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Automatic Customization Framework for
Efficient Vehicle Routing System Deployment

Jussi Rasku, Tuukka Puranen, Antoine Kalmbach, and Tommi K¨arkkäinen

Abstract Vehicle routing systems provide several advantages over manual trans-
portation planning and they are attracting growing attention. However, deployment
of these systems can be prohibitively costly, especially for small and medium-sized
enterprises: the customization, integration, and migration is laborious and requires
operations research expetise. We propose an automated configuration workflow for
vehicle routing system and data flow customization, which provides the necessary
basis for more experimental work on the subject. Our preliminary results with learn-
ing and adaptive algorithms support the assumption of applicability of the proposed
configuration framework. The strategies presented here equip implementers with the
methods needed, and give an outline for automating the deployment of these sys-
tems. This also opens up new directions for research in vehicle routing systems, data
exchange, model inference, automatic algorithm configuration, algorithm selection,
software customization, and domain-specific languages.

1 Introduction

Globalization, increased goods consumption, and economicchanges pose chal-
lenges on transportation logistics. With increasing scale, tightened competition, and
environmental concerns, dispatchers stretch their planning capabilities to the limit.
Handling all the factors may even be impossible for the humanplanner [21], which
has spawned an interest in commercial automated route planning systems. Com-
bined with the rapid development of IT, this has created a transportation planning
tools industry serving operators working with the increasingly complex logistics
systems [14].

Jussi Rasku, e-mail: jussi.rasku@jyu.fi· Tommi Kärkkäinen, e-mail: tommi.karkkainen@jyu.fi
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The advantages of these systems are well known: savings up to30% in opera-
tional costs, reduced planning time, and minimization of human error [42]. Drexl
[9] also note the macroeconomic benefits such as improved traffic flow and low-
ered emissions. If applied at a large scale, deployment of Vehicle Routing Systems
(VRSs) can lead to significant economic and environmental benefits.

A VRS is described in Drexl [9] as follows: it is an operational planning software
that can read in data with vehicles, drivers, depots, customers, and their respective
requests connected to geographical locations. The data defines the specific problem
scenario. A map view is often used for visual data verification. A VRS then allows
manual, interactive or fully automated (optimization-based) construction of routes.
The algorithms, that can build a routing plan conforming to the operational rules
such as work time regulations, are the key feature of the system. Finally, the sys-
tem interacts with an existing resource management system,or allows saving and
printing the plans for operational use.

The operation environment for a VRS is complex and dynamic [42, 5, 31] and
poses hard to match requirements for commercial software. In a survey from an
industry viewpoint, Hoff et al [14] raised a concern that while academic Vehicle
Routing Problem (VRP) research has provided efficient algorithms for these prob-
lems, they typically use idealized models which omit important facets such as driver
breaks, work time regulations, turning restrictions, variation of service times, and
congestion. According to Partyka and Hall [32] the providers are having difficulties
in providing holistic solutions due to this complexity.

In addition to shortcomings of the idealized models, different logistic operators
have differing requirements [5]. As it is not commercially viable to build a unique
VRS for each of them [42] the product is made customizable. Here, a VRS designed
for easy deployment needs to capture the features of the common VRP variants.
Additionally, solving the problems effectively calls for robustness, adaptivity, and
reactivity [42].

According to Partyka and Hall [32] routing installations require heavy customiza-
tion which is mainly done manually. A survey of the Dutch VRS market by Kleijn
[21] agrees: most of the software was at least partially tailor-made. The issue has
been identified also in academic research. Puranen [36] proposes the use of Software
Product Lines (SPL) as a mass-customization strategy. It isa promising approach, as
these techniques exploit commonalities in a system to effectively manage variation.
Applying SPL in other application domains report order of magnitude reductions
in time-to-market, engineering overhead, error rates, andcost [24]. Preliminary ex-
periments in [36] suggest that these benefits are achievablealso with VRSs. The
extended rationale for the work, as presented in [31], is that the underutilization of
route optimization is not due to the shortcomings of models and algorithms, but due
to problems in deployment.

The challenges in implementation and deployment call for anapproach that could
forward the adoption of optimization. In this paper, we propose such an approach
as a set of actions and techniques to automate the flow of data through a VRS.
Acting upon presented ideas allows utilization of the recent advances in Software
Engineering, Machine Learning, and Operations Research.
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In related works Desrochers et al [8] describe a VRS that could be used by a con-
sultant with a basic understanding of mathematical programming. Similarly, Matu-
rana et al [30] describe a decision support system generatorthat substantially lowers
the cost of developing such systems, although in their solution the model and data
structures has to be still defined manually. Also, Hoff et al [14] envision a tool
exhibiting some of the properties presented here. Despite these ideas, a planning
and decision support system that allows as extensive automation as ours has not
been previously described. No customization framework forthe needed automation
methods has existed, and their interaction within VRSs has not been previously ex-
plored. In this paper, we address this by providing an automated configuration work-
flow for VRSs and a review on the automation methods for different phases of the
process. The customization framework should be of interestnot only to operations
researchers, but also to providers of VRSs.

For an overview, Section 2 provides a review of the trends in vehicle routing
research. In Section 3 we recognize the opportunities for automation in customiz-
ing from data flow perspective. Section 4 we present our proposition for solving
some pressing problems in VRS deployment and Section 5 reviews our preliminary
experimental results. In Section 6 we conclude our study.

2 Trends in Vehicle Routing Problem Research

VRP has been under intensive research ever since was first introduced by Dantzig
and Ramser [7]. VRP concerns the task of finding optimalroutesfor a fleetof ve-
hicles leaving typically from adepotto serve a specified number ofrequests. Ob-
jectives can be anything from minimizing the number of vehicles or total travel
distance to complex multiobjective business goals. Over 50years of academic in-
terest has experienced many shifts of research focus. The trends in VRP research as
recognized, e.g., by Puranen [36] are illustrated in Figure1.

models: idealized rich unified inferred

methods: simple refined adaptive learning

Fig. 1: Trends in vehicle routing research. Adapted from [36]

The early models wereidealized, partly due to the limitations of computational
hardware and solution methods of the time. Since the early days, the trend has been
towards more complex and more realistic“rich” problems [42, 14]. Rich models
extend the classical formulation with complex decisions and objectives as well as
can introduce many operational constraints. In addition, anumber of new aspects
have been proposed; for example Hoff et al [14] call for more explicit handling of
stochasticity and risk in the models, and stress the need forresearch on real time and
dynamic routing. For reviews on rich VRP research in the context of commercial so-
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lutions, we refer to Hasle and Kloster [13], Drexl [9], and Bräysy and Hasle [5]. Re-
cently, there has been efforts to developunified modeling approaches with generic
and flexible modeling structures that can capture the aspects of different VRP vari-
ants [40, 13, 18, 48, 37]. Vidal et al [45] make a synthesis on previous research and
propose a naming scheme for these variants. Unified modelingframeworks often
provide a Domain Specific Language (DSL) for describing the problems. One of
the contributions of this paper concerns the rightmost transition in modeling: we ar-
gue that the advances in unified modeling enable modelinferencewherecomposite
optimization model can be automatically or semi-automatically formed by inferring
the composition of the model from the problem instance data.

The solution methodologies have followed a similar trend. The first methods re-
lied onsimple heuristics or on mathematical programming as in the original paper
by Dantzig and Ramser [7]. The growing problem size and modelcomplexity led
to interest in morerefined and sophisticated methods. However, due to scale of the
real-life problems, exact solution methods cannot always be used. Thus, a number
of heuristics and metaheuristics have been proposed. For surveys in solving VRPs,
see, e.g., Toth and Vigo [44], Cordeau et al [6], and Laporte [26]. Recently, there
has been interest inadaptiveand self-adjusting methods where algorithms observe
the optimization progress and react accordingly. This trend was recognized, for ex-
ample, in the survey by Vidal et al [46]. A newer trend is the application oflearning
hyperheuristic systems, which involve using data-driven techniques that enable and
disable different algorithms depending on the observed search space. This involves
identifying situations similar to those found in the history data or knowledge model.
For a survey on using hyperheuristics in combinatorial optimization we refer to Kot-
thoff [23].

The disadvantage of unified and “rich” models and refined versatile solving
methods is that they may make the deployment more complicated [31]. Also, note
that in most of the case studies in the aforementioned surveys, the derivation of the
model, selection of the algorithms, and fine tuning of the methods is done manually
by the researchers based on their expertise. Unfortunately, this does not scale in a
commercial setting and poses a barrier for the deployment ofVRSs.

3 Data Flow in a Vehicle Routing System

In this section, we outline thedata flowthrough a VRS, or more specifically, how the
problem instance is passed from system module to another. The flow of information
is one of the main aspects affecting the deployment, integration, and utilization of
the system. Describing the modular structure of a typical VRS in detail is omitted,
and the reader is referred to Drexl [9], Puranen [36], and Br¨aysy and Hasle [5].

The data flow can be divided into phases as illustrated in Figure 2. First, the
data is read from a data storage, such as files or relational database, and then con-
structed into a domain model (1). Domain model offers primitives for concepts such
as truck, driver, and request. The domain model is then translated into optimization
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model (2). This involves describing the decision variables, the objective function,
and the necessary constraints. Note that a DSL or similar technique has to be used
to capture the aspects of the specific routing problem. Result of this transformation
is a mathematical optimization model that can be then completed with the problem
instance specific variable values. The modeled problem can now be fed to the rout-
ing algorithms residing in the solver module (3). Effectiveness of the algorithms
depends heavily on the algorithm parameters [15]. Thus, when adapting a VRS care
is needed to derive a set of suitable parameter values (4). After the optimization (5)
the results can be transformed back to the primitives of the domain model (6) which
in turn are translated into an actionable plan (7).

Customer

data

Domain

model

Optimization

model

Algorithm

parameters

Routing

algorithms

Plan Solution
Optimization

results

1 2

3

4

567

Fig. 2: Data flow of a problem instance trough a VRS.

Provided that the VRS is generic enough to model a wide set of different and
“rich” VRP variants, and that it includes a set of modern metaheuristics and local
search based routing algorithms, the biggest effort in adopting a VRS for a new
customer is to make sure that the data is read and processed correctly [31]. VRS
providers have several options to manage the data flow:

(a) Force an identical data flow for all customers. This will remove much of the
flexibility and only a narrow set of problem types can be efficiently addressed
by the VRS.

(b) Customize the data flow manually on a case-by-case basis.Here multiple model
variants and use cases can be supported, but the customization heavily depends
on manual work and expertise.

(c) Outsource the customization to a third party or to the customer by providing
a way to externally configure the system via, e.g. a DSL. The challenge is to
provide enough training and sufficient tools for the third party.

(d) Automate the customization so that fixing any given set offunctionality inside
the VRS is done automatically based on the customer input anddata. In addi-
tion, if the provider has access to the history data during the customization, the
automation might even be learning, that is, with every new modeled problem
and deployment the software gains experience.
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Designing the software in a way that the flexibility is maximized makes the sys-
tem applicable in larger number of different contexts, thusmaking the approaches
(c) and (d) feasible. The challenge for (c) is that many logistic operators are small,
and lack the necessary expertise to understand the inherentcomplexity in selecting,
configuring and deploying VRSs [31]. Therefore, out of these, the automation based
approach (d) is the one that is more scalable and cost-effective. This validates the
need for the proposed customization framework.

Each of the data conversion phases Figure 2 expose a potential point of cus-
tomization. In practice, thisvariability is exposed by configurable behavior of the
software system, and it needs to be managed somehow. From a theoretical perspec-
tive, this has been addressed by the techniques in the area ofsoftware product line
engineering (SPLE) [35]. In SPLE, the developed system is divided into two layers:
domain layer and application layer. The domain layer of the system captures the
generic properties of the current domain, and the application layer is used to define
customized application instances withvariability points. It is a predefined point in
the system, in which variation between the applications occur [19]. The specialized
expertise required in the customization of VRSs prohibits manually managed mass
customization. Instead, we suggest the use of machine-learning based adaptive mass
customization techniques, and argue that these represent one of the key technologies
in achieving cost-effective routing system deployment.

4 The Automation and Customization Framework

Our main contribution is an outline, or a vision, of how highly automated and easy-
to-deploy VRS could be constructed. This customization framework could also en-
able experimentation with different automation approaches, but here we concentrate
on the techniques we have either successfully applied ourselves, or see as prag-
matic solutions to the presented opportunities for workflowautomation. We limit
ourselves to well-known methods used in related fields, and assume a generic solver
module capable of expressing a wide set of “rich” VRP variants. The section follows
the structure of Figure 2 with each phase having a corresponding subsection.

4.1 Interpreting Customer Data
Input data→ Domain model

Interpreting the customer data and transforming it into routing problem starts with
the creation of a domain model, which represents the real world entities that form
the routing problem. The transformation task consists of taking the problem data as
an input and then extracting the data into the domain model. In the simplest case,
one can specify a data format that is required and the VRS simply parses this data
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into a model. It becomes problematic if the parser needs to support different formats.
Maintaining numerous many-to-one mappings can quickly become an onerous task.

A likely scenario for data integration is a relational dataset, such as relational
database, but in general, any kind of flat dataset with interconnected files can be
used. To illustrate, one part of the dataset could consist ofordinary files that pertain
to drivers and vehicles, and the other deliveries and locations. Finding semantic
links between the relations in these datasets is what we calljoin inference, which in
turn is based on foreign key discovery [1, 41]. We propose join inference as a model
that can learn the semantic links between a set of relations.It is used to produce a
cohesive union of data, the joined relation.

After join inference has been done, we propose the use of schema mapping [4] to
extract the required information from the data. Schema mapping consists of finding
pairings between two schemas. Aschemais a formal description of the information
contained in a relation; crudely, this would be a set of data attributes, or column
headers. Having to find these attribute pairings makes the problem a kind ofdata
exchange problem[22], where the goal is to take data from different sources and
assimilate it, in this context, to the domain model of a VRS.

4.2 Inferring the Optimization Model
Domain model→ Optimization model

After mapping the input data to the domain model, it must be translated into a format
understood by the VRP solver. This includes choosing an optimization model. We
were unable to find related work on automating this step. Therefore, we proceed to
propose four approaches for implementing such an automatedtransformation:

1. Separate models:methods from Section 4.1 can be used on domain model to
map it against a selection of optimization models. Out of these, the one with the
best fit is selected and completed with instance data. This issuitable approach
only if a VRS has support for a limited number of VRP variants.

2. Coupled models:a number of domain and optimization models are coupled to-
gether with predefined pairwise transformations. Data interpretation from Sec-
tion 4.1 is done with all domain models in the coupling set andthen the one
with the best schema mapping (along some criteria) is selected. This has the
same constraints as the previous approach.

3. Model composition: the optimization model is composed of different objects
that may correspond to partial objectives, decisions, or constraints. Filled do-
main model is matched against each optimization model component and if a
threshold is crossed, the component is included to the composite model.

4. Model reduction: alternatively, the initial optimization model may be “com-
plete” or unified in a sense that is capable of expressing all the supported VRP
features. After doing schema mapping between the domain andoptimization
models, the unused elements, for which the variable values were not set, are
removed from the optimization model.
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Besides domain model, other sources for deducing the optimization model in-
clude e.g. the vocabulary used in the data. To illustrate, the field revealing that the
transportation involves people, refers to use of a dial-a-ride optimization model. The
unified naming convention for VRP variants in Vidal et al [46]might prove to be
useful in recognizing the different modeling constructs for the model inference. We
note that the feasibility of applying automation in this phase is uncertain, mostly
because of the lack of prior published research on the topic.

4.3 Selecting the Suitable Optimization Algorithms
Optimization model→ Algorithm performance predictions

As mentioned earlier, industrial solutions tend to favor algorithms based on heuris-
tics [42, 5], and many implement a collection of different algorithms to gain extra
flexibility. It is also known, that the performance of an algorithm varies greatly be-
tween different routing variants and even problem instances [15]. Therefore, it is im-
portant to use an algorithm that is efficient in solving the given problem. Portfolio-
based algorithm selection techniques such as SATzilla [49]use statistical models
to select the algorithm for solving a given problem instance. In VRS this approach
could be applied to select the higher level algorithmic components: a metaheuristic
could be selected based on the instance characteristics andpredicted performance.

Another way to improve solver performance is the utilization of so calledhy-
perheuristics. Instead of using a single algorithm or a manually constructed com-
bination, a hyperheuristic acts as a high level learning “supervisor” algorithm that
selects and combineslower level algorithms from a portfolio on the fly.

Similar ideas have been tried in VRP, for example by using several simple heuris-
tics in varied order to escape local optima. Pisinger and Ropke [34] proposed a
mehtod, where adaptive heuristic selection is done among intensification and diver-
sification heuristic operators. Garrido has proposed the use of hyperheuristics to se-
lect local search operators in solving different VRP variants [11]. VRP was also one
of the problem domains in Cross-domain Heuristic Search Challenge (CHeSC2011)
where a number of domain independent hyperheuristics were evaluated [47].

We note that these schemes should be useful when adapting an industrial VRS to
a new set of end user provided sample problem instances. Our experimental work to
explore these possibilities is in preparation.

4.4 Configuring the Optimization Algorithm
Optimization model & Observed performance→ Algorithm parameter values

The algorithms used to solve hard computational problems often reveal parameters
that can be used to change the behaviour of the algorithm and adapt it into solving
a specific problem instance [15]. The settings of the algorithm parameters have a
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substantial effect on the performance of the algorithm. However, setting them man-
ually is a non-trivial task requiring expertise and effort trough experimentation [15].
Therefore, automatic search approaches have been proposedto what is in literature
known as the problem ofautomated algorithm configuration (AAC).

In practice, AAC can be used to automatically adapt the a routing solver for each
VRS deployment. This allows the VRS provider to get the best performance out
of the implemented algorithms. Also, after enough experimentation, archetypes of
routing problems might emerge. With this history data the previous configuration
effort could be reused to provide more varied algorithm defaults for the solver. In
fact, several AAC methods have proven successful also with VRP [33]. Of particular
interest in this context is the work in Becker et al [3], wherethey tuned the param-
eters of a commercial VRP solver with real-world routing problem instances. Our
recent experimental work [39] verifies this and gives suggestions on which AAC
methods to use to configure VRP metaheuristics.

Current state-of-the-art methods like SMAC from Hutter et al [17] or I/F-Race
from Balaprakash et al [2] support all parameter types, are able to use extra infor-
mation like the parameter structure, interactions or hierarchies, and use several in-
tensification techniques that aim to save computationally expensive parameter con-
figuration evaluations. The benefits of can be striking: Hutter et al [16] were able to
achieve up to 50-fold speedup over the default parameters ofthe CPLEX solver.

The main challenge of applying AAC in routing, however, is that the runtime
on real world routing cases may be hours, especially in presence of complex con-
straints [3]. Fortunately, the focus of the AAC research hasbeen recently shifting
onto overcoming these challenges, see e.g. Mascia et al [29].

4.5 Solving the VRP Problems
Optimization model & Algorithms and their parameter values→ Optimization results

The solver module is responsible of performing the optimization, which contains the
tasks of mapping of tasks to vehicles as well as routing the vehicles as efficiently as
possible according to the objective function. The search isperformed until a prede-
fined stopping criterion has been met, or the user ends the process.

From the process perspective, the ability to predict and adjust the runtime is
a major concern. The same system may be operated under tight time-constraints
for planning, whereas some users prefer the added robustness of a more thorough
search. It is probable that this variability is exposed e.g.as stopping criteria.

Another viewpoint to solver module customization is the availability of compu-
tational resources. In many cases, the routing system is still run in a desktop en-
vironment, but increasingly, optimization services are available through cloud ser-
vices [5]. This opens a new dimension in the customization, namely the allocated
computing time, resources and priority based on the customer requirements, service
level agreements, and instance characteristics, which alladds in to the complexity
of deploying the system.
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4.6 Interpreting the Optimization Results
Optimization model & Optimization results→ Domain model (solution)

The optimization solver module usually returns the resulting plan in the mathemat-
ical format it uses internally. The interpretation of the optimization results has a
direct connection to the construction of the optimization model. Whereas in model
construction the decision variables are selected based thedata in the domain model,
in this phase the values of the decision variables need to be interpreted back to the
relations and values of the entities in the domain model. We can use an inverse
transformation of the one in Subsection 4.2 to decode the solution.

One issue in the interpretation of the results is the type of the decoding. It may
be that the decoding is not one-to-one. That is, there may be multiple possible plans
the optimized solution can be decoded to. For example, in a classical VRP all the
trucks are identical and it does not matter how the vehicles and routes are mapped
Puranen [36]. This potential unambiguity may have undesired consequences if it is
not taken into account.

4.7 Producing a Formatted Plan
Domain model (solution)→ Output plan

Ultimately the user of a VRS needs to apply the plan into practice. Different users
have different formats, output data requirements, and reporting needs, so in the final
data transformation step an automated VRS could adapt its output to the format
most convenient to the end user.

If the interfaced system includes plan generation, it couldbe enough to do the
schema mapping procedure from Section 4.1 in reverse. The existing system would
then compose the output document to that is to be handed to thedrivers. Another
option is to infer the structure of an example document usingmethods such as table
extraction, visual object and information extraction, andentity identification [27,
25]. This produces a template which then can be filled with therelevant data from
the solver. Similar technique has been used, for example, inweb page content and
structure extraction to reformat the web page content for mobile clients [25].

5 Preliminary Experimental Results

To demonstrate the potential of automatic configuration of route optimization algo-
rithms, we configured the three metaheuristics (Record-to-Record travelRTR, simu-
lated annealingSA, and ejectionEJ) provided by the VRPH library [12] on four real
world based benchmark instances from the literature. For details of the experimental
setup see Rasku et al [39].
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The target problem instances wereF-n45-k4, F-n72-k4, andF-n135-k7
from [10] with 45, 72 and 135 requests and the 385 request instancetai385 from
Taillard [43]. Thetai385 instance is generated based on the locations and cen-
sus of population data from canton of Vaud in Switzerland, whereas the instances
F-n45-k4 andF-n135-k7 are from a day of grocery deliveries from the Ontario
terminal of National Groceries Limited. TheF-n72-k4 instance data is obtained
from Exxon associated case involving the delivery of tires,batteries and other acces-
sories to gas stations. We used SMAC [17] (version 2.3.5) andIterated F-Race [2]
implementation described in [28] (version 1.0.7) and restricted to evaluation budget
of 500 invocations. Each metaheuristics was configured separately for each of the
target problem instance. A 30 second cutoff was used for the solvers.

Table 1: Average AAC results for all solver-instance pairs.

Results are given as percentage from the best known solution(relative optimality gap). Statistically
better (p < 0.05) results are bolded, evaluation budget violations of more than 5% are in italics,
and the standard deviation over 100 VRP solutions is given inparentheses.

Quality on the target instance Quality on the other instances
Target Defaults I/F-Race SMAC Defaults I/F-Race SMAC

F-n45 EJ 0.49 (0.35)0.12 (0.23) 0.15 (0.25) 2.57 (2.19) 2.21 (1.41) 2.70 (2.07)
F-n45 RTR 0.48 (0.40) 0.01 (0.04)0.00 (0.00) 11.25 (0.40)5.32 (3.01) 6.02 (3.56)
F-n45 SA 0.30 (0.34) 0.03 (0.14) 0.01 (0.09) 8.91 (1.54) 6.55 (4.97) 7.68 (6.70)

F-n72 EJ 0.99 (2.15)0.19 (1.03) 0.16 (1.11) 1.98 (0.54)2.15 (0.88) 2.11 (0.82)
F-n72 RTR 6.63 (0.28) 0.00 (0.00) 0.00 (0.00) 4.94 (0.51) 3.86 (1.01) 3.66 (1.02)
F-n72 SA 3.80 (1.75) 0.05 (0.15) 0.02 (0.09) 5.06 (0.52) 2.66 (1.11) 3.06 (1.41)

F-n135 EJ 0.24 (0.29)0.19 (0.28) 0.17 (0.15) 2.96 (2.58) 2.01 (1.61)1.88 (0.92)
F-n135 RTR 1.62 (0.07) 0.06 (0.08)0.02 (0.03) 9.94 (0.57) 4.71 (3.00) 5.65 (2.17)
F-n135 SA 0.11 (0.07) 0.14 (0.14) 0.08 (0.06) 8.99 (1.57) 6.42 (3.65) 6.25 (2.89)

tai385 EJ 1.23 (0.28) 1.10 (0.23)1.02 (0.18) 1.92 (2.46) 0.72 (0.53) 0.76 (0.43)
tai385 RTR 2.91 (0.27) 1.00 (0.22)0.88 (0.18) 8.61 (0.48) 3.99 (2.09)3.47 (1.85)
tai385 SA 4.67 (0.40) 1.04 (0.24) 1.18 (0.27) 3.74 (2.06)2.15 (2.51) 5.79 (4.63)

Results of the configuration runs are presented in Table 1. Onaverage, the qual-
ity of the results was improved by 1.65 percentage points with the use of AAC,
which means that the relative optimality gap was closed by 73%. Furthermore, the
performance of the metaheuristics was more consistent whenconfigured, as can be
observed from the standard deviations.

Because the metaheuristics were configured for each instance separately, we ac-
knowledge the danger of overtuning [16]. To observe the effect, the rightmost three
columns of Table 1 present the performance of the resulting parameter configura-
tions on the other three remaining instances. These columnscan be interpreted as the
result of a 4-fold cross-validation. The configurators overfit only for theF-n72-k4,
and for all other targets the solution quality is statistically significantly improved on
average by 2.4 percentage points (a 37% improvement). The solver behavior be-
comes slightly more erratic as can be perceived from the standard deviations. How-
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ever, this is likely to be a byproduct of the improved solution quality and the more
rugged fitness landscape of a multi-instance problem set. Assuggested by the results
in [39], if tuned on the entire instance set, the robustness of the solvers on similar
instances is expected to improve.

error = 0.44
domain_compat <= 0.50

samples = 12
value = [ 8. 4.]

error = 0.00
samples = 7
value = [ 7. 0.]

kurt <= 3.03
error = 0.32
samples = 5
value = [ 1. 4.]

error = 0.00
samples = 4
value = [ 0. 4.]

error = 0.00
samples = 1
value = [ 1. 0.]

(a) Capacity

error = 0.24

error = 0.00
samples = 19

value = [ 19. 0.]

error = 0.00
samples = 3
value = [ 0. 3.]

avg_len <= 14.83

samples = 22
value = [ 19. 3.]

(b) Location

Fig. 3: Decision trees for the schema mapping of two domain model attributes

Our proposed solution to increase the level of automation inthe data import phase
is presented in [20]. To summarize, Kalmbach [20] provided aformulation for the
data import and model inference problem, presented a decision trees [38] based
approach for join inference and schema mapping, and explored its applicability in
importing of schemaless routing instance data. Two decision trees forcapacityand
requestlocation mapping are provided in Figure 4.4 as an illustration of the gen-
erated inference rules. The proof-of-concept tool is able to recognize the nature of
each column in a column-oriented input for the generated test data, and is thus ca-
pable of generating simple mapping rules between input and the domain model.

6 Conclusions

Vehicle routing systems provide several advantages over manual transportation
planning, but the deployment of these systems is in many cases laborious and costly.
In addition, migration from the current system with associated customization and
integration challenges create practical obstacles that prevent the latest advances in
operations research from being disseminated to wide use. The focus in academic re-
search is in modeling and solving efficiency whereas in commercial routing systems
usability, flexibility, and scalability are more important. Tighter interaction between
the two is needed in order to effectively solve real-world routing problems [5].

The advances in technologies such as GPS and RFID, and drop indata ware-
housing prices, have made transportation big data collection possible and econom-
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ical. Concurrently, logistics operators have begun to see the information as a vital
asset that can be used in decision making. This opens new possibilities for machine
learning, for which the accuracy is dependent of the amount and availability of data
that can be used to train the models. Therefore, these trendshave paved the road for
a new generation of vehicle routing systems that can utilizemachine learning to au-
tomate the customization and deployment. This in turn has the potential to increase
the effectiveness and robustness as the system can be adapted automatically to the
particularities of a problem instance. The goal is to diminish the importance of an
operations researcher in the deployment process and consequently to permit higher
scalability and more widespread deployment of route optimization.

In this paper, we have outlined a customization framework for the automation
of data transformation operations inside a routing system.Our framework recog-
nizes seven transformation steps, each open for system customization. We also pro-
vide suggestions on automating these steps. Our preliminary empirical results are
promising, but further experimental work is required to establish whether all the
proposed techniques are fully applicable in practice.

To evaluate the proposed customization framework, we reflect it against the
framework for analyzing VRS deployment published in [31]. Neittaanmäki and
Puranen [31] recognize several practical adoption and deployment barriers for the
VRSs. They see the involvement of an optimization expert as aprohibiting invest-
ment and call for an increased automation of the deployment process. Their deploy-
ment process is split into three phases: data, process, and system integration. To see
in which extent our proposed customization framework can resolve the 18 barriers
they recognized, we proceed to give some possible solutionsto the recognized is-
sues: In data integration step, the missing, low quality andincomplete data could be
automatically imputed, or at least recognized with machinelearning. The data struc-
ture inference from Subsection 4.1 can help when acquiring and combining the data
from existing systems. In addition, because of the techniques proposed in Subsec-
tion 4.2, it takes less expertise to generate the optimization model. As demonstrated
by our experiments, the plan quality can be improved, sometimes significantly, us-
ing automatic algorithm configuration (Subsection 4.4). Use of automation results
into lower perceived complexity and improved usability that can instill trust in the
users to the system and to the plans it generates. On the system integration level, the
automation makes integration easier and faster, which in turn can make the system
deployment cheaper, less dependent on expertise and other resources, and flexible
to the current and future changes in operations.

Taken together, we argue that in order to bring the latest academic routing knowl-
edge to the hands of logistics operators in a massive scale, the automatic configu-
ration approach, as presented in this paper, is needed. The recent trends in VRP
research seem to converge towards generic reusable modeling and highly adaptive
and configurable modeling frameworks, but we have shown thatseveral other areas
in practical system integration and deployment need to be considered in order to ef-
fectively apply these into practice. This requires extensive further studies in several
disciplines, but should provide a promising area of research with a potential for a
wide array of practical benefits.
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[25] Krüpl-Sypien B, Fayzrakhmanov RR, Holzinger W, Panzenböck M, Baum-
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[32] Partyka J, Hall R (2012) Software survey: Vehicle routing. OR/MS Today
39(1)

[33] Pellegrini P, Birattari M (2006) The relevance of tuning the parameters of
metaheuristics. Tech. rep., IRIDIA, Université Libre de Bruxelles
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