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The complementary judgment matrix (CJM) method is an MCDA (multicriteria decision aiding) method based on pairwise
comparisons. As in AHP, the decision-maker (DM) can specify his/her preferences using pairwise comparisons, both between
different criteria and between different alternativeswith respect to each criterion.TheDMspecifies his/her preferences by allocating
two nonnegative comparison values so that their sum is 1. We measure and pinpoint possible inconsistency by inconsistency errors.
We also compare the consistency of CJM and AHP trough simulation. Because preference judgments are always more or less
imprecise or uncertain, we introduce a way to represent the uncertainty through stochastic distributions, and a computational
method to treat the uncertainty. As in Stochastic Multicriteria Acceptability Analysis (SMAA), we consider different uncertainty
levels: precise comparisons, imprecise comparisons with a stochastic distribution, and missing comparisons between criteria. We
compute rank acceptability indices for the alternatives, describing the probability of an alternative to obtain a given rank considering
the level of uncertainty and study the influence of the uncertainty on the SMAA-CJM results.

1. Introduction

The complementary judgment matrix (CJM) method is an
MCDA (multicriteria decision aiding) method based on hier-
archical decomposition of the decision criteria into subcri-
teria, evaluation of preferences using pairwise comparisons,
and aggregating the results into an overall evaluation of the
alternatives. The earliest publications about the CJM method
are by Lin and Xu [1], Su [2], and Dong et al. [3]. As in
AHP [4], the criteria form a hierarchical tree-like structure,
where the root node is the overall decision problem, and the
branches at each node correspond to criteria or subcriteria.
The leaf nodes correspond to the different decision alterna-
tives. Figure 1 illustrates a school selection problem as an
example.

At each node of the hierarchy, the decision-maker (DM)
performs pairwise comparisons between each pair of criteria
or subcriteria. At the bottom level, the DM is asked to

compare each pair of alternatives with respect to each crite-
rion. Thus, the DM evaluates through pairwise comparisons
both the relative importance of different criteria, and the
performance of each alternative with respect to these criteria.

TheCJMmethod differs fromAHPmainly in five aspects:
(1) the pairwise comparisons are expressed differently, (2)
a different numerical scale is used to represent the verbal
preference statements, (3) a computationally simpler and
more intelligible procedure is used to aggregate the com-
parisons, (4) the set of comparisons can be incomplete, and
(5) individual inconsistent comparisons can be automatically
detected. In the CJM method, the DM assigns to each pair of
compared entities (i, j) nonnegative weights 𝑎𝑖𝑗, and 𝑎𝑗𝑖 that
are complementary, i.e., 𝑎𝑖𝑗 + 𝑎𝑗𝑖 = 1.When comparing criteria,
the ratios of these weights correspond to trade-off ratios. We
should point out that some variants of the CJM method have
a different interpretation for 𝑎𝑖𝑗. For example Wang and Guo
[5] treat crisp 𝑎𝑖𝑗 values as fuzzy membership function values
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Figure 1: Hierarchy structure of a school selection problem.

for the expression that ‘i is more important than j’. Such an
interpretation is different from our assumption that 𝑎𝑖𝑗 are
related to trade-off ratios. Fuzzy techniques have been applied
also with the AHP method [6–11].

Subjective comparison values are always more or less
uncertain or imprecise. In particular in group decision-
making, it may be difficult to represent the preferences
of multiple DMs by precise comparison values. Fuzzy set
theory has been employed to cope with the uncertainty and
vagueness involved in conducting the comparisons between
components of a decision model [12, 13]. Some previous
works have also treated such imprecision either using interval
numbers or fuzzy numbers [1, 14–17]. Alternatively, uncertain
or imprecise information in MCDA can be represented by
stochastic variables and Monte-Carlo analysis [18, 19]. Dur-
bach et al. [20] developed uncertainty modelling techniques
in AHP as extension of Stochastic Multicriteria Acceptability
Analysis (SMAA).We present in this paper a way to represent
such imprecise or uncertain preference information in the
CJM method through stochastic distributions and a com-
putational method to treat this information in the analysis.
We do this by introducing a new variant of SMAA [21–
23] that applies the decision model of the CJM method.
As in SMAA, we compute various descriptive measures
for the problem. SMAA is based on simulating uncertain
criteria evaluations and preferences and collecting statistics
on the performance of each alternative. The DMs are given
rank acceptability indices for each alternative, describing the
variety of different preferences that support an alternative
for the best rank or any particular rank. This information
can be used for classifying the alternatives into more or
less acceptable ones and those that are not acceptable at
all. Pairwise winning indices describe the probability of one
alternative to be more preferred than another. SMAA also
computes central weights describing typical trade-off weights
between criteria that make an alternative the most preferred
one. It is also possible to measure with confidence factors
whether the performance of alternatives has been assessed
accurately enough for decision-making.

This paper is organized as follows. Section 2 presents
the CJM method with some extensions. Section 3 presents
the new SMAA-CJM method. Section 4 demonstrates the
method using a small example. Section 5 compares the con-
sistency of preference statements expressed using the CJM

and AHP scales through simulation. This is followed by
discussion and conclusions.

2. The Complementary Judgment
Matrix Method

2.1. Expressing Judgments. At each node of the criteria hier-
archy (see Figure 1), the DM performs pairwise comparisons
between each pair of criteria or subcriteria to express their
relative importance. At the bottom level, the DM is asked to
compare the relative performance of each pair of alternatives
with respect to each (sub-) criterion. The DM expresses the
intensity of his/her preference either by choosing among
verbal preference statements, or by giving directly the com-
plementary positive weights 𝑎𝑖𝑗 and 𝑎𝑗𝑖 such that

𝑎𝑖𝑗 + 𝑎𝑗𝑖 = 1. (1)

The ratio of the complementary weights corresponds to
trade-off ratios, i.e.,

𝑎𝑖𝑗
𝑎𝑗𝑖 =

𝑤𝑖
𝑤𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} , (2)

where 𝑤𝑖 and 𝑤𝑗 are the trade-off weights for the ith and jth
criterion, respectively.

Any number of preference levels can be used in CJM,
but to allow comparison with AHP, we use nine levels as in
AHP. Table 1 presents the verbal preference statements and
corresponding CJM weights in per cent. Equal preference is
represented by the 50/50 ratio. The strongest preference is
represented by the 90/10 ratio. If the DM’s preference falls
between the listed statements, the in-between weights can be
used. The scale has uniform step size.

At each node of the hierarchy, the comparison values are
organized into a complementary judgment matrix:

[𝑎𝑖𝑗] =
[[[[[[
[

0.5 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛
𝑎21 0.5 ⋅ ⋅ ⋅ 𝑎2𝑛
... ... d

...
𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 0.5

]]]]]]
]

. (3)

2.2. Comparison with AHP. For comparison, the AHP com-
parison values 𝑎𝑖𝑗 are represented in the second column of
Table 1. In AHP the comparison values represent trade-off
ratios:

𝑎𝑖𝑗 = 𝑤𝑖𝑤𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (4)

To allow comparing the CJM scale with the AHP scale, we
set the left-hand-side (LHS) of (2) equal to LHS of (4) to
obtain 𝑎𝑖𝑗/𝑎𝑗𝑖 = 𝑎𝑖𝑗. Then we solve 𝑎𝑗𝑖 = 1 − 𝑎𝑖𝑗 from
(1) and substitute this into the previous expression. This
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Table 1: Verbal preference statements and comparison values in CJM (𝑎𝑖𝑗), AHP (𝑎𝑖𝑗), and transformed scales between AHP and CJM.

CJM AHP AHP󳨀→CJM CJM󳨀→AHP
Verbal statement aij (%) ãij (%)
𝑖 is equally important/good as 𝑗 50 1 50.0 1

55 2 66.7 1.22
𝑖 is a little more important/better than 𝑗 60 3 75.0 1.5

65 4 80.0 1.86
𝑖 is moderately more important/better than 𝑗 70 5 83.3 2.33

75 6 85.7 3
𝑖 is much more important/better than 𝑗 80 7 87.5 4

85 8 88.9 5.67
𝑖 is extremely more important/better than 𝑗 90 9 90.0 9

gives the transformation from AHP comparison values into
corresponding CJM weights and vice versa:

𝑎𝑖𝑗 =
𝑎𝑖𝑗

(1 + 𝑎𝑖𝑗)
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} , (5)

𝑎𝑖𝑗 ==
𝑎𝑖𝑗

(1 − 𝑎𝑖𝑗)
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (6)

The last two columns in Table 1 show the standard AHP scale
transformed into CJMweights and CJMweights transformed
into AHP comparison values. Both scales are equivalent
for the first and last preference statement. However, the
CJM scale has smaller steps between the weaker preference
statements than AHP and larger steps between the stronger
preference statements. TheCJM scale has earlier been applied
in AHP by Salo and Hämäläinen [24], who named it the
balanced scale for AHP. Observe that the verbal preference
statements carry only ordinal information, while the numer-
ical values try to represent corresponding judgements on
cardinal (ratio) scales. In general, no fixed cardinal scale
can represent accurately the subjective verbal preference
statements of different DMs, because DMs have different
interpretations on the verbal statements and their relative
intensities.

2.3. Solving the Weights. The complementary judgement
matrix [𝑎𝑖𝑗] contains more information than necessary to
determine the weights uniquely. The redundant information
may serve for detecting inaccuracies and possible errors in
the expressed preferences. If the judgment matrix is fully
consistent, we can find weights that satisfy each equation
(7) as equality. The matrix is consistent if (𝑎𝑖𝑗/𝑎𝑗𝑖)(𝑎𝑗𝑘/𝑎𝑘𝑗) =(𝑎𝑖𝑘/𝑎𝑘𝑖) for each i, j, k. In practice, the matrix may contain
some level of inconsistency. In this case we can solve the
weights from (7) in the least squares (LSQ) sense.

Different techniques to solve the weights have been
presented in literature. Here we present a technique that is
a little simpler and computationally more efficient than the
eigenvalue method of AHP. The eigenvalue method requires
iterative calculation of the eigenvector while the LSQ solution

is obtained in closed form. First, we solve 𝑎𝑖𝑗 from (1) and (2)
obtaining

𝑎𝑖𝑗 = 𝑤𝑖
𝑤𝑖 + 𝑤𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (7)

Then we multiply (7) by (𝑤𝑖+𝑤𝑗) to obtain the linear system:

(𝑎𝑖𝑗 − 1)𝑤𝑖 + 𝑎𝑖𝑗𝑤𝑗 = 0, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (8)

In addition, to get a unique solution, we consider the
normalization condition for the weights Σ𝑤𝑗 = 1. To solve
the system we solve (arbitrarily) the last weight from the
normalization equation:

𝑤𝑛 = 1 −
𝑛−1

∑
𝑗=1

𝑤𝑗, (9)

and substitute it into (8). This yields a linear equation system
with (n-1) variables and 𝑛2 equations.The system canbe easily
reduced. Firstly, the 𝑛 equations corresponding to i = j hold
trivially and they can therefore be omitted. Secondly, due to
symmetry, the error in the equation for 𝑎𝑖𝑗 is the complement
to that for 𝑎𝑗𝑖. Therefore it is necessary to consider only
the equations corresponding to either the upper or lower
triangle of [𝑎𝑖𝑗].The resulting linear equation system with (n-
1) variables and (𝑛2-n)/2 constraints is of the following form:

Hŵ = b, (10)

where ŵ = [𝑤1, . . . , 𝑤𝑛−1]. When n = 2, there is only a single
equation and the consistent solution (𝑤1=𝑏1/H11) is trivially
found.Whenn≥ 3, the system is overdetermined and the LSQ
solution is

ŵ = (HTH)−1HTb. (11)

Rather than forming the matrix inverse explicitly, system (11)
is solved efficiently by forming the Cholesky factorization
of the symmetric matrix HTH = LLT where L is a lower
triangular matrix (see e.g., Stewart [25]). Then vector x is
solved from the lower triangular system Lx=HTb and after
that ŵ from the upper triangular system LTŵ=x. After solving
ŵ, the last weight 𝑤𝑛 is computed from (9).
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Observe that this method of solving the weights does not
require a complete set of comparisons. A sufficient require-
ment is that the graph formed by pairwise comparisons
between entities is connected. This gives great flexibility for
the DM in large problems, where comparing every pair of
entities would be too laborious.

LSQ solution of the weights is also applicable with
multiple DMs who provide their (precise) comparisons inde-
pendently. All comparisons are then collected into a common
linear equation system (8) fromwhich the weights are solved.
This approach finds weights that satisfy different preferences
in the LSQ sense. Section 3 describes another way to handle
the preferences of multiple DMs.

2.4. Evaluating the Scores in the Hierarchy. After the weights
have been computed at each node of the criteria hierarchy,
a score 𝑠𝑘 is computed for each alternative 𝑘. At the lowest
level criteria nodes t, the criterion score for each alternative
equals its weight. At the higher level nodes, the score for each
alternative is computed as a weighted average of the scores at
the lower level. Writing the node identifier as superscript for
scores and weights, we have

𝑠𝑡𝑘 =
{{
{{
{

𝑤𝑡𝑘 when 𝑡 at lowest level
∑
𝑗∈𝑆(𝑡)

𝑤𝑡𝑗𝑠𝑗𝑘 when 𝑡 at higher level, (12)

where S(t) refers to the set of subnodes of node 𝑡 in the
hierarchy. The overall score for each alternative is the score
computed at the top node.

2.5. Measuring the Inconsistency. The redundant informa-
tion provided by pairwise comparisons serves two purposes
in the CJM method. Firstly, the weights solved from the
overdetermined system (7)-(8) can provide more accurate
preference information compared to the case where only a
minimal number of comparisons are made. Secondly, large
inconsistencymay indicate that theDMhas expressed his/her
preferences incorrectly. The DM is encouraged to revise
his/her comparisons if too large inconsistency is detected.

Xu [26] suggests that the AHP inconsistency ratio (IR)
is computed also in the CJM method to detect excess incon-
sistency. Before this method can be applied, it is necessary to
transform the CJMweights into the corresponding reciprocal
matrix [𝑎𝑖𝑗] of AHP using (6). Then a consistency index CI
= (𝜆max-n)/(n-1) is computed, where 𝜆max is the principal
eigenvalue and 𝑛 is the dimension of the reciprocal matrix.
Finally, IR = CI/RI, where the random index RI is the average
consistency index of a large number of random reciprocal
matrices. If IR exceeds 10%, the DM is urged to revise his/her
comparisons.

We suggest here a different technique for the CJM
method. We simply compute the inconsistency errors in (7)
based on expressed 𝑎𝑖𝑗 and weights from the LSQ solution:

𝑒𝑖𝑗 = 𝑎𝑖𝑗 − 𝑤𝑖
𝑤𝑖 + 𝑤𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (13)

Observe that 𝑒𝑖𝑗 = -𝑒𝑗𝑖. If the absolute value |𝑒𝑖𝑗| is too large for
any of the comparisons, the DM should reconsider his/her

comparisons. The advantage of the inconsistency errors is
that the DM can understand them easily, because they
are directly related to his/her comparison values. Another
advantage with inconsistency errors is that they can pinpoint
comparisons that aremost likely incorrect. If only one or a few
comparisons are found too inconsistent, it may be sufficient
that the DM only reconsiders these. If many comparisons are
inconsistent, we suggest that the DM reconsiders all compar-
isons. The DM can specify a threshold for the inconsistency
errors to identify too inconsistent comparisons based on
his/her accuracy level when making the comparisons. We
suggest ±0.1 as a reasonable threshold, because it corresponds
to one step uncertainty on the verbal scale.

3. The SMAA-CJM Method

Some restrictions of the basic CJMmethod are that it cannot
treat imprecise information, and it does not explicitly support
combining the preferences ofmultiple DMs. Some extensions
of the CJM method exist for treating imprecise information
as intervals [14] or fuzzy numbers [16]. In this paper, we
extend the CJM method by representing the elements of
the complementary judgment matrix [𝑎𝑖𝑗] as probability
distributions.

The DMs can give their pairwise comparisons either as
precise values or as intervals. The inconsistency errors are
computed for each DM, and if they are too large, the DMs
are allowed to revise their comparisons. In case of intervals,
we suggest computing the inconsistency errors based on the
midpoints of the intervals. We next combine the individual
DMs’ pairwise comparisons into intervals [𝑎min

𝑖𝑗 , 𝑎max
𝑖𝑗 ] where

𝑎min
𝑖𝑗 is theminimal value that anyDMhas expressed and 𝑎max

𝑖𝑗

is the maximal value. The aggregated comparison values are
then represented by stochastic variables with a suitable prob-
ability distribution in the intervals. The complementary value
pairs (𝑎𝑖𝑗, 𝑎𝑗𝑖) are treated as dependent distributions to
make their sum 1. Technically, it is possible to use arbitrary
distributions. However, in the absence of information about
the distribution shape, we apply a uniform distribution in
the interval. More complex distributions can be estimated
based on preference information provided by a large number
of DMs. If the interval is degenerate, i.e., 𝑎min

𝑖𝑗 =𝑎max
𝑖𝑗 , we

use Dirac’s delta function (the unit impulse function) as the
distribution.

After representing the aggregated pairwise comparisons
by suitable distributions, the performance of each alternative
is analysed through stochastic simulation by drawing simul-
taneously pairwise comparisons from their corresponding
distributions and computing the score for each alternative as
in theCJMmethod.A sufficient number of simulation rounds
is between 10 000 and 100 000 [27]. During the simulation,
statistics is collected about the weights at different nodes of
the hierarchy, the overall score of the alternatives, and their
ranking. Based on the statistics, the following descriptive
measures are computed for evaluating the alternatives.

(i) Average overall score for different alternatives. This
generalizes the crisp CJM overall score to consider
imprecise comparison values.



Mathematical Problems in Engineering 5

(ii) Average criterion score for different alternatives. This
generalizes the corresponding crisp CJM criterion
scores to consider imprecise comparison values.

(iii) The rank acceptability index 𝑏𝑟𝑖 measures the variety of
different preferences that grant alternative 𝑥𝑖 rank 𝑟.
The rank acceptability indices can be used for ranking
the alternatives roughly, or for finding compromise
alternatives in case no alternative obtains sufficient
acceptability for the first rank. Potential compromise
alternatives are those with high acceptability for the
best ranks. Alternatives that obtain high acceptability
for the worst ranks should be avoided [22].

(iv) The first rank acceptability index𝑏1𝑖 measures the
variety of different preferences that make alternative
𝑖 most preferred. In other words, the acceptability
index measures how widely acceptable the alternative
is. The acceptability index can be interpreted as the
share of people voting for the alternative, assuming
that the applied distribution for comparison values
represents the voters’ preferences. Zero acceptability
means that the alternative is inefficient, i.e., no prefer-
ences make it best [21].

(v) The pairwise winning index𝑐𝑖𝑘 is the probability for
alternative 𝑖 to be more preferred than alternative 𝑘.
This index can be used to exclude alternatives that
are dominated by others [28] and also for forming a
stochastic ranking among the alternatives [29, 30].

(vi) The central weight vectorw𝑐𝑖 describes what kinds of
weights are favourable for alternative i, i.e., make it
most preferred. The central weights can be presented
to the DMs in order to help them understand how
different weights correspond to different choices with
the assumed preference model. The central weights
are undefined for inefficient alternatives [22].

(vii) The confidence factor 𝑝𝑐𝑖 is the probability for alterna-
tive 𝑖 to be most preferred when the central weight
vector for that alternative is selected. In other words,
the confidence factor measures if the performance of
the alternative has been assessed accurately enough,
so that it can be selected under favourable preferences
between criteria [22].

4. Example

To illustrate the SMAA-CJM method, we consider the AHP
problem for evaluating 3 high schools (A, B, C) in terms of 6
criteria (One,. . ., Six) [31]. First we evaluate the problemusing
precise comparisons in CJM and compare the results with
AHP. Secondly, we evaluate the problemwith smaller number
of pairwise comparisons in CJM, thirdly by considering the
comparisons as imprecise, and fourthly by assuming that
comparison information between criteria is missing.

4.1. Precise Comparisons. In the original AHP problem, the
preferences were expressed verbally and mapped on the AHP
scale (1, 2, . . ., 9). For CJM comparisons we use the uniform
scale (50%, 55%, . . ., 90%) presented in Table 1. The resulting

Table 2: Pairwise CJM comparisons (%) between criteria (One, . . .,
Six).

Criterion Two Three Four Five Six
One 70 80 70 60 50
Two 60 30 25 25
Three 35 30 30
Four 30 25
Five 50

CJM comparisons for the problem are shown in Table 2
between the criteria and in Table 3 between the alternatives.
To omit redundant information, only the upper triangle of
each comparison matrix is presented, because the diagonal
elements are equal to 0.5 and the lower triangle elements are
equal to the complement of the upper triangle.

Solving the weights from the precise CJM comparisons
gives the criterion scores, average weights and overall scores
for alternatives shown in Table 4(a). Alternative A obtains
the highest score 0.41 followed by C (0.30) and B (0.29).
With precise information, the alternatives (A, B, C) obtain
distinct ranks (1, 3, 2) deterministically. This is indicated by
the rank acceptability indices 𝑏A,1 = 𝑏B,3 = 𝑏𝐶,2 = 100% and
zero for the remaining indices as well as the pairwise winning
indices 𝑐A,B = 𝑐A,C = 𝑐C,B = 100%. However, because subjective
information from the DM is always uncertain and B and C
obtain almost identical overall score, alternatives B and C
could be considered equally good in practice.

Table 4(b) shows the corresponding results using stan-
dard AHP. We observe that the CJM results are somewhat
different from AHP results. Alternative A obtains almost
identical overall score and the best rank with both methods.
However, alternatives B and C obtain different overall scores
and reversed ranks. Also, the criterion scores and the crite-
rion weights are quite different. The differences are mainly
due to the different scales used to represent verbal preference
statements in CJM and AHP. Transforming the comparisons
on the CJM scale by (6) into AHP comparisons (CJM->AHP
column in Table 1) and evaluating the model using AHP gives
nearly identical results as the CJM method. This is natural,
because both the LSQ solution and eigenvalue method give
the same weights with consistent comparisons and, as we will
see, in this example only small inconsistency is present.

Next we evaluate the consistency of the CJM comparisons
in terms of the inconsistency errors (𝑒𝑖𝑗) introduced in
this paper and in terms of the inconsistency ratio (IR) of
AHP. For the comparisons between criteria (Table 2) the
maximal inconsistency error -0.14 occurs between criteria
Two and Four (by formula (7) with 𝑎𝑖𝑗=0.30, 𝑤Two=8.3%
and 𝑤Four=10.7%). All other comparisons are well below
the threshold of ±0.1. Therefore, we would suggest the DM
to reconsider his/her comparisons between criteria and in
particular the comparison between criteria Two and Four.
The negative sign of the inconsistency error indicates that
the expressed comparison value (30%) is smaller than the
consistent value (44%). Instead of the preference statement
‘criterion Four is ‘moderately more important than Two’, a
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Table 3: Pairwise CJM comparisons between alternatives with respect to different criteria.

One B C Two B C
A 40 45 A 50 50
B 60 B 50
Three B C Four B C
A 70 50 A 90 80
B 30 B 30
Five B C Six B C
A 45 50 A 75 65
B 55 B 40

Table 4

(a) CJM criterion scores, criterion weights, and overall scores for alternatives

Alt.\crit. One Two Three Four Five Six Score
A 0.27 0.33 0.41 0.74 0.31 0.53 0.41
B 0.43 0.33 0.18 0.08 0.38 0.18 0.29
C 0.30 0.33 0.41 0.18 0.31 0.28 0.30
Weights (%) 26.9 8.3 7.8 10.7 21.6 24.7

(b) AHP criterion scores, criterion weights, and overall scores for alternatives

Alt.\crit. One Two Three Four Five Six Score
A 0.16 0.33 0.45 0.77 0.25 0.69 0.40
B 0.59 0.33 0.09 0.05 0.50 0.09 0.36
C 0.25 0.33 0.45 0.17 0.25 0.23 0.24
Weights (%) 33.0 4.7 3.3 9.2 22.6 27.3

consistent statement would have been between ‘a little more
important’ and ‘equally important’.

The IR for the comparisons between criteria is 0.02 (CI
= 0.03, RI = 1.25) which is clearly below the suggested
threshold 0.1 for sufficient consistency. Because IR is a kind
of average measure for inconsistency, it is insensitive to a
single inconsistent comparison and fails to detect the clearly
inconsistent comparison. For related discussion, see Bana e
Costa and Vansnick [32]. Also, the IR does not pinpoint the
most likely sources of inconsistency. In the original AHP
model the comparisons between criteria were slightly too
inconsistent with CI=0.137, RI=1.24 and IR=0.109.

For the comparisons between alternatives (Table 3) all
inconsistency errors are clearly below the suggested thresh-
old, with the largest inconsistency error of -0.02 found at
criterion One between alternatives A and C. Also the IRs
are well below the consistency threshold (IR = 0.004, 0, 0,
0.00014, 0, and 0.0006, correspondingly).

4.2. Smaller Number of Pairwise Comparisons. Thedisadvan-
tage with performing the full set of pairwise comparisons
between each pair of entities (alternatives or criteria) is that
the number of comparisons increases quadratically by the
number of compared entities. With 𝑛 compared entities,
the number of pairwise comparisons is n(n-1)/2. When the
number of compared entities is large, performing the full set
comparisons is in practice infeasible due to the large cognitive
load on the decision-maker. For example, Saaty and Ozdemir

[33] suggest that the full set of comparisons with more than
7 entities inherently lead to inconsistency. Bozóki et al. [34]
proved the increase of inconsistency empirically and showed
that a subset of the comparisons can be used to approximate
the results based on the full set of comparisons.

The LSQ method for solving the weights in CJM works
also with a subset of pairwise comparisons, provided that
the graph formed by pairwise comparisons between entities
is connected. This means that for each pair of entities A,
B, they are either compared directly, or there exists a path
of comparisons connecting A and B via other entities. The
minimal sufficient number of comparisons is n-1. Of course,
in that case no redundant information is provided, equation
system (8) has a unique solution, and the LSQ method is not
required.

As a compromise between the maximal and minimal
number of comparisons, we suggest (for problems with many
entities) comparing each entity systematically only with a
small number of other entities. In the following, we suggest
two methods for reducing the number of comparisons.

Before making comparisons, the DM should first order
the entities according to their importance or preference.
Saaty [4] applied such ordering in an example, although he
did not explicitly define the ordering as part of the AHP
procedure. Ordering the entities simplifies making the pair-
wise comparisons, because the mutual order of each pair of
entities has already been determined and only the (verbal or
numerical) preference statement is required. We believe that
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Table 5: Criterion weights (%) and overall scores for alternatives using full set of comparisons, and subsets of comparisons.

Criterion weights Overall scores
Comparisons One Two Three Four Five Six A B C
Full set 26.9 8.3 7.8 10.7 21.6 24.7 0.41 0.29 0.30
Subset 1 29.8 6.3 4.9 9.7 22.5 26.7 0.40 0.30 0.29
Subset 2 26.9 8.3 7.8 10.7 21.6 24.7 0.42 0.29 0.29

this reduces the risk of mistakes in preference statements.
Also, individual ordinally inconsistent comparisons are easy
to spot immediately from the comparison matrix when it is
ordered this way (see Section 5 and Xu et al. [35]).

Method 1. After ordering the entities, the DM compares each
entity only with the two following entities. The necessary
number of comparisons is then 2n-3. For example, with 6
entities, a total of 9 comparisons are required: 1&2, 1&3,
2&3, 2&4, 3&4, 3&5, 4&5, 4&6, 5&6. This method has the
advantage that each entity is compared only with entities that
are as similar as possible; no more than two places before or
after itself. Comparisons between extremely different entities
are avoided. This is good because it is difficult to express
accurate comparisons between very different entities.

Method 2. After ordering the entities, the DM compares each
entity only with the first and last entity. With 6 entities this
method results in comparisons: 1&6, 1&2, 2&6, 1&3, 3&6,
1&4, 4&6, 1&5, 5&6. This method has the advantage that it
reduces the DMs cognitive load in the comparisons because
during the process he/she becomes ‘more familiar’ with the
first and last entities, and at least one of them appears in every
comparison.

We should point out that we are not suggesting any
particular order inwhich the subset of comparisons aremade.
Bozóki et al. [34] came to the slightly surprising conclusion
that the order in which the pairwise comparisons are made
has no effect on the consistency. However, the order is not
irrelevant, because the order of questions may affect the
results through the anchoring bias.

We illustrate smaller sets of comparisons using the school
selection problem.After ordering the criteria into importance
order, the full set of comparisons is shown in Figure 2. Note
that after ordering, all consistent comparisons in the upper
triangle should be at least 50%. Also, consistent comparisons
should satisfy 𝑎𝑖,𝑗 ≤ 𝑎𝑖,𝑗+1 along rows and 𝑎𝑖+1,𝑗 ≤ 𝑎𝑖,𝑗 along
columns of the CJM. Some small violations of the latter
conditions do appear in Figure 2.

The comparisons according to the first method appear
on the bottom two diagonals and for the second method
on the first row and last column of Figure 2. Table 5 shows
the criterion weights and overall scores for alternatives using
the full set of comparisons and using the subsets by the first
and secondmethod for reducing the number of comparisons.
Because there is some inconsistency in the comparisons, it
is natural that the weights differ depending on which subset
of comparisons is included. The differences are quite small,
maximally about 3% points. However, the importance order

Criterion Six Five Four Two �ree

One 50 60 70 70 80

Six 50 75 75 70

Five 70 75 70

Four 70 65

Two 60

Figure 2: Pairwise CJM comparisons (%) between criteria in
importance order and subsets 1 & 2.

of weights is the same in all three cases. The overall scores
for the alternatives are in practice identical using different
sets of comparisons, resulting in the same recommendation:
Alternative A is best and B and C are in practice equally good.

4.3. Imprecise Comparisons. Next we introduce imprecision
to the problem and analyse it using SMAA-CJM. We assume
that the uncertainty of each comparison 𝑎𝑖𝑗 in Tables 2 and 3 is±10% points and use a uniform distribution to represent this
uncertainty. Solving the model with imprecision gives almost
identical criterion scores, average weights, and overall scores
for alternatives as with precise comparisons (Table 4(a)).
However, the ranking of the alternatives becomes uncertain,
as shown by the rank acceptability indices and pairwise
winning indices in Figure 3.

Alternative A with 99.97% first rank acceptability is in
practice the only candidate for the first rankwhile alternatives
B and C obtain only 0.06% and 0.01% acceptability for the
first rank. However, the second rank acceptability of B and C
is now 42% and 58%, which shows clearly that we cannot be
sure about which alternative is the second best one.The same
conclusions can be made from the pairwise winning indices
𝑐A,B = 99.94%, 𝑐A,C = 99.99%, but alternatives B and C win
each other with 42% and 58% probability, correspondingly.
In this case the pairwise winning indices between B and
C are almost identical to their second rank acceptability
indices because A obtains almost always the first rank. The
central weights for A nearly coincide with the average weights
(bottom row of Table 4(a)) resulting into confidence factor
𝑝𝑐𝐴= 100%. The confidence factors of B and C are 0.02%,
whichmeans that even considering the uncertainty of criteria
preference information, these alternatives are in practice
inefficient.
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Figure 4: Rank acceptability indices and pairwise winning indices with missing comparisons between criteria.

4.4. Missing Comparisons between Criteria. We demonstrate
next how the SMAA-CJM method can be used when no
comparison information among criteria (Table 2) exists. We
consider only the pairwise comparisons between alternatives
with respect to different criteria (Table 3) and the associated
±10% point imprecision for the comparisons 𝑎𝑖𝑗 between
alternatives with respect to each criterion. We represent
missing preferences among the criteria by nonnegative nor-
malized weights, 𝑤𝑗 ≥0, Σ𝑤𝑗=1, that follow a uniform joint
distribution.

The resulting criterion scores are identical with the
previous analysis, because we have the same comparison and
uncertainty information between alternatives. The uniform
weight distribution results into average weights for each cri-
terion equal to 1/6 ≈ 16.7%.The average overall scores for the
alternatives A, B, C are 0.43, 0.26, and 0.30, correspondingly.

Figure 4 shows the resulting rank acceptability indices
and pairwise winning indices. We observe that the increased
uncertainty in the comparisons is reflected as increased
uncertainty in the ranking. Now both B and C with 4.7% and

3.5% first rank acceptability could, at least in theory, be the
best one under suitable preferences for criteria.

Table 6 shows the central weights and confidence factors
for the alternatives. The central weights identify what kind of
trade-off weights between criteria make each alternative most
preferred. We can see that different alternatives are favoured
by dramatically different weights. For example, alternative
B would require about 39% of the weight to be placed on
criterionOne alone.The confidence factor for B is 55%, which
means that even with its central weights B will not be the best
alternative with certainty. For C, the confidence factor is even
lower, only 19%. This means that the criteria measurements
are too uncertain to justify choosing C even with its central
weights.

5. Comparison of CJM and AHP Scales

The most significant differences between CJM and AHP
results stem from the different scales used to represent
verbal preference statements. Because the verbal preference
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Table 6: Central weights and confidence factors for the alternatives (%).

Alt. One Two Three Four Five Six pc

A 15 16 17 18 16 18 100
B 39 16 8 4 26 7 55
C 19 23 29 4 19 7 19

Table 7: Inconsistency ratios and inconsistency errors with AHP and CJM scales.

Inconsistency ratio (IR) Inconsistency error
Number of criteria AHP CJM AHP/CJM ratio AHP CJM AHP/CJM ratio
3 0.18 0.062 2.9 0.090 0.049 1.8
4 0.16 0.059 2.8 0.17 0.098 1.7
5 0.17 0.064 2.6 0.22 0.13 1.6
6 0.17 0.063 2.7 0.25 0.16 1.5
7 0.17 0.061 2.8 0.27 0.19 1.5
8 0.17 0.063 2.7 0.30 0.21 1.4

statements carry only ordinal information and DMs have
different interpretation of the intensities of the preference
statements, no fixed numerical scale can properly represent
the ordinal verbal comparisons. However, the integer scale
of AHP from 1 to 9 is particularly problematic, because in
many cases it is impossible to express consistent comparisons
between three or more entities. For example, if criterion 1
is moderately more important than criterion 2 (ã12=5) and
criterion 2 is moderately more important than criterion 3
(ã23=5), a consistent comparison between criteria 1 and 3
is impossible to express using the AHP scale (ã13=25). This
problem occurs partly because the AHP scale is too sparse for
the weaker preference statements and too dense for stronger
statements. A cascade of a few comparisons even with very
weak preference values exceeds soon the strongest value.
Because the CJM scale is better balanced, i.e., denser for
weaker preferences and sparser for stronger preferences, we
wanted to test if it performs better than the AHP scale. With
the CJM scale, the above example results into CJM com-
parisons a12=a23=70% which correspond to ã12=ã23=2.33.
The consistent comparison ã13=5.44 corresponds to CJM
comparison a13=84% which is very close to scale value 85%.

To compare the two scales, we generated a large number
of random ordinally consistent comparison matrices for
different numbers of criteria. Ordinal consistency means the
natural transitivity of preference statements that a consistent
and logical DM should follow [35]. The transitivity of prefer-
ence statements can be expressed as

(i) If A is preferred toB by intensity 𝑎AB andB is preferred
to C by intensity 𝑎BC, then A is preferred to C by
intensity 𝑎AC ≥ max{𝑎AB, 𝑎BC}

Random ordinally consistent comparison matrices between 𝑛
entities and 𝑚 levels of preference intensity can be generated
by generating first a set of random weights 𝑤1 > 𝑤2,. . .,> 𝑤𝑛
and thresholds 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑚−1 in range [0, 1] and
then setting each comparison value 𝑎𝑖𝑗 equal to the smallest
intensity 𝑘 such that 𝑤𝑖-𝑤𝑗 < 𝑡𝑘. We note that the simulated

weights satisfy the condition of order preservation (COP)
with respect to the generated comparisons [32].

Table 7 shows the average IRs and inconsistency errors
for 1000 randomly generated ordinally consistent comparison
matrices using the AHP and CJM scales. Using the AHP
scale, the IR is on average in the range [0.16, 0.18], i.e., clearly
above the suggested consistency threshold of 0.1. This means
that when the DM is ordinally consistent, the AHP scale
comparisons are on average cardinally inconsistent. For the
CJM scale the average IR is in range [0.059, 0.064], i.e., clearly
consistent. When measured by the IR, the CJM scale gives
from 2.6 to 2.9 times better consistency than the AHP scale.

In terms of the average inconsistency error the results
are similar. The inconsistency error for each matrix is the
maximal |𝑒𝑖𝑗| and Table 7 shows the average for each number
of criteria. Using the AHP scale, the inconsistency error is in
the range [0.09, 0.30] increasing with the number of criteria.
This is natural, because with larger number of comparisons,
the maximal error is likely to be larger. Except for the 3
criterion case, the inconsistency errors exceed the suggested
threshold of 0.1 clearly. Using theCJM scale, the inconsistency
errors are in the range[0.049, 0.207] exceeding the suggested
threshold with 5 or more criteria. Also when measured by
the inconsistency error, the CJM scale gives clearly better
consistency than the AHP scale: from 1.4 to 1.8 times better.

We conclude that althoughnot perfect, themore balanced
CJM scale is clearly better than the AHP scale in its ability to
represent the cardinal preferences of an ordinally consistent
DM. Similar results were previously obtained by Pöyhönen
et al. [36] who compared the two scales empirically using a
group of students.

6. Discussion

The comparison values of CJM have a natural interpretation.
Considering only two criteria at a time, the DM can interpret
the comparison values as trade-offweights that he/she assigns
to the criteria. The DM can express these weights either as a
normalized complementary pair (e.g., 0.8, 0.2) or as a pair of
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nonnegative numbers (e.g., 4, 1) that are normalized to satisfy
the complementarity condition. Similarly, when comparing
two alternatives with respect to a criterion, the DM is in
effect distributing partial value between the two alternatives.
Of course, it is also possible to evaluate the performance of
alternatives through other techniques and to use pairwise
comparisons only for assessing criteria weights. For example,
criteria measured on natural scales can be normalized to
partial values in range [0, 1]. This makes the CJM method
conformant with linear value theory.

No fixed cardinal scale can represent precisely the verbal
preference statements of different DMs. Instead, each DM
could define their own cardinal scale that represents his/her
verbal statements. Alternatively, DMs could express their
preferences cardinally in the first place. In practice this may
be difficult for many DMs.

Another approach for cardinalizing ordinal preference
statements is based on ordinal regression, as in UTA [37],
MACBETH [38], UTAGMS [39], and GRIP [40] methods.
These methods use verbal preference and indifference state-
ments between pairs of alternatives or criteria to assess
constraints on the parameters of an additive value func-
tion.

7. Conclusions

Wehave introduced the SMAA-CJMmethod for representing
uncertain or imprecise information through stochastic dis-
tributions in the Complementary Judgment Matrix method
and a simulation approach for analysing the resulting model.
A particular strength of the method is that it allows flexible
modelling of different kinds of imprecision, uncertainty, or
even partially missing preference information. This is useful
in decision processes, where the information is gradually
refined during the process. The method is also suitable for
group decision-making problems, where it is difficult for
DMs to agree on precise pairwise comparisons. The method
allows using distributions that include eachDM’s preferences.
Alternatively, the weight solution method of CJM can find
weights that match different DMs’ preferences as well as
possible in the LSQ sense.

We also introduced the inconsistency error as a measure
for how consistent each comparison is, i.e., how much each
comparison value differs from the consistent value. These
measures are easy for the DMs to understand, because they
are directly related to their comparison values. Another
advantage of inconsistency errors is that they identify com-
parisons that are most likely incorrect. A reasonable thresh-
old for the inconsistency errors is ±0.1, corresponding to one
step uncertainty on the verbal scale. Also this threshold is easy
for the DMs to understand.

We conducted simulation experiments using a large
number of different sized (3,. . .,8 criteria) ordinally consistent
comparison matrices. The results showed that the balanced
comparison scale of CJM results in more consistent results
than the standard AHP scale. The consistency was better
in terms of both the inconsistency ratio (IR) of AHP and
the inconsistency error of SMAA-CJM. An earlier empirical
study with students gave similar results.
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