JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Valmari, Antti; Lappalainen, Vesa

Title: Modelling Without a Modelling Language

Year: 2018

Version: Accepted version (Final draft)

Copyright: © Springer International Publishing AG, part of Springer Nature 2018
Rights: |, Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Valmari, A., & Lappalainen, V. (2018). Modelling Without a Modelling Language. In M. D. M.
Gallardo, & P. Merino (Eds.), SPIN 2018 : Model Checking Software (pp. 308-327). Springer.
Lecture Notes in Computer Science, 10869. https://doi.org/10.1007/978-3-319-94111-0_18

Modelling Without a Modelling Language

Antti Valmari and Vesa Lappalainen

University of Jyvéaskyld, FINLAND
antti.valmari@jyu.fi, vesa.t.lappalainen@jyu.fi

Abstract. Developments in computer hardware and programming lan-
guages, in this case C++, have made it feasible to write models of con-
current systems under verification in the programming language, instead
of some established modelling language such as Promela. While this does
not reduce the usefulness of modelling languages, it offers new possibil-
ities that may be advantageous, for instance, when teaching state space
ideas to newcomers or when experimenting with new scientific ideas. In
earlier work, we were able to express everything else fairly naturally in
C++, except the set of transitions. The present study uses C++ lambda
functions to represent naturally transitions that consist of a tail state,
guard, body, and head state. We discuss two implementations, a simple
one and a faster one. We present measurements demonstrating that the
loss of performance compared to the earlier approach is not big. Start-
ing to use our approach is easy, because one only needs to have a C++
compiler and download (not install) one C++ file.

Keywords: explicit state spaces; modelling languages; implementation issues

1 Introduction

In this publication, our focus is on concurrency aspects of systems. Therefore,
by a modelling language we mean a language that has been designed for model
checking concurrency aspects. Often, but not always, the model is an abstraction
that, for instance, replaces the computation of a checksum by a nondeterminis-
tic choice between two values “correct checksum” and “incorrect checksum”. A
programming language, on the other hand, is a language meant for implementing
systems. It need not support concurrency. In an implementation, abstractions of
the kind mentioned above are not made.

Even when focusing on concurrency aspects, and therefore abstracting away
from many details such as the computation of checksums, a model may have
to contain some sequential computation. For instance, in a telecommunication
protocol, the number of retransmission attempts may be counted and compared
against a pre-defined constant maximum value. Therefore, many modelling lan-
guages contain at least some machinery for expressing sequential or functional
computation.

If the machinery is powerful enough, then it may be possible to express the
system, instead of just an abstraction, in the modelling language. There may be

a compiler that can compile the model into one or more executables that can
be installed in the hardware components of the system. In this case, the model
is actually a program and the modelling language is a programming language.
That is, a language may be both a modelling and a programming language.

Because of the computational complexity of model checking, it is often the
case (at least with current state of the art) that the system cannot be verified
but its abstraction that focuses on concurrency aspects can. Therefore, although
the distinction between modelling and programming languages is not sharp, we
feel it important to maintain a distinction between modelling and programming.
Modelling is the act of writing something for the purpose of model checking, and
programming is the act of writing something for implementation purpose.

There are tools that can model check systems expressed in ordinary pro-
gramming languages, such as Java PathFinder [21], Bandera (another toolset
for Java) [2], and CBMC (C/C++ bounded model checker) [1]. When they suc-
ceed, they make it possible to forget about the distinction between programming
and modelling. Because of the complexity of verification, they often fail.

A well-designed modelling language, such as Promela [6], FDR-CSP [11], or
CPN ML [7,9], has many advantages. It supports some modelling paradigm very
well. It facilitates efficient model checking. If it has many users, it serves as a
widely known medium for sharing models. If it is powerful and flexible, it can also
be used, albeit perhaps clumsily, for model checking tasks that arise from other
domains than what it was designed for. For instance, encoding place/transition
Petri nets [10] in Promela would be unnatural but certainly possible. The same
can be said about the wolf, goat, cabbage and farmer puzzle, or the knight’s
tour.

On the other hand, learning a modelling language is a non-trivial task, in
particular for a newcomer to model checking of concurrent systems. In addition
to learning mundane details of the language, such as how loops and if-statements
are written, the newcomer must grasp the fundamental ideas of concurrent ex-
ecution and nondeterministic choice between alternative atomic actions, and
various concepts for expressing properties that should be checked on the model.
These ideas are radically different from everything that many students and soft-
ware engineers have encountered before. To avoid state explosion, the newcomer
must also learn to use so little memory in the model that it seems ridiculous
from ordinary programming point of view. Furthermore, installing SPIN, FDR,
or CPN Tools is not absolutely trivial.!

In the case of Java PathFinder, Bandera, and CBMC, the students need not
learn a new low-level syntax. On the other hand, the use of Java or C/C++ as
such makes the above-mentioned fundamental ideas of concurrency and nonde-
terminism somewhat implicit, making it harder to learn them. In many (albeit
not all) algorithm textbooks such as [3], algorithms are expressed in pseudocode,

! The first author tried to install SPIN to Ubuntu 16.04 LTS according to the instruc-
tions at [12]. It failed because of the absence of yacc in the system, but succeeded
after installing yacc. He also tried both of the Linux precompiled executables at
http://spinroot.com/spin/Bin/ in vain.

to avoid hiding the essence behind low-level implementation issues. We believe
that for the same reason, when introducing model checking to newcomers, it
is advantageous to use a notation that brings concurrency and nondeterminism
forward.

From the research point of view, to experiment with an idea, it may be
necessary to make modifications to the input language or other features of the
verification tool in use. SPIN is distributed freely in source form, so making
such modifications is possible. However, because SPIN is a big program, making
modifications to it is far from trivial.

It is often possible to express the state space construction problem in terms
of guarded transitions that act on shared variables. That is, there is a set of
variables, called state variables, and a set of transitions. A transition consists
of a Boolean function on the state variables and of a (possibly complicated)
piece of code that makes assignments to the state variables. The value of the
former tells whether or not the transition is enabled. If the transition is enabled,
then the latter may be executed, assigning new values to zero or more state
variables, based on the earlier values of the state variables. This approach makes
concurrency and nondeterminism explicit.

Petri nets are clearly an instance of this idea. The processes of Promela can
be interpreted in these terms by treating the location of control of each process
as an extra state variable. On-the-fly process creation goes beyond the basic
version of this model. However, it need not be among the first topics that are
taught to a newcomer in model checking.

It is the opinion, and to some extent also the experience, of the first author
that it is easier for newcomers to learn the fundamentals of state spaces with
guarded transitions on state variables, because they are so different from ordinary
programming languages that the learner is not misguided by earlier intuition on
sequential programs. For instance, it is sometimes hard for a newcomer to accept
that a process may choose the second nondeterministic alternative (e.g., timeout)
even if also the first (e.g., inputting a message) is enabled. It becomes less hard,
if the alternatives do not look like an ordinary if-statement with else replaced
by ::. Guarded transitions on state variables are also sometimes a very good
formalism for experimenting with new model checking algorithms.

Of course, this does not mean that one should reject established modelling
languages and switch to guarded transitions on state variables. It only means
that sometimes there are valid reasons for using something else than an estab-
lished modelling language.

The research that led to the present study started in autumn 2014 as an
attempt to give students a small quickly written tool with which they could play
with state space ideas, without having to install any program or learn any new
syntax. The students had strong background in C++ [13] and sequential pro-
gramming, varied but mostly rather weak background in theoretical aspects of
software and computer science, and little background in concurrency. The idea
was that students write the guards and assignment parts of guarded transitions
in C++ (where the assignment parts are not restricted to just assignments, but

may contain loops, etc.), and the file containing them is #included to a pro-
gram written by the first author which constructs the state space. The students
also write C++ functions that specify some correctness properties, the simplest
example being a function that checks a state and either deems it good or returns
an error message in the form of a character string chosen by the student.

This use of a programming language is fundamentally different from how
Java or C/C++ is used with Java PathFinder, Bandera, or CBMC. The latter
aim at model checking implementations. Therefore, they use the semantics of
the programming language as such. Our approach aims at expressing and model
checking abstractions (in the sense discussed above). The semantics of concur-
rency and nondetermism are not picked from the native semantics of C++, but
defined outside the definition of C++ and implemented as classes and other C++
mechanisms. The main goal was not to build a heavy-duty verification tool. In-
stead, it was to make it as easy as possible for newcomers to learn essential ideas
behind model checking. Even so, the resulting tool is actually fast.

The first version of the tool suffered from serious weaknesses. Most impor-
tantly, the global state was represented as a single unsigned integer, forcing the
students to represent state variables as bit segments within it. Despite this, the
tool was pedagogically successful. Almost all students understood the idea of
exhaustive search and became able to model such systems as the knight’s tour,
and most students succeeded in modelling a non-trivial concurrent system such
as a token ring protocol. At the same time, the first author wanted to experi-
ment with a new way [17, 18] of applying stubborn set / partial order methods,
to solve the so-called ignoring problem [4, 14] much better than before. The tool
proved suitable for this purpose.

To let the modeller use more than the 32 (or 64) bits of a single unsigned
integer to represent the global state, a C++ class state_var was written that
looks like an ordinary variable to the modeller but behind the scenes operates on
the data structure that stores the so far constructed states. As a consequence,
all but one aspects of the modelling of concurrent systems and their correctness
properties as systems of guarded transitions on state variables became simple
and intuitive. The remaining problem was that often the transitions had to
be modelled as complicated collections of switch- and if-statements. At that
stage, the tool was given the name ASSET (A State Space Exploration Tool)
and published [16].

Then it turned out that the complicated switch-statements can be avoided
by representing the transitions with the aid of C++ lambda functions. The
present study focuses on this idea.

Section 2 introduces the example system used in this study. In Section 3,
it is modelled for ASSET. Natural modelling of transitions relies on two C++
classes written for this purpose. A straightforward version of them is shown in
Section 4, and a faster but more complicated version is discussed in Section 5.
Section 6 presents some measurements comparing the two implementations to
each other and to a model based on the use of switch and if statements. There
also is a tiny comparison to SPIN. The study is concluded in Section 7.

G | [&] [G | Cr1

|
ll’OIgobo d lrlIgllll q Il’z]gzlb 4 q m—1 g'%fl ln—1

0 2L | 22 | 23 L. Cpd

to| So [ti| Si [t2| S2 [tz . ta—i| Sn-1

Fig. 1. Overall structure of the demand-driven token ring

2 A Demand-Driven Token Ring

In this section we present the system that is used as the main example in this
publication. It is from [15, 16], but we model it in a different fashion.

Fig. 1 shows its architecture. It is a demand-driven token ring consisting of
n clients Cy, ..., C,—1 and n servers Sg, ..., Sp—1. There is precisely one token
in the ring. Each client has a region in its code that is called critical section. The
purpose of the system is to ensure mutual exclusion between the clients, that
is, two clients must never be simultaneously in their critical sections. Client
requests for access to its critical section by executing the action r;. If server ¢
does not have the token, it obtains it as is described below. When it has the
token, it grants client ¢ the permission by executing g;. Now client ¢ is in its
critical section. When client ¢ leaves its critical section, it executes |; to inform
the server that it may now give the token to the next server.

When necessary, server ¢ demands the token from the previous server by
executing d;. The demand progresses in the ring until it reaches the server in
possession of the token. Let that server be number j. When server j no longer
needs the token, it gives it to the next server by executing t;g1, where j &1 =0
ifj=n—1land jd1=3j+1if 0<j <n— 1. The token travels in the ring to
server . The servers through which it travels may serve their own clients before
passing the token to the next server.

The clients can be easily described precisely. Fig. 2 left shows them as labelled
transition systems. Each client has a terminal state (state 3) and a transition
to it, to model the fact that a client need not request for access to its critical
section if it does not want to. We will now discuss this detail a bit.

0: wait until C; has requested or S;q1 needs the token
goto 1

1: wait until I have the token
if C; has requested then grant it permission; goto 2
else give the token to S;g1; goto 0

2: wait until C; has left its critical section
give the token to S;p1; goto 0

Fig. 2. The clients as labelled transition systems (left) and servers in pseudocode (right)

The termination branch (or some other modelling trick) is necessary to avoid
a modelling trap. Assume that after getting the token, each server always waits
until its client makes a request, then serves the client, and only then passes the
token forward. This is unacceptable, because it may take a long time before
the client makes the request, forcing other clients to wait unnecessarily. What
is worse, if the server’s own client never requests, then other clients that have
requested are never served. However, if a client consists of just an r;-g;-l;-cycle,
then this error is not caught. This is because then the model lacks the possibility
of the server’s own client not requesting in the described situation. The request
transition is then enabled, and will therefore occur, if nothing else can happen in
the system. The termination branch makes it possible for the request transition
to not occur, resulting in a deadlock and thus revealing the error.

The typical way of solving the above-mentioned problem is the use of so-called
weak fairness assumptions as described in [8]. However, the termination branch
is also valid, and has certain advantages. It tends to make non-progress errors
manifest themselves as illegal deadlocks instead of unfair cycles, making them
technically easy to detect. It is also better compatible with so-called partial order
/ stubborn set methods that help keep the size of the state space manageable.
It has a solid theoretical justification via the notion of stable failures in process
algebras. Further discussion can be found in [19] or in Section 3 of [17,18].

The labelled transition systems that represent the servers are too big and
unintuitive to be shown here. (Please see [15] for a slight variant.) This is because
the behaviour of a server depends on the presence or absence of a request by
its client, the presence or absence of a demand for the token by the next server,
whether the server itself has expressed such a demand, and whether it has the
token. Fig. 2 right describes the servers via a mixture of a state machine and
natural language. In the next section we will see a more precise description in
the form of guarded transitions on state variables.

3 An ASSET Model of the Example System

In this section we illustrate that, using C++ lambda functions, our example
system can be expressed as a guarded transition model, in a readable fashion.

In many modern programming languages, libraries constitute an intermediate
layer between a program and the core language. When a program uses, say, a
sorting subroutine that is picked from a library, it gets a significant piece of code
that is usually not counted as a part of the program, although it is not part of
the core language either. If a better sorting subroutine becomes available, the
program may be easily modified to use it.

Similarly, the model in this section relies on some facilities, one version of
which will be developed in Section 4 and an alternative version in Section 5. We
do not consider these facilities as part of the model proper, since they play a
similar role as subroutines picked from a library. (We do admit, however, that
we have not yet implemented them in the form of a library, nor made them as
generic as they could be.) To verify the model, one only needs to have a C++

compiler, download the program asset . cc,? copy the model with the supporting
facilities to the file asset.model, compile asset.cc, and run the result.?

To model the system for ASSET, we first specify the size of the system. The
simplest way to do this would be

const unsigned n = 6;

However, to make it easier to experiment with systems of different sizes, we
exploit C++ macros as follows:

#ifdef size_par

const unsigned n = size_par;
#else

const unsigned n = 6;
#endif

This means that if the compilation command specifies a value for size_par,
then it is used as the size of the system; and otherwise the size is 6. With the g++
compiler, the value is given with the option -Dsize_par=10 (with any natural
number in the place of 10).

Next we introduce the state variables. Each client has four states: 0 = idle,
1 = requested, 2 = critical, and 3 = terminated. There are n clients. We model
them with C[n], that is, an array named C whose indices run from 0 to n — 1.
The tokens are modelled with an array T[n] such that T[i] == true if and only
if server ¢ has the token. If we let the transitions of the server read the state
of the client directly, then the server need not store the piece of information
whether the client has requested or not. The same idea can be applied to the
demand. These simplify the server so much that three states suffice: 0 = initial,
1 = waiting for the token, 2 = waiting for the client to leave its critical section.
These states match Fig. 2 right. The following is written to the model:

enum { idle, requested, critical, terminated };
enum { initial, wait_token, wait_client };
state_var C[n], S[n];

state_bit T[n];

The only things above that are not readily available in C++ are state_var
and state_bit. They are classes that have been defined in asset.cc. From the
point of view of the modeller, variables of their types look like ordinary 8-bit
and 1-bit unsigned integer variables.

However, as was explained in [16], behind the scenes state_var takes care of
the memory management needed to store a state into the state space. The class
state_bit was added to ASSET when writing the present study. It is important
to realize that from the point of view of ASSET, variables of these types do not
store state information. Instead, all global states are stored in a C++ vector

2 http://users.jyu.fi/%7eava/ASSET /asset.cc
% http://users.jyu.fi/%7eava/ASSET /run

of unsigned integers. (C++ vector is an array with some special services. Most
importantly, it can be extended on-the-fly.)

An individual global state occupies some constant number of successive slots
of the vector. A variable of these types only contains the information needed to
access the value (as seen by the modeller) of the state variable from within the
unsigned integers that represent a single global state. When the model uses a
state variable, its value (as seen by the modeller) is accessed from one or another
global state depending on the value of a variable that contains the index of the
current global state. This variable is part of ASSET and not part of the model.

To fire a transition on a global state, ASSET (not always, see below) copies
the state (as a sequence of unsigned integers) to a free sequence of slots, makes
the latter be the current global state, and asks the model to fire the transition. If
the transition is enabled, the model executes its body, potentially modifying the
global state. ASSET checks whether the resulting state has been encountered
before. If not, it is made an official state of the state space, the sequence of slots
is permanently reserved for it, and a new free sequence of slots is acquired by
extending the vector. If the model replies that the transition is disabled, ASSET
tries the next transition without copying the state, because it has not changed,
because the previous transition did not fire. This speeds up the processing of
disabled transitions. We will see later that the processing speed of disabled tran-
sitions is important.

By default, all state variables hold initially the value 0, also known as false.
However, there must initially be one token in the ring. Therefore, we write

void initialize(){ T[0] = true; }

How to write transitions nicely depends on the modelling paradigm and per-
haps also on the system. Classes, macros, or other means may have to be defined.
In this section we show the transitions of our example system. The first version
of the classes and macros that we used is shown in Section 4. To illustrate exper-
imentation with implementation ideas, in Section 5 we describe another, more
complicated version of the classes that uses precisely the same representation
of the transitions, but speeds up the construction of the state space. We also
describe a small modification to the representation of the transitions that yields
further speed-up.

The transitions of the clients are copied almost trivially from Fig. 2 left using
the names of states. All transitions of the client except the termination transition
are joint with the server. However, each of them has a natural direction of the
signal, as shown by arrowheads in Fig. 1. Each transition is modelled at the tail
of the arrow, that is, at the sender of the signal. Therefore, the transition that
moves the client from requested to critical is modelled as a server transition.

client_tr clients[] = {
client_tr(idle, terminated), // termination transition
client_tr(idle, requested), // request access
client_tr(critical, idle) // leave critical

};

server_tr servers[] = {

server_tr(
initial,
GUARD(C[i] == requested || S[next(i)] == wait_token),
BODY(),
wait_token

),

server_tr(
wait_token,
GUARD(T[i] && C[i] == requested),
BODY(C[i] = critical;),
wait_client

),

server_tr(
wait_token,
GUARD(T[i] && C[i] != requested && S[next(i)] == wait_token),
BODY(T[i] = false; T[next(i)] = true;),
initial

),

server_tr(
wait_client,
GUARD(C[i] != critical),
BODY(T[i] = false; T[next(i)] = true;),
initial

Fig. 3. The transitions of the servers

The transitions of the servers are less trivial. We first need a simple helper
function that, given the index of a server, yields the index of the next server.

inline unsigned next(unsigned i){ return (i+1) % n; }

The transitions of the servers are shown in Fig. 3. Each of them consists of
four components: tail state, guard, body, and head state. A transition is enabled
if and only if the control of the server is at the tail state and the guard evaluates
to true. When the transition occurs, it executes the body and moves the control
of the server to the head state.

The first transition moves the server from initial to wait_token when there
is a reason for that, that is, its own client has requested or the next server needs
the token. When the token is available, the second transition moves the client
to its critical section, provided that it has requested for access. If it has not
requested for access but the next server needs the token, and the current server
has it, then the current server gives the token to the next server and returns to
its initial state. The fourth transition is enabled when the server is waiting for
the client to leave its critical section, and the client has done so. When it occurs,
the server gives the token to the next server and returns to its initial state.

After serving its client, the server pushes the token to the next server even if
the latter has not demanded. This prevents the system from executing an infinite
cycle, where a client requests and its server serves it again and again, while some
other client has requested but is never served. In the system as it is in Fig. 3,
after a client is served, the token must circulate the ring before the same client
may be served again. This guarantees that the other clients will be served if they
want.

The verification tool must also be given some properties to check. We first
describe mutual exclusion via a feature that makes ASSET check every state
that it has constructed. The #define switches this feature on. The function
counts the number of clients that are in their critical sections, and returns an
error message, if and only if that number is at least two.

#define chk_state
const char *check_state(){
unsigned cnt = 0;

for(unsigned i = 0; i < n; ++i){ if(C[i] == critical){ ++cnt; } }
if(cnt >= 2){ return "Mutual exclusion violated"; }
return O;

To see that this function works, we temporarily changed the initialization
function so that it puts two tokens to the system: T[n/2] = T[0] = true;. As a
consequence, ASSET reported !!! Safety error: Mutual exclusion violated
and printed the sequence of states of an execution that led to the error. ASSET
prints each state using a function provided by the modeller. So the modeller
has full control on how each state is printed. Because the sequences leading to
errors may be long, it is often a good idea to print states so densely that one
line suffices. In our experiments we used the following function that encodes the
local states of clients and servers as characters.

const char Cchr([] = { >-’, ’R’, °C’, > * }, Schr[] =1 ’i’, ’t’, ’c’ };
void print_state(){
for(unsigned i = 0; i < n; ++i){
std::cout << Cchr[C[i]] << Schr[S[i] 1;
if(T[i]){ std::cout << ’%*’; }else{ std::cout << ’ ’; }
}
std::cout << ’\n’;

}

With n = 6, the sequence of states mentioned above is as follows. The two
tokens are shown as *. They are permanently at positions 0 and 3. We have added
comments that describe what happened in each transition. “to CS” abbreviates
“to its critical section”.

-i*-i -i -i*-i -i Initial state
-i*-i -i Ri*-i -i Client 3 requested.
Ri*-i -i Ri*-i -i Client 0 requested.

Ri*-i -i Rt*-i -i Server 3 moved to wait_token.
Ri*-i -i Cc*-i -i Server 3 moved to wait_client, taking client 3 to CS.
Rt*-i -i Ccx-i -i Server 0 moved to wait_token.
Cc*-i -i Cc*-i -i Server 0 moved to wait_client, taking client 0 to CS.

We also used a function that verifies that when the system has terminated, all
clients have terminated on purpose instead of being blocked. If the initialization
function is changed so that it puts no token to the system, then ASSET reports
111 I1legal deadlock: Client not terminated and shows a sequence of states
where one by one, all clients move to requested.

#define chk_deadlock
const char *check_deadlock(){
for(unsigned i = 0; i < n; ++i){
if(C[i] '= terminated){ return "Client not terminated"; }
}

return 0;

}

We mentioned earlier that after serving its client, the server pushes the token
to the next server even if the latter has not demanded. To illustrate that this
is important, we temporarily removed the latter T[i] = false; T[next(i)
] = true; and permanently added the following checking function. It verifies
that the system has no infinite execution where client 0 stays permanently in
requested. This fails in the intentionally broken system, causing ASSET to
report !'!'! Must-type non-progress error together with a long sequence of
states that ends with a cycle where server 5 repeatedly serves client 5 while
client 0 is in requested. The other clients have terminated and all servers other
than 5 are waiting for the token.

#define chk_must_progress
bool is_must_progress(){ return C[0] != requested; }

An implementation of client_tr and server_tr will be described in the
next section, and a faster, more complicated implementation in Section 5. The
code fragments in this section together with either implementation constitute a
complete model that ASSET can check. Our claim is that for a person who knows
C++ and the basics of state spaces, the model in this section is reasonably easy
to follow. It is also reasonably easy to make experiments by making modifications
to the model. The classes in the next two sections are more difficult, but they
can be re-used in other models.

4 Simple Transition Classes

In this section we describe a simple version of the generic facilities that the
model in the previous section uses. The idea is that in the future, there would
be a library from which these and other similar facilities could be picked. The
next section discusses a more advanced alternative.

typedef bool (*guard_type)(unsigned);
typedef void (*body_type) (unsigned);
#define GUARD(x) { [](unsigned i) {return x;} }
#define BODY(x) { [](unsigned i) {x} }

class server_tr{
unsigned tail, head; guard_type guard; body_type body;
public:
static unsigned cnt;
server_tr(
unsigned tail, guard_type guard, body_type body, unsigned head
): tail(tail), head(head), guard(guard), body(body) { ++cnt; }
bool operator()(unsigned i) const {
if(S[i] != tail || !'guard(i)){ return false; }
body(i); S[i] = head; return true;
}
};

unsigned server_tr::cnt = O;

Fig. 4. The server transition facilities

The facilities needed by the transitions of the server are shown in Fig. 4. A
guard is a function that takes the index of the server and returns a Boolean value,
and a body is a function that takes the index of the server and returns nothing.
First these two types of functions are given names. Then two macros are shown
that facilitate intuitive syntax for the guards and bodies. Each guard and body
is a C++ lambda function, that is, a C++ function that has no name. In the
definition of a lambda function, [] (or something more complicated) appears in
the place of the return type and name of the function.

Each server_tr object consists of four components: the tail state, the head
state, the guard and the body. The execution of a server transition is defined
by bool operator (). If the current local state of the server is not the same as
the tail state of the transition, the execution terminates immediately returning
false, indicating that the transition is not enabled. In the opposite case (that
is, if these two states are the same), the guard is evaluated. If the guard returns
false, then again the execution terminates returning false. In the opposite
case, the transition is enabled. Then the body of the transition is executed, the
head state is made the current local state of the server, and true is returned.

With the aid of cnt, the class counts the number of server transitions that
are created. (Being an array instead of a vector, servers has no size operator.)
The last line initializes cnt to 0. The three lines above bool operator() copy
the tail and so on from the command that creates a server transition, to the
corresponding fields of the object. They also increment cnt.

The class client_tr is simpler. It only contains tail, head, cnt, and the
operations that manipulate them.

unsigned nr_server_tr = 0;

unsigned nr_transitions(){
initialize();
nr_server_tr = server_tr::cnt * n;
return nr_server_tr + client_tr::cnt * n;

}

bool fire_transition(unsigned i){
if(i < nr_server_tr){
return servers[i % server_tr::cnt](i / server_tr::cnt);
}
i -= nr_server_tr;
return clients[i % client_tr::cnt](i / client_tr::cnt);

}

Fig. 5. The firing of transitions

We have described how the client and server transitions become stored in
the arrays clients[] and servers[]. We still have to explain how ASSET
uses these arrays when constructing the state space. Fig. 5 shows the code that
implements this functionality.

Before starting to construct the state space, ASSET calls nr_transitions(),
to obtain the number of transitions in the model and to perform whatever ini-
tialization is needed. The function calls the initialization function discussed in
Section 3, computes the total number of transitions as seen by ASSET, and
computes the total number of server transitions as seen by ASSET for a reason
that will be discussed soon. The number of client transitions that we wrote is in
client_tr::cnt, and similarly for the server. The total number of transitions
that we wrote is the sum of these. However, from the point of view of ASSET,
the transitions of each client and server are distinct from the transitions of any
other client or server, although we modelled them as parameterized transitions
that got the index of the client or server as the parameter. Therefore, for AS-
SET, both numbers of transitions must be multiplied by the number of servers.
Let M denote the total number of transitions as seen by ASSET.

ASSET tries to fire a transition by calling fire_transition with the num-
ber of the transition as a parameter. If it returns false, then ASSET treats the
transition as disabled. If it returns true, then ASSET assumes that the tran-
sition was enabled and has been executed, changing the values of zero or more
state variables. If this happens when ASSET is in the state space construction
mode, then ASSET behaves like any state space construction tool, that is, checks
whether the resulting state has been encountered before, and, if not, stores it in
the state space. Then it either copies the original state to a fresh working area
and tries the next transition on it or, if all transitions have been tried on the
state, chooses the next state for processing.

For fast access, the total number of server transitions, as seen by ASSET, is
stored in the global variable nr_server_tr. Let that number be denoted with m.
Let s denote the number of server transitions that we wrote (that is, s = 4). So
m = ns. Transition numbers from 0 to m — 1 correspond to the servers. Using
the modulus operator and integer division, fire_transition splits the number
to a number in the range from 0 to s — 1 and another in the range from 0 to
n — 1. The former is used for picking a transition from the array servers, and
the latter is given to the picked transition as a parameter. That is, the latter is
the index of the server. The transition is executed by invoking the () operator,
and the returned Boolean value is forwarded to ASSET as the return value of
fire_transition.

Transition numbers from m to M — 1 correspond to the clients. The function
fire_transition first subtracts m from them and then processes them similarly
to the transition numbers that correspond to the servers.

The transition classes developed in this section can be thought of as a middle
layer between the model and the ASSET tool. Further classes could be developed
for different needs. For instance, there could be a non-parameterized class to
model processes that, unlike our clients and servers, exist in only one copy.
Writing a class may be non-trivial, but after it has been written, it may be
easily usable in many different models. This is analogous to data structure and
algorithm libraries.

5 Faster Transition Classes

In the design of the transition classes in the previous section, simplicity was
preferred over performance. First, lambda functions are slower than the methods
used in ASSET models until now. Before the present study, individual transitions
were written as branches of if and switch statements that direct the control
to the right transition on the basis of the number of the transition and the local
states of the clients and servers. The statements were inside fire_transition.
In the present study, the execution of an enabled server transition involves the
invocations of two functions whose addresses are picked from an array. This
introduces overhead.

Second, from the point of view of ASSET, the model in Sections 3 and 4
contains 7n transitions, three for each client and four for each server. Because a
server transition is disabled if its tail state is different from the current local state
of the server, and because the guards of the second and third transition of the
server are in contradiction, at most one of the four transitions of a server can be
simultaneously enabled. For a similar reason, at most two transitions of a client
can be simultaneously enabled. This means that during state space construc-
tion, numerous calls to fire_transition are made that yield false because of
the local state of the client or server. In switch-based models, transitions with
different tail states may share the transition number, reducing the number of
unproductive calls to fire_transition.

To obtain information on the magnitude of these phenomena, we imple-
mented four additional models. By Simple we refer to the model developed in
the previous sections. Switch3 uses if and switch statements in the traditional,
optimized manner. Also Switch7 uses if and switch statements, but it uses the
same, non-optimal numbering of transitions as Simple. Lambda4 and Lambda3
exploit an improved way of using lambda functions that we will develop in this
section. Lambda4 uses precisely the same transition specifications as Simple, but
uses only 4n transition numbers. In Lambda3, the two transitions that start at
wait_token have been merged. Like Switch3, it uses 3n transition numbers.*

The idea is to reduce the number of ASSET transition numbers and eliminate
the tests on the tail states of transitions by sharing transition numbers between
transitions with different tail states. The transitions (as seen by the modeller)
of a server are partitioned to levels. The transitions on the same level share an
ASSET transition number. Each level contains precisely one transition for each
local state of the server, but this transition may be a special transition p that
is never enabled.

Consider the introduction of a new transition whose tail state is ¢. Location
t on level 0 is checked, then on level 1 and so on, until a location containing g
is found or the levels are exhausted. In the latter case, a new level is introduced
and all its locations are initialized with p. In both cases, then the new transition
is stored on location ¢ on the level.

When ASSET tries to fire transition number k where k is in the range for the
server transitions, the index i of the server and the level £ are computed using
integer division and modulus by the number of the levels. Then the current local
state of the server (that is, S[i]) is used to pick the right transition on the
chosen level. This takes place by using sf 4+ S[i] to index an array, where s is
the number of local states of the server, that is, s = 3. So this is a constant time
operation. Next the guard of the transition is evaluated. If it yields true, the
head state of the transition is assigned as the current local state of the server,
and the body of the transition is executed. These two actions are executed in
this order to make it possible for the body to override the default head state.
This feature is needed in merging the two server transitions whose tail state is
wait_token.

Transitions of the clients are partitioned to levels in a similar fashion. Before
sending an ASSET transition number to the firing function of client_tr, the
total number of server transitions is subtracted from it, to make the range of
numbers as seen by client_tr start from O.

An idea of how complicated this optimized approach is can be obtained from
the fact that Simple consists of 158 lines of code (including comments), Lambda4
of 208, and Lambda3 of 205.

The number of levels needed by a process is the maximum number of transi-
tions of the process that may be simultaneously enabled. It can thus be thought
of as the degree of nondeterminism of the process. This is not necessarily the
same as the maximum outdegree of a local state of the process, because two

* http://users.jyu.fi/%T7eava/ASSET /MWML /simple.cc, switch3.cc, and so on.

Table 1. Running times

n hash|Simple Lambda4 Lambda3 Switch7 Switch3 seconds
7 23| 1.38 1.27 1.18 1.22 1.00 3.33
7 24 | 1.37 1.27 1.19 1.24 1.00 3.28
8 23 | 1.31 1.23 1.19 1.10 1.00 45.7

8 27 | 1.44 1.34 1.27 1.15 1.00 29.6

9 27 | 1.26 1.19 1.17 1.11 1.00 355

9 28 | 1.30 1.21 1.17 1.13 1.00 321

transitions that share their tail state may have mutually exclusive guards. The
two server transitions that start at wait_token are an example of this.

The degree of nondeterminism is typically small, often 1 or 2. On the other
hand, with the simple technique of the previous section, the number of ASSET
transition numbers used by a process is the same as the total number of transi-
tions of the process. This number is 3 for our clients and 4 for our servers, but it
is often bigger. For instance, the sender of the self-synchronizing alternating bit
protocol in [20] has 22 transitions and its degree of nondeterminism is 2. There-
fore, one might expect that the levelling technique of this section might yield
significant savings with that protocol, but not necessarily with the example of
the present study. The next section reports what happened in our measurements.

6 Measurements

Although our main motivation was pedagogical, it is important that the tool
is not woefully slow. In this section we demonstrate experimentally that it is
actually quite fast. On the other hand, the effect of the improvements in Section 5
over the implementation in Section 4 will turn out not big on our example.

We analysed the five models introduced in the previous sections with n =
7, n =8, and n = 9, with various hash table sizes. (Hash table is the data
structure from which ASSET checks whether a newly constructed state has been
encountered before.) For each n, each of the models has the same number of
reachable states and edges. These numbers are shown below. An observation
that we will refer to in the sequel is that the number of edges is roughly 1.04n
times the number of states.

n| 7 8 9

states| 2939328 20155392 136048896
edges| 21500640 167588352 1267270272

Table 1 shows the times it took to construct and analyse the state spaces
by ASSET on a machine with 3.60 GHz clock rate and 16 gibibytes of memory.
The analysis algorithm tries to fire each transition twice on each reachable state:
first to construct the set of reachable states as usual, and then as a part of an
algorithm that checks the property specified by is_ must_progress.

The rightmost column shows the analysis times of Switch3 in seconds, and
the five preceding columns show the relation of the analysis time of each model to
the analysis time of Switch3. Although we show two decimals, we point out that
the information content of the latter decimal is limited, because the analysis
times of identical runs on the same machine varied as much as 18%. So the
second decimal is unreliable. The second column shows the base-2 logarithm of
the hash table size used in the experiments. For each n, the lower row uses the
hash table size that yielded the fastest runs. To obtain information on the effect
of the hash table size, the upper row presents the analysis times with a smaller
hash table size, which is 23 in most cases but 27 with n = 9, because 23 took
too much time. The compiler refused to compile when hash was 29.

The total number of transition numbers (as seen by ASSET) is 7n for Simple
and Switch7, 4n for Lambda4 and 3n for Lambda3 and Switch3. Indeed, the
analysis times of Switch7 are bigger than those of Switch3, and similarly with
Simple, Lambda4, and Lambda3. We saw above that of these 7n, 4n, or 3n
transitions, only about 1.04n were enabled on the average in each state. So in
all models, most calls of fire_transition yield false. The processing time of
such calls is thus important. Also, as one would expect, the switch-based models
were faster to analyse than the models that use lambda functions.

However, the differences were at most only 44 %. The effect of the hash table
size is of similar magnitude. So there is little point in spending human effort on
optimizing analysis speed unless the analysis proves too slow. Even then the first
thing is to set the hash table size. A good hash table size is at least roughly the
number of reachable states, but not so big that the hash table uses too much of
the available memory. In the absence of a better idea, the size of the available
memory divided by 100 can be used as a rule of thumb. (An obvious idea for
improving ASSET would be to make it choose the hash table size.)

During the development of the models, they were tested on a small 8 years
old Linux mini-laptop with n = 8 and hash = 23. The analysis times were, of
course, much bigger, because the computer was of much smaller performance.
We feel that they are worth reporting, because there is an interesting difference.
The following table shows the analysis times in seconds. They are user times
measured with the time command, and they include also the roughly 4 seconds
that it took to compile the model and asset.cc.

nhash|Simple Lambda4 Lambda3 Switch7 Switch3 sec
8 23 | 1.70 1.48 1.33 1.10 1.00 181

On that environment, the overhead of lambda functions is significant. We
speculate that the overhead caused by indirect function calls may have become
less significant over the years, thanks to developments in hardware (and com-
pilers?). Clearly the measurements with a modern machine shown above do not
suggest that lambda functions would be a serious performance problem.

We pointed out in Section 5 that the sender of the self-synchronizing alter-
nating bit protocol has a high ratio of the number of transitions to the degree
of nondeterminism. So we expected the levelling technique to yield much more
dramatic improvement than it did in the demand-driven token ring example.

We tested two different versions of the protocol on the old slow laptop. The im-
provement was small in both cases. It turned out that the manipulation of the
fifo-channels of the protocol was so time consuming that it dominated the anal-
ysis time. Each time when a message is added to a fifo, the first empty location
must be found to put it there, and each time when a message is removed, all
contents of the fifo must be moved one step forward. Outside state space meth-
ods, the fifo could be made faster by implementing it as a ring buffer. However,
in a verification model, such an implementation would cause state explosion by
giving the same actual content many different representations.

We tried our approach also on the dining philosophers’ model at [5]. Transla-
tion from Promela along the lines of Section 3 was straightforward. The frame-
work of Section 4 was used, after removing everything related to clients as un-
necessary. We tried up to 14 philosophers, with SPIN max search depth set
to 18000000 (17000000 did not suffice) and no_show_cnt switched on in AS-
SET. ASSET always constructed one state and two edges less than SPIN. When
n > 12, its running time was less than half of that of SPIN. When n < 12,
ASSET terminated within one second. The machine was a modern laptop.

7 Conclusions

We illustrated how lambda functions can be used to write fairly natural and
readable models of systems as guarded transitions on shared variables, with tail
and head states. Lambda functions were added to C++ in the 2011 standard,
so they are somewhat recent. Because in our application, the use of lambda
functions involves calling functions picked from arrays, we expected it to add
significant overhead. This proved to be so on an 8 year old mini-laptop, but not
on modern machines. (We reported measurements on one modern machine but
had tried also three others.) In our measurements, the overhead was so small
that there is no point in spending human effort to avoid lambda functions unless
the analysis speed has to be optimized to the extreme. Although we did not
report them, we also made some experiments with virtual functions. Again, the
result was that there is no strong need to avoid them.

We first presented simple classes that made it possible to write natural models
using lambda functions. Then we developed more complicated, faster classes.
However, in our experiments, the motivation for the faster classes was reduced
by the fact that on modern machines, already the simple classes performed not
much worse than highly optimized models relying on switch and if statements.

Our work is initial in that our classes are not universal. Instead, they were
designed according to the needs of our example system. However, especially the
simple classes are straightforward and can thus be mimicked as needed when
modelling other systems. We also successfully re-used a class in another model.
The work is initial also in that only three systems were modelled and experi-
mented with. Because of the strong expressive power of C++4, we are convinced
that many further systems can be modelled, and more universal classes than
ours can be developed.

References

1.

10.

11.

12.

13.

14.

15.

16.

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, 10th International Confer-
ence, TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,
Proceedings, volume 2988 of Lecture Notes in Computer Science, pages 168—176.
Springer, 2004.

. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.

Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models
from Java source code. In Carlo Ghezzi, Mehdi Jazayeri, and Alexander L. Wolf,
editors, Proceedings of the 22nd International Conference on on Software Engi-
neering, ICSE 2000, Limerick Ireland, June 4-11, 2000, pages 439-448. ACM,
2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

Sami Evangelista and Christophe Pajault. Solving the ignoring problem for partial
order reduction. STTT, 12(2):155-170, 2010.

Edmond O Floinn. Model of dining philosophers’ problem in the Promela verifi-
cation language, 2016. https://github.com/oflynned/DiningPhilosophersPromela
[Online; accessed 2-May-2018].

Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

Kurt Jensen and Lars Michael Kristensen. Colored Petri nets: a graphical lan-
guage for formal modeling and validation of concurrent systems. Commun. ACM,
58(6):61-70, 2015.

Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems - specification. Springer, 1992.

Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT
Press, 1990.

Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on
Theoretical Computer Science. Springer, 1985.

A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.
Springer, 2010.

spinroot.com. SPIN Readme. http://spinroot.com/spin/Man/README.html
[Online; accessed 1-May-2018].

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1997.

Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz
Rozenberg, editor, Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings],
volume 483 of Lecture Notes in Computer Science, pages 491-515. Springer, 1989.
Antti Valmari. Composition and abstraction. In Franck Cassez, Claude Jard,
Brigitte Rozoy, and Mark Dermot Ryan, editors, Modeling and Verification of Par-
allel Processes, 4th Summer School, MOVEP 2000, Nantes, France, June 19-23,
2000, volume 2067 of Lecture Notes in Computer Science, pages 58—98. Springer,
2000.

Antti Valmari. A state space tool for concurrent system models expressed in
C++. In Jyrki Nummenmaa, Outi Sievi-Korte, and Erkki Mé&kinen, editors, Pro-
ceedings of the 14th Symposium on Programming Languages and Software Tools

17.

18.

19.

20.
21.

(SPLST’15), Tampere, Finland, October 9-10, 2015, volume 1525 of CEUR Work-
shop Proceedings, pages 91-105. CEUR-WS.org, 2015.

Antti Valmari. Stop it, and be stubborn! In 15th International Conference on
Application of Concurrency to System Design, ACSD 2015, Brussels, Belgium,
June 21-26, 2015, pages 10-19. IEEE Computer Society, 2015.

Antti Valmari. Stop it, and be stubborn! ACM Trans. Embedded Comput. Syst.,
16(2):46:1-46:26, 2017.

Antti Valmari and Manu Setéld. Visual verification of safety and liveness. In
Marie-Claude Gaudel and Jim Woodcock, editors, FMFE °96: Industrial Benefit and
Advances in Formal Methods, Third International Symposium of Formal Methods
Europe, Co-Sponsored by IFIP WG 14.8, Ozford, UK, March 18-22, 1996, Proceed-
ings, volume 1051 of Lecture Notes in Computer Science, pages 228-247. Springer,
1996.

Antti Valmari and Walter Vogler. Fair testing and stubborn sets. STTT, 2017.
Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engineering, 10(2):203-232,
2003.

