis on where the fire will move to. Cal-
culating these prognoses is too computationally intensive for UAVs, already
assuming that they would have all the other needed data available. It is also
clear that these calculations are only needed in exceptional situation.

We propose that Cloud Computing is the most suitable option to solve the
issue of bursts in processing power needs by providing adaptive computational
power and storage capacity. Usage of Cloud Computing also improves fault
and failure tolerance by providing the possibility to globally replicate large
sets of data and distribute work load. Cloud Computing will, however, have
an unacceptably large latency for certain tasks which will have to be solved
on the UAVs themselves. As a consequence, there is a need for an adaptive



hybrid solution with Cloud Computing and the real-time systems on board
(see abstract architecture in the Figure 1). We will discuss this issue in more
detail in section 4.

Fig. 1 Abstract architecture of the system

3 Why to Optimize ?

The overall goal of the system is to keep itself in an ideal configuration for
all missions it should perform simultaneously, given the evolving operational
environment. A fleet of many UAVs and other autonomic devices can have
numerous states. Factors, which are part of the overall state, include the
environment, the amount, type, location and configuration of devices, the
state of the mobile network used for communication, and the computational
load and data stored on the devices. All these factors have an influence on
the performance of the system. When the performance of the system is at its
maximum, for that particular moment, the system has an ideal configuration.
Clearly, the problem of finding an optimal configuration at each point of time
leads to a computation so complex that it becomes unfeasible to perform,
this can be seen easily since it is already impossible to model for instance a
single UAV 100% accurately. The number of influencing factors is of such a
magnitude that it is comparable to a situation which requires reasoning using
the open world assumption (see section 5) and we will have to be satisfied



with models and approximations and hence quasi-optimal solutions for the
problem.

The flying routes are one aspect which can be considered for optimization.
During an emergency situation the best outcome is, in most cases, the mini-
mum time needed for reaching the target location. However, we also need to
make sure that the droid does not fly into areas which are dangerous like,
for instance in our running example, a fire. Determining an optimal solution
can be reduced to finding a minimum of a given cost function defined for the
mission. However, in practice, the cost function will be too complex (e.g.,
not derivable), too expensive and too dynamic to solve analytically and we
will have to consider the problem in a more pragmatic way. One promising
approach is the use of some form of evolutionary computing since it allows for
the function to be considered a black-box, i.e., an analytical or functional de-
scription of the function is not required. Instead, it suffices that we are able to
compute values from the function. Further, the parameters for some of these
algorithms can be tuned such that solving a dynamically changing problem
becomes possible. Lastly, most of the algorithms can be highly parallelized
as was, for instance, done by (Fok et al. 2007).

Another aspect which can be optimized, is the communication environ-
ment. The missions should, if possible, be planned such that the network
remains reachable. Promising work has been performed in the field of Wire-
less Mesh Networks. This approach enlarges the coverage of the network and
should help the devices to save power, which is obvious bottleneck of the
system. A smart choice in routing paths and link scheduling algorithms can
further lower interference, balance the load, and enhance the throughput and
fairness as was studied by (Pathak & Dutta, 2011). It should also be observed
that the situation is quite different from traditional wireless mesh networks
because the nodes work cooperatively. We could, for instance, instruct one of
the robots to move to a certain location where a higher transfer rate can be
obtained, i.e., we can physically move the medium containing the data and
even connect the device to a wired link in case of need. In the case of a fire
we could for instance have one, perhaps physically specialized, droid which
places itself between the fire zone and the central control station or closest
radio mast. This droid could then relay the communication traffic from the
others and hence reduce the transmission power needed, which also improves
the transfer rates. (Kopeikin et al. 2013) used agents to simulate a more
complicated setting where the choice and location of UAVs to be used as
relays is depending on their utilization rate and network topology prediction.
We select their approach for our setting since keeping the communication
link working is, despite the fact that we plan for a system which can work
without central control, a much desired property.

In the setting we are describing we will have to find optimal routes, com-
munication, and other factors, which are contradicting objectives (see e.g.
conflicting games in (Nash, 1951)). Hence, we have to consider the case as a
multi-objective optimization problem and will need to use appropriate meth-



ods for solving it. It also turns out that optimal becomes somewhat ill-defined
since there will be multiple solutions which can be considered optimal, i.e.,
there will be a Pareto front of optimal solutions in the case of cooperative
games. Using Cloud Computing we might, as we elaborate further in the
next section, be able to consider all factors for the optimization of the multi-
ple tasks which the system has to deal with simultaneously. On the practical
level, a hybrid optimization environment has to be created. This environment
should consider many algorithms (coalition games) for solving problems and
simulate their outcomes before deploying the best ones to the UAV. Also the
method used for finding out the best algorithm is likely to evolve over time,
we develop this idea further in section 6.

4 Computing Resources

In this section we will look at how Cloud Computing can help us in emergency
situations with the help of UAVs and other devices with a degree of mobility.
We will discuss why a dynamic combination of Cloud Computing and the
computational power of the components in the network should be used in an
emergency situation, how the Cloud can help to handle bursts in the need
for computation, how interaction with human gets facilitated, and discuss a
model for data storage which we elaborate further on in the next sections.

In their article (Mell & Grance, 2009) defined Cloud Computing as
“a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources that can be rapidly provisioned and released

with minimal management effort or service provider interaction”.

In their studies, (Buyya et al. 2009), investigate Cloud Computing as an
emerging IT platform and compared it to other technologies like grid and
cluster computing. They identified the differences in resource requirements of
scientific, data analysis and Internet based applications. In emergency cases,
the Cloud will be used from all three perspectives. Scientific computations
and data analysis are needed for the analysis and the verification of models
and strategies. Much of the interaction with the Cloud will happen trough
Internet based applications, since it is the ubiquitous way of interacting with
Cloud Services. The most important reasons why we select Cloud Computing
as a solution for our scenario are rapid scalability (both up and down), high
security and privacy, and strong support for fail-over and content replication.
These features are not all at the same time available in either grid or cluster
computing. We expect the services which are located in Cloud Computing
infrastructure to assist the overall system by coordinating and (re)configuring
the other components.

Research on changing transport situations has some similarities with cop-
ing with disasters: in both scenarios there is an amount of slowly evolving in-
frastructure, e.g., the roads and the cities’ shape, faster and repetitive events,



e.g., the behavior of road users and city inhabitants, and unexpected situ-
ations with a severe impact, e.g., traffic accidents and wide scale disasters.
Earlier research by (Li et al. 2011) proposes the use of Cloud Computing
for solving simulation and decision making problems for urban transporta-
tion systems. In their research the authors indicate that for performing traffic
simulations both great amounts of computing power and storage capacity are
needed. These simulations happen both on-line and many of them can be ran
in parallel.

They conclude that Cloud Computing is a reasonable approach since a
supercomputer would imply a risk for insufficient capacity in the future. A
supercomputer would also suffer from a lot of wasted capacity while in the
Cloud Computing setting multiple systems can share the Cloud’s “infinite”
capability. In a similar realm we want to tap into this capacity to solve hard
problems in a short time.

A system can use several strategies to support the missions. The basic
options can be found in (Trigui et al. 2012) which distinguishes a centralized
strategy, a distributed strategy, and a market-based approach which is a
trade-off between these two.

The centralized strategy, where one central component has control over the
whole system, sounds like a reasonable solution when combining the multiple
components with the help of a central Cloud Computing based solution. This
strategy was also most time efficient in the simulations by (Trigui et al. 2012)
where a combination of mobile robots and a Wireless Sensor Network were
used to optimize the capturing of intruders. However, it is noted in the paper
that

“[the simulation] did not take into consideration the communication delays and we

provide insights only on the pure behavior of the coordination strategies indepen-

dently from the communication.”

In the scenario which we consider these delays in communication can have an
unacceptably large latency for certain tasks. For instance, a robot which de-
tects an obstacle using an on-board camera cannot send the data to a central
place and wait for a rerouting. The navigation decisions should be performed
autonomously as, for instance, demonstrated by (Kang & Prasad, 2013) for
an uncertain environment. Other tasks, such as moving object recognition
(Nimmagadda et al. 2010), can be solved partially on the UAV or com-
pletely on a centralized server, dependent on factors like wireless bandwidth,
image complexity, and the size of the reference image database. In their par-
ticular experiment, it was always more favorable to offload the task partially
or completely to the server, when the image database contained 5000 images
or more. The authors also use a speed-up factor to indicate the computation
speed difference between the centralized system and the UAVs, and note that
this factor can be treated infinity in the case of Cloud Computing.

Another argument against the use of a centralized system is that it becomes
a single-point-of-failure. This last drawback is mitigated by the use of Cloud



Computing since, as discussed by (Buyya et al. 2009), it has a strong support
for fail-over and content replication as compared to grid or cluster computing
which usually only support restarting failed computations.

In the case of an emergency it is very well possible that the central control
station becomes unreachable. When in this scenario the centralized strategy
is implemented, the robots would become unusable since they are totally de-
pendent on orders from the central control. The distributed strategy seems
to offer a solution; each robot or agent is making a decision based on infor-
mation which is available locally. However, as shown in the experiments by
(Trigui et al. 2012), the distributed strategy suffers from an increased mis-
sion time. This is as expected since the individual components will rarely be
able to compute a global optimal solution by only using the locally available
information. A clear benefit is, however, that if the volume of data needed to
make the centralized decision becomes huge or the communication is unreli-
able or slow, the mission time for a distributed system would actually become
lower.

The final strategy considered is the marked-based approach which does
not require all information to be sent to the central control station. Instead,
as argued by (Dias et al. 2006), to perform a given task the robots should
be chosen based on their own estimation of resource usage. In other words,
the robots make their own estimation of the cost and based on this figure a
central decision making entity decides which robot will perform the job. The
measurements in (Trigui et al. 2012) show that in terms of mission time, this
strategy performs somewhere in between the centralized and the distributed
strategy. The distance which each robot travels, i.e., the resource use, is not
significantly different from the centralized strategy.

As argued above, both a purely centralized or distributed setting have un-
desired properties when using multiple UAVs for emergency situations. These
factors are quite specific to the setting. When using a centralized setting, like
a purely Cloud based solution, the system will have a latency which is unac-
ceptable for flying robots. A purely distributed setting would then again have
the drawback that a global optimum is most likely unattainable. The conse-
quence of these two extremes, complete autonomy of the UAVs and complete
offloading to the Cloud, shows the need for an adaptive hybrid solution with
Cloud Computing and the real-time systems on board (see abstract architec-
ture in the Figure 1). In other words, we will need something close to the
market-based approach which combines the centralized and the distributed
strategy. This dynamic strategy would continuously evaluate which of the
strategies is most beneficial at a given time-point and would also have to
take the survivability of the system into account. The robots will then in
case when the central control station cannot be reached for a certain amount
of time continue to work autonomously, perhaps with a lower performance.
To attain this, the functions of the Cloud which are essential for the working
of the overall system have to be be replicated in the UAV network. At any
point, the Cloud should simulate and try to predict what would happen in



case of different kinds of failures and pro-actively adapt the algorithms on
the UAVs.

It is expected that certain tasks which we would like the Cloud to solve
are not computable within reasonable time, or not at all, due to an inher-
ent complexity of the problem at hand. Hence, the Cloud needs to hand
certain tasks over to humans in order to get them solved. Further, inter-
actions with humans are also needed to assist rescue teams in case of dis-
asters. We expect that a certain subset of the tasks will be of such nature
that they can be solved using a technique similar to Amazon’s mechanical
Turk (see https://www.mturk.com/). This crowd-sourcing platform enables
its customers to create Human Intelligence Tasks and decide upon the price
which human workers will get paid upon completion of the task. This kind
of tasks can be, for instance, the annotation of imagery as was studies by
(Sorokin & Forsyth, 2008). The authors concluded that

“the annotation happens quickly, cheaply and with minimum participation of the

researchers, we can allow for multiple runs of annotation to iteratively refine the

precise definition of annotation protocols”.

One important concern with the use of crowd-sourcing is that in case of a
disaster related to a conflict between humans, the opposite party might try to
counterfeit the answers to the system. In the case of our illustrative example,
we could use a Human Intelligence Task to check preselected frames, recorded
by the UAVs, to decide whether there are humans visible.

The Cloud and modern web infrastructure is also known for the intro-
duction of NoSQL databases. This term refers to several types of databases
which do not support SQL with traditional ACID guarantees. This abbre-
viation stands for Atomicity, Consistency, Isolation, and Durability, which
means that any transaction in the database happen completely or not at
all, will not violate database rules, happens without interference from other
transactions, and is stored in the database even in case of failure immediately
after the transaction, respectively, see also (Haerder & Reuter, 1983).

Many of these NoSQL databases have been designed to handle specific
types of data or huge amounts of data. We will discuss more about a certain
type of graph data, which we choose to use for storing data, and the handling
of huge amounts of this kind of data in the following sections.

5 Use of Semantic Agents

From an abstract perspective, a Smart City can be seen as a collection of en-
tities with some kind of identity and relations between them. When we con-
sider this idea, we can see that we could represent the Smart City as a graph
where vertices model entities and edges are used to describe their relations.
This observation suggests that the Semantic Web, as originally suggested by



(Berners-Lee et al. 2001), would provide suitable concepts for describing and
reasoning about Smart Cities. The Semantic Web encompasses the idea that
entities and the relations between them in the real world can be described
in a similar way as web documents and links between them. The entities of
interest, in a Smart City, have some kind of functionality, and many have
sensors, actuators or some sort of, perhaps artificial, intelligence. This is to
say that the abilities of the entities vary greatly. Examples of entities do not
only include wireless sensors for temperature and pollution, traffic and street
light control systems, and pavement heating, but also digital services and the
people living in the city. Also the UAVs are just examples of entities. The
integration for these types of entities was studies before in (Terziyan, 2008)
and each of them was regarded as a Smart Resource. In the same article the
author also suggest that the Semantic Web does not reach its aims if it can
only be used to describe passive, non-functional entities. Instead, it should be
possible to describe the behavior of entities, which includes communication,
coordination, and proactivity, i.e., the ability to predict the upcoming situa-
tion and act accordingly. The suggested approach was also further enhanced
in (Katasonov et al. 2008), which adds semantic agents to the picture. These
agents are a representation of the Smart Resource in an agent environment.
By encapsulating each Smart Resource with an agent, the entities gain the
ability to communicate with each other. When this communication happens
in a Semantic language which allows for dynamics, like, for instance, S-APL
formalized in (Cochez, 2012), we can reach the goal of describing the behavior
of entities.

When looking at disasters in Smart Cities, it appears reasonable, or per-
haps even natural, to use Semantic Web concepts to describe and exchange
information. The reason is that disasters tend to happen unexpectedly, and
when they happen they have a great local impact. Also the time-scale of dis-
asters varies a lot, the flow of information is raising over time, while available
resources, like batteries, decrease. This unexpected nature implies that it is
hard, if not impossible to give a framework or fixed set of terms to describe
a situation. Further, we are not able to identify beforehand all entities which
would play a role during the development of events. Therefore, we need a way
of describing any entity and a way of reasoning about them. This flexibility
is offered by the Open World assumption, which is one of the cornerstones
of the Semantic Web. This assumption encompasses the idea that if we do
not know something about an entity we cannot assume that it is not true,
i.e., we always assume that our graph of data is incomplete. If we, from
our illustrative scenario, have not received any information about the flood
yet, we can still not make the assumption that everything is fine. It could
namely be that certain UAVs are saving their energy by not communicating
immediately. This view and way of reasoning is opposed to a Closed World
assumption, where the fact that something is not known would immediately
imply that it is not true, i.e., the world exists only of the part which we



are able to observe. The closed world way of reasoning is typically used in
relational databases.

The main drawback of using Semantic technologies could be the reduced
processing speed. Effort related to making semantic data storages better able
to cope with big amount of data can, for instance, be found in (Abadi et al.
2007). We, however, expect that not the storage, but the processing might
become the bottleneck in a concrete implementation, partially caused by a
need for alignment and negotiations. This extra processing power could be
provided by the Cloud infrastructure at the cost of latency as described in
section 4.

The use of an Agent System is a natural choice since it reflects the ac-
tual environment to a great extent. The UAVs can be represented by agents
because they are able to act, to perceive their environment, and to communi-
cate with each other. Further, we are looking into UAVs which can function
autonomously and which have the ability to achieve their goals. These re-
quirements, needed for the UAV to be classified as an agent, and further
research on distribution of intelligence and coordination among agents, have
been collected in (Ferber, 1999). It should be noted that the same work also
handles the concept of organizations and sub-organizations. An organization
groups agents together based on their functions and roles. One of these or-
ganizations can itself be considered as an agent in a bigger organization.
Similarly, when we are combining Cloud Computing into our agent system,
the Cloud itself is regarded as an organization and hence also as an agent
inside the whole.

Joining the capabilities of Agents and Cloud Computing has been proposed
earlier in the context of Smart Cities, like, for instance, by (Ito et al. 2012)
who proposed their combined use for solving questions about smart housing,
senior people care and road congestion management. Further research, related
to the use of agents and Cloud Computing in traffic situations, can be found
from (Li et al. 2011). Their main argument in favor of using a multi-agent
setting is that mobile agents only require a runtime environment and can
run their computations near the data which increases performance, reduces
latency and communication costs. Moreover, a multi-agent system is said to
perform better as a static agent system when faced with requirements of
dynamic traffic scenes. The agents are able to travel trough the component
involved and autonomously implement strategies. It is also stated that thanks
to the use of Mobile Agents new strategies can be distributed while the system
is running and hence it is possible to keep up with scientific development.
Based on these ideas we add the requirement for the agents to be mobile to
our system. The UAVs will be mere shells in which the mobile agents reside
and which offers them services.

Further research on similar ideas, but focused on transportation, by (Wang
& Shen, 2011) points out that contemporary Cloud offerings also include in-
frastructure beyond general purpose computers. Especially when combined
with agents which share similar behaviors it is possible to harness the power



of parallel execution. The authors proposed and experimented the use of
Graphics Processing Units (GPUs) as a host for traffic signal timing op-
timization problems. This type of hardware has also been used earlier for
running evolutionary computations as, for instance, by (Fok et al. 2007).

The fact that we allow the UAVs to communicate with each other trough
agents and to the Cloud creates many opportunities. First, the computational
power of the Cloud can be used to calculate better cooperative mission paths
compared to what would be possible with the limited computational power
of available on the drones. Even the combined resources on the UAVs would
be dwarfed by the virtually unlimited power available in the Cloud. However,
as discussed before, the result of doing the computation in the Cloud can be
better, but will always involve a certain latency. And when the connection
to the Cloud is lost, the distributed intelligence of the UAVs, which can be
managed by the agents, should be used instead.

Second, the robots could use each others’ observations to decide upon
their own actions and hence disable some of their own sensors in order to
save energy. This also applies to other actions like physically altering the
environment and even flying. A UAV which is low on energy could forward
a task to another UAV, which has plenty of resources left or there could be
a carrier UAV which carries other smaller UAVs on-board to save the energy
needed while flying.

Finally, loosing an individual UAV is not such a problem since the other
UAVs can try to take over the task by migrating the mobile agents. This
is facilitated by the Smart Resource framework because the mobile agents
are build as semantic agents which are able to communicate with each other
about their behavior and capabilities.

6 Toward Evolving Knowledge Ecosystems for Big Data

Understanding

We expect the total amount of data which the all sensors in the Smart City
collect jointly to be enormous and varying over time. It is possible to filter
the data, but discarding parts which appear to be needed later could lower
the potential performance of the system dramatically. The data also needs
to be processed in a timely fashion, because if the system realizes earlier
that a reconfiguration is needed it can save essential resources. Hence, we
will need to store and process this voluminous data at a high velocity. As we
argued in the previous section, we would benefit from the use of a semantic
representation of the data since it allows for an unlimited extension and the
use of the open world assumption. In conclusion, we could say that we have a
Big Semantic Data problem since we have the three aspects which this type
of problems consists of according to (Zikopoulos et al. 2012), namely the
need to work with a big volume of varying data with a high velocity.



In previous work (Ermolayev et al. 2013) we looked at how to solve a
Big Semantic Data problem which consisted of handling streams of tokens
arriving at high rate and altogether representing a huge amount of data. That
work stayed on a very abstract level. The scenarios described in this chapter
are concrete example of situations where such a system could be used. In
the following subsections we will, based on the previous work, describe the
balance between volume and velocity, how big data can lead to big knowledge,
and how a system inspired by the mechanisms of natural evolution could
provide a solution for managing this knowledge. This type of system should
be implemented and deployed on Cloud infrastructure to provide scalability.
We will also offer suggestions on how the system could work, based on our
illustrative example.

6.1 Volume versus Velocity

Volume, the size of the data, and velocity, the amount of time allowed for its
processing are clearly the main factors when talking about our Big Semantic
Data problem. Both of them manifest themselves when a high number of
measurements, like for instance camera recordings, temperature, and humid-
ity, have to be handled within a reasonable time. When the system extracts
information or knowledge from the data it does this effectively if no important
facts are overlooked, i.e, the analysis is complete. The effort is a measurement
of how much time and resources the system uses to perform this extraction.
We say that the utility of the extraction is high, when the results are useful.
The ratio of the utility to its associated effort is interpreted as the efficiency
of the system.

utility
total processing time

= efficiency. (1)

To illustrate these ideas, imagine that the system receives an image of a fire
for processing. If the system is able to extract all possible information from
it, including perhaps data not related to the fire, it is effective. In case these
results are useful, we achieved a high utility. When the system is able to do
this fast or with a low amount of resources it has a low effort measure. If all
of these are true, we achieve a high efficiency, i.e., a lot of useful information
got extracted with little effort. If, however, the computation and additional
communication latency is slower than the required velocity, the utility of the
result drops to zero.

Note that when the effectiveness of the system increases, the computational
complexity will increase and hence there is a risk that the efficiency of the
system drops. This does not necessarily happen in case the information found
appears to be useful. Hence, if we would like to make a deeper analysis of
the collected data, we would have a less efficient system. To cover up for



this lower efficiency, we would need a higher computational power, which
Cloud Computing can provide. The reason is that the Cloud infrastructure
can reduce the effort (at least the time component, which is most relevant)
to a minimum by using more resources. Obviously, even when using Cloud
Computing the system will be bound by theoretical and practical limits.
Moreover, as mentioned above, the computations which are performed in the
Cloud come with an inherent communication latency.

6.2 Big Knowledge

Since we are trying to extract all relevant information from all sensors, which
we have available in the Smart City, we start from a vast amount of data.
Also, when we try to extract all knowledge from the data, we might end
up with an unmanageable amount of knowledge. From that observation we
identified some aspects which should be taken into account while working
with Big Data. We called this approach 3F+3Co which stands for Focusing,
Filtering, and Forgetting + Contextualizing, Compressing and Connecting.
It should be noted here that not all terms are novel in the sense that they
have been used in different domains and interpretations, see, for example,
(Dean & Caroline, 2011) for a slightly different view on 3F. We gave an
occasionally overlapping meaning to each of these terms in the context of Big
Data analysis as follows:

Focusing is mainly concerned with the order in which the data is pro-
cessed. An optimal focus will only scan the data, which is absolutely needed
to come to an answer for the question, which is at hand and will hence
lead to a higher efficiency. This facet will play a very significant role in
the emergency system since the data is arriving continuously and hence
the focus will need to go to the data which is related to the event which
is currently going on. For instance, in our illustrative example, the focus
should move from the fire fighting to the flood damage prevention as soon
as there is an indication that the flood might cause more damage as the
fire.

Filtering is ignoring anything, which is, hopefully, not of importance for
immediate analysis. We use hopefully since deciding whether information
is relevant or not can in most cases not be done with a hundred percent
certainty. One way to filter is to only focus on specific features of the data,
which also reduces its variety and complexity. The Smart City emergency
system could for instance ignore information from sensors in the center of
the city when there is a fire on its outskirts.

Forgetting is a further step from filtering where data, or knowledge de-
rived from it, is completely removed from the system. This trashing can
remove potentially valuable information. In the work, which we did around
Evolutionary Knowledge Systems (see section 6.3), we use the technique of



“forgetting before storing”. This means that there has to be reason before
anything is stored at all in the knowledge base. Using this technique is
sensible in case the amount of information which would need to be stored
would be of such size that even nowadays’ Cloud Computing solutions
and data centers would be overwhelmed, if this is not the case it might
be reasonable to keep all the data stored somewhere, at least for a certain
amount of time.

Contextualizing comprises not only the change of sense of statements in
different contexts, but also judgments, assessments, attitudes, and senti-
ments. There are various facets, which contribute to the context of data.
Examples include the origin of the data, the tools used, and the place
in which the result will be used. Conceptualization happens for instance
when one measurement is given more importance as another one because
it was made with a better measurement device.

Compressing stands for both lossy and lossless compression. Where lossy
compression is similar to Forgetting which was discussed above. The loss-
less compression might be very effective because the high amount of
data leads to a high probability that repetitive or periodical patterns are
present.

Connecting can be done if information is added to an already existing
body of data. The whole body is build incrementally. The benefit of link-
ing the data before processing it further is that data and knowledge mining,
knowledge discovery, pattern recognition, etc. can be performed more effec-
tively and efficiently. A good example of this connecting used for building
an index of the world wide web can be found in (Peng & Dabek, 2010).

6.3 Evolving Knowledge Ecosystems

The Cloud component of the emergency management system receives a lot
of information. The content is likely to evolve over time because emergency
situations are subject to rapid and unpredictable changes. To anticipate these
changes the system should be able to change its inner working. In the chapter
(Ermolayev et al. 2013) we proposed an Evolving Knowledge Ecosystem
which is able to adapt to external change.

The core idea behind the Ecosystem is that

“The mechanisms of knowledge evolution are very similar to the mechanisms of bio-

logical evolution. Hence, the methods and mechanisms for the evolution of knowledge

could be spotted from the ones enabling the evolution of living beings“.

Starting from this idea, we derived that we could model the knowledge evo-
lution inside the system using ideas from natural evolution. One of the core
ideas behind the Evolving Knowledge Ecosystem is that, similar to the idea
of natural selection proposed by Darwin (Darwin, 1859); knowledge, which is



more fit for its environment, has a higher chance to survive as less fit knowl-
edge. The environment here is formed by the incoming information to the
system.

The Knowledge Ecosystem assumes that the information, which is deliv-
ered, is in the form of knowledge tokens. These tokens are self-contained
fractions of the data, with a structure which allows integration into what we
call knowledge organisms. In order to create these tokens, the streams of data
should be transformed.

Natural language text can be converted into knowledge tokens using Natu-
ral Language Processing (NLP) techniques. The Evolving Knowledge Ecosys-
tem is, however, not limited to that type of data. Any data stream can, in
principle, be converted to a stream of knowledge tokens. In the case of our
UAV scenario, the extraction of data from measurements might be even much
more simple as the NLP example. Much more complicated is the conversion
or analysis of images and video. The research concerning these is, due to its
complexity, not as mature as for text analysis (see e.g (Atmosukarto et al.
2012) for an approach to action recognition.) There is also effort in integrating
capabilities of text and media analysis by (Damjanovic et al. 2011).

The benefit of using a Knowledge Ecosystem for managing the data is
that it evolves over time and can hence adapt itself to new trends in the
data. Also a lot of meta-data is kept inside the system and using these it
is possible to propose beneficial algorithms for future actions. It could, for
instance, remember that a certain area of forest burned down a year ago and
realize that the fire does not go there this time. From these two fact, it could
derive a rule about likelihood of spreading of a fire in a given location.

The Knowledge Ecosystem is also able to provide signals to the outside
world. As a concrete example, it could instruct the UAV fleet to collect more
information about the temperature in a given area. The Knowledge Ecosys-
tem can further be queried for information and trends.

6.4 “Agile” deep learning for “wisdom” discovery

Song patented the architecture where an intelligent UAV performs data col-
lection during a flight, communicates with a cloud-based control system to
download selected control applications and mission-specific applications to
the UAV memory, and upload data collected by the UAV to the cloud-based
control system (Song, 2016). Such architecture potentially enables the cloud
to learn the decision models from the collected data, which are needed for
controlling UAVs towards a specific mission, and communicate learned mod-
els back to the UAVs for the execution (i.e., for making real-time decisions
based on the observations). The core of a traditional machine learning pro-
cess is shown in Figure 2. The data collected from the observations of the
environment is processed by some machine learning module, which utilizes



data mining and knowledge discovery instruments (see, e.g., (Fayyad et al.
1996)) to automatically or semi-automatically learn a decision (diagnostics,
classification, prediction, recognition, etc.) model, which is assumed to be
used for making further autonomous decisions on the basis of new input
data. The model learning process is known to be a resource consuming task
especially when dealing with large set of multidimensional data, while the
model execution can be done relatively fast.

Fig. 2 Simplified schema of traditional Machine Learning application

Deep learning (LeCun et al. 2015) is needed when understanding the
meaning of raw sensory input data and learning the model or function, which
maps it directly to the decision, is very complicated. Deep learning resolves
this difficulty by breaking the desired complicated mapping into a series of
nested simple mappings, each described by a different layer of the model.
The input (visible layer) contains the variables from the original observation.
Then a series of hidden layers extracts evolving abstractions from the input;
and the model must determine, which of these abstractions are important
features (decisive, predictive, . . . ) for the decision function (Goodfellow et al.
2016). In a recent press release Neurala, which is a Boston-based startup spe-
cialized in deep learning and neural network software for robots and drones,
announced a deep learning based software solution which allows manufac-
turers of UAVs to install “neural” software directly into their drones for au-
tonomous flight, object recognition, visual following and visual inspection
capabilities (see e.g. (Matus, 2016)). Machine learning in general and deep
learning in particular can be a long process when addressing the big data
challenge. If a situation will require having at least some (even if weak) con-
sistent decision model somewhere in the middle of the long learning process



over big volumes of data, it will not be possible as the abstractions from the
hidden layers may not yet be mapped to the target attributes of the potential
decisions. We believe that a good compromise between the big data challenge
and the deep learning process suitable for the intelligent UAVs would be an
“agile” machine learning architecture (see Figure 3). Such architecture partly
inherits the multilayered structure from the deep learning as well as “nesting”
feature of the layers. However the philosophy of nesting will be different, i.e.,
agility will be the major target. We expect that the learning engine will fast
built some simple (relatively “weak”) model (first layer) using a restricted set
of training data and only some of its features, then while the created model
is making real time decisions, a more advanced (“stronger”) decision model
for the second layer will be created on the basis of bigger volume and di-
mensionality of training data, and so on. The expected benefit of the agility
is sustainable decision capability of an intelligent entity as at every stage of
the learning process it has some valid models capable to make decisions while
the learning engine continues building more advanced decision models for the
next layer. The key challenge for such architecture will be the need for very
smart focusing and filtering at the beginning of the process and between the
layers. The focus (first sample of training data) and selected features of it
(result of filtering) is very important to guarantee at least reasonable qual-
ity vs. reasonable time and memory spent for learning of the first decision
model. Another interesting feature of the architecture is that the model at
every layer is performing two decision tasks simultaneously:

a) addressing real-time input and generation decisions needed for
the operation of the intelligent entity;

b) using real-time input as a context for the decision, which data
points from the collected training data to “recruit” for the next
expanding training sample and which data dimensions to add to
the consideration. We also believe that the capabilities to filter
and focus (i.e., to compromise wisely) can be learned from data
in a similar way with the other decision capabilities. Such (meta-
)learning skills are very important for the self-management and
therefore we suggest to name the agile machine learning process
as the “Big Data Mining and Wisdom Discovery” opposite to tra-
ditional machine learning (aiming data mining and knowledge
discovery).

The agile learning process, as presented in the Figure 3, is expected to
efficiently address the challenge of big data in machine learning but with
a naïve assumption that the attributes of the nested data samples can be
easily mapped to the target attributes or to the decision. If this is not the
case at a large extend, then the best solution we believe would be a hybrid
of the deep learning and agile learning architectures: Agile Deep Learning.
We envision this to look like nested loops: agile – external, deep – internal,
i.e., the decision model at each layer of the architecture from Figure 3 is



Fig. 3 “Agile“ Machine Learning process generic architecture

actually a multilayered deep learning structure. Still the advantages of both
architectures are preserved: agility is achieved as the models are created and
come into real-time operation faster and then evolve based on growing sam-
ples; quality of decisions is guaranteed by the deep learning, which computes
relevant implicit data attributes at its hidden layers.

7 Conclusions and Future Work

In this chapter we proposed approaches related to several aspects of the use
of a fleet of collaborative UAVs and Cloud Computing in Smart Cities. We
started by describing what a Smart City is and what we would need from this
system in emergency situations. These situations have specific characteristics
like an unpredictable development and a need for immediate action. Then, we
gave several examples on how the collaboration between UAVs might be used
to improve the overall performance of the system. We looked at this from an
optimization perspective and concluded that in order to keep the system in an
optimal state, we have to continuously evaluate a multi-objective function. It
was also indicated that this function is not available in analytic form and we



hence proposed the use of some form of evolutionary computing which would
also be very suitable for execution in a Cloud Computing environment.

Cloud Computing was selected as the main computing resource for the
system since it has virtually unlimited capacity and also allows for fail-over
and content replication, even geographically. Then we stated that it has to
remain possible for the fleet of UAVs to work autonomously from the central
command center which is hosted in the Cloud.

Next, we proposed the use of semantic agents. Agents are a natural choice
to represent the drones, and adding the semantic components allows us to
integrate and make analysis from data with any structure. Further, we noted
that instead of having a single agent for each drone, we use mobile agents
which also has the possibility to migrate from one drone to the other in case
of need.

Then, because the data which is being processed has such a volume, ve-
locity, and structure, it is not realistic to use standard tools. Hence, we end
up with a Big Semantic Data problem. In order to solve this problem, we
proposed the use of an Evolving Knowledge Ecosystem which allows the in-
tegration of information from different sources in a manner similar to the
workings of natural organisms.

The problem areas which were touched in this chapter were described from
a high level perspective. There is still a very broad scope of topics which can
be researched from both a theoretical and experimental perspective. Exam-
ples include, but are not limited to, what kind of robots are most useful, which
factors influence the optimality of the system and up to which extend, how
the communication between the robots and the Cloud should be designed,
how the decision whether to perform a computation in the Cloud or on the
devices locally should be taken, what type of agent system should be used,
whether the evolving knowledge ecosystem has a performance high enough
to accommodate the needs, and so on.
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