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We derive the equations of motion of relativistic, nonresistive, second-order dissipative magnetohy-
drodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be
composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has
vanishing magnetization and polarization. In a first approximation, we assume the fluid to be nonresistive,
which allows to express the electric field in terms of the magnetic field. We derive equations of motion for
the irreducible moments of the deviation of the single-particle distribution function from local
thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing
previous results for the structure of the first-order transport coefficients. Finally, we truncate the system
of equations for the irreducible moments using the 14-moment approximation, deriving the equations of
motion of relativistic, nonresistive, second-order dissipative magnetohydrodynamics. We also give
expressions for the new transport coefficients appearing due to the coupling of the magnetic field to
the dissipative quantities.

DOI: 10.1103/PhysRevD.98.076009

I. INTRODUCTION

The success of relativistic fluid dynamics in describing
the evolution of high-energy heavy-ion collisions [1] and the
existence of very large magnetic fields in these collisions
[2–5] has generated a lot of interest in observing the effects
of the magnetic field on the fluid-dynamical evolution in
these systems. The generic framework that couples the
electromagnetic field to the dynamics of a fluid is referred to
as magnetohydrodynamics [6,7]. There are several works
where the effect of electromagnetic fields on the dynamics of
heavy-ion collisions have been studied (for a review, see
Ref. [8] and references therein), but so far they have been
mostly based on the nonresistive, nondissipative formu-
lation of relativistic magnetohydrodynamics. However,
dissipation plays an important role in understanding the

dynamics of heavy-ion collisions and in particular in
explaining the magnitude of the observed collective flow
(for a review, see Ref. [1] and references therein). Thus, it is
essential to develop a relativistic formulation of dissipative
magnetohydrodynamics.
In principle, the most simple dissipative fluid-dynamical

theory is a relativistic generalization of Navier-Stokes
theory, where the dissipative quantities, bulk viscous
pressure, diffusion currents, and shear-stress tensor, are
proportional to the gradients of the flow field and of
thermodynamical quantities. In the absence of a magnetic
field, the constants of proportionality are three scalar trans-
port coefficients: the bulk viscosity, diffusion constant, and
shear viscosity. A magnetic field breaks the isotropy of
space, introducing several new transport coefficients [9–13],
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which assume different values in the direction of the
magnetic field and in the direction orthogonal to it. The
relativistic generalization of Navier-Stokes theory is, how-
ever, known to be acausal [14] and, at least, linearly
unstable [15–17], rendering it ill-suited for practical use.
Without the magnetic field, these problems were cured by
the causal and stable “second-order” formalism of Israel and
Stewart [18–20]. Israel-Stewart theory can be derived by
starting from the relativistic Boltzmann equation employing
the so-called 14-moment approximation [19,20], and the
success of fluid dynamics in describing the dynamics of
heavy-ion collisions is based on this formalism.
In this paper, we follow the same line of reasoning as

Israel and Stewart, and derive a relativistic causal theory of
second-order dissipative magnetohydrodynamics from the
relativistic Boltzmann equation coupled to an electromag-
netic field. As in the original formulation by Israel and
Stewart, we restrict ourselves to a single-component system
of spinless particles undergoing binary elastic collisions and
use the 14-moment approximation in the framework devel-
oped in Refs. [21–23]. In a first step, we assume the fluid to
have infinite electric conductivity (or zero resistivity),
which allows to replace the electric field by the magnetic
field and considerably simplifies the equations of motion.
We remark that the assumption of infinite electric conduc-
tivity is an idealization which is hard (if not impossible) to
realize in systemswhosemicroscopic dynamics is described
by the Boltzmann equation: the electric conductivity is a
transport coefficient which is proportional to the mean free
path of the particles, such as all other transport coefficients
appearing in dissipative fluid dynamics, and thus should be
of the same order of magnitude as the latter. Nevertheless, as
nonresistivemagnetohydrodynamics is a theory which finds
widespread applications, we decided to first discuss the
simpler case of a nonresistive (albeit dissipative) fluid. The
generalization towards systems with finite conductivity will
be addressed in a subsequent paper.
Let us add a few remarks on the length scales entering

our discussion. (i) The Boltzmann equation is derived
under the assumption that the collision term in this equation
is local, implying that the mean free path λmfp between
collisions is much larger than the typical interaction lengthffiffiffiffiffiffiffiffi
σ=π

p
, where σ is the binary-collision cross section.

(ii) The magnetic field leads to cyclotron motion of the
charged particles. The curvature of the particle trajectories
is given by the inverse Larmor radius R−1

L ¼ qB=k⊥, where
q is the electric charge of the particles and k⊥ is the
momentum of the particle transverse to the direction of the
magnetic induction field B, which has magnitude B ¼ jBj
(in the following the magnetic induction field is in a
simplifying, but somewhat incorrect, manner referred to
as “magnetic field”). In our discussion we will assume that
the magnetic field is sufficiently weak so that we can
neglect the Landau quantization of the cyclotron motion.
This implies that the thermal energy ∼T, where T is the

temperature, is much larger than the cyclotron frequency
∼

ffiffiffiffiffiffiffi
qB

p
. In other words, the thermal wavelength β0≡

1=T ≪ RT , where RT ≡ ðqBβ0Þ−1 is the Larmor radius
of a particle with transverse momentum k⊥ ¼ T. In the
following, we refer to RT as the “thermal Larmor radius.”
Note that this condition does not necessarily imply that the
magnetic field is weak in absolute magnitude; it only
requires that the temperature of the system is sufficiently
large, such that T2 ≫ qB. While our discussion is valid
when λmfp ≫

ffiffiffiffiffiffiffiffi
σ=π

p
and RT ≫ β0, there is a priori no

constraint on the ratio ξB ≡ λmfp=RT ¼ qBβ0λmfp [24], as
long as the first two inequalities are fulfilled.
This paper is organized as follows. In Sec. IIwe review the

structure of the equations of motion of magnetohydrody-
namics, i.e., the evolution equations for energy and momen-
tum coupled toMaxwell’s equations for the electromagnetic
fields. In Sec. III we present the magnetohydrodynamic
equations of motion for the nonresistive, nondissipative
fluid. In Sec. IVA we recall the method of moments and
derive the equations of motion for the moments of the
deviation of the single-particle distribution function from
local thermodynamical equilibrium in the presence of a
magnetic field. In Sec. IV Bwe show how theNavier-Stokes
limit arises from themoment expansion. Finally, in Sec. IV C
we derive the main result of this paper: the equations of
motion for nonresistive, second-order dissipative magneto-
hydrodynamics. Section V concludes this work with a
summary of the results and an outlook to future work.
We adopt natural Heaviside-Lorentz units, ℏ ¼ c ¼ ϵ0 ¼

μ0 ¼ kB ¼ 1. Our convention for the metric tensor is
gμν ¼ diagð1;−1;−1;−1Þ. The fluid four-velocity is
uμðt;xÞ ¼ γð1; vÞT , with γ ¼ ð1 − v2Þ−1=2, leading to the
normalization uμuμ ≡ 1. In the local rest (LR) frame of the
fluid, uμLR ¼ ð1; 0ÞT . The four-momentum kμ of particles is
normalized to their rest mass m0, kμkμ ¼ m2

0. The rank-two
projection operator onto the three-space orthogonal to uμ is
Δμν ¼ gμν − uμuν. For a four-vector Aμ, we define its
projection onto the three-dimensional subspace orthogonal
to uμ as Ahμi ≡ Δμ

νAν. The rank-four projection operator is
defined as Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ, which is

symmetric and traceless. For a rank-two tensor, we define
the symmetric, traceless projection onto the three-space
orthogonal to uμ as Ahμνi ≡ Δμν

αβA
αβ. Our convention and

useful relations for the rank-four Levi-Civita tensor ϵμναβ

are given in the Appendix.

II. EQUATIONS OF MOTION OF
MAGNETOHYDRODYNAMICS

A. Maxwell’s equations and energy-momentum
tensor of the electromagnetic field

In a relativistically covariant formulation of electrody-
namics, the electric field vector E and the magnetic field
vector B constitute the components of the Faraday tensor
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Fμν. The latter is an antisymmetric (and hence traceless)
rank-two tensor (and thus has six independent components,
corresponding to the six components of E and B). Without
loss of generality it can be decomposed with respect to the
fluid velocity as [25,26]

Fμν ≡ Eμuν − Eνuμ þ ϵμναβuαBβ; ð1Þ

while its Hodge dual is

F̃μν ≡ 1

2
ϵμναβFαβ ¼ Bμuν − Bνuμ − ϵμναβuαEβ: ð2Þ

Here we defined the electric field four-vector Eμ ≡ Fμνuν
and the magnetic field four-vector Bμ ≡ F̃μνuν ¼
1
2
ϵμναβFαβuν. Using the antisymmetry of the Faraday tensor

and the rank-four Levi-Civita tensor, one readily realizes
that Eμ and Bμ are orthogonal to the fluid velocity, Eμuμ¼0

and Bμuμ ¼ 0. Moreover, in the local rest frame of the
fluid, they coincide with the usual electric and magnetic
fields, i.e., Eμ

LR ¼ ð0;EÞT and Bμ
LR ¼ ð0;BÞT , with Ei ¼

Fi0 and Bi ¼ − 1
2
ϵijkFjk. The electric field is a polar vector,

while the magnetic field is an axial vector dual to Fjk.
The evolution of the electric and magnetic fields are

given by Maxwell’s equations,

∂μFμν ¼ Jν; ð3Þ

∂μF̃μν ¼ 0; ð4Þ

where the electric charge four-current Jν serves as source
for the electromagnetic field. It can be tensor-decomposed
with respect to the fluid velocity [26,27],

Jμ ¼ nuμ þVμ; ð5Þ

where n ¼ uμJμ is the charge density in the local rest
frame of the fluid and Vμ ≡ Δμ

νJν is the charge diffusion
four-current. The solution of Eqs. (3) and (4) determines the
electromagnetic fields as functionals of Jμ.
For nonpolarizable, nonmagnetizable fluids the electro-

magnetic stress-energy tensor is given by [25,28]

Tμν
em ¼ −FμλFν

λ þ
1

4
gμνFαβFαβ: ð6Þ

Using Maxwell’s equations (3) and (4) one can show that

∂μT
μν
em ¼ −FνλJλ: ð7Þ

B. Particle four-current and energy-momentum
tensor of the fluid

For particles without a microscopic dipole moment or
spin the canonical momentum coincides with the kinetic

momentum [28]. Then, the particle four-current and
energy-momentum tensor of the fluid are simply given by

Nμ
f ≡ hkμi; ð8Þ

Tμν
f ≡ hkμkνi: ð9Þ

Here,

h� � �i≡
Z

dK � � � fk; ð10Þ

with fk being the single-particle distribution function and
dK ≡ gd3k=½ð2πÞ3k0� being the Lorentz-invariant measure
in momentum space, where g is the degeneracy factor due
to internal degrees of freedom (note, however, that the spin
degeneracy is 2J þ 1 ¼ 1, since we consider spin-zero
particles), and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
is the on-shell energy.

The particle four-current and the energy-momentum
tensor can be tensor-decomposed with respect to the fluid
velocity,

Nμ
f ¼ nfuμ þ Vμ

f; ð11Þ

Tμν
f ¼ εuμuν − PΔμν þWμuν þWνuμ þ πμν; ð12Þ

where the particle density nf, the energy density ε, and the
isotropic pressure P are defined as

nf ≡ Nμ
fuμ ¼ hEki; ð13Þ

ε≡ Tμν
f uμuν ¼ hE2

ki; ð14Þ

P≡ −
1

3
Tμν
f Δμν ¼ −

1

3
hΔμνkμkνi; ð15Þ

with Ek ¼ kμuμ being the energy of a particle in the local
rest frame of the fluid. The particle and energy-momentum
diffusion currents orthogonal to the flow velocity are

Vμ
f ≡ Δμ

νNν
f ¼ hkhμii; ð16Þ

Wμ ≡ Δμ
αT

αβ
f uβ ¼ hEkkhμii; ð17Þ

respectively, while the shear-stress tensor is

πμν ≡ Δμν
αβT

αβ
f ¼ hkhμkνii: ð18Þ

For a single-component fluid, the electric charge and
particle four-currents are related by

Jμ
f ≡ qNμ

f ¼ nfuμ þVμ
f; ð19Þ

where nf ≡ uνJν
f ≡ quνNν

f ¼ qnf is the charge density in
the local rest frame and Vμ

f ≡ Δμ
νJν

f ≡ qΔμ
νNν

f ¼ qVμ
f is
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the charge diffusion current. To leading order, the charge
diffusion current is equal to the Ohmic induction cur-
rent, qVμ

f ≃ Jμ
ind ¼ σEEμ.

The components of Jμ
f and T

μν
f contain 14 unknowns, or

equivalently, for a given four-vector field uμ the three scalar
quantities nf; ε; P, the two times three (equals six) inde-
pendent components of Vμ

f and Wμ, and the five indepen-
dent components of πμν. If the fluid velocity is a dynamical
quantity, this would add another three unknowns (the three
independent components of uμ). However, the fluid veloc-
ity can be chosen to be proportional to the charge four-
current, which eliminates the charge diffusion current Vμ

f

(the so-called Eckart frame [29]), or to be proportional to
the flow of energy, which eliminates the energy-momentum
diffusion current Wμ (the so-called Landau frame [30]).
Let us assume that the only charge current in the system

is that of the fluid, Jμ ≡ Jμ
f. If we project Maxwell’s

equation (3) onto uν and use Eqs. (1) and (5), we obtain,

∇μEμ þ 2ωμBμ ¼ nf; ð20Þ

where we introduced the three-space gradient ∇μ ≡ Δα
μ∂α

and the vorticity four-vector

ωμ ¼ 1

2
ϵμναβuν∂αuβ: ð21Þ

In the following, we want to consider the nonresistive limit,
i.e., the electric conductivity σE → ∞. In this limit, the
Ohmic conduction current Jμ

ind would diverge, unless we
demand that Eμ ¼ 0, or E ¼ −v ×B, so that Jμ

ind ≃Vμ
f

remains finite. However, if Eμ ¼ 0, we observe that the
charge density of the fluid (and thus, for our single-
component system, the particle density of the fluid)
assumes a value which is uniquely determined by the
scalar product of the magnetic field four-vector and the
fluid vorticity, nf ¼ qnf ¼ 2ωμBμ,1 and is no longer an
independent variable. Projecting Eq. (3) with Δα

ν , similar
arguments apply to the charge diffusion currentVν

f ¼ qVν
f.

On the other hand, in dissipative fluid dynamics nf and
Vν
f are traditionally considered as four (out of 14) inde-

pendent variables. In order to maintain this feature, we
introduce an external current, Jμ

ext, such that the total
charge current (5) reads

Jμ ¼ Jμ
ext þ Jμ

f: ð22Þ

Then, nf and Vν
f become independent variables to be

determined by the equations of motion for the fluid. In this
case, our derivation of dissipative magnetohydrodynamics
can be formulated in close analogy to the one of ordinary
dissipative fluid dynamics for single-component systems.
Note that the introduction of an external current does not
affect our argument that Eμ must vanish in the limit of
infinite conductivity.

C. Equations of motion of magnetohydrodynamics

The total energy-momentum tensor of the system is

Tμν ¼ Tμν
em þ Tμν

f : ð23Þ

Note that the separation of Tμν into Tμν
em and Tμν

f is not
unique in the case of polarizable, magnetizable fluids [28].
This problem is absent here, as we consider a nonpolar-
izable, nonmagnetizable fluid.
While the charge current of the fluid is conserved,

∂μJ
μ
f ¼ 0; ð24Þ

the total energy and momentum of the system are not, as the
external charge current induces electromagnetic fields and
thus feeds energy and momentum into the system. In
analogy to Eq. (7) we have

∂μTμν ¼ −FνλJext;λ: ð25Þ

With Eq. (22), Eq. (7) reads

∂μT
μν
em ¼ −FνλðJext;λ þ Jf;λÞ; ð26Þ

and with Eq. (23) we can derive from Eq. (25) an equation
of motion for the energy-momentum tensor of the fluid,

∂μT
μν
f ¼ FνλJf;λ: ð27Þ

Equations (24), (26), and (27) constitute the equations of
motion of magnetohydrodynamics. While the energy and
momentum of the electromagnetic fields change on account
of the external charge current as well as the internal charge
current of the particles in the fluid, Eq. (26), the energy and
momentum of the fluid change only on account of the
Lorentz force exerted on the charged particles within the
fluid by the electromagnetic fields, Eq. (27). In general,
neither energy and momentum of the electromagnetic fields
nor that of the fluid are conserved separately. The total
energy and momentum are only conserved in the absence of
an external charge current, Jext;λ ¼ 0, so that Eq. (25)
becomes ∂μTμν ¼ 0.

1Amusingly, the corresponding term is of the same structure as
the spin-vorticity coupling term discussed in Ref. [31], but the
coefficient assumes a different value, since in that case it is
determined by spin-1=2 fermions in the lowest Landau level,
while here we deal with spinless particles and neglect Landau
quantization.
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III. NONRESISTIVE, NONDISSIPATIVE
MAGNETOHYDRODYNAMICS

A. Assumption of nonresistivity

The charge four-current induced by an electric field is
Jμ

ind ¼ σEEμ. Awidely used approximation in applications
of magnetohydrodynamics is the assumption that the
fluid is nonresistive, i.e., ideally conducting, such that
σE → ∞. Then, as already stated, in order to have a finite
induced charge current Jμ

ind one has to demand Eμ → 0.
From this condition it follows that, in an arbitrary frame,
E ¼ −v ×B, such that the electric field can be eliminated
from the equations of motion.
An ideally conducting fluid implies an infinite mean free

path of charged particles, i.e., the free-streaming limit.
However, in this paper we aim at deriving dissipative
magnetohydrodynamics from an expansion around local
thermodynamical equilibrium, which corresponds to the
opposite limit of a vanishing mean free path. All transport
coefficients appearing in the equations of motion are
proportional to the mean free path of particles, which is
assumed to be much smaller than the typical length scale
over which fluid-dynamical quantities vary. In order to be
consistent, the electric conductivity must be of the same
order as the other transport coefficients (in fact, the famous
Wiedemann-Franz law provides a unique relationship
between the conductivity and the particle diffusion con-
stant), and in principle we do not have the freedom to send
it to infinity. In the case of a finite σE, we are in turn forced
to consider a nonvanishing Eμ. Nevertheless, since non-
resistive magnetohydrodynamics is a theory which is
widely applied to physical systems, we decided to separate
the discussion by first treating the somewhat simpler case
Eμ ¼ 0 (corresponding to a nonresistive fluid), which is the
subject of the present work, and then embarking on a
treatment of the more complicated case Eμ ≠ 0, which will
be the focus of a follow-up to this paper.
For Eμ ¼ 0, the Faraday tensor (1) and its Hodge dual (2)

simplify to

Fμν → Bμν ¼ ϵμναβuαBβ; ð28Þ

F̃μν → B̃μν ¼ Bμuν − Bνuμ; ð29Þ

while Maxwell’s equations (3) and (4) reduce with
Eq. (22) to

ϵμναβðuα∂μBβ þ Bβ∂μuαÞ ¼ Jν
ext þ Jν

f; ð30Þ

_Bμ þ Bμθ ¼ uμ∂νBν þ Bν∇νuμ; ð31Þ

where _A≡ uμ∂μA is the comoving derivative of any
quantity A and θ≡ ∂μuμ is the expansion scalar.
The energy-momentum tensor of the electromagnetic

field becomes

Tμν
em → Tμν

B ¼ B2

2
ðuμuν − Δμν − 2bμbνÞ; ð32Þ

where we introduced B2 ≡ −BμBμ and

bμ ≡ Bμ

B
; ð33Þ

which is orthogonal to uμ, bμuμ ¼ 0, and normalized
to bμbμ ¼ −1.
For systems with a spatial anisotropy, as for instance

induced by a magnetic field [10,13,32,33], but not neces-
sarily restricted to this case [34] (for a review see Ref. [35]
and references therein), it is convenient to introduce a rank-
two operator projecting onto the two-dimensional subspace
orthogonal to both uμ and bμ,

Ξμν ≡ gμν − uμuν þ bμbν ¼ Δμν þ bμbν: ð34Þ

Furthermore, since BμνBμν ¼ 2B2 it makes sense to intro-
duce a new dimensionless antisymmetric tensor

bμν ≡ −
Bμν

B
¼ −ϵμναβuαbβ: ð35Þ

Obviously, bμνuν ¼ bμνbν ¼ 0, while Eq. (A2) yields
bμνbμν ≡ −2bμbμ ¼ 2. Moreover, with the help of
Eq. (A1) one can show that

bμαbνα ¼ Ξμ
ν : ð36Þ

B. Consequences for energy and momentum
evolution of the fluid

Already at this point we can draw conclusions from the
assumption of nonresistivity for the equations of motion of
magnetohydrodynamics. Projecting Eqs. (26) and (27) onto
the direction of uν leads to

uν∂μT
μν
B ¼ BuνbνλðJext;λ þ Jf;λÞ ¼ 0; ð37Þ

uν∂μT
μν
f ¼ −BuνbνλJf;λ ¼ 0; ð38Þ

because of uνbνλ ¼ 0. The latter equation means that a
magnetic field does not change the fluid energy, which is
therefore separately conserved. This is easily understood
since a magnetic field (contrary to an electric field) only
changes the direction of the momenta of the particle, but
not their energy. On the other hand, projecting Eqs. (26)
and (27) onto the three-space orthogonal to uν we have

Δα
ν∂μT

μν
B ¼

�
B2 _uα −∇α

�
B2

2

�
− Δα

ν∂μðB2bμbνÞ
�

¼ BbαλðVext;λ þVf;λÞ; ð39Þ
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Δα
ν∂μT

μν
f ¼ −BbαλVf;λ; ð40Þ

where we employed Eq. (26) with Eq. (32) to obtain the
first equation. For both equations we used the decom-
position (5) [see also Eq. (19)], and employed the ortho-
gonality bαλuλ ¼ 0.
The interpretation of Eq. (40) is that the momentum of

the fluid changes on account of the interaction of the
magnetic field with the charge diffusion current. Note that
the magnetic field influences the dynamics of the fluid only
by coupling to the dissipative part of the charge current.
Without dissipation, the dynamics of the fluid is unaffected
by the magnetic field; see Eq. (51) below.

C. Equations of motion of nonresistive, nondissipative
magnetohydrodynamics

The equations of motion of nonresistive, nondissipative
magnetohydrodynamics are obtained under the assumption
that the fluid is in local thermodynamical equilibrium
everywhere in space-time. In the case of dilute gases this
assumption implies that the single-particle distribution
function assumes the form [36]

fk → f0k ¼ ½exp ðβ0Ek − α0Þ þ a�−1; ð41Þ

with α0 ¼ μβ0, where μ is the chemical potential associated
with the particle density n0, and a ¼ �1 for fermions/
bosons, while a → 0 for classical particles. Since we
assumed that we can neglect the Landau quantization of
single-particle energy eigenstates (see the Introduction), the
distribution function is isotropic in the local frame,
Ek;LR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
. Local equilibrium means that the

quantities α0, β0, as well as the fluid velocity uμ are
functions of the space-time variable xμ. Since f0k depends
solely on these five independent variables, and since Nμ

f

and Tμν
f computed from Eqs. (8) and (9) with f0k replacing

fk then also depend only on these five variables, the
equations of motion of magnetohydrodynamics are closed.
In the following, we need the thermodynamic integrals

Inqðα0;β0Þ¼
ð−1Þq

ð2qþ1Þ!!hE
n−2q
k ðΔαβkαkβÞqi0; ð42Þ

where h� � �i0 ≡
R
dK � � � f0k is defined in analogy to

Eq. (10). Similarly, the auxiliary thermodynamic integrals
are

Jnq≡
�∂Inq
∂α0

�
β0

¼ ð−1Þq
ð2qþ1Þ!!hE

n−2q
k ðΔαβkαkβÞqð1−af0kÞi0:

ð43Þ

Since ð∂Inq∂β0 Þα0 ¼ −Jnþ1;q, the total derivative is

dInqðα0;β0Þ≡∂Inq
∂α0 dα0þ

∂Inq
∂β0 dβ0¼Jnqdα0−Jnþ1;qdβ0:

ð44Þ

Using the equilibrium distribution function in Eqs. (8)
and (9) we obtain the conserved quantities in the form for a
nondissipative fluid,

Nμ
f0 ≡ hkμi0 ¼ nf0uμ; ð45Þ

Tμν
f0 ≡ hkμkνi0 ¼ ε0uμuν − P0Δμν; ð46Þ

where

nf0 ≡ Nμ
f0uμ ¼ I10; ð47Þ

ε0 ≡ Tμν
f0uμuν ¼ I20; ð48Þ

P0 ≡ −
1

3
Tμν
f0Δμν ¼ I21: ð49Þ

Therefore, the total energy-momentum tensor of a non-
resistive, nondissipative fluid reads

Tμν
f0þB ≡ Tμν

f0 þ Tμν
B

¼
�
ε0 þ

B2

2

�
uμuν −

�
P0 þ

B2

2

�
Δμν − B2bμbν:

ð50Þ

An immediate consequence of the assumptions of non-
resistivity as well as nondissipativity is that the energy and
momentum of the fluid are separately conserved,

∂μT
μν
f0 ¼ 0: ð51Þ

This follows immediately from Eq. (27), since FνλJλ →
−Bbνλnuλ ¼ 0, but it also follows from Eqs. (38) and
(40), since Vf;λ ≡ 0 for a nondissipative fluid. The energy
of the magnetic field is conserved on account of Eq. (37),
but the momentum is only conserved when Vext;λ ¼ 0,
cf. Eq. (39).

IV. NONRESISTIVE, DISSIPATIVE
MAGNETOHYDRODYNAMICS

In this section, we derive the equations of motion of
nonresistive, dissipative magnetohydrodynamics for a
fluid consisting of a single type of point-like particles
without dipole moment or spin. We also assume that the
particles undergo binary elastic collisions only. Starting
from the Boltzmann equation in the presence of an
external electromagnetic field, we first derive the (infinite)
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set of equations of motion for the irreducible moments of
the deviation

δfk ≡ fk − f0k ð52Þ

of the single-particle distribution function from isotropic
local thermodynamical equilibrium. Then we truncate this
set using the 14-moment approximation. Our treatment
follows closely that of Refs. [22,23], extending the latter
by terms arising from the magnetic field. Note that our
assumption β0 ≪ RT (see the Introduction) allows us to
neglect Landau quantization; otherwise f0k would be
anisotropic. In principle, however, this case can be
discussed using the formalism presented in Ref. [34].
An anisotropy also emerges when using a f0k which is a
solution of the Vlasov equation [32,33], or an anisotropic
distribution function parametrizing deviations from local
equilibrium [37].

A. Equations of motion for the irreducible moments

The relativistic Boltzmann equation coupled to an
electromagnetic field [25,38] is

kμ∂μfk þ qFμνkν
∂
∂kμ fk ¼ C½f�: ð53Þ

Here the assumption is that the electromagnetic field Fμν

changes the momenta kμ of particles carrying charge q on
large space-time scales ∼RT , while the collision term, being
a quantity which is local in space-time, redistributes them
on small space-time scales ∼

ffiffiffiffiffiffiffiffi
σ=π

p
. We remark that if the

particles carry a dipole moment or spin, there would be an
additional term on the left-hand side [28]. Note that for
Eq. (53) it does not matter whether the electromagnetic
field is generated exclusively via the charge current of the
particles, Jν

f as source term in the inhomogeneous Maxwell
equations, or exclusively via an external charge current
Jν

ext, or by a combination of both. However, on account of
our remarks made at the end of Sec. II B, only the case of a
nonvanishing external charge current allows to treat the
particle current Nμ

f as an independent fluid-dynamical
variable.
Under the assumption that the particles undergo binary

elastic collisions only, the collision term reads

C½f� ¼ 1

2

Z
dK0dPdP0½Wpp0→kk0fpfp0 ð1 − afkÞð1 − afk0 Þ

−Wkk0→pp0fkfk0 ð1 − afpÞð1 − afp0 Þ�; ð54Þ

where the factors 1 − af represent the corrections from
quantum statistics. The invariant transition rate Wkk0→pp0

satisfies detailed balance, Wkk0→pp0 ¼ Wpp0→kk0 , and is
symmetric with respect to the exchange of momenta,
Wkk0→pp0 ¼ Wk0k→pp0 ¼ Wkk0→p0p.

Following Refs. [22,23] we define the irreducible
moments of δfk as2

ρμ1���μnr ≡ hEr
kk

hμ1 � � � kμniiδ; ð55Þ

where h� � �iδ ¼
R
dK � � � δfk. Here, the irreducible tensor

of rank l is defined as

khμ1 � � � kμli ¼ Δμ1���μl
ν1���νl k

ν1 � � � kνl ; ð56Þ

where the rank-2l symmetric and traceless projection
tensor Δμ1���μl

ν1���νl is a straightforward generalization of the
rank-four projection tensor Δμν

αβ introduced above (for more
details on how to construct the former, see Refs. [34,38]).
The irreducible tensors 1; khμi; khμkνi; khμkνkλi;… form a
complete basis in momentum space and satisfy the follow-
ing orthogonality condition:

Z
dKFðEkÞkhμ1 � � � kμlikhν1 � � � kνni

¼ l!δln
ð2lþ 1Þ!!Δ

μ1���μl
ν1���νl

Z
dKFðEkÞ ðΔαβkαkβÞl; ð57Þ

where FðEkÞ is a sufficiently rapidly converging (but
otherwise arbitrary) function of Ek.
The deviations of the particle four-current and the fluid

energy-momentum tensor from their local equilibrium
values Nμ

f0, T
μν
f0 are

δNμ
f ≡ hkμiδ ¼ δnfuμ þ Vμ

f; ð58Þ

δTμν
f ≡ hkμkνiδ ¼ δεuμuν − ΠΔμν þWμuν þWνuμ þ πμν;

ð59Þ

where the corrections to particle density, energy density,
and isotropic pressure are

δnf ≡ δNμ
fuμ ¼ ρ1; ð60Þ

δε≡ δTμν
f uμuν ¼ ρ2; ð61Þ

Π≡ −
1

3
δTμν

f Δμν ¼ −
m2

0

3
ρ0 þ

ρ2
3
: ð62Þ

2A tensor is called irreducible when it is irreducible under a
group G consisting of Lorentz transformations that leave uμ
invariant. Let F be a subgroup of G consisting of Lorentz
transformations that leave both uμ and bμ invariant. An irreduc-
ible tensor under G may be reducible under F. This reduction of
symmetry leads to a larger number of transport coefficients in
dissipative magnetohydrodynamics than in ordinary dissipative
fluid dynamics; see Sec. IV B.
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The particle and energy-momentum diffusion currents
orthogonal to the fluid velocity are

Vμ
f ≡ Δμ

νδNν
f ¼ ρμ0; ð63Þ

Wμ ≡ Δμ
αδT

αβ
f uβ ¼ ρμ1; ð64Þ

while the shear-stress tensor is

πμν ≡ Δμν
αβδT

αβ
f ¼ ρμν0 : ð65Þ

Choosing the Landau frame [30] to determine the fluid
velocity implies

uμ ¼ Tμν
f uνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uαT
αβ
f Tf;βγuγ

q ; ρμ1 ¼ 0: ð66Þ

The parameters α0 and β0 entering f0k are determined
by the so-called Landau matching conditions, i.e., demand-
ing that the particle density and energy density resulting
from fk are identical with those resulting from f0k,
nf ¼ nf0; ε ¼ ε0, or in other words

δnf ¼ ρ1 ¼ 0; δε ¼ ρ2 ¼ 0: ð67Þ

Then, the charge four-current and total energy-
momentum tensor in nonresistive, dissipative magnetohy-
drodynamics are

Jμ
f ≡ nfuμ þVμ

f; ð68Þ

Tμν ≡ Tμν
f þ Tμν

B

¼
�
ε0 þ

B2

2

�
uμuν −

�
P0 þ Πþ B2

2

�
Δμν

− B2bμbν þ πμν: ð69Þ

Equations (24) and (27) with Eqs. (68) and (69) together
with the thermodynamical identities (42) and (43) lead to
the following equations of motion for α0, β0, and uμ:

_α0 ¼
1

D20

½−J30ðnf0θ þ ∂μV
μ
fÞ þ J20ðε0 þ P0 þ ΠÞθ

− J20πμνσμν�; ð70Þ

_β0 ¼
1

D20

½−J20ðnf0θ þ ∂μV
μ
fÞ þ J10ðε0 þ P0 þ ΠÞθ

− J10πμνσμν�; ð71Þ

and

_uμ ¼ 1

ε0 þ P0

�
nf0
β0

ð∇μα0 − h0∇μβ0Þ − Δμ
ν∂κπ

κν

− Π _uμ þ∇μΠ − qBbμνVf;ν

�
; ð72Þ

whereDnq ≡ Jnþ1;qJn−1;q − J2nq, h0 ≡ ðε0 þ P0Þ=nf0 is the
enthalpy per particle, and σμν ¼ ∇hμuνi is the shear tensor.
The equations of motion for α0 and β0 are the same as
Eqs. (39)–(40) of Ref. [22]; however Eq. (72) contains an
additional term due to the magnetic field when compared to
Eq. (41) of Ref. [22].
We now use Eq. (52) to replace fk by δfk in

the Boltzmann equation (53). Then, we take moments of
the Boltzmann equation (53) in momentum space. With the
definitions

_ρhμ1���μlir ≡ Δμ1���μl
ν1���νl u

α∂αρ
ν1���νl
r ; ð73Þ

and

Chμ1���μlir ≡ Δμ1���μl
ν1���νl

Z
dKEr

kk
ν1 � � � kνlC½f�; ð74Þ

we obtain the equations of motion for the irreducible
moments, similarly as shown in Refs. [22,23].
The equation of motion for the irreducible tensors of

rank zero reads

_ρr − Cr−1 ¼ αð0Þr θ þ G3r

D20

∂μV
μ
f þ

θ

3

�
m2

0ðr − 1Þρr−2

− ðrþ 2Þρr − 3
G2r

D20

Π
�

þ rρμr−1 _uμ −∇μρ
μ
r−1

þ
�
ðr − 1Þρμνr−2 þ

G2r

D20

πμν
�
σμν; ð75Þ

where we have defined Gnm ¼ Jn;0Jm;0 − Jn−1;0Jmþ1;0.
Note that the contribution of the magnetic field vanishes
for any scalar moment and exactly corresponds to Eq. (35)
of Ref. [22]. However, the magnetic field is still present and
affects the fluid motion through the acceleration equation,
Eq. (72), as well as through the equations of motion for the
irreducible moments of rank higher than zero (see below).
The equation of motion for the irreducible tensors of

rank one is
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_ρhμir − Chμi
r−1 ¼ αð1Þr ∇μα0 þ rρμνr−1 _uν −

1

3
∇μ½m2

0ρr−1 − ρrþ1� − Δμ
αð∇νρ

αν
r−1 þ αhr∂κπ

καÞ

þ 1

3
½m2

0ðr − 1Þρμr−2 − ðrþ 3Þρμr �θ þ ðr − 1Þρμνλr−2σμν þ
1

5
σμν½m2

0ð2r − 2Þρr−2;ν − ð2rþ 3Þρr;ν� þ ρr;νω
μν

þ 1

3
½m2

0rρr−1 − ðrþ 3Þρrþ1 − 3αhrΠ� _uμ þ αhr∇μΠ − αhrqBbμνVf;ν − qBbμνρr−1;ν; ð76Þ

where ωμν ¼ ð∇μuν −∇νuμÞ=2 is the vorticity tensor. The two terms in the last line are new as compared to Eq. (36) of
Ref. [22] and explicitly contain the magnetic field.
The equation of motion for the irreducible moments of tensor of rank two is

_ρhμνir − Chμνi
r−1 ¼ 2αð2Þr σμν þ 2

15
½m4

0ðr − 1Þρr−2 − ð2rþ 3Þm2
0ρr þ ðrþ 4Þρrþ2�σμν þ

2

5
_uhμ½m2

0rρ
νi
r−1 − ðrþ 5Þρνirþ1�

−
2

5
½∇hμðm2

0ρ
νi
r−1 − ρνirþ1Þ� þ rρμνγr−1 _uγ − Δμν

αβ∇λρ
αβλ
r−1 þ ðr − 1Þρμνλκr−2 σλκ þ 2ρλhμr ωνi

λ þ 1

3
½m2

0ðr − 1Þρμνr−2

− ðrþ 4Þρμνr �θ þ 2

7
½m2

0ð2r − 2Þρκhμr−2 − ð2rþ 5Þρκhμr �σνiκ − 2qBbαβΔμν
ακgλβρκλr−1; ð77Þ

where only the last term is new when compared to Eq. (37)
of Ref. [22] and explicitly contains the magnetic field. Here
we also defined the following coefficients which are
formally unchanged from Eqs. (42)–(44) of Ref. [22]:

αð0Þr ¼ ð1 − rÞIr1 − Ir0 −
nf0
D20

ðh0G2r −G3rÞ; ð78Þ

αð1Þr ¼ Jrþ1;1 − h−10 Jrþ2;1; ð79Þ

αð2Þr ¼ Irþ2;1 þ ðr − 1ÞIrþ2;2; ð80Þ

αhr ¼ −
β0

ε0 þ P0

Jrþ2;1: ð81Þ

The collision integral can be linearized using Eq. (52) and
written as

Chμ1���μli
r−1 ≡ −

XNl

n¼0

AðlÞ
rn ρ

μ1���μl
n ; ð82Þ

where the coefficient AðlÞ
rn contains time scales ∼λmfp. In

order to obtain this result, we have assumed that the
magnetic field does not modify the collision integral, so
that we were able to employ the orthogonality relation (57);
for details see Ref. [22].
Note that, once the equations of motion (75)–(77)

(and in principle those for all higher-rank tensors) are
solved and the complete set of irreducible moments is
determined, one can reconstruct the single-particle distri-
bution fk as a solution of the Boltzmann equation.
Following Refs. [22,23],

fk ¼ f0k þ f0kð1 − af0kÞ
X∞
l¼0

XNl

n¼0

ρμ1���μln khμ1 � � � kμliHðlÞ
kn :

ð83Þ

We remark that this relation is an exact equality (i.e., fk is
an exact solution of the Boltzmann equation) only if we
take Nl → ∞. In practice, however, one has to truncate the
sum over n at some finite value, Nl < ∞. The same holds
for the sum over l. Since there are no tensors of rank higher
than two in fluid dynamics, this sum is usually restricted to
l ≤ 2. Furthermore, this also implies that higher-rank
tensors on the right-hand sides of the equations of motion
(75)–(77) will be subsequently neglected.

The coefficients HðlÞ
kn are defined as

HðlÞ
kn ¼ ð−1Þl

l!J2l;l

XNl

i¼n

Xi

m¼0

aðlÞin aðlÞim Em
k ; ð84Þ

where the coefficients aðlÞij can be written in terms of
thermodynamic integrals and are calculated via Gram-
Schmidt orthogonalization; for details see Ref. [22].
In preparation for a suitable truncation of the infinite set

of equations of motion for the irreducible moments, we
note that an irreducible moment of arbitrary order r and
tensor rank l can always be expressed as a linear
combination of irreducible moments of all orders n and
the same tensor rank,
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ρμ1���μlr ¼
XNl

n¼0

ρμ1���μln F ðlÞ
−r;n ¼

XNl

n¼0

ρμ1���μln

×
XNl

i¼n

Xi

m¼0

aðlÞin aðlÞim
Jrþmþ2l;l

J2l;l
; ð85Þ

where

F ðlÞ
rn ¼ l!

ð2lþ1Þ!!
Z

dKE−r
k HðlÞ

kn ðΔαβkαkβÞlf0kð1−af0kÞ:

ð86Þ

The first equality of Eq. (85) is proven using the orthogon-
ality (57) of the irreducible moments and their definition
(55). The second equality of Eq. (85) is shown using the
definitions of the auxiliary thermodynamic integrals (43)
and of the coefficients (84). Note that Eq. (85) is an identity
for 0 ≤ r ≤ Nl, while it is an approximation for r outside
this range, unless Nl → ∞. The accuracy of this approxi-
mation can be systematically improved by increasingNl. In
the remainder of this paper, however, we will restrict
ourselves to the so-called 14-moment approximation, i.e.,
we will assume N0 ¼ 2, N1 ¼ 1, and N2 ¼ 0 [22].

B. The Navier-Stokes approximation

Besides a suitable truncation of Eqs. (75)–(77), we also
need a scheme to power count the various terms in these
equations, in order to define the order of the approximation
we are considering. We assume that quantities representing
deviations from local thermodynamical equilibrium, like
the irreducible moments, are of first order in some small
parameter. Furthermore, since macroscopic fields like
α0ðxμÞ; β0ðxμÞ, and uμðxμÞ vary on space-time scales that
are much larger than the microscopic scales contained in
the collision integral, we also assume that derivatives of
these fields are of first order in that small parameter.
In the Navier-Stokes approximation, all second-order

terms, i.e., terms involving products of irreducible
moments and derivatives of α0, β0, and uμ, or derivatives
of irreducible moments are neglected, leaving only the
collision integrals [in linearized form; see Eq. (82)] on the
left-hand sides and the first terms as well as the last terms
involving the magnetic field on the right-hand sides of
Eqs. (75)–(77). Bringing the latter ones to the left-hand side
results in the following set of equations:

XN0

n¼0;≠1;2
Að0Þ

rn ρn ¼ αð0Þr θ; ð87Þ

XN1

n¼0;≠1
½Að1Þ

rn gμν þ qBðF ð1Þ
1−r;n þ αhrδn0Þbμν�ρn;ν ¼ αð1Þr ∇μα0;

ð88Þ

XN2

n¼0

½Að2Þ
rn g

μ
αgνβ þ qBF ð2Þ

1−r;nðbμβgνα þ bνβg
μ
αÞ�ραβn ¼ 2αð2Þr σμν:

ð89Þ

In physical terms, it is assumed that the irreducible
moments no longer evolve in time and assume their
asymptotic solution given solely by the first-order terms
on the right-hand side, multiplied by the inverse of the
coefficient matrix on the left-hand side. The formal solution
of this set of equations is

ρr ¼ ζμνr ∂μuν; ð90Þ

ρμr ¼ κμνr ∇να0; ð91Þ

ρμνr ¼ ημναβr σαβ; ð92Þ

where the rank-two tensor coefficients can in general be
decomposed in terms of the projection operators Ξμν, bμbν,
as well as the tensor bμν [10],

ζμνr ¼ ζr⊥Ξμν − ζrkbμbν − ζr×bμν; ð93Þ

κμνr ¼ κr⊥Ξμν − κrkbμbν − κr×bμν; ð94Þ

while the rank-four tensor coefficient involves the projec-
tion operator Δμναβ and products of Δμν, Ξμν, bμbν, as well
as bμν (for more details, see Ref. [10]),

ημναβr ¼ 2ηr0Δμναβ þ ηr1

�
Δμν −

3

2
Ξμν

��
Δαβ −

3

2
Ξαβ

�

− 2ηr2ðΞμαbνbβ þ ΞναbμbβÞ
− 2ηr3ðΞμαbνβ þ ΞναbμβÞ
þ 2ηr4ðbμαbνbβ þ bναbμbβÞ: ð95Þ

The scalar transport coefficients ζr⊥; ζrk; ζr×; κr⊥; κrk; κr×;
ηr0; ηr1; ηr2; ηr3; ηr4 are obtained by substituting Eqs. (90)–
(92) into Eqs. (87)–(89) and identifying the coefficients of
the corresponding tensor structures.
The bulk-viscosity coefficients ζr⊥; ζrk; ζr× are then

determined by the following equations:

XN0

n¼0;≠1;2
Að0Þ

rn ζn⊥ ¼ αð0Þr ;

XN0

n¼0;≠1;2
Að0Þ

rn ðζn⊥ − ζnkÞ ¼ 0;

XN0

n¼0;≠1;2
Að0Þ

rn ζn× ¼ 0; ð96Þ
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and hence in the 14-moment approximation (N0 ¼ 2),

ζ0⊥ ¼ ζ0k ¼
αð0Þr

Að0Þ
r0

; ζ0× ¼ 0: ð97Þ

Note that, as long as the collision integral is assumed to be
independent of the magnetic field, only a tensor structure of
the type ∼Ξμν − bμbν ≡ Δμν survives in the bulk-viscosity
tensor (93). In general, however, this does not need to be
the case. An explicit example is given in Ref. [39] where
ζ0⊥ and ζ0k are calculated for a hot quark-gluon plasma in a
magnetic field, taking into account Landau quantization.
The transport coefficients κr⊥; κrk; κr× are found by

inserting Eq. (91) into Eq. (88). This leads to the following
system of coupled equations:

XN1

n¼0;≠1
½Að1Þ

rn κn⊥ þ qBðF ð1Þ
1−r;n þ αhrδn0Þκn×� ¼ αð1Þr ; ð98Þ

XN1

n¼0;≠1
Að1Þ

rn κnk ¼ αð1Þr ; ð99Þ

XN1

n¼0;≠1
½Að1Þ

rn κn× − qBðF ð1Þ
1−r;n þ αhrδn0Þκn⊥� ¼ 0; ð100Þ

and hence, in the 14-moment approximation (N1 ¼ 1),

κr≡κ0k¼
αð1Þr

Að1Þ
r0

; κ0⊥¼κ0k

�
1þ

�
qB

F ð1Þ
1−r; 0þαhr

Að1Þ
r0

�
2
�
−1
;

κ0×¼κ0⊥qB
F ð1Þ

1−r;0þαhr

Að1Þ
r0

: ð101Þ

One observes that, when B → 0, κ0× → 0, while
κ0k → κ0⊥. Also in this case, the diffusion tensor
κμν0 ∼ Δμν, as expected. Moreover, for any B ≠ 0,

κ0⊥ < κ0k, i.e., due to the cyclotron motion of the particles,
particle (or charge) diffusion transverse to the magnetic
field is reduced as compared to the diffusion parallel to the
magnetic field.
In the limit of a massless Boltzmann gas, where

Jnq ≡ Inq ¼ ðnþ1Þ!
2ð2qþ1Þ!! β

2−n
0 P0, and for a constant binary

cross section σ ¼ const, we obtain for r ¼ 0 the following

expressions: αð1Þ0 ¼ β0P0=12, αh0 ≡ −1=h0 ¼ −β0=4,
F ð1Þ

10 ¼ 2β0=3, and Að1Þ
00 ¼ 4=ð9λmfpÞ, where λmfp ¼

1=ðnf0σÞ is the mean free path of the particles, and thus
the diffusion coefficients assume the values

κ0k ¼
3λmfpnf0

16
; κ0⊥ ¼ 48λmfpnf0

256þ 225ξ2B
;

κ0× ¼ 45ξBλmfpnf0
256þ 225ξ2B

; ð102Þ

where ξB ≡ qBβ0λmfp ≡ λmfp=RT was defined in the
Introduction.
As expected, the longitudinal diffusion is solely given in

terms of the mean free path, since the magnetic field does
not affect the dynamics in the bμ direction. On the other
hand, there is an interplay between the mean free path and
the thermal Larmor radius RT for the transverse diffusion,
since the underlying particles not only collide but also
undergo cyclotron motion. The magnetic-field dependence
of these coefficients is shown in Fig. 1(a).
Let us consider the limiting case where the mean free

path is much larger than the thermal Larmor radius, i.e.,
ξB ≫ 1. This can be achieved either for fixed B by
decreasing the temperature or density, such that the mean
free path increases, or by increasing the magnetic field B,
and thus decreasing the Larmor radius, for fixed density,
i.e., fixed mean free path. In this limit,

(a) (b)

FIG. 1. The magnetic-field dependence of the diffusion coefficients (a) and the shear-viscosity coefficients (b).
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κ0k ¼
3λmfpnf0

16
; κ0⊥ ≃

16

75

λmfpnf0
ξ2B

;

κ0× ≃
λmfpnf0
5ξB

≡ nf0RT

5
: ð103Þ

As expected, the Hall diffusion coefficient κ0× assumes a
value which is independent of the mean free path. Note,
however, that we obtain a nonzero value for this quantity. The
unique relationship between the diffusion coefficient and the
electric conductivity (the Wiedemann-Franz law mentioned
above) then implies that theHall conductivity is also nonzero.
This result is different from the vanishing value quoted in
Eq. (8.198) of Ref. [25], valid for a mixture of an ultra-
relativistic electron gas and a nonrelativistic ion gas.
Finally, inserting Eq. (92) into Eq. (89) leads to the

following set of equations for the shear-viscosity coefficients:

XN2

n¼0

ðAðlÞ
rn ηn0 þ 4qBF ð2Þ

1−r;nηn3Þ ¼ αð2Þr ; ð104Þ

XN2

n¼0

ðAð2Þ
rn ηn3 − qBF ð2Þ

1−r;nηn0Þ ¼ 0; ð105Þ

XN2

n¼0

ðAð2Þ
rn ηn4 −Að2Þ

rn ηn3 − qBF ð2Þ
1−r;nηn2Þ ¼ 0; ð106Þ

XN2

n¼0

ðAð2Þ
rn ηn2þqBF ð2Þ

1−r;nηn4−4qBF ð2Þ
1−r;nηn3Þ¼0; ð107Þ

XN2

n¼0

ð3Að2Þ
rn ηn1 − 16qBF ð2Þ

1−r;nηn3Þ ¼ 0: ð108Þ

In the 14-moment approximation (N2 ¼ 0) the above set of
equations is solved by

η00 ¼ ηr

�
1þ 4

�
qB

F ð2Þ
1−r;0

Að2Þ
r0

�2�−1
; ð109Þ

η01 ¼
16

3

�
qB

F ð2Þ
1−r;0

Að2Þ
r0

�2

η00; ð110Þ

η02 ¼ 3

�
qB

F ð2Þ
1−r;0

Að2Þ
r0

�2�
1þ

�
qB

F ð2Þ
1−r;0

Að2Þ
r0

�2�−1
η00; ð111Þ

η03 ¼ qB
F ð2Þ

1−r;0

Að2Þ
r0

η00; ð112Þ

η04 ¼ ηrqB
F ð2Þ

1−r;0

Að2Þ
r0

�
1þ

�
qB

F ð2Þ
1−r;0

Að2Þ
r0

�2�−1
; ð113Þ

where ηr ¼ αð2Þr =Að2Þ
r0 corresponds to the usual shear-viscos-

ity coefficient. As expected, when B → 0, only η00 remains
nonzero, such that ημναβ0 ∼ Δμναβ, as expected. Note that, for
B ≠ 0, the “standard” shear-viscosity coefficient η00 is
reduced as compared to its value for B ¼ 0. This reduction
of viscosity is similar to the mechanism suggested in
Ref. [40], giving rise to the so-called “anomalous viscosity,”
although that work considered gluon instead of electromag-
netic fields.
In the limit of a massless Boltzmann gas and for a

constant cross section, we obtain for r ¼ 0 the quantities

αð2Þ0 ¼ 4P0=5, F ð2Þ
10 ¼ β0=5, and Að2Þ

00 ¼ 3=ð5λmfpÞ. This
yields η0 ¼ 4λmfpP0=3 and

η00 ¼
12λmfpP0

9þ 4ξ2B
; η01 ¼

64

9

ξ2BλmfpP0

9þ 4ξ2B
;

η02 ¼
36ξ2BλmfpP0

½9þ 4ξ2B�½9þ ξ2B�
; η03 ¼

4ξBλmfpP0

9þ 4ξ2B
;

η04 ¼
4ξBλmfpP0

9þ ξ2B
: ð114Þ

The magnetic field dependence of these coefficients is
shown in Fig. 1(b). For a large ratio of mean free path to
thermal Larmor radius, ξB ≫ 1,

η00 ¼
1

3
η02 ≃

9

4

η0
ξ2B

; η01 ≃
4

3
η0;

η03 ¼
1

4
η04 ≃

λmfpP0

ξB
≡ P0RT:

In this limit, the last two viscosities, η03 and η04, become
independent of λmfp. They appear purely due to the Lorentz
force (and are thus named Hall viscosities). The relation
η03 ¼ η04=4 holds also in the nonrelativistic case [41]. We
note that a similar study of the shear-viscosity coefficients
in the Navier-Stokes limit was recently performed in
Ref. [42], using the Boltzmann equation in the relaxation-
time approximation.
Finally, we remark that the effect of a magnetic field on

the shear viscosity of a strongly coupled N ¼ 4 super-
symmetric Yang-Mills plasma with a large number of
colors was studied in Ref. [11]. In this case, it was shown
that the ratio between η00 and the entropy density s does not
change with the magnetic field, η00=s ¼ 1=ð4πÞ, while the
ratio ðη00 þ η02Þ=s, considered in Ref. [11], was found to
be suppressed in strong magnetic fields. This illustrates
how the microscopic assumptions regarding the fluid, i.e.,
strong versus weak coupling, may alter its response to
magnetic fields.
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C. Second-order magnetohydrodynamical
equations of motion

We now derive the equations of motion for nonresistive,
second-order dissipative magnetohydrodynamics. In this
case, all terms in Eqs. (75)–(77) are kept, but the irreducible
moments ρμ1���μlr with r ≠ 0 are replaced using the 14-
moment approximation (N0 ¼ 2, N1 ¼ 1, N2 ¼ 0) using
Eq. (85). With the definitions (62)–(65) we obtain

ρr¼
XN0

n¼0;≠1;2
ρnF

ð0Þ
−r;n

¼−
3

m2
0

Π
Jr0D30þJrþ1;0G23þJrþ2;0D20

J20D20þJ30G12þJ40D10

; ð115Þ

ρμr ¼
XN1

n¼0;≠1
ρμnF

ð1Þ
−r;n ¼ Vμ

f
Jrþ2;1J41 − Jrþ3;1J31

D31

; ð116Þ

ρμνr ¼
XN2

n¼0

ρμνn F ð2Þ
−r;n ¼ πμν

Jrþ4;2

J42
; ð117Þ

while all higher-rank tensors (l > 2) are assumed to
vanish. The above formulas also hold for negative values
of r.
For r ¼ 0 Eq. (75), together with Eqs. (115)–(117), leads

to an equation of motion for the bulk viscous pressure

τΠ _Πþ Π ¼ −ζθ − lΠV∇μV
μ
f − τΠVV

μ
f _uμ − δΠΠΠθ

− λΠVV
μ
f∇μα0 þ λΠππ

μνσμν: ð118Þ

Similarly, taking r ¼ 0 we obtain a relaxation equation for
the particle diffusion current from Eq. (76)

τV _Vhμi
f þ Vμ

f ¼ κ∇μα0 − τVVf;νω
νμ − δVVV

μ
fθ − lVΠ∇μΠ

þ lVπΔμν∇λπ
λ
ν þ τVΠΠ _uμ − τVππ

μν _uν

− λVVVf;νσ
μν þ λVΠΠ∇μα0 − λVππ

μν∇να0

− δVBqBbμνVf;ν: ð119Þ

The relaxation equation of the shear-stress tensor follows
from Eq. (77) for r ¼ 0,

τπ _π
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ

− τπππ
λhμσνiλ þ λπΠΠσμν

− τπVV
hμ
f _uνi þ lπV∇hμVνi

f

þ λπVV
hμ
f ∇νiα0 − δπBqBbαβΔ

μν
ακgλβπκλ:

ð120Þ

The coefficients of the terms without explicit dependence
on the magnetic field are given in Appendix C of Ref. [22]

(note that nμ ↔ Vμ
f and the index n ↔ V). In deriving

these equations of motion only the linear contributions
arising from the collision integrals were retained. We
remark that, given our assumptions, the omitted nonlinear
terms display no dependence on the magnetic field and
were already calculated in Ref. [43].
To the best of our knowledge, Eqs. (118)–(120) provide

the first formulation of nonresistive, second-order dissipa-
tive magnetohydrodynamics that can be causal and linearly
stable around equilibrium, in contrast to the Navier-Stokes
approximation derived in Sec. IV B. As such, this new
system of equations is suitable to investigate the effects of
magnetic fields on relativistic dissipative fluid dynamics,
e.g., in heavy-ion collisions.
The coefficient of the term involving the magnetic field

in Eq. (119) is

δVB ¼ F ð1Þ
10 þ αh0

Að1Þ
00

; ð121Þ

while the corresponding coefficient in Eq. (120) is

δπB ¼ 2
F ð2Þ

10

Að2Þ
00

: ð122Þ

In the limit of a massless Boltzmann gas with constant

cross section, αh0 ¼ −β0=4, F ð1Þ
10 ¼ 2β0=3, F ð2Þ

10 ¼ β0=5,

Að1Þ
00 ¼ 4=ð9λmfpÞ, and Að2Þ

00 ¼ 3=ð5λmfpÞ, such that

δVB ¼ 15

16
β0λmfp; δπB ¼ 2

3
β0λmfp: ð123Þ

Let us finally comment on the first-order Navier-Stokes
limit of the second-order equations (118)–(120). Note that
the first terms on the right-hand sides, proportional to the
standard bulk and shear viscosity as well as particle-
diffusion coefficients, are actually independent of the
magnetic field. But these are not the only first-order terms
in these equations: without an assumption about the
magnitude of the magnetic field, the last terms in
Eqs. (119), (120) are also formally of first order in a small
quantity (Vf;ν or πκλ, respectively). As demonstrated in
Sec. IV B, these terms are to be combined with the first-
order terms on the left-hand side and, after inversion of the
respective coefficient matrices, then lead to the various new
anisotropic transport coefficients discussed above.
On the other hand, when solving the second-order

equations (119) and (120), one does not need to replace
the standard viscosity and particle-diffusion coefficients
with the new anisotropic transport coefficients found in
Sec. IV B, because the effect of the magnetic field is
already taken into account by the terms ∼B in these
equations.
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V. CONCLUSIONS AND OUTLOOK

We have derived, for the first time, the equations of
motion for nonresistive, second-order dissipative magneto-
hydrodynamics from the Boltzmann equation. The deriva-
tion is based on the moment expansion of the Boltzmann
equation coupled to a magnetic field for a single-
component gas of particles without dipole moment or spin.
The magnetohydrodynamical equations of motion were
obtained in the 14-moment approximation. This is essen-
tially a generalization of Israel-Stewart fluid dynamics to
the case of a nonvanishing magnetic field. Despite our
simplifying assumptions, the results exhibit the basic
structure of second-order dissipative magnetohydrodynam-
ics, in particular how the magnetic field couples to the
dynamical evolution of the dissipative quantities. In par-
ticular, we note that within our approximations the form of
the equations remains close to that of Israel-Stewart theory,
with additional terms that couple the fluid to the magnetic
field. As such, the new set of second-order dissipative
magnetohydrodynamical equations derived here allows one
to investigate the effects of magnetic fields in relativistic
dissipative fluids in a causal and linearly stable manner.
Moreover, we have shown how the first-order transport
coefficients split into several components, recovering the
results of Refs. [10,13], with the notable difference that
there is only one bulk-viscosity coefficient in our approxi-
mation. The reason for this is our assumption that the
collision integral is independent of the magnetic field.
There are many possible directions for future work.

(i) The 14-moment approximation gives only an estimate
for the values of the transport coefficients. Improved values
can be obtained by resumming higher orders in Nl in the
moment expansion, as demonstrated in Ref. [22].
(ii) Resistive, second-order dissipative magnetohydrody-
namics is obtained by keeping the electric field Eμ in the
equations of motion. (iii) An extension to spin degrees of
freedom allows to include effects of polarization and
magnetization [28]. (iv) A relativistic treatment requires
to take into account antiparticles with opposite electric
charge. These and further questions will be addressed in
future work.
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APPENDIX

Our conventions for the rank-four Levi-Civita tensor
ϵμναβ are as follows. We take ϵ0123 ¼ þ1, which implies
ϵμναβ ¼ −ϵμναβ. We also have the relations

ϵμαβγϵναρσ ¼ δμνðδβσδγρ − δβρδ
γ
σÞ þ δμρðδβνδγσ − δβσδ

γ
νÞ

þ δμσðδβρδγν − δβνδ
γ
ρÞ; ðA1Þ

and

ϵμναβϵκλαβ ¼ 2ðδμλδνκ − δμκδνλÞ: ðA2Þ

In flat Minkowski space, all Kronecker deltas can be
replaced by the mixed contra- and covariant metric tensor,
e.g., δμν ≡ gμν .
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