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Introduction

This thesis addresses questions related to approximation arising from the fields of sto-
chastic analysis and partial differential equations. Theoretical results regarding con-
vergence rates are obtained by using discretization schemes where the limiting process,
the Brownian motion, is approximated by a simple discrete-time random walk.

The rate of convergence is derived for a finite-difference approximation of the solution
of a terminal value problem for the backward heat equation. This weak approximation
result is proved for a terminal function which has bounded variation on compact sets.
The sharpness of the according rate is achieved by applying some new results related to
the first exit time behavior of Brownian bridges. In addition, convergence rates in the
Lo-norm are proved for Markovian forward-backward stochastic differential equations,
where the underlying forward process is either Brownian motion or a more general 1t6
diffusion.

1. THEORETICAL BACKGROUND

Suppose that W = (W})¢>0 is a 1-dimensional Brownian motion defined on a filtered
probability space (Q, F,P, (F)i>0) which satisfies the usual conditions. Under stan-
dard Lipschitz and linear growth assumptions imposed on the drift and the diffusion
coefficients b and o, there exists a unique adapted and continuous process X = (X;)i>0
satisfying the stochastic differential equation (SDE)

t t
X =9 —l—/ b(s, Xs)ds +/ o(s, Xs)dWs, t>0. (1.1)
0 0

Besides being of theoretical interest, SDEs have several practical applications e.g. in
population dynamics, biology, and especially in mathematical finance. It is therefore
important to find ways to obtain realizations of the continuous-time process (1.1) in
some approximative manner. Perhaps the most well-known approximation method is
the Euler (or Euler-Maruyama) scheme. Although this scheme is not the topic of this
thesis, it is described briefly in order to introduce the relevant concepts related to
approximation in general and also for future reference.

1.1. The Euler-Maryuama scheme for SDEs. Given an integer n € N, choose
a partition 7 = 7(n) of time instants 0 =: ¢y < t; < -+- < t,, := T, where T > 0
is a fixed time horizon. Given the step size in time At; := t; — t;_1 and in space
AWy, =Wy, — Wy, define X§ := x9 € R and

er = XZLl + b(ti,)(7r )Atl + O’(ti,Xﬂ

s . t AW, 1<i<n. (1.2)

It is natural to ask whether X7 converges to X7 in some sense as the partition becomes
more dense and the mesh size |7| := sup;<;<, |At;| tends to zero. In particular, it is
of interest to know how large the associated approximation error is when || is small.
Approximation in the strong sense means that for a given v > 0 there exist constants

C, 9 > 0 such that
E| Xy — X7| < C|r|”  whenever || <. (1.3)

Alternatively, one may consider some other L,-norm with p > 1 instead of the L;-norm.
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For the strong approximation it is required that X7 and each X7 are defined on
the same probability space. This requirement is no longer necessary when considering
approximation in the weak sense instead. Given a class & of test functions, weak
approximation is related to the question of finding for a given v > 0 and an arbitrary
g € & some constants C, > 0 such that

|Elg(X7)] — E[g(XT)]| < C|n|” provided that |7| < 4. (1.4)

Note that this is a sufficient condition for the convergence in distribution of X7 to X
when & is the class of continuous and bounded functions.

The constant v > 0 appearing in (1.3)—(1.4) is called the order of convergence while
the quantity |7|? (modulo a multiplicative constant) will be referred to as the rate
of convergence. One often seeks for the optimal, i.e. the largest possible constant
for which (1.3) or (1.4) holds true. Several factors influence the rate of convergence:
the choice of the partitions (equidistant, deterministic or random), regularity of the
coefficients b and o of (1.1) and properties of the test functions.

The strong (resp. weak) order of convergence for the Euler scheme is known to be
% (resp. 1) under standard Lipschitz assumptions on b and o, see [KP99, Theorem
10.2.2]. For the weak rate it is typical to assume that the parameters b and o are
at least twice continuously differentiable in space (see [KP99, Theorem 14.1.5] and
[BT96)).

1.2. Approximation based on simple random walk and the Skorokhod repre-
sentation. This thesis studies problems of approximation concerning simple random
walk schemes instead of the Euler scheme. These problems are time-dependent: For
a given partition 7, the approximation error is considered as a function of t; where
ti € m. Of particular interest is the potential explosion of the error as t; — T, where
T is the terminal time.
Suppose that 7 is an equidistant partition whose partition points are given by
tr:=hk, 0<k<n, where h:= %

Approximation using random walk is based on the idea of replacing the normally
distributed increments AW}, in the Euler scheme by i.i.d. random variables U; attaining
only finitely many values — provided that E[U;] = 0 and E[U?] = h still hold. A

particularly simple choice is to use scaled Rademacher variables (U;);>1, i.e. define
U :== Vh&, i>1, (1.5)

where &1,&s,... are i.i.d. and satisfy P(§; = 1) = % = P(§ = —1). This leads to the
approximation of the Brownian motion W by a simple random walk W™ = (W} x>0
and the solution X of (1.1) by the process X" = (X}} )r>0, defined as

k
Wg =0, Wr=vVh> &, (1.6)
i=1

k k
X§ =m0, X[ i=a0+h) b, X7 )+ VhY oty X )&, (L7)
=1 =1



where xg € Rand 1 < k < n.

Note that the Rademacher sequence (§;); and the Brownian motion W are not
necessarily assumed to be defined on the same probability space. Nevertheless, this
will be the case in the approach adopted in [A], [C], and [D], where the random
variables &; are obtained by sampling the Brownian motion at certain first exit times.
Embedding techniques of this type have gained some renewed interest since the late
1990s (e.g. [RS97], [LROO], [Wal03], [SS04], [BJO8], [AKU16]). A version of the original
result due to A.V. Skorokhod [Sko65]) is presented below.

Theorem 1.1 (Skorokhod embedding theorem, [Bil79, Theorem 37.7]). Suppose that
(Vi)i>1 is a sequence of i.i.d. random variables with zero mean and finite variance. For
each k > 1, define S := Zle Vi.. Then, there exists a Brownian motion W and a
sequence of stopping times 11 < 1o < ... such that

(1) 11,70 — T1,T3 — T2,... are i.i.d.,
(ii) E[r; — 7i-1) = E[V{?] for all i > 1,
(ii3) Wy, ~ Sy for each k >1  (*~’ means to be equal in law’).

For (Vi)i>1 = (Ui)i>1, the i.i.d. sequence given by (1.5), a solution to the above
problem can be constructed as follows: Let 79 := 0, and define recursively

Tk, = Tg(n) := inf {t > Ty (W =W | = \/i;} for k>1. (1.8)

The properties (i) and (iii) are satisfied for the sequence (7); due to the strong
Markov property of Brownian motion. For the property (i), see Proposition 1.2 below.
Consequently, for each n > 1, (Wr, x>0 is a random walk equal in law with (W}})x>o0,
called the Skorokhod version of W™.

This particular representation (W, )r>o defined on the same probability space as
the Brownian motion has certain advantages over some other approximations of W.
For example, one can use It6 calculus and properties of the stopping times (7x)r>0
to show that the sequence (W, )n>0 converges to Wy in the strong sense with order
i. Several properties of the process (73, Wy, )r>0 are exploited in [A], also in [C]-[D],
some of which are collected below for convenience.

Proposition 1.2 (Properties of the first hitting time and of the Skorokhod version of
(i) The distribution of the stopping time Ty = inf{t > 0 : |Wy| = Vh}, h > 0, is
absolutely continuous w.r.t. the Lebesque measure.
(13) For each integer m > 1 there is a constant Cy, > 0 such that E[7]"] < C,,h™. In
particular, E[r1] = h and E[r}] = 2h%.
(1it) Let T >0, h = %, and ty, = %T for each integer 0 < k < n. Then, for each p >0
there exist constants ¢, > 0, depending at most on p and T, such that

E[W,, — Wy, [P < cElt), — 7[P/? < ¢ (th) 5. (1.9)
In addition, for p = 2 there is the equality E|Wy, — W, |* = E|ty — 7x].

For the items (i)—(ii), see e.g. [Wal03]. Item (iii) is obtained by a slight generaliza-
tion of [Wal03, Proposition 11.1 (iv)], see [C, Lemma A.1 (iv)].
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2. APPROXIMATION OF THE BACKWARD HEAT EQUATION WITH AN IRREGULAR
TERMINAL CONDITION

Some early research papers concerning the approximation of the solutions to initial
and boundary value problems for the heat equation by finite differences date back to
the 1950s. The idea behind the finite-difference approximation is to replace the partial
derivatives by difference quotients. One obtains an indexed family of difference equa-
tions the solutions of which are expected to give increasingly better approximations of
the PDE solution as the mesh size decreases.

The rate of convergence of a finite-difference scheme for the backward heat equation
in the presence of an irregular terminal condition is studied in [A]. Earlier results con-
cerning convergence rates for related problems in various settings have been obtained,
for instance, in [JY53], [Rey72], [DKO05], and [Lin07].

In [A], an upper bound is derived for the resulting approximation error by reinter-
preting the problem as a problem of time-dependent weak approximation. The proof
follows and adapts the ideas of J. B. Walsh [Wal03]. The article [Wal03] concerns the
rate of convergence of option prices implied by the Black-Scholes model, when they
are approximated by the prices implied by the Cox-Ross-Rubinstein (or the binomial
tree) model. See also [HZ00] and [LRO00].

2.1. The setting and the formulation of the problem. Let (2, F,P, (F;)¢>0) be a
stochastic basis where (F;):>0 stands for the natural filtration of a standard Brownian
motion W = (Wy)s>0. Given a finite time horizon 7" > 0 and a constant parameter
o > 0, consider the backward heat equation

w(T,z) = g%x), z €R, (2.1)

{ w(t, @) + Gugs(t,x) = 0, (t,z) €[0,T) xR,
where the terminal condition g is assumed to be an exponentially bounded Borel func-
tion. Without additional regularity assumptions imposed on g, we cannot expect that
equation (2.1) has a classical solution u € CH2([0,T]xR). However, there exists a
probabilistic solution v € CH2([0,T) x R), which is unique in the class of functions
having at most exponential growth (see e.g. [SP12]). This solution can be represented
in terms of the Brownian motion (W;)¢>0 as

u(t,z) :==Elg(x + cWrpr_)], (t,z) €[0,T] x R.

The main objective in [A] is to estimate the approximation error u™ — u, where u™ is
the solution of the finite-difference equation (2.2) introduced below. A setting slightly
different to that of Section 1 is considered here. For a given n € 2N, choose a partition
mi={0 =1y <t; < - <ty =T} by letting t; := 2kh = %TT for each k. The
double step size Aty = % is opted in order to avoid the so-called ’sawtooth effect’ of
the error. Proceed by fixing the space increment Az := 20v/h. Then, for each fixed
level zp € R, define a partition of space by letting S,, := {z0 + mAm| m € Z}. The
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finite-difference equation associated to a given grid m x S,, C [0,7] x R is given by

u™(t, 2)—u"(tg—1, ) N cﬁu”(tk, r+Ax)—2u"(ty, x) + u"(tg, z—Ax)
At 2 (Ax)?
u™(T,z) = g(x).

=0,

(2.2)

Given g and the corresponding set of terminal values on {T'} x S,,, the solution
u" 1 xS, — Rof (2.2) is uniquely determined by backward recursion, and it satisfies

u(ty, x) = Elg(x + oWr_y )], (th, ) € T X S,

where W" is the random walk given by (1.6). Consequently, the connection between
the original problem and the problem related to weak approximation of W by W™ is

™ty @) — ulty, )| = [Elg(z+oWr_y, )] = Elg(a+oWr—, ]| (23)

2.2. Functions of generalized bounded variation. In [Wal03], a detailed error
expansion was derived for the weak error

u"(0,0) — u(0,0) = E[g(oW,,)] — Elg(eWr)] (2.4)

(recall W, ~ W2). The error was shown to converge with order 1 or & depending on
the position of the possible discontinuities of g. The result was then transferred to the
geometric setting of the CRR and the Black-Scholes models by certain transformations
including a Girsanov transform. The test functions g : R — R considered in (2.4) were
assumed to satisfy the following conditions:

e g is piecewise C%(R) such that g, ¢’, and g” are exponentially bounded,

e g(z)=1(g9(z—)+ g(z+)) at each point x € R.
This class excludes e.g. functions with infinitely many jumps and indicator functions
of intervals. To obtain rates for such functions, let us first recall the notion of bounded
variation.

The total variation Vj of a function g : R — R is defined as

N
‘/g(.??) = supZ|g(x7;)—g(a:i_1)|, .’IJER,
i=1

where the supremum is taken over N and each partition —oco < 1 < --- < xny = z. The
function g is said to be of bounded variation provided that the limit lim, o V() < 0o
exists. Each (left-continuous) function g of bounded variation can be represented as a
sum of a constant and a distribution function of a finite signed Borel measure on R,
see [Rud74]. The requirement lim, o Vy(2) < oo is, however, rather restrictive since
it forces the function itself to be bounded. A method to circumvent this restriction
was presented in [Avi09], where the concept of bounded variation was generalized to
allow functions to have prescribed asymptotic growth by introducing weights.

Definition 2.1 ([Avi09, Definition 3.2]). Denote by M the class of all set functions u
on the ring of bounded sets of B(R) for which there exists measures u', p? : B(R) —
[0, 00] such that pn = puy — pa, and p'(K), u?(K) < co for each compact set K € B(R).
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Even though a set function p € M is not a signed measure being undefined on
unbounded sets, it admits a minimal decomposition (similar to the Hahn-Jordan de-
composition) which induces a unique o-finite measure || on B(R), called the total
variation of u.

In [Avi09], classes of functions of generalized bounded variation are constructed by
assigning a weight function to control the growth of the distribution function associated
to p. The class GBVep, considered in [A] can be seen as an instance of such a class
with weight functions having exponential decay.

Definition 2.2 (The class GBViyp,). Denote by GBVeyy, the class of functions g : R —
R which can be represented as

(o)
g(z) = c+ p((0,2)) = p([2,0)) + Y ailpy(x), z€R,  (25)
i=1
where ¢ € R is a constant, p € M, and J = (o, x;)i=12,.. C R2 is a countable set
such that x; # x; whenever i # j. In addition, it is required that for some constant

g =0,

o0
/ e Aol d| p|(x) + Z |ale Pl < oo, (2.6)
R i=1
Each polynomial belongs to the class GBVey,. Moreover, indicator functions of in-
tervals (open, closed, or semi-open) and their linear combinations belong to the class
GBVexp.

2.3. Results. The main result of [A] is given below.

Theorem 2.3 ([A, Theorem 2.4(A)]). Suppose that g € GBVeyy, is given by (2.5) with
B >0 asin (2.6), and that zo € R. Then, for all (ty,x) € ™" x 8L with ty, # T,

cellel 1
< /=
VT 1 \/ﬁ’

|u” (tk, ) — u(ty, v (2.7)

where C = C(B,0,T,g) > 0 is a constant.

Theorem 2.3 implies the rate n~'/2 locally on compact sets of [0,7") x R for the test

function class G BVeyp. Moreover, the rate is sharp for this class in the following sense:
There exists a function g € GBVeyp, such that

0 < liminf n2 [u™(0,0)—u(0,0)| < limsupnz [u"(0,0)—u(0,0)| < co. (2.8)
n—00 n—00
Indeed, (2.8) is seen to hold true for the step function g = 1y ) ([A, Proposition
4.14)).

Functions of bounded variation were considered as a class of test functions by
M. L. Juncosa and D. M. Young in [JY53] in the context of an initial value problem
associated to the forward heat equation on [0,00) x [—1,1]. Using Fourier methods,
they obtained the rate n=1/2 locally as well, but did not study the explosion in .
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The requirement for the terminal condition g to be of bounded variation on compact
sets is not necessary in order to obtain upper bounds of the type (2.7). A result
similar to Theorem 2.3 is proved for a class of exponentially bounded, locally a-Hélder
continuous test functions.

Theorem 2.4 ([A, Theorem 2.4(B)]). Suppose that g : R — R is a function for which
there exist constants A, 3 > 0 and o € (0,1] such that for each R > 0,

sup lg(x) — g((ly)l < AR,
z,y€[—R,R],x#£y |ZL‘ - y|

Then, for all (tg,x) € ™ X S, with ty, # T, there exists C = C(5,0,T,g) > 0 such that

" CeB+Dlzl 1
[u™(t, ) — u(ty, z)| < (T —15)% n2
2.4. Method of the proof. The proof of Theorem 2.3 and 2.4 is based on the Sko-
rokhod representation of W". As in [Wal03], the error (2.3) is split into a ’global’ and
a ’local’ part, which take into account different properties of the terminal function g.
Let o0 = 1 for simplicity. To take into account the time-dependence, introduce for a
fixed time instant sg € [0,T") the auxiliary variables

ng ::2{T£fow €{2,4,...,n}, Gn::%e 2T 4T ., T}

mnon
Then 6, = T — t), = "L if and only if so € [ty, tg41), so that
u"(ty, v)—u(te, x) = Elg(a+Wr, )] — Elg(z+Ws,)], so € [tk te+1). (2.9)

The error (2.9) may thus be considered as a function of the pair (n,#6,), where the
blow-up rate is described in terms of 1/6,,. By introducing the random index .J,, :=
sup {2m € 2N : 75,,, > 6,,} associated to the sequence of stopping times (7x)r>0, the
error is finally decomposed into the sum of

E%bb(tk,x) = ]E[g(x+WTn9) —g(x+oW,, )] and (2.10)
en(tr, x) == Elg(z+W-, ) — g(z+oWy,)]. (2.11)

The main idea behind the estimation of the global error (2.10) is to expand it into
an infinite series whose terms can be expressed with the help of the moments of .J,, and
WTng. For the analysis of this expansion, technical moment and tail estimates for the
random times 7,,, Jy,, and 7, are derived by generalizing estimates stated in [Wal03]
to the time-dependent setting. Part of this extension is carried out in the arXiv version
[Luol7] of [A]. For instance, for each p > 0 one finds a constant C), > 0 such that

‘Jn - nQ‘ P . .
E < < Cp , uniformly in (n,so).
V)

As opposed to the global error, the local error (2.11) is influenced by the smoothness
and the local behavior of the terminal condition g. By considering the conditional
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expectation E[g” (W, )|Fp,] for the shifted function ¢* := g(x + - ), one may represent
(2.11) as

en(tr, ) = E[Il.g"™(Wo,) — g"(Wa,)]
+ E[(HoIIeg®(We,) — I.g"(Wy,))P(7r, is even|Wy,)] (2.12)

in terms of the random index L, := sup{m € NU{0}: 7,, < 6,,}. Here, II. and II,
are projection operators mapping functions f : R — R into piecewise linear functions
according to the rule

I.f(x) = f(x) on Z':={2kVh: kel

I,f(z) = f(z) on ZM':={2k+1)Vh:keZ).
Since these operators are linear, they are well-suited for the estimation of functions
belonging to GBVey, due to the representation (2.5).

It turns out to be crucial (e.g. for the proof of the sharpness result (2.8)) to further
estimate the conditional probability

P(r, is even|Wy, =x), x €R, (2.13)

appearing in (2.12). The random walk (W, )r>0 either moves up or down the amount
V/h at each step, and thus the condition 7y, is even’ means that the final value the
process admits before time 6, is an even multiple of v/h = /T /n. Using the notation
of this section, it was pointed out using time reversal in [Wal03, pp. 348-349] that the
probability (2.13) is equal to

gn(z) :=PC B0 hits Z! before hitting Z"),

where (Bf’e”’o) = (Bf’en’o)te[o"gn] denotes the Brownian bridge from x to 0 of length
0,,. By comparing this probability to the known hitting probability for the Brownian
motion

~ . h ey h dlSt(l‘,Z];)

Gn(z) 1= P((x+W4)¢>0 hits Z. before hitting Z,") = ———=2-,

- Vh

it was stated that g,(z) — ¢,(z) = O(n_%) as n — 00. It can be shown that this
convergence holds for any fixed = € R, but not uniformly in x. Applying results of [B]
related to the expected first exit times of Brownian bridges, it turns out that more can
be said: For a known function 1, it holds that

|G (2) — n(@)| < (@, h, bn, T)E[T2.0,,0],

where Ty, » denotes the first exit time of the bridge BY%9n% from a certain interval

of length v containing z. More details can be found in [A, Subsection 4.2] and [B,
Section 4].

3. THE EXPECTED FIRST EXIT TIMES OF BROWNIAN BRIDGES

The research paper [B] studies the first exit time of a Brownian bridge from an open
interval. Of particular interest is the expected amount of time this process spends
before exiting the interval for the first time in relation to the length of the interval.
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For the Brownian motion W, it is known that E[Wy,

the first exit time of from the open interval 0 € (a,b). In particular, E[W7 _

] = |alb, where T, ;) denotes
h2.
In [B], the associated expectation for the Brownian bridge B*1¥ = (Bf’T’y)te[ovT] is
proved to be of the same order for small h > 0:

h,h)] =

x, T,
lim EB7 ) _ 1, T>0 a
hJ,O h2 - ) y

Similar limiting behavior is found also for the 3-dimensional Bessel bridge.

The bridge B®T"¥ can be thought of as a Brownian motion initiated at = and ’condi-
tioned to hit y at time T”. It is a continuous Gaussian process which can be represented
in several ways. For example, it can be obtained as a solution to an SDE, or be defined
in terms of the Brownian motion by letting

Bt’T’y = Wt—TWT"_:L"F(fE—y)i te[()?T}

T’
To study more general bridges X®1*¥, it is typical to associate them to a probabil-
ity measure on the canonical space, i.e. to search for a probability law on a suitable
function space under which the random variables X} Ty play the role of coordinate
projections. If the bridge is constructed from a linear (i.e. one-dimensional) diffu-
sion, it is common to consider the space of continuous functions C' := C([0,00),R) :=
{w :[0,00) = R : w is continuous}.
For some related literature, see [BO99], [PWO01], [Abu02], and [SY11].

3.1. The canonical framework for linear diffusions and bridges. The space
C' is equipped with the natural filtration (C¢):>0 generated by the coordinate process
7 = (7)e>0 consisting of projection mappings 7 : C' — R, 7y(w) := w(t) for each ¢ > 0.
The smallest o-algebra containing each C; is denoted by C. For each (C;)¢>o-stopping
time 7, define also the random shift operator

or :{w e C:7(w) < o0} = C, o7 (w) :=w(- +7(w)).

Roughly speaking, a linear diffusion is a strong Markov process with continuous
paths. The following technical definition is taken from [BS15].

Definition 3.1 (Linear diffusion). Let I C R be an interval. For each x € I, let P,
denote the probability measure on (C,C) under which a homogeneous Markov process
X = (X¢)e>0 taking values in I is the canonical process 7t started at x. It is called a
linear diffusion provided that for each x € I,

o P,(AopCr)=Px (A) Pg-a.s. on {7 < oo},

o P.(t— w(t) is continuous on [0,((w))) =1,
where A is any bounded C-measurable random variable, T is any (Ct)i>0-stopping time,
and where ((w) :=1inf{t > 0:w(t) ¢ I} € [0,00] is the lifetime.

For later use, let us denote the first hitting time 7, to y € R and the first exit time
T(a,p) from the interval (a,b) C R, respectively, by

Ty(w) :=inf{t >0:w(t) =y}, Tap(w) :=inf{t>0:w(t)¢ (a,b)}
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A linear diffusion (X;);>o is regular if P, (7, < co) > 0 holds true for each z,y € I,
i.e. the process X will eventually hit any given point on the interval. Each regular
linear diffusion X admits a strictly positive, continuous transition density p; (x,y)
which is also symmetric (see [IM65, p.149, p.157]). The transition density p* is a map
[0,00) x I? — [0,00) s.t.

PAXie A)= [ p¥epm¥ @), AcBU). ael >0
A

holds for some reference measure m* on B(I) (the Borel g-algebra of subsets of I),
called the speed measure of X.

The key result regarding the construction of bridges is the following: Suppose that
(Xt)i>0 is a regular linear diffusion, and let x,y € I. Then, there exists a unique
probability measure Q on (C,Cr) such that Q(w(0) = z) = Qw(T—) =y) =1, and

pr_y(w(t),y)
Py (z,y)

([FPY92], cf. [Sal97] and [CU11]). The property (3.1) implies that each restriction
Q’ e to the sub-o-algebra C; C Cr is absolutely continuous w.r.t. P,. This measure Q

is denoted by IP’f’Tvy and called the law of the diffusion bridge X®TY.

@(A):@|Ct(A):]Ex[ 114 for each A€ C;, 0 <t <T (3.1)

In the following, P, (resp. IP’;S)) denotes the law of the Brownian motion (resp. the

3-dimensional Bessel process) started at xz. The associated bridge measures will be

p®)

denoted by Py 1,y and P 7.

respectively.

3.2. The main results. Besides the Brownian bridge, also the three-dimensional
Bessel bridge is considered in [B], the latter being constructed by conditioning 3-
dimensional Bessel process. The 3-dimensional Bessel process is a regular linear dif-
fusion having the law of the Euclidean norm of the 3-dimensional Brownian motion.
It is transient, and never hits zero. The transition densities (w.r.t. to the Lebesgue
measure) p(x,y) of the Brownian motion and p§3) (x,y) of the 3-dimensional Bessel
process are given by
1 (z—y)?
e z,y € R,

pt(x7y> = \/TM )

P (@, y) = %(pt(x,y) —pe(z,—y)), z,y>0.

To state the main result of [B], let us also introduce the function
[e.e]
Fi(h):= Y (=1)me 2" h>o.
m=—0oQ
Theorem 3.2 ([B, Theorem 3.4, 3.8]).
(i) For the Brownian bridge Py, with |y| > h,

T
BTl =+ | B

dt. (3.2)
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(i) For the 3-D Bessel bridge ]P’fjgpy with x > h and y ¢ (x — h,z + h),

T (3)
3 D €,y FK(h/\/Z)
;)Ty[ﬁz hya+h)] h/ g )t(x ) Van dt. (3.3)

(1it) The expectations in (i)—(ii) have the following limiting behavior as h — 0:

3
lim Eo,1y[T(nm)] 1 lim Eg(g)Tymx—h,Hh)] .
w0 EolT(—pn) ’ mio 3 )[7-(x7h,x+h)}

3.3. Some remarks. Theorem 3.2 (iii) provides an asymptotic relation between the
expected first exit times for the diffusions and the diffusion bridges under consideration.
Notice that the influence of the conditioning vanishes in the limit. To which extent the
result is true for general diffusion bridges remains an open question. See, however, the
result [B, Proposition 3.3] concerning first exit times of (unconditional) regular linear
diffusions.

The integral representations in Theorem 3.2 are obtained via the following general
result for diffusion bridges X**¥: For each x € (a,b) C I and y € I\(a,b),

pr_i(2,9)

acTy (ab) // T(ab)>tXt€dz) ~

() dt (3.4)

(see [B, Proposition 3.2]). The idea is to show that the Laplace transform w.r.t. the
variable T' of the right-hand side of (3.4) agrees with the Laplace transform of the
corresponding single-integral representations (3.2) or (3.3).

The function Fg, the Kolmogorov distribution function named after A. N. Kol-
mogorov, was originally obtained as the limiting distribution of the Kolmogorov-
Smirnov test statistics [Kol33]. The connection between the function Fx and the
Brownian bridge was later established by J. L. Doob in [Doo49], who identified Fk
as the the distribution function of the supremum of the absolute standard Brownian
bridge,

Poro ( sup [w(s)] < x) — Fr(o).
0<s<1

There is also the following fact about the distribution function F due to F. B. Knight
[Kni69]: The function

FK(h/ V)
Cn2nt

is the density of the last visit to zero A\g := sup{t > 0 : W, = 0} of (Wt)tzo, the
Brownian motion killed at 7(_j, ) (see [B, Proposition 3.10] for a different proof). For

a discussion on special functions such as Fx and their relations to probability theory,
see [BPYO1].

t>0,
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4. APPROXIMATION OF FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS USING SIMPLE RANDOM WALK

Recall the setting introduced in Section 1. A stochastic equation of the type
T T
Vg [ fevazyds- [ zaw, o<e<T. ()
¢ ¢

is called a backward stochastic differential equation (BSDE). The data consists of a pair
(&, f), where the terminal condition & is an Fp-measurable random variable, and the
generator f is real-valued, possibly random function. Given such a pair, the solution
of (4.1) is a pair (Y, Z) = (Y3, Zt)sejo,m) of (Ft)icjo,r)-adapted processes belonging to
the Ls-space Sy x Hy defined by

Sy := STV = {41 [0, T]xQ — R| ¢ is cadlag, adapted, and |||, < oo},
H, := ]HI[ZO’T] ={¢: [0, T]xQ — R| is prog. measurable and ||¢||m, < oo},

where the norms are given by

T
ol =E suwp | and ol = [ Lol
te[0,T] 0
Existence and uniqueness of solutions to (4.1) for a non-linear generator f was first
proved by E. Pardoux and S. Peng [PP90] in the presence of the following assumptions:
¢ is square-integrable, f(t,w,y,z) is Lipschitz continuous w.r.t. the spatial variables
y,z, and f satisfies f(-,-,0,0) € Hy. Since then, considerable amount of effort has
been dedicated to weaken these assumptions and to study generalizations of such equa-
tions. BSDEs have applications in mathematical finance, stochastic control theory and
stochastic game theory.

4.1. FBSDEs. Forward-backward stochastic differential equations (FBSDESs) are back-
ward SDEs, where the solution (X;)¢>o of a forward SDE serves as the source of ran-
domness for the generator and the terminal condition. The FBSDEs considered in this
thesis are assumed to be Markovian, i.e. it is additionally assumed that f(t,w,y,z) =
£, Xu(w), 9, 2) and £(w) = g(Xr(w)).

Given an initial point (t,z) € [0,T) x R together with a quadruplet (b, 0,g, f) of
functions b,0 : [0,7] xR = R, g: R — R, and f : [0,7] x R® = R, a FBSDE is a
(parametrized) pair of equations

S S
x =t [Cbe X+ [0t xEawW, t<s<,
t t

T T
VT = g(X5") + / fr, XE® Y5 Z5%Ydr — / Zbaw,,  t<s<T.
) ) (4.2)

A solution of the system (4.2) is a triplet (X5, Y&, Zﬁ’x)se[tﬂ € S[Qt’T] X Sg’T] X Hg’T],

adapted to the augmentation of the filtration (F%)scpr, Fi := o(Wp=Wi,t <1 <'s).
The law of the Brownian motion W started at (¢, ) is denoted by P . As a convention,
let us simply write (X,Y, Z) = (X%%, V%% Z0) when t = 0.
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Existence and uniqueness of solutions to (4.2) was shown by E. Pardoux and S. Peng
[PP92]. They also investigated the connection between the FBSDE (4.2) and the
quasilinear second-order parabolic PDE

ui(t, x) + Lu(t,z) + f(t, z,u(t,x), o(t, v)us(t, x)) =0, (t,x)€0,T) xR,
{ U(T,.CE) :g(l.)v z €R,
(4.3)

where Lu(t, z) := b(t, z)uy(t, 2)+302(t, ¥)uge(, ). Under smoothness assumptions on
(b0, f,g), it was shown in [PP92] that if (Y*, Zﬁ’z)se[tﬂ is the unique solution to the
BSDE (4.2) for each (t,z) € [0,T] x R, then u(t, z) := ¥;"" belongs to C2([0,T] x R)
and solves (4.3). In addition,

Yst’x = u(s,Xﬁ’x) and Zﬁ’x = o(s,Xﬁ’z)ux(s,Xﬁ’m),

i.e. it is possible to represent the solution of the FBSDE as a function of the current
state of the forward process. Moreover, under less restrictive assumptions (g is only
Lipschitz continuous), u(t, z) := Y;** is the unique viscosity solution to (4.3), and this
solution can be represented in terms of the nonlinear Feynman-Kac formula

T
U(t,$) =K |:g(X’§jE) +/ f(7"7 Xﬁ’xa Y:7x7 Z7€7x)dr ’ (t,LU) € [OaT] x R. (44)
t

The results of [C]-[D] rely on the fact that a representation similar to (4.4) can be
found also for the process Z4*.

4.2. Approximation of BSDEs. First results related to approximation of backward
SDEs date back to the late 1990s and are due to V. Bally [Bal97] and D. Chevance
[Che97a], [Che97b]. The known methods can be divided into two categories: time
discretization (or backward Euler) methods ([Zha04], [BT04], [BD07]) and random
walk methods ([BDMO1], [MPSMTO02], [PX11]). The main idea behind the former is
as follows. Given a partition 7™ : 0 = tg < t1 < --- < t, =T, let At; = t; — t;_1,
AWy, = Wy, — We,_,, and consider the discrete-time equation

YT =Y+ XYL Z0) AL — ZE AW, 1<i<n, (4.5)
where V" := ¢g(X7 ) and the discretization X7 of X is given by (1.2). This system can
be solved by backward recursion: Given the quantity

L1

zZ7
ti—a Ati
where GT := O’(XZ;,O < j <), one obtains Y;T | by solving the implicit equation
}/t?,l = E[Ytﬂgzﬂfl] + f(tifl’ XZ;,1 ’ YTr ngl)'

ti—1?

This method was considered by B. Bouchard and N. Touzi [BT04]. A similar, explicit

scheme is obtained as a special case of the method proposed in J. Zhang [Zha04, Section

6]. The rate |r|'/2 in the Sy x Hy-norm was obtained for both of these schemes under
Lipschitz assumptions on the data.

From the perspective of implementation, a problem related to these time discretiza-

tion algorithms is the computation of conditional expectations such as (4.6) using

Eti—l[Y;f?AWtAgiﬂ]v 1< n, (4'6)
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Monte Carlo methods. These computations are considerably less complex in the con-
text of random walk approximation, where the Brownian increments AW, are replaced
by random variables with finitely many values.

In [BDMO1], P. Briand, B. Delyon, and J. Mémin studied the convergence of a
random walk scheme based on Rademacher-distributed increments. Their main result
concerns a setting where the approximating random walks (W"),—1 2, .. given by (1.6)
and the Brownian motion W are defined in the same probability space. Provided that
supyeo,) W' — Wi| converges to zero in probability as n — oo, it was shown that

T
sup |Y; — Y| —|—/ |Z; — Z2dt =250 in probability
te[0,T 0

for the associated backward scheme (Y™, Z™).

4.3. The setting and the main results. The motivation behind [C]-[D] was to
obtain a strong rate of convergence when the FBSDE (4.2) is approximated using a
random walk. To the author’s best knowledge, results about convergence rates for
random walk schemes for BSDEs have not been previously obtained — unlike for time-
discretization schemes as mentioned above. The case where the forward process X is
simply the Brownian motion is studied in [C], whereas [D] concerns forward processes
obtained as solutions to more general SDEs.

The approximation is based on the framework presented in [BDMO1, Section 5]. For
the moment assume that the data (b, o, g, f) is sufficient in the sense that everything
is well-defined; the precise assumptions will be specified below. Recall the notation
for the equidistant partition 7, the step-size in time At; = h = %, and the discrete
forward process X™ introduced in Subsection 1.2. Consider the discretized BSDE,
where Y, := g(X7), and

n—1 n—1
Yo = g(XP) +h Y fltmer, X0 Y0 20 ) =V Y 27 &, 0< k<.
m=k m=k

(4.7)

Equation (4.7) is solved by backward recursion in a similar manner as (4.5). After
having found Z! | := h_l/QE[ﬁiY;?|Q?_1], where G := 0(&1,&2,...,&), the quantity
Y;! | is obtained by solving the implicit equation
Y =Y b XE Y2 )~ VRGZE (4.8)

For n large enough — assuming that f is Lipschitz continuous — one can prove by a
fixed-point argument that equation (4.8) has a unique Gj’-measurable solution Y;7.
The solution (X", Y™, Z™) is then extended into continuous time by letting X;* = Xty
t € [tk,tk+1),0 < k <n—1 (similarly for Y™ and Z").

The key idea behind the approach adopted in [C]-[D] is that the binary random
walk associated to (4.7) is taken to be the Skorokhod version of W™, i.e. from now
on (W{} )k>o will be identified with (W7, )x>o defined in Subsection 1.2. In particular,

Vheéy =W, —W,,_, and G := F, .
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Assumption 4.1. The terminal function g : R—R and the generator f : [0, T|xR3—=R,

(t,z,y,2) — f(t,x,y, z) satisfy the following conditions:

(Ag) g is locally a-Holder continuous in the sense for some constants pg > 0, Cq > 0,
l9(x) = g(W)] < Cq(1 + |z + [y[")[z —y|*, =zyeR.  (49)

(Af) There exists a constant Ly > 0 such that

If(t,zy, 2) — (20, ) <LVt =]+ |z =2/ |+ |y — ¥ + |z = 2]).
Remark 4.2. Note that (Ay) implies Ky := sup;cio 7 |f(¢,0,0,0)] < oo.

For X := W the standard Brownian motion and X" := W™ the Skorokhod version
of the simple symmetric random walk (1.6), we have the following result.

Theorem 4.3 ([C], Theorem 3.1). Under (Ay) and (Ay), for n € N large enough, it
holds for all s € [tg,tg+1) that

Co

n|2

E|Z, — Z"|? <

Co N Ch 1
n®/2(T — ty) ne/2(T — S>I‘T‘l il
(4.10)

where Co,C1 > 0 are constants depending on T,po, Ly, Ky,Cy, and o. In particular,
for each B € (0, ) it holds

IR C(Cy, Ch, B)
E|Y, — Y?)? < 20 7 — 7", < 0L
333%]( | S S e e < == 57

The result concerning general processes X and X™ given by (1.1) and (1.7) is proved
under the following assumptions.

Assumption 4.4. Let g : R = R, f: [0,T] x R? = R, (t,z,y,2) — f(t,z,y,2),
and byo : [0,T] x R = R, (t,x) — b(t,x),0(t,x) be functions satisfying the following
criteria.

(Ag) g € C*(R) and g,¢', and g" satisfy (4.9).

(;1;) f is continuous and each of the partial derivatives 9L050F f with 0 <i+j+k <2
exrists as a bounded and continuous function. Moreover, the second-order partial
derivatives of f are uniformly Lipschitz continuous w.r.t. the spatial variables.
In addition, the function t — f(t,z,y,2) is %—Hb'lder continuous, uniformly in

(@),

(Avy) (i) b and o are bounded and continuous functions having bounded and continu-
ous first and second order partial derivatives w.r.t. the variable x.
(i) b and o are %—H()'lder continuous in t, uniformly in x € R.
(i7i) There is a constant § > 0 such that o(t,x) > § > 0 holds for each point
(t,x) € [0,T] x R.
(iv) byy and 0.y are Lipschitz continuous w.r.t the variable xz, uniformly in
t € [0,T]. Additionally, by, and o4y are y-Holder continuous on compact

subsets of [0,T] xR (for some v € (0,1]) w.r.t. the metric d((t,x), (s,y)) :=
VIE— sl + ]z — yP.
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Theorem 4.5 ([D], Theorem 3.2). Let (:4;), (Z}), and (Z;—,\U) hold. Then, for n € N
large enough and for all s € [0,T),

K>

C

n

(z) (4.11)

«
Ng

1Ys = Y| oeon) T 125 — Z3 | oo ) <

=

where \iJ(x) = 1+ |2|%P0F8  and where the constant C' depends on T and py together
with the bounds of the functions b, o, f,g and their derivatives.

4.4. On the proof and some remarks. Theorems 4.3 and 4.5 are proved using the
following decomposition, where U is either Y or Z:

[Us = UL < NUs = Up [l + U, = UMl s € [ty tignr);  (412)

recall U? = Uj} on [tg,try1). Here || - || = || - [y, if X = W and otherwise
1= 1 Nzageon

For the evaluation of the middle term in (4.12), regularity estimates of [GGG12] are
applied and specialized into our setting. Partially due to the fact that an improved
estimate for ||Zs — Z;, || can be obtained under the stronger assumptions of Theorem
4.5, the estimate (4.11) does not involve singularities as opposed to the estimate (4.10)
of Theorem 4.3.

Another important tool applied in [C]-[D] is the following representation of the
process Z: It holds that Z; = o (¢, X¢)ux(t, X¢), where

T
uo(t, Xp) :—E{g(XT)N%+/ f(r,Xr,YT,Zr)Nﬁdr’]-}}, te[0,T). (4.13)

This representation was obtained for Lipschitz continuous f and g by J. Ma and
J. Zhang [MZ02], and was later generalized for polynomially bounded g by J. Zhang
[Zha05]. In (4.13), the Malliavin weight N! is given by
Nt 1 SVX, dW,
s —t ), VXio(r, X,)’

t<s<T,

in terms of the variational process VX = (VX;);>0 associated to the forward SDE

t t
VX, =1 +/ b (r, XT)Verr—i—/ oo(r, X, ) VX, dW,, t>0.
0 0

The process VX can be seen as the derivative of X = X%* w.r.t. the initial value
z € R in the So-norm.

Provided that (X, X™) = (W, W"), one simply has VX = 1, and thus the weight
is given by N! = (Wy — W;)/(s — t). Moreover, the process Z" solving (4.7) can be
written as

n n Wr — th - n n n Wgrln B th n
Zj, =E Q(WT)% +hy f(tm+1,th,th7Ztm)ﬁ gk]-
k Mkl m k
(4.14)

The above representations for Z and Z" play a key role in the proof of Theorem 4.3.
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Consider then the case of Theorem 4.5 concerning a general forward process. A
representation similar to (4.14) can be derived by letting

n n,ty
20 )N

tm

n—1
Zp =B g(XPINEF* + 0> fltmer, X, Y

G otr.1. 3.
m=k

where Ng;t’“ is the natural extension of the discretized weight (W} — Wjl)/(tm — tx)
given in terms of a discretized variational equation, see [D, Subsection 2.3]. As opposed
to the Brownian case, however, the processes Z™ and Z™ are not equal in general.

In [BDMO1, Proposition 5.1], a representation for the true solution Z™ was proved
in terms of a finite-difference equation (FDE) involving Malliavin difference operators.
See [BP18] for an in-depth discussion on discrete Malliavin calculus. Roughly speaking,
the main difference between the true solution Z™ and the approximative solution Z" is
that the former involves difference quotients in space of b and o, while the latter involves
partial derivatives b, and o,. This gives rise to additional technicalities especially in
the case of a non-zero generator. When f # 0, the convergence ||Z}, — A[}LEH — 0
is obtained by exploiting regularity properties of the solution to the FDE. However,
one needs to impose (A,) on the terminal function g; for the zero generator case ([D,
Proposition 3.1]) it is sufficient that g € C'(R) and that ¢’ is locally Holder continuous.

One final important aspect related to the proof is the evaluation of conditional
expectations using the properties of the Skorokhod representation. To illustrate this
approach, consider for a Lipschitz continuous function ¢ the difference

Elp(Wr)|Fi,] = Elp(W7)|G;] = Elp(Wr)|Fr, | — Elp(W, )| F7,]

and let TV denote a Brownian motion independent of W defined on the same probability
space. Denote by 71,72, ... the stopping times given by (1.8) for which W is replaced
by W. Then, the strong Markov property and Jensen’s inequality yield

IE[p(Wr)|Fr,] — Elp(WIGHII < I[E[p(We, o +We,)] — Elp(Wr, o+ W3]
S LSO (||th—k_WTn—k|| + ||Wtk_WTk||)
S C(L%’?T)hiv

where the last inequality holds by Proposition 1.2 (#i7). Similar bounds are derived in
[D] in the case of a general forward process X and its discretization X™.

The following example, closing this section, provides some insight into the sharpness
of the rate in (4.10) in the case of smooth data.

Example 4.6. Suppose that f = 0 and & = g(Wr), where g(x) = ax + b for some
a # 0, a,b € R. Even in this very simple case the rate in (4.3) is not better than ni:
First notice that (Yy, Z;) = (aWy + b,a) and (Y}, Z) = (aW5, + b,a) are the unique
solutions to (4.2) and (4.7), respectively. It obviously holds that EB|Z]' — Z]'|* = 0, but
more interestingly,

ElY) — Yy, |* = a®E|Wy, — Wy, | = o®El|ri — ty (4.15)

(recall Proposition 1.2). Let Sy, := > 1" (pi — 1), where (p;)i=1p,... are i.i.d. random
variables distributed as T /h ~ inf {t > 0: |W| = 1}. Since E[p;] = 1 and Var(p;) =
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2/3, the sequence n=1/28,, converges in distribution to Wy,3 by the central limit theo-
rem. In addition, using truncation one can show that

—— E|Wy 3] = —.
\/ﬁ | 2/3| \/3?

kT mNn—00

Suppose then that k =k, depends on n in such a way that = —— to € (0,T]. Then,

n

for n large enough, there exists a constant C(T) > 0 such that

VETES OBl

]E'|Tkn - tk7l| =

Consequently, by (4.15), (4.16), and (1.9),
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Abstract

Let W denote the Brownian motion. For any exponentially bounded Borel function g the function u
defined by u(t,x) = E[g(x+oWr_;)] is the stochastic solution of the backward heat equation with
terminal condition g. Let u™ (¢, z) denote the according approximation produced by a simple symmetric
random walk with steps +c+/7'/n where o > 0. This paper is concerned with the rate of convergence of
u"(t, z) to u(t, x), and the behavior of the error u” (¢, ) —u(t, x) as t tends to 7. The terminal condition
g is assumed to have bounded variation on compact intervals, or to be locally Hélder continuous.
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1 Introduction

The objective of this paper is to study the rate of convergence of a finite-difference approximation scheme
for the backward heat equation with an irregular terminal condition. Convergence rates of finite-difference
schemes for parabolic boundary value problems have been studied during the past decades (see e.g. [3], [6],
[8], [11] and [14]) with varying assumptions on the regularity of the initial/terminal condition, the domain of
the solution, properties of the possible boundary data etc. Naturally, several techniques have been proposed
in order to study the convergence. Our approach is probabilistic: The solution of the PDE is represented in
terms of Brownian motion, and the approximation scheme is realized using an appropriately scaled sequence
of simple symmetric random walks in the same probability space, in the spirit of Donsker’s theorem. This
method produces error bounds which are not uniform over the time-nets under consideration, and hence the
time-dependence of the error is of particular interest here.

To explain our setting in more detail, fix a finite time horizon T' > 0, a constant o > 0, and consider the
backward heat equation

o ot
at“ 28x2u_

University of Jyvaskyla, Department of Mathematics and Statistics, P. O. Box 35, FI-40014 University of Jyvaskyla
antti.k.luoto@student. jyu.com

0, (t,x)€[0,T) xR, uw(T,z) = g(x), x€R. (1.1)




The terminal condition g : R — R is assumed to belong to the class G B Ve, consisting of exponentially
bounded functions that have bounded variation on compact intervals (see Definition 2.3 for the precise
description of G BV¢p). The stochastic solution of the problem (1.1) is given by

u(t,z) == Elg(cWr)|oW; = x| = E[g(z+oWr_y)], (t,z) € [0,T] xR, (1.2)

where (W;):>0 denotes the standard Brownian motion. To approximate the solution (1.2), we proceed as
follows. Given an even integer n € 2N, a level zg € R, and time and space step sizes § and h, define

Th={th =2k6|0< k<L keZ}, S :={z+2mh|mecZ}.

The finite-difference scheme we will consider is given by the following system of equations defined on grids
gn =T x 8% C [0,T] x R,

u(ty, ) —u(tE_, ) o ut(t, a+2h)—2un (¢}, z) + u" (7, x—2h)

+ = =0,
=t 2 (2h)2 (1.3)
Letting § := % and h := a@ , system (1.3) can be rewritten in an equivalent form as
w(t @) = [ (0, a+2h) + 20" (1, @) + un (8, 2=2R)], (1.4)

This scheme is explicit: Given the set of terminal values {g(w) | T € S?O} the solution u™ of (1.4) is
uniquely determined by a backward recursion. We extend the function ©™ in continuous time by letting

u(t,x) =" (ty,x) for telty,th,,),0<k<3, (1.5)
and consider the error €, (¢, ) on (¢,7) € [0,T) x SZ , which is given by
en(t,x) == u"(t,x) — u(t, x). (1.6)

The main result of this paper, Theorem 2.4 (A) states that for some constant C' > 0 depending only on g,

C C
|5n(t7$)| < \/ﬁ(,lg_,(x_)t)]l{tf'l'n} + \/n(;ﬁ“(i%ﬂ[tz’tz-ﬂ)(t)’ (t,l') S [O,T)XSZ), (1.7)

where 1 (z) = (||, g,0,T) > 0 depends on the properties of g and will be given explicitly later.

Inequality (1.7) suggests that the convergence is not uniform in (¢, x). However, if we consider uniform
convergence on any compact subset of [0, 7) xR, the rate is at least n~/2, and it will be shown in Subsection
4.4 that this rate is also sharp.

Already in 1953, Juncosa & Young [6] considered a finite difference approximation of the forward heat
equation on a semi-infinite strip [0, 00) x [0, 1], where the initial condition was assumed to have bounded
variation. Using Fourier methods, they proved in [6, Theorem 7.1] that the error is O(n_l/ 2) uniformly on
[t,00) x [0, 1] for any fixed ¢ > 0, but did not study the blow-up of the error as ¢ | 0. Notice that the right-
hand side of (1.7) undergoes a blow-up as t 1 I'. The order of the singularity is even worse for time instants
t not belonging to the lattice 7™ due to the possible discontinuities of g. On the other hand, one observes
that the order remains unchanged if the terminal condition g is Holder continuous. Indeed, suppose that g
belongs to the class C&g‘ (see Definition 2.1), which consists of exponentially bounded, locally «-Holder
continuous functions. By Theorem 2.4 (B), there exists a constant C' > 0 depending only on g such that

Cy(x) n
len(t,x)| < mﬂ[tz’tz+l)(t)’ (t,z) € [O,T)XSZO, (1.8)



where the function ¢ (x) = ¢(|z|, g,0,T") > 0 plays a similar role as in (1.7).

Recently, Dong & Krylov (2005) [3] considered the convergence of a finite-difference scheme for a very
general parabolic PDE. By specializing their result [3, Theorem 2.12] to the setting of this paper, the error
is seen to converge uniformly in (t,x) with rate n~Y4 for a bounded and Lipschitz continuous terminal
condition, in contrast to the time-dependent rate n~'/2 implied by (1.8). In fact, an analogous uniform rate
n~%* can be shown for the class CS,;;‘ in our setting; the proof is sketched in Remark 2.6.

In this paper, the main results are derived using the following probabilistic approach. Let (&;)i=12 . be
a sequence of i.i.d. Rademacher random variables, and define

u"(t,x) :=Elg(z+oWi_,)], (t,z) €[0,T] xR, (1.9)
where (W}*);c(o,r) is the random walk given by

2[27}/71,‘|

wp ;:\/% Y &4 teloT) (1.10)
=1

([-] denotes the ceiling function). The key observation is that the function »™ in (1.9), when restricted to gz

is the unique solution of (1.4) for every zy € R; (1.5) also holds for this ™ by definition. Moreover, since the
random walk (W3*).¢(o 7 influences the value of u™ only through its distribution, we may consider a special
setting where the random variables &1, &2, . .. are chosen in a suitable way. Defining these variables as the
values of the Brownian motion (W});>( sampled at certain stopping times (see Subsection 2.1) enables us
to apply techniques from stochastic analysis for the estimation of the error (1.6).

The above procedure was used in J. B. Walsh [13] (2003) (cf. Rogers & Stapleton (1997) [12]) in relation
to a problem arising in mathematical finance. More precisely, the weak rate of convergence of European
option prices given by the binomial tree scheme (Cox-Ross-Rubinstein model) to prices implied by the
Black-Scholes model is analyzed (cf. Heston & Zhou (2000) [5]). A detailed error expansion is presented
in [13, Theorem 4.3] for terminal conditions belonging to a certain class of piecewise C? functions. Using
similar ideas, we complement this result by considering more irregular functions and taking into account the
time-dependence. It is argued in [13, Sections 7 and 12] that the rate remains unaffected if the geometric
Brownian motion is replaced with a Brownian motion, and the binomial tree is replaced with a random walk.
It seems plausible that also our time-dependent results in the Brownian setting can be transferred into the
geometric setting with essentially the same upper bounds.

It should be mentioned here that the proof of (1.7) uses the general representation (2.7) for functions of
generalized bounded variation, which allows us to estimate the error (1.6) in an explicit manner. This type
of function classes of generalized bounded variation were studied first in Avikainen (2009) [1].

The paper is organized as follows. In Section 2 we introduce the notation, recall the construction of a
simple random walk using first hitting times of the Brownian motion, and formulate the main result Theorem
2.4. Using the sequence of stopping times, we split the error (1.6) into three parts, which we refer to as the
adjustment error, the local error, and the global error. The adjustment error is a consequence of the fact
that the approximation u"(t, z) is constant in ¢ on intervals of length 2L, while ¢ — u(t, ) is continuous.
The remaining two parts of the error appear because the construction of the simple random walk uses the
Brownian motion sampled at a stopping time which can be larger of smaller than T'—t, and for u(¢, z) we
use Wr_;. The local error is influenced by the smoothness properties of the terminal condition g, while for
the global error only integrability properties of g are needed. In Section 3, estimates for the adjustment error
are computed. Section 4 treats the local error and follows in many places the ideas and the machinery of J.
B. Walsh [13]. We also apply some results of [4] related to the first exit times of Brownian bridges to study
the sharpness of the rate and to derive explicit upper estimates in Section 6. In Section 5, the global error
is treated for exponentially bounded Borel functions, and our approach is similar to that of [13]. Section 6
contains a collection of moment estimates and tail behaviors of random times appearing in the description
of the local and the global error. Again, it was possible to adjust methods from [13] to our setting.



2 The setting and the main result

2.1 Notation related to the random walk

Consider a standard Brownian motion (W;);>0 on a stochastic basis (£, F, P, (F;)t>0), where (F¢)i>o0
stands for the natural filtration of (W});>o. We also let (X¢)i>0 = (6W})i>0, where o > 0 is a given
constant. By 7(_y, 5y we denote the first exit time of the process (X¢):>o from the open interval (—h, h),

T(—hpy = inf{t > 0: [Xy| = h} =inf{t > 0: [Wy| = h/o}, h>0.

The random variable 7(_p, ,) is a (F¢):>0-stopping time and its moment-generating function is given by

Mnm] _ cosh(h+/2|\]/0)~L, A <0,
Bletrenn] = { cos(hv2X /o)1, A e (0, —‘7—;) 1)

It follows that the exit time 7(_j, 5,y has finite moments of all orders, and for every K € N there exists a
constant Cir > 0 such that

E[rf ] = Cr(h/a)*. 2.2)

In particular, C; = 1 and Cy = 5/3. For relations (2.1) and (2.2), see [13, Proposition 11.1].
In order to represent the error (1.6), we construct a random walk on the space (2, F,P, (F¢)¢>0). Fol-
lowing [13], we define

70:=0 and 7, =7k(h):=inf{t > 7 1| Xy — X, | =h} (2.3)

recursively for k = 1,2,.... Then 7 is a P-a.s. finite (F3);>0-stopping time for all £ > 0, and the process
(X7, )k=0,1,... is a symmetric simple random walk on 7" .= {mh :m € Z}. For every integer k > 1, we
also let

Aty =1, —T,—1 and AX, =X, — X, _,.

The strong Markov property of (X;):>o implies that (A7, AX;, )g=1 2. is anii.d. process such that, for
each k > 1, we have P(AX, =+ h) =1/2,

(ATk,AXTk) (T(—hny> X T h’h)), and (A7, AX,, ) is independent of F,, _, .

Moreover, as shown in [12, Proposition 1], the increments A X, and A7 are independent. Consequently,
the processes (ATy)g=12,.. and (AX7, )r—12,.. are independent (see also [13, Proposition 11.1] and [7,
Proposition 2.4]).

We deduce, in particular, that for all N > 1 the random variable X, is distributed as h fo:l &, where
(&k)k=1,2,.. 1s an i.i.d. sequence of Rademacher random variables. Therefore, for W7 _, defined in (1.10),
we have the equality in law

Xy 4 oWt _, provided that (h, N) (a\/7

QT/n )

Note that in this case the sequence of stopping times (73 )x—0,1,... (2.3) depends on n via h = h(n).

The error (1.6) will be split into three parts, where each of these parts will take into account different
properties of the given function g. For this purpose, let us introduce some more notation. For given n € 2N
andt € [0,T), we let

ngT T—t

= —, h =2 | = 2,4,...,n}. 2.4
0 - where ny {2T/n—‘e{ n} 24



f 2L

By definition, 6, is the smallest multiple of =

greater than or equal to 7T'—¢. It is clear that

2T
0<6,—(T-t)<— and 6,]T—t asn— oo
n

The connection between lattice points ¢} = %TT € T™ and the time instant ,, € (0, 7] is explained by

telty,tyyy) ifandonlyif 6,=T—ty, 0<k<5-1 (2.5)

2.2 The function classes under consideration

The error (1.6) will be estimated for functions g belonging to the function class C’ggf,“ or G BV, defined
below. More information regarding these classes is provided in Subsections 4.5 and A.1, respectively.

Definition 2.1 (The class ngf,‘ ). Denote by ngg the class of all functions g : R — R for which there exist
constants A, 5 > 0 such that for all R > 0,

sp 9@ 9y s

: 2.6)
z,y€[—R,R], v#y |£C - y|

The function class G BVeyxp generalizes functions of bounded variation (which are bounded) by allowing
exponential growth. For more information, see [1]. Before introducing the class G BVyp, we recall

Definition 2.2 ([1, Definition 3.2]). Denote by M the class of all set functions
p:{G € B(R) : G is bounded} — R
that can be written as a difference of two measures p!, u? : B(R) — [0, oc] such that p!(K), u?(K) < oo

for all compact sets K € B(R).

Definition 2.3 (The class G BVcp). Denote by GBVcy, the class of functions g : R — R which can be
represented as

g(z) = c+ u([0,2)) — p([z,0)) + Zai]l{mi}(x), r € R, (2.7)

where ¢ € R is a constant, p € M, and J = (o, 2;)i=12,.. C R? is a countable set such that z; # xj
whenever ¢ # j. In addition, we require that for some constant 5 > 0,

/ e Plold| p|(z) + Z |ale Pl < oo, (2.8)
R

i=1
2.3 The main result
The following theorem is the main result of this paper.

Theorem 2.4. Let n € 2N, and let v and u™ be the functions introduced in (1.2) and (1.9).

(A) Suppose that g € GBV,y, is a function given by (2.7) and that B > 0 is as in (2.8). Then, for all
(t,z) € [0,T)xR,

. CBor

(i) |Ju"(t,z) —ult,z)] < #eﬂ\x\, tAER, 0<k<Z
g CsoT

1 W}, ) — u(tl, x)| < ——22t__cPlel, 0<k<Z
(i) |u"(ty, =) —u(ty, )| < ) <k<j

where Cg o7 = C(T' V \/T)e?’ﬁz"zT and C > 0 is a constant depending only on g.



(B) Suppose that the function g € Cexp and that 3 > 0 is as in (2.6). Then, for all (t,z) € [0,T) xR,

CﬂUT (
111 Ut w) —ult,z)| < 22 _ BVl e g ) 0< k< 2,
) 1o 0,0) )] < ), 0 < b < 5

where Cg o7 = (1+T)(2+ 0)064(6+1)202T and C > 0 is a constant depending only on g.

Remark 2.5. Properties of the error bounds in (A) and (B) were already discussed in Section 1. Here we only
point out that in general these error bounds grow exponentially as functions of . A uniform bound w.r.t. =
can be shown under additional assumptions: For g € G BVeyp, it is sufficient that g satisfies the condition
(2.8) with 3 = 0. For g € C’g{g‘, it suffices to assume that g is bounded and satisfies (2.6) with 5 = 0.

Proof of Theorem 2.4. Following [13], we define an auxiliary random variable .J,, on (2, F, P, (F¢)t>0) b
Jp(w) :=1nf{2m € 2N : 19, (w) > 6,,}, (2.9)

where we assume that the step size related to (7x)g=0,1,.. 18 h = a\/? By definition, .J,, is the in-
dex of the first even stopping time 7, 72, ... exceeding the value 6,,. It holds that J,, is a stopping time
w.rt. (Fr, )k=01,.. Moreover, 7, is a stopping time w.r.t. (F;);>0, and both J,, and 7, are P-a.s. finite.
The error &,,(t, x) given by (1.6) is then decomposed as follows:

en(t, ) = e&(t, x) + £l°(¢, ) + 29 (¢, z), (2.10)
where
8 (t, ) := Elg(a+X-,,) — 9(z+X-,. )], ("the global error”) (2.11)
(¢, ) = Blg(z+X,, ) — g(z+Xp,)], ("the local error”) (2.12)
e(t,z) == E[g(z+Xp,) — g(x+X7_;)].  (“the adjustment error”) (2.13)

Assume that 0 < k < 7 is the integer for which ¢ € [t} ], ;) holds.
(A): By Remark A.l (1), there exists a constant A = A(S) > 0 such that [g(z)| < AePl*! for all z € R.
Hence, by Propositions 3.3 and 5.3 and Corollary 4.13, there exists a constant C' > 0 such that

T VT T>.

en(t, <Ceﬁ‘m‘+3ﬁ2"2T(7ﬂ ny + +
len(t, 2)] < n(T —t) Ut (T —tp)  n(T—1t})

We then get the claim in both of the cases ¢ € (3,¢}:, ;) and t = #}: It holds that

T < T \/T and r
n(T —t7) — n(T —t) n(T — t}) vn( —t" \F(T—t

since \/n(1" — t}) > V2T for all integers 0 < k < 3.

(B): Given a constant § > 0, by assumption, we can derive the exponential bound

lg(a)] < Ale|*e”! +19(0)] < CPH v e R,

for some constant C' > 0. For simplicity, let us choose § = 1. Consequently, by Propositions 3.3 and 5.3
(put b = 8 + 6), and Corollary 4.17, we find another constant C' > 0 such that

oo /2 T )

< OBz +4(8+1)?0*T
len(t,z)] < Ce o + (T — 1)



The claim follows, since (n(Tiitn))7 < ( L )7 < 1forall v € [0, 1], and thus
k

n(2T/n)
oo/ T oo/ ( T )W (TP 40T _ (1+T)(2+40)
ne/? n(T —t}) = no/2 n(T —t}) T 2T — )2 T ne/2(T — )/
0
Remark 2.6. For g € C&ﬁ , there exists a constant C' = C'(A, 0, T) > 0 such that for all x € R,
sup |u"(t,x) —u(t,z)| < %ewl‘”HSBQUQT, (2.14)

te[0,T) n4
where A, 3 > 0 are as in (2.6). Hence, we get the uniform rate n~%/4 instead of the time-dependent rate
n~%/2 implied by Theorem 2.4 (B). Note that for g € 02;3, the time-dependence of the error bound in
Theorem 2.4 (B) is caused solely by the global error, and it remains unclear whether the associated upper
bound (5.9) can be improved using the additional information about the regularity of g.
For the proof of (2.14), notice first that by the Holder continuity and by Holder’s inequality,

)

1/ ay 1/p
" (t,x) — u(t,z)| < Ao® <Eequ+”WT‘fHQB"H(’WT”G l) ! (IE \WT_t —w, | )

Tne

where p := = and ¢ := z%' To proceed, apply Lemma 5.1 (7) and the fact that for some C(7") > 0,

E|[Wr_s — W.

Tn@

‘2 =E|(T—t) — 7n,| < C(T)n2,

which follows from It6’s isometry and a slight generalization of [13, Proposition 11.1 (iv)].

3 The adjustment error

In this section we derive an upper bound for the adjustment error (2.13) for exponentially bounded Borel

functions and for functions belonging to the class C’g;g‘, a € (0,1].

Definition 3.1 (The class Bep). A function g : R — R is said to be exponentially bounded, if there exist
constants A, b > 0 such that

lg(x)| < Aebll forall z € R. 3.1

The class of all Borel functions with the above property will be denoted by Beyp.
Remark 3.2. By definition, GBVeyp C Bexp (see Remark A.1) and C&g C Bexp (see Subsection 4.5).
Proposition 3.3. Let n € 2N.

(i) Let g € Beyy and let A,b > 0 be as in (3.1). Then, for all (ty, zo) € [0,T) xR,

. 8AT 2 2
ad, blxo|+bc<T
lgnj(t()?xo)‘ < mfi 2ol ﬂ{t0¢t2v0<k<g}-
(ii) Let g € Cos and let A, 8 > 0 be as in (2.6). Then, for all (to, zo) € [0, T)xR,

d 48%62T
|5Z](t0a$0)| < WGBMOH i Litottnvock<s}



Proof. (i): Denote by p; the density of X; = oW, for t > 0, and consider the function

ult, x0) = Elg o+ Xr_1)] = /R g(woty)pr_i(y)dy, 0<t<T.

Since g € Bexp, We can use differentiation under the integral sign to show that

gtu(t x0) = /Rg(onry);pT—t(y)dy = /R g(xog(?fi)_t(y) <1 — 02(?_t)>dy. (3.2)

Fix n € 2N and suppose that t” = 2T s the lattice point such that to € [t th ). I to = 7, (2.5) implies

that 6,, = T—tg, and thus en (to, :ch) = 0 by (2.13). For tg € (t}},t}, ), by the mean value theorem and
(3.2), there exists some 1) € (¢}, to) such that

i T

mCT n> sup Cr, (33)

lu(ty, zo) — u(to, zo)| < e
g n(T" = t0) re(r—to.1—t7)

where C, := | fR g(xo+y)pr(y)(1 )dy| r > 0. Let Z be a standard normal random variable. Since
g € Bexp, it holds for all r € (0, T] that

C, < Aetlmlg [eleTl] 4 Aeblwolg [em ( X ﬂ

oV

< 2Aeb|wo| (]E [ebUﬁZ:| +E {ZeraﬁZ]>
= 24"l (e%b%% + 2t [(Z + bo\/T) ZD
<242+ b202T>eb|xo\+§b202T

< 8 Aeblzol+b?0*T (3.4)

Since |€fldj(t0, z0)| = u(t}, z0) — u(to, z0)|, (3.3) and (3.4) imply the claim.
(id): Let 0 < k < § be such that ¢o € (7, ¢}, ;) holds; the case o = t} follows from (2.5) and (2.13).
Holder’s inequality implies that

|e3%(to, 20)| < E|g(zo+Xr_em) — g(mo+Xr_4,)|
< AR [T g XD x|

< A(E [eQBWO‘HXT‘tZlHXT’tOl)})l/q (E }XTftZ — X714 |p0¢)1/p7 (3.5)

for some p, ¢ € (1,00) with % + % = 1. The choice p = % q= ﬁ and the fact [tg — t}| < % yield

o 1 9 o2 Ua2a/2Ta/2
(B Xz~ Xr o) < (B |Wr_gg-Wr ") < e (3.6)
Moreover, for a standard normal random variable Z, Holder’s inequality implies that
4 {eqﬁuxomXT_tg|+|XT_t0|>} < BBlnol (| ( [ 2qB0\/T—17 mzq ) 1/2 ( [ zqgmfto\zq ) 1/2
< 9pBlx0l+2¢> 20T (3.7)
The claim then follows by (3.5), (3.6), and (3.7). O



4 The local error

4.1 Notation and definitions

Suppose that (h, ) € (0,00)x(0,T]. The aim of this section is to derive an upper bound for the absolute
value of the error

eiva(9) = Elg(Xr,) — 9(Xp)] @1
as a function of (h, #), where the function g belongs to G BV, or ngg“ . The random variable .J is given by
J = J(h,0) =inf {2m : 1o, > 0} .

Afterwards, upper bounds for the error (4.1) are derived in the dynamical setting, where the step size h and
the level 6 will depend on n. Observe that .J agrees with J,, defined in (2.9) for (h, 0) = (0\/? VLS /m)
Let us start by introducing the following notation:

2l = {(2k+1)h ke Z}, 7ZM:={2kh:keZ)}
(o refers to *odd’ and e refers to ’even’); then Z" = Zh U Zh In addition, we will abbreviate
do(z) = dist(z, Z),  de(x) = dist(z,Z") = h — d,(z), € R. 4.2)

As in [13], we project functions onto piecewise linear functions in order to compute the conditional expec-
tation E[g(X+, )| Fo].
Definition 4.1. Define operators I/, and I, acting on functions v : R — R by

Iou(x) == u(x)ifz € Z' and x+ I.u(x) linearin [2kh, (2k+2)h] Vk € Z,

yu(z) == u(z) ifr € Z" and 2 — M,u(z) linearin [(2k—1)h, (2k+1)h] Yk € Z.

The key ingredient in the estimation of the error 51}% (g) is the following result, which was proposed in

[13, Section 9]. For the convenience of the reader, a sketch of the proof is given below. Recall Definition
3.1 for the class Beyp, and denote by Ny := {0, 1,2, ...} the set of non-negative integers.

Proposition 4.2. Let (h,0) € (0,00)% (0, T] and define a random variable
L= L(h,0):=sup{m € Ny :7, <6}
(11, is equal to the largest of the stopping times Ty, T1, ... less than 0). Then, given a function g € Bexp,
en9(9) = E[I1.g(Xg) — 9(Xo)| + E[(I,IT.g(Xg) — Ieg(Xg))P(L even| X)) (4.3)

Proof. If g € Bexp, then also Il.g € Bexp and 11,11.g € Bexp. The expectations on the right-hand side of
(4.3) thus exist and are finite. Using the Markov property of the process (X )¢>o, it can be shown that

E[g(Xr,)|Fo] = Heg(Xo) P-a.s. on {L odd},
E[g(Xr,)|Fo] = I, g(Xy) P-as. on {L even},

see [13, Section 9]. Consequently, since 17, oaq} + L{1 even) = 1 P-a.s.,

[ ( TJ)] [ [ TJ |f9] ]l{Lodd}] +E [ [9<XTJ>}’F9] ]l{L even}}
= E [I1.g(Xg)P (L 0dd|Xg)] + E [II,11.9(X)P (L even| Xj)]|
= E [ITg(Xp)] + E[(Io11eg(Xg) — Icg(Xp)) P(L even| Xp)] .



4.2 Evaluation of the conditional probability P(L even| X))
In this subsection we derive a representation for the function

y + P(L even| Xy = y) (4.4)
based on first exit time probabilities of a Brownian bridge. This representation (4.11) together with the
associated bounds presented in this subsection are applied in the proof of Propositions 4.14 and 6.1 below.
Definition 4.3 (Brownian bridge). Let z,y € R and [ > 0. A Gaussian process (B} ’l’y)te[oyl] with mean
and covariance functions given by

E[B/"Y) =z +ty—z), 0<t<l,

Cov(BZW, By =s(1-1), 0<s<t<I

is called a (generalized) Brownian bridge from x to ¥ of length /.

Remark 4.4. By comparing mean and covariance functions, it is easy to verify that a Brownian bridge
(Bf ’l’y)te[oyl] is equal in law with the transformed processes below:

(Bly_’lim)te[o,l] (’time reversal’) 4.5)
(z + B?,l,y—w)te[&” (*translation’) (4.6)
(—B_Z’l’_y)te[o,l] ('reflection around the z-axis’). 4.7

A continuous version of a Brownian bridge (B}’ ’e’y)te[w] can be thought as a random function on the
canonical space (C|0,0], B(C[0,6]),P; ), where P, g, denotes the associated probability measure. In
the following proposition we give different characterizations for the function (4.4) in terms of hitting times.
Forallc € R,a < b, and w € C[0, 6], we let

H.(w) :=inf{t €[0,0] : wy = ¢}, Hqpy(w) :=1inf {t € 0,0] : wi & (a,b)},
H.(w) :=sup {t € [0,0] : w = ¢}, I:I(a’b)(w) :=sup{t €[0,0]:w ¢ (a,b)}.

Proposition 4.5. Let (h,0) € (0,00)x(0,T]. Suppose that (Bf/o’e’o)te[ovg] is a Brownian bridge on a
probability space (Q, F,P), and define

q(y) = q(y, h,0) := @((Bf/a’e’o)te[oﬂ] hits ZZ/U before hitting ZZ/U), y € R. 4.8)

Then, for all k € 7,

(i) q(y) =P(Leven|Xy=1y), y¢Z" (4.9)
.. P (H. < H, ), y € (2kh, (2k+1)h)
i — y/0,0,0\112kh /o (2k+1)h/o ) ) 4.10
(@) aly) { Py/o00(Horn/o < Hior—1)n/s), Y € ((2k—1)h, 2kh), (4.10)
doly) | o [BO:"’W” } y € (2kh, (2k+1)h),
(7i1) q(y) = d }(L ) h P LT H - (@rtiyn—y)/o,(y—2kh) /o) 4.11)
ol\Y g 0,0,y/o
— —E-|B- 2k—1)h, 2kh).
h h P[ H(f(2kh7y)/0',(y7(2k71)h)/0')i|’ y € ((2k—1)h, 2kh)

Here JEI(M)) = inf{t € [0,0] : B?’e’y/g ¢ (a,b)}, and P refers to the probability measure on the space
(Q, F,P) considered in Section 2.

Remark 4.6. 1t is clear by (4.7) that the function ¢ is symmetric.

Proof of Proposition 4.5. Item (i) is clear. To show (i), observe that if Xy(w) € (2kh, (2k+1)h) and L(w)
is even, the path ¢ — X;(w) does hit 2kh at 77 (w) and afterwards, i.e. on [ (w),#), it does not hit any
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other mh (m # 2k) and hence stays inside ((2k—1)h, (2k+1)h). Therefore, the last entry of this path into
(2kh, (2k+1)h) occurs via 2kh, and thus

P(L even, Xy € (2kh, (2k+1)h)) = Py(ow = 2kh, owg € (2kh, (2k+1)h))

2kh (2k+1)h))

o’ o

FI(Zkh,(QIH»l)h) (w)

— Po(w- _ 2%
=Py (wH(Qkh/o,(2k+l)h/o)(“}) o+ WoE (

= IP’O(H%h/a > I:I(Zk-‘rl)h/a)a
where P denotes the Wiener measure on (C[0, 0], B(C|0, 0])). Thus, for y € (2kh, (2k+1)h),

P(L even|Xg =) = Py /0 (Horno > Horriino) = Pyjoso(Hornso < Hiorino) = a(y),

where we used relations (4.5), (4.10), and the fact that P(-[Xy = y) = Py4,/, on (C[0,0], B(C[0,0]))
(see e.g. [10, Chapter 1]). The case y € ((2k—1)h, 2kh) is similar.

For (ii7), assume y € ((2k—1)h, 2kh); the case y € (2kh, (2k+1)h) is similar. It is clear that whenever
2 ¢ (a,b),a <0 <b,and H,y = inf{t € [0,0] : B"* ¢ (a,b)},

b1 .
Poo.o(Ha < Hy) = 7= — -5 By |. .12)

In addition, from (4.10) we deduce that

9Y) = Py/o0.0(Horn/o < Hor—1)n/0)
=Pog,—y/o(Harh—y) /o < H(2k-1)h—y)/o)
=Pog,y/0(Hy—2kn)/0 < Hiy—(2k-1)n)/0) (4.13)

by (4.6) and (4.7). Substitute z = £, a = y_aﬂ and b = M Then z ¢ (a,b),a <0 < b,b—a = g
and hence by (4.12), (4.13), and d,(y) = y — (2k—1)h,

do(h) g 0,0,y/o0
= — *E"’ B o Y *
a(v) h h® | T Hy—2kn) /o, (y—(2k—1)h) /o)

O

The probability for the Brownian motion (W; + y/0):>0 to hit the set ZZ/ ? before hitting the set ZZ/ 7
is equal to d,,(y)/h (cf. (4.8)). As pointed out in [13, Section 9], the piecewise linear function y — d,(y)/h
can be used to approximate the function y — ¢(y) for small h > 0. Estimates related to this approximation,
which are also applied in the proof of Proposition 6.1, are presented in the proposition below. We denote by
p = p(-,0) the density of the random variable Xj.

Proposition 4.7. Suppose that (h,6) € (0,00)x(0,T] and define

0:R—=R,  oy) = oy, h,0) := q(y) — do(y)/h, (4.14)
where g = q( -, h,0) was introduced in (4.8). Then g is symmetric, and it holds that

h 26 h h? 0 29 h K2
(i) /0 lew)lp(y)dy < 15 v AT (id) /h o)l py)dy < 75 —=tom

Proposition 4.7 can be seen as a generalization of [4, Corollary 3.3] to the time-dependent setting. A
detailed proof is presented can be found in the arXiv version [9, Subsection 4.2]. The proof uses certain
estimates of [4] related to the expected first hitting times of Brownian bridges [4, Lemma 3.1 and Lemma
3.2 (4)]. For the further use of these estimates in the proof of Proposition 4.14, we present them in the lemma
below using the notation of this subsection.
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Lemma 4.8. Let (h,0) € (0,00)x(0,00) and suppose that a < 0 < band y ¢ (a,b). Then

Eo,0,y[H(a,p)]
1500w 1 < FooylHap)
EP [BH(QM] = 0 (|y| + 2(|a| V b) + 3@) , (4.15)

bQ2lal +y)NO,  y=b,

EMMH@M—{VM@VHMWW,ySa. (16

4.3 The local error for g € GBVey,

The estimation of the local error for the class G BV, relies on the following observation: If g € GBVeyp is
given by (2.7) and if g™ := g(xo+ - ) for some xy € R, then

g (z) =c+ /]l(y:vo,oo) (x)du(y) — / 1 —ooy—ao) (T)dp(y) + Zai]l{xi,xo}(x). 4.17)
i=1

[0,00) (—00,0)

Using the representation (4.17) and linearity, the estimation of the error 51,107%( g™°) essentially reduces to the
estimation of integrals, where the integrands consist of indicator functions or their linear approximations
given by the operators II. and II, (introduced in Definition 4.1). The following proposition enables us to
interchange the order of integration or summation with the application of these operators.

Recall that p = p( -, 0) denotes the density of Xy and that ¢ = ¢( -, h, 0) is the function defined in (4.8).

Proposition 4.9. Suppose that (h,0) € (0,00)x(0,T] and that g € GBV,y, admits the representation
(2.7). Then, forall xg € R,

() fg(x)=ct [ Mol @dil) = [ T ya@)diy)
[0700) (—O0,0)
+ ) il (x), TER,
i€ENz; —zoEZN
(i) IIlg™(z) = c+ / oI (y g 00) () dp(y) — / Ho TN (oo g} (€)dp(y)
[0,00) (—00,0)
+ Z G I gy py(2), x €R.

i€ENiz; —z0EZL

Idea of the proof. Ttems (i)—(it) follow by using the representation (4.17), linearity of the operations
[ I.f, f— II,f,and f — [ fd|p|, and relation (A.13). O

Proposition 4.10. Let (h,0) € (0,00)x(0,T]. Suppose that g € GBV,y, admits the representation (2.7)
and that 8 > 0 is as in (2.8). Then, for all x¢ € R,

h
|Elg(zo+X-,) — g(zo+Xp)]| < 7 3Bh-+Blxo|+620>T/2

Var oo
—Blylgq ; _ﬁla:i). 4.18
< [eManm s X Jale @18)

1€Nx; —xo EZQ

Proof. For given zy € R, we apply (4.3) for the function g(x¢+ - ). By Proposition 4.9 and by the relation
P(L even| Xy = x) = ¢(x) (Leb-a.e.), we may decompose the expectation on the left-hand side of (4.18) in
the following way:

12



[9(zo+X7,) — g(wo+Xo)]
/ / H]l(y w0,00) (&) = Ly, 00)(35)] du(y)p(x)dx

[0,00)

+/ / [Heﬂ(—m,y—zo] () = 1 (—ooy—a0] (x)] dp(y)p(x)dx
R (—00,0)

4 / / [T,y 00y () — Ty o0 (2)] dia(w)a(a)p() e
R [0,00)

[ A sy () = By )] dily)a(a)pla)d
R (—00,0)

+ Z aiﬂell{zi_wo}(x)p(x)dx

R i€N:w; —zo€Zl

+ / S o gy (2) — T gy (2)] a(2)p(a)da

R €N, —zo€Z]
= EW + E@ 4 O L EW 4 G 4 BO),

We will derive upper estimates for the quantities |E(i) [,1 < i <6, in the following steps.
Step 1: £(1) and E®). Suppose that y—z¢ € [2kh, (2k+2)h) for some k € Z. Then

ey 40.00) (%) = L(y—a0,00) ()| < Lign, 2112)m) (),

, we have

and since for each = € [2kh, (2k+2)h) it holds

Gl /]R [Ty 2 00) (%) = Ly 00) ()| p(@)d

< 623h+ﬂ\ro| / 65|$| }He]l(y—xo,oo)(x) - ]l(y—:co,oo) (x)“)(x)dx
R

(2k+2)h

< 2PhtBleol eﬁ‘“"‘p(x)dx
2kh

<« 2 oBntBlol+srorT2 N

T 27 oV

Consequently, by Fubini’s theorem,

B [ e (0 [ 101,80y 0(0) = Ly gy @) 0 1)

[0,00)
h 2 oy 2 2 _
< 280+ Blzol +8%0 T/z/ =B dlu|(y). 4.19)
oV /2r [0,00)
In fact, it also holds that
h 2 2 2
E® < e2Bh+Blxo|+5%0 T/2/ e—ﬁ\y|d|u|(y) (4.20)
’ ’ 9 V 27T (—0070

since }He]l(,oqy,gco](x) — ]l(,oqy,xo](x)} = |He]l(y,xoyoo)(a:) — ]l(y,xo,oo)(x)| for all z € R, which is a
direct consequence of the relation

I oy =1— (o, TER 4.21)
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Step 2: E®) and E(™. Suppose y—z¢ € [2kh, (2k+2)h) for some k € Z. Then |y| < 3h + |zo| + |z|
holds for all x € [(2k—1)h, (2k+3)h), and by (A.14) we may estimate

2Bl /R [T, TT 0y 0 o0 () = TN (g 0 ()] @) () dt

< 63,8h+5|x0| / eﬁm |H0He]l(y—m0,oo)(x) - He]l(y—a:g,oo)(x” q(x)p(x)dm
R

2k+3
< 3BhtBlwol o (Blal Go(2) (m)q(x)p(x)
(2k—1)h 4h
U1 (2k+3)h
= e3Bh+Blxo| Al p(z)da
=7 (2k—1)h

< i&ﬁh%\ml%%%ﬂi

V2r oV

Hence, by Fubini’s theorem,

B < [ (0 [ o0 @)~y )0 ()i )l )

[0,00)
h 1 3 2 2 _
< e3BhABlzo|+B%0°T/2 / e Blulg ) 4.22
T oVOV2r l(w) 22

[0,00)

Moreover, by (4.21) and by the linearity of I1,, we obtain

h 1 2 .2
EW| < 3B+ Blzol+B20°T /2 / =Bl 4l (), 493
L S N e (4.23)

(_0070)

since [Io I T (—ooy—a0) () = el (oo y—a0) (@) | = [HoTTeT (2 00) () = e (y—gg.00) (7))
Step 3: E®). By (A.13), Il = 0if £ ¢ Z", and by (A.15), I 1ygy < Ljeopeqon if € € ZP. In
addition, since |z;| < 2h + |zg| + || whenever |x — (x;—x0)| < 2h,

|E®)] <

/Hﬂ{xlxo} ) ( )
lENxzfxOGZh

> Jaie /Reﬁrip(x)]l[(a;i—xo)—%,(xi—xo)wh](%‘)dl’

i€N:z; —z0 €LY

IN

(zi—x0)+2h
< Z |ai| e A1l A1l p(z)da
i€Niw;—zo €LE (wi—z0)—2h
h 4 oBhtBlugl+B202T/2 —Blzi|
NN Yo lagel (4.24)

€Nz —zo ELR
Step 4: £), If ¢ € Z!, relations (A.13), (A.18), and the linearity of I, imply that
1,111 (2) — 1 gy ()
4h(n [+~ (€20 (@)~ |o — (€=2)] ) = o (o — €l 2) — e~ €])

5 (ol = (Er2m] 2) — lo — (6+2m)] )
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do(x
- 4(h) (]1[5—3h,§—h) (@) = 2Lje—ngrn) (@) + Lieneran) (x))’ rek

In addition, we have Il 1y — Ly =0 for & ¢ Z’g by (A.13). Therefore, since
|zi| < 3h + |z| + |zo| whenever |z — (x;—z0)| < 3h, we get

EOI < > ol /R |, IT 0 gy (2) = A g, oy (2)] a(2)p(x)da

iGN:ri—Z()EZQ
i — h
(zi—x0)+3 do(l’)

o Jaufe P Ml 2 g (2)p(a) dac

—20)— 2h
ieN:ri—zerQ (wz IE()) 3h

IN

’az| h (zz—:ro)+3h
< ) ek Hﬂ”'/ e llp(z)dx
1€ENiw; —zo EZN 2 (x;—x0)—3h
h 3 3 2 2 _
< — ¢ Bh+B|zo|+B%04T/2 " 6_5‘1,”. 495
~ oV0V2r Z i) ( )

i€Nix; —z0EZP

It remains to observe that the sum the right-hand sides of (4.19), (4.20), (4.22), (4.23), (4.24), and (4.25) are
bounded from above by the right-hand side of (4.18). O

In order to distinguish between the general setting (h, 6) and the specific n-dependent setting (hy,, 0,,),
we will refer to the assumption below.

Assumption 4.11. For given ty € [0,T) and n € 2N, we substitute (h,0) = (hy, 0,,), where

T ngT T—tg
hp =0¢/—, Op=— d =2 |
N n e ’VZT/TL-‘

as in (2.4). For notational convenience, we will drop the subscript n from h,,.

Remark 4.12. The special choice (h,0) = (hy,0,) in Assumption 4.11 affects the objects below used
throughout this text:

T = inf {t > Th—1': |Xt - XTk,1| = h}ﬂ (XTk>k;:0,1,...7 (-FTk)k‘:O,l,...a
Jp=J =inf{2m € 2N : 79,,, > 0,,}, L, =L =sup{m € Ny : 7, < 0, },
Zh ={2kh:kez}, Z'={Q2k+VDh:kecz}, Z'=7"UZ"

do(z) = dist(z, Z"),  de(z) = dist(z, Z"), p(x) = P(Xy, € dx)/dz.

This choice also affects the functions ¢ = q( -, h,0) and o = o( -, h, 6) defined in (4.5) and (4.14), respec-
tively. In particular, Proposition 4.5 implies that

q(z) = P(L, even| Xy, =), z ¢ ZI.

n

For the main result of this subsection, recall that £, (to, o) = E[g(z0+X-, ) — g(x0+Xs, ).

Corollary 4.13. Let n € 2N. Suppose that the function g € GBV,y, admits the representation (2.7) and
that B > 0 is as in (2.8). Then, under Assumption 4.11, there exists a constant C > 0 such that for all
(to, LL’()) S [O, T) xR,

C\/T eﬁ\xo|+3ﬁ202T

‘85(;6(1’-07‘1“0” S ’I’I,(T—tn)
k

to € [ty ), 0<k<3.
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Proof. Proposition 4.10 and the relation h(c26,,)~ /% = n(;l/ 2 imply that

C Teﬁ‘z0| _ B .
|l (to, 20)| < 22— /e W)+ > agle Pl
R

g 1€ENix; —zo EZN
where the coefficient Cz , 7 > 0 implied by (4.18) can be estimated as follows:

7 63,8h+[3202T/2 < 7 egﬂoﬁJrﬂQUQT/Q gCeSﬂQUQT

C oT — >
AT V2T V2T

for a constant C' > 0. Since ngT' = n(T — t}) for tg € [t}, 1, ;) by (2.5), we obtain the desired result. [

4.4 On the sharpness of the rate for the class GBV,y,
The following lemma indicates that the rate n~'/2 for the class GB Vexp 18 sharp.

Proposition 4.14. Under Assumption 4.11, there exists a function g € GBV,y, such that

0 < liminf n'/2¢,(0,0) < limsupn'/2¢,(0,0) < cc. (4.26)
n—00 n—00

Proof. For simplicity, let T = o = 1 and g := 1g ). Then h = n 2 g€ G BVixp, and the location of
the jump of ¢ belongs to the set Z" for all n € N. Observe that then E%dj(o, 0) = 0 by Proposition 3.3 and
28°°(0,0)| < Cn~! by Proposition 5.3 below, where C' > 0 is some constant. Consequently, it suffices to
show that (4.26) is valid for the local error £/°(0, 0); recall (2.10).

The expression n'/21%¢(0, 0) is bounded from above by Corollary 4.13. For the lower bound, we note
that by Definition 4.1,

He]l[O,oo)(x) = (1 A x;r}%h) ]1[—2h,oo)(x)7 HoHe]l[O,oo) (w) = (1 A xi}?h) ﬂ[—Sh,oo) (w)a z €R.

Consequently, for (h, ) = (n~/2,1), Proposition 4.2 and relation (4.9) yield
en(0,0) = E [I1.1[g 00y (W1) — Ljg o0y (W1)] + E [(IToITeL g 00y (W) — I L g o) (W1)) q(W1))]

O z42h h Tax+3h x+2h
:/ o 20 " (x)der/ 3h{ ah _< 2h ]1[2h70>(x)+]1[07oo>(f€)>}q(m)p(m)d:c

_an 4h

0 T 0 T h .
- [ S —a@p@dr+ [ SR+ [t

0 X
> p(h) [ TR0~ a(o)do

by the symmetry of the functions p > 0 and ¢ € [0,1]. Moreover, in terms of the function ¢ defined in
(4.14), we deduce for x € (—h,0) that

do(x)
h

de()
h

1ogle) =1 D gy > D> g v, @27)
where the last inequality on the right-hand side of (4.27) follows by applying relations (4.11) , (4.15), and

4.16)fork=0and o =0 = 1;

1 @
lo(@)| = 3 E3[By " ]

1
Hopso) = 1 ( |z| + 2(|z| V (z+h)) + 3&)1@0,1@[1{(%“@]

IN

(3h + 3@)% (2h - |a:|)
< 3h(h+V2).
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Hence, there exist constants C7, Cy > 0 not depending on A such that

0 242 0 242
£9(0,0) = p(h) / RN 1 h(h -+ V2)R(R) / T2 n > [Cun — b2+ VD) ().
—h —h

The relation h = n~'/2 then implies that lim inf,,_,., n'/2¢1°°(0,0) > Cyp(0) > 0. O

Remark 4.15. In [13, Proposition 9.8] it is stated that the rate for the local error is h (i.e. n—1/ 2) instead
of h? (i.e. n~') whenever the terminal condition ¢ has a discontinuity at a non-lattice point = ¢ Z". By
contrast, Proposition 4.10 implies that only the jumps that occur at even lattice points contribute to the error.
This discrepancy is a result of the choice of different step functions: In [13], only step functions of the the
type ]l[a 00) = L(a,00) ]l{a} are considered.

4.5 The local error for g € Cexp

A function g : R — R is called locally a-Hdolder continuous (write g € C2), if for each compact K C R

loc
sp 9@ —9Wl

a
r,yEK, r#y |$ - y|

The class ng’g“ (see Definition 2.1) consists of all locally a-Holder continuous functions with exponentially
bounded Holder constants in the sense of (2.6). In fact, C exp C c%n Bexp, a € (0, 1], and this inclusion is

loc

strict at least for v = 1: The function f(z) = sin(e”" — 1) belongs to Cloc N Bexp, whereas f ¢ C’g,;;, since
f, ¢ Bexp
Recall that p = p( -, 6) denotes the density of X and that aloc 9(9) = E[g(X+,) — 9(Xp)].

Proposition 4.16. Let (h,0) € (0,00)%x(0,T]. Suppose that g € ngg‘ and that A, 3 > 0 are as in (2.6).
Then, for every xo € R it holds that

E[g(z0+Xr,) — g(wo+Xo)]| < 22FOn* APOHPlool+520%0/2
Proof. The property g € C’e implies that both g and g™ = g(x0+ - ) belong to Bexp, and
e (9™)] < Ellleg™ (Xp) — g™ (Xp)| + B, IT.g"* (Xg) — g™ (Xp)| (4.28)
holds by Proposition 4.2. Moreover, whenever = € [2kh, (2k+2)h] for some k € Z,
g7 (@)—g7 ()] < P2 oo o) — gy + 200
< 20pa AePleol+2Bh+blel

197 ((2k+2)h)—g™ (2)]|

since g € C’g{ff and |2kh| V [(2k+2)h| < 2h + |z|. Hence, by E [e#1¥el] < 2e8°0%0/2,
(2k+2)h

E|IT.g"(Xg) — f(Xg)| < 2*h™ AePlrolt26n Z /kh 1l p(x)dx
2

< gl+apa A€B|m0\+2,6’h+52 20/2. (4.29)

For the remaining expectation on the right-hand side of (4.28), observe that if y, z € [2mh, (2m~+2)h] for
given m € Z, then

x Y x
(1.6 () — Ieg™ (2)] = | 757" (2mh) =~ g% (2m-+2)h)

< 9 pa geBlzol+|2mh|V|(2m+2)h]) (4.30)
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Therefore, for € [2kh, (2k+2)h] with k € Z, by (4.30) it holds that

(2k+1)h — z

1,11,g% () — g™ (z)| =
11,1 () — Teg™ ()] = =25

[Teg™ ((2k—1)h) — g™ ()]

— (2k—1)h
220 g (2k41)1) — g™ (1)
< (%th L g Pl [BUR-DRIVIZKA 4 S(12RAIVI(2H+2)h)] garge
=T 2
LT (272—1)hAe,@(\zo|+\2kh\v|(2k+2)h|)2aha
2

< 2a+1haAeﬂ(|wo\+|(2k—2)h\\/|(2k+2)h|).

Using the symmetry (in k) of this upper bound, we obtain

E|,11.g™ (Xg) — g™ (Xp)|

00 A (2k+2)h
< 2a+2haAZ/ eﬁ(Ia:oH—I(2k—2)h\\/|(2k+2)h|)p(x)dx
o J 2kh
00 (2k+2)h
< 2a+2ho¢Ae[3|xo|+25h Z / eﬁxp(x)dit
0 J 2kh
< 2a+2hOéA65|xo|+25h+ﬁ2029/2. 4.31)
The claim follows by applying the estimates (4.29) and (4.31) to (4.28). O]

Corollary 4.17. Let n € 2N. Suppose that g € C’g;,? and that 8 > 0is as in (2.6). Then, under Assumption
4.11, there exist a constant C' > 0 such that for all (to, xo) € [0,T) x R,

. C’O'aj_'a/2 2 2
|€lo¢ (tg, z0) | < WeﬁlonZﬂ T

Proof. Since h = U@ < a\/g and £1%(t, o) = 5};),09,1 (g™°) by Assumption 4.11 and (2.12), Proposition
4.16 implies the result. 0

S The global error
Our aim is to derive an upper bound for the global error

E?gll()b <t07 .'L'O) = E[g($O+XTng ) - g(xO+XTJ" )]

defined in (2.11), where g is an exponentially bounded Borel function and (X7, )x=o,1,... is the random walk
considered in Subsection 2.1. For this purpose, we need a collection of estimates related to the behavior of
the random walk (X, ) and the stopping time .J,,. A part of these are given in this section, while the more
involved ones are presented later in Section 6.

Note: The Assumption 4.11 is taken as a standing assumption throughout Section 5.

Recall the definitions of ng and 6,, given in (2.4). Recall also that .J,,(w) = inf{2m € 2N : 75, (w) > 6, }
as was defined in (2.9). A result similar to the lemma below was proved in [13, Corollary 11.4].

Lemma 5.1. For any b > 0, it holds that

(@)  E[Xmol] < 26?7/, 5.1)
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(ZZ) E [eb‘XTJn |:| < zebd\/ﬁ+b202T/2‘ (52)

Proof. (i): Since X7, = W AX;,, where (AX, )i—1,2,.. is a sequence of i.i.d. random variables with
P(AX,, =+h)=1/2forh = a\/% (see Subsection 2.1),

E[e!Xmol] < 2B [ePXmmo] = 2 (E [ebAXﬁ])m = 2 (cosh(bh))" < 2P /2 < 9eb*o* T2

by the inequality cosh(z) < e?’/2 z e R.
(ii): Firstly, observe that by the definition of .J, we have | X, —Xj | < 2h. Secondly, since for a
standard normal Z random variable it holds that E[eu|z |] < 2¢e4”/2 (u € R),

E[eb|xf(,n|] < E[e“x% 7X9n|+b|X9n|] < egbhE[eba\/mZ\] < 9eboVAT+b20°T/2.

In Proposition 5.2, we present some more upper bounds which are used to estimate the global error.
Proposition 5.2.

(i) Suppose thatp > 0, g € Bey,, and that b > 0 is as in (3.1). Then there exists a constant Cp, > 0 such
that for all xy € R,

Xy )" blzo|+b202T
sup E [ ) g(xot+Xr, ] ’ < O, eblro ‘ (5.3)
(n,to)€2NX[0,T) (\/m> ( T 9) P

Moreover, for every p > 0 there exists a constant Cy, > 0 such that
(i) sup  nbP(|Xn,, /h| > ny/%) < Cp, (5.4)
(n,to)€2Nx[0,T)

(ii%) sup nyP(|Jn — ng| > n2/5) < G (5.5)
(n,to) €2NX[0,T)

Proof. (i): Observe that

X

Tng

1 g 1 &
Sy = = AX, = —— i

where (;)i=12,... is an i.i.d. Rademacher sequence (see Subsection 2.1). Hence,
Sn _ 2 o 2
E [¢"n] = (cosh(h=))™ < (eF/Crolymo =P/t eR.
Consequently, by the symmetricity of S, and Markov’s inequality,

P(|Sy,| > t) = 2P(em0 > etQ) <2 "R [ets"e} <2e7P2 >0,

and thus, uniformly in (n, to), for p > 0,

oo o0
E|Sn, [P = p/0 tPIP(|S,,| > t)dt < 2p/0 = 1e Rt .= €, < oc. (5.6)
Holder’s inequality, (5.6), and (5.1) then imply that

- 1/2 o 11V 1/2 51/2 blag|+-b202
B (180, g(@o+ X, )|| < Actlol (E]S,, )% (B[*Xral]) /2 < 2485 )2l #°T,
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This proves (5.3) for p > 0, and the case p = 0 can be seen from the last line as well.
(i1): Since hy/ng = v/o26,,, by Markov’s inequality and (5.6) we obtain

P(|Xr,, /Bl > ny'®) = P(|Sn,| > ng/®) B[Sy, |70, """ < Cyny (57)

no

for all ¢ > 0. Choose ¢ > 10p and multiply both sides of (5.7) by ng to obtain (5.4).
(#i7): For every K > 0, Markov’s inequality and Proposition 6.3 below imply that

P(|J, — ng| > n2/5) <E|J, — n(,)|Kn@_3K/5 < C’Kne_K/lo (5.8)

for some constant C'x > 0. For given p > 0, it remains to choose K > 10p and multiply both sides of (5.8)
by nj. O

The proof of the main result of this section follows closely the proof of [13, Theorem 8.1].

Proposition 5.3. Let n € 2N. Suppose that g € B, and that b > 0 is as in (3.1). Then there exists a
constant C' > 0 such that for all (ty, zo) € [0,T) x R,

cT
| 8190 (0, 20) | < — e POV T gy ey g ) 0 <k < 2 (5.9
n(T —t})

Proof. Define a set
= {|Xr,, /1| V | Jny—ne| <1} (5.10)
and decompose the error 8n (to, x) into the sum of expectations EW and E®, where
BEW = Elg(wo+Xr,,) = 90+ Xr,, )T, B® = Elg(zo+Xs,,) — g(wo+ Xy, )i Th,]. (5.11)
Using the estimates of Lemma 5.1 and Proposition 5.2, it can be shown that

|E(2)| S Cyon0—3/26b|$0‘+b20'2T+bU\/ﬁ (512)

for some constant Cy > 0; this is done in Lemma A.3 (i). Estimation of ‘E(l)‘ requires more subtlety.
Denote the probability mass functions of XTW /P and J,—ng by

Pogir(z) :=P(X,, ., =hz) and P (2):=P(J,—ng=1), €L (5.13)

By Lemma A3 (i7), there exists a constant C; > 0 such that

Z Z Cah)PY (k) Py )( 3k? + dka? N 3k2x? kz2x4>
iEO T n —
e 2 ’ 2ng  8n2 4n 8ng
+ Cyny B2 eblwol+0%0°T (5.14)

Next, we use relation (A.5) in order to rewrite the double sum on the right-hand side of (5.14) as

k k2 4k 2 k}2 2 ]{2 4
E®) = Z Z (zo+ah)P (k)Pm)(m)(——B +Aka” | K727 )

2 3 1
A 2ng 8ng 4ny 8ny

_ 1{;1}3 [g(xo+XTn6)} E[J,—ng] — gE [g(x0+X%)} E (J%Q)Q

ng

_ %E[ <%)2g($0+XTn9)]E[Jn neh_iE[ (%)29($0+X7n9)]E <J:L/;TZ6>2
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_;E[Q2$)4mm+X@ﬁ}EC@%ﬂ2}
= nlg{E [g(x0+XTn0)] <;E[Jnng] — §E (Jn\/%zg>2>
+E| <%)29(xo+Xﬁ9)} <il€ ("%/%9)2 - ;E[Jn_”eo
- %E {( %)49<mo+xrne)] E (%)’ } (5.15)

By Proposition 6.1, there exist constants ¢, co > 0 such that |E[Jn—n9] — %| < \;rlTe and

E[(%2722)" ~ 3]

3 o\ 2 5 c1+ co 1 T —na\ 2 1 Co
i IE(J" ﬂg) _ < 7 JE( n ne> _7‘ < d
’2 —nol = 5B (T 121= " mg I8 = an

_ 1 c1+c
Jn ng - _ 2l < 1 2
‘4 (xﬁ) 2L ”9]+6‘— N

w

< \/CTZT@ and thus

Consequently, by (5.15) and (5.3), there exist constants C’g, C’g > 0 such that

B < 12n9 ‘E[ 9(zo+Xxr,, ”+ 6n9‘E[(§%>29(“:0+X7”0)}‘

1| Xy (A Goellrol +120°T
T Tong ’E{(Wgn) g<m°+XTne)} ‘ LT
[
S b b202T

< 08 ofawroor | Coelmolt (5.16)

T nyg ng/Q
To complete the proof, it remains to observe that nzl/Q < ﬂn , to combine (5.11), (5.12), (5.14), and (5.16),
and to recall that nyT" = n(T — t}}) for to € [t} 1}, ). O

6 Moment estimates for the stopping time J,

In this section we present moment estimates for the random variable J,, = inf {2m € 2N : 75,,, > 6, }
introduced in (2.9), which are used for the estimation of the global error in Section 5.

Proposition 6.1. Suppose that Assumption 4.11 holds. Then there exists a constant C' > 0 such that for all
(n,to) € 2Nx[0,T),

(@‘Mmmﬂsj;, W)FCnyyfj%

The proof of Proposition 6.1 is given in the arXiv version of this paper; see [9, Subsection 6.1]. To
derive an estimate for E |.J,, — ny |K for any K > 0, we recall (see e.g. [2, Theorem 14.12]) a version of the
Azuma—Hoeffding inequality.

Proposition 6.2 (Azuma—Hoeffding inequality). Suppose that (M;);—o.1,... is a martingale with My = 0.
In addition, assume that for all i > 1 there exists a constant c; > 0 such that |M; — M;_1| < «; a.s. Then,
forall k € N and everyt > 0,

j=1%
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For ¢y = 0, the following statement can be found also in [13, Proposition 11.2 (iv)].

Proposition 6.3. Suppose that Assumption 4.11 holds, and let K > 0. Then there exists a constant C'ir > 0
depending at most on K such that

E|J, — ng|™ < Cxnk"?  forall (n,to) € 2Nx[0,T). 6.1)

Proof. Tt suffices to prove the claim for K > 2, since the case K € (0, 2) then follows by Jensen’s inequality.
Since |J,, — ng| is a non-negative random variable,

1 o0
—E|J, —ng|* = / KTP(| T, — ng| > 2)dz.
K 0

We show that there exist constants C’g), Cg), C’g’) > ( corresponding to the sets A; = (0, 2], A2 = (2, ng]
and A3 = (ng, 00) such that

Ii(ng) = / AP, — ng| > 2)dz < CInE? for all ng. (6.2)
A

Step 1: Since K > 2 and ng > 2, we have that

2 2
I (ng) = / KNP, = ng| > 2)dz < / Kl < 2K /K < C’g)nfﬂ.
0 0

Step 2: Suppose that ng > 2 and define 0, (u) := n%, | *%=]. Then

neg 1
Ir(ng) = / KA, = ng| > 2)dz = nf // uBP(|T, — ng| > ngu)du
2 2/ng

1
< nf/ uBP(| T, — ng| > Gy (w)ng)du. (6.3)
2

/1o

Fix a constant a € (0, 1] small enough such that for every m € N,

Om(u) <

5m u 6m u
and B (/3228 ) A H(2550) > 1/4 boldforall w<a,  (64)

ﬂ.2
12472
where the function H is defined below in (A.12). Depending on the value of ngy, we split the right-hand side
of (6.3) into the sum of the integrals

I>1(ng) == né(/ uBTP(|, — ng| > On, (u)ng)du  (for a > 2/ng, otherwise 0),
2/ng
1
I>5(ng) := ng(/ B TIP( T, — ng| > 8, (u)ng)du.
av(2/ng)

If a € (2/ng, 1), by (6.4) and the fact that ng(1 + 0y, (u)) and ny(1 — 6y, (u)) are (even) integers, we may
apply Lemma A.6 and estimate

Iz1(ng) = n?/

a

KR (T > (1 -+ 8, (1)) + (T < ng(1 = 0 (1)) | du

2/ng
a 2 2
e K_ ngds  (u) ngdy , (u)
< ng / u [GXP <§1+5,f;(u)> +exp (g 15,2@))] du
2/ng
K @ K-1 3 ”95%6 (u)
< 2ny U Xp | =510, du. (6.5)
2/ng o
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By the properties of the floor function, for u € (0, 1] it holds that

07y (1) (fgtz) G- w2

= > ) 6.6
[0, 1+2(%2 5 1tu > (66)
and thus the right-hand side of (6.5) can be bounded from above by
a 3ng(u—2/ng)? 1-2/ng 2
2n£</ ufK1le™ 16 du < 2n§</ (u—l— = )K 16* i du
2/ng 0 ¢
1—2/’)19 3n9u2
< 2K1n£(/0 (uKA 4 (%)Kq) — = 6.7)

By substituting * = u./ng and identifying the right-hand side of (6.7) as an integral with respect to a
K/2

Gaussian measure, it can be verified that this integral multiplied by n, " is bounded by some constant

0(2 Do Hence, I3 1(ng) < 0(2 b K/2 for all ng, where 0(2 Vo depends only on K.
Let us then consider the 1ntegral Ig’g(ng) If a/3 < 2/n9, then ng < 6/a, a < aV (2/ny), and thus
I52(ng) < 65 (Ka®)~!. On the other hand, if a/3 € (2/ngy, 1), by Lemma A.6,

1
I59(ng) = n(S(/ T []P’(Jn > ng(1 + by (1)) + P(Jn < ng(1 — by, (u)))}du

IN

nk /1 uK=1 [P(Jn > ng(1+ 60y (a/3))) + P(J, < ng(1 — 5n0(a/3)))}du

1
nk 3 190n,(a/3)* 3 190ny(a/3)* K—1
T [GXP (‘g 1(:—6:;@/3)) T exp <_§ 10—559((1/3) ” /a u' T du
1
K 3 ngdn,(a/3)2 K—1
S 2TL6 exp (_811(5:901/3))/ u du

< 2nk exp (—73”9(‘1/%2/”9)2) )

\ /\

Here we used the fact that u — 0y, (u) is nondecreasing, that ng(1+d,,(a/3)) and ng(1—3d,,(a/3)) are
(even) integers, condition (6.4), and inequality (6.6). Notice that the right-hand side converges to zero as

ng — oo. Consequently, there exists a constant CI(?’Q) > 0 such that I5 2(ng) < C}?’Q) for all ng, and (6.2)
for k = 2 follows.

Step 3: To estimate I3(ng), we apply the Azuma—Hoeffding inequality to the tail distribution of the random

variable J,, = inf {2m € 2N : 79,,, > 6,,}. Recall that 7; — 7;,_1,4 = 1,2, ..., are i.i.d. (see Subsection 2.1)
and that 7:6,, = ng according to (2.4). Let ¢; := (7-, —Ti—1), 1 > 1. Then for all m € N, we have
2m—2 2m—2
P(Jy = 2m) = P(ram—2 < 0n) =B( 3 G < 560n) SP(( D GAN<my)
i=1 i=1
2m—2
- ]P’( Y (e — GAN) = (2m—2)ey — ng), 6.8)
i=1

where N € N is chosen such that 3/4 < ¢y :=E[(; A N] <E[(;] = 1. Then [E[(; AN] -G AN| <N
for all © > 1, and by (6.8) and the Azuma—Hoeffding inequality (Proposition 6.2),

P(J, > 2m) < exp (—%) , meN.
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Since J, > 0, we have

I3(ng) = / AP (T, —ng > 2)dz
ng

2ng+2 0 mng—+2
= / szllP’(Jn >z+4ng)dz+ Z / zK*I]P’(Jn >z +ng)dz
ng m—3 “ (m—1)ng+2
2ng+2 0 mng—+2
< / P (T > 2np)dz+ > / KPP, > mng + 2)dz
ng m—3* (m—1)ng+2
2ng+2 _ﬂ((?*Q/ng)CNfl)Z o0 mng—+2 ng (mep—1)32
< / SHK=1,72N? (2-2/no) gy + / SKlomaNT T 4y
ng m—3 “ (m—1)ng+2

=:I3.1(ng) + I32(ng).

Since ¢y € (3/4,1), there exist constants ¢, ¢’ > 0 such that

2ng-+2 ng_((2=2/np)en—1)* ngc 3.1)
1371(719) = / HKle 2N? (2-2/n0) dz < 2(2np + Q)Kfle_ N2 < Cp,
ng

oo mng+2 ng (mey—1)2 [e's) ngme’

1] — e A\TENTS _ 9

I32(ng) = / Kl m e < (mng+2)Fe Nt < ORY,
m—3 Y (m—1)ng+2 3

where Cﬁ?’l), C;?’Q) > 0 depend at most on K. This proves (6.2) for k = 3. Ol

A Appendix

A.1 The class GBVp

For a function g : R — R, let

N
Ty(x) := sup {Z|g(xl) —g(xic1)], NeN, —co<zg<z1 < - <ay= x} .
i=1

If lim, o0 Ty(z) < o0, the function g is said to be of bounded variation. The class of functions with this
property will be denoted by BV'.

A function g € BV is by definition a bounded function. An error estimation carried out merely for
the class BV would rule out e.g. polynomials, which on the other hand have bounded variation on every
compact interval. Therefore, instead of the class BV, we consider a class of functions of generalized
bounded variation allowing exponential growth. In order to find an applicable representation for a large
class of such functions, we will follow the presentation given in [1].

Recall the class M given by Definition 2.2, which consists of set functions y (acting on bounded Borel
sets on R) that can be written as a difference of two measures p!, 42 : B(R) — [0, oo] such that p!(K) and
p?(K) are finite for all compact sets K € B(R). In [1, Theorem 3.3] it is proved that such a decomposition
can be chosen to be orthogonal and minimal: There exists a unique pair of measures p+, 4~ on B(R) such
that 4+ and p~ are mutually singular, and 4+ < p' and = < p? hold for all the other decompositions
pu = pu' — p?. Even though 1 € M is not itself a signed measure (it is undefined on unbounded sets), the
aforementioned result, based on the Hahn decomposition theorem, allows us to define the total variation
measure associated to p by setting

lul - BR) = [0,00],  |p]:=p" +pu~.

Consequently, the integral appearing in (2.8) is defined.
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Some properties of the class G BVeyp (recall Definition 2.3) are given below.
Remark A.1.

(¢): Itholds that BV C GBVeyp C Bexp. See [1, Theorem 4.3] for the first inclusion.

The second inclusion

can be seen as follows: Suppose that g € GBVi,, is given by (2.7). Then (3.1) is satisfied if b = 3

and A is equal to the sum of |c| and the left-hand side of (2.8).

(i1): A function g € GBVxp has bounded variation on each compact interval I C R.

(7i1): Every polynomial f(z) = Zgzo arz®, a, € R,N € N, belongs to the class GBVexp. Indeed, the

function f admits the representation (2.7) by letting

N
c=agy, du= Z kapz*'dz, and J =0.
k=1

Notice that this p satisfies the condition (2.8), since for every 8 > 0,

N
~Blalg __/ el $ gt
(& M\ (& apx

k=1
A.2 Auxiliary results for Section 5

dr < oo.

Under Assumption 4.11, let us recall from (5.13) the notation Py, 1x(z) = P(X7, ,, = hx) and
P (x) = P(Ju,—ng = x), x € Z. Notice also that for all k € 2N,
k —k
Pe(r) = | 1pp )27, x €27, |z|<k.
T2
As in [13], we define the ’effective order’ of a monomial k;ffl with p, ¢, r € Ny to be
o [ kPpd
0] )=t ta_ T,
n’ 2
We will use the following result from [13] in the proof of Lemma A.3.
Proposition A.2 ([13, Proposition 11.5]). Let
P
R:D(R) =R, R(n,k,z):= 7”(;”); (A.1)
o (
k 3k*+4ka?  3k%*2? k2ot
RW :oNx(22)" - R, RW(n,k,z):=— — - A2
x(22) ’ (n,k, ) 2n 8n? 4n3 8nt’ (A-2)

where

D(R) = {(n,k,x) € oNx(22)2 : |k| V |z| < n3/5} .

Then there exists a constant Cy > 0, an integer ng, and a finite sum R®) of monomials of effective order at

most —3/2 such that for all (n, k,x) € D(R) with n > ny,

‘R(n, k,z) —[1 — RY(n,k,z) + R (n, k,a:)]‘ < Con™3/2.

(A3)

Lemma A.3. Suppose that g € By, and that b > 0 is as in (3.1). Suppose also that RW s as in (A.2) and
that Iy, is given by (5.10). Then there exists a constant C' > 0 such that for all xq € R and ng € 2N,

(2) ‘E[g(xwX%)fg(xo+Xm);F29] < Cny 2 Mol 10202 T+bo V2T,

25



(i) \E[guwxw>—g<xo+xn>;rn9]

< Cny 32l ¥20°T,

— Z Z (zo+ah) P (k) P, (2)RY (ng, k, z)

k=2—ng x=—ng

Proof. (i): Since F%O C {]XTng /h| > ng/5} U{ |Jn — ng| > n2/5}, we may use Holder’s inequality, (5.4),
and (5.5) to show that there exists a constant C’ > 0 such that

9\ 1/2
Elg(w0+Xr,,) = 9lwo+Xr,, )i T5,] | < C'ny®/? (E 90+ X5,,) — glaotXr,, )| ) .

The claim follow§, since by the triangle inequality, (5.1), (5.2), and the fact that g € Beyp, there exists
another constant C' > 0 such that

2 1/2 ~
<E ‘g($O+XTn9) - g(xO+XTJn)‘ ) S Ceb‘$0|+b20'2T+bG\/ﬁ.

(74): The proof of item (i7) is done in several intermediate steps and only sketched here for the sake of
brevity. More details can be found in [9, Lemma A.3].
Step 1: Let us first show that there exists a constant C' > 0 such that for all zy € R and ny,

oo ng
2 D alwotah) Py (k) Pay @RS (o, k2L ey < Cny * 2o T (A4

k=2—ng r=—nyg

where R is as in Proposition A.2. Using the relations i = a\/g, 0, = ”GT and (5.13), it can be shown
that for given integers p, ¢, 7 € Ny and subsets Aj, Ay C Z,

kPxd
Z Z :L'()—HL'h Jg (k)Pne (x)nier]l{xél\th/b}

k=2—ngx=—ng

n(gp+q)/2—TE [(j%)qg(ﬂﬁo%—XTnS);Xme /h € A1} E [(%)p; Jn—ng € AQ} . (A.5)

By the definition of R(?), there exists an integer N € N, a vector (a;)YY.; C R, and vectors (p;)¥, (¢:)X ;.
(ri)i]\il € Név such that % —r; < —=3/2forall1 <i < N, and

N ppigai
R®(ng,k,x) =Y a;—— for (ng,k,z) € D(R).
n
i=1 0

Therefore, by the relation (A.5), the left-hand side of (A.4) can be rewritten and estimated by

Zaz p7+q1 n [(%)Qig(xo-i-){r ‘X'rn /h‘ <n3/5]E[(J\/%9> |Jn n9|<n3/5}

3/2Z| IE [ (5224)" oot X, )| B( erzel )

=~ — 2 2
< Cng 3/2€b\z0|+b T’

where C' > 0 is some constant implied by (5.3) and (6.1). This proves (A.4).
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Step 2: Let us show that for some constant C' > 0 and for all zy € R and ngy € 2N,

Cn9—3/26b|x0‘+b20'2T' (A6)

Z Z (zo+zh)P, (k)Pne(x)R(l)(ne’k7x {\x\\/lk|>n3/5}

k=2—ngx=—ng

By (A.2) and (A.5), it is sufficient to prove that for given p, ¢, € Ny there exists a constant Cj, 4, > 0 such
that for all zg € R,

3/2 b|I0|+b2 2T (A7)

< Cpg,rmy

Z Z (wo+ah) Py (k) Py, (x )kpxq {Ikab 5/9)

k=2—ng r=—ny

Relation (A.7) can be verified by writing {|z| V [k| > n3/°} = {|jz| > n)/°} U {|k| > ni/?, x| < n3/*}
and considering the corresponding sums separately using relation (A.5) and similar calculatlons as in Step
1. Indeed, the case {|z| > ng’/ 5} can be shown using Holder’s inequality and relations (5.1), (5.4), (5.6),

and (6.1). The case {|k| > n3/ b x| < ne/ } follows from Holder’s inequality, (5.3), (5.5), and (6.1).

Step 3: Since the processes (A’Tk)k_l,gym and (AX7, )r=1,2,.. are independent (see Subsection 2.1), the
random variable J,, and the process (X7, )k—o1,.. are also independent. Taking also into account that
suppPr,+x = {m € 2Z : |m| < ng + k} (for each k € 2N) and suppP;, = {m—ng: m € 2N}, it can
be shown that

E [g<$O+XTn9) - g(x0+XTJn ); an]

Z Z g(xg—i—xh)P;L]e(k)Pne(x)(l - m) {|x|v\k:|<n3/5}

k=2—ng x=—n9

Thus, by (A.1)—-(A.5), there exist constants Cy, C7 > 0 and ng € 2N such that whenever ng > ng,

Z Z (wo+ah) Py (k) P, (:U)R(l)(ng,k,x)]l{‘ Vib<nd)

k=2— ng T=—"Ng

—Elg(z0+X7,,) — 9(z0+X7,); Tny |

Z Z (zo+xh) P (k) Py () (R (ng, k, 2) — [1 — R(ng, k,x)])1 [vibi<nd’™)

k=2—ng r=—ng

< Cony ¥ Z Z g(zo+xh)| Pyl (k) "9<x)]l{|z|v\k|§ng/5}

k=2— ng rT=—"ng

00 ng
Z Z 9(x0+xh)Pﬁ]9(k)Pno(x)R@)(neakvm)]l{|x|v|k\gni;/5}

k=2—ng x=—ng

< Con;3/2E [|g(:r0—|—X

Tn0

) X, /] 5] + Camg 2l
S 02n6—3/26b‘$0‘+b20'2T (AS)
for some constant Co > 0 implied by (5.3). Consequently, we get the claim for all ng > ng by the triangle

inequality, (A.6), and (A.8). By letting

M := sup

(n,k,x)m<ng |z|V|k|<n

(RY(n, k,x) — [1 — R(n, k,z)])1 { ) < o0,
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for ng < no we find another constant Cy = C4(ng) > 0 such that

Z Z !L'()erh (k)Pne(m) (R(1)<n97 k‘,:l?) - [1 - R(’I’L@, k, LU {| |V\k\<n3/5}

k=2—ng x=—n¢

<M Z Z g(zot+azh)| P (k) Py, ()1 s

k=2—ng x=—nyg

< ME ||g(zo+ X, )|; | X

ne

/h| < ng/S] P (|J —ng| < n3/5)
S C4n6_3/2€b|10|+b20'2T (Ag)

by (5.3). Combine (A.6), (A.8), and (A.9) to complete the proof. ]

A.3 Other auxiliary results

Lemmata A.4 and A.6 below are essential for the proof of Proposition 6.3.

Lemma A.4. Under Assumption 4.11, suppose that ng € 2N and a constant £ > 0 are such that ngé € N.
2
Then for every p € (0, 15£0,\/ng) it holds that

0 P(M(Tneg—ﬁen)>p)§exp(—%%H 595’5%)), (A.10)
(i) P (yia(tge — 0n) < —p) Sexp (-3 47 H (/s ) ) - (A.11)

where the function H : (0,7/2) — R is given by
H(xz):=1+ I%(% + log cos z). (A.12)

Remark A.5. The above estimates are non-trivial only whenever H is positive. Since H(0+) = 1/2, it
holds that H(z) > 0 for small enough z. Notice that the condition p € (0, %fﬁmmg) ensures that

&, o € (0,m/2), which is the domain of H.

The proof of Lemma A.4 is given in [9, Subsection 6.2]. The following result, which is applied in the
proof of Proposition 6.3, resembles inequality (42) in [13]. However, the time-dependent setting causes
some changes.

and let H be as in (A.12).

Lemma A.6. Under Assumption 4.11, suppose that ng € 2N, § € (0, 12:712),

Then

() P(Jn > no(1+6)) <exp (- 325 (\/%)) if np(1+0) €N,
(1) P(Jn < ng(1-0)) <exp (- g—%H(\/%)) if ne(1—35) €N,

Proof. Fix ng € 2N, § € (0
ng(l + 5) = ng& € N. Then

,12’_1712), and let p := 06,./ng. For (i), let £ := 1 + 0 and suppose that

P(Jn > n68) = P(Tnge < On) = P(V/19(Tngs — E0n) < —p) < exp (—%%H ( gef’%))

by (A.11), since the choice of § ensures that the pair (£, p) satisfies the assumptions of Lemma A.4. To show
(7), let now & := 1 — § and suppose that ng(1 — 0) = ny& € N. Then by (A.10),

2
P(Jn < 19€) = P(nye > On) = P(y/0g(Tnyg — €0n) > p) < exp (~3 62 H (\/ 92 ) )
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since the pair (§, p) satisfies the assumptions of Lemma A.4 due to the choice of 6. O
The following identities are applied in the proofs of Propositions 4.9 and 4.10.
Lemma A.7. Let h > 0 and recall the operators 11, and 11, given by Definition 4.1.

(1) Forall ¢ € R, it holds that

1 h
M1 (a) = L8 (Jo = (6=2m)| + o — (§+2h)| —2[z —¢]), @ €R (A1)

(13) Ify € [2kh, (2k+2)h) for k € Z, then in terms of d, defined in (4.2),

do(x
[Ty o0 (@) — TNy o0 ()] = %1[(2k71)h,(2k+3)h)(x)a r eR. (A.14)

Proof. (i): It is obvious by the definition of II, that II.1 ¢y = 0 for & ¢ Z". If ¢ € Z!, then

e E2h)  (e—2n) <z <€,

) > (A.15)
(e} () { % ¢ <x < (€+2h),

and zero elsewhere, so it suffices to verify that (A.15) agrees with the representation given in (A.13).
(43): Suppose that y € [2kh, (2k+2)h) for some k € Z. One checks that

1 1 1
Helyoo)(2) = 5 + g |2 = 2kh| — 7 o — (2k+2)h] & € R. (A.16)

Then, by the linearity of I, and by (A.16), we have for every x € R that

Hoﬂe]l(y,oo) (J}) - He]l(yvoo)(x)

1 1
=1 (I, |- — 2kh| (z) — |z — 2kh|) — E(Ho |- — (2k+2)h| (z) — |z — (2k+2)h| )
do(z)
T (Li2r—1)hy(2h+1)0) () = L2kt 1)hy(2h13)R) (2)) (A.17)

since it holds for all z € R and m € Z that
I, |- = 2mh|(z) — |z — 2mh| = dO(x)]l[(mel)h,(Qerl)h)(x)- (A.18)
Taking the absolute values of both sides of (A.17) then completes the proof. O
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On first exit times and their means for Brownian
bridges

Christel Geiss!  Antti Luoto? Paavo Salminen?

Abstract

For a Brownian bridge from 0 to y we prove that the mean of the first exit time from
interval (—h,h), h > 0, behaves as O(h?) when h | 0. Similar behavior is seen to
hold also for the 3-dimensional Bessel bridge. For Brownian bridge and 3-dimensional
Bessel bridge this mean of the first exit time has a puzzling representation in terms of the
Kolmogorov distribution. The result regarding the Brownian bridge is applied to prove
in detail an estimate needed by Walsh to determine the convergence of the binomial tree
scheme for European options.

Keywords: Brownian motion, Brownian bridge, Bessel process, Bessel bridge, first exit time,
last exit time, Kolmogorov distribution function, binomial tree scheme
AMS 60J65, 60J60; 91G60

1 Introduction

In this paper, we consider diffusion bridges and present an integral representation of the
mean of their first exit time from an interval. With the help of this representation we deduce
the limiting behavior of the mean, when the length of the interval around the starting value
of the bridge decreases to 0. For a continuous process (X;);>o with X, = = we denote the
first exit time from (a, b) by

Téb) =inf{t >0: X; & (a,b)}, a<xz<b,

with the convention 77, = oo if {t > 0: X; & (a,b)} = 0. We simply write T( ) if
there is no ambiguity about the underlying process. The main part of the paper concerns
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?Department of Mathematics and Statistics, University of Jyviskyli, Finland.
antti.k.luoto@student.jyu.fi
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Brownian bridge and Bessel bridge (with dimension parameter 3). For the Brownian bridge
(By ’T’y)OSKT from z to y of length 7' (a similar result holds for Bessel bridges), it is shown
in Theorem 3.4 that

E ~
lim 07T~

i R = 1y #0, (M

where E, 7, stands for the corresponding expectation of the Brownian bridge.
Let (W}*);>0 be the Brownian motion started at # € R. Recall that (this can be deduced,
e.g., from the Laplace transform of 7,4 given in [2, Part II, Section 1, 3.0.1]) it holds

E; [Tan] = 0—2)(z—a), a<z<b, o)
where again [, denotes the corresponding expectation. Consequently, by (1),

E _
lim 0.7y T~

=1, 0.
hl0 EO[ (—h,h)] y#

For some other diffusion bridges a similar asymptotic behavior can be found. But we have
not been able to prove such a result in generality.

The paper is organized as follows. In Section 2 we describe our setting and the construc-
tion of bridge measures for regular diffusions by Doob’s h-transform. We also recall some
properties of the Brownian bridge. Section 3 contains our main results. We start by deriving
integral representations for the mean of 7? ) when X is, firstly, a general regular diffusion
and, secondly, a corresponding diffusion bridge. We also calculate for a regular diffusion
X, Xy = x, the limiting behavior of the mean of 7?@, hoath) A8 h — 0. In Subsection 3.3
we focus on Brownian bridge and 3-dimensional Bessel bridge starting from z > 0 and
find the limiting behavior of the mean of 7(,_j 41 as h — 0. In Theorem 3.5 we state a
weak convergence result for 7?1, hy+h) /h?. For the means of the first exit times — consid-
ered in Subsection 3.3 — Subsection 3 4 provides puzzling representations in terms of the
Kolmogorov distribution function. We discuss also other properties of the Kolmogorov dis-
tribution, in particular, its connection with the last exit time distribution of Brownian motion.
As an application, in Section 4, we use our results concerning Brownian bridge to give a de-
tailed proof of an estimate in Walsh [15] needed therein when deriving the convergence rate
of an option price calculated from the binomial tree scheme to the Black-Scholes price. The
estimate is used also in a forthcoming paper [11].

2 Preliminaries

We start with the description of our setting. Let C|[0,00) denote the space of continuous
functions w : [0, 00) — R, and



the smallest o-algebra making the coordinate mappings up to time ¢ measurable. Further-
more, let C be the smallest o-algebra containing all C;, ¢ > 0. For an interval I C R
let (PX),c; be a family of probability measures defined in the filtered canonical space
(C[0,0),C, (Ct)t>0) such that under P¥X for a given x € I the coordinate process X =
(Xt)i>0 := (wi)i>0 is a regular diffusion taking values in / and starting from x. Here, X
is considered in the sense of Itd and McKean [7], see also [2]. A crucial property of X is
that there exists a (speed) measure m~ such that the transition probability has a continuous

strictly positive density (¢, z,y) — q¢(z,y), t > 0,7,y € I with respect to m* i.e.,
]P)i’((Xt < dy) = Qt<x7 y)mX(dy), (3)

see [7, page 149 and 157].

For (X})i>0, Xo = x, as defined above and 7" > 0, one can construct a new non-
homogeneous strong Markov process by conditioning X to be at a given point y € [ at
time 7. Although the conditioning is, in general, with respect to a zero set { Xy = y}, it
can be realized using the Bayes formula and the notion of regular conditional distributions.
Another approach is to apply the theory of the Doob h-transforms. To explain this briefly,
consider X in space-time i.e., the process X = ((X;,t));>0. Introduce for z € I and t < T
the function

h(z,t) := h(z,t;9,T) := qr_i(2, 7).

By the Chapman-Kolmogorov equation it holds for x € I and s < ¢

EX [h(X,1)] = / doa(@, 2)h(z, ) m(d2)

I

= [ @—s(z,2)qr—i(2,y) m(dz)

where Eé 5) refers to the expectation associated with the space-time process X initiated from

x at time s. Consequently, we may define for f € B,(/)(= bounded measurable functions on
I)and s <t < T a non-homogeneous Markov semigroup P 0<s<t<T,via

s,t

h(X;—s, t)] .

P (o) = B |1 () S

“)
The process governed by the probability measure induced by this semigroup is called the X -
bridge to y of length T The notations X7 IP’fC‘ZT,y, and E?:T,y are used for this process, its
probability measure and the expectation, respectively, when the initial state is x € /. From
(4) one may deduce the following absolute continuity relation for A, € C;, t < T,

QT—t(Xta Z/)
QT(xJ y)

h(Xy,t)

IP)X
h(x,0)

z, Ty

(4) =B A =B Ay 5)



We refer to Chung and Walsh [3] for a general discussion on A-transforms, to Fitzsimmons
et al. [5], in particular, Proposition 1, for general Markovian bridges, and to Salminen [13]
for some properties of diffusion bridges.

Since our main interest in this paper is focused on the case where the underlying process
is a Brownian motion, we make use of the notations (W};);>o and (B} ’T’y)OSKT for standard
Brownian motion and Brownian bridge from x to y of length 7', denoting the corresponding
probability measures by P, and P, 1, and the expectations by E, and E, 7, respectively.
Brownian bridge has in addition to the general h-transform approach a few equivalent spe-
cific characterizations. Indeed, Brownian bridge can be viewed as (i) a Gaussian process, (i)
a deterministic time change with an additional drift of standard Brownian motion or (iii) as
a solution of a SDE, see e.g. [2] p. 66. In Section 4 we apply, in particular, (ii) and (iii). The
second one states that

(6)

BI’T’yi (1—%)W% —‘rl’—l——(y;z)t, t<T
' (0 t="T1,

where < means that the processes on the left and the right hand side are identical in law. The
third one says that

_ ¢ dWs (y— w)t
E%yTy:i { t j) +x+ , < T (7)
Yy

t="1T.

Here it is assumed that the canonical filtration (C;);>( is augmented with the null sets of C
with respect to Py in order to have the usual conditions satisfied.

3 Main results

3.1 Integral representations for the mean of the first exit time

Let X = (X});>0 be a regular diffusion taking values on an interval /, and recall from 3)
the notation ¢;(z,y) for its transition density with respect to the speed measure m~. For
a < b, ab € I,let X denote X killed at T(a,p)- Then X is a regular diffusion on (a,b).

The speed measure of X is m¥ , and X has a continuous strictly positive transition density
¢:(x,y) such that for z,y € (a,b)

PY (X, € dy) = Gz, y)m™ (dy)
=P (Tiap) > t. X; € dy)
=PXa < mf XS7 sup X < b, X; € dy). (8)

0<s<t

This yields immediately the following result.



Proposition 3.1. In case P3 (T(,p) < 00) = 1, i.e., X does not die inside (a,b), it holds

00 b
Tiap) :/ dt/ m*X(dz) q,(z, 2).
0 a

The next proposition will serve as an important tool for the calculations below.

Proposition 3.2. For z € (a,b) C [ andy € I\(a,b) it holds

z
mTy Tiap)] / dt/m (dz) q(x )QT — y).

qr(z,y)
Proof. Since = € (a,b) and y € I\(a,b) we have P\ 1, (T(ap) < T') = 1. Consider

T b
EiT,y[ﬁa,b)] = / dt/ ]Pg)c(,T,y(,ﬁa,b) > t, th’T’y € dz)
0 a

T b
:/ dt/ PX(Tiun >t X, € do) =t Y).
0 a

qr(z, y)
where the Markov property and formula (4) is used. It remains to apply (8).

3.2 The limit behaviour for regular diffusions

®)

(10)

(11)

One of our main issues concerns the limiting behavior of the mean of 7('5(_ hooth) 38 h — 0 for
diffusion bridges. For regular diffusions we have the following fairly complete characteriza-

tion.

Proposition 3.3. Assume that the differential operator associated with the regular diffusion

X is given by
Gu(z) = %cﬂ(z)u”(a:) + b(x)u'(x), xel,
where x +— a*(x) > 0 and x — b(x) are continuous in I. Let x, € Int(I). Then
o EX T
hl0 h?

ot _ o2y,

Proof. Recall from [2, Part I, Chapter II, No 7, p.17] that the speed measure m* and the

X

scale function s can be taken to be

m* (dz) = m™ (z)dx, d—sX(:c) — ¢ B@)
x

where
mX (z) = 2a"%(2)eP®, B(z) = /x 2a2(y)b(y)dy.

5

(12)

(13)



Consider now the process X initiated at x,, and killed when it leaves the interval (z,— h, x,+
h). We let (X;);>o denote this diffusion:

)?t _ Xt7 t < 7d(xofh,x0+h)a
87 t> ﬁmo—h,xa-i-h)a

where 0 is a cemetary point. It is well known (cf. [2, Part I, Chapter II, No 11]) that the
O-resolvent kernel of X is given by

(s(x) = (o — h))(s(xo + 1) — s(y))
R /oo s(xo + h) — s(x, — h)

G0<$ay):: th(‘%'a?»dt:
(s(y) = s(xo = h))(s(wo + ) — s(x))
s(xo+ h) — s(x, — h)

7x<y7

7'CC>y7

where s := s and @(z, y) is the transition density w.r.t. the speed measure m*. Conse-
quently, relation (9) implies that

0o Tot+h
EX [Twohyzorh)] :/ (/ @(%,y)mx(dy)) dt
0 T

o—h
To+h R

= [ Gulao

_ ;(_xo+h) — s(x,)
s(xot+h) — s(x,—h
s(z,) — s(z,—h)
s(xo+h) — s(z,—h

] s = sta ) )y

)/”" (s(zo+h) — s(y))m™ (y)dy.  (14)

Since s is assumed to be continuously differentiable we have

s(xo+h) — s(z,) . S(xy) — s(xo,—h) 1

—1 1 e 20
h0 s(zoth) — s(zo—h)  hi0 s(zgth) — s(zg—h) 2 (o) #

and I’Hospital’s rule yields

rl0 h2

o . 1 IO d X

To—

. d 1 To X
= 1}%1 (—%s(xo - h)> o /o hm (y)dy

i [ (5(0) = slao — b ()



where the last equality follows from relations (12) and (13). Similarly,

1

i [ T (520 + b — @)X ()dy = a~X(z)

Hence, by (14),

11m i{; [ﬁxo_hymo"‘h)]
hl0 h?

= a"*(z,).

]

3.3 The mean of the first exit time for Brownian bridge and 3-dimensional
Bessel bridge

Let p;(z, y) the transition density of the standard Brownian motion,

1 _(y—n)?
e 2t

ptﬁtay):: \/§%¥ )

and rt(3) (x,y) the transition density of the 3-dimensional Bessel process,

rey) = Lpula,y) — pla,—y), @y >0 (15)

We introduce also the following function

(z+4mh)2 (z+(2m+1)2h)2
A(z, h,t) — e~ %
it 32 (= )
m (z— 27nh)2
2t
“ 7 2
=pi(0,2) > (~)meT TET i, (16)

Then, by [2, Part II, Section 1, 1.15.8 (p. 180)] and (16),
Py ( mf Wy > —h, Os<u12tW < h, Wy € dz) =Po(T—pp >t, Wy € dz)
= A(z, h,t)dz. (I7)
In addition, according to [2, Part II, Section 5, 1.15.8] we have for z € (x — h,x + h) that

P (sup | X, —z| < h, X, € dz)

0<s<t



z ((z—z)+2h(2m))? ((z—z)+2h(2m+1))?
= Z (6_ 2t —e 2t ) z
xV2mt
= EA(Z —x,h,t)dz, x> h.
T

Finally, let us recall that by [2, Part II, Section 1, 3.0.6 (a)]
P.(T. €dr,To <Tp) =ss.(b—x,b—a)dr, a<zxz<b,

where the special function ss; is given by (see [2, Appendix 2, No 13])

sinh(a+/27y —a+2mb _ (—a+2mp)?
ss¢(a, b) ::ﬁm(smh b\/_> Z — e ¢ ¢ a<h

(E denotes the inverse Laplace transform).
Theorem 3.4.

(i) For the Brownian bridge with |y| > h,

z
Eo, 7,4 [T(=nn)] / /hp;TtO yy (2, h,t)dzdt

and

E To_
lim 0.7y T(—n.n)]

i 2 =1, y#0.

(ii) For the 3-dimensional Bessel bridge with x > handy ¢ (x — h,x + h),

T rh (3)
3 Z4+x ry (2 4+ x,9)
B Tiohain)] = / / Ak t)TI(SS)—dzdt
0 J-n 7 (7,9)

and

3
lim E(x %y [ﬁxfh,:frh)]

=1.
R10 h?

(18)

(19)

(20)

1)

(22)

(23)

(iii) If y € (—h,h) (ory € (x — h,x + h) withx > h, y > 0) the mean of the first exit time

is infinite for both bridges, i.e.

3
Eo1y[T(=np)] = E;}’y[ﬁxfh,wrh)] = o0.

(24)



Proof. (1) According to (11), (8), and (17),
Pr—i\z,Y) t
E / / (z, h,t)dzdt.
0.1y [T(=nn)] T 0 ) )

To show (22), substitute z = hu and t = h%s, and notice that A(hu, h, h*s)h = A(u, 1, s),
so that

T/h 25 (R
Eo,7.y[T(—h.n) —h2/ / pr}; 0 ;L .9) A(u, 1, s)duds.

To apply dominated convergence for i | 0 let y be fixed and assume that h < % Then, for

any u € (—1,1) it holds that |y — hu| > |y| — h > % Moreover, notice that for y # 0 there
exists a constant C' > 0 such that

t>0

C
sup p(0,y) = ol (25)

This implies that

pT—hzs(hu7 y) 20
sup < .
we(=11),se0,r/2)  pr(0,%) ly[pr(0,v)

Therefore, since (u, s) — A(u, 1, s) is integrable and (u, s, h) — pr_p2s(hu, y)/pr(0,y) is
bounded on (—1,1) x (0,7/h?) x (0,|y|/2), dominated convergence yields

E B e} 1
limM = / /A(u,l,s)duds

R0 h?
/ /PO (=1,1) >SW€dU)d

= Eo[T-11)

= 1, (26)
where (2) is used for the last equality.
(i1) By (11), (8), and (18),
(3) T’EF) (2,9)
]Ex T y :1: h z+h) h t)WdZdt (27)

For the proof of (23) we substitute ¢ = h%s and z = hu + x and recall that A(hu, h, h?s)h =
A(u, 1, s), so that

T/h? h T(3) 2 hu-i—:r;,
(T a—h,zth)] ] = h? / / u—l—x (u,1,s) = h(g() ) y)duds.

(T, y

E(S)

x, Ty



Using relation (15) yields

hu + x T?lhzs(hu +2,y)

x ) (z,y)

pr—n2s(hu +,y) — pr_p2s(hu + z, —y)
pT($7 y) - pT(l', _y>

To see that this expression is bounded in s € (0,7/h%) and u € (—1,1) notice that if
h < |y —z|/2 with x > h and y > 0, then

lt —y+hu|>|x—yl—h>|r—y|/2 and |z+y+hul>x+y—h>|x—y|/2
so that, by (25)

< n C - 4C
“lr—y+hul |r+y+hu jr—y|

|pr—n2s(hu + 2, y) — pr_pzs(hu + 2, —y)

Hence, dominated convergence gives

ES 1 Tna 0o gl
lim r1y T = A(u, 1, s)duds = 1,
hl0 h? 0o J_1

where the last equality was shown in (26) .
(i) For a regular diffusion X, (24) follows from P (Tz—pz+n) > T) > 0. It holds

z, Ty

PY (Toopwem = T) = lim PY (Tao-narn) = Ty < Xr < y+e)
x, 1y r—n,r —

28
el0 ]P)é((ySXTSy—FE) ( )

and
y+e
PX (Tionasn) = Ty < Xp <y+e) = / qr(z, 2)dz,
Yy

where 7'is the transition density of X killed at 7(,_p, ;41). By [7, p.157] the transition density
of any regular diffusion is strictly positive. In our case this means

qr(r,z) >0 forall |z] <h.
Using I’Hospital’s rule in (28) yields

QT(x> y)

> 0.
QT(xmy)

PiT,y(ﬁx—h,x—t—h) > T) =

]

The scaled first exit time 7(_j, ,)/h* of the Brownian bridge B%"¥ and the scaled first
exit time 7(y—p z41h)/ h? of the 3-dimensional Bessel bridge from 2 > 0 to y > 0 of length T’
both converge weakly to the first exit time 7(_,1) of the standard Brownian motion as & | 0:

10



Theorem 3.5. For eachy # 0 and T > 0,

: —T(— h?1 _ —T—
%Ewy[e MTenm/M] = Ey[e 7], 4 >0 (29)

and for each x,y > 0,

l;gf)l Eg(jzr,y [e—“rT(z—h,erh)/hQ} =F, [6—77(—1,1)]’ v > 0.

Proof. We will sketch the proof of (29) since the other convergence follows similarly. Let
TX =inf{t>0: X, =c}

denote the first hitting time of ¢ by a continuous process X. Since T = Ta ATy =
Talir, <1y + Tol {1, <7;) it suffices to consider E, 7, [11{7;1<777}e*/3771] . We recall that by (5),

_ d]P):t,T,y (w _ pT—t(w(t)a y)

Zi(w) :
t( ) d]P)x Cey pT(x,y)

t<T.

Since (Z;)epo,r) is a (Py, (Ct)iejo,r))-martingale and the random variable 17, <; 7,<73€ "7
(with 8 > 0) is C1, o; -measurable, we conclude that fora < x < b

Bory [Lmstmemye ] = Eo[ligmamemye 2]
E, [E.[Lir.<i<rye "7 2y | Fron]]

= E.[Lmn<ta<ye 7" Z1ne)

~BTa w]

= E,; |:]l{771§t7771<7—b}6 pr(z,y)

t
/ e*ﬁrwpw(ﬂ cedr, T, <Thp).
0 pT(':C7y)

Consequently,

T
2 2 _+(—h,
EO,T,y [6777'(7h,h)/h :| :/ 6*’7T/h |:pT ( y)PO([h c d'r, 7—_h < 777,)
0

pT(Ov y)
_r(h,
+ MPO(E edr, T, <Tpn)|.
pT(OJ y)
The result follows by the variable transform ¢ = 7 /h? and dominated convergence as h |, 0.
[l
Remark 3.6. For the 3-dimensional Bessel bridge starting in 0 with y > h it holds
T rh P 2,

ES).,[Th] = / / PP (sup X, < h, X, € dz)#dt. (30)

o o Jo 0<s<t r1 (0,y)

11



The representation follows from (8) and (10), which can be extended to x = 0 since 0 is an
entrance boundary point. Similarly as above it can be shown that

3
lim —é%y[ﬁl] lim —]EE]S) (T2 = 1
hl0 h2 w0 h2 3

Indeed, by [2, Part II, Section 5, 1.1.8 (p. 435)] we have for0 < x V z < h

(z—;):+2nzl:,)2 _ (z+ac+2mh)2
E 2t —e 2t dz

m=—0o0

PO (sup X, < h, X; € dz
* (ogslg)t ! ) x/ 27t

which implies for = | 0

P (sup X, < h, X, € dz) = 2zssy(h— z, h)dz,

0<s<t

where ss; was defined in (20). Then, relations (30) and (19) yield

ES). [T
1imM = / / W(To € dr, To < Ti)du
h10 h?

= 2/ ulPy (To < T1)du
0

1
= 2/ u(l —u)du
0
1

§ .

The other limit follows in the same way.

3.4 The Kolmogorov distribution function and the mean of the first exit
time

A classical result due to Doob [4] is that the distribution of the supremum of the absolute
value of the standard Brownian bridge is given by

o0

F) = Fosa (sup B4 <0) = 3 (-1me ™ = VERAQ.1 ).

0<s<1 St
The function h — F'(h), h > 0, is called the Kolmogorov distribution function due to
Kolmogorov’s fundamental work [9] (and also Smirnov [14]) on empirical distributions. We
refer also to [12] and [10, Section 5.7]. The main result of this section — Theorem 3.8
— provides representations for the mean of the first exit time of the Brownian bridge and
of the 3-dimensional Bessel bridge involving the Kolmogorov distribution function. We
present now some formulas related to the Kolmogorov distribution which we need later. The

12



following Jacobi’s theta function indentity, an instance of the Poisson summation formula,
is stated in [1, equation (2.1)]):

- 22 - _ (mtv)?
Z cos(2mmu)e T = Z v, u>0,veR.

m=—0oQ m

Putting here u = 222 /7% and v = 1/2 yields

F(l’) _ Z (_1)me—2m2z2 _ % Zexp (_M) . (31

F(h/Vt) = IP’OJ,O(sup |BOYO| < h/\f)

0<s<1

= Poso < sup }Bff’(’] < h)
0<s<1

= Poso (sup |Bg’t’0‘ < h) ,
0<s<t
where it is used that
(\/%BS,I,O) i (Bgt,t,o

0<s<1 )ogsgv

which can be seen by applying the scaling property of Brownian motion to the representation
(6). Consequently,

(h/\/_) POtO( (=h,h) > t) P07t,0(7z—h,h) — oo)

In the following, we will denote the Laplace transform of a function f by

L) = [T et >0

Notice that we also indicate the integration variable ¢.

Lemma 3.7. For |y| > h,

T h T
/ / pr—i(x, y)A(z, h, t)dzdt = h/ pr—(0,9)A(0, h, t)dt. (32)
0o J-n 0

Proof. We prove Lemma 3.7 by showing that the Laplace transforms of the two sides of
(32) coincide. Using Fubini’s theorem and the convolution formula, we get for the Laplace
transform of the L.h.s. of (32)

Lo / / pr—i(z, y)A(z, h t)dxdt) / Lin(pe(x,y))Lon(Az, h,t))dx.  (33)

13



To compute the second Laplace transform expression of the r.h.s. of (33) we use the series
representation (16). For x € (—h, h) it holds that

th(mh ) th(mh ) 2h2 2
> (=Dme <> e 322( ) S
Im|>2 Im|>2 m>2 L—e™

Hence one may interchange the summation and the Laplace transform, and since

1
ﬁt,’y(pt(x7 Z)) = \/_2—767\/%‘2720'7

one gets
o a2
2mh(mh—zx) e 2t
Li(A(z,h,t)) =L DMt
tﬁ( ( )) t,y (m_z_oo( ) \/%>
= Y (=1L (pi(x,2mh))
1 o0
— —V27z] V2yz -2z m _,—/272mh
=——|e + (e +e )Y (—1)™e
—272h
_ L (vl (VD 4 e~ m)i .
) 1+ e—v272h

By a straightforward calculation, this yields for (33)

L L 1 — e~VZTi2h
— eVl =
/_h Et,‘r(pt(l‘7y))£tﬁ(A(m7h7 t))dl’ - 2,)/6 e 14+ e V272h
h /o
= 2—6_ 2l tanh(hy/27). (34)
v

We continue with the Laplace transform of the r.h.s. of (32). From (31) we get

Lo (A0 B 1) = hz / exp( (2K ;hlf Qt) excp(—t)dt

8
= h
kz:; (2k — 1)2m2 4 8h?y

tanh(h+/27)
_ anvey) 35
V2y )

where we use

4y &
¢ h( >:_ : R
an wz%—l 220 €



(see [6, Subsection 1.421]). From the convolution formula we conclude that

Lo (h /0 th(O,y)A(O,h,t)dt> — BLor (920, )) Lon(A(0, b, 1))

h/ mly‘ tanh(h\/ 2’)/)

= —¢ . (36)
V2 V2
We see that (34) and (36) coincide which finishes the proof of Lemma 3.7.
O
Theorem 3.8.
(i) For the Brownian bridge with |y| > h,
T
pr—(0,y)
E _ =h ——2A(0, h, t)dt. 37
O,T,y[ ( h,h)] /0 pT(07 y) ( ) ( )
(ii) For the 3-dimensional Bessel bridge with positive y ¢ (r — h,x + h) and x > h,
T ,.(3)
Ef:%ﬁy[ﬁm—h,w—‘rh)] = h/ %ﬂA<Ov h: t)dt (38)
0 ,rT (:B) y)
Proof. (1) We derive (37) from (10), (8) and Lemma 3.7.
(i1) Recall (27). Since by (15) it holds
(3) . .
7/.Tft(Z7 y) — Eprt(Za y) pT*t<Z7 y) (39)
rNey) 2 pr(y) —prle,—y)
we have
(pT(xa y) - pT($7 _y>)E;(g?:'_)r7y|:7EZE—h,Z+h)]
T z+h
— [ ] A h e~ prea(e )
0 z—h
T rh
— [ ] )i ya) = pr-o(, ~(y+0))dude
0 J-n
T
= h/ A0, h,t)(pr—¢(0,y—x) — pr—(0, y+x))dt,
0
where the last equality is implied by (32). Then (39) yields (38). ]

Remark 3.9. (i) We have not been able to find a probabilistic explanation for the appear-
ance of the Kolmogorov distribution function in the representations (37) and (38).
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(i1) Notice that the integrands w.r.t. ¢ of the expressions in [Theorem 3.4, equation (21)]
and in [Theorem 3.8, equation (37)] do not coincide, that is

h
/ prt<Z7y)A(zu hvt)dz # hprt(Ovy)A<07 h7t)
—h
To see this, one can compare the double Laplace transform of
h
hpr—+(0,y)A(0,h,t) and / pr—i(z,9)A(z, h,t)dz.
—h
A similar computation as in the proof of Lemma 3.7 yields for A > 0

! h tanh(hy/2(y + \))
Lr, h/ pr—:(0,9)A(0, h,t dze_’\tdt) _ vl '
Ty ( ; T t( ) ( ) m 2@4_}\)

On the other hand, after some calculations,

T rh
Lr, (/ / pr—i(2,y)A(z, h, t)dze_’\tdt>
0 J-h

e~VZIh | VZih ]

e—V2OHNR | o1/26400h

= _1 v [1_

A2y

(ii1) It is also possible to use (37) and (38) to show (22) and (23). For example, after
the variable transform ¢ = h?r one finds an integrable majorant and concludes by
dominated convergence that

T (0 e
h/ MA(O,h,t)dt%/ A(0,1,t)dt, h 0.
0 pT(Ouy) 0

Then by monotone convergence, thanks to relation (35) one obtains

> > tanh(y/2
/ A(0,1,t)dt = lim e_VtA(O, 1,t)dt = lim M -1
0 y—0+ 0 y—0+ \/ﬂ

We conclude this section by pointing out a connection between the Kolmogorov distribu-
tion function and the density of the last visit of 0 by a Brownian motion before 7(_, 5. This
connection has been noticed by Knight in [8, Corollary 2.1].

We provide here a different proof for this fact.

Proposition 3.10. When W is a Brownian motion killed at T(~hpn), then t — %A(O, h,t) is
the density of the last passage time X\ := sup{t > 0: W; = 0}.

16



Proof. 1t is well known that (cf. [2, Part I, Chapter II, No 20, p. 26])

BV (o € dt) = 200 4 (40)

Go(0,0)

where
o

,\( ) 1  (—y+dmh)?  (ztyt(2mt1)2m)2
q(z,y) = E e 2t —e 2t
V2rt

m=—0oQ

is the transition density (w.r.t. the Lebesgue measure) of W (cf. [2, Part I, Appendix I, No 6,
p. 126]), and

%}Sh_y)’ —h<z<y<h,
§0<$,y):
M}Lh_m)’ —h<y<ax<h,

denotes the O-resolvent l&ernel (see [2, Part I, Appendix I, No 6, p. 126]). Notice that
7:(0,0) = A(0, h,t) and Go(0,0) = h so that from (40) we get

A0, 1)

PV (N € dt)/dt = :

4 Application

In this section we apply our previous results to rigorously prove in Corollary 4.3 an estimate
needed by Walsh in [15]. The convergence analysis there succeeds to identify the leading
constants (', C'y appearing in the error expansion

Elg(X") — g(X1)]= C1y/T + T + (), neven (41)

(cf. [15, equation (14)]) in terms of expressions depending on the function g (which is as-
sumed to be exponentially bounded and piecewise twice continuously differentiable). Here
Xy = oW, fort > 0and (X ,g"))zzo denotes a symmetric simple random walk with time step
T'/n and space step size o+/1"/n. For simplicity, we will put o = 1 and hence consider

E[Q(Wén)) — g(Wr)].

The central idea for this error analysis is to build the random walk from a given Brownian
motion (W;);> so that both processes are on the same probability space: Fix 7' > 0 and
n € N. For h := /T /n define 7y := 0 and

T i=inf{t > 7 : |[W, =W, _ | =h}, k>1

17



Then (W, —W, )2, is a sequence of i.i.d. random variables with P(W,, — W, =h) =
P(W,, — W, _, =—h) = % Let k, be such that 7, < T < 74, 1. One central idea to get
(41) is to split the error into a local part (exploiting the closeness of W and W, ) and a

kx+1
global part (using binomial distribution),

E[(Q(WT) - g(WTk*+1))]l{k'* odd}] + E[(9<W7'k*+1> - g<WTn)]l{k* odd }]7

while the splitting is done with W, if k. is even. For this, in [15, Section 9] the conditional

kx+2
probability
q(x) :=P(kyiseven |Wr =2), xz€R

is introduced (there k£, is denoted by
L). We want to study and estimate 3h
q- The reason to consider only even
n and even k, + 1 or k, + 2 is to
avoid even/odd fluctuations known
to appear in binomial tree schemes.
Notice that k£, is an even number if
and only if W, is an even mul-
tiple of h. The process (W;)o<i<r
given Wy = 0, Wp = x is identical
in law with a Brownian bridge from
0 to z and of length 7. We denote
this bridge by <BE’T’”“’) . By
0<t<T
time reversion, we get the Brown-

ian bridge <Bf ’T’0> :
0<t<T
We fix k£ € Z and assume = € ((2k — 1)h, (2k + 1)h). For simplicity put

b+x
WT:X

atx

hi=(2k—1)h, h:=2k+1)h, he:=2kh (42)

for the lower and upper value, and for the even’ midpoint of the interval. Then, given
Wr = x, we have that "k, is even’ is the same as "W, = h.’. For the time-reversed bridge
associated to [P, 7o we get

P277T70(77le < E)v h <z < hea

q(x)—P(k*iseven|WT—x)—{]P)xTO(% <T) ho<z<h

where 7,(w) = inf{t > 0 : w(t) = y} for w € C0, T]. For the time-reversed and by —z

shifted bridge this means it hits the ’shifted even line’ h, — = before the shifted odd one:

PO,T,*Q,‘(,];L(E*Q? < Efw)a h <r< hea

P(k* 15 eVGnlWT - x) B { PO,T,—x(ﬁle_fL‘ < E—z)a h‘e <z < E

18



Forany a < 0 < bandy ¢ (a,b) it holds
]EO,T,y [BT(a,b)} = a(l — P()’T’y('ﬁ) < 7;)) + bPo,TﬂJ(% < 7;)

Consequently,
—a ]EO Ty [BT i|
P 2 = e
01y(To < Ta) b—a+ b—a
Hence
T ;h n Eo,Tﬁz [B;L’(hz,hcz)} : h <r< hm
o - 43
Q( ) h—x IE‘dO,T,*fJC [BT(he—:vﬁ—z)} h << E ()
J— € x ’
h h 7

Arguing that Brownian bridge and Brownian motion have a similar exit behavior for small
h, in [15, equation (20)] it is stated that

: h
olx) = BT o), @)

where € R, N = {(2k-+1)h : k € Z} and dist(z,N") := inf{|z — y| : y € N"}. If one
compares (44) with (43) one notices that

dist(z,N") isequalto z —horh —

so that we should have

_ dist(2,N})  Eor,—o[Br)]
h N h

where (42) was used to rewrite 7T(y—yn,—z) and T, _, 5, as

q(x) = O(h), (45)

T(.I) = ﬁkhfx,(kJrl)hfx) ifx e (k}h, (IC + 1)h) (46)

We will show below that (45) is indeed true for a fixed x. However, we will see that this
relation does not hold uniformly in =, and therefore it can not be used to estimate the second
term on the r.h.s. of (51) below. We will estimate that second term in Corollary 4.3 below.

Lemma 4.1. Suppose that a < 0 < b, y ¢ (a,b), T > 0and h > 0. Then

]EO,T7 [Ta,b]
o B,y )| < =LA (2(/a] v b) + y| +3v2T) 7)
Proof. Restricting the expectation onto the set {7, ) > c}, (Where we choose ¢ = % to sim-
plify the computation for the restriction onto {7, ;) < c}) we derive by Markov’s inequality
that

2(lal v b)

[Boz [Brow Limu=rm] | < (lal VBP0 (T > T/2) < =

EO,T,y [7Ea’7b)] °
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To estimate ‘E()’T,y [B']'(a’b)]l{']’(a,b)gj‘/g}] ‘ we let

. tdaw. t -
BYTY .— (T — ¢ Sy, telo,T d BYTY .=y,
t ( )/0 T —_ s + Tyv S [ ) )7 an T y

i( 07T,y)
0<t<T — t 0<t<T

T :=inf{t € [0,T]: BY™ ¢ (a,b)}

Then (B") (cf. (7)). Setting

ylelds E [BT ]1{7'<T/2}} EO,T,y [BT(a,b) ]1{7’(a7b) ST/Q}] and

‘E [BF " rary] ’

~ dW, ly| .=
< Blo ) [ et ]|+ Y

T qw, . ™ aw, | |y~
<7 E[/O g ]1{T<T/2}} VE (T/\(T/Q))/O |+ LR

To benefit from Markov’s inequality again we notice that the optional stopping theorem

yields E [ Ty dWs — 0 so that
TAL dW TAL dW
E[/ F s ]l{’f‘<T/2}:| / ety ]1{7’>T/2}:| :
0 T — S - 0 T — S

Then by the inequalities of Cauchy-Schwarz and Markov,

B[t /T%} : (%Em)é <E[/T T/27

= |E

VAN
N
Nl
=
|
S~
VRS
TN
Nl
~
|3V
&=
A~ vl
il
> &
2o | N
N—— I
N~ ~——
N o=

< (V2/T)E[T].
Again by the Cauchy-Schwarz inequality,

-1\ [T aw
E|(Tr3) S
T/\Q /0 T -5

<

IN
TN TN
| =
= A~
jz =
~__ >
ool N
/—\ \/
A~ >
S
o= VN
S
/? S
t ]
> 2
ol
~__ =
— &
m Va)
e
_
~_
.

< V2/TE[T].
From the above estimates and Eq 7., [T(a,n)] = E[T] we get (47). O
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Now we derive estimates for Eq 7., [7(ap))-
Lemma 4.2. Let T' > 0 be fixed. Suppose that a < 0 < bandy ¢ (a,b).
(i) It holds

bClal +y)| AT if y=b,
EQT,y [ﬁa,b)} S { [|a|(2b+ |y|)] AT lf y S a. (48)
(ii) Define for |y| > h
T, hy) = Bl Tnn] “9)

12
Then

Eory[Tan] <CO—a)* iflyl=b—a,
where C' = C(T,b — a,y), and it holds

lim C(T,b—a,y)=1.

b—a—0,a<0<b

Proof. (1) We first assume that y > b. We let

BT .— (1 . —)Wn byl

T €[0,7)

T’
and BYTY := y. Then (B*")ccr £ (BOT)oier (cf. (6)). Set also
T :=inf{t € [0,T] : BY™ ¢ (a,b)}.

Since by definition 7, ;) < T'if y ¢ (a, b) one has T, ) £ T AT. With the aid of the change

of variable u = ==, ¢t € [0,T), u > 0, one gets
a— Y% p_ ¢
Eory[Tiw) [mf {teo.m:we ¢ (=7, {)}AT]
A s
u u
_Eolmf Wug’:‘(a—i—(a—y)f,b—&-(b—y)f)}/\T].

Since y > b, for any u € [0, T] we have (a4 (a —y)#,b+ (b—y)%) € (2a —y, b) and then
by (2)

Eo 1y Tap)] < ]Eo[inf{u >0: W, ¢ (2a—y,b)} A T]
= Eo[Ta—yn)) AT < [b(2]a| +y)] AT.

21



The case y < a follows similarly.

(i) For |y| > b—a we have Eo 1y [T(ap)] < Eory [T(=(v-a)b—a)] - Using (49) with h = b—a
gives for |y| > h that

IEO7T,y [ﬁ—h,h)} = h2 C(T7 h? y)v
and from Theorem 3.4 (i) we have that C'(T', h, y) converges to 1 as h — 0. |

Hence for x € (kh, (k + 1)h) and k € {—1,0} we get by Lemma 4.2 (i) that
Eo,1,—a | T(kh—s,(k+1)h—=)] < ch?, and for k & {—1,0} we use (ii). Then Lemma 4.1 implies

Eo 7 —2[Br()] = O(h?).

However, this equality does not hold uniformly in x with the consequence that we can not
use (44) in integrals like (51) below. For example, for the sequence xy := (k+0.5)h it holds

EO,T,—xk [BT(xk)] = ]EO,T,—azk [BT(_;L/Q,;L/Q)] - _h/27 k — 00, (50)
which contradicts that Eo r,_,[B7(z)] = O(h?) holds uniformly in x. The limit in (50) can
be easily seen from the representation (B} ™) _ < (By" — =) _, .. For any

path ¢ — B? o (w) one can find a sufficiently large x, such that the transformed path
t— BY0(w) — % exits (—h/2, h/2) first at —h/2.

Nevertheless, one can prove the estimates needed in [15], where ¢ was used inside an
integral over the real line. We only discuss here [15, equation (38)], because the calculations
for the other cases where the function ¢ appears are similar. For o = 1 and denoting N* :=
{2kh : k € Z} the last term in [15, equation (38)] can be written as

/_oo (2h2 _ diSt2<x,NZ)) q(x)pr(0, z)dx

o

— / (2n* — dist®(z, N")) dist(z,N2)h "' pr(0, z)da

o

+ / h (20 — dist*(z,N)) (¢(x) — dist(z,N2)h ™ )pr(0, z)dz. (51)

[ee]

The calculation for the first integral on the r.h.s. is carried out in [15]. To justify (41) it
remains to show that the other integral behaves like O(h?). Since 2h% — dist*(z, N*) < 2h2
and

lq(z) — dist(z, N))h ™| = |Eo1,—o [ By [0

by (43) and (46), we get the desired estimate from the next corollary.
Corollary 4.3. For T > 0 and h = /T /n, there exists a C = C(T) > 0 such that

/ ‘Eoy'n*x [B'T(m)} |pT(O7 x)dx < Ch27
where T (x) is given in (46).
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Proof. Since B%;’)_ v d —BP,-’(T_’Z), it suffices to estimate the integral over [0, 00). By (47),

Bor—[Bria]| < 25T (oh + ol + 3.

If € (0,h), then T (x) = T(_sr—a), and estimate (48) gives
Eor,-o[T(0)] < 20 (h—w+ ) <0,

For x > h it holds
Eor [T (z)] < C(T, h, —$)h2

by Lemma 4.2. From the above estimates we get

h hoh + x4+ 3V2T
/ |Eo.1,—o [Brw)] | pr(0, z)dz < h? / = pr(0,z)dr < C(T)R?, (52)
0 0
and
> < o2h + x + 32T
/ ‘Egm_m [BT(x)} |pT(O, x)dr < h2/ C(T, h,—x) T pr(0, x)dx
h h

IN

C(T)h? /00(1 +2)C(T, h, —2)pr(0, z)dz
< C(D)K?, (53)

where the constant C'(T") varies from line to line. The last inequality in (53) can be seen as
follows. We use the representation (37) for (49) and substitute t = h%u, so that

T
C(T,h, —x) = Eor—o[Tipm)h 2 = h~! / MA(O, h,t)dt

0 pT(va)

T/h? 2, (0
:/ Pr-n?ul’h L) ul ’x>A(O,1,u)du.
0 pr(0,7)

By Fubini’s theorem it holds
/ A(0, 1,u)/ (14 2)pr_p24(0, 2) Lo pyn2) (w)dzdu < C(T),
0 h
since u — A(0, 1, u)1 (g, (u) is a density. The claim then follows by (52) and (53). O
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Random walk approximation of BSDEs with Holder
continuous terminal condition

Christel Geiss!, Céline Labart?, Antti Luoto®

Abstract

In this paper we consider the random walk approximation of the solution of a Markovian
BSDE whose terminal condition is a locally Hélder continuous function of the Brownian motion.
We state the rate of the Lo-convergence of the approximated solution to the true one. The proof
relies in part on growth and smoothness properties of the solution u of the associated PDE. Here
we improve existing results by showing some properties of the second derivative of u in space.

Keywords : Backward stochastic differential equations, numerical scheme, random walk approxi-
mation, speed of convergence

MSC codes : 65C30 60H35 60G50 65G99

1 Introduction

Let (2, F,P) be a complete probability space carrying the standard Brownian motion B = (B¢):>0
and assume (F;);>o is the augmented natural filtration. We consider the following backward
stochastic differential equation (BSDE for short)

T T
Y, = g(Br) + / F(r, By, Yo, Z,)dr — / Z,dB,, 0<s<T, (1)

where f is Lipschitz continuous and g is a locally a-Hoélder continuous and polynomially bounded
function (see (3)). In this paper we are interested in the Ls-convergence of the numerical approx-
imation of (1) by using a random walk. First results dealing with the numerical approximation
of BSDEs date back to the late 1990s. Bally (see [2]) was the first to consider this problem by
introducing random discretization, namely the jump times of a Poisson process. In his PhD thesis,
Chevance (see [17]) proposed the following discretization

yk:E(yk+1+hf(yk+1)“Fg)7 k:n_lv"'707 TLGN*

and proved the convergence of (Y;"); := (yj/n)): to Y. At the same time, Coquet, Mackevicius and
Mémin [18] proved the convergence of Y™ by using convergence of filtrations, still in the case of

'Department of Mathematics and Statistics, P.O.Box 35 (MaD), FI-40014 University of Jyvaskyla, Finland
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2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France
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a generator independent from z. The general case (f depends on z, terminal condition £ € Lg)
has been studied by Briand, Delyon and Mémin (see [5]). In that paper the authors define an
approximated solution (Y, Z™) based on random walk and prove weak convergence to (Y, Z) using
convergence of filtrations. We also refer to [27], [29], [30], [31] for other numerical methods for
BSDEs which use a random walk approach. The rate of convergence of this method was left as an
open problem.

Introducing instead of random walk an approach based on the dynamic programming equation,
Bouchard and Touzi in [¢] and Zhang in [35] managed to establish a rate of convergence. However,
to be fully implementable, this algorithm requires to have a good approximation of its associated
conditional expectation. For this, various methods have been developed (see [24], [19], [15]). For-
ward methods have also been introduced to approximate (1): a branching diffusion method (see
[26]), a multilevel Picard approximation (see [31]) and Wiener chaos expansion (see [7]). Many ex-
tensions of (1) have also been considered: high order schemes (see [11], [10]), schemes for reflected
BSDEs (see [3], [14]), for fully-coupled BSDEs (see [21], [9]), for quadratic BSDEs (see [13]), for
BSDEs with jumps (see [23]) and for McKean-Vlasov BSDEs (see [1], [16], [12]).

From a numerical point of view, the random walk is of course not competitive with recent methods
listed above. We emphasize that the aim of this paper is to give the convergence rate of the initial
method based on random walk, which, to the best of our knowledge, has not been done so far.

As in [5], let us introduce the following approximation of B, based on a random walk:
[t/h]
By =vhY &, 0<t<T,
i=1

where h = % (n € N*) and (¢;)i=12,... is a sequence of i.i.d. Rademacher random variables. Consider
the following approximated solution (Y, Z™) of (Y, Z)

n—1 n—1
Y =g(BE) +h Y fltmsrs BE Y Z8) = VR Y ZE em1, 0<k<n—-1.  (2)

m=k m=k

The main result of our paper gives the rate of convergence in Ly-norm of Y,* — Y, and Z]' — Z, for
each v € [0,T) (see Theorem 3.1). Basically, we get that the Lo-norm of the error on Y is of order
ingredients. In particular, we need some estimates on the bound of the first and second derivatives
of the solution of the PDE associated to the BSDE (1). We establish these bounds in the case of a
forward backward SDE (FBSDE for short) whose terminal condition satisfies the Holder continuity

condition (3). This result extends Zhang [36, Theorem 3.2].

h7 and the Lo-norm of the error on Z is of order

The proof of this result is based on several

The rest of the paper is organized as follows. Section 2 introduces notations, assumptions and the
representation for Z and Z" based on the Malliavin weights. Section 3 states the rate of convergence
of the error on Y and Z in Ls-norm, which is the main result of the paper. Section 4 presents
numerical simulations and Section 5 recalls some properties of Malliavin weights, of the regularity
of solutions to FBSDEs with a locally Hélder continuous terminal condition function and states
some properties of the solutions to the PDEs associated to these FBSDEs.

2 Preliminaries

This section is dedicated to notations, assumptions and the representation of Z and Z" using the
Malliavin weights.



Notation:

e Gr:=o0(g: 1 <i<k)and Go = {0, Q2}. The associated discrete-time random walk (B} )7_,
is (Gr)p_o-adapted.

o |[-llp=1"ILre@) for p> 1 and for p = 2 simply || - ||. constant.
Assumption 2.1.

o g is locally Hélder continuous with order o € (0, 1] and polynomially bounded (py > 0,Cy > 0)
in the following sense

V(z,y) €R?, g(z) — g(y)] < Co(1 4[] + |y[7)|z — y|*. (3)
o The function [0,T] x R : (t,z,y,z) v f(t,z,y,z) satisfies
lf(t,z,y,2) — (2,9, ) S Ly(VEt—t + |z — 2|+ ly — | + ]2 — Z|). (4)
Notice that (3) implies
lg(@)] < K(1+ [aP™) =: W(x). (5)

In the rest of the paper, the study of the error (Y™ — Y, Z" — Z) will either rely on (2) or on its
integral version:

Y =gBr)+ | fr, B Y, Z)d[B", B, — Zp-dB, 0<s<T, (6)
(s,T] (s,T]

where the backward equation (6) arises from (2) by setting Y," := Y;" and Z] := Z}! for r €

n—1

[tm,tm+1). For n large enough, (6) has a unique solution (Y™, Z"), and (Y, Z} ) — is adapted
to the filtration (G,,)" Y. Let us now introduce the Malliavin representations for Z and Z". They
are the cornerstone of our study of the error on Z.

2.1 Representations for 7 and 2"

We will use the representation (see Ma and Zhang [28, Theorem 4.2])
T
Zi =B (g(Br)Ng+ [ f(s, B YaZ)NMs ), 0<t<T, ™)
t

where E,[-] = E[-|F;], and for all s € (¢,T] we have

Nt — Bs B Bt
s s—t
Lemma 2.2. Suppose that Assumption 2.1 holds. Then the process Z™ given by (6) has the repre-
sentation

B — B} n—1 pr _pr
Zt’; = Ex (g(B;E)tntk) +Ex | A Z f(th’B?va;Zqum)M (8)
b =t m=k+1 tm — tk
fork=0,1,...,n—1, where Eg[-] := E[-|Gg].



Proof. We multiply equation (2) by ex41 and take the conditional expectation with respect to G.
Since (Y, Z]!) is Gr-measurable, it holds for 0 < k <n — 1 that

Ey (5@28k+1)

n—1 n—1
= E (9(BF)er41) + hEg (Z J(tmy1, BY Y, Z?m)f:‘kﬂ) — VhEy (Z Zt"ma?m+1€k+1>
m=k m=Fk

n n

B — B nl B
t"_tktk>+h3/2 >, Ek(( m+1, Bi.,, KZ,me)w_%> VhZ, (9)

tn m=k+1 t

— ViE; (5D

where the L.h.s. is equal to zero. Indeed, for m > k + 1, we have
Ex(Z emti€kt1) = Ex(Z] exr1Emems1) =0,

and for m = k it holds Ej(Z], 5k+1) = Z['. Moreover, the fact that B} = \[Z 05m+1’ where
(Em)m=1,2... are i.id., yields

n—1 n—1 n _ Bn
o) =B (o) & 25 ) = (o) - 25 ) = v (o )

Similarly, for m > k + 1, we get (using [5, Proposition 5.1], where it is stated that both Y, and
Zp can be represented as functions of ¢,, and B} )

B} — B!
Er, (f(tme1, B, Yo, 27, Jens1) = VhEx (f(tm+1, Bl Yo Zh) =t ) :
m

It remains to divide (9) by v/ and rearrange. O

3 Main result

This section is devoted to the main result of the paper: the rate of the La-convergence of (Y, Z™)
o (Y, Z). The proof will rely on the fact that the random walk B™ can be constructed from the
Brownian motion B by Skorohod embedding. Let 75 := 0 and define

7, :=inf{t > 7,1 :|By — By,_,|=Vh}, k>1.

Then (B;, — B, )72, is a sequence of i.i.d. random variables with
P(BTk - Bkal = i\/ﬁ) = %7

which means that v/hey, < B;, — B;, ,. We will use this random walk for our approximation, i.e.
we will require

[t/h)
Bl'=> (B, —By,_,), 0<t<T. (10)
k=1

Properties satisfied by 7, and B,, are stated in Lemma A.1. We will denote by [E;, the conditional
expectation w.r.t. Fr, .



Theorem 3.1. Let Assumption 2.1 hold. If B™ satisfies (10) then we have (for sufficiently large
n) that

EY, — Y2 < Cohz for vel0,T),

@ @

h2
CL—=1, € |tk t , k=0,...,n—1,
T i + 1(T— 3 2t for v € [ty tri1) n

E|Z, — Z!']* < Cy
where we have the dependencies Coy = C(T,py, Ly, Cy,CY 5, CZ 5, Ky, c5.4, ), Ci = C(T,po, CZ 5, )
and Ky := supg<i<r |f(¢,0,0,0)|.

Remark 3.2. Theorem 3.1 implies that

T
sup E|Y, — Y2 < Coh%  and ]E/ \Zy — ZP2dv < C(Co, C1, B) R for B € (0,2).
ve[0,T) 0

Proof of Theorem 3.1. Let u: [0,T) x R — R be the solution of the PDE associated to (1). Since
by Theorem 5.4

Ys = U(S, BS)? Zs = uI(S7 Bs)7 a.s.
we introduce
F(s,x) = f(s,x,u(s, ), uzs(s,x)),

so that F(s, Bs) = f(s, Bs,Ys, Zs). We first give some properties satisfied by F.

Lemma 3.3. If Assumption 2.1 holds then F' is a Lipschitz continuous and polynomially bounded
function in x:

xr1 — &
|F(t, 1) = F(t,22)] < C(T, Ly, ca3) (1 + oa [T + Iw2lp°“)(i|p ' ) flg,
— 2
F(t,z)| < C(T, Ly, ci? Kf)————,
|[F'(t,x)] < C( f1€5.4 f>(T—t)12

where W(x) is given in (5).

Proof of Lemma 3.3. Thanks to the mean value theorem and Theorem 5.4-(ii-c) and (iii-b) we have
for x1, 29 € R that there exist &1, & € [min{x1, x2}, max{x1,z2}] such that

|F(t,z1) — F(t,z2)] = |f(t,x1,u(t,z1),us(t,21)) — f(t, 22, u(t, 22), uz(t, z2))|
< Ly(lor — @o| + |ult, z1) — u(t, m2)| + |ua(t, 21) — ua(t, 22)])

LU v
< 1 (1 L Ga (éil_)a L G4 (fg)g o1 — )]
(T —t)=2 (T —t)"2
T —x
< O(T, Ly, e5) (L |t + |x2|p0+1)(|Tlt)13|3’
The second inequality can be shown similarly. O



For the estimate of E[Y;, — Y;"|* we will use (1) and (2): Since Y;? is F,-measurable we have

Ve, = Yiell < By, 9(Br) — Er g(B7)|

We frequently express Conditiogal expectations with the help of an independent copy of B denoted
by B, for example E,g(Br) = Eg(B; + Br_¢).
By (3) and Lemma A.1,

n—1

Etk/ f(s,Bs,Ys, Zs)ds — hEr, Y f th,Bfm,}Qz,me)H. (11)

m=k

e, 9(Br) — Er, g(BT)|? E[Eg(By, + Br-v,) — Eg(Br, + Br,_,)I?

~ 1 ~ ~ ~
< (EE(1)Y)2(BE|By, — By, + Bry, — B, _,['*)2
1 1
< C(Cy,T,p0)((E|By, = Br, |')? + (E|Br—y, — Br, ,|"*)?)
< C(Cg7T)p0)h%) (12)

where Wy := Cy(1 + |By, + Br_4|? + |B,, + Bz, _,|"). To estimate the other term in (11) we
consider the decomposition

Etkf(87 B57 Y:% Zs) - Erkf(tm+17 B?ma )/t:lnv Zz?m)

= (]Etkf(sv BS; YS7 ZS) - Etkf(tmv Btmv }/;Jnm Ztm)) + (Eth(tTH)Btm) - ETkF(tma BT ))

+(Er, F(tm, Br,,) — Er, F(tm, By,,)) + (Er f(tm, Bios Y Zt,,) — B f(tms1, BE,, Ye  Zy )
=: D1<8,m) + Dz(m) + ...+ D4(m)
so that
T n—1
‘ Etk / f(*S?BSvYSv ZS)dS - hETk Z f(tm-Ha B?mv Y;ﬁ?n’ Zz?m)
bk m=k
— m+1
Z ./ (5, m)ds +h2\|D(m I
For D; we have by Theorem 5.3 that
[D1(s,m)|| < Lg(vs—tm+ |Bs = Be, |l + [|Ys = Vi, | + |1 Zs — Z4,,.|[)
< O(T, Ly, CYy, Coypo) (T — 5)°F b3, (13)

where the last inequality follows from ||Bs — By, || = v/s — tm < h2 for s € [tm, tm+1] and

1 1
S 2 S 2
V= Yol + 12— Zu, | < (BU(B, ) (053 ([ @=netar) ves ([ @-near) )

a—2

< O(T,CY 4, C2 4. po)V5 — tm((T — 8)°F + (T — 5)°7°).

We bound D; using Lemma 3.3 and Lemma A.1. Similar to (12) we conclude (setting Vo :=
1+ |Btk + Btm—k|p0+1 + |B7'k: + Bf'm_k|p0+1) that

o=

|D2(m)|| = (E[Eq, F(tm, B,.) = En, F(tm, Br,,)I*)



=

- 1
< O(T, Ly GERVD g (txh + b ih)

_ m) 2
1 1
2,3 1
< C(T,po,Lf,c5.4)7(T_t )1_%h4.

For D3 we apply again Lemma 3.3 and Lemma A.1,

1
2,3
[Ds(m)|| < |F(tm; B,,) = F(tm, Br,,)|| < C(T, Ly, c57) == [|¥3|Bt,, — Br, |l
(T —ty,) "2
1 1
< C(T,po,L ,02’3 ———h1,
S (T, po f 5'4)(T—tm)1_5

where W3 := 1+ |B,, [P°t! + | B, |[Pot1. For the last term Dy we get
1 n n n
[Da(m)|| < Ly(h2 + By, — B, || + [Ye,, — Yo, [l + 126, — 20, 1)-

Finally, using the estimates for the terms Di(s,m), Dao(m), ..., D4(m) we arrive at

T _
||Y%k _Y;fZH < C(CQ’TJ)U)hZ +C(T7 Lfvcgﬁvcgﬁapﬂ) h%/ (T_S)TQdS

ty
53 ) n—1 h n—1
+C(T,po, Ly, c5i)h Y —————= +hLly Y (Ve = Yl + 126, — 222 11)
m=k (T_tm) 2 m=k
n—1
2,3 & n n
< C(Cy,T,po, Lf, €574, CY 3, CE3)hs + Ly > (Ve = Vi I + 12t — 22, 11)- (14)
m=k

For ||Zy, — Z, || we exploit the representations (7) and (8) and estimate

n 1
HZtk - ZtkH < T —t, ||Etkg(BT>(BT - Btk) - ]ETkg(BTn)(BTn - BTk)H
T B, — B
+|[Eue ( f(s, By, Ya, Z,) 2 ds)
tht1 S — tk

n—1 " n n B?m—BZZ
“Eo (b X fltmen, B Y 20— | |
1 m k

+H]Etk /t:k+1 f(s, Bs, Ys, ZS)B;:itdeH.

Then, similar to (12), we have for the terminal condition by Lemma A.1 that
1B, [9(Br)(Br — By,)] — Er[9(Br, )(Br, — B, )|
= ”]E[Q(Btk + BT_tk) - g(Btk)](BT—tk - B%nfk) + ]E[g(Btk + BT—tk) - g(BTk + B'Fn—k)]B'ank H
< C(CyaTopo)hi (T — t) 55 + O(Cy T, po)h i (T — 11,) < C(Cy, Topo)h5 (T — t4)7.

Here we have used that E[g(By, )(Br_t, — Bz, _,)] = 0. The term E[g(By, +Br_t,)—9(Bt,)](Br—i, —

B;, ) provides us with the factor (T — t;)2 (T — tk)h)i. For the next term of the estimate of
| Z1, — Zi, || we use for s € [ty tini1), where m > k + 1, the decomposition

By, f(5,Bs,Ys, Zs)(Bs — By,)  Er f(bmy1, By, Ye) 21 ) (B, — By
s — 1k tm — Tk




Etkf(sa BS7}/S7 ZS)(BS - Btk) N Etkf(tm; Btma Yim7 Ztm)(Btm - Btk)

s —tg b — Tk
Eth(tm7Btm)<Btm - Btk) _ ]ETkF(tW“BTm)( Tm Tk)
tm — t tm — tk
B. — B
+E7'k |:[F(tm> B‘rm) - F(tma Btm)]ﬁ
Br _— Bn
+E, [[f(tm,Btm,Ktm,Ztm) — f(t m+1, By Y ZZZH)]”]
m

= Ti(s,m)+ To(m)+ ...+ Ty(m).

Then by the conditional Holder inequality and by (13) as well as by Lemma 3.3 we have

- B B,— DB, B, —B
T e e ] e
s — Tk tm — Tk
1
Yy z a—2 h§
S C(TaLf7C5.3aC5.3’p0) (T_S) 2 m
EWU(B, )2)3
1T, Ly, b2, ) BB ) )
(T —tm) 2
|Bs — By, || 1 1 )
w (1Z2s —Ztmll LB _ B .
( s —th 1Bt t’“”s—tk tm — th
a—2 hi
< O(T, Ly, Ky, CY4,Cigc5%,p0)(T —5)° 2 3
(s—tk)4
Indeed,
1
B.- B 1 1 —1 (R G hi
M‘F”Btm_BtkH _ < \/5 m \/m k(s m)§C 4 -
s — 1 s—tr  tm— 1tk s — Tk (S—tk)(tm—tk) (S—tk)4

where the last inequality follows from s —t,, < t;41—tm = hand h < t,, —tx < s—t,. We estimate
T, with the help of Lemma 3.3 and Lemma A.1 as follows :

| | Bt,,, — By, |l

| ||Btm—k B BTmfk ||
— tk

ITo(m)| < |1Da(m)] S
m k

+ HF(tm7 BT’m,)

=

1 h

< C(T,po,Lf,Kf,65_4)(T P T ) )%
—Im m — Uk

Here Dy(m) := (B|F (t, By, + B, )~ F(tm, B, +B:, ) )2 which can be estimated as Da(m).
For T3 the conditional Holder inequality and Lemma A 1 yield

PN

1 h
(T = tm) ™2 (b — 14)2

IT3(m)|| < || Ds(m < C(T,po, Ly, 23)

)

n[R

| E——
— g

where Dy(m) := F(tm, By, ) — F(tm, By,,) is estimated as D3(m). Finally,

1
[Ta(m)l < Lg(h2 +||Bt,, = By, || + 1Y, — Yz,

— tm

I+ 126, — 22,

1
e



BS_B;:’C dsH one notices that by the conditional Hélder

For the estimate of HEtk ftf:“ f(s,Bs,Ys, Zs)

s—t
inequality,
Bs—B Bs—B
[ty f (5, B, Yer Zs) = | = B [(f (5, Bs, Ya, Zs) = (5, Biy, Yo, Zuy)) == |
1
S ||f(saBSa}/S9ZS)_f(saBtkv}/tkaZtk)Hﬁ
Y 2z a—2 h%
< C(Ta Lfv 05.3a 05.3,]90) (T - 8) 2 Ma
where the last inequality follows in the same way as in (13). Consequently, we have
C C ,T,p a T ds 1
12, — ch” < (gilo)hzx + C(T, Lf,Kf,Cgﬁ,Cg'g,céji,po)/ = 5 he
(T — tx)2 te (T —s) " 2(s—tg)1

N

n—1 1 h
+C(T7p07Lf>Kfac5.4)h Z _a 3
mot (T = tm)' 72 (t — 1)1

1

n—1
+Lsh Y (1B, = B I+ 1Ye,, = Yool + 126, — 22, 1)
m=k+1

x>

-~

1
Lemma A.2 enables to bound the second and third term of the r.h.s. by C%B(%, %), which

(T—t)2~ 2

is bounded by C — T Thus we get
(T—tx)2~ 4
Cohi i 1
Zy, — 20| < ——+Lth Yo, =Y N+ 2, — 20 ||) —.
1Ze, — Zy, | @i T m;ﬂ(\l ! o |+ 11 Z¢ tm\l)m

Then we use (14) and the above estimate to get

Coht il 1
Yo, =Y+ 0120, — 20| < ——=+CLph >, Ve, = YN+ 121, — 22 ) ——
(T —tg)? m=k+1 bk

If this inequality is iterated, one gets a shape where the Gronwall lemma applies. Indeed, setting
am = (|Ye,, = Y || + | Ze,, — Z1 ||) one has to consider the double sum

ST ]t Ol I S — s
a = h ———— | < Ch aj.
m=k+1 \l=m+1 ti-m bk 151 \moig1 Vim=kvli—m I=k+1

Consequently,

Coh%
(T —tg)

Ve, =Yl + 1120 — Zi |l <

(SIS

which gives the bound on the error on Z. Moreover, (14) yields
Vi, =Yl < Cohf,

k

If v € [tg, tr+1), we have by Theorem 5.3 that

1
v _ b} n
Yo = ¥ < ¥, = Vil + ¥, = Yl < C(C L) ([ (@ =) 4 %5, = Y22
k

9



-

v 2
12, = 22 < 120 = Zul + 120, — 23,1 < OCis Top) ([ (@ =102 2ar)" 41123, - 23,

tg
where
v a—1 1 «@ 1 «
/XT-@ dr < ~(v—1,)* < ~h
tr (0% (6%
and
v 1 v o 1 2 ) h2
[a—nars ——— [(@-n)iir < S CES T e —_
tr (T —v) 2 Jy, (T —v) 2z« a(T—v) "2

4 Numerical simulations

This section deals with the algorithm used to compute (Ytz, Z&) k=0,...n and numerical experiments
for three different terminal conditions. In each case the exact solution is available and we are able

to compute the error (Y" —Y,Z" — Z) in Lo-norm.

4.1 Simulation of (7,...,7,) and B"
In order to simulate (7i,...,7,), we use the fact that
=0 and Vk > 1, Tk = Tk—1 + Ok,

where (ok)i1<pn is an ii.d. sequence whose common law o represents the first exit time of the
Brownian motion B of the interval [—v/h, v/,

o :=inf{t > 0:|B| = Vh}

From the book of Borodin and Salminen [1], we have that the Laplace transform of ¢ is given by
A 1
E(e ) " cosh(v2AR) "

Let F' denote the cumulative distribution function of o. It holds E(e=*?) = AEF'(\), where F' is the
Laplace transform of F. Then, to obtain F', it remains to inverse numerically its Laplace transform.
Once we have F', we simulate the sequence (o)1<k<pn by following the steps of Algorithm 1.

Algorithm 1 Simulation of the sequence (71,...,7,)
Simulate one vector with uniform law (Uy,...,U,)
T0=0

for k=1:ndo
Compute oy, := F~1(U})
Define 7, = 11 + 0%
end for

10



4.2 Simulation of B"

In order to get the trajectory Bf,...,Bf (Bj = 0), we simulate an i.i.d. Bernoulli sequence
(Sk)lgkgn ie. P(&k = ﬁ:l) = % Then

(15)

o [ BVE e -
lgt1 — & —+/h  otherwise.

4.3 Simulation of (Y™, Z")

Since B"™ is built using the random walk (15), it can be represented by a recombining binomial tree.
Both (Y{!)o<k<n and (Z{ )o<k<n-1 can then also be represented as a recombining binomial tree.
Since Y;" = g(B}! ), we solve backward in time the BSDE by following these equalities, ensuing from
(2) (Y;" has been replaced by Yyr ., in the generator term, but the error induced by this modification
is smaller than the ones we consider)

1
Zh, = —En (Y, enn),

Vh
Y;Z = ]ETk (Yn

th+1

+ hf(tk—i-la B;;)Y;ZHa Zti))

4.4 Study of the error E[Y;" — Y, |* and E|Z;' — Z,, ?

In this subsection we assume that we are able to compute the exact solution (Y, Z). We want to
study numerically the convergence in n of E|Y;" — Y}, |? and E|Z}! — Z;, |, where (Y, Z) solves (1)
and (Y™, Z") solves (6). To do so, we approximate the error E[A} — A;,[* (A=Y or A= Z) by
Monte Carlo:

| M
EIAG — Ay [~ 52 D AR = AR = Ea (16)
m=1
1. For each Monte Carlo simulation, we pick at random one sequence (&1,...,&,) (which gives
the value of (By%,..., Bf')) and one sequence (71,...,T,).

2. From the sequence (1, .. .,&,) we get the trajectory of Y, including Y;”.

3. From the sequence (B, ..., Br,) (which is equal to (B, ..., B} )), we compute By, by using
the Brownian bridge method. We deduce (Y3, , Z;, ) as functions of By, .

In the following experiments, we plot the logarithm of the errors Ey and Ey (defined in (16)) w.r.t.
log(n). From Theorem 3.1, we get that log(Ey) and log(Ez) decrease as —§ log(n). By using a
linear regression, we compute the slope of the line solving the least square problem and compare it

a
to—Q.

4.5 Numerical Experiment
4.5.1 Case g(z) =€’ and f(y,2) =y +2

We consider the BSDE with terminal condition g(z) = ¢’*® and driver f(y,z) = y + 2. In this
case, we know that Y; = eT+BH3(T=t)  We run M = 20000 Monte Carlo simulations.

11



ErroronY

log(error)

log(n)

Figure 1: log(error on Y) w.r.t. log(n) for f(y,z) =y + z and g(z) = 7 2.

Erroron Z

log(error)
w
N
I

log(n)

Figure 2: log(error on Z) w.r.t. log(n) for f(y,z) =y + z and g(z) = T 2.

Figure 1 (resp. Figure 2) represents log(error on Y) (the error is defined by (16)) (resp. log(error
on Z)) with respect to log(n). For the Y case, the slope ensuing from the linear regression is —0.53.
Even though g(z) = e’ *® does not satisfy (3), g is locally Lipschitz continuous, and the outcome
seems to be consistent with Theorem 3.1 for a = 1. For the Z case, we get the slope —0.61.

4.5.2 Case g(r) =2% and f(y,2) =y + =2

In that case, we know that Y; = T ~!((By — (T —t))?> + T —t) and Z; = 2T ~4(B; — (T — t)). We
run M = 20000 Monte Carlo simulations.
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ErroronY
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-0.8 -

1.2 -

1.4 -

-16 T T T T T T T T
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Figure 3: log(error on Y) w.r.t. log(n) for f(y,2) =y + z and g(z) = 22.

Erroron Z
0.6

0.4

0.2 4
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-0.4 -

log(error)

-0.6 4

-0.8 -

1.2 -
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log(n)

Figure 4: log(error on Z) w.r.t. log(n) for f(y,z) =y + z and g(x) = 2.

Figure 3 represents log(error on Y') with respect to log(n). The slope of the linear regression
is —0.465. Figure 4 represents log(error on Z) with respect to log(n). The slope of the linear
regression is —0.48. The results are then consistent with Theorem 3.1.

4.5.3 Case g(z) = /|z| and f(y,z) =y + 2z

In that case, we know that Y; = e%]ﬁ(\/ |Br_; + Bt|eBT*t). We run M = 20000 Monte Carlo
simulations.
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Figure 5: log(error on Y) w.r.t. log(n) for f(y,z) =y + z and g(z) = /|z|.

Figure 5 represents log(error on Y') with respect to log(n). The slope of the linear regression —0.56.
Here we notice that the modulus of the slope we get is larger than i, the upper bound obtained in
that case in Theorem 3.1.

5 Some properties of solutions to PDEs and BSDEs

In the following we recall and prove results for FBSDEs with a general forward process, even
though we apply them in the present paper only for the case where the forward process is just
the Brownian motion. Restricting ourselves to the case of Brownian motion would not shorten the
proofs considerably. Let us consider the following SDE started in (¢, x),

S S
Xt =g —I—/ b(r, XL*)dr +/ o(r,X!")dB,, 0<t<s<T, (17)
t t

where b and o satisfy
Assumption 5.1.

1. byo € 01?72([0,T} x R), in the sense that the derivatives of order k = 0,1,2 w.r.t. the space
variable are continuous and bounded on [0,T] x R,

2. the first and second derivatives of b and o w.r.t. the space variable are assumed to be ~y-Hdélder
continuous (for some v € (0,1], w.r.t. the parabolic metric d((x,t), (z',t")) = (|o — 2'|> + |t —

t’\)% on all compact subsets of [0,T] x R,
3. b,o are %—H{'}'lder continuous in time, uniformly in space,

4. o(t,x) >0 >0 for all (t,x).

14



5.1 Malliavin weights

In this section we recall the Malliavin weights and their properties from [22, Subsection 1.1 and
Remark 3].

Lemma 5.2. Let H : R — R be a polynomially bounded Borel function. If Assumption 5.1 holds
and XY is given by (17), then setting

G(t,z) .= EH(X}")
implies that G € C%2([0, R) x R). Especially it holds for 0 <t <r < R <T that
0uG(r, X17) = E[H(X )N DI Fl], and  92G(r, X17) = E[H(XE" NG| ),

where (F})repm is the augmented natural filtration of (B}‘;’O)TE[LT],

nphen - 1 / TV s, andN;;’zv(t’x):Nﬁ’l’(t’x)VXﬁéxNX’l"t’“’)+VN§’1W)
r O‘(

R R—r s, X" )V X" VX ’
with p := TER. Moreover, for q € (0,00) it holds a.s.
(E[|Ngi7(t,x)|q|]:ﬂ)% < Lp (18)
(R—r)2
and E[Ngi’(t’r”frt] =0 a.s. fori=1,2. Finally, we have
H(XE") —E[H(XE")|Ft
g N
and . . ,
s |H(XY) — BIHXE)F @)
||6zG(T7 Xv' x)”Lp(]P’) < Kq R—r -
for 1 < q,p < o0 with%—&—é:l.
5.2 Regularity of solutions to BSDEs
Let us now consider the FBSDE
T T
ViT = g(X5") +/ fr, XE* Y 757 dr f/ Zb*dB,,  0<t<s<T, (19)
S S

where X% is the process satisfying (17). The following result is taken from [22, Theorem 1]. We
reformulate it here for the simple situation where we need it. On the other hand, we will use P;
and are interested in an estimate for all (¢,x) € [0,T) x R.

Theorem 5.3. Let Assumption 2.1 and 5.1 hold. Then for any p € [2,00) the following assertions
are true.

(i) There exists a constant C¥ 4 > 0 such that for 0 <t < s <T and x € R,
1
s 2
Y. = ill e, < CL¥a) ([ (@ =ntar)”
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(7i) There exists a constant C% 5 > 0 such that for 0 <t < s <T and z € R,

1

s 2
12~ Zil1,0, < G0 ([ @ =0 2ar)

The constants C'gg and C% 3 depend on Ky, Ly, Cy, céji, T, po,b,0,kq and p.

Proof of Theorem 5.3. (i) First we follow the step [22, Theorem 1, proof of (C2;) = (C3;)]. We
conclude from the linear growth |f(r,z,y,2)| < L¢(|z| + |y| + |2]) + Kf and from the Burkholder-
Davis-Gundy inequality with constant a, > 0 that

1Ys = Yillz, (B0
s s
H/ f(ra X, Y, Zr)dr - / ZydB,
t t

Lp(Pt,w)
1
s s 3
< Kp(s—1) +Lf/t 1 Xl 2,10 + 1Yl @) + 120l 2,10y dr + ap (/t ||Zr||%p(pt,w)d7“> :
We then use (i) and (ii) of Theorem 5.4 below to get

1Ys = YillL,p..0)

a—1

< Kg(s—t)+ C(T, Ly, 3, p,b, 0, po) ¥(x) [ /t (14 (=) )ar+ (/:(T”a_ld’“f }

(ii) Here one can follow [22, Theorem 1, proof of (C4;) = (C1;)].

Step 1: We first assume additionally that f : [0,7] x R® — R is continuously differentiable in =,
y, and z with uniformly bounded derivatives as it was assumed for [22, Theorem 1]. To take the
dependency on z into consideration which arises since we use Py ,, it suffices to replace everywhere in
the proof in [22] the constant cpe_ by C(T,Cy,0,b,p,po)¥(x). The constant C% 5 depends moreover
on Ly and Kg.

Step 2: Now let f be as in Assumption 5.1. In [22, Theorem 1, proof of (C4;) = (C1;)] a
linear BSDE is used which describes the behaviour of the process Z minus its counterpart where
the generator is identically 0. Here the partial derivatives of f;, fy, f. appear but only their uniform
bound is needed in the estimates. Hence if f satisfies (4), we can use mollifying as explained in
(25) below (one may choose N = o0o). Since |0, f*(t,z,y, 2)|, |0y f¢(t,x,y, 2)| and |0, f*(t, z,y, 2)|
are bounded by L; we conclude from Step 1 that for all € > 0 the process Z° corresponding to f©

satisfies
1

s 3
125 = 28,0, < Ci%(@) ([ (T =y 2ar) (20)

for p > 2. Especially, the family {|Z5 — Z7|? : € > 0} is then uniformly integrable provided that
¢ < p. By an a priori estimate (cf. [0, Lemma 3.1]) we have that

T T
]E/O |Z, — Zdr < C ; 21;% |f(r,z,y, 2) — f(r, @, y, 2)|Pdr < Cs2TL?c.

Fubini’s theorem implies that there exists a sequence ¢, — 0 and a measurable set N C [0, 7] of
Lebesgue measure zero, such that lim,, ,o E|Z, — Z&™|? = 0 for all » € [0,T] \ N. Consequently,
for any ¢ < p and all t,s € [0,T] \ N with ¢ < s,

8 2
12~ Zila, e < G0 ([ (T = 2ar)
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The assertion follows for all ¢ > 2 since (20) holds for all p € [2, 00). Since by Theorem 5.4 (ii) the
process Z does have a continuous version, we finally get the assertion for all ¢ < s. Ol

5.3 Properties of the associated PDE

We collect in the theorem below properties of the solution to the PDE which are mainly known.
The new part concerns d2u. For Lipschitz continuous g, the behaviour of 9?u has been studied in
[37]. General results related to this topic can be found in [20].

Theorem 5.4. Consider the FBSDE (19) and let Assumptions 2.1 and 5.1 hold. Then for the
solution u of the associated PDE

a?(t,x)

ug(t, o) + = U (t, ) + 0(L, ) ug(t, ) + f(L, 2, u(t, ), o(t, v)u.(t,x)) =0
t

€[0,7T),z € R,
u(T,z) =g(z), xzeR

we have

(i) i = u(t,X¢) where u(t,z) = Eiy (g(XT) —|—ftTf(7“, XT,YT,ZT)dT) and |u(t,z)| < ci ,¥(z)
with ¥ given in (5), where c} , depends on Cy, T, po, Ly, Ky and on the bounds and Lipschitz
constants of b and o.

(i) u, exists,

T
Ux(tax) = }Et,x (g(XT)N%l + /t f(rv X'ra}/ra Z'I“)Nr?ldT) ; (21)

and

(a) ug is continuous in [0,T) x R,
(b) Z3% = ua(s, Xi%)o(s, X07),

(¢) Jua(t,z)] < S22

(T—t) 2

where c§.4 depends on Cy, T, po, k2, Ly, Ky and on the bounds and Lipschitz constants of b and
o.

(i) Uy, exists,

T
U (£, 1) = By o (g(XT>N§:2+ /t [f(r,Xr,YmZ»—f<r7Xt,n,Zt)JN£’2dr), (22)

and

(a) ugzy is continuous in [0,T) x R,

62'4\1/(.%)
(8) fa(t,2)] < 5

where ¢3 , depends on Cy,T,po, k2, L, CY 5, CZ4 and on the bounds and Lipschitz constants
of b and o.

In the following cs.4 represents (ck 4, c2 4, ¢2 ) and ¢’ (i # j) represents (& 4, ¢l ), (i, ) € {1,2,3}.
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Proof. (i): This follows from [36, Theorem 3.2].

(ii): From the proof of [36, Theorem 3.2], we get (21). The points (ii)(a) and (b) ensue from [306,
Theorem 3.2 (i)]. It remains to prove (c).

Proof of (ii) (c): We show the assertion for a generator not depending on X, since the terms
arising from that dependency would be easy to treat. Since Em(Et,I(g(XT))N%l) = 0 we can
subtract it from the right hand side of (21) and get

a:ru(tvx) = Et,m ([g(XT) - Et,z(g(XT))]N%l + /tT f(T7Y;“’ ZT)N£71dT> .

It holds
Et2|g(X1) — Et0g(X1)[* = Erolg(Xr) — Eg(X5)[> < ELElg(X7) — g(X0)|%,

and thanks to the Cauchy-Schwarz inequality with W1 = Cy(1 + | X7|P° + \X;:Xt |Po) and equation

(3),
EoBlg(Xr) — g(X37™) < B B(WR| X7 — X35 )
< [Et,zmﬂ% [JEWEXT - X;Xt\ﬂ%
< C(Cy, T, po, b, o)W () (T — ). (23)
Relation (18) and the Lipschitz continuity of f imply

C(Cga T)pUa K2, b7 O')\P(x)

Ogu(t,z)| < —
ot )] < S0
T
+C(Lf,Kf)Et,x/ (1 + Ju(r, X,)| + |0pu(r, X,)o(r, X)) INE dr. (24)
t
Since we have |g(z)| < W(x), [36, Theorem 3.2 (ii)] gives |u(t,z)| < ¢¥(x) and |Oyu(t,z)| <

e (z)(T — t)~ /2, where ¢ depends on T Ly, K¢, k2,b,0 and pg. Hence inequality (24) becomes

T
Dpu(t, )| < C(Cq, Topo, K, b, 0) ¥ (@) C(Ly, Ky c,0)Eq (/ (1 LX)+ (\I’(X)> Nf,’1|dr>
t 2

l—a
(T—-t)= T—r)
T b,o)W T 4
< C(Cga ?pO,/fQ;_;O') (1') + C(T, Lf,Kf,HQ,b,U,pO)/ l(fﬁ : dr
(T —t)2 t (T—r)z(r—1t)2
- C(Cy,T,po, k2, Ly, Ky, b,0)¥(x)
- (T —t) =" '

(iii): We start with an approximation of g and f by smooth and bounded functions. Let ¢ be a
non-negative C*° function with support [—1,1], such that [p ¢(u)du =1, and € € (0,1]. For N ¢ N
let by : R — [-N — 1, N + 1] be a monotone C'* function such that 0 < by (z) <1 and

N+1, z>N+2,

by(z) := x, |z] < N,
“N-1, z<-N-2
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Define

V@) = [ pglon(e) - cuda
and
1 1
N = [ s on ()  cuby(z) - cv)dud. )

Lemma 5.5. ¢> and oV satisfy

(@) 9N loo + 175N loo < C' = C(e, N) for some C(e,N) > 0,

(b) & and f&N are C® functions, with bounded derivatives (the bounds depend on ¢ and N ).
Moreover, f& is a Lipschitz function in y and z, with Lipschitz constant Ly,

(c) g& satisfies (3), uniformly in ¢ € (0,1) and N > 1,

(o} ‘T‘oﬁq

(d) for all z € R and € € [0,1], we have [¢°" (z) — g(z)| < C(Cy)¥(z)(e™ + ),

(e) for allr € [0,T] and for all (y, z) € R?, we have
[foN (ryy, 2) = f(ry,2)| < Ly(2e + b (y) =yl + b (2) = 21).
Proof. (a) Since g is locally Hélder continuous in the sense of (3), |g(z)| < Cy(1 + |z[PoT!). Then,

we get |g5V ()| < Cy(1 + (N + 1+ €)Pot1) and for f being Lipschitz continuous in y and z,
uniformly in time, the same type of result applies.

(b) Since ¢ is a C* function and f and g are of polynomial growth, we get the result.

(¢) Since g is locally Holder continuous, we get

197 (@) = g7 (y)] < /11 |6(w)|Cy(1 + [bn(x) — eul™ +[bn(y) — eul")|bn (x) — b (y)[“du

1
< / Cylp(w)|(L 4 (lz[ +)” + (Jy[ + €)") |z — y[*du
-1

< C(C) (A [P + [yl |z — y[*.

(d) We have

E7N — — ! — —
97" (z) — g(z)] ‘ / ¢(u)(g(bn () — eu) — g(x))du
-1

1
< Cg/ |p(u)[(1 + [bn (@) [P0 + e + [z[P)(|bn (z) — z[* + &%)du
—1
< C(Cg) (1 + [z[70) (e + |z[* L= N),
and the result follows.

(e) We simply have to apply the Lipschitz property of f to get the result.
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We put now ¢ := % and write (¢"V, fV) instead of (g%’N, f%’N) in order to simplify the notation

and consider the BSDE
T T
YN = gV (Xp) +/ YN, 2N ar — / ZNaB,.
t t

Representation for 92u™ (¢, z).
By (i) we have that

T
N (8, 2) = Eq g™ (X57) + /t Eo . N (r, YN, ZN)dr.

According to Lemma 5.2 it holds that 02 E; g™ (X7) = E; [gN(XT)N%Q] and
65 Et,l‘fN(T’ Y;“Nv Z7J"V) = Et,w[fN<rv Y;“Nv Zv{V)N;E’ZL

because
N YN, ZN) = Nl (r, X), o (r, X )ul (r, X)),

and f¥(r,y,z) is continuous and bounded. Moreover, [25, Proposition 4] (or [21, Theorem 2.1])
implies that u” (r, x) is C1% and it holds that |[u® (r, z)|+|0,u™ (r, )|+ |02u™ (r, )| < CV for some
CN > 0. Since o is continuous,

(r,z) = [N (r,u™ (r,2), 0 (r, 2)uy (r,2))
is a bounded Borel function. Notice that by Lemma 5.2

3

Bal NP =0 and B[NV <

(26)

so that
EolfN(r, YN, ZV)NP = B (N (r, VN, ZN) — Y (r, YN, Z))INE2).

Using the Lipschitz continuity of fV (see Lemma 5.5), the inequality of Cauchy-Schwarz and
Theorem 5.3 one can derive the upper bound

|8c% Et@fN(ra }/TN’Z?/'”
< Bl NN, ZN) = PN YN, 20N

11
< C(Ly, ko) Beo (1Y = YN +12) = Z1)%))2

r—t

Ot i [([[@=stas) ([ 0o 22

1
(T—r)"2(r—1t)z

IN

O(T, Ly, ki, CF 3, C55) ¥ (2) (27)

By this we do have an integrable bound for the derivative, and by dominated convergence we get
T T
O [ Buaf YN 2N = [ BN 2N i
t t

- [ DB N YN, ZY) - Y YN 2NN Y
t
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Hence we can write (using Fubini’s theorem for the integral)
T
6§UN(t> 1’) = Et,w (gN(XT)N%Q + / [fN(T? Y’I‘N’ Ziv) - fN(r’ YtN’ Zt{v)]NﬁQdT) :
t

Convergence of 9?u® (t,z). Since E; [Em(gN(XT))N%Q] = 0, Cauchy-Schwarz’s inequality and
the local Holder continuity of ¢V (see Lemma 5.5) give like in (23) that

Bre(gV (Xr)NE)| = [Eue (197 (Xr) — Boa(g™ (Xr)ING) |

1
< (Buallg™ (Xr) = Boa o™ (X)) 22
V(z)
< S S
>~ C(Cgv T7p07 K2, b7 J) (T _ t)l_% P

for all N € N. For the second term we can use the upper bound (27) and Lemma A.2 to get

T
Ero [ [P0 Y 20— 1YY 2NN ar

T L
< C(Tv Lf? K2, Cgﬁ? 0523) / (f) rdr,
t (T —=r)"2(r=1)
< C(T, Ly, ka, 05?53705.3)‘1’(15)&1%)04,
’ (T —t)2"2
which implies
v
92 1) < C(Cy T Ly i O o) 29
— 2

According to [21, Theorem 2.1] 92u™ (¢, ) is continuous. Let
T
v(t,x) = Epo <EJ(XT)N%2 +/t [f(r,Ye, Zy) = f(r, Yy, Zt)]Nﬁ’QdT> :

We show that for any (t,z) € [0,7) x R it holds 8?u™ (t,2) — v(t,x) if N — oo, and that v is
continuous on [0,7") x R. The idea to show continuity of v is as follows: If (t,,z,) — (¢, ), then
we may assume that we can find a § > 0 such that z,, € (x—0,z+0) and ¢, € (t —0,t+0) C [0,7T)
for each sufficiently large n. We consider

[0(tn, 2n) —v(t,2)] < |0(tn, 2n) — 02U (tn, )| + |%u™ (tn, 20) — O2ul (¢, )|
Hozu" (¢, 2) = v(t, z).
Since 92u” is continuous, the term [02u® (t,,, z,,) — 02u'N (¢, )| is small for large n. Hence it suffices

to show that Supsc_s¢16)ye(a—s.2+6) |02u™ (s,y) — v(s,y)| is small for large N. Let (s,y) € (t —
0,t+06) X (x — d,x + 9). It holds

T K
02 (5,9) = v(s,)| < Bayllg™ (Xp) = g(Xr)INF| + [ D)2 dr i= Dy + Dy,
s _
where (setting | - [le,, = || - |, (e, )
D(T, 5) = HfN(T’ YrNﬂ Ziv) - fN(T’ Y;Nﬂ ZéN> - [f(?", Yrv ZT) - f(TthSa ZS)]HIQP)s,y
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S Lf(H}/T‘N - }/;N”IP)s,y + HZiv - ZéV”]Ps,y + HYT' - }/;Hps,y + ”Zr - ZSH]PS,y)
X(”fN(Ta }/va Zi\]) - f(?“, Yy, ZT)HPs,y + HfN(r’ YSN’ Zév) - f(T’Y& Zs)”]}”s,y)'

First, let us bound D;. According to Cauchy-Schwarz’s inequality, (30) below and (26) we get

B 01K9 d1K2
Dy <6y Es,y(|NT’2‘2) < T_ s = T_t_§

Now let us bound Ds. According to Theorem 5.3 it holds

(NI

1
D (Ty 8) SC(T) Lf? ng, CgS)\P;(y)((r_szzl
2

1
X (HfN(T’ YI‘N’ Ziv) - f(/r7}/""Z7‘)HHDs,y + ||fN(T7 YSN)ZéV) - f(raYS’ ZS)||Ps,y)2'

Then, using (31), (33), (34) and Proposition 5.6 below gives

=

Dz(r,s) <C(T, Ly, ko, Cé/.S’ 0523)\D(9>

@

(T—s)% 01 .
(T —r)2~5 (T —r)i

Hence we have shown that

T 5
Dy < O(T, L, k9, CY 5, CZ )W / L
2 < C( 262,055, C53)¥(y) \ (r—s)%(T—r)%_ZJri
5
< C(T, Ly, ki, O3, CE )W (y)——— 1,
(T —s)271
< O(T, Ly, 12, Yy, C2 )W (w +5)(T615)“' V(s,y) € (t — 8,t +8) X (x — 8,z + ).
—t—¢8)3" 1

Consequently, SUpy e (y—s244),se(t—5,t+5) 102u™ (s,y) — v(s,y)| is small for large N, hence v is contin-
uous. Since

Dpul¥ (t, ) — Opu® (t,y) = / PPulN(t, 2)dz
y

converges to
X

Oru(t,x) — Ozu(t,y) = / v(t, z)dz,

y
it follows that 0?u(t,z) = v(t,x). Then point (iii-a) and (22) are proved. Since 02u’¥ converges to
v for N — oo, we deduce point (iii-b) from (28). O

Proposition 5.6. Let Assumptions 5.1 and 2.1 hold. Then for any (s,y) € (t—0,t+9)x (x—4, z+9)
witht+ 6 <T and r such that s <r <T we have

o1

-

YN = Yolln,e,,) + 12N = Zl,e,.,) <

)

i

where 01 denotes a generic constant which tends to 0 when N tends to +oo.
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Proof. Let here || - || stand for || - [|1,(p, ). We will use for the Y differences the inequality

T
1Y =Yl < 9™ (r) = gl + [ 1™ (@ Y2, Z) = flw, Yo Z) | duw
T

For the Z differences we get by (21) and (ii-b)

12 — Z:||
T
< C(U) ( T (gN(XT) - g(XT)) NTl E’I‘/ (fN(wvyu])Vv szuv) - f(wvyw; Z’w))NZ;ldw )
N
< Clks,0) (Hg (X\;I)T(XT +/ HfN (w, YN ZN) f(w7Yw,Zw)H\/1%d’w>.
Let S(r) := |[Y,N =Y, ||+ |ZN — Z,||. Using the inequality (1 + \/ﬁ) < C(T)\/% forr <w<T
gives
S(r) <O(T 52,0) (||gN<XT> — g0+ [ Y 2 - f(w,Yw,zwnW%dw) ~
(29)
Let us bound ||¢"¥(Xr) — g(Xr)||. By Lemma 5.5 we get the estimate
1 a+1 2
N 2 4 2 [ X7|
g (XT) _Q(XT)| < C(Cg)Es,y (\Ij (XT)) (]E (Na + N > )
2 1 ly[*+2
S C(CgvT7 b70-7p0)\:[! (y) N2a + N2
1 x|+ §)%e+2
< O(Cy. T.by o po) P ([a] +9) (Nga R EL )

for any arbitrarily small §; > 0, provided that N is sufficiently large. Let us now bound ||V (w, YV, Z))—
f(w, Yy, Zy)||l. Using again Lemma 5.5 yields to

||fN(w>YwN)Z1]1Y) - f(waYUMZw)”
SHfN(w’Yu];V?Zg) - fN(w,Yw,Zw)H + HfN(w’Yw?Zw) - f(IU,Yw,Zw)H
<Ly(1Yy = Yol + 125 = Zull + % + llow (Ya) = Yol + 685 (Zw) = Zul)- (31)

Then, plugging (30) and (31) into (29) gives

(7’) < (T /€2,0')51 T . Lf /T S(w

VT Vo
+ C(T, /ﬁ:g,a)Lf/ N + ”bN( w) - YZ||_+T|bN(Zw) - Zdew‘ (32)

To estimate ||by(Zw) — Zuw|| we use Zy, = o(w, Xy )ugz(w, Xyy) and choose a small @ > 0 such that
B = W < 1. Then

E..|Z |2ta E X X, )|2ta
HbN(Zw) o ZwH2 — ]Es,y|bN(Z'w) o Z’w|21‘Zw‘2N < s,y|N1:| — s,y|0'(w7 ’wj)\;u:zx(w7 ’UJ)| .
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Using Theorem 5.4 (ii-c) yields

0(0%47 U)Esyy\IIQJra (XU)) C(T7 po, C§.47 g, b) \I’2+a(y)

ES, |bN(Zw) - Zw|2 < ) (1l—o < a) (-«
Y (T — w) Grod-a) ., (T - w)(2+ (1)
0
< S Y(s,y) € (t—0t+8) x (x—dz+d).  (33)
(T—w)" 2

Similarly,

C(T, po, ct 4,b,0) W2+
]Es,y|bN(Yu)) o Yw‘Q S ( Po,C5.4 ) (y)

<01, Y(s,y)€(t—0,t+0)x (z—0x+0).

Na
(34)
Plugging (33) and (34) into (32) gives
C(T, /62)51 T S(w)
S(r <7—|—CT,/<;L/ dw
)< S A s o@mLy [
Ty +a 81
+ C(T, ko)L / N + i dw
f . Vu—r (T—w)(2+)2(1 ) T
(51 T S(w)
< C(T, kg, L / dw |,
= O m f)<\/ﬁ+r mEra
where the last inequality comes from Lemma A.2 (5 < 1). It remains to apply a version of
Gronwall’s Lemma (see e.g. [32, Lemma 3.1]) to see that S(r) < % Since C(T', ko, Ly)01
becomes arbitrarily small for N large, we will slightly abuse the notation and write S(r) < \/%.
O

A Technical results and estimates

Lemma A.1. For all0 <k <m <n andp >0, it holds for h = % that
(i) Et, = kh,

(it) Eln[P < C(p)h?,

(iii) E|B;,, — Br|* = tm — tg,

(iv) E|Br, — By, | < C()E|m: — til? < C(p)(txh)*.

Proof. The strong Markov property of the Brownian motion implies that (7; — 7;-1)52; is an i.i.d.
sequence. According to [33, Proposition 11.1 (iii)], we have that Ery = £, and (i) follows. Item
(ii) follows by [33, Proposition 11.1 (iv)] and Jensen’s inequality. To prove item (iii), recall that
(Bs, — B, ), is a centered i.i.d. sequence with E(B,, — B,,_,)?> = h, i > 1. (iv): The BDG
inequality implies that for each p > 0,

T Vi p
E|B7'k - Btk ‘p =E ’/0 (1[0,Tk](r) - 1[O,tk](r))dBT

T Vi p/2 9
<C(p) E (/O 1[o,mm[0,tk](7“)d7”> = Elry, — tg|P/2.
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To prove the second inequality of (iv), a generalization of [33, Proposition 11.1 (iv)], we first assume
that p > 1. Let us rewrite 7, —t = Zle n; where (1;)1<i<f is an i.i.d. centered sequence of random
variables distributed as 71 — h. Burkholder’s and Holder’s inequalities, and finally item (ii) yield

P k
Elr — txl” < C(p) (Zm)zé %*Z n) < C(p)(th)%,

which proves the claim for p > 1. The case p < 1 follows from this result by Jensen’s inequality. [
Lemma A.2. Forallt € [0,T) and for all « <1, f < 1 we have

' ! dr = L B(1 1
/t (T —r)o(r —t)8 T—W (1-a,1=p),

where B denotes the beta function.
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Lo-Approximation rate of forward-backward SDEs
using random walk

Christel Geiss!, Céline Labart?, Antti Luoto?

Abstract

Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk

B™ from the underlying Brownian motion B by Skorohod embedding, one can show Ly conver-
gence of the corresponding solutions (Y™, Z™) to (Y, Z). We estimate the rate of convergence in
dependence of smoothness properties, especially for a terminal condition function in C%*.
The proof relies on an approximative representation of Z™ and uses the concept of discretized
Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associ-
ated to the FBSDE as well as of the finite difference equations associated to the approximating
stochastic equations. We derive these properties by probabilistic methods.

Keywords : Backward stochastic differential equations, approximation scheme, finite difference

equation, convergence rate, random walk approximation
MSC codes : 60H10, 60H35, 60G50, 60H30,

1 Introduction

Let (2, F,P) be a complete probability space carrying the standard Brownian motion B = (B;):>0
and assume (F;)¢>0 is the augmented natural filtration. Let (Y, Z) be the solution of the forward-
backward SDE (FBSDE)

Xs = sc—l—/ b(r, Xr)dr—i—/ o(r,X,)dB,,
0 0

T T
Y, = g(X7) + / F(r, X0, Yy, Zy)dr — / Z,dB,, 0<s<T. (1)
S S

Let (Y™, Z™) be the solution of the FBSDE if the Brownian motion B is replaced by a scaled
random walk B"™ given by

[t/]
By =vVhY &, 0<t<T, (2)
=1

where h = % and (e;)i=12,.. is a sequence of i.i.d. Rademacher random variables. Then (Y, Z")
solves the discretized FBSDE

XP=at [ b X)BY 4 [ ol X])dBY
(0,s] (0,3]
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vrogxXm+ [ fexny zids) - [ zeamr, 0<s<T. ()
(5,7 (s,T]

In this paper, we study the rate of the Lo-approximation of (Y, Z") to (Y, Z;). This extends

the results of [19] where this question was considered for the special case X = B.
The approximation of BSDEs using random walk has been investigated by many authors, also
numerically (see, for example, [1], [23], [27], [29], [30], [31]). In 2001, Briand et al. [] have shown

weak convergence of (Y™, Z") to (Y, Z) for a Lipschitz continuous generator f and a terminal
condition in Lo. The rate of convergence of this method remained an open problem.

Bouchard and Touzi in [6] and Zhang in [36] proposed instead of random walk an approach based
on the dynamic programming equation, for which they established a rate of convergence. But this
approach involves conditional expectations. Various methods to approximate these conditional
expectations have been developed ([21], [15], [13]). Also forward methods have been introduced
to approximate (1): a branching diffusion method ([24]), a multilevel Picard approximation ([35])
and Wiener chaos expansion ([5]). Many extensions of (1) have been considered, among them

schemes for reflected BSDEs ([2], [12]), high order schemes (][9], [8]), fully-coupled BSDEs ([10],
[7]), quadratic BSDEs ([11]), BSDEs with jumps ([20]) and McKean-Vlasov BSDEs ([1], [14], [10]).
In [19], under the assumption that the forward process X is the Brownian motion itself and

given a locally a-Hoélder continuous terminal function g and a Lipschitz continuous generator, a
rate of convergence of order hs was obtained for the Lo-norm of ¥;* —Y;, and for the Lg-norm of

Z} — Zy the rate of convergence is of order \/]%. In the present paper, where we assume that X is

a solution of the SDE in (1), we need rather strong conditions on the smoothness and boundedness
on f and ¢ and also on b and ¢. In Theorem 3.2, the main result of the paper, we show that
the convergence rate for (Y;*, Z}') to (Yi, Z;) in Ly is of order hi’5 provided that g" is locally
a-Hélder continuous.To the best of our knowledge, these are the first cases a convergence rate for
the approximation of forward-backward SDEs using random walk has been obtained.

One reason behind the strong smoothness requirements on the coefficients is that the discretized
Malliavin derivative, which describes the relation between Y™ and Z", is not compatible with
the variational equations related to Y™ and Z™. This problem becomes visible in Subsection 2.3
where we introduce a discretized Malliavin weight to obtain a representation Z" for Z™. While
the continuous-time representation of Z is exact, Z™ does not coincide with Z™, but the difference
converges to 0 in Ly as n — 00. To prove our main result we also need strong smoothness conditions
on the solution u™ of the difference equation associated to the discretized FBSDE (3). We sketch
the proof by applying methods known for Lévy driven BSDEs.

The paper is organized as follows: Section 2 contains the setting, main assumptions and the
approximative representation of Z”. Our main results about the approximation rate for the case of
no generator (i.e. f =0) and for the general case are in Section 3. One can see that in contrast to
what is known for time discretization schemes, for random walk schemes the Lipschitz generator
seems to cause more difficulties than the terminal condition: while in the case f = 0 we need
that ¢’ is locally a-Holder continuous, in the case of a Lipschitz continuous generator this property
is required for ¢”. In Section 4 we recall some needed facts about Malliavin weights, about the
regularity of solutions to BSDEs and properties of the associated PDEs. Finally, we sketch how to
prove growth and smoothness properties of solutions to the finite difference equation associated to
the discretized FBSDE. Section 5 contains technical results which mainly arise from the fact that
the construction of the random walk by Skorohod embedding forces us to compare our processes
on different ’time lines’, one coming from the stopping times of the Skorohod embedding, and the
other one is ruled by the equidistant deterministic times due to the quadratic variation process
[B7).



2 Preliminaries

2.1 The SDE and its numerical scheme

We introduce
t t
X;==x —|—/ b(s, Xs)ds +/ o(s, Xs)dBs, 0<t<T
0 0

and its discretized counterpart

k
Xp=x+hYy bty X )+ \/EZ olty, Xp Dej,  tji=3j%, j=0,..,m, (4)
j=1
where (g;)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Letting G :=o(g; : 1 <1 <
k) with Gy := {0, Q}, it follows that the associated discrete-time random walk (B} )i_q is (Gr)f—o-
adapted. Recall (2) and h = % If we extend the sequence (Xt’;)kzo to a process in continuous time
by defining X{* := X' for t € [ty,t41), it is the solution of the forward SDE (3).
We formulate our first assumptions. Assumption 2.1 (ii) we do not use explicitely for our
estimates but it is required for Theorem 4.2 below.

Assumption 2.1.

(i) b,o € 05’2([0,T} x R), in the sense that the derivatives of order k = 0,1,2 w.r.t. the space
variable are continuous and bounded on [0,T] x R,

(ii) the first and second derivatives of b and o w.r.t. the space variable are assumed to be y-Hélder
continuous (for some y € (0,1], w.r.t. the parabolic metric d((t,z), (£, %)) = ([t—t|+|z—Z|?)2)
on all compact subsets of [0,T] x R.

(iii) b,o are %-H{)'lder continuous in time, uniformly in space,
(tv) o(t,z) > >0 for all (t,x).
Assumption 2.2.

(i) g is locally Holder continuous with order a € (0, 1] and polynomially bounded (po > 0,Cy > 0)
in the following sense

V(z,7) € R?,  |g(2) — 9()] < Co(L + |z + |27) |z — z[*. (5)
(ii) The function [0,T] x R3 : (t,x,y,2) — f(t,x,y,2) satisfies
[f(tx,y,2) — f(E2,5,2)] < Lp(VE—t+ o — 2] + |y — gl + |2 — 2)). (6)
Notice that (5) implies
l9(2)] < K1+ |ef™) = U(z), zeR, (7)
for some K > 0. From the continuity of f we conclude that
Ky := sup |f(t,0,0,0)| < oo.
0<t<T
Notation:
o || [lp =1 llzr(e) for p > 1 and for p = 2 simply || - ||.

e If a is a function, C'(a) represents a generic constant which depends on a and possibly also
on its derivatives.



2.2 The FBSDE and its numerical scheme

Recall the FBSDE (1) and its approximation (3). The backward equation in (3) can equivalently
be written in the form

n—1 n—1
Y = g(XP) +h Y fltmsr, X0 Y0 Z0) = VIOY 2 emsr, 0<k<m, (8)
m=k m=k

if one puts X' := X' | Y :=Y" and Z]' := Z for r € [ty tmy1)-
For n large enough, the BSDE (3) has a unique solution (Y™, Z"™) (see [32, Proposition 1.2]),
and (Y, Zp )71 is adapted to the filtration (G, )7 L.

2.3 Representations for Z and Z"

We will use the representation (see Ma and Zhang [28, Theorem 4.2])
T
Z =By | o (Xp)VXr +/ (s, X3, Ys, Zo)Nds | o(t, X;), 0<t<T 9)
t

where E; := E(:|F), and for all s € (¢,T], we have (cf. Lemma 4.1)

1 s VX
Nt = / " _dB 10
S os—t )y o(r, X,)VX; (10)

where VX = (VXs),c(o,r) is the variational process i.e. it solves
S S
VX, =1 +/ be (7, XT)Verr+/ ox(r, X,)VX,dB,, (11)
0 0
with (Xs)sepo,7) given in (1).

2.3.1 Approximation for Z"

A counterpart to (9) for Z™ does in general only exist approximatively. In particular for f # 0
stronger smoothness assumptions are required:

Assumption 2.3. Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and sec-
ond derivatives w.r.t. the variables z,y,z of b(t,x),o(t,z) and f(t,z,y,z) exist and are bounded
Lipschitz functions w.r.t. these variables, uniformly in time. Moreover, g" satisfies (5).

We shortly introduce the discretized Malliavin derivative and refer the reader to [3] for more
information on this topic. We first define for any function F': {—1,1}" — R the mappings Tp, +
and T;, — by

T +F(e1,...,en) == Fl(e1,....em—1, £, €my1, ..., €n), 1<m<n,
and for any { = F(e1,...,&y) the discretized Malliavin derivative
Dzﬁ — E[§5m|0((€l)le{l ..... n}\{m})] _ Tm,+€ - Tm7,§’ 1<m<n. (12)

Vh 2v'h



In contrast to the continuous-time case, where the variational process and the Malliavin derivative

are connected by VXi = J’Zs Si((Z) (s < t), we can not expect equality for the corresponding expressions

if we use the dlscretlzed processes

m
VX =1k Y0 ba(t, X VXL 4 VR Z 0wt XV )VX e, 0<k <m <,

t—1 ti_1 ti—1 1
I=k+1 I= k+1
DX =o(ty, X[ ) +h > bEIDRX!  +Vh Z EDDEX] e, 0<k<m<n,

I=k+1 I=k+1
(13)

where for the latter we use for ¢ = b and ¢ = o the notation (if D} X},  # 0 the second ' := holds
as an identity)

(k1) Dio(ti, Xi)_))
Gy = W : ¢x(tl,19Tk+ o, T (1 =0)T - X3 )dd. (14)
ti—1
bk, X7, Dr, XD
However, we can show convergence of VX, | o kel dm i T

o(te+1,X3,)

Lemma 2.4. Under Assumption 2.1, and for p > 2, we have

(i)  E|XP—TpneXPP < C(b,o,T,p)h%, 1<Ilm<n,
Rt X7 noxp P v
(i) E|VX, - I | < O(bo,T,p)hz, 0<k<m<n.

O—(tk:-i—lanC)
(iii) E|DPXP [P < C(b,0,T,p), 0<k<m<n.

Proof. (i) By definition, T;, + X{} = X3} for | <m — 1, and for [ > m we have

T X = Xp +b(tm,X” DhEo(tm, X" Vh

2(»"ml

+h Z b(ts, T X)) +Vh Z o(tj, Tm X7 )ej
Jj=m+1 j=m+1

By the properties of b and ¢ and thanks to the inequality of Burkholder-Davis-Gundy and Hélder’s
inequality we see that

E| X} — T+ X4 P

l
p
< C(p) (Blo(tm, X7, VA £+ BE| > (blt, Xp2_,) = blty, T X72_))|

j=m+1
P
2 2)

< CE)(lo1h% + h(Ibe Bt + ot ) > EIX_, — T X7, IP).
j=m+1

l
j=m+1

It remains to apply Gronwall’s lemma.



(ii) By the inequality of Burkholder-Davis-Gundy (BDG) and Hélder’s inequality,

L, X prooxn |P
E|\VX, " - RS o C<p,T>(|bx<tk+l,Xf>h+axum,xmﬁemrp
" U(tk+17th) F k
p
nte X iy Ph X,
+h E |b,(t;, X' )VX — plALl) A Rl
lzk-:',-Z ot - o(tkr1, X))
m n p
n,tk,Xt k? 11) Dk+1th 1
+hy" Elog(t;, X' VX b gLl R

Since by Lemma 2.4 (i) we conclude that
E[p{ D — by (0, X7 )PP + Elol ) — oy (t, X3t ) < C(b,0, T, p)I?,

and Lemma 5.2 implies that

n,tk,XZ; 2p
E sup ‘VXM1
k+1<I<m

S C(ba g, Ta p))

the assertion follows by Gronwall’s lemma.

(iii) This is an immediate consequence of (i).

O
We introduce a discrete counterpart to the Malliavin weight given in (10) letting
n tk,X ty,
NP =V b1 fm_ o p<t<n. (15)
mzk:+1 (t thL 1) t‘e - tk? B
Notice that there is some constant Ko > 0 depending on b, 0, T, d such that
1 ~
(EeINZH2)? < —2 . 0<k<t<n, (16)
(te — tr)2
where Ey, := E(-|Gx). We define a process 2" = (Z[Z)Z;é by
. n—1
Z;LC =K (DITCL—&-IQ(X%)) + Eg h Z f(tm+17thma Yn Zn )antk O—(tk-i-l)Xtr;)a (17)
m=k+1
and compare it with Z" = ( tk)k o given by
Zy, = Ey (Dry19(X7)) +Eg ( h Z f(tmy1, Xp Y0 Ztm)5k+1) . (18)
m=k+1

The latter equation follows if one multiplies (8) by €x+1 and takes the conditional expectation w.r.t.
Gi. In (17) we could have used also the approximate expression Ej(g(X7)N;" o (gt X)), but
since we will assume that ¢” exists, we work with the correct term.



Proposition 2.5. If Assumption 2.3 holds, then

Eoo|Z;. — Z;1|* < Co 502 (2)R,
where Bg , == E(-|Xo = z), the function U is defined in (59) below, and Cy 5 depends on b, o, f,g,T,
po and 9.

Proof. According to [, Proposition 5.1] one has the representations
Y = u(t, X7'), and  Z' =Dl " (tmar, X7 ), (19)

where u™ is the solution of the ’discretised” PDE (41) with terminal condition u"(t,,x) = g(z).
Notice that by the definition of Dy, 4 in (12) the expression Dy, u" (tm+1, X{, ) depends in fact
on X;' . Hence we can put

f(tm-i-lv Xz?m ) Y;SZL? me) = f(tm-i-l? thm ) un(tm, Xfm)v ’D?nJrlun(tm-i-l? thm+1))
F™ (b1, XI).

By Proposition 4.5 we conclude that u}(t,,z) (as function of z, uniformly in time) satisfies (5)
with po replaced by 2pg + 2, and the function x — 0,D}, +1u”(tm+1,X&tﬁ’I) satisfies the local
a-Holder continuity relation (58). By Assumption 2.3 on f we derive the latter bound also for

z = FJ'(tm+1, ). From (17), (18) and (12) we conclude that (we use E := Eq )
12i, - 25

n—1
= ‘Ek<\/ﬁ Z f(tm-i-hXZlva;fZ?ZZin)Ek-i-l)

m=k+1

n—1
_Ek (h‘ Z f(tm+17XZlm7)QZ?ZZLm)NZ:LtkU(tk+17X&)) H
m=k+1

n—1 m n ot Xy
b U(tk-i—la Xt )vXt —
< 5 S o i) Dr ) MY, T
m=k+1 """ T =kt e

With the notation introduced in (14) applied to F™,

it X
n n n n mn n O—<tk+1>ch)vXZ*I; !
D B (tmr1, Xi,,) = DEF" (s, X)) o(te, Xi;_,)

to—1

< (DR, XD (L) _ pnemsny)

n,tk,Xt”
o(trr1, Xp )VXy, "
Fn,(ﬁ,erl)(Dn X" — (DX k -1 )H
| (@ XE) - @) T A
=: A+ As.

For A; we use (14) again and exploit the fact that x — FJ'(¢, z) is locally a-Hélder continuous. By
Holder’s inequality and Lemma 2.4 (i) and (iii),

1
A < ||791?+1X§‘m||4/0 IS (g1, 0T 4. Xy, + (1= )T, - X7 )

— ™ (tmg1, 9T0 4 X7+ (1= )Ty X7 )||ad < C(b, 0, f, 9, T, po) ¥ (x)h3.

7



For the estimate of Ay we notice that by our assumptions the Ls-norm of E; (6m+1)

CVU?(z), so that it suffices to estimate

is bounded by

o(try1, X )VX,:L,1 X
(tf’Xt[ 1)
o(tr1, Xi,) Dy X{ D Xi,

X)) —
W) T X ot XL,

ot XE)DEXE, (o nany, DR XE,
O-(t£7 thfl) fe (tk+17th)

[orxn) - @pxp,)

4

(20)

4

The second expression on the r.h.s. of (20) is bounded by C(b, o, T, 6)h% as a consequence of Lemma,
2.4 (ii)-(iii). To show that also the first expression is bounded by C'(b, o, T, )h%, we rewrite it using
(13) and get

Dy Xy
%D/ﬁ-l‘x{z 1 D?—I—lX?
O-(tqute 1) m
tl 1 2,1 4,0
‘(1—#[%: thtn ) OV 4 o )\/Eel)>
+1 —1

-1
x (U(thrl’XZZ)‘F S DX (DR 4 oDV ey >)
1= k+2

- (U(tkH, < Z +Z)Dk+1 HEN (SRR S (’””)\fq)ﬂ

I=k+2 =
< PP X (BEFEOR 4 010 Ve
> i (6,0 )/,
+ - =l pr X DR XN bR + 0BV hey
lz;l o(te, Xi,_,) e k134 ( )
Y DinXi {bgf,l)h+ag(cf,z)\/ﬁsl - (bgjk-s-l,l)h_l_agkﬁ-l,l)\/ﬁgl)]" (1)
I=t+1

We take the Ls-norm of (21) and apply the BDG inequality and Hoélder’s inequality. The second
term on the r.h.s. of (21) will be used for Gronwall’s lemma, while the first and the last one can

be bounded by C(b, o, T)h%, by using Lemma 2.4-(iii). For the last term we also use the Lipschitz
continuity of b, and o, in space and Lemma 2.4-(i). O]

3 Main results

The following approximations will rely on the fact that the random walk B™ can be constructed
from the Brownian motion B by Skorohod embedding. Let 7y := 0 and define

7 =inf{t > 71 :|B; — By, _,| = Vh}, k>1. (22)

Then (B;, — B;,_,)3; is a sequence of i.i.d. random variables with

P(Br, — Br,_, = i\/ﬁ) = %7

8



which means that vhey, 4 B;, — B;,_,. In this case we also use the notation &, := XZ; for all
k=0,...,n, so that (4) turns into

Tk_$+zb(tj7 Tj-1 h+za(tj7 Tj-1 )(Br _B’Tj_l)7 0<k<n,
j=1 j=1

and (3) holds for B™ given by

[t/h]
B = Z(Bm - Bqu)? 0<t<T. (23)
k=1

We will denote by E;, the conditional expectation w.r.t. 7, .

3.1 Approximation rates for the zero generator case

Since the process (X;):>0 is strong Markov we can express conditional expectations with the help

of an independent copy of B denoted by B, for example E.g(X}) = ]Eg(/'\?:: ’XT’“) for 0 < k <mn,
where

5Tk X7y, Tl Xr Tis X1\ 1 1 =
Xr, . XTk + Z b ]7 Tjk 1 * h+ Z Tjk 1 )(B%j—k - Bi’j—k—l)’ (24)
J=k+1 j=k+1

(we define 7, := 0 and 7; := inf{t > 7;_1 : |Bt — B%j,l\ = \/ﬁ} for j > 1 and 7, := 73, + Tp_g for
n > k). In fact, to represent the conditional expectations E;, and E; we work here with E and
the Brownian motions B’ and B”, respectively, given by

Bj = Bipt, + By and B} = Bipr, + By_r )+, >0, (25)

Proposition 3.1. Let Assumption 2.1 and (23) hold. If f = 0 and g € C! is such that ¢’ is a
locally a-Holder continuous function in the sense of (5), then for all 0 < v < T, we have (for
sufficiently large n) that

Eo.|Y, — Y)'[> < CY W2 (x)h7, and  Eou|Z, — ZJ|? < C5,92(2)h?,
where C§ ; = C(T, po, Cy, CY 4, 0,b) and C§, = C(T, po,Cy,0,b,0).

Proof. To shorten the notation, we use E := Eg ... Let us first deal with the error of Y. If v belongs
to [tg,tr+1) we have V' = Y;". Then

E|Y, - V'|* < 2(E|Y, — Vi, | + E]Y;, — Y{"2).

Using Theorem 4.2 we bound ||Y, — Y}, || by C{,¥(z)(v — tk)% (since @ =1 can be chosen when g
is locally Lipschitz continuous). It remains to bound

tr, ~ ~ Tk, Xr
ElY;, - Y7 = E[E,g(X7) —Brg(Xp)2 = E[Eg(X,"" ") — Bg(X7" ™))%,

1799, €

By (5) and the Cauchy-Schwarz inequality (¥ := Cy(1 + | X" "% [P0 + |2€::’XT’“ [P0)),

[Bg(Xer ™) — Bg(Brr )P < (BOIX, - 277 < BOIDEIX, - 2702,



Finally, we get by Lemma 5.2-(v) that

Tk XT

b Xty -;?—r )
n

D=

1 1
E|Y, - Yo < (EE(0Y))® (EE|X,! H1)E < O(Cyob,0,T,p0) W ()?h2.

Let us then deal with the error of Z. We use || Z, — Z}!|| < [|Z, — Zy, || + | Z,, — Zi, || and the
representation ) . .
Zy = o(t, X)E(y'(Xp" ) VXE™)

(see Theorem 4.3), where
~ s ~ ~ 8 ~ ~ ~
VXL =1+ / by (r, XYV X dr + / oo(r, X!)VXE"dB, 4, 0<t<s<T.
t t

For the first term we get by the assumption on ¢g and Lemma 5.2-(i) and (iii)

120 = Zu]l = llov, X)B(g/ (X5 )VEX) — (i, X B9 (K7 ) VR0
< o(v, Xo) = o(tr, Xep) 4 |E(g/ (X3 VEE) |14
ol | B (g (X5 ) VXFX) — B(g' (X774 VR
s IE(g (X7 %) VEGXY) — By (R ) v Ry )|

1
= | VU \ 7X, o] 1
C(Cy,b, 0, T, po) () (12 + || X, — X, 4 + (BE[XY — X7 o) ?

1
+ (BE|V X5 - VX ka|) ]
< C(Cy,b,0,T,po)¥(x)h5.

We compute the second term using Z;' as given in (18). Hence, with the notation from (14),

n tr, X ~tr, X ~ T, Xy (2
1Z, — ZEN? = Elo(t, Xy )Eg (X, *) VX" — DR g(A0™))]
2
< ol B Bty (R0 ey gty - EPRo )
= [e%°) tn (tk,th)
Tk:aX‘rk
_ 2 tk,Xt ot X = (b41n41) Pip1¥m 2
= E|E(g WX YK n S L—
|o||Z ‘ VX)) — ( ot X0 )‘

We insert +E(VX 1tk’Xt’“g(kJrl’nJrl)) and get by the Cauchy-Schwarz inequality that

TlmXTk 2

~ tk Xt g, Xt k+1,n+1 Dk-i-lX
E k VX k (k+1,n+1) “k+17™0

(g (Xpr ™) ) —E (g %)

DrL X2
< 2E| ( tk’Xik) k+1 n+1) |2E|Vth th‘2 + 2E|g (k+1, n+1)|2]E’ tk Xy, k417
o U(tkvth)
(26)

S ot X
For the estimate of ]E|VX::L“ 12 we use Lemma 5.2. Since ¢’ satisfies (5) we proceed with

t,X
Elg/ (X, %) — glktlntl)2

10



< /1 Elg (X::’th) - Ql(ﬂTk+1,+9‘?$7XTk + (1 = 9) T4, erT:’XTk) "9
< / B3 [B] XN — 9Ty 7 — (1= 9) Ty 4“}%,
where Wy := Cy (1 + |th Xt PO 4 |9} 1 4 X Ay (1= Tpyr,_Xrr A |P). For E¥$ and
E ‘th a — (0T 1,4 X7 - 0) Thoyr,— X7, ) "
< (192%3 ‘th a — Thosr1,4 Xr A +(1—9)*E ‘th o — Thop1,— Xr i >

< C(b,o, T)h** + C(b,0, T)(| Xy, — Xp |** + 1Y),

we use Lemma 2.4 and Lemma 5.2-(v). For the last term in (26) we notice that

EE[g* 1t < C(b, 0, T, po, Cyr ) ().

By Lemma 5.2 we have E]E|Vth’Xt’“ V/f’::’XT" P <C(b,o,T, p)hg, and by Lemma 2.4,
Tk, X7
T L
" (tka th)
nteXp DR Xp | Dp XD Dr X P »
< C(p)E|VX, P S b O(p)E + -t < C(b,o,T,p,0)hi.
( ) ‘ o O-(tk+17XZ;l€) ( ) O-(tk+17th) (tkvth) ( )
Consequently, || Z;, — Z['||* < C(b,0,T, po, Cy, §)W2(x)hz. O

3.2 Approximation rates for the general case

Theorem 3.2. Let Assumptions 2.3 be satisfied and B™ be given by (23). Then for all v € [0,T)
and large enough n, we have

A 1 o
Eo.|Ye — Y2 + Eo | Zy — Z1'|? < C3202(z)h2"

with Cs39 = C(b, 0, f,9,T, po, 9, k2, cifg, CY,,Cy4) and U s given in (59).

Proof. Let u : [0,T) x R — R be the solution of the PDE (35) associated to (1). We use the
representations Yy = u(s, Xs) and Zs; = o(s, Xs)u,(s, Xs) stated in Theorem 4.3 and define

F(s,z) = f(s,z,u(s,z),0(s, x)uy(s,x)). (27)
From (1) and (3) we conclude

Ve, = Yill < [[Byg(Xr) — Er g(X7)]]
n—1

Etk/ F(5, X0, Yo, Zo)ds — hEry 3 Flbmat, X0,V 20 )|

m=k

where Proposition 3.1 provides the estimate for the terminal condition. The generator terms we
decompose as follows:

]Etkf(s’XS?Y;v ZS) - Eka(tm+17X7§TLm7 }/t:ln) me)

11



- [Etkf(sa XS)Y:Sy ZS) - ]E’tkf(tmaXtm)Y;fmy Ztm)] + []Eth(tmaXtm) - ETkF(tmathm)]
+[ETkF(tm?thm) - ETkF(tm?Xtm)] + [Eka(tvatmv th’ Ztm) - Eka(tm-i-hXZlvaZ;’ Ztnmﬂ
=: di(s,m) + da(m) + dz(m) + da(m).

+hZIIdi(m)II>

and estimate the expressions on the right hand side. For the function F' defined in (27) we use
Assumption 2.3 (which implies that (5) holds for e = 1) to derive by Theorem 4.3 and the mean
value theorem that for x1,ze € R there exist &1, & € [min{z1, z2}, max{z1,x2}] such that

We use

T n—1
E, /t f(5, Xo, Y, Zo)ds — BBy S f(bmyr, X2 Y 20
k

tm+1
/ dy(s,m)ds
m=k tm

|F(t,$1) - F(t’m2)| = |f<t,$1,U(t,$1),0(t,m1)uz(t,x1)) - f(tyl'Q,U(t,J?Q), O'(t,ivg)ua;(t,wg)”
3
< C(Ly,0) (1 +cia¥(6) + i;B%i§E)> |21 — 22
< O(T, Ly, 0,c3) (1 + | + ngl”“l)'(g;:gé" -

By (6), standard estimates on (X), Theorem 4.2-(i) and Proposition 4.4 we immediately get
ldi(s,m)| < C(Ly,b,0,T.CYp, Caa) U(a) b3

For the estimate of ds one exploits

'*tk,sz ~ Nt X5

]Eth(tmv Xtm) - ETkF(tmv lem) = ]EF(tmv Xtm ) - EF(tm, ‘Xtm zk)
and then uses (28) and Lemma 5.2-(v). This gives
1

lda(m)|| < C(Ly,cy3,b.0,T,po)¥ () ———hi.
(T —tm)?

IS

For d3 we start with Jensen’s inequality and continue then similarly as above to get

1
lds (m)| < |F (tms X72,) = F(tm, Xo,)|l < C(Ly, €53, UyT,po)‘I’(fC)Wh :

IS

and for the last term we get

1 n n n
[da(m)|l < Ly(h> + | Xe,,, = X [+ 1Ye, = Yoo |+ 1126, — Z2,10)-

This implies
n—1

1
I¥e, = Yl < C¥(@)ht +hLy Y (Ye, = Yoo Il + 1 26, — 21,11, (29)

k
m=k

where C = C(L¢,CY |, ¢33,CY ., Cya,b,0,T, po).

12



For || Z;, — Z},|| we use the representations (9), (18) and the approximation (17) as well as

Proposition 2.5. Instead of NtZ " we will use here the notation N7 to indicate its measurability
w.r.t. the filtration (F%). It holds that

126, = Zull < 1126, = Ze I + 126, = Z4 ]

L, X7
< Cys (x)h2+\|a(tk,th)Eg( XNty Xt i

ED}y9(Xy, ™)

+‘ Ey, f(s,Xs,Ys, Zs) Ntk ds o (ty, Xy,
let1
n—1
—EBrh > fltmen, X3 Y 20 VN2 0 (b, XT1)
m=k+1
tet1
+’]Etk/ F(8, Xy, Yo, Zo) Nt ds o (t, Xo,)|| (30)
ty
For the terminal condition Proposition 3.1 provides
t ,X ~t, X n,tly 1
lo(th, Xo, By (X5 %)V XS — EDR, (X | < (051 U (@)h, (31)

We continue with the generator terms and use F' defined in (27) to decompose the difference

]Etk f(87 Xsa }/57 ZS)NStkO-(tkv th) - Eka(tm+17 X?mvn":na ZZL )N'yq,:—k (tk—f—lv X;Z)
- ]E’tkf(sa XSv YSv ZS)N;fko-(tka th) - ]Etkf(tma Xtma Y;fm) Ztm)Ntt:LO—(tkv th)
+Et, F(tm, X1, )NE 0 (t, Xp,) — Er F(tm, X7 )NETo 0 (tegr, XiL)
FEr [[F(tm, X72,) = F (b, X0, INET 0 (b1, X7
FEry [[F(tons Xt Yirs Za) — F (b, X0V 20 ) INET 0 (0, X))
=: t1(s,m) + ta(m) + tz(m) + t4(m)
where s € [ty tmt1). For t1 we use that By, f(tm, X, , Yi,, Zt, ) (NI — Nfi) =0, so that
||t1(8, m)” < ”Etkf(sv Xs, Y, ZS)NgkU(tk’ th) - ]Etkf( my Xtm’ Y;fmv Ztm)NgkU(tkv th)”
+||]Etk (f(tmv Xtm’ th’ Ztm) f(tm’ thvytk’ Ztk))(Ntk - Nf,i)g(tk’th)”'

As before, we rewrite the conditional expectations with the help of the independent copy B. Then

Etkf(87 XS? 1/57 ZS)N?C - ]Etkf(tmv Xtm7 }/tm; Ztm)Ntk
_ E[(f(S,X;Mth,ﬁtk’th,Z?“th) o f(tm7XZ::th Ytk:th Ztk,sz))N;gk]

and

]Etk<f(tMaXtm5th)Ztm) - f( m)tha}/tka Ztk))(Ntk - Ntt,ljl)
t X tr, X, ~tr, X ~ ~
- [(f(tma b Y b Z " tk) - f(tm,th’Y;fkv Ztk))(Nstk - Nf,i)]

tm

We apply the conditional Holder inequality, and from the estimates (34) and E|N% — Nfi |2 <
C(b,o,T, 5)(37#)2 we get

Kalloloo

ti(s,m <
I ml < S

Hf( XS?YS7ZS)_f(tm?Xtm’}/tm7Ztm)||

13



1

h2
+C(ba g, T? 5)@ Hf(tm7Xtmv Y;fma Ztm) - f(tk,th, Y%k, Ztk)H

D=

)

S C<Lf702_2704.47’€27b7 U7T7 57])0)\:[!(1‘) h
(s —tk)

since for 0 <t < s < T we have by Theorem 4.2 and Proposition 4.4 that

N[

=

||f(85XS7Y37 ZS) - f(taXta}/ta Zt)” S C(Lfa C}Ll,Qa C’4447 b,U, TapO)\Il(x)(s - t) . (32)

For the estimate of to Lemma 5.2, Lemma 5.3, (28) and (34) yield

~Tk7X7'k

n ot X \J n \NTTL, T
[t2(m)l| = [NEF(tm, X, " )N 0 (th, Xiy,) — BF (tn, Xry " )NET 0 (g1, X )|

tm
< GO (P, K1) B, 2)?)°
(tm - tk) 2
+(BE|F (b, 27" ™) = F (b X ) PEINGE 0 (b, Xo,) = N0 (b, X))
U(z) hi
(T = tm)? (bm — 1)

For t3 we use the conditional Holder inequality, (28), (16) and Lemma 5.2:

=

S C(Lfvcig)ba g, T)p0755 /{/2)

lts(m)ll = ||Br, [[F(tm, X7,,) = F(tm, X, )IND 50 (b1, Xr )|

C(o,k
R Y p(g XP ) = Pt X0,)

(tm — tk)2

U (z) hi
(T~ tm)? (tm — t)?

S C(Lfacigab) g, T7p076)

The term t4 can be estimated as follows:
||t4(m)H = HETk Hf(tm’ Xtm7}/tm7 Ztm) - f(tm-Hv thm; Yt:ln’ me)]NZLLTkU(tk-&-lv XTk)] H
C(Ls,byo,T,0), 1 n n n
L X X Yo = VLI 1~ L)
m — Uk

Finally, for the remaining term of the estimate of ||Z;, — Z] ||, we use (32) and (34) to get

By f (5, X, Y, ZONE ot X)) = (B, [(F(5, X, Vs, Z6) = F(s, Xy Yo, Zu))NE] o (b, X, )|

C(Lf, CZQ, C4447 b) g, T7p07 ’%2)\11(%)

IN

Consequently, from (30), (31), the estimates for the remaining term and for ¢, ..., t4 it follows that
12, — Z3 ]l < CasW(x)h + (C51)2W(2)ht + C(Ly, Yy, Cra, b, 0, T, po, #i2) ¥ ()h

T d
+C<Lf7 02.27 04.47 R2, b7 g, T, 5, po)ql(x)h% / 781
tr (S — tk)§
n—1 1
v h
+C(Ly,c3,0,0,T,po, 0, ka)h > (x) 1 i
m=k+1 (T - tm)§ (tm — t)
n—1
n n 1
+C(Lfa b,O’, T, 6)h Z (Hth — }/th + ||Ztm _ Zth)
m=k+1 (tm — tr)

(SIS

NI
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< O(Cos, C2)U(2)h3MN + O(Ly, by, CY o, Cya, k2, b0, T, po, 5)‘1’(@}1i

n 1
+C(Lg,b,0,T,6) > (Y, =Y + 1 Ze,,, — 27
m=

[T

t"'L t77L ) h.
k41 (tm — tx)

N[

Then we use (29) and the above estimate to get

Ve, = Yl + 1126 — Z5

< C(Cos, ) (2)h2N + C(Ly, CY 1, 23, CYy, Cuas b, 0, T, po, kg, 6) U (z)h
n—1
1
+C(Lg,b,0,T,6) > (W, =Y + 12, — 20 ) ———
m=k+1 (tm - tk)2

IS

Consequently,

N

Yoo = Yol +112e, = Zit | < Coo¥(x)h®"

By Theorem 4.2 it follows that

=

1Yy = Y < 1Yy = Yol + 1Yy, = Y5l < C(Cs2, O ) () h 213,
while Proposition 4.4 below implies that
1
120 = Zy, || < Caa¥(x)h2.

O

4 Some properties of solutions to BSDEs and their associated
PDEs

4.1 Malliavin weights
We use the SDE from (1) started in (¢, ),

S S
Xt =g +/ b(r, XL dr + / o(r,X)dB,, 0<t<s<T (33)
t Ji

and recall the Malliavin weight and its properties from [18, Subsection 1.1 and Remark 3].

Lemma 4.1. Let H : R — R be a polynomially bounded Borel function. If Assumption 2.1 holds
and X% is given by (33) then setting

G(t,x) == EH(XE)
implies that G € CY2([0,T) x R). Especially it holds for 0 <t <r < T that
0.G(r, X1") = E[H(X;")Ny |7,

where (Ff)epm is the augmented natural filtration of (BE°),epm,

1T XL
N — —— | *___dB,
T T—r) o(s, X" )yvxp* "
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and VX5 is given in (11). Moreover, for q € (0,00) there exists a kq > 0 such that a.s.

Kq

—7r)2

r,(t,T 1
EB]NEED 9| F)e <

and we have i i
[1H(X7") = E[H(X3")|Fllp

T —r

10:G(r, X)) ||, p) < kg
for1 < q,p< o0 with%—{—%:l.

4.2 Regularity of solutions to BSDEs

The following result originates from [18, Theorem 1] where also path dependent cases were included.
We formulate it only for our Markovian setting but use IP; , since we are interested in an estimate
for all (t,x) € [0,T) x R. A sketch of a proof of this formulation can be found in [19].

Theorem 4.2. Let Assumption 2.1 and 2.2 hold. Then for any p € [2,00) the following assertions
are true.

i) There exists a constant C¥., > 0 such that for 0 <t < s <T and z € R,
4.2

1
S 2
1Y, = Yillayo, < Clow(o) ([ @ = tar)

(ii) there exists a constant C5 4 > 0 such that for 0 <t < s <T and z € R,

1
2

12~ Zilsyip0 < Cio¥(o) ([ (= 2ar)

The constants C§, and C§, depend on Ky, Ly, Cy, c}lfg, T, po,b,0,kq and p.

4.3 Properties of the associated PDE
Theorem 4.3 ([19], Theorem 5.6). Consider the FBSDE (1) and let Assumptions 2.1 and 2.2
hold. Then for the solution u of the associated PDE

0

Ut(t,.’L‘) + @umm(tax) + b(t,.’L‘)UI(t,.’L') + f(t,a:,u(t,x),a(t,x)um(t,a:)) =Y
te(0,7),z R, (35)

uw(T,z) =g(z), z€R
we have
(i) Yi = u(t, X¢) a.s., where u(t,z) = E; 4 (g(XT) + [ X, Yy, Zr)dr) and |u(t, z)| < cl ;¥ (x)
with ¥ given in (7).
(i) (a) Oyu exists and is continuous in [0,T) x R,
(b) ZH* = u,(s, Xb%)o (s, XL7) a.s.,

(¢) ua(t,z)] < <“La@)

o .

(T—t) 2"

(i) (a) O%u exists and is continuous in [0,T) x R,
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2 < v
(0) 102u(t, )| < Lt
Using Assumption 2.3 we are now in the position to improve the bound on | Zs; — Zi| 1, )
given in Theorem 4.2.

Proposition 4.4. If Assumption 2.3 holds, then there exists a constant Cy4 > 0 such that for
0<t<s<T andzx R,

1
1Zs = Zi|| 1,y ) < Cra¥(z)(s —1)2,

where Cy 4 depends on b,o,T,po, g, f,p, cifg.
Proof. From ZL% = u,(s, X1%)o (s, X1%) and VYH® = O,u(s, X5%) = u,(s, X5¥)VXE® we conclude

Yt:r
_;X” (5, X0%), 0<t<s<T. (36)

t,x
s

It is well-known (see e.g. [17]) that the solution VY of the linear BSDE

T T
VY, = ¢ (Xr) VX1 + / Fo(O)VX, + £,(0,)VY; + £.(0,)VZ,dr — / VZ.dB,, 0<s<T,

(37)
can be represented as
VY, T s 1
% = E.[g/ (X7) VXrT + / £:(6,)VX, Tsdr] o
= &s,X &5, X 578, X T = o =
:E{g/(X;J OVXpTy +/ fz(Gf,’XS)VXﬁ’XSI‘i’XSdr}, 0<t<s<T, (38)
S

where O, := (r, X,,Y,, Z,) and I'* denotes the adjoint process given by
—1+/ fy(© I‘Sdu+/ f(0)dB,, s<r<T,

and

e =1+ /t fy (O Th dr + /t f(0LTh*dB,, t<s<T,z€R
where B denotes an independent copy of B. Notice that VXf’x =1, so that

VY:,J)
VX*©

- - Y~ T ~ Y~
= VY = E[g’(X;I)VX;I‘rgf‘ + /t fx(@w)vxﬁwrg»xdr].
Then, by (36),

VY, VY
Zs—Z = B
I tlL, . < C(U)<HVXS VX

1 x
19 ¥il 22y ) (5 = O3+ X0 = 212,
Lp(Pt,z)
Since (VY;, VZ;) is the solution to the linear BSDE (37) with bounded f, fy, f., we have that
||VY;5||L21,(IP’LZ) < C(b, g, T,P, fa g) ObViOUSIY7 ||X§7w_$“[/2p(ﬂ”t7z) < C(b7 o, T, p)(s_t)% So it remains
to show that

< CU(z)(s—1)2.
Lp(Pt,z)

ox. o
VX,
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We intend to use (38) in the following. There is a certain degree of freedom how to connect B and
B in order to compute conditional expectations. Here, unlike in (25), we define the processes

Bqll = Buns + Bu\/s - Bs and B;/ = Bunt + Bu\/t - Bta u >0,

as driving Brownian motions for Y& and <&, respectively. This will especially simplify the

VX, VX,

estimate for E|T5™* — I'5”|7 below. From the above relations we get for (X, := X'7)
‘ VY, VY,

VX, VX

| < HIE[g'(X;vX-S)vX;vX-sf;XS - g'(X;I)vX;””fg:ﬂ

S
_I_/
t

T n A < ad ~ ~ ~
[ B[O TR — @ v R

Lp (Pt p

B[ 1,60 VR T

dr
P

_|_

p
= J1+ Jo+ Js.

Since ¢’ is Lipschitz continuous and of polynomial growth, the estimate J; < C(b, 0,9, T,p)¥(z)(s—
t)% follows by Hoélder’s inequality and the L4 -boundedness for any ¢ > 0 of all the factors, as well
as from the estimates for X’;’XS — X5 and VX;’XS — VX% like in Lemma 5.2. For the T differences
we first apply the inequalities of Holder and BDG:

B —Tr <Cho [(S_t)q_lE/t 'fy(G?XS)Fi’XSl‘JdHE(/t |fz(®i’XS)Fi,Xs|2dr)
. T N - 3 i
+E [ 15,81 B — £, (00D tar
. T _ ~ o 4
”E(/ |fz(@f~’Xs)Tf«’Xs—fz(fox)Ff«’x\er) }

Since f, and f, are bounded we have I~E|1~“;?’XS q+I§J|f‘f;x|q < C(T, f,q). Similar to (28), since fy, fy, f-
are Lipschitz continuous w.r.t. the space variables,

|f2(O7%) = £o(677)] =

fa(r, Xf’XS s u(r, Xf’XS), o(r, )N(f’XS)ux(r, Xf’Xs))

—fa(r, X027 u(r, X07), o (r, X 07 Yug (r, Xﬁv‘”))‘

03 o x B |XS,XS _ Xt,x'
S C(T7 fa g, 0413)(1 + |‘X7§7 S|p0+1 + ’Xﬁ’x|p0+1)ﬁ’
-

so that Lemma 5.2 yields
o1 Xs — x|+ |3_t|%.
(T — r)%

E|fz(é:,xs) - f$(c:)7t”7m)|q S C(b707 T7p07 f7 0421’27(])(1 + |Xs|p0+1 + ‘x|p0+1)

The same holds for |f,(03%) — f£,(65%)| and |f,(©2X¢) — f,(6L7)|. Applying these inequalities
and Gronwall’s lemma, we arrive at

) a X5 T K ) l
IBLZ =T, < C(b,0,Tpo. fr9,¢15.0) ¥ (x)]s — 1|2

for p > 0.
For Jy, < C(t — s) it is enough to realise that the integrand is bounded. The estimate for J3
follows similarly to that of J;. Ol
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4.4 Properties of the solution to the finite difference equation

Recall the definition of DJ}, given in (12). By (4),

Xy = @ 4 hb(tm1, 2) + Vho (b1, ©)eme (39)
so that
Tttt (b1, X27%) = 0 (b1, @ + B (g1, @) £ VA (b1, 2). (40)

Proposition 4.5. Let Assumption 2.3 hold and assume that u™ is a solution of

Wty @) = hf (b1, 0" (b, @), D10 (b, X10T07))
1

- §[Tm+17+un(tm4r1a th,,ﬁi’x) + Tm+1,*un(tm+1)XZ;tﬁym)]v m=0,...,n—1, (41)

with terminal condition u™(t,,x) = g(xz). Then, for sufficiently small h, the map = > u"(t,, ) s
C?, and it holds

[0 (tns )| + | (b, )] < Cun 1 ¥ (), [ulgy(tin, 2)| < Cun 202 ()
and
(e (s @) = gy (s B)] < Cun 3(1 4[] P07 4 |7(%P0FT) |2 — 2], (42)
uniformly in m = 0,...,n—1. The constants Cyn 1, Cyna and Cyn3 depend on the bounds of
f,9,b,0 and their derivatives and on T and py.

Proof. Step 1. From (41), since g is C? and f,, is bounded, for sufficiently small h we conclude by
induction (backwards in time) that u! (¢, ) exists for m = 0,...,n—1, and that it holds

Ut (tm, ) = hfo(tmir, 20" (b, @), Dy U™ (Ear, X120707))
+hfy(tm+1, JI, un (tmv .’IJ), D%—&-lun(tm-l‘l? th’i;t_ﬁvz))ug(tm7 1‘)
+hfz (tm+1’ z, u” (tmv 37)? Dgﬂ-lun (tm+1> X?jﬁw))aﬂcpgz—i-lun (tm+1v ng%tﬁ,x)

+% (O Trm1,+0" (tms, Xn’tm’z) + 0xTt1,—u" (b1, Xn’tm’z))-

tm+l tm+l

Similarly one can show that ul, (¢, z) exists and solves the derivative of the previous equation.

Step 2. As stated in the proof of Proposition 2.5, the finite difference equation (41) is the
associated equation to (8) in the sense that we have the representations (19). We will use that
Wt x) = Y2 and exploit the BSDE

Yt = g(Xptmt) + - Fls, Xobmo® yTbms® | it ®) g Bn, — /(t . ZmEABE, (43)

where we will drop the superscript ¢,,, z from now on. For u}(t,,x) we will consider
VY =0,V = ¢(XB)a, X0+ /( F0u X 4 f,0.YT + [0, 2" d[B"),

ms

- / 0,2" dB". (44)
(t 7]
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Similarly as in the proof of [28, Theorem 3.1] the BSDE (44) can be derived from (43) as a limit of
difference quotients w.r.t. x. Notice that the generator of (44) is random but has the same Lipschitz
constant and linear growth bound as f. Assumption 2.3 allows us to find a pg > 0 and a K > 0
such that

l9(@)] + g/ ()| + |g" ()] < K (1 + [z[F*) = ¥(2).

In order to get estimates simultaneously for (43) and (44) we show the following lemma.

Lemma 4.6. We fix n and assume a BSDE

Yo = &4 [ fls.Xe Yo Zo)d[B"s — / Z.dB", m<k<n, (45
(tr,T] (tr,T)

with € = g(X7P"™") or &% = ¢ (X" ") 0, X" and X := X% or Xy = 0, X1t such that
f:Qx[0,7T] x R® = R is measurable and satisfies

Li(lz — | + |y —¢/| + |z = 7)),
(Kp+Lp)(A+ 2|+ [y + |2]). (46)

f(w,t,x,y,2) —f(w,t, 2"y, 2")| <
|f(w7 t7 x7 y’ Z)| S

Then for any p > 2,
() BN P+ BB [ gy Vo P22, PAB, < CUP(), k=m,.m
(”) Esuptm<s§T |Ys*|p S C‘pr(x),
D
(iii) B( f,, 1112 [2d[B"]) " < CUP(a),
for some constant C = C(T, f, g,p,po,b, o).

Proof. (i) By Ito’s formula (see [22, Theorem 4.57]) we get for p > 2

Vul? = P b [ NPTz dB ey [ YN (s X Y 2, )BT,

(tg,T) (tg,T)
= D Yl = Y [P = pY o Y P2(Y s = Yo ). (47)
Se(tk,T}
Following the proof of [25, Proposition 2] (which is carried out there in the Lévy process setting

but can be done also for martingales with jumps, like B™) we can use the estimate

- Z HY5|p - |Ys* |p - st* ’Ys* ’p_Q(Ys - Ys* )] < —Tp Z |Ys* |p_2(YS - YS*)Q
s€(tg,T) s€(ty,T)

where v, > 0 is computed in [34, Lemma A4]. Since
Ytg+1 - Yt£+1* = f(tf+17 Xt@7 Ytg, Zt@)h - Ztg \/];Ee+1
we have

- Z HYS|p - ’Ys* ’p - st* ‘Ys* ‘p_Q(YS - Ys* )]

Se(tk ,T]

n—1
S _’Yp Z |Ytg |p_2(f(tﬁ+17 th7 Ytg7 Ztg)h - Ztg \/Ea€+1)2
=k
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— ol [N PR Y 2By [ Y PRz PalBT,
20 [ VP X Yo 202, (B — B )IBY..
(tg,T)
Hence we get from (47)

Ye [P < lﬁn\pp/(t - YS\YS\p_QZSdBQ+p/(t . Yoo [Yo [P726(5, Xo=, Yo, Zy-)d[B"]s
k> k>

[ Yo PR B
(tkaT}
$2 [ Y X Y 2002, (BY — BB,
(tva]
From Young’s inequality and (46) we conclude that there is a ¢ = ¢/(p, Ky, L, 7p) > 0 such that
PIY o [P (s, X, Yo, Ze ) S Yo P22 P 4 (14 X [P+ Y- P)
and for vh < m we find a ¢ = ¢'(p, Ly, K¢,7p) > 0 such that
29 VRIY - P72 (5, Xo, Yoy Zo 12 | S BV P22 P+ & (1 X P+ Y 7).
Then for ¢ = ¢ + ¢ we have
Yol < P b [ NN PZedB v [ X Y P,

(tr,T] (tr,T]

-% Y- P22, [Pd[B"]s. (48)

2 (tk 7T] . |

By standard methods, approximating the terminal condition and the generator by bounded func-
tions, it follows that for any a > 0

%
E sup [Y4/*<oo and E (/ |Zs|2d[B"]s> < 00.
(tva}

t),<s<T
Hence [, 7 Ys-[Ys- [P=2Z,-dB" has expectation zero. Taking the expectation in (48) yields
B+ BB [ Y P2 BT S EIEP 4R [ 14X P Y P (49
(te,T) (tg,T)
By Gronwall’s lemma and the polynomial growth of  +— E[{"[F, and @ — E [, 71+ [X,-[Pd[B"]s,
||Ytk ||p S C(T7 f7g7p7p07 b? U)(l + |x|p0+1)7 k= m,...,n,
and inserting this into (49) yields
1
(E/ Yo P22 [Pd[B™),) " < (T, £,9,p,p0,b,0) (1 + [eP*Y), b =m,.on—1.
(tkaT]

(ii) From (48) we derive by the inequality of BDG and Young’s inequality that for ¢, <t <T

E sup Yo |
tp<s<T
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2
< E|5"|p+c<p>E(/ |Y8-|2”zs-|2d[3n]s) B [ TR Y PB,
tr, tr, T

1
2

< BICP4+cE [ 14X, P + CRIE | sup |vs|’2’</ |Ys|p-2|zs|2d[B”]s>]

(te,T) tp<s<T (tg,T)
+E [ Y, pdBT,
(tg,T]
<

BIEP +cB [ 1 X PAB" + CRIE [ P22, (B,
(tva] (tkaT}

+E sup Yo [P(3 + (T — ty)).
t<s<T

We assume that h is sufficiently small so that we find a t; with ¢(T — t) < i. We rearrange the
inequality to have Esupy, .s<7|Y,- [P on the Lh.s., and from (i) we conclude that

E sup [Y, " < 2EEP+2E [ 14X, PdlB +200E [ Yz, BT,
tp<s<T (ti,T] (kT
< O(T, f,9:p,p0,b,0)(1 + [ P0FP),

Now we may repeat the above step for Esup,, . <4, Y- P with c(ty — tg) < % and £" = Yr
replaced by Y, , and continue doing so until we eventually get assertion (ii).
(iii) We proceed from (45),

sup ’/ Z,-dBY
k<é<n ' J(tg,T]

so that by (46) and the inequalities of BDG and Holder we have that

P
E( /( gy 2 PB)’

p
< CE)(BIEP+E sup Yo l) +Clo Ly, KOE [ 1 X + 1Yo |dIB")s
k<t<n (tg,T)

p
<c@(iep+ su Vo + ([
k<t<n (

ty, T

WX Yo 257

D
2

O Ly K)(T — 1) 5 ( [,z Pd[Bn]s)

k 7T]

Hence for C(p, Ly, K¢)(T — te)? < 3 we derive from assertion (ii) and from the growth properties
of the other terms that

D
]E(/ Z-[2d[B"),)" < C(T, £,9,p,p0,b,0) (1 + [2| ™), (50)
(tva]
Repeating this procedure eventually yields (iii). O

Step 3. Applying Lemma 4.6 to (43) and (44) we see that for all m = 0,...,n we have

Tyt , L 1yl , T 1
[u" (tm, )| = |Y;:m’t | = (B2 "))z < (T, f, g,po, b, o) (1 + |z[PotT)

m

and

Ny, T 1
[y (b, @)| = (B0 Y™ ")%)2 < (T, f,9,p0,b,0)(1 + |z[+). (51)
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Our next aim is to show that ul, (¢, ) is locally Lipschitz in 2. We first show that u, (¢,,, z) has
polynomial growth. We introduce the BSDE which describes u}, (¢, x) and denote for simplicity

flt,x1,29,23) == f(t,z,y,2) and D*:= 6;118;?28;33 with a := (i1, 12, i3)
and consider
07y, = §"(XP)(0.XF)" + ¢ (X7 XT
o X DM XY A OX ) @Y 0,7 P B,

ac{0,1,2}3
i1+i2+i3=2
F S DU XY 2GRN ORI ) (022 )BT,
(tm.T] ae{0,1}?
i1+i2+i3=1
- / 927" dB" (52)
(t 7]

We denote the generator of this BSDE by f and notice that it is of the structure

A

f("‘)?tvxvyv Z) = fO(w7t) + fl(wat)m + f2(w7t)y + f3(w7t)z'

Here fo(w,t) denotes the integrand of the first integral on the r.h.s of (52), and from the previous
results one concludes that E( [, 7 [fo(s7)|d[B"])? < cc. The functions fi(t) = (DIOO) £) (¢, ) =
(O f)(t,-) as well as fo(t) = (9, f)(t,-) and f3(t) = (0. f)(t,-) are bounded by our assumptions. We
put

¢ = g"(X7) (0 X7)? + g (X} 07 XT
Denoting the solution by (Y, Z) we get for C(f3)(T — tp,) < + that

N 1 N
B, 4 5B [ (2B,
2 Jtm,)
N 2 ~ N
< ClBEPE([ IGOldB) +E [ X P Vo PAEL) (69
(t’m7T] (t’m’T]

Now we derive the polynomial growth E|¢"[2 < CU2(z) from the properties of ¢’ and ¢” and
from the fact that Esup, ., |04X!P is bounded for j = 1,2 under our assumptions. Then the
estimate

_ n \2 4
E(/ [fo(sT)IdB"];) " < O (x)
(tm, T
can be derived from Lemma 4.6(ii)-(iii), so that Gronwall’s lemma implies

Vi = |os (tm, @)| < CU (). (54)

Finally, to show (42), one uses (52) and derives an inequality as in (53) but now for the difference
YAV 2/ N, T
axy;fm’ T axy;fm’ o

Before proving it, let us state the following lemma.
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Lemma 4.7. Let Assumption 2.3 hold. We have

_\1l/p
(IE sup |Z™tme _ Zmtmd P) < CUE2+ U@ —3|, p>2, (55)
_ o
E( [ lo.zpmt 0,2 RaB))” < OO a) + W @)a — i, 22, (56)
(tm7T]
P
2
E ( / |6£Z§’tm’””|2d[B"Js> < CU¥(z), p>2, (57)
(tm,T]

for some constant C' = C(T, f,g,p,po,b,0).

Proof of Lemma 4.7. (55): Introduce G(tg+1,2) = Dy, u(tgr1, X{07). Using relations (39)-

tet1

(40) and the bounds (51) and (54) for u! and ul,, respectively, one obtains
G (tps1, ) — Gltppr, T)| < C(1+ |x?Pot) 4 |zPeot )y — 7|, 2,7 €R,

uniformly in ¢;,1. Since ng’t"“x = Dgﬂun(tkH,X&ﬁ’") = G(tgs+1,n) where n = ng’t"“x, the
previous bound yields

|ZZ:tm7I _ Zgztmyf‘ S C(l + ’ch,tmw‘ﬂpo-&-l) + ’X&¢t7n7f|2(p0+1))‘X&?tm@ _ Xg;ytm,i

uniformly for each t,, < t; < T. Inequality (55) then follows by applying the Cauchy-Schwarz
inequality and standard L,-estimates for the process X™.

(56): This can be shown similarly as Lemma 4.6-(iii) considering the BSDE for the difference
B Y,V — 9, Y,V instead of (44) itself.

(57): This one gets repeating again the proof of Lemma 4.6-(iii) but now for the BSDE (52). [

By our assumptions we have
E[gntm® — Etm T2 < C(W () + U(&)) (1 + [af” + [2[*)]2 — 2>,

where we use |z — Z|* < C(1 + |z|* + |z|?)|z — Z|**. The term |z — Z|* appears for example in the
estimate of (9, X77'™™)2 — (8, X77"™")2. To see that

E(/(tm,T] |fém,z(s—) _ ém@(s_ﬂd[Bn]s)Q < C(\Illo(a?)-l-\pm(i‘))(l-i- |1_|2_’_ |i‘|2)|$—i"2a,

we check the terms with the highest polynomial growth. For example, we have to deal with terms

- 2 - 2
hke E(«f(tm,T] |Z:itmyw_Z:itmyl'| ‘8xZg;tm,x|2d[B”]S) and ]E(f(tm7T] |61Z;/th”n’u$|2_|a$Z:itmyx|2d[Bn]s) .
We bound the first term by using (50) and (55)

_ 2
5 ( / |zt 7T |9, 7 2 (B )
(ton. 7]

SIS

Nt T Notm, T (4 & Nyt n 4
< (Esup|Ztm® — zmim |4)2(E</ 9.2 2B, ) )
; (t 1]
< C(U(z) +v4(@)|z — z]20(2).

The second term is bounded by using (50) and (56):

_ 2
B( [ 0.zt 0,200 B,
(6 1)
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IN

CE 18,22 1|9, 27 24 B, / 18,2 9, Zmtm T 2[5,
(171 (171

OV (@) + W2(2)) (B¥(x) + U4(@) | — 7
(W) + U(@) (Jaf2 722 + [522) 2 — 72
CW(x) + W@ (1 + Jaf? + |2} — 7.

ININ N

While all the other terms can be easily estimated using the results we have obtained already, for
2
B([ I ) = 7 ()2 dIBT,) < OOV @) + W (@) (1ol + ) o - 22
(tm,T)

we need the bound (57).
The result follows then from Gronwall’s lemma.

Remark 4.8. Proposition /.5 implies that there exists a constant C = C(T, f,q,p,po,b,0) > 0
such that

102Dy 10 (b1, Xpo ™) = Dyt (b1, Xp ™)) < C(14 W () + U (7)) |z — 2%, (58)
uniformly in m =0,1,...,n — 1, where

U(z) =14 |a]P0+8, (59)

O

5 Technical results and estimates

In this section we collect some facts which are needed for the proofs of our results. We start with
properties of the stopping times used to construct a random walk.

Lemma 5.1 (Lemma A.1 [19]). For all0 < k < m < n and p > 0, it holds for h = L and 74
defined in (22) that

(i) Er, = kh,
(ii) Eln|P < C(p)h?
(iii) E|By, — By | < C(p)E|m, — ti? < C(p)(txh)%.

The next lemma lists some estimates concerning the diffusion X and its discretisation, where
we assume that B and B are connected as in (25).

Lemma 5.2. Under Assumption 2.1 on b and o it holds for p > 2 that there exists a constant
C =C(b,o,T,p) >0 such that

(i) B|X5Y — X5 )P < CO(ly —afP +|s — t]2), z,y€eR, s, tel0,T]
(ii) Esupn/\tm<r<n+1/\tm |Xf:fr—Xf:anm|p <Chi, 0<k<n,0<l<n—k-1,0<m<n—k,
(iii) B|VX5Y — VXL P < CO(ly —z|P + |s —t|2), z,y€eR, s, tel0,T]

w) Esupgejc,, VX P <C, 0<k<n,0<m<n-—k,
0<i<m tr+1;
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(v) E‘Xf:ftm—.)(ﬂ“ P <C(z—ylP+hT), 0<k<n, 0<m<n-k,

T+Tm

(vi) VXM, — VAL [P<C(la—y[P+hT), 0<k<n 0<m<n-—k

Tk+Tm

Proof. (i): This estimate is well-known.
(ii): For the stochastic integral we use the inequality of BDG and then, since b and o are bounded,
we get by Lemma 5.1 (ii) that

" tk, tIm D
E _ Sul? |th+7‘ - tk+7’l/\tm|
TN <r<Ti41\tm
D
2

< CW)IDI%EFi1 — 7P + o] %E fipr — 7| 2) < C(b,0, T, p) b2

(iii): This can be easily seen because the process (VX ¥),c[s 1 solves a linear SDE with bounded

coeflicients.
(iv): The process solves (61). The estimate follows from the inequality of BDG and Gronwall’s

lemma.
(v): Recall that from (4) and (24) we have

Aot = Xp =y +/ 0 ]b(tk +r, XYY d[BY, B, + (0.t ]U(tk +r, X0 )dBy,

and f(f:ftm is given by
G tie,T tm i, b t
X =z + /0 b(ty + 7, Xyl )dr + /0 oty +r, Xt:fr)dB

To compare the stochastic integrals of the previous two equations we use the relation
0o m—1
t b 7 D,
\/(<Ot } U(tk + r, X;l ny dBn / tk+l+1, tk+l )1(ﬁ7‘7'1+1](r)dBT'

We define an ’increasing’ map i(r) := t;1 for (¢;,t;+1] and a ’decreasing’ map d(r) := t; for (¢;,t;41]
and split the differences as follows (using Assumption 2.1-(iii) for the coefficient b)

=1 ot iy |P

]E’Xt:-th - ng‘ftm’

= [im . f t t t Sty
< ) (le -+ B [ 00 II - Xl 1K) - X

- tm -
+CE)E| [ oty + 7, X dB, [P
tm ANTm
- Tm m—1 -
+C(p)E| . AR Z (tk+l+1’th+lj’y)1(7'l,7'l+1]( )dBT‘p
mATm 1—(
tm AN Tm, ¢ m—1 _
ORI RIS AR DRI s (011 (60)
=0

We estimate the terms on the r.h.s as follows: by standard estimates for SDEs with bounded
coefficients one has that

ya
2

E / [r—i(r)[® + | X5 — X0 Pdr < C(b, 0, T, p)h?.
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By the BDG inequality, the fact that ¢ is bounded and Lemma 5.1 we conclude that

tm p
. b,
B [ ottt Xi)dB, CiE S otisisr L)Ly (1)dB,
tm N\Tm tm A\Tm =0
S~ D
< C(o,p)|o|BElFm — tm|2 < C(o,p)(tmh) 1.
Finally, by the BDG inequality
~ tm ATm ¢ m—1 - p
E‘A O'(tk —|—7“ Xt;}:,+7‘ - Z o tk+l+17th’+l7y)1(‘l~’17‘l~‘l+1](r)dB""
=0
tm T 2
oy |2
< cwi( [ Z ot 7 X2 = o, )P (1))
m—1
< C B Ti+1Abm ¢ L ¢ u Xt gt P
< Cf(o,p) Z o [Fren — tipa ]2 + 17—t ]2 + ] trobr R At |
=0 T/ A\tm,
th, ey
|Xt:+7'l/\tm IZ@J: |pdr>
1 ~
< C(o,p, h% + max (E|7f —#[")2 + max (E su Xt _ xtew 2p)3
< ClpD)(f + mox Bl —tP)i + max B sup X5 = it )

tr, Ay 10/~ -
+E Z |Xt:+‘rl/\tm tk_: YP(Fre1 — Tl))-

. ~ ~ o . t .
Moreover, since 7,1 — 7 is independent from |Xt:;rﬂ A XZ: Y|P we get by Lemma, 5.1-(i)

m—

Kt ths
Z t:-i-'rl/\tm - thJ: y|p(7'l+1 - 7’1)
1=0
m—
Xtk tk,
- Z Xt = Xp0 P (e — 1)
1=0
D s e 7 te,
< o.p)(E /0 XUy = Kt P+ o BIXGEE = XU, P).
Using Lemma 5.1-(iii) one concludes similarly as in the proof of (ii) that E‘Xtt:;n ALy — :kjrtl P <

C(b,o,T, p)hi Then (60) combined with the above estimates implies that
trm
tr, n,te,y |P D = tr, n,tg,
E[X;h, — X" < C(b,o, Tvp)(|$ —y[’ +hi +E/o X — thfd%r)|pdr)-
Then Gronwall’s lemma yields
E|Xphy,, — XtV [P < C(b,0,T,p)(Jo — yl? + h¥).

(vi): We have

VXY = 1+ or ]bx(tk T, XY )Y (B, B,
+/ ou(ty + 7, X[ EY )V XY dBY (61)
(0,tm]
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and

tm

tom -
VXL =1+ ; be (t, + 7, X{EE) VXL dr + / ooty + 1, X{E )V X5 dB,. (62)
We may proceed similarly as in (v) but this time the coefficients are not bounded but have linear

growth. Here one uses that the integrands are bounded in any L, (P). O

Finally, we estimate the difference between the continuous-time Malliavin weight and its dis-
crete-time counterpart.

Lemma 5.3. Let B and B be connected via (25). Under Assumption 2.1 it holds that

. 5 X, — X, 2+ h3
BINEE o (th, Xi) — N2 0 (tar, A )| < C(b,0,6,7) X =l 2 oy

" (tm - tk)%

Proof. For N"™ and N/ * given by (10) and (15), respectively, we introduce the notation

~ 1 tm—k ~ ~ 1 %mfk
N/Eo(ty, Xy, ) = ti/ ay+sdBs and  NZFo(tpgq, Xy) =1 —— al | dBs
m—k JO tm—k Jo

with
Xy, 0(tk, Xy,)

Atp+s = Vth+s 1, Xt,
o(ty+s, th—i-s )

U(tk-i-l’ XTk) ( |
Tk Xy, s€(Te—1,Te]"
o (thre, X imt )

Tk7 Tk
and aTk+S Z VXTk+Te 1

By the inequality of BDG,
(tn — ) BINIA ot X1,) — Ni o ol >|2

m—k 2

- E‘/ a/tk+SdB / Tk+8

~ m—kNTm—k
= ]E/O (a’tk“'s - Tk-f—s) dS+E/ atk"‘Sl(TnL kstm— k](s)ds

+E/[) (a:&k""S) 1(tm—k77-m—k](s)ds

m—Fk . 4 o . .
Z clos Sup |ty —ark+ﬁ;| (Elfe — Fo-1]7)2

(= m—k]N(Fe—1,7¢]

NI

IN

1

1

~ N 1

+ sup \atk+5| +E max |a7.k_~_7.l|4 (Bltm—i — Fmi|?)2.
SG[Otm &) 1<t<m

The assertion follows then from Lemma 5.1 and from the estimates

E sup |atrs — aZ i | < C(b,0,T,6)(| Xy, — X7L|* + 1) (63)
se[oatrn—k]ﬂ[fé—lv‘h]
E sup fays|' +E max ol o |" < 2fol6 " (64)

SE[0,tym k] 1t

So it remains to show these inequalities. We put

t L U(tkvth) 7] U(thrl;XTk)
Kt:Jrs T e, Xt and KTk"fTZ 1 STk Xy,
oty +s th-s-s ) o (thte, X 15,1 )

28



and notice that by Assumption 2.1 both expressions are bounded by ||o||od~!. To show (63) let us
split ay,+s — a7, 4z, in the following way:

t Ste, Xt tr, Xt tr, Xt ~t ~ t
atk"“s - a¢k+7'g = Kt}]z-‘rs(Vth-‘rS * Vth-i-tgk 1) + Vth+tgk1 (Kt::—l-s - Kt;’:—‘—tg 1)
t e, Xt 5Ty 5Tk X ot
+ Kt:+tz 1(Vth+telil o VXTk+TZ 1) + VA Tl+To— 1(Kt:+tl 1 Kﬁkrﬁ 1)
Then
s -t Ntkvxt tkzxt 4
E sup |Kt:+s(Vth+s r Vth+tg]il)|
SE[Tr—1 Aty —k,Te At ]
4% St X X
< lloflioE sup VX, = V[ < Oboo. T.0)h
SE[To1 bk, Te N — k]
since one can show similarly to Lemma 5.2-(ii) that
~ ~tp, X tg,X
E sup VX, L = VX, ok 1Y < Ob,o, T, 6)h.
SE[Fo—1 Atm kTNt k]
~ X <7, Xy . -
Notice that VX:'“’ " and VXX solve the lincar SDEs (62) and (61), respectively. Therefore,
~ X = X;
E sup |Vka’ *|P < C(b,o,T,p) and E0<max ]VX;]Z%’“ [P <C(b,0,T,p). (65)

SE[O,tm,k] <<

For the second term we get

~ ~tr, Xt -t -t 4
E sup |vth+t/il(Kt:+s - Kt:+t,_;_1)|
SE[Fo—1 Nbm— ks Te Ny
~t X 1 t ,X tg, X 1
< C(o,O)(EVX,Tk %) (B sup (te = sl + 1 X7 = Xyt )2

SE[Tr_1 Aty —k,Te At k]

< C(b,0,8,T)h.

For the third term Lemma 5.2-(vi) implies that

e -
E|Ktk+te 1(VXt:+tZli1 - V&

Tre+To—1

Tk 7X‘rk

)I' < Cb,0,T)oll5d™ (1 Xe, — Xr | + ).
The last term we estimate similarly to the second one,

E|VX% 5 (Ktt:—‘rtg KT 1

Th+Te—1 Tk+Te-1
Tk> ™ tr,X 1
< Clo, ) BIVELTE 31X, — X [P + BT — Kok %)
< C(b7 o,T, 5)(|th - Tk|4 + h)
To see (64) use the estimates (65). O
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