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Automatic Customization Framework for
Efficient Vehicle Routing System Deployment

Jussi Rasku, Tuukka Puranen, Antoine Kalmbach, and Tonarkk&inen

Abstract Vehicle routing systems provide several advantages ovauaidrans-
portation planning and they are attracting growing attentHowever, deployment
of these systems can be prohibitively costly, especiallgfoall and medium-sized
enterprises: the customization, integration, and mignais laborious and requires
operations research expetise. We propose an automateduwraiifon workflow for
vehicle routing system and data flow customization, whidgvjaes the necessary
basis for more experimental work on the subject. Our prelani results with learn-
ing and adaptive algorithms support the assumption of egipility of the proposed
configuration framework. The strategies presented herig @gplementers with the
methods needed, and give an outline for automating the geaot of these sys-
tems. This also opens up new directions for research in keetaating systems, data
exchange, model inference, automatic algorithm configpumaslgorithm selection,
software customization, and domain-specific languages.

1 Introduction

Globalization, increased goods consumption, and econcimnges pose chal-
lenges on transportation logistics. With increasing sdajatened competition, and
environmental concerns, dispatchers stretch their prancapabilities to the limit.
Handling all the factors may even be impossible for the huplanner [21], which
has spawned an interest in commercial automated route iptasgstems. Com-
bined with the rapid development of IT, this has created @mspartation planning
tools industry serving operators working with the incregfr complex logistics
systems [14].
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The advantages of these systems are well known: savings 3@%oin opera-
tional costs, reduced planning time, and minimization ainan error [42]. Drexl
[9] also note the macroeconomic benefits such as improvéfttfimw and low-
ered emissions. If applied at a large scale, deployment bicieRouting Systems
(VRSs) can lead to significant economic and environmenta:fis.

A VRS is described in Drexl [9] as follows: it is an operatibpknning software
that can read in data with vehicles, drivers, depots, custsnand their respective
reguests connected to geographical locations. The datseddfie specific problem
scenario. A map view is often used for visual data verifigat® VRS then allows
manual, interactive or fully automated (optimization-d)sconstruction of routes.
The algorithms, that can build a routing plan conforminghe bperational rules
such as work time regulations, are the key feature of theesysFinally, the sys-
tem interacts with an existing resource management systeallows saving and
printing the plans for operational use.

The operation environment for a VRS is complex and dynani¢ % 31] and
poses hard to match requirements for commercial software. $urvey from an
industry viewpoint, Hoff et al [14] raised a concern that lghdcademic Vehicle
Routing Problem (VRP) research has provided efficient élgos for these prob-
lems, they typically use idealized models which omit impattfacets such as driver
breaks, work time regulations, turning restrictions, &ioin of service times, and
congestion. According to Partyka and Hall [32] the provedare having difficulties
in providing holistic solutions due to this complexity.

In addition to shortcomings of the idealized models, déferlogistic operators
have differing requirements [5]. As it is hot commercialialvle to build a unique
VRS for each of them [42] the product is made customizableeHeVRS designed
for easy deployment needs to capture the features of the con¥RP variants.
Additionally, solving the problems effectively calls foobustness, adaptivity, and
reactivity [42].

According to Partyka and Hall [32] routing installationsjuére heavy customiza-
tion which is mainly done manually. A survey of the Dutch VR&rket by Kleijn
[21] agrees: most of the software was at least partiallptaitade. The issue has
beenidentified also in academic research. Puranen [36bpesithe use of Software
Product Lines (SPL) as a mass-customization strategyalpismising approach, as
these techniques exploit commonalities in a system to taffdg manage variation.
Applying SPL in other application domains report order ofgmiéude reductions
in time-to-market, engineering overhead, error rates,casti [24]. Preliminary ex-
periments in [36] suggest that these benefits are achieeddewith VRSs. The
extended rationale for the work, as presented in [31], isttieunderutilization of
route optimization is not due to the shortcomings of modetsagorithms, but due
to problems in deployment.

The challenges in implementation and deployment call fa@proach that could
forward the adoption of optimization. In this paper, we ge@ such an approach
as a set of actions and techniques to automate the flow of dedagh a VRS.
Acting upon presented ideas allows utilization of the ré@etvances in Software
Engineering, Machine Learning, and Operations Research.
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In related works Desrochers et al [8] describe a VRS thattbelused by a con-
sultant with a basic understanding of mathematical prograng. Similarly, Matu-
rana et al [30] describe a decision support system gendhatiosubstantially lowers
the cost of developing such systems, although in their mmiuhe model and data
structures has to be still defined manually. Also, Hoff et &][envision a tool
exhibiting some of the properties presented here. Despésetideas, a planning
and decision support system that allows as extensive atitmmas ours has not
been previously described. No customization frameworkifemeeded automation
methods has existed, and their interaction within VRSs lea®@en previously ex-
plored. In this paper, we address this by providing an autedeonfiguration work-
flow for VRSs and a review on the automation methods for difitphases of the
process. The customization framework should be of interesonly to operations
researchers, but also to providers of VRSs.

For an overview, Section 2 provides a review of the trendsehiale routing
research. In Section 3 we recognize the opportunities ftomaation in customiz-
ing from data flow perspective. Section 4 we present our Bitipa for solving
some pressing problems in VRS deployment and Section Syewdar preliminary
experimental results. In Section 6 we conclude our study.

2 Trends in Vehicle Routing Problem Research

VRP has been under intensive research ever since was fictlirced by Dantzig
and Ramser [7]. VRP concerns the task of finding optirnatesfor a fleetof ve-
hiclesleaving typically from adepotto serve a specified number fquests Ob-
jectives can be anything from minimizing the number of vedscor total travel
distance to complex multiobjective business goals. Oveyd#ls of academic in-
terest has experienced many shifts of research focus. &hédiin VRP research as
recognized, e.g., by Puranen [36] are illustrated in Fidure

models: idealized — rich —>  unified —> inferred

methods: simple —  refined —> adaptive —> learning

Fig. 1: Trends in vehicle routing research. Adapted fronj [36

The early models werielealized, partly due to the limitations of computational
hardware and solution methods of the time. Since the eayly, dlae trend has been
towards more complex and more realistich” problems [42, 14]. Rich models
extend the classical formulation with complex decisiond ahjectives as well as
can introduce many operational constraints. In additionymber of new aspects
have been proposed; for example Hoff et al [14] call for mogglieit handling of
stochasticity and risk in the models, and stress the nead$earch on real time and
dynamic routing. For reviews on rich VRP research in theexirdf commercial so-
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lutions, we refer to Hasle and Kloster [13], DrexI [9], andiBsy and Hasle [5]. Re-
cently, there has been efforts to developfied modeling approaches with generic
and flexible modeling structures that can capture the aspécifferent VRP vari-
ants [40, 13, 18, 48, 37]. Vidal et al [45] make a synthesism@wipus research and
propose a haming scheme for these variants. Unified mod&kmgeworks often
provide a Domain Specific Language (DSL) for describing thebfgems. One of
the contributions of this paper concerns the rightmossitam in modeling: we ar-
gue that the advances in unified modeling enable mioélencewherecomposite
optimization model can be automatically or semi-autonadliidormed by inferring
the composition of the model from the problem instance data.

The solution methodologies have followed a similar trerfae Tirst methods re-
lied onsimple heuristics or on mathematical programming as in the origiaper
by Dantzig and Ramser [7]. The growing problem size and modeiplexity led
to interest in moreefined and sophisticated methods. However, due to scale of the
real-life problems, exact solution methods cannot alwaysided. Thus, a number
of heuristics and metaheuristics have been proposed. Fagysiin solving VRPs,
see, e.g., Toth and Vigo [44], Cordeau et al [6], and Lap®&}.[Recently, there
has been interest imdaptive and self-adjusting methods where algorithms observe
the optimization progress and react accordingly. Thisdmas recognized, for ex-
ample, in the survey by Vidal et al [46]. A newer trend is thelagation oflearning
hyperheuristic systems, which involve using data-drieahhiques that enable and
disable different algorithms depending on the observerthespace. This involves
identifying situations similar to those found in the histdiata or knowledge model.
For a survey on using hyperheuristics in combinatorialmojztation we refer to Kot-
thoff [23].

The disadvantage of unified and “rich” models and refined atdessolving
methods is that they may make the deployment more compli¢atd. Also, note
that in most of the case studies in the aforementioned ssyteg derivation of the
model, selection of the algorithms, and fine tuning of thehods is done manually
by the researchers based on their expertise. Unfortun#itédydoes not scale in a
commercial setting and poses a barrier for the deploymeviRSs.

3 Data Flow in a Vehicle Routing System

In this section, we outline thatata flowthrough a VRS, or more specifically, how the
problem instance is passed from system module to anothefldh of information

is one of the main aspects affecting the deployment, integraand utilization of
the system. Describing the modular structure of a typicab\iRdetail is omitted,
and the reader is referred to Drexl [9], Puranen [36], arayBy ‘and Hasle [5].

The data flow can be divided into phases as illustrated inrEigu First, the
data is read from a data storage, such as files or relatiotetbase, and then con-
structed into a domain model (1). Domain model offers piirag for concepts such
as truck, driver, and request. The domain model is thenlatatsinto optimization
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model (2). This involves describing the decision variaptee objective function,
and the necessary constraints. Note that a DSL or similantqae has to be used
to capture the aspects of the specific routing problem. Rekthis transformation
is a mathematical optimization model that can be then cotegheith the problem
instance specific variable values. The modeled problem carbe fed to the rout-
ing algorithms residing in the solver module (3). Effectieas of the algorithms
depends heavily on the algorithm parameters [15]. Thusnvald@pting a VRS care
is needed to derive a set of suitable parameter values (#r tie optimization (5)
the results can be transformed back to the primitives of timeain model (6) which
in turn are translated into an actionable plan (7).

Customer Domain Optimization
—> _—

data 1 model 2 model
3
Algorithm Routing
> X
parameters 4 algorithms
. Optimization
Plan <—— Solution <— D E—
7 6 results 5

Fig. 2: Data flow of a problem instance trough a VRS.

Provided that the VRS is generic enough to model a wide setffefrent and
“rich” VRP variants, and that it includes a set of modern rhetaistics and local
search based routing algorithms, the biggest effort in fidg@a VRS for a new
customer is to make sure that the data is read and processedtho[31]. VRS
providers have several options to manage the data flow:

(a) Force an identical data flow for all customers. This weiinove much of the
flexibility and only a narrow set of problem types can be effitly addressed
by the VRS.

(b) Customize the data flow manually on a case-by-case lbéesis. multiple model
variants and use cases can be supported, but the custanibativily depends
on manual work and expertise.

(c) Outsource the customization to a third party or to theamsr by providing
a way to externally configure the system via, e.g. a DSL. Ttadlehge is to
provide enough training and sufficient tools for the thirdtpa

(d) Automate the customization so that fixing any given sdtinttionality inside
the VRS is done automatically based on the customer inputiatad In addi-
tion, if the provider has access to the history data duriegthstomization, the
automation might even be learning, that is, with every nevdeted problem
and deployment the software gains experience.
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Designing the software in a way that the flexibility is maxaex makes the sys-
tem applicable in larger number of different contexts, tmaking the approaches
(c) and (d) feasible. The challenge for (c) is that many ligigperators are small,
and lack the necessary expertise to understand the infenemtiexity in selecting,
configuring and deploying VRSs [31]. Therefore, out of théise automation based
approach (d) is the one that is more scalable and cost-efedthis validates the
need for the proposed customization framework.

Each of the data conversion phases Figure 2 expose a pbteoitid of cus-
tomization. In practice, thigariability is exposed by configurable behavior of the
software system, and it needs to be managed somehow. Frapratical perspec-
tive, this has been addressed by the techniques in the assdtwhre product line
engineering (SPLE) [35]. In SPLE, the developed systenvisidil into two layers:
domain layer and application layer. The domain layer of ystesn captures the
generic properties of the current domain, and the apptinaéiyer is used to define
customized application instances witariability points It is a predefined point in
the system, in which variation between the applicationsipfk9]. The specialized
expertise required in the customization of VRSs prohibigsmally managed mass
customization. Instead, we suggest the use of machinaitegbased adaptive mass
customization techniques, and argue that these represef the key technologies
in achieving cost-effective routing system deployment.

4 The Automation and Customization Framework

Our main contribution is an outline, or a vision, of how highlutomated and easy-
to-deploy VRS could be constructed. This customizatiom&aork could also en-
able experimentation with different automation approachat here we concentrate
on the techniques we have either successfully applied lvesseor see as prag-
matic solutions to the presented opportunities for workflavtomation. We limit
ourselves to well-known methods used in related fields, aadrae a generic solver
module capable of expressing a wide set of “rich” VRP vaganhe section follows
the structure of Figure 2 with each phase having a correspgsdbsection.

4.1 Interpreting Customer Data
Input data — Domain model

Interpreting the customer data and transforming it intdinguproblem starts with
the creation of a domain model, which represents the redtvemtities that form
the routing problem. The transformation task consistskifitathe problem data as
an input and then extracting the data into the domain modehe simplest case,
one can specify a data format that is required and the VRSIgipgrses this data
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into a model. It becomes problematic if the parser needgtpatidifferent formats.
Maintaining numerous many-to-one mappings can quicklpbezan onerous task.

A likely scenario for data integration is a relational datasuch as relational
database, but in general, any kind of flat dataset with intemected files can be
used. To illustrate, one part of the dataset could consistdihary files that pertain
to drivers and vehicles, and the other deliveries and lonatiFinding semantic
links between the relations in these datasets is what wgodaihference which in
turn is based on foreign key discovery [1, 41]. We proposeijuierence as a model
that can learn the semantic links between a set of relatlbissused to produce a
cohesive union of data, the joined relation.

After join inference has been done, we propose the use ofrstheapping [4] to
extract the required information from the data. Schema imgpgonsists of finding
pairings between two schemassghemas a formal description of the information
contained in a relation; crudely, this would be a set of déttd@bates, or column
headers. Having to find these attribute pairings makes thielggn a kind ofdata
exchange problerf22], where the goal is to take data from different sources an
assimilate it, in this context, to the domain model of a VRS.

4.2 Inferring the Optimization Model

Domain model— Optimization model

After mapping the input data to the domain model, it must @edlated into a format
understood by the VRP solver. This includes choosing amopdtion model. We
were unable to find related work on automating this step. dfoee, we proceed to
propose four approaches for implementing such an autonraesformation:

1. Separate modelsmethods from Section 4.1 can be used on domain model to
map it against a selection of optimization models. Out oé¢hé¢he one with the
best fit is selected and completed with instance data. Tlssifable approach
only if a VRS has support for a limited number of VRP variants.

2. Coupled models:a number of domain and optimization models are coupled to-
gether with predefined pairwise transformations. Datafmé&tation from Sec-
tion 4.1 is done with all domain models in the coupling set #reh the one
with the best schema mapping (along some criteria) is sledthis has the
same constraints as the previous approach.

3. Model composition: the optimization model is composed of different objects
that may correspond to partial objectives, decisions, oistaints. Filled do-
main model is matched against each optimization model compoand if a
threshold is crossed, the component is included to the ceitgomodel.

4. Model reduction: alternatively, the initial optimization model may be “com-
plete” or unified in a sense that is capable of expressingalstipported VRP
features. After doing schema mapping between the domairoptichization
models, the unused elements, for which the variable valie@e wot set, are
removed from the optimization model.
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Besides domain model, other sources for deducing the aptioh model in-
clude e.g. the vocabulary used in the data. To illustratefigid revealing that the
transportation involves people, refers to use of a diabla-optimization model. The
unified naming convention for VRP variants in Vidal et al [46ight prove to be
useful in recognizing the different modeling constructsthe model inference. We
note that the feasibility of applying automation in this plas uncertain, mostly
because of the lack of prior published research on the topic.

4.3 Selecting the Suitable Optimization Algorithms

Optimization model— Algorithm performance predictions

As mentioned earlier, industrial solutions tend to favgoaithms based on heuris-
tics [42, 5], and many implement a collection of differerg@ithms to gain extra
flexibility. It is also known, that the performance of an aligfom varies greatly be-
tween different routing variants and even problem instafit®]. Therefore, itis im-
portant to use an algorithm that is efficient in solving theegiproblem. Portfolio-
based algorithm selection techniques such as SATzilla (48] statistical models
to select the algorithm for solving a given problem instarice/RS this approach
could be applied to select the higher level algorithmic congnts: a metaheuristic
could be selected based on the instance characteristiggadidted performance.

Another way to improve solver performance is the utilizatmf so calledhy-
perheuristics Instead of using a single algorithm or a manually consedictom-
bination, a hyperheuristic acts as a high level learningésuisor” algorithm that
selects and combinéawer level algorithms from a portfolio on the fly.

Similar ideas have been tried in VRP, for example by usingisshsimple heuris-
tics in varied order to escape local optima. Pisinger andkBdp4] proposed a
mehtod, where adaptive heuristic selection is done amdegsification and diver-
sification heuristic operators. Garrido has proposed thefibyperheuristics to se-
lect local search operators in solving different VRP vasdh1]. VRP was also one
of the problem domains in Cross-domain Heuristic Searchl€ige (CHeSC2011)
where a number of domain independent hyperheuristics weaitaated [47].

We note that these schemes should be useful when adaptindustrial VRS to
a new set of end user provided sample problem instancesxparimental work to
explore these possibilities is in preparation.

4.4 Configuring the Optimization Algorithm

Optimization model & Observed performanee Algorithm parameter values

The algorithms used to solve hard computational probletenatveal parameters
that can be used to change the behaviour of the algorithmdenut & into solving
a specific problem instance [15]. The settings of the algoriparameters have a



Automatic Customization Framework for Efficient VehiclelRimg System Deployment 9

substantial effect on the performance of the algorithm. el@w, setting them man-
ually is a non-trivial task requiring expertise and effoditgh experimentation [15].
Therefore, automatic search approaches have been proposédt is in literature

known as the problem @futomated algorithm configuration (AAC)

In practice, AAC can be used to automatically adapt the amgsblver for each
VRS deployment. This allows the VRS provider to get the besfqggmance out
of the implemented algorithms. Also, after enough expenitaigon, archetypes of
routing problems might emerge. With this history data thevimus configuration
effort could be reused to provide more varied algorithm dig$afor the solver. In
fact, several AAC methods have proven successful also wRR §83]. Of particular
interest in this context is the work in Becker et al [3], wherey tuned the param-
eters of a commercial VRP solver with real-world routinglgemm instances. Our
recent experimental work [39] verifies this and gives sutiges on which AAC
methods to use to configure VRP metaheuristics.

Current state-of-the-art methods like SMAC from Hutter lgtl&] or I/F-Race
from Balaprakash et al [2] support all parameter types, ble ® use extra infor-
mation like the parameter structure, interactions or nidvias, and use several in-
tensification techniques that aim to save computationaheasive parameter con-
figuration evaluations. The benefits of can be striking: efutt al [16] were able to
achieve up to 50-fold speedup over the default parameteh®@PLEX solver.

The main challenge of applying AAC in routing, however, igttithe runtime
on real world routing cases may be hours, especially in paesef complex con-
straints [3]. Fortunately, the focus of the AAC research esn recently shifting
onto overcoming these challenges, see e.g. Mascia et al [29]

4.5 Solving the VRP Problems

Optimization model & Algorithms and their parameter values Optimization results

The solver module is responsible of performing the optitidrg which contains the
tasks of mapping of tasks to vehicles as well as routing thécles as efficiently as
possible according to the objective function. The seargerformed until a prede-
fined stopping criterion has been met, or the user ends thegso

From the process perspective, the ability to predict andsadhe runtime is
a major concern. The same system may be operated underitighitonstraints
for planning, whereas some users prefer the added robssth@smore thorough
search. It is probable that this variability is exposed asgstopping criteria.

Another viewpoint to solver module customization is theilaality of compu-
tational resources. In many cases, the routing systemlliswustiin a desktop en-
vironment, but increasingly, optimization services arailable through cloud ser-
vices [5]. This opens a new dimension in the customizatiamely the allocated
computing time, resources and priority based on the custoemeirements, service
level agreements, and instance characteristics, whiciddt in to the complexity
of deploying the system.
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4.6 Interpreting the Optimization Results
Optimization model & Optimization results> Domain model (solution)

The optimization solver module usually returns the resglplan in the mathemat-
ical format it uses internally. The interpretation of thetiopzation results has a
direct connection to the construction of the optimizatiood®l. Whereas in model
construction the decision variables are selected basaththén the domain model,
in this phase the values of the decision variables need totbgieted back to the
relations and values of the entities in the domain model. Afe use an inverse
transformation of the one in Subsection 4.2 to decode thdisal

One issue in the interpretation of the results is the typdefdecoding. It may
be that the decoding is not one-to-one. That is, there mayuinhe possible plans
the optimized solution can be decoded to. For example, imssidal VRP all the
trucks are identical and it does not matter how the vehiahesrautes are mapped
Puranen [36]. This potential unambiguity may have unddsimnsequences if it is
not taken into account.

4.7 Producing a Formatted Plan
Domain model (solution)— Output plan

Ultimately the user of a VRS needs to apply the plan into pracDifferent users
have different formats, output data requirements, andrtiegmeeds, so in the final
data transformation step an automated VRS could adapt fsubto the format
most convenient to the end user.

If the interfaced system includes plan generation, it cdadcenough to do the
schema mapping procedure from Section 4.1 in reverse. Tisgnexsystem would
then compose the output document to that is to be handed writrexs. Another
option is to infer the structure of an example document usiathods such as table
extraction, visual object and information extraction, amdity identification [27,
25]. This produces a template which then can be filled withréhevant data from
the solver. Similar technique has been used, for examplegempage content and
structure extraction to reformat the web page content fdsitaelients [25].

5 Preliminary Experimental Results

To demonstrate the potential of automatic configuratioroate optimization algo-
rithms, we configured the three metaheuristics (Recor@eoerd traveRTR simu-
lated annealin@A and ejectiorktJ) provided by the VRPH library [12] on four real
world based benchmark instances from the literature. Raild®f the experimental
setup see Rasku et al [39].
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The target problem instances wéten45- k4, F- n72- k4, andF- n135- k7
from [10] with 45, 72 and 135 requests and the 385 requesiriost ai 385 from
Taillard [43]. Thet ai 385 instance is generated based on the locations and cen-
sus of population data from canton of Vaud in Switzerlandesels the instances
F- n45- k4 andF- n135- k7 are from a day of grocery deliveries from the Ontario
terminal of National Groceries Limited. THe n72- k4 instance data is obtained
from Exxon associated case involving the delivery of titegteries and other acces-
sories to gas stations. We used SMAC [17] (version 2.3.5)ltndted F-Race [2]
implementation described in [28] (version 1.0.7) and ret&d to evaluation budget
of 500 invocations. Each metaheuristics was configuredratgdg for each of the
target problem instance. A 30 second cutoff was used fordhes.

Table 1: Average AAC results for all solver-instance pairs.

Results are given as percentage from the best known soléiative optimality gap). Statistically
better p < 0.05) results are bolded, evaluation budget violations ofentban 5% are in italics,
and the standard deviation over 100 VRP solutions is givgraientheses.

Quality on the target instance

Quality on the other instance

Target Defaults I/F-Race SMAC Defaults I/F-Race SMAC

F-n45 EJ 0.49 (0.35)0.12 (0.23) 0.15(0.25) 2.57 (2.19) 2.21(1.41) 2.70 (2.07)
F-n45 RTR  0.48 (0.40) 0.01 (0.04).00 (0.00) 11.25 (0.40)5.32(3.01) 6.02 (3.56)
F-n45 SA 0.30(0.34) 0.03 (0.14) 0.01(0.09) 8.91(1.54) 6.55(4.97) 7.68 (6.70)
F-n72 EJ 0.99 (2.15)0.19 (1.03) 0.16(1.11) 1.98 (0.54p.15(0.88) 2.11(0.82)
F-n72 RTR  6.63(0.28)0.00 (0.00) 0.00 (0.00) 4.94 (0.51) 3.86 (1.01) 3.66 (1.02)
F-n72 SA 3.80(1.75) 0.05 (0.15) 0.02 (0.09) 5.06 (0.52) 2.66 (1.11) 3.06 (1.41)
F-n135 EJ 0.24 (0.29)0.19 (0.28) 0.17 (0.15) 2.96 (2.58) 2.01(1.61)1.88 (0.92)
F-n135 RTR 1.62 (0.07) 0.06 (0.08D.02 (0.03) 9.94 (0.57) 4.71(3.00) 5.65 (2.17)
F-n135SA  0.11(0.07)0.14 (0.14) 0.08 (0.06) 8.99 (1.57) 6.42 (3.65) 6.25 (2.89)
tai385 EJ 1.23(0.28) 1.10(0.23)..02 (0.18) 1.92(2.46) 0.72 (0.53) 0.76 (0.43)
tai385 RTR  2.91 (0.27) 1.00 (0.22).88 (0.18) 8.61(0.48) 3.99 (2.09)3.47 (1.85)
tai385 SA 4.67 (0.40) 1.04 (0.24) 1.18(0.27) 3.74(2.06)2.15 (2.51) 5.79 (4.63)

Results of the configuration runs are presented in Table lav@rage, the qual-
ity of the results was improved by 1.65 percentage pointh Wit use of AAC,
which means that the relative optimality gap was closed . Murthermore, the
performance of the metaheuristics was more consistent whiigured, as can be
observed from the standard deviations.

Because the metaheuristics were configured for each iressparately, we ac-
knowledge the danger of overtuning [16]. To observe thecgffae rightmost three
columns of Table 1 present the performance of the resultargrpeter configura-
tions on the other three remaining instances. These coluamise interpreted as the
result of a 4-fold cross-validation. The configurators éivenly fortheF- n72- k4,
and for all other targets the solution quality is statidticsignificantly improved on
average by 2.4 percentage points (a 37% improvement). Tlkergoehavior be-
comes slightly more erratic as can be perceived from thelatairdeviations. How-
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ever, this is likely to be a byproduct of the improved solntguality and the more
rugged fitness landscape of a multi-instance problem setuggested by the results
in [39], if tuned on the entire instance set, the robustnéssensolvers on similar
instances is expected to improve.

domain_compat <= 0.50
error = 0.44

samples = 12

= avg_len <= 14.83
value =[ 8. 4.] ggrror: 024
/ \ samples = 22
value=[19. 3.]
error = (.00 hl::tri:j(‘)o;z
samples = 7 Zarflples = 5 / \
value=1[7. 0.] value = [ 1. 4]
error = 0.00 error = 0.00
/ \ samples = 19 samples = 3
o= 0.00 rror = 0.00 value=[19. 0.] value=[0. 3.]
samples = 4 samples = 1
value=[0. 4.] value=[1. 0.] (b) Location

(a) Capacity

Fig. 3: Decision trees for the schema mapping of two domaidehattributes

Our proposed solution to increase the level of automatitimdrdata import phase
is presented in [20]. To summarize, Kalmbach [20] providddrenulation for the
data import and model inference problem, presented a dectstes [38] based
approach for join inference and schema mapping, and expltrapplicability in
importing of schemaless routing instance data. Two detis&es forcapacityand
requestiocation mapping are provided in Figure 4.4 as an illustration of tea-g
erated inference rules. The proof-of-concept tool is ableetognize the nature of
each column in a column-oriented input for the generatediegs, and is thus ca-
pable of generating simple mapping rules between inputlaadémain model.

6 Conclusions

Vehicle routing systems provide several advantages overualaransportation
planning, but the deployment of these systems is in manysdaberious and costly.
In addition, migration from the current system with asstazlacustomization and
integration challenges create practical obstacles theaepit the latest advances in
operations research from being disseminated to wide usefobius in academic re-
search is in modeling and solving efficiency whereas in coriakrouting systems
usability, flexibility, and scalability are more importaiitghter interaction between
the two is needed in order to effectively solve real-worldtiog problems [5].

The advances in technologies such as GPS and RFID, and ddgtanware-
housing prices, have made transportation big data callegtdssible and econom-
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ical. Concurrently, logistics operators have begun to Bedriformation as a vital
asset that can be used in decision making. This opens nevbjtitiss for machine
learning, for which the accuracy is dependent of the amonchiaailability of data
that can be used to train the models. Therefore, these thavespaved the road for
a new generation of vehicle routing systems that can utitiaehine learning to au-
tomate the customization and deployment. This in turn hagthential to increase
the effectiveness and robustness as the system can be chdaptenatically to the
particularities of a problem instance. The goal is to distinihe importance of an
operations researcher in the deployment process and aserstgto permit higher
scalability and more widespread deployment of route optitidn.

In this paper, we have outlined a customization frameworklie automation
of data transformation operations inside a routing sys@uor. framework recog-
nizes seven transformation steps, each open for systewneusttion. We also pro-
vide suggestions on automating these steps. Our preligngrapirical results are
promising, but further experimental work is required toabtish whether all the
proposed techniques are fully applicable in practice.

To evaluate the proposed customization framework, we teflemgainst the
framework for analyzing VRS deployment published in [31iftaanmaki and
Puranen [31] recognize several practical adoption andoglepgnt barriers for the
VRSs. They see the involvement of an optimization expert gohibiting invest-
ment and call for an increased automation of the deploynecgss. Their deploy-
ment process is split into three phases: data, processyatahsintegration. To see
in which extent our proposed customization framework caolke the 18 barriers
they recognized, we proceed to give some possible solutmtise recognized is-
sues: In data integration step, the missing, low qualityinndmplete data could be
automatically imputed, or at least recognized with machéaening. The data struc-
ture inference from Subsection 4.1 can help when acquimtgcambining the data
from existing systems. In addition, because of the teclesquoposed in Subsec-
tion 4.2, it takes less expertise to generate the optinozatiodel. As demonstrated
by our experiments, the plan quality can be improved, sonetisignificantly, us-
ing automatic algorithm configuration (Subsection 4.4)e \d§ automation results
into lower perceived complexity and improved usabilityttban instill trust in the
users to the system and to the plans it generates. On thesiygégration level, the
automation makes integration easier and faster, whichrmdan make the system
deployment cheaper, less dependent on expertise and eiwirces, and flexible
to the current and future changes in operations.

Taken together, we argue that in order to bring the latestexo& routing knowl-
edge to the hands of logistics operators in a massive stagutomatic configu-
ration approach, as presented in this paper, is needed.eteatrtrends in VRP
research seem to converge towards generic reusable mgpaelthhighly adaptive
and configurable modeling frameworks, but we have showrsthatral other areas
in practical system integration and deployment need to beidered in order to ef-
fectively apply these into practice. This requires extem§irther studies in several
disciplines, but should provide a promising area of redeaith a potential for a
wide array of practical benefits.



14 Jussi Rasku, Tuukka Puranen, Antoine Kalmbach, and Tdankkainen

References

[1] Acar AC, Motro A (2009) Efficient discovery of join plans schemaless data.
In: Proceedings of the 2009 International Database Engingé& Applica-
tions Symposium, ACM, New York, NY, USA, IDEAS '09, p 111

[2] Balaprakash P, Birattari M, Stutzle T (2007) Improverhgtrategies for the F-
Race algorithm: Sampling design and iterative refinemeasthTrep., IRIDIA,
Université Libre de Bruxelles

[3] Becker S, Gottlieb J, Stutzle T (2006) Applications ating algorithms: an
industrial perspective. In: Proceedings of the 7th intéomal conference on
Artificial Evolution, Springer-Verlag, Berlin, HeidelbgrEA05, pp 271-283

[4] Bellahsene Z (2011) Schema Matching and Mapping. Spring

[5] Braysy O, Hasle G (2014) Software Tools and Emerginghfedogies for
Vehicle Routing and Intermodal Transportation, SIAM, ci&p pp 351-380.
MOS-SIAM Series on Optimization

[6] Cordeau JF, Gendreau M, Hertz A, Laporte G, Sormany J8§P8ew heuris-
tics for the vehicle routing problem. In: Logistics Systergsign and Opti-
mization, Springer-Verlag, New York, chap 9, pp 279-297

[7] Dantzig GB, Ramser JH (1959) The truck dispatching peoblManagement
Science 6(1):80-91

[8] Desrochers M, Jones CV, Lenstra JK, Savelsbergh MWRdiolL (1999)
Towards a model and algorithm management system for velaaking and
scheduling problems. Decision Support Systems 25(2):18%—

[9] Drexl M (2011) Rich vehicle routing in theory and praicTech. Rep. 1104,
Gutenberg School of Management and Economics, Johannesituy Uni-
versity Mainz

[10] Fisher ML (1994) Optimal solution of vehicle routinggtriems using mini-
mum k-trees. Operations Research 42(4):626-642

[11] Garrido P, Riff MC (2010) DVRP: a hard dynamic combirrgboptimisa-
tion problem tackled by an evolutionary hyper-heuristimrhal of Heuristics
16(6):795-834

[12] Groér C, Golden B, Wasil E (2010) A library of local selheuristics for the
vehicle routing problem. Mathematical Programming Corafiah 2(2):79-
101

[13] Hasle G, Kloster O (2007) Industrial vehicle routing. Geometric modelling,
numerical simulation, and optimization, Springer, pp 3435

[14] Hoff A, Andersson H, Christiansen M, Hasle G, Lgkketang\ (2010) Indus-
trial aspects and literature survey: Fleet compositionramting. Computers
& Operations Research 37(12):2041-2061

[15] Hoos HH (2012) Automated algorithm configuration andgpaeter tuning. In:
Autonomous Search, Springer, pp 37-71

[16] Hutter F, Hoos HH, Leyton-Brown K (2010) Automated capiiation of
mixed integer programming solvers. In: CPAIOR, Springexcture Notes in
Computer Science, vol 6140, pp 186202



Automatic Customization Framework for Efficient VehiclelRimg System Deployment 15

[17] Hutter F, Hoos H, Leyton-Brown K (2011) Sequential mbldased optimiza-
tion for general algorithm configuration. In: Learning amdelligent Opti-
mization, Springer, pp 507-523

[18] Irnich S (2008) A unified modeling and solution frameWwdor vehicle rout-
ing and local search-based metaheuristics. INFORMS Jbam@omputing
20(2):270-287

[19] Jacobson I, Griss M, Jonsson P (1997) Software reushitacture, process
and organization for business success. ACM Press/Addigesiey Publishing
Co. New York, USA

[20] Kalmbach A (2014) Fleet inference : importing vehiateiting problems us-
ing machine learning. Master’s thesis, University of Bkyda, Department of
mathematical information technology

[21] Kleijn MJ (2000) Tourenplanungssoftware: ein vergkei fur den
niederlandischen markt. Internationales Verkehrsw&g¢h0):454-455

[22] Kolaitis PG (2005) Schema mappings, data exchangen@iddata manage-
ment. In: Proceedings of the twenty-fourth ACM SIGMOD-SIGRASIGART
symposium on Principles of database systems, ACM, New Ydlik, USA,
PODS '05, p 6175

[23] Kotthoff L (2014) Algorithm selection for combinatailisearch problems: A
survey. Al Magazine 35(3):48—-60

[24] Krueger CW (2002) Easing the transition to software snasstomization. In:
Linden F (ed) Software Product-Family Engineering, LeetNbtes in Com-
puter Science, vol 2290, Springer Berlin Heidelberg, pp-283

[25] Krupl-Sypien B, Fayzrakhmanov RR, Holzinger W, Pamziéck M, Baum-
gartner R (2011) A versatile model for web page represemtaiinformation
extraction and content re-packaging. In: Proceedingseflttth ACM sym-
posium on Document engineering, ACM, New York, USA, pp 1238-1

[26] Laporte G (2007) What you should know about the vehiolating problem.
Naval Research Logistics 54(8):811-819

[27] Lin X, Hui C, Nelson G, Durante E (2006) Active documestsioning: from
layout understanding to adjustment. In: Taghva K, Lin X jeBscument
Recognition and Retrieval XlIII, SPIE, SPIE Proceeding$ 867

[28] Lopez-lbanez M, Dubois-Lacoste J, Stutzle T, BmatM (2011) The irace
package, iterated race for automatic algorithm configomatiTech. rep.,
IRIDIA, Université Libre de Bruxelles

[29] Mascia F, Birattari M, Stutzle T (2013) An experimenpaiotocol for tun-
ing algorithms on large instances. In: Learning and Irgelit Optimization,
Springer

[30] Maturana S, Ferrer JC, Barafiao F (2004) Design andemehtation of an
optimization-based decision support system generataopean Journal of
Operational Research 154(1):170-183

[31] Neittaanmaki P, Puranen T (2015) Scalable deployroketficient transporta-
tion optimization for smes and public sector. In: Advance&volutionary and
Deterministic Methods for Design, Optimization and CohinoEngineering
and Sciences, Springer, pp 473-484



16 Jussi Rasku, Tuukka Puranen, Antoine Kalmbach, and Tdankkainen

[32] Partyka J, Hall R (2012) Software survey: Vehicle ragti OR/MS Today
39(1)

[33] Pellegrini P, Birattari M (2006) The relevance of tugithe parameters of
metaheuristics. Tech. rep., IRIDIA, Université Libre dauBelles

[34] Pisinger D, Ropke S (2007) A general heuristic for véhiouting problems.
Computers & Operations Research 34(8):2403-2435

[35] Pohl K, Bockle G, van der Linden FJ (2005) Software Ricid_ine Engineer-
ing: Foundations, Principles and Techniques. Springer

[36] Puranen T (2011) Metaheuristics meet metamodels — aelimgdlanguage
and a product line architecture for route optimization sys. PhD thesis,
University of Jyvaskyla, Jyvaskyla studies in compgtil456-5390;134

[37] Puranen T (2012) Producing routing systems flexiblyngsa VRP meta-
model and a software product line. In: Operations Reseaimteledings 2011,
Springer, pp 407-412

[38] Quinlan JR (1986) Induction of decision trees. MacHewning 1(1):81-106

[39] Rasku J, Musliu N, Karkkainen T (2014) Automating fherameter selection
in VRP: An off-line parameter tuning tool comparison. In: tkding, Simula-
tion and Optimization for Science and Technology, Comporai Methods in
Applied Sciences, vol 34, Springer, pp 191-209

[40] Ropke S, Pisinger D (2006) A unified heuristic for a lajass of Vehicle
Routing Problems with Backhauls. European Journal of Qjoeral Research
171(3):750-775

[41] Rostin A, Albrecht O, Bauckmann J, Naumann F, Leser LD@® machine
learning approach to foreign key discovery. In: 12th In&ional Workshop
on the Web and Databases (WebDB)

[42] Sbrensen K, Sevaux M, Schittekat P (2008) Multipleghéiourhood search
in commercial VRP packages: Evolving towards self-adapthethods. In:
Adaptive and multilevel metaheuristics, Springer, pp 2288-

[43] Taillard E (1993) Parallel iterative search methodswehicle routing prob-
lems. Networks 23(8):661-673

[44] Toth P, Vigo D (eds) (2002) The vehicle routing probleshAM

[45] Vidal T, Crainic TG, Gendreau M, Prins C (2012) A unifiealgion frame-
work for multi-attribute vehicle routing problems. Techpr, CIRRELT

[46] Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heudstfor multi-attribute
vehicle routing problems: A survey and synthesis. Eurogeamnal of Oper-
ational Research 231(1):1- 21

[47] Walker JD, Ochoa G, Gendreau M, Burke EK (2012) Vehidating and
adaptive iterated local search within the hyflex hyper-tstiar framework.
In: Learning and Intelligent Optimization - 6th Internatad Conference,
Springer, Lecture Notes in Computer Science, vol 7219, [53-286

[48] Welch PG, Ekart A, Buckingham C (2011) A proposed meiadel for com-
binatorial optimisation problems within transport logist In: MIC 2011: The
IX Metaheuristics International Conference, vol IX

[49] Xu L, Leyton-brown K (2008) SATzilla : Portfolio-bas@dgorithm Selection
for SAT. Atrtificial Intelligence 32:565-606



