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We derive the equations of motion of relativistic, nonresistive, second-order dissipative magnetohy-
drodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be
composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has
vanishing magnetization and polarization. In a first approximation, we assume the fluid to be nonresistive,
which allows to express the electric field in terms of the magnetic field. We derive equations of motion for
the irreducible moments of the deviation of the single-particle distribution function from local
thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing
previous results for the structure of the first-order transport coefficients. Finally, we truncate the system
of equations for the irreducible moments using the 14-moment approximation, deriving the equations of
motion of relativistic, nonresistive, second-order dissipative magnetohydrodynamics. We also give
expressions for the new transport coefficients appearing due to the coupling of the magnetic field to

the dissipative quantities.

DOI: 10.1103/PhysRevD.98.076009

I. INTRODUCTION

The success of relativistic fluid dynamics in describing
the evolution of high-energy heavy-ion collisions [1] and the
existence of very large magnetic fields in these collisions
[2-5] has generated a lot of interest in observing the effects
of the magnetic field on the fluid-dynamical evolution in
these systems. The generic framework that couples the
electromagnetic field to the dynamics of a fluid is referred to
as magnetohydrodynamics [6,7]. There are several works
where the effect of electromagnetic fields on the dynamics of
heavy-ion collisions have been studied (for a review, see
Ref. [8] and references therein), but so far they have been
mostly based on the nonresistive, nondissipative formu-
lation of relativistic magnetohydrodynamics. However,
dissipation plays an important role in understanding the
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dynamics of heavy-ion collisions and in particular in
explaining the magnitude of the observed collective flow
(for a review, see Ref. [1] and references therein). Thus, it is
essential to develop a relativistic formulation of dissipative

magnetohydrodynamics.

In principle, the most simple dissipative fluid-dynamical
theory is a relativistic generalization of Navier-Stokes
theory, where the dissipative quantities, bulk viscous
pressure, diffusion currents, and shear-stress tensor, are
proportional to the gradients of the flow field and of
thermodynamical quantities. In the absence of a magnetic
field, the constants of proportionality are three scalar trans-
port coefficients: the bulk viscosity, diffusion constant, and
shear viscosity. A magnetic field breaks the isotropy of
space, introducing several new transport coefficients [9—13],
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which assume different values in the direction of the
magnetic field and in the direction orthogonal to it. The
relativistic generalization of Navier-Stokes theory is, how-
ever, known to be acausal [14] and, at least, linearly
unstable [15-17], rendering it ill-suited for practical use.
Without the magnetic field, these problems were cured by
the causal and stable “second-order” formalism of Israel and
Stewart [18-20]. Israel-Stewart theory can be derived by
starting from the relativistic Boltzmann equation employing
the so-called 14-moment approximation [19,20], and the
success of fluid dynamics in describing the dynamics of
heavy-ion collisions is based on this formalism.

In this paper, we follow the same line of reasoning as
Israel and Stewart, and derive a relativistic causal theory of
second-order dissipative magnetohydrodynamics from the
relativistic Boltzmann equation coupled to an electromag-
netic field. As in the original formulation by Israel and
Stewart, we restrict ourselves to a single-component system
of spinless particles undergoing binary elastic collisions and
use the 14-moment approximation in the framework devel-
oped in Refs. [21-23]. In a first step, we assume the fluid to
have infinite electric conductivity (or zero resistivity),
which allows to replace the electric field by the magnetic
field and considerably simplifies the equations of motion.
We remark that the assumption of infinite electric conduc-
tivity is an idealization which is hard (if not impossible) to
realize in systems whose microscopic dynamics is described
by the Boltzmann equation: the electric conductivity is a
transport coefficient which is proportional to the mean free
path of the particles, such as all other transport coefficients
appearing in dissipative fluid dynamics, and thus should be
of the same order of magnitude as the latter. Nevertheless, as
nonresistive magnetohydrodynamics is a theory which finds
widespread applications, we decided to first discuss the
simpler case of a nonresistive (albeit dissipative) fluid. The
generalization towards systems with finite conductivity will
be addressed in a subsequent paper.

Let us add a few remarks on the length scales entering
our discussion. (i) The Boltzmann equation is derived
under the assumption that the collision term in this equation
is local, implying that the mean free path A between
collisions is much larger than the typical interaction length

\/o/m, where o is the binary-collision cross section.
(i) The magnetic field leads to cyclotron motion of the
charged particles. The curvature of the particle trajectories
is given by the inverse Larmor radius R;' = qB/k, , where
q is the electric charge of the particles and &k, is the
momentum of the particle transverse to the direction of the
magnetic induction field B, which has magnitude B = |B|
(in the following the magnetic induction field is in a
simplifying, but somewhat incorrect, manner referred to
as “magnetic field”). In our discussion we will assume that
the magnetic field is sufficiently weak so that we can
neglect the Landau quantization of the cyclotron motion.
This implies that the thermal energy ~7, where T is the

temperature, is much larger than the cyclotron frequency
~y/qB. In other words, the thermal wavelength f,=
1/T < Ry, where Ry = (qBf;)~" is the Larmor radius
of a particle with transverse momentum k; = 7. In the
following, we refer to Ry as the “thermal Larmor radius.”
Note that this condition does not necessarily imply that the
magnetic field is weak in absolute magnitude; it only
requires that the temperature of the system is sufficiently
large, such that 72 > qB. While our discussion is valid
when A4 > \/o/7 and Ry > f, there is a priori no
constraint on the ratio &z = Ang/Rr = qBPoAng [24], as
long as the first two inequalities are fulfilled.

This paper is organized as follows. In Sec. Il we review the
structure of the equations of motion of magnetohydrody-
namics, i.e., the evolution equations for energy and momen-
tum coupled to Maxwell’s equations for the electromagnetic
fields. In Sec. III we present the magnetohydrodynamic
equations of motion for the nonresistive, nondissipative
fluid. In Sec. IVA we recall the method of moments and
derive the equations of motion for the moments of the
deviation of the single-particle distribution function from
local thermodynamical equilibrium in the presence of a
magnetic field. In Sec. IV B we show how the Navier-Stokes
limit arises from the moment expansion. Finally, in Sec. IV C
we derive the main result of this paper: the equations of
motion for nonresistive, second-order dissipative magneto-
hydrodynamics. Section V concludes this work with a
summary of the results and an outlook to future work.

We adopt natural Heaviside-Lorentz units, 2 = ¢ = ¢, =
1o = kg = 1. Our convention for the metric tensor is
¢ = diag(1,—1,—1,—-1). The fluid four-velocity is
u(t,x) = y(1,v)", with y = (1 — v?)~1/2, leading to the
normalization u*u, = 1. In the local rest (LR) frame of the
fluid, uy » = (1,0)7. The four-momentum k* of particles is
normalized to their rest mass my, k*k, = m%. The rank-two
projection operator onto the three-space orthogonal to u* is
AW = g™ —utu’. For a four-vector A¥, we define its
projection onto the three-dimensional subspace orthogonal
to u* as A¥ = A¥AY. The rank-four projection operator is
defined as AlY = 5 (AZAL + ALAL) — S AMA,5, which is
symmetric and traceless. For a rank-two tensor, we define
the symmetric, traceless projection onto the three-space
orthogonal to u* as A¥) = AXA. Our convention and

useful relations for the rank-four Levi-Civita tensor e*®*
are given in the Appendix.

II. EQUATIONS OF MOTION OF
MAGNETOHYDRODYNAMICS

A. Maxwell’s equations and energy-momentum
tensor of the electromagnetic field

In a relativistically covariant formulation of electrody-
namics, the electric field vector E and the magnetic field
vector B constitute the components of the Faraday tensor

076009-2



NONRESISTIVE DISSIPATIVE MAGNETOHYDRODYNAMICS ...

PHYS. REV. D 98, 076009 (2018)

F#. The latter is an antisymmetric (and hence traceless)
rank-two tensor (and thus has six independent components,
corresponding to the six components of E and B). Without
loss of generality it can be decomposed with respect to the
fluid velocity as [25,26]

F* = Fu¥ — E'u* + e Py By, (1)

while its Hodge dual is
- 1
Fr = Eeﬂ”“/jFaﬂ = B'u’ — B'u! — e Pu,Eg. (2)

Here we defined the electric field four-vector E¥ = F*u,
and the magnetic field four-vector BF = F"y, =
%e"”"‘ﬁ F,pu,. Using the antisymmetry of the Faraday tensor
and the rank-four Levi-Civita tensor, one readily realizes
that £* and B* are orthogonal to the fluid velocity, £u, =0
and B*u, = 0. Moreover, in the local rest frame of the
fluid, they coincide with the usual electric and magnetic
fields, i.e., Efx = (0,E)T and B}, = (0,B)7, with E' =
Fand B' = —1¢Y*F ;. The electric field is a polar vector,
while the magnetic field is an axial vector dual to F .

The evolution of the electric and magnetic fields are
given by Maxwell’s equations,

9 = 3%, 3)
a,Fm =0, (4)

where the electric charge four-current §* serves as source
for the electromagnetic field. It can be tensor-decomposed
with respect to the fluid velocity [26,27],

34 =t + B, (5)

where m = u,§* is the charge density in the local rest
frame of the fluid and B* = A} 3" is the charge diffusion
four-current. The solution of Egs. (3) and (4) determines the
electromagnetic fields as functionals of *.

For nonpolarizable, nonmagnetizable fluids the electro-
magnetic stress-energy tensor is given by [25,28]

1
Tén = —FF; 44 GUFPF . (6)

Using Maxwell’s equations (3) and (4) one can show that

0,T", = —F"3,. (7)

B. Particle four-current and energy-momentum
tensor of the fluid

For particles without a microscopic dipole moment or
spin the canonical momentum coincides with the kinetic

momentum [28]. Then, the particle four-current and
energy-momentum tensor of the fluid are simply given by

N; = (k*), (8)
T} = (k'k"). 9)

Here,
<”'>E/dK"’fk, (]())

with f} being the single-particle distribution function and
dK = gd’k /[(27)3k°] being the Lorentz-invariant measure
in momentum space, where g is the degeneracy factor due
to internal degrees of freedom (note, however, that the spin
degeneracy is 2J 4+ 1 =1, since we consider spin-zero

particles), and k° = \/k* + m3 is the on-shell energy.

The particle four-current and the energy-momentum
tensor can be tensor-decomposed with respect to the fluid
velocity,

N = nput + V¥, (11)

T?‘D = euw'u’ — PA*" + WHuY + W¥uk + o, (12)

where the particle density 7y, the energy density ¢, and the
isotropic pressure P are defined as

ny= N?u/4 = (Ex). (13)
e = T?yuﬂu,, = <Ei>, (14)
1. [

P==3TY A, = =3 (A"kK,). (15)

with Ey = k*u, being the energy of a particle in the local
rest frame of the fluid. The particle and energy-momentum
diffusion currents orthogonal to the flow velocity are

Vi = AUNY = (kW), (16)
W = ATV uy = (Exk™), (17)

respectively, while the shear-stress tensor is
v = A"

Ty = (ki) (18)

For a single-component fluid, the electric charge and
particle four-currents are related by

3’? = qN’; =nput + %’;, (19)

where n; = u,,c‘i';. = qu,N; = qny is the charge density in
the local rest frame and B = AY3% = gAYNY = qV is
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the charge diffusion current. To leading order, the charge
diffusion current is equal to the Ohmic induction cur-
rent, gV’ = 8}y = opEV.

The components of §' and 7% contain 14 unknowns, or
equivalently, for a given four-vector field #* the three scalar
quantities nz, g, P, the two times three (equals six) inde-
pendent components of %? and W#, and the five indepen-
dent components of z#*. If the fluid velocity is a dynamical
quantity, this would add another three unknowns (the three
independent components of #*). However, the fluid veloc-
ity can be chosen to be proportional to the charge four-
current, which eliminates the charge diffusion current QS;
(the so-called Eckart frame [29]), or to be proportional to
the flow of energy, which eliminates the energy-momentum
diffusion current W# (the so-called Landau frame [30]).

Let us assume that the only charge current in the system
is that of the fluid, §* = 3’; If we project Maxwell’s

equation (3) onto u, and use Egs. (1) and (5), we obtain,
V,E' +20,B" = ny, (20)

where we introduced the three-space gradient V, = Af0,
and the vorticity four-vector

1
o' = Ee"”aﬁuyaauﬁ. (21)

In the following, we want to consider the nonresistive limit,
i.e., the electric conductivity o — oo. In this limit, the
Ohmic conduction current &% ; would diverge, unless we
demand that £* =0, or E = —v x B, so that §}, ~ %,
remains finite. However, if E# = 0, we observe that the
charge density of the fluid (and thus, for our single-
component system, the particle density of the fluid)
assumes a value which is uniquely determined by the
scalar product of the magnetic field four-vector and the
fluid vorticity, n; = qn; = Za)ﬂBl‘,1 and is no longer an
independent variable. Projecting Eq. (3) with AY, similar
arguments apply to the charge diffusion current %; =qV%.

On the other hand, in dissipative fluid dynamics n; and
V;- are traditionally considered as four (out of 14) inde-

pendent variables. In order to maintain this feature, we
introduce an external current, &%, such that the total
charge current (5) reads

3" = Fex + 8- (22)

' Amusingly, the corresponding term is of the same structure as
the spin-vorticity coupling term discussed in Ref. [31], but the
coefficient assumes a different value, since in that case it is
determined by spin-1/2 fermions in the lowest Landau level,
while here we deal with spinless particles and neglect Landau
quantization.

Then, n; and Vi become independent variables to be
determined by the equations of motion for the fluid. In this
case, our derivation of dissipative magnetohydrodynamics
can be formulated in close analogy to the one of ordinary
dissipative fluid dynamics for single-component systems.
Note that the introduction of an external current does not
affect our argument that £E# must vanish in the limit of
infinite conductivity.

C. Equations of motion of magnetohydrodynamics

The total energy-momentum tensor of the system is
T = Tem + T (23)

Note that the separation of T# into T%, and T’}” is not
unique in the case of polarizable, magnetizable fluids [28].
This problem is absent here, as we consider a nonpolar-
izable, nonmagnetizable fluid.

While the charge current of the fluid is conserved,

9,3" =0, (24)

the total energy and momentum of the system are not, as the
external charge current induces electromagnetic fields and
thus feeds energy and momentum into the system. In
analogy to Eq. (7) we have

aple = _Fmgexl.ﬂ' (25)
With Eq. (22), Eq. (7) reads
0, Tem = —F(Sexen + 81.2)- (26)

and with Eq. (23) we can derive from Eq. (25) an equation
of motion for the energy-momentum tensor of the fluid,

a”T?D — qulgf,l‘ (27)

Equations (24), (26), and (27) constitute the equations of
motion of magnetohydrodynamics. While the energy and
momentum of the electromagnetic fields change on account
of the external charge current as well as the internal charge
current of the particles in the fluid, Eq. (26), the energy and
momentum of the fluid change only on account of the
Lorentz force exerted on the charged particles within the
fluid by the electromagnetic fields, Eq. (27). In general,
neither energy and momentum of the electromagnetic fields
nor that of the fluid are conserved separately. The total
energy and momentum are only conserved in the absence of
an external charge current, . ; =0, so that Eq. (25)
becomes 9,T* = 0.
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III. NONRESISTIVE, NONDISSIPATIVE
MAGNETOHYDRODYNAMICS

A. Assumption of nonresistivity

The charge four-current induced by an electric field is
34 4 = opE*. A widely used approximation in applications
of magnetohydrodynamics is the assumption that the
fluid is nonresistive, i.e., ideally conducting, such that
op — oo. Then, as already stated, in order to have a finite
induced charge current % ; one has to demand E* — 0.
From this condition it follows that, in an arbitrary frame,
E = —v x B, such that the electric field can be eliminated
from the equations of motion.

An ideally conducting fluid implies an infinite mean free
path of charged particles, i.e., the free-streaming limit.
However, in this paper we aim at deriving dissipative
magnetohydrodynamics from an expansion around local
thermodynamical equilibrium, which corresponds to the
opposite limit of a vanishing mean free path. All transport
coefficients appearing in the equations of motion are
proportional to the mean free path of particles, which is
assumed to be much smaller than the typical length scale
over which fluid-dynamical quantities vary. In order to be
consistent, the electric conductivity must be of the same
order as the other transport coefficients (in fact, the famous
Wiedemann-Franz law provides a unique relationship
between the conductivity and the particle diffusion con-
stant), and in principle we do not have the freedom to send
it to infinity. In the case of a finite o, we are in turn forced
to consider a nonvanishing E¥. Nevertheless, since non-
resistive magnetohydrodynamics is a theory which is
widely applied to physical systems, we decided to separate
the discussion by first treating the somewhat simpler case
E* = 0 (corresponding to a nonresistive fluid), which is the
subject of the present work, and then embarking on a
treatment of the more complicated case E# # 0, which will
be the focus of a follow-up to this paper.

For E# = 0, the Faraday tensor (1) and its Hodge dual (2)
simplify to

FH — BHv — €”WﬁuaBﬂ, (28)
Fm — BHY — BHy — BYyH, (29)

while Maxwell’s equations (3) and (4) reduce with
Eq. (22) to

eyva/f(uaaﬂBﬁ + BOytty) = Sex + 3% (30)

B + B*0 = u*8,B" + B'V, u", (31)

where A = ud,A is the comoving derivative of any
quantity A and 6 = 0,u* is the expansion scalar.

The energy-momentum tensor of the electromagnetic
field becomes

B2
Tom — Tl = B3 (ut'u” — A" —2bFDY), (32)

where we introduced B2 = —B*B, and

B*
="

b = B (33)
which is orthogonal to u*, b*u, =0, and normalized
to b*b, = —1.

For systems with a spatial anisotropy, as for instance
induced by a magnetic field [10,13,32,33], but not neces-
sarily restricted to this case [34] (for a review see Ref. [35]
and references therein), it is convenient to introduce a rank-
two operator projecting onto the two-dimensional subspace
orthogonal to both u#* and b*,

B = g — whu¥ + bPDY = AP + bHDY. (34)
Furthermore, since B*B,,, = 2B it makes sense to intro-
duce a new dimensionless antisymmetric tensor

ny

B
b = — 5 —e" Py, by. (35)

Obviously, b*u, = b*b, =0, while Eq. (A2) yields
b"b,, = -2b*b, = 2. Moreover, with the help of
Eq. (A1) one can show that

prap,, = Bt (36)

B. Consequences for energy and momentum
evolution of the fluid

Already at this point we can draw conclusions from the
assumption of nonresistivity for the equations of motion of
magnetohydrodynamics. Projecting Egs. (26) and (27) onto
the direction of u, leads to

uvauTl;}D = Buubm(gext,i + gf,/l) =0, (37)
u,ﬁﬂT?” = —Bubb”igﬂ = 0, (38)

because of u,b** = 0. The latter equation means that a
magnetic field does not change the fluid energy, which is
therefore separately conserved. This is easily understood
since a magnetic field (contrary to an electric field) only
changes the direction of the momenta of the particle, but
not their energy. On the other hand, projecting Eqs. (26)
and (27) onto the three-space orthogonal to u, we have

2

v na a B a v
ALD,Th = {3214 Y (2) — AL, (B*b"b )}

= Bb™(Beys + By ). (39)
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A3, T} = —Bb™By, (40)

where we employed Eq. (26) with Eq. (32) to obtain the
first equation. For both equations we used the decom-
position (5) [see also Eq. (19)], and employed the ortho-
gonality h*u, = 0.

The interpretation of Eq. (40) is that the momentum of
the fluid changes on account of the interaction of the
magnetic field with the charge diffusion current. Note that
the magnetic field influences the dynamics of the fluid only
by coupling to the dissipative part of the charge current.
Without dissipation, the dynamics of the fluid is unaffected
by the magnetic field; see Eq. (51) below.

C. Equations of motion of nonresistive, nondissipative
magnetohydrodynamics

The equations of motion of nonresistive, nondissipative
magnetohydrodynamics are obtained under the assumption
that the fluid is in local thermodynamical equilibrium
everywhere in space-time. In the case of dilute gases this
assumption implies that the single-particle distribution
function assumes the form [36]

fx = fox = lexp (BoEx — ap) +a] ™", (41)

with @y = ufly, where p is the chemical potential associated
with the particle density ng, and a = =1 for fermions/
bosons, while a — 0 for classical particles. Since we
assumed that we can neglect the Landau quantization of
single-particle energy eigenstates (see the Introduction), the
distribution function is isotropic in the local frame,
Ex 1z = k> + mj. Local equilibrium means that the
quantities ay, fy, as well as the fluid velocity u# are
functions of the space-time variable x*. Since f depends
solely on these five independent variables, and since N;
and 7" computed from Egs. (8) and (9) with f replacing
fx then also depend only on these five variables, the

equations of motion of magnetohydrodynamics are closed.
In the following, we need the thermodynamic integrals

(1)

oz i Bk )y, (42)

Inq(aO’ﬂO) =

where (---)g= [dK---fo, is defined in analogy to
Eq. (10). Similarly, the auxiliary thermodynamic integrals
are

o 6In (_l)q n— Q
Tng= <aa:>ﬂo_(2q+1)!!<Ek (A khy)!(1=afor))g-

(43)

. ol . . .
Since (%;:)ao = —J,+1,4> the total derivative is

dl,( ﬁ)=%d iy
ng\ @05 Po _aao Qo b

dpo= ]nqda() _JnJrl,qdﬂO'
(44)
Using the equilibrium distribution function in Egs. (8)

and (9) we obtain the conserved quantities in the form for a
nondissipative fluid,

N;O = (k') = nput, (45)
Tl = (kK)o = equ'u” — PoA™, (46)
where
ngy = Nif-ou” =10, (47)
eo = Tttty = I, (48)
1
Py = —gT%AW =1I,. (49)

Therefore, the total energy-momentum tensor of a non-
resistive, nondissipative fluid reads

v _ v v
T;0+B = T;O + TII;

B? B?
= (é‘o +2)M”MU— (P() +72 >A/w —szﬂbb.
(50)

An immediate consequence of the assumptions of non-
resistivity as well as nondissipativity is that the energy and
momentum of the fluid are separately conserved,

9,Th = 0. (51)

This follows immediately from Eq. (27), since F**g, —
—Bb"nu,; = 0, but it also follows from Egs. (38) and
(40), since B ; = 0 for a nondissipative fluid. The energy
of the magnetic field is conserved on account of Eq. (37),
but the momentum is only conserved when B, =0,
cf. Eq. (39).

IV. NONRESISTIVE, DISSIPATIVE
MAGNETOHYDRODYNAMICS

In this section, we derive the equations of motion of
nonresistive, dissipative magnetohydrodynamics for a
fluid consisting of a single type of point-like particles
without dipole moment or spin. We also assume that the
particles undergo binary elastic collisions only. Starting
from the Boltzmann equation in the presence of an
external electromagnetic field, we first derive the (infinite)
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set of equations of motion for the irreducible moments of
the deviation

O0fx = fx — fox (52)

of the single-particle distribution function from isotropic
local thermodynamical equilibrium. Then we truncate this
set using the 14-moment approximation. Our treatment
follows closely that of Refs. [22,23], extending the latter
by terms arising from the magnetic field. Note that our
assumption Sy < Ry (see the Introduction) allows us to
neglect Landau quantization; otherwise fg, would be
anisotropic. In principle, however, this case can be
discussed using the formalism presented in Ref. [34].
An anisotropy also emerges when using a f, which is a
solution of the Vlasov equation [32,33], or an anisotropic
distribution function parametrizing deviations from local
equilibrium [37].

A. Equations of motion for the irreducible moments

The relativistic Boltzmann equation coupled to an
electromagnetic field [25,38] is

Ot aPh = Clfl (59)
Here the assumption is that the electromagnetic field F*
changes the momenta k* of particles carrying charge g on
large space-time scales ~R, while the collision term, being
a quantity which is local in space-time, redistributes them
on small space-time scales ~y/o/z. We remark that if the
particles carry a dipole moment or spin, there would be an
additional term on the left-hand side [28]. Note that for
Eq. (53) it does not matter whether the electromagnetic
field is generated exclusively via the charge current of the
particles, 3‘1’2 as source term in the inhomogeneous Maxwell
equations, or exclusively via an external charge current
%> or by a combination of both. However, on account of
our remarks made at the end of Sec. II B, only the case of a
nonvanishing external charge current allows to treat the
particle current N’; as an independent fluid-dynamical
variable.

Under the assumption that the particles undergo binary
elastic collisions only, the collision term reads

Clf) =5 [ AK'APAP Wy o1 = a1 - afic)
- Wkk’—»pp’fkfk’(l - afp)(l - afp’)]? (54)

where the factors 1 — af represent the corrections from
quantum statistics. The invariant transition rate Wyy/_py
satisfies detailed balance, Wy py = Wyp ki, and is
symmetric with respect to the exchange of momenta,
Wik —pp' = Wirk—pp' = Wiae—p'p-

Following Refs. [22,23] we define the irreducible

moments of dfy as®
Pt = (B}, Jlr ..kun>>57 (55)

where (---)s= [dK---
of rank 7 is defined as

ofk. Here, the irreducible tensor

b o) = AR e, (56)

where the rank-27 symmetric and traceless projection
tensor AJITL is a straightforward generalization of the
rank-four projection tensor A’;}; introduced above (for more
details on how to construct the former, see Refs. [34,38]).
The irreducible tensors 1, k%), kW) k“kk? ... form a
complete basis in momentum space and satisfy the follow-
ing orthogonality condition:

..kﬂf>k<yl ok

Dn>

/ dKF(Ey )k

255,
ﬁﬂf 55/dKF(Ek) (A kg ky)”,  (57)

where F(Ey) is a sufficiently rapidly converging (but
otherwise arbitrary) function of Ej.

The deviations of the particle four-current and the fluid
energy-momentum tensor from their local equilibrium

values N o> T”

SNY = (k)5 = dngut + Vi, (58)

(kFR¥) 5 = Seuru? — TIAP + WHUY + Woul + o,
(59)

HY
6Tf =

where the corrections to particle density, energy density,
and isotropic pressure are

ony = Ny, = py, (60)

e = 6T u,u, = py, (61)

M= lopwn, — Mo, 92 (62)
T30 Sw T T T

’A tensor is called irreducible when it is irreducible under a
group G consisting of Lorentz transformations that leave u/
invariant. Let F be a subgroup of G consisting of Lorentz
transformations that leave both »* and b* invariant. An irreduc-
ible tensor under G may be reducible under F. This reduction of
symmetry leads to a larger number of transport coefficients in
dissipative magnetohydrodynamics than in ordinary dissipative
fluid dynamics; see Sec. IV B.
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The particle and energy-momentum diffusion currents
orthogonal to the fluid velocity are

Vf; = A’,féN? = p’é, (63)
W = AT uy = p. (64)

while the shear-stress tensor is
n = AsTY = pl. (65)

Choosing the Landau frame [30] to determine the fluid
velocity implies

T u,
/ af ’ P
l/tan Tf’ﬂ},l/ty

The parameters @, and f, entering f(, are determined
by the so-called Landau matching conditions, i.e., demand-
ing that the particle density and energy density resulting
from fy are identical with those resulting from fo,
Ny = nsy, € = &), Or in other words

ut =

—=

= 0. (66)

ony =p =0, e =p, =0. (67)

Then, the charge four-current and total energy-
momentum tensor in nonresistive, dissipative magnetohy-
drodynamics are

3" = nut + B, (68)

™ =T + T

B? B?
= (€0+2)M”MU— (P0+H+2>Alw

— BbMbY + o (69)

Equations (24) and (27) with Egs. (68) and (69) together
with the thermodynamical identities (42) and (43) lead to
the following equations of motion for «, Sy, and u*:

. 1
=Dy [=T30(ns00 + 9, V) + Jao (&9 + Py + T1)0

- JZOH”DUMD] ’ (70)

. 1
Po = Dy [=20(n00 + 8,V5) + J1o(0 + Po +11)0

- JlO”lwa/u/L (71)

and

. 1 N o
pe | (G — g V) — AL T
u e + Py [ﬂo (Vray = hoV*By) b3

— ITit* + VAT — quﬂva,u} , (72)

where D, = J 11,40 n-1.4 — Jag ho = (€0 + Po)/nso is the
enthalpy per particle, and ¢* = V%#u*) is the shear tensor.
The equations of motion for ay and f, are the same as
Egs. (39)-(40) of Ref. [22]; however Eq. (72) contains an
additional term due to the magnetic field when compared to
Eq. (41) of Ref. [22].

We now use Eq. (52) to replace fi by 6f in
the Boltzmann equation (53). Then, we take moments of
the Boltzmann equation (53) in momentum space. With the
definitions

lbgﬂl“'ﬂf) = Al;ll:::gffuaaapl;lmw’ (73)

and
o) — Ag;;;;g‘;/dKE{{km ke Clf],  (74)

we obtain the equations of motion for the irreducible
moments, similarly as shown in Refs. [22,23].

The equation of motion for the irreducible tensors of
rank zero reads

G3r
Dy

lbr - Cr—l = aE’O)a +

0
8MV; + 3 {m%(r —1p,-

G
—(r+2)p, -3 Z’H}

v G
+ |0+ 52, (75)

where we have defined G,,, = J,0/m0 — Ju-1.0Sm+1.0-
Note that the contribution of the magnetic field vanishes
for any scalar moment and exactly corresponds to Eq. (35)
of Ref. [22]. However, the magnetic field is still present and
affects the fluid motion through the acceleration equation,
Eq. (72), as well as through the equations of motion for the
irreducible moments of rank higher than zero (see below).

The equation of motion for the irreducible tensors of
rank one is
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. v .1
pﬁm - Ci@] = Ov'(rl)vﬂao + rp/;_luu - gvﬂ[m(z)pr—l _pr+l}

[a—

+ < [mg(r = 1)pk_,

—_

+§ [m%rpr—l -

1
—(r+3)100+ (1= Voo, + o™ mh(2r =2

= ALV, p® | + alld, ™)

)/)r—2,v - (2" + 3)pr,1/] +pr,vw’w

(r+ 3)p,41 = 3alTI)it* + a'VFTL - algBb™V 1, — aBb"p,_, . (76)

where @ = (VFu¥ — V¥u#) /2 is the vorticity tensor. The two terms in the last line are new as compared to Eq. (36) of

Ref. [22] and explicitly contain the magnetic field.

The equation of motion for the irreducible moments of tensor of rank two is

v v 2
= ) = 20+ 2 i~

2. v
1)pr 2= (2}’ + 3)m0pr + (r + 4)pr+2]6ﬂy + guw[m%rpr—l -

> (r+ 5)#:3—1}

2 4 U v v Q VAK U 1 v
-3 VU (mptl = plh )] + o, = AR+ (r = 1) o + 200 0] + 3 [m(r =D
v 2 K

= (r+ 40+ 5 m3(2r = 20l = (2r + 5) ]t~ 2aBL Mgy . (77)
where only the last term is new when compared to Eq. (37) o Ny
of Ref. [22] and explicitly contains the magnetic field. Here £, = fo + fox (1 — afox) Z Z Pk, >Hgn),
we also defined the following coefficients which are /=0 n=0
formally unchanged from Eqs. (42)—(44) of Ref. [22]: (83)

0 "o
o) = (1=r),y—1,- Df (hoGar = Gs,),  (78)
20
N (79)
o =Jder10 —hy o0,
2
a? = Lpg+ (r=1Dl 0, (80)
h /BO
EER N — . 81
r 80+P0 r+2,1 ( )

The collision integral can be linearized using Eq. (52) and
written as

N,
Cilillwﬂﬁ = Asi)p!;ll“'ﬂf’ (82)

n=0

where the coefficient A%) contains time scales ~Amfp- In
order to obtain this result, we have assumed that the
magnetic field does not modify the collision integral, so
that we were able to employ the orthogonality relation (57);
for details see Ref. [22].

Note that, once the equations of motion (75)—(77)
(and in principle those for all higher-rank tensors) are
solved and the complete set of irreducible moments is
determined, one can reconstruct the single-particle distri-
bution fy as a solution of the Boltzmann equation.
Following Refs. [22,23],

We remark that this relation is an exact equality (i.e., f is
an exact solution of the Boltzmann equation) only if we
take N, — oo. In practice, however, one has to truncate the
sum over n at some finite value, N, < co. The same holds
for the sum over Z. Since there are no tensors of rank higher
than two in fluid dynamics, this sum is usually restricted to
¢ < 2. Furthermore, this also implies that higher-rank
tensors on the right-hand sides of the equations of motion
(75)—(77) will be subsequently neglected.

The coefficients Hﬁ) are defined as

Hkn f'szfZZ in szi?’ (84)

=n m=!

where the coefficients agf) can be written in terms of

thermodynamic integrals and are calculated via Gram-
Schmidt orthogonalization; for details see Ref. [22].

In preparation for a suitable truncation of the infinite set
of equations of motion for the irreducible moments, we
note that an irreducible moment of arbitrary order r and
tensor rank £ can always be expressed as a linear
combination of irreducible moments of all orders n and
the same tensor rank,
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Zp%nll Wf—rn—Zp”‘ He
Xzzam zm

i=n m=

r+m+2f 4
, 85
JZf 3 ( )

£

_—(2f+1)"/dKE_rH (Aaﬁkak/f)ffOk(l_afOk).

(86)

The first equality of Eq. (85) is proven using the orthogon-
ality (57) of the irreducible moments and their definition
(55). The second equality of Eq. (85) is shown using the
definitions of the auxiliary thermodynamic integrals (43)
and of the coefficients (84). Note that Eq. (85) is an identity
for 0 < r < N, while it is an approximation for r outside
this range, unless N, — oo. The accuracy of this approxi-
mation can be systematically improved by increasing N,. In
the remainder of this paper, however, we will restrict
ourselves to the so-called 14-moment approximation, i.e.,
we will assume Ny = 2, Ny = 1, and N, = 0 [22].

B. The Navier-Stokes approximation

Besides a suitable truncation of Egs. (75)—(77), we also
need a scheme to power count the various terms in these
equations, in order to define the order of the approximation
we are considering. We assume that quantities representing
deviations from local thermodynamical equilibrium, like
the irreducible moments, are of first order in some small
parameter. Furthermore, since macroscopic fields like
ay(x*), Po(x*), and u#(x*) vary on space-time scales that
are much larger than the microscopic scales contained in
the collision integral, we also assume that derivatives of
these fields are of first order in that small parameter.

In the Navier-Stokes approximation, all second-order
terms, i.e., terms involving products of irreducible
moments and derivatives of ag, 5, and u”, or derivatives
of irreducible moments are neglected, leaving only the
collision integrals [in linearized form; see Eq. (82)] on the
left-hand sides and the first terms as well as the last terms
involving the magnetic field on the right-hand sides of
Eqgs. (75)-(77). Bringing the latter ones to the left-hand side
results in the following set of equations:

No
ST AWp, =a, (87)
n=0,#1,2

N,

Z [ rn g;w + qB(fg )rn + alr](sn())byb]pn,u = a£’1>vﬂa()’
n=0,#1

(88)

N,
D (AR digh + aBF L, (Wt + Dyl = 207 o
n=0

(89)

In physical terms, it is assumed that the irreducible
moments no longer evolve in time and assume their
asymptotic solution given solely by the first-order terms
on the right-hand side, multiplied by the inverse of the
coefficient matrix on the left-hand side. The formal solution
of this set of equations is

= 0u,, (90)
P =KV, a, (91)
P =16, (92)

where the rank-two tensor coefficients can in general be
decomposed in terms of the projection operators E*, b* b,
as well as the tensor H** [10],

- CrJ_HIw CerﬂbU - é’rxb/w7 (93)

K = K B = K DD — Ky D (94)

while the rank-four tensor coefficient involves the projec-
tion operator A#al gnd products of A* B bHbY, as well
as b* (for more details, see Ref. [10]),

3 3
”;;yaﬂ _ 2’7r0praﬁ + 1 (A}w _ E:ﬂb> <Allﬁ — EEﬂﬁ)

— 21,2 (BFob¥ bP + EY*bHDP)

_ 2’7r3 (Euuby/}’ + Eyabuﬂ)

+ 2,4 (B**b* P + b**bHbP). (95)
The scalar transport coefficients .1, &y Crxs KrLs Kpfls Kpxs
1,0, M1 N2, M35 N4 are obtained by substituting Egs. (90)—
(92) into Eqgs. (87)—(89) and identifying the coefficients of
the corresponding tensor structures.

The bulk-viscosity coefficients (., ), (.« are then
determined by the following equations:

No
S ARG =a

n=0+#12

Ny 0
Z -Ag*n)(z:nj_ - CnH) =0
n=0,#1,2

Ny
S ARG =0, (96)
n=0,%#1,2
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and hence in the 14-moment approximation (N, = 2),

a

SoL = o = Cox = 0. (97)

rO

Note that, as long as the collision integral is assumed to be
independent of the magnetic field, only a tensor structure of
the type ~E — b*b¥ = A* survives in the bulk-viscosity
tensor (93). In general, however, this does not need to be
the case. An explicit example is given in Ref. [39] where
o1 and ¢y are calculated for a hot quark-gluon plasma in a
magnetic field, taking into account Landau quantization.

The transport coefficients «,, &,k are found by
inserting Eq. (91) into Eq. (88). This leads to the following
system of coupled equations:

Ny
S AWk + aBED, + ] =a.  (98)
n=0,#1

() (1)
Z Arn Kn| = Or

(99)
n=0,#1
N,
> [Ab ki —aB(F,, + ald,0)k,.] =0, (100)
n=0,#1

and hence, in the 14-moment approximation (N; = 1),

( )

]—" )r’ 0—1—0{? 21-1
K_KOH—F KoL =Ko |1+ qBA—(g)) ,

]:(1—) 0+ar
KOXIKOLqB$-
ArO

(101)

KoL < Ko|» 1.€., due to the cyclotron motion of the particles,
particle (or charge) diffusion transverse to the magnetic
field is reduced as compared to the diffusion parallel to the
magnetic field.

In the limit of a massless Boltzmann gas,

_ (n+1)!
an = Inq 2q+

cross section ¢ = const we obtain for r = 0 the following
expressions ao ﬂ0P0/12 alt = =1/hy = —py/4,

10 =2p,/3, and .,400 =4/(9mgp), Where Ay =
1/(nsyo) is the mean free path of the particles, and thus
the diffusion coefficients assume the values

where
1,, P3Py, and for a constant binary

Sﬂmfp nfo 48)“mfp }’lfo
Ko = ) KoL = 5 T hree2®
16 256 + 225&5
. 458 pAmtp o

_ , 102
K0 =956 + 2252 (102)

where &g = qBfoAnty = Amsp/Rr was defined in the
Introduction.

As expected, the longitudinal diffusion is solely given in
terms of the mean free path, since the magnetic field does
not affect the dynamics in the b* direction. On the other
hand, there is an interplay between the mean free path and
the thermal Larmor radius R for the transverse diffusion,
since the underlying particles not only collide but also
undergo cyclotron motion. The magnetic-field dependence
of these coefficients is shown in Fig. 1(a).

Let us consider the limiting case where the mean free
path is much larger than the thermal Larmor radius, i.e.,
g > 1. This can be achieved either for fixed B by
decreasing the temperature or density, such that the mean

One observes that, when B — 0, kox — 0, while free path increases, or by increasing the magnetic field B,
Ko| = KoL- Also in this case, the diffusion tensor  and thus decreasing the Larmor radius, for fixed density,
Kgy ~ A", as expected. Moreover, for any B #0, i.e., fixed mean free path. In this limit,
T T T L4 T T T
1.0 (a) — Kou/Ko| ] ' b e
—ees Kox /K| 1.2 . Noo/Mo
0.8 — .
1.0 Mot/ Mo_|
—-—- No2/Mo
0.6 — — 0.8 _
"""""" No3/ Mo
041 4 06 == Toa/Mo
0.2+ . . .
[ N DI 0.2 L&
0.0 I : _ Miiaiaieietebebels 0.0 2
0 5 10 15 20 20
Ep
FIG. 1. The magnetic-field dependence of the diffusion coefficients (a) and the shear-viscosity coefficients (b).
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- 3AmipT f0 o~ 16 Awmgp o
ol 16 =752
/lmfp Mgy N fOR T
b i LU Vel 103
Ko 5¢, 5 ( )

As expected, the Hall diffusion coefficient xy, assumes a
value which is independent of the mean free path. Note,
however, that we obtain a nonzero value for this quantity. The
unique relationship between the diffusion coefficient and the
electric conductivity (the Wiedemann-Franz law mentioned
above) then implies that the Hall conductivity is also nonzero.
This result is different from the vanishing value quoted in
Eq. (8.198) of Ref. [25], valid for a mixture of an ultra-
relativistic electron gas and a nonrelativistic ion gas.
Finally, inserting Eq. (92) into Eq. (89) leads to the
following set of equations for the shear-viscosity coefficients:

N,
13 2 2
> (Adno +49BFZ, ) = ar”,

(104)
n=0
AE 2 2
S (A0 —aBFY, o) =0, (105)
n=0
X 2 2 2
> (A = A ns — aBFY, nn) =0, (106)
n=0
A 2 2 2
S (AR +aBF Y, i —4aBF . 1,5) =0, (107)
n=0
Ny
3ADn — 16¢BFY nz) =0.  (108)

n=0

In the 14-moment approximation (N, = 0) the above set of
equations is solved by

2) \ 24-1
‘Fl—r.O
Moo = 1y |1 +4{ aB—7 , (109)
‘ArO
(2 \2
16 FiZ,
flor == (qB 1(2)’()) Noo- (110)
A
LT (og )T
Moz = 3<qB B ) {1 + <qB B > } noo.  (111)
A Ay
k0
Mo3 = B——= 100, (112)
A
) (2) (-1
FiZro FiZro

0

where 17, = ag) / A%) corresponds to the usual shear-viscos-
ity coefficient. As expected, when B — 0, only 7, remains
nonzero, such that n’é“”ﬂ ~ AMP as expected. Note that, for
B #0, the “standard” shear-viscosity coefficient 7, is
reduced as compared to its value for B = 0. This reduction
of viscosity is similar to the mechanism suggested in
Ref. [40], giving rise to the so-called “anomalous viscosity,”
although that work considered gluon instead of electromag-
netic fields.

In the limit of a massless Boltzmann gas and for a
constant cross section, we obtain for » = 0 the quantities

ay) = 4Py/5. Fiy = fo/5. and Ay =3/(Shyy). This
yields 17y = 44, Po/3 and

1225, Po 64 &3 Ay Po
Noo = o N1t = 5~ =

94 4£2 9 9+4&
Hos — 365 Ay Po s — 4L pAmipPo

U P+ag)o+g " 945
4L pAmipPo
— >B7mip” 0 114

Noa 91 5% ( )

The magnetic field dependence of these coefficients is
shown in Fig. 1(b). For a large ratio of mean free path to
thermal Larmor radius, &g > 1,

_1 ~9110 ~4
’700—3’702—453, '701—3’10,
1 Amfo P
mfp OEP()RT.

Noz = —~Moa =
4 ¢

In this limit, the last two viscosities, 793 and 7y4, become
independent of 4,,,. They appear purely due to the Lorentz
force (and are thus named Hall viscosities). The relation
Nos = Moa/4 holds also in the nonrelativistic case [41]. We
note that a similar study of the shear-viscosity coefficients
in the Navier-Stokes limit was recently performed in
Ref. [42], using the Boltzmann equation in the relaxation-
time approximation.

Finally, we remark that the effect of a magnetic field on
the shear viscosity of a strongly coupled N =4 super-
symmetric Yang-Mills plasma with a large number of
colors was studied in Ref. [11]. In this case, it was shown
that the ratio between 7, and the entropy density s does not
change with the magnetic field, #oy/s = 1/(4x), while the
ratio (1o + 702)/ s, considered in Ref. [11], was found to
be suppressed in strong magnetic fields. This illustrates
how the microscopic assumptions regarding the fluid, i.e.,
strong versus weak coupling, may alter its response to
magnetic fields.
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C. Second-order magnetohydrodynamical
equations of motion

We now derive the equations of motion for nonresistive,
second-order dissipative magnetohydrodynamics. In this
case, all terms in Egs. (75)—(77) are kept, but the irreducible
moments py'# with r# 0 are replaced using the 14-
moment approximation (Nyg =2, Ny =1, N, = 0) using
Eq. (85). With the definitions (62)—(65) we obtain

Ny .
Pr= Z pn]:(—r),'l
n=0,#1,2
__3 P30t Jri10G2 +Jri20D20 (115)
m§ JaDa+J30G 12 +J40D1g
Ny
J Jg—J J
. Z SFE) v r2.1 41D r3d3t g
n=0,#1 31
N, J
p/;l/ = Zp/;lbf(—zg.n = ”FVL‘LZ9 (117)

n=0 J42

while all higher-rank tensors (¢ > 2) are assumed to
vanish. The above formulas also hold for negative values
of r.

For r = 0 Eq. (75), together with Egs. (115)-(117), leads
to an equation of motion for the bulk viscous pressure
Tnﬂ + H = —{9 - fnvvﬂvl; - Tnvv?l:lﬂ - 5HHH9

- /1HV V?vﬂ(l() + ﬂnﬂﬂ”y(fﬂy. (1 18)

Similarly, taking » = 0 we obtain a relaxation equation for
the particle diffusion current from Eq. (76)
TVV;‘”> + V"; = Kvﬂao - TVVf’,,a)”” - 5vvv;9 - fvnvﬂn
+ v AN A Tyl — 7y,
— lvaf’DG”y + lVHHV'“aO - lvﬂﬂ'ﬂyvyao
- 5VBquMDVf"y. (1 19)
The relaxation equation of the shear-stress tensor follows
from Eq. (77) for r =0,
1,7 g = Dot 4 27,,n'/<1” V't — 8, "0
- 1',,,,71’1("01/{> + A nlle?”
- Tﬂvv}ﬂl:ib> + f,,VVO‘V;)
+ A”VV}”V”(ZO - 5”BquaﬁAng/w7[’d.
(120)

The coefficients of the terms without explicit dependence
on the magnetic field are given in Appendix C of Ref. [22]

(note that n* <> V% and the index n <> V). In deriving

these equations of motion only the linear contributions
arising from the collision integrals were retained. We
remark that, given our assumptions, the omitted nonlinear
terms display no dependence on the magnetic field and
were already calculated in Ref. [43].

To the best of our knowledge, Eqs. (118)—(120) provide
the first formulation of nonresistive, second-order dissipa-
tive magnetohydrodynamics that can be causal and linearly
stable around equilibrium, in contrast to the Navier-Stokes
approximation derived in Sec. IV B. As such, this new
system of equations is suitable to investigate the effects of
magnetic fields on relativistic dissipative fluid dynamics,
e.g., in heavy-ion collisions.

The coefficient of the term involving the magnetic field
in Eq. (119) is

(1) h

Fig +a
Byp = 1 (121)
AOO

while the corresponding coefficient in Eq. (120) is

3
57[3 — 2 W .
‘AOO

(122)

In the limit of a massless Boltzmann gas with constant
cross section, afi = —f,/4, .7-'5})) =2B,/3, .7-'%) = Bo/5,
Al = 4/(9gp), and A = 3/(5An), such that

2

Oz = gﬂO’lmfp- (123)

15
Oyp = 1_6ﬂ0j'mfp7

Let us finally comment on the first-order Navier-Stokes
limit of the second-order equations (118)—(120). Note that
the first terms on the right-hand sides, proportional to the
standard bulk and shear viscosity as well as particle-
diffusion coefficients, are actually independent of the
magnetic field. But these are not the only first-order terms
in these equations: without an assumption about the
magnitude of the magnetic field, the last terms in
Egs. (119), (120) are also formally of first order in a small
quantity (V¢, or 7, respectively). As demonstrated in
Sec. IV B, these terms are to be combined with the first-
order terms on the left-hand side and, after inversion of the
respective coefficient matrices, then lead to the various new
anisotropic transport coefficients discussed above.

On the other hand, when solving the second-order
equations (119) and (120), one does not need to replace
the standard viscosity and particle-diffusion coefficients
with the new anisotropic transport coefficients found in
Sec. IV B, because the effect of the magnetic field is
already taken into account by the terms ~B in these
equations.
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V. CONCLUSIONS AND OUTLOOK

We have derived, for the first time, the equations of
motion for nonresistive, second-order dissipative magneto-
hydrodynamics from the Boltzmann equation. The deriva-
tion is based on the moment expansion of the Boltzmann
equation coupled to a magnetic field for a single-
component gas of particles without dipole moment or spin.
The magnetohydrodynamical equations of motion were
obtained in the 14-moment approximation. This is essen-
tially a generalization of Israel-Stewart fluid dynamics to
the case of a nonvanishing magnetic field. Despite our
simplifying assumptions, the results exhibit the basic
structure of second-order dissipative magnetohydrodynam-
ics, in particular how the magnetic field couples to the
dynamical evolution of the dissipative quantities. In par-
ticular, we note that within our approximations the form of
the equations remains close to that of Israel-Stewart theory,
with additional terms that couple the fluid to the magnetic
field. As such, the new set of second-order dissipative
magnetohydrodynamical equations derived here allows one
to investigate the effects of magnetic fields in relativistic
dissipative fluids in a causal and linearly stable manner.
Moreover, we have shown how the first-order transport
coefficients split into several components, recovering the
results of Refs. [10,13], with the notable difference that
there is only one bulk-viscosity coefficient in our approxi-
mation. The reason for this is our assumption that the
collision integral is independent of the magnetic field.

There are many possible directions for future work.
(i) The 14-moment approximation gives only an estimate
for the values of the transport coefficients. Improved values
can be obtained by resumming higher orders in N, in the
moment expansion, as demonstrated in Ref. [22].
(i1) Resistive, second-order dissipative magnetohydrody-
namics is obtained by keeping the electric field £# in the
equations of motion. (iii) An extension to spin degrees of
freedom allows to include effects of polarization and
magnetization [28]. (iv) A relativistic treatment requires
to take into account antiparticles with opposite electric
charge. These and further questions will be addressed in
future work.
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APPENDIX

Our conventions for the rank-four Levi-Civita tensor
e are as follows. We take €°'>* = +1, which implies

et — —€uqp- We also have the relations

eﬂaﬁyeuapa = 55 (5‘(5;5% - 5535%) + %(555% - 51‘57511:)

+ 55(3p8% — 8L8}), (A1)
and
P p = 2(5,8L — 8kSY). (A2)

In flat Minkowski space, all Kronecker deltas can be
replaced by the mixed contra- and covariant metric tensor,

e.g., oy =g
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