
Double beta decay of some medium-mass

nuclei

Master’s thesis

Jaakko Maalampi

October 24, 2018

Instructor: Jouni Suhonen

1



Preface

I would like to thank my instructor for his patience in instructing my use of the

BCS model.

2



Abstract:

This study examines the double beta decay of Zn-70, Se-80, Ru-104 and Cd-114.

These nuclei are even, middle mass nuclei with open major shells. Their structure

calls for the pairing interaction between like nucleons. In this study this is achieved

by using the nuclear Bardeen-Cooper-Schrieffer (BCS) model. In the BCS model,

the valence nucleons are treated as a sort of condensate that has spread across

the valence energy levels. In the BCS model, interacting particles are replaced by

non-interacting quasiparticles.

Double beta decay is a rare process, with only a handful of nuclei being predicted

to experience them. The decay process involves accounting for the intermediate

states between the initial and final nuclei. This is done by summing over the

various possible levels, and weighing them by the occupation amplitudes of the

level in question and dividing by the average energy between the initial and final

states. An alternative proposal, the single-state-dominance hypothesis (SSDH),

replaces this sum by assuming that only the ground state is relevant. This study

uses the SSDH in its main results. The BCS double beta decay matrix elements

were determined to be: Zn:0.91 Se:0.48 Ru:1.61 and Cd:0.95

The BCS results for the single beta decays of the intermediate nucleus are not

wholly in agreement with the experimental log ft values. There are various pos-

sible error sources, the major one being that the basic BCS model assumes that

the quasiparticles do not interact. There are extensions that allow correcting such

things. As an alternative, I tested a model where the ground state of the in-

termediate nucleus was replaced by a linear combination of 1+ states that could

experience beta decay. The coefficients for these combinations were determined by

requiring that one of the single beta decay log ft values is correct.

The aforementioned linear combinations were also used to calculate the double

beta decay matrix element for each of the processes in this study. To evaluate

these results, I also calculated the double beta decay matrix element using the

single decay matrix elements that produced the experimental log ft values for the

intermediate nucleus. This could have been achieved by calculating backwards

from the log ft equation, but even more trivial was to take one linear combination

that had been fitted to the corresponding process. These results were: Zn:0.045

Se:0.027 Ru:0.116 and Cd:0.076.
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Tiivistelmä:

Tämä työ tarkastelee Zn-70, Se-80, Ru-104 ja Cd-114 ydinten kaksoisbeetaha-

joamista. Kyseiset ytimet ovat keskiraskaita parillisia ytimiä, joiden uloimmat

kuoret ovat avoimia. Niiden rakenteeseen vaikuttaa voimakkaasti samanlaisten

nukleonien välinen pariutumisvuorovaikutus. Tässä työssä tämä saavutetaan käyttämällä

Bardeen-Cooper-Schrieffer (BCS) mallia ytimille. BCS mallissa uloimpia nuk-

leoneja tarkastellaan eräänlaisena nesteenä, joka on levinnyt uloimpiin energiata-

soihin. BCS mallissa keskenään vuorovaikuttavien hiukkasten sijasta tarkastellaan

vuorovaikuttamattomia kvasihiukkasia.

Kaksoisbeetahajoaminen on harvinainen prosessi, vain muutamankymmenen yti-

men ennustetaan pystyvän siihen. Hajoamisessa tulee ottaa huomioon alku- ja

lopputilojen väliset tilat. Tämä huomioidaan summaamalla eri välitilojen kautta

kulkevien prosessien matriisielementit yhteen ja painottamalla ne välitilojen ener-

gianimittäjillä. Vaihtoehtoisesti on olemassa nk. single state dominance hypoth-

esis (SSDH), mikä sanoo että summan sijasta voidaan tarkastella vain väliytimen

perustilaa. Tässä työssä käytetään SSDH:ta päätulosten laskemisessa. BCS kak-

soisbeetamatriisielementit tarkasteltaville ytimille olivat: Zn:0.91 Se:0.48 Ru:1.61

ja Cd:0.95.

BCS mallin tuottamat arvot välitilojen beetahajoamisten log ft arvoille eivät vas-

taa kokeellisia arvoja tarkasti. On useita mahdollisia virhelähteitä, joista tärkein

lienee se että kvasihiukkasten väliset vuorovaikutukset jätetään huomiotta perus

BCS mallissa. BCS mallia voidaan laajentaa ottamaan nämä vuorovaikutukset

huomioon. Laajentamisen sijaan testasin mallia missä väliytimen perustila kor-

vataan 1+ tilojen lineaarikombinaatiolla. Kombinaation kertoimet saadaan vaati-

malla että kombinaatio tuottaa yhden kokeellisen log ft arvon.

Laskin kaksoisbeeta matriisielementit myös edellä mainittujen kombinaatioiden

avulla. Arvioidakseni näitä tuloksia, laskin kaksoisbeetamatriisielementit myös

käyttäen väliytimen kokeellisia tuloksia. Tämä olisi voitu saavuttaa laskemalla

matriisielementti takaperin log ft arvosta, mutta samat matriisielementtien arvot

tuotettiin lineaarikombinaatioiden sovituksessa, joten käytin niitä. Näin määritetyt

kaksoisbeeta matriisielementit olivat: Zn:0.045 Se:0.027 Ru:0.116 ja Cd:0.076.
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1 Introduction

This study examines the double beta decay of Zn-70, Se-80,Ru-104 and Cd-114.

These nuclei are middle-mass with open major shells in the vicinity of the magic

numbers. To determine the decay properties of these nuclei, a suitable model for

their structures must be chosen. The simplest nuclear model involves examining

a single particle in a mean field. Such models are suitable for nuclei at the magic

numbers, as the large gap between major shells reduces the need to account for

other interactions. Single particle mean field models are, however, unsuitable for

this study, since nuclei in open major shells take far less energy to excite. The

energy it takes to produce one particle-hole excitation is roughly equivalent to the

energy taken to produce two particle or hole excitations [1, p. 370].

How should the model be improved? The single particle mean field interaction

is the interaction between a particle and the other A-1 particles of a nucleus.

The next level of interaction is the interaction between like particles, the pairing

interaction. This interaction binds similar particles into J=0 pairs with isospin

T=1. This leads to a variety of effects, such as even-even nuclei invariably having

a ground state of 0+. Additionally, the average mass between two neighboring

even-even nuclei is lower than that of the even-odd nucleus between them [1,

p.370-372]. The mass difference is known as the pairing gap and it is a crucial

value in the following study.

What sort of a model is suitable for a nucleus that includes both the single particle

mean field and the attractive pairing interaction between two particles? The situ-

ation is very similar to that of certain superconductors. There the electrons form

cooper pairs due to the attractive interaction enabled by lattice vibrations. These

electron pairs behave like bosons that have lower energy than individual electrons

and can, in low temperatures, travel through the medium with no resistance. This

description of superconductivity is part of the Bardeen-Cooper-Schrieffer or BCS

theory of superconductivity [2]. This model can be applied to systems of many in-

teracting particles that include a suitably strong pairing interaction. The nucleons

for which the pairing interactions are strong are suitable for such an examination,

see [3] and [4]. In this study, the nuclear BCS-model is used to describe the nucleus

as a solid core surrounded by a layer of liquid pair condensate. The BCS-model

is solvable numerically and this study uses a ready-made program to calculate the
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BCS structure for each of the nuclei.

The main objective of this study is to determine the transition matrix element

for the double beta decay for each of the nuclei. This involves determining the

matrix elements for transitions to and from the in-between odd-odd nucleus. The

processes being examined have experimental results for the beta decays of these

odd-odd nuclei. Therefore, it will be possible to compare the theoretical predictions

to the experimental results. In addition, I experimented with a method of fitting

the experimental results into the calculation by assuming the intermediate state to

be a superposition of proton-neutron quasiparticle states that fulfill the conditions

necessary for beta decay.

2 BCS structure

The BCS theory was originally constructed to explain the properties of supercon-

ductors. It is based on noting that the exchange of phonons between electrons

leads to an attractive interaction if the phonon energy is larger than the energy

difference between the participating electron states[2]. The superconductor ground

state, then, is a linear combination of these pairs with opposite spin and momen-

tum. In the original study, Bardeen, Cooper and Schrieffer go on to derive the

various properties of superconductors as being caused by this attractive interaction

producing an energy gap below the critical temperature.

Applying the BCS model to the study of nuclear structure is not unexpected. There

are a number of structural properties that are caused by nucleons experiencing

a similar pairing interaction. Contrary to the superconductor case, the pairing

interaction between nucleons is direct. This interaction, known as the pairing

interaction, binds nucleons together into J=0 pairs. There are three types of

pairs that could be formed: proton-proton, neutron-neutron and proton-neutron

[5, chapter 1, section B2]. The last case is largely theoretical and only relevant for

nuclei where the number of protons and neutrons is the same. This study concerns

only nuclei with N > Z, so these mixed pairs needn’t be accounted for. In this

study, then, pairing is strictly between same types of particles.

As stated in the introduction, pairing leads to various phenomena in nuclei, but

this study considers the analogue to the superconductor case, that is to say a
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nucleus where the pairing interactions dominates the single-particle mean field

model. In such a case, it is expected that the nucleon pairs would form some

manner of condensate, similar to the superconductor ground state.

The BCS ground state of an even-even nucleus is [1, p. 392]

|BCS〉 =
∏

a

(ua − vaA
†
α)|CORE〉, (1)

where ua and va are the occupation amplitudes of the state a and A†
α creates a pair

of like nucleons. The amplitudes are normalized so that u2a+ v2a = 1. Structurally,

the nuclear BCS model extends the nuclear mean field to account for pairing in the

outermost nucleons. In (1), the core is the mean field vacuum of the hard center

of the nucleus. The rest of the equation consists of adding back in the outermost

nucleons in pairs. The ansatz shows that these levels have a distribution across

the energy levels, determined by the occupation and inoccupation amplitudes va

and ua. Therefore the core of the nucleus can be said to be covered in a fermion

liquid.

From the BCS ansatz it is then possible to derive the quasiparticle Hamiltonian

etc. leading to the BCS equations [1, p. 401-402], which are as follows:

Occupation amplitudes

uc = θ(lc)
1√
2

√
1 +

ηc
Ec

, vc =
1√
2

√
1− ηc

Ec
. (2)

Quasiparticle energy

Ec =
√
η2c +∆2

c . (3)

Gap equation

2ĵb∆b = −
∑

a

ĵa∆a

Ea
〈aa; 0|V |bb; 0〉. (4)

Additionally, the average particle number is

n̄ =
∑

a

ĵ2av
2
a. (5)
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In the above equations, θ(lc) is a phase factor, Ea is the quasiparticle energy of

state a, and ηc = ǫc − λ − µc is an energy term. In the previous, ǫ is the single

particle energy, µ is a renormalization factor caused by interactions between nuclei

and λ is the chemical potential, which is change in energy when a particle is added

to the BCS ground state.

These equations can be solved iteratively, by choosing initial values for ∆ and

λ and using them to evaluate the various BCS equations. The condition for the

completion of the calculation is that the average particle number is within a desired

deviation from the exact particle number. The BCS vacuum forms a reference to

be used to model the structure of the neighboring nuclei. The BCS calculations

are done separately for protons and neutrons, since protons and neutrons don’t

generally pair together.

Particles in the BCS model are quasiparticles that have occupation amplitude. In

even nuclei, the excitations have to overcome pairing, and therefore the lowest

excitation energies are equivalent to the pairing gap energy. These excitations

consist of an even number of quasiparticles, since both particles in the pair are

excited. An odd nucleus has an unpaired particle, which is not paired. As a

result, the excitation energy of a odd nucleus is far lower than the pairing gap

energy. Additional excitations involve breaking a pair, leading to three- or more

quasiparticle excitations.

2.1 Example

The example being considered throughout this study is the decay of Ruthenium-

104 to Palladium-104. For that, both of the nuclei need to have their BCS struc-

ture numerically determined. This section examines Pd-104, but also includes the

results for Ru-104.

First, the test case where Gp = Gn = 1 is used to determine the state with the

lowest quasiparticle energy. Since palladium-104 is even-even, any single particle

excitation has to break a pair. Thus, all of the quasiparticle energies have to be

equal or greater than the pairing gap energy. The pairing gap for both protons

and neutrons can be calculated using measured separation energies [1, p 500]:
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∆p(A,Z) =
1

4
(−1)Z+1(Sp(A+ 1, Z + 1)− 2 · Sp(A,Z) + Sp(A− 1, Z − 1))

=
−1

4
· (4965 keV − 2 · 8655.9 keV + 6214.1 keV) = 1533.175 keV

∆n(A,Z) =
1

4
(−1)A−Z+1(Sn(A+ 1, Z)− 2 · Sn(A,Z) + Sn(A− 1, Z))

=
−1

4
· (7094.1 keV − 2 · 9981.3 keV + 7625.4 keV) = 1310.775 keV.

(6)

Separation energies are tabulated for example in [6]. At this point the pairing

strength parameters are altered until the lowest quasiparticle states fulfill the re-

quirements Eqp(lowest) = ∆. These conditions are fulfilled in Pd-114 by pairing

strengths Gn = 0.98575 and Gp = 1.11806. For Ru-104, the parameters are

Gn = 1.02167 and Gp = 1.11278. Tables 1- 4 contain the BCS results needed for

the example case.

Table 1: BCS results for neutrons in Ru-104. The included values are: the
quantum numbers of the single particle energy levels of Ru-104, the occupa-
tion and unoccupation amplitudes and the quasiparticle energies.

nlj u v Eqp

1p 1

2

0.10755 0.99420 7.87388

1p 3

2

0.09345 0.99562 9.25947

0f 5

2

0.08051 0.99675 9.52388

0f 7

2

0.06875 0.99763 13.16101

2s 1

2

0.85958 0.51101 1.47076

1d 3

2

0.92607 0.37736 1.95223

1d 5

2

0.44304 0.89650 1.75067

0g 7

2

0.73205 0.68125 1.41516

0g 9

2

0.14793 0.98900 5.65585

0h 9

2

0.99820 0.05999 10.00966

0h 11

2

0.97080 0.23991 2.92117
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Table 2: BCS results for protons in Ru-104. Same structure as above.
nlj u v Eqp

1p 1

2

0.49107 0.87112 2.19579

1p 3

2

0.29007 0.95701 3.37754

0f 5

2

0.28854 0.95747 3.93466

0f 7

2

0.11820 0.99299 7.86274

2s 1

2

0.99867 0.05161 7.75299

1d 3

2

0.99763 0.06885 8.58665

1d 5

2

0.99496 0.10023 5.57999

0g 7

2

0.98971 0.14309 6.85861

0g 9

2

0.69994 0.71420 1.54905

0h 9

2

0.99900 0.04461 17.06545

0h 11

2

0.99745 0.07135 8.11898

Table 3: Palladium-104 BCS results for neutrons
nlj u v Eqp

1p 1

2

0.10201 0.99478 7.58583

1p 3

2

0.08536 0.99635 8.99623

0f 5

2

0.07281 0.99735 9.27618

0f 7

2

0.06177 0.99809 12.97503

2s 1

2

0.92733 0.37424 1.59549

1d 3

2

0.95455 0.29804 2.22782

1d 5

2

0.49901 0.86659 1.41554

0g 7

2

0.81626 0.57768 1.31078

0g 9

2

0.13772 0.99047 5.38812

0h 9

2

0.99875 0.05001 10.50228

0h 11

2

0.98040 0.19704 3.13048
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Table 4: Palladium-104 BCS results for protons
nlj u v Eqp

1p 1

2

0.40415 0.91469 2.35481

1p 3

2

0.24125 0.97046 3.69255

0f 5

2

0.24755 0.96887 4.24532

0f 7

2

0.10493 0.99448 8.22503

2s 1

2

0.99853 0.05411 7.06337

1d 3

2

0.99745 0.07138 7.81791

1d 5

2

0.99432 0.10644 4.91745

0g 7

2

0.98917 0.14676 6.28039

0g 9

2

0.57730 0.81653 1.53318

0h 9

2

0.99903 0.04395 16.30645

0h 11

2

0.99741 0.07194 7.54543

The pairing interaction causes the changes in the nuclear structure, figures 1 and

2 show the occupation amplitude for each of the single particle energy levels of

Pd-104. The figures also show how the structure of the nucleus changes as the

pairing strength parameter is increased or reduced. The figures show that the

nucleons have spread outside of the Fermi surface. The magnitude of this effect is

clearly related to the size of the pairing strength parameter.

Since the BCS results form a reference, the structure of neighboring nuclei can

be probed by using the quasiparticle energy levels. Figures 3 and 4 show the

normalized quasiparticle energy levels and the corresponding experimental energy

levels of the nucleus with one additional nucleon of the corresponding type. The

normalization has removed the pairing gap energy, so the lowest quasiparticle

excitation should be equivalent to a single particle excitation.
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Figure 1: The occupation amplitude for neutron single particle states of Pd-
104. The x-axis is the occupation amplitude and runs from 0 to 1. This
tends to lower as the energy of the states increases. Stronger pairing leads
to further deformation about the Fermi surface.
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Figure 3: The normalized neutron quasiparticle energy levels and the lowest
energy levels of palladium-105. Pd-105 has a single non-paired neutron, so
its neutron excitations do not require breaking a pair, so the excitations are
lower than the pairing gap [7, page 135]. The quasiparticle d levels are both
higher than the corresponding levels of the experimental spectrum. The rest
of the states are correctly ordered and their relative positions resemble the
experimental spectrum.
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3 Decay calculations

3.1 Beta decay in BCS formalism

The half-life of a decay process is related to the transition probability by

t 1

2

=
ln 2

Tfi

. (7)

The transition probability Tfi can be calculated by using Fermi’s golden rule.

What follows is the transition probability for beta decay with the addition of the

BCS formalism. The reduced single-particle matrix element for Gamow-Teller

transitions is: [1, p. 165]

MGT (ab) =
√
2δnanb

δlalb ̂âb(−1)la+ja+
3

2

{
1
2

1
2 1

jb ja la

}
, (8)

where the last term is the Wigner-6j symbol, which is related to the coupling of

three angular momenta and is calculated in some detail in appendix A. Equations

(9) and (10) are the Gamow-Teller matrix elements for a transition from a two-

quasiparticle state with angular momentum J to the BCS vacuum. For later use,

(11) is the relation between transitions from and to the two-quasiparticle state [1,

p. 461].

M
(+)
GT (pnJ → BCS) = −δJ1

√
3vnupMGT (pn). (9)

M
(−)
GT (pnJ → BCS) = δJ1

√
3vpunMGT (pn) (10)

M
(∓)
GT (BCS → pnJ) = (−1)JM±

J (pnJ → BCS) (11)

Additionally, it is possible to deal with linear combinations of two-quasiparticle

states. In such cases

M
(±)
GT (pnJ → BCS) =

∑

i

αiδJ1
√
3uiviMGT (pn), (12)

where ui and vi are the amplitudes of the corresponding quasiparticle states.
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The Gamow-Teller reduced transition probability is [1, p. 163]

BGT =
g2a

2Ji + 1

∣∣∣M (±)
GT

∣∣∣
2
, (13)

where ga = 1.27 is a constant. The transition probability for beta decay is

Tfi =
κ/ ln 2

f(BF +BGT )
, (14)

where κ = 2π3~7 ln 2
m5

ec
4G2

F

= 6147s, f is the structural integral and BF is the reduced

transition probability for Fermi-type transitions. Such transitions are suppressed

in the beta decay case, so the log ft value for a beta decay is

log f0t 1

2

= log
κ

BGT

(15)

3.1.1 Example

104
45 Rh59

4.5
4.4 EC/β+

β−
104
44 Ru60

104
46 Pd58 0+

1+

0+

Figure 5: The decay modes of Rhodium-104. The values are the experimental
log ft values of the corresponding decay.
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Consider a transition from the Rh-104 ground state to the Ru-104 BCS vacuum,

as seen in 5. Now the matrix element is

MGT (1g 9

2

, 1g 7

2

) =
√
2δ1,1δ4,4

√
9 + 1

√
7 + 1(−1)4+

9

2
+ 3

2

{
1
2

1
2 1

9
2

7
2 4

}

=
√
160(−

√
3

9
)

= −4
√
30

9
,

(16)

and with the addition of BCS results from tables 1 and 2,

M
(+)
GT (1g 9

2

, 1g 7

2

1+ → 0+) = −δ1,1
√
3 · 0.68125 · 0.69994 · (−4

√
30

9
)

≈ 1.42165
√
2 ≈ 2.0105

(17)

For later use, the same mother nucleus decaying into the palladium-104 vacuum

has the matrix element

M
(−)
GT (1g 9

2

, 1g 7

2

1+ → 0+) = δ11
√
3 · 0.81653 · 0.81626 · (−4

√
30

9
) ≈ 2.8102. (18)

The reduced transition probability for the example decay is

BGT =
1.272

2 + 1
(1.42165

√
2)2 ≈ 2.1732. (19)

Finally, the log ft value for this decay is

log f0t 1

2

= log
6147

2.17320
≈ 3.452 ≈ 3.45. (20)

The experimental value is 4.4, per [8].

3.2 Linear approximation of the initial state

Suppose that the initial state is approximated by a linear combination of two

states,

|Ψi〉 = α1|Ψ1〉+ α2|Ψ2〉. (21)
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Further, suppose that both α are real and normalized, i.e.

α2
1 + α2

2 = 1. (22)

Suppose that such a state experiences β+ decay. Then (12) reads

M
(+)
GT (J+

i → J+
f ) = −

√
3(α1vν1uπ1

MGT (π1, ν1) + α2vν2uπ2
MGT (π2, ν2)). (23)

Note that the differences between equations (9) and (10) are the overall sign and

which states u and v amplitudes are used. Simplify the notation by writing

Ai = viuiM(πi, νi), (24)

where vi and ui are either vπ and uν or vice-versa, depending on the decay process.

This will help in generalizing the results to cover both types of decay. Rearranging

(15) produces the following

log ft = log
κ

BGT

= log
3κ

g2a
− 2 log

∣∣∣M (+)
GT (1+ → 0+)

∣∣∣, (25)

and further
∣∣∣MGT (J

+
i → J+

f )
∣∣∣ =

√
3κ

g2aft
. (26)

Inserting equation (23) into the above and using the simplified notation from

equation (24) gives
∣∣∣−

√
3(α1A1 + α2A2)

∣∣∣ =
√

3κ

g2aft
, (27)

which can be further simplified to

|(α1A1 + α2A2)| =
√

κ

g2aft
. (28)

The calculations up to this point have assumed that the beta decay is β+. With the

choice of notation, the differences between β+ and β− decays have been absorbed,

and the following calculations are the same for both processes. Notation is further

simplified by

C(ft) =

√
κ

g2aft
. (29)
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Opening the norm produces two cases,

α1A1 + α2A2 = ±C(ft). (30)

Solving α1 from the above is simple:

α1 =
±C(ft)− α2A2

A1
. (31)

Insert the above into the normalization condition (22)

(
±C(ft)− α2A2

A1
)2 + α2

2 = 1. (32)

(±C(ft)− α2A2)
2 + α2

2A
2
1 = A2

1 (33)

α2
2(A

2
1 +A2

2)∓ α2(2A2C(ft)) + C2(ft)−A2
1 = 0 (34)

This is a second order polynomial and thus

α2 =
±2A2C(ft)±

√
(2A2C(ft))2 − 4(A2

1 +A2
2)(C

2(ft)−A2
1)

2(A2
1 +A2

2)
. (35)

Note that the first ± comes from norm in equation (28) and is therefore indepen-

dent of the other. There are up to four possible values for α2. Two of the possible

values can be ruled out by assuming that α1 is positive. This can be done because

if (26) is fulfilled by some (α1, α2) pair, it is also fulfilled by (−α1,−α2). There-

fore it is sensible to only examine those combinations where the ground state has

a positive coefficient.

3.2.1 Requirements for the realness of α2

α2 is real if and only if

(2A2C(ft))2 − 4(A2
1 +A2

2)(C
2(ft)−A2

1) ≥ 0

4(A2
1 +A2

2)A
2
1 ≥ 4(A2

1 +A2
2)C

2 − (2A2C)2 = 4A2
1C

2

A2
1 +A2

2 ≥ C2

[u1v1M(p1, n1)]
2 + [u2v2M(p2, n2)]

2 ≥ κ

g2aft
≈ 3811

ft
.

(36)
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Therefore this approximation method is not valid for all decay processes. The

right side decreases as the ft value of the decay increases, so this method is more

likely to be valid for slow processes, with a log ft value of more than 3 being the

minimum requirement.

3.2.2 Choosing states

This method assumes that the participating states can contribute to the decay

process, i.e.

δnπnν
= 1

δlπlν = 1.
(37)

Further, the angular momenta of the proton and neutron states should conform to

jπ + jν ≥ ji ≥ |jπ − jν | , (38)

where ji is the angular momentum of the nucleus that decays, in this case ji = 1.

Choosing from amongst the proton-neutron combined states that fulfill these con-

ditions is done by minimizing the sum of the quasiparticle-energies of the partic-

ipant states. This condition means that we have chosen the lowest state of given

spin-parity in the decaying odd-odd nucleus.

3.2.3 Calculations

Continuing from the previous example, the first state at the Fermi surface is p =

0g 9

2

, n = 0g 7

2

and the second is p = 0g 9

2

, n = 0g 9

2

. As seen in the tables 1 and 2,

the corresponding occupation amplitudes are:

up = 0.69994

vn = 0.989
(39)
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Thus (24) is of the form

A1 = vn1up1MGT (0g 9

2

, 0g 7

2

) = 0.68125 · 0.69994 · (−0.9938
√
6)

≈ −0.47388
√
6 ≈ −1.1608

A2 = vn2up2MGT (0g 9

2

, 0g 9

2

) = 0.989 · 0.69994 · (0.1111
√
330)

≈ 0.07691
√
330 ≈ 1.3972.

(40)

The experimental logft value for this decay is 4.4. Then (29) is

C(4.4) =

√
6147

1.272 · 104.4 ≈ 0.38952 (41)

Substituting these values into (35) leads to

α2 =
±2 · 1.4 · 0.39

2((−1.161)2 + 1.402)

±
√
(2 · 1.40 · 0.39)2 − 4((−1.161)2 + 1.402)(0.392 − (−1.161)2)

2((−1.161)2 + 1.402)

= ±(−0.1651)± 0.6235

=





0.7891 ++

−0.4592 +−
0.4592 −+

−0.7891 −−

(42)

Equation (31) can then be used to determine the values of α1:

α1 =
±C(ft)− α2A2

A1
=

0.38952− 0.7891 · 1.3972
−1.1608

= 0.6143. (43)

Similarly for the other distinct value, α1 = −0.8883. The rest of the values are

simply negations of the ones already calculated. By requiring α1 to be positive,

the number of possible values are reduced by two. Finally, the coefficients that

produce the experimental results for this decay are:

(α1, α2) =




(0.6143, 0.7891)

(0.8883, 0.4592)
(44)
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These values can be used in (12) to calculate the logft value for a decay from this

linear combination to the BCS vacuum. Using (40) and the first pair of alphas,

the matrix element (9) is now

M
(+)
GT (1+ → 0+) = α1

√
3u1v1MGT (pn)1 + α2

√
3u2v2MGT (pn)2

= 0.6143
√
3 · (−1.1608) + 0.7891

√
3 · 1.3972

≈ −0.67455.

(45)

From here the calculations proceed as before. BGT ≈ 0.24463 and log ft =

4.40015 ≈ 4.4. The same values are also produced by the other pair of coef-

ficients. The key difference between the different combinations is their behavior

when calculating the other beta decay mode, since there are no conditions imposed

upon it. Now,

(α1, α2) = (0.6143, 0.7891)
β−

⇒ log ft = 3.76

(α1, α2) = (0.8883, 0.4592) ⇒ log ft = 3.329 ≈ 3.33.
(46)

As the experimental value for the log ft of this process is 4.5, it is clear that the

model in use does not reproduce for this decay mode.

Similarly, fitting the linear combination to the β− decay from Rh-104 to Pd-104

leads to the following sets of coefficients

(α1, α2) = (0.345, 0.939)
β+

⇒ log ft = 3.66

(α1, α2) = (0.074,−0.997) ⇒ log ft = 3.24
(47)

3.2.4 Three-state linear approximation

The three-state approximation follows from the previous calculations with some

adaptation of notation. Let (α1, α2) be the linear coefficients calculated by the

previous method. Assume now that the initial state can now be approximated by

|Ψi〉 = β1(α1|Ψ1〉+ α2|Ψ2〉) + β2|Ψ3〉). (48)
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If β2
1 + β2

2 = 1, then

〈Ψi|Ψi〉 = β2
1α

2
1 + β2

1α
2
2 + β2

2

= β2
1(α

2
1 + α2

2) + β2
2

= β2
1 + β2

2 = 1.

(49)

The β-coefficients can be calculated in exactly the same way as the α-coefficients,

with the following substitutions

αi = βi

A1 = α1v1u1M(π1, ν1) + α2v2u2M(π2, ν2)

A2 = v3u3M(π3, ν3).

(50)

3.2.5 Calculations

Continue the approximation by choosing to use (α1, α2) = (0.6143, 0.7891). Using

the palladium-104 BCS vacuum, the three states used in the approximation are:

|Ψ1〉 = |p : 0g 9

2

vp = 0.81653, n : 0g 7

2

un = 0.81626〉

|Ψ2〉 = |p : 0g 9

2

vp = 0.81653, n : 0g 9

2

un = 0.13772〉

|Ψ3〉 = |p : 1d 5

2

vp = 0.10644, n : 1d 5

2

un = 0.49901〉

(51)

Now, using the substitutions in (50) and calculating the M terms:

A1 = 0.6143 · 0.81653 · 0.81626 · (−0.99381
√
6)

+ 0.7891 · 0.81653 · 0.13772 · (0.1111
√
330)

= 0.0099
√
30− 0.4069

√
6

≈ −0.8176

A2 = 0.10644 · 0.49901 · 0.2
√
70 = 0.01062

√
70 ≈ 0.0889.

(52)

The expected logft value of Rh-104 decaying into Pd-104 is 4.5, therefore

C(4.5) = 0.34716. (53)
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Inserting these values into (35) and substituting βi = αi gives

(β1, β2) =





(−0.3217, 0.9468) ++

(−0.5176,−0.8556) +−
(0.5176, 0.8556) −+

(0.3217,−0.9468) −− .

(54)

To maintain the sign of the first coefficient, assume that β1 > 0, then

(α1, α2, α3) =




(0.318, 0.408, 0.856)

(0.198, 0.254,−0.947).
(55)

Using these values to calculate the log ft decay value again leads to the experi-

mental value of 4.5. How do these combinations behave in the other decay mode?

(α1, α2, α3) = (0.318, 0.408, 0.856)
β+

⇒ log ft ≈ 3.24

(α1, α2, α3) = (0.1919,−0.1793,−0.9649) ⇒ log ft ≈ 3.61
(56)

For the latter set of alphas:

(α1, α2, α3) = (0.287, 0.148, 0.947)
β+

⇒ log ft ≈ 3.36

(α1, α2, α3) = (0.173, 0.089,−0.981) ⇒ log ft ≈ 3.21
(57)

Alternatively, using the first alphas from (47),

(α1, α2, α3) = (0.327, 0.890,−0.318)
β−

⇒ log ft ≈ 4.48

(α1, α2, α3) = (0.247, 0.672,−0.698) ⇒ log ft ≈ 4.60,
(58)

and for the latter pair:

(α1, α2, α3) = (0.042,−0.566, 0.823)
β−

⇒ log ft ≈ 4.55

(α1, α2, α3) = (0.062,−0.826, 0.560) ⇒ log ft ≈ 4.83.
(59)
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3.3 Double Beta decay

The double beta decay matrix element is more complex than the one of the single

decay, since the process has two steps. The Gamow-Teller matrix element for the

double beta decay is of the form [9, eqn 7.31]

M2ν
GT =

∑

j

〈0+f |t−σ|1+j 〉〈1+j |t−σ|0+i 〉
Ej − Ei +Qββ/2 +me

. (60)

The numerator in (60) is just the matrix elements for the two beta decays from

the initial state to the intermediate state and from the intermediate state to the

final state. The denominator is the energy difference between the intermediate

state j and the average energy of the initial and final states. Thus, the choice of

the intermediate state j is weighted by this difference in energy, which is shown

in 6. In this study, we will exclude the sum over the intermediate states by using

the single-state-dominance hypothesis, wherein it is assumed that the ground state

is dominant [10]. The double beta decay matrix element can now be written as

follows, with some alterations to the denominator due to different formalism:

∣∣∣M (2ν)
DGT (0

+ → 0+)
∣∣∣ =

∣∣∣∣∣
M

(−)
GT (BCS → pnJ)M

(−)
GT (pnJ → BCS)

(12Qββ +∆)/mec2 + 1

∣∣∣∣∣

=

∣∣∣∣∣
M

(+)
GT (pnJ → BCS)M

(−)
GT (pnJ → BCS)

(12Qββ +∆)/mec2 + 1

∣∣∣∣∣

(61)

where Qββ is the Q value of the process, and ∆ = Qec − mec
2 is the Q value of

the electron capture process, excluding the energy of the electron. The Qββ and

QEC values are related, as

Qββ = Qβ− −QEC . (62)

The Q values can be found, for example, in [11]. In (61), the transition matrix from

the initial state is converted to the positive beta decay matrix element using (11).

Figure 6 shows the value of the denominator is determined for each intermediate

state.
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0+

0+
Qββ/2

1+

j1

j2

j3

Qββ/2 + ∆ji

Figure 6: Generalized schematic for the weighing imposed to each of the
intermediate levels. The average energy between initial and final states is
added to the electron capture Q value of the various intermediate states.
In the single state dominance hypothesis, only the lowest intermediate state
affects the decay process
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3.3.1 Example

Qββ = 1.300(4)MeV

104
45 Rh59

4.5
4.4 EC/β+

QEC = 1.139(4)MeV
β−

104
44 Ru60

104
46 Pd58 0+

1+

0+

Figure 7: The structure of the double beta decay of Ru-104. Contains the
relevant Q values and the experimental log ft values.

Consider the example case, where Ru-104 decays into Pd-104, as seen in figure 7.

Now,

∆ = Qec −mec
2 = 1.139− 0.5109989 ≈ 0.628

Qββ = 1.300.
(63)

For a transition from the Ru-104 BCS-vacuum to the Pd-104 one, the matrix

element can be determined using the single beta decay matrix elements calculated

in 18 and 17

∣∣∣M (2ν)
DGT (0

+ → 0+)
∣∣∣ =

∣∣∣∣∣
2.0105 · 2.8102

(1.32 + 0.628)/0.511 + 1

∣∣∣∣∣

=

∣∣∣∣
5.64996

3.501

∣∣∣∣ ≈ 1.6138

(64)

The linear combination approximations from before can also be used here, by
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considering a process

|BCS〉1 →
∑

i

αi|Ψi〉 → |BCS〉2. (65)

The possible energy differences between the ground state and the linear combina-

tion are neglected. Tables 5 and 6 show the various approximation coefficients and

the resulting
∣∣∣M (2ν)

DGT

∣∣∣ values for this case. Additionally, the process can also be

Table 5: Double beta matrix elements for the various two-level linear com-
binations that were calculated.

α1 α2

∣∣∣M (2ν)
DGT

∣∣∣
0.614 0.789 0.273
0.888 0.459 0.446
0.345 0.939 0.271
0.074 -0.997 0.440

Table 6: Double beta matrix elements for the various three-level linear com-
binations calculated previously

α1 α2 α3

∣∣∣M (2ν)
DGT

∣∣∣
0.318 0.408 0.856 0.440
0.198 0.254 -0.947 0.383
0.287 0.148 0.947 0.383
0.173 0.089 -0.981 0.458
0.327 0.890 -0.318 0.119
0.247 0.672 -0.698 0.104
0.042 -0.566 0.823 0.041
0.062 -0.826 0.560 0.079

examined in a less rigorous fashion by requiring that each of the matrix elements

in (61) reproduces the corresponding experimental result, i.e. use two separate

approximations instead of one. In this case
∣∣∣M (2ν)

DGT

∣∣∣ = 0.116. This is equivalent to

calculating the matrix elements from their respective experimental log ft values.
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4 Additional results

This section contains the results for the other decay processes examined. Each sec-

tion contains a schematic for the process, the relevant BCS states, the single and

double beta decay results and the linear combination coefficients used in approx-

imations. The coefficients were used to calculate the log ft value for the process

that was not used as a boundary condition and for the sake of easy comparison,

the corresponding experimental value is also presented, see for example table 9.

For the double beta case, the value based on the experimental results is based on

using the same calculations used at the end of the previous section.

4.1 Zn-70 to Ge-70

Q
ββ = 1.001(3)MeV

70
31Ga39

5.1

5.0
EC

QEC = 0.6546(16)MeV

β−
70
30Zn40

70
32Ge38 0+

1+

0+

Figure 8: The decay process for Zn-70. The Q value of the decay is the second
highest outside of the example case of Ru-104. The in-between nucleus is
more stable than in any of the other processes being examined.
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Proton Neutron
(1p 3

2

, u = 0.80294) (1p 1

2

, v = 0.97472)

(0f 5

2

, u = 0.96154) (0f 5

2

, v = 0.98386)

(1p 1

2

, u = 0.9726) (1p 1

2

, v = 0.97472)

Table 7: The zinc-70 proton and neutron state combinations with the lowest
energy

Proton Neutron
(1p 3

2

v = 0.76969), (1p 1

2

, u = 0.63713])

(0f 5

2

, v = 0.45956), (0f 5

2

, u = 0.49828)

(1p 1

2

, v = 0.33823), (1p 1

2

, u = 0.63713)

Table 8: The germanium-70 proton and neutron state combinations that
correspond to the zinc states

The BCS predictions for the beta decays of gallium-70 are log ft = 3.544 for β+

and log ft = 3.950 for β−. The corresponding experimental values are log ft = 5.0

and log ft = 5.1

α1 α2 log ft log ftexperimental

0.643 -0.766 4.934 5.1
0.815 -0.579 4.435 5.1
0.148 -0.989 3.613 5.0
0.601 -0.799 4.696 5.0

Table 9: Two state approximation for Ga-70

Previous α α1 α2 α3 log ft log ftexperimental

(0.64,-0.77) 0.244 -0.291 0.925 4.520 5.0
(0.64,-0.77) 0.617 -0.736 -0.279 4.592 5.0
(0.81,-0.58) 0.162 -0.115 0.980 4.224 5.0
(0.81,-0.58) 0.544 -0.387 -0.745 4.967 5.0
(0.15,-0.99) 0.086 -0.574 0.815 7.061 5.1
(0.15,-0.99) 0.036 -0.244 0.969 6.092 5.1
(0.6,-0.8) 0.592 -0.787 0.174 5.028 5.1
(0.6,-0.8) 0.357 -0.474 0.805 5.047 5.1

Table 10: Three state approximation for Ga-70
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BCS double beta decay matrix element Mββ = 0.906. The value based on experi-

mental results is Mββ = 0.045.

α1 α2 Mββ

0.643 -0.766 0.055
0.815 -0.579 0.097
0.148 -0.989 0.223
0.601 -0.799 0.064

Table 11: Two state approximation for the double beta decay of Zn-70

α1 α2 α3 Mββ

0.244 -0.291 0.925 0.078
0.617 -0.736 -0.279 0.072
0.162 -0.115 0.980 0.110
0.544 -0.387 -0.745 0.047
0.086 -0.574 0.815 0.005
0.036 -0.244 0.969 0.014
0.592 -0.787 0.174 0.049
0.357 -0.474 0.805 0.048

Table 12: Three state approximation for Zn-70 double beta decay
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4.2 Se-80 to Kr-80

Qββ = 0.134(4)MeV

80
35Br45

5.5
4.6 EC/β+

QEC = 1.8705(3)MeV β−
80
34Se46

80
36Kr44 0+

1+

0+

Figure 9: The decay process for Se-80. Note the extremely low Q value for
the double beta decay. Experimental logft for the single decays are dissimilar
by a factor of almost 10.

Proton Neutron
(0g 9

2

, u = 0.97665) (0g 9

2

, v = 0.79317)

(1p 3

2

, u = 0.60435) (1p 1

2

, v = 0.96279)

(1p 1

2

, u = 0.91965) (1p 1

2

, v = 0.96279)

Table 13: Selenium-80 proton and neutron states to be combined

Proton Neutron
(0g 9

2

, v = 0.26459), (0g 9

2

, u = 0.729))

(1p 3

2

, v = 0.8627), (1p 1

2

, u = 0.34682)

(1p 1

2

, v = 0.51641), (1p 1

2

, u = 0.34682)

Table 14: Krypton-80 proton and neutron states to be combined

The BCS predictions for the beta decays of bromine-80 are log ft = 3.193 for β+

and log ft = 4.4 for β−. The corresponding experimental values are log ft = 4.6

and log ft = 5.5
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α1 α2 log ft log ftexperimental

0.596 0.803 5.691 5.5
0.279 0.960 4.703 5.5
0.839 0.544 3.682 4.6
0.564 0.826 4.815 4.6

Table 15: Two state approximation for Br-80

(Previous α) α1 α2 α3 log ft log ftexperimental

(0.6,0.8) 0.207 0.279 0.938 4.674 4.6
(0.6,0.8) 0.568 0.764 0.307 5.138 4.6
(0.28,0.96) 0.026 0.090 0.996 4.285 4.6
(0.28,0.96) 0.177 0.612 -0.771 5.388 4.6
(0.84,0.54) 0.577 0.374 0.726 7.275 5.5
(0.84,0.54) 0.099 0.064 0.993 5.880 5.5
(0.56,0.83) 0.556 0.813 -0.171 5.638 5.5
(0.56,0.83) 0.193 0.283 0.939 5.445 5.5

Table 16: Three state approximation for Br-80

BCS double beta decay matrix element Mββ = 0.482. The value based on experi-

mental results is Mββ = 0.027.

α1 α2 Mββ

0.596 0.803 0.022
0.279 0.960 0.067
0.839 0.544 0.077
0.564 0.826 0.021

Table 17: Two state approximation for the double beta decay of Se-80
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α1 α2 α3 Mββ

0.207 0.279 0.938 0.025
0.568 0.764 0.307 0.014
0.026 0.090 0.996 0.039
0.177 0.612 -0.771 0.011
0.577 0.374 0.726 0.003
0.099 0.064 0.993 0.017
0.556 0.813 -0.171 0.023
0.193 0.283 0.939 0.029

Table 18: Three state approximation for Se-80 double beta decay

4.3 Cd-114 to Sn-114

Qββ = 0.536(3)MeV

114
49 In65

4.5

4.8
EC/β+

QEC = 1.4472(9)MeV
β−

114
48 Cd66

114
50 Sn64 0+

1+

0+

Figure 10: The decay process for Cd-114. There is some resemblance to
the example case, but the double beta Q value is significantly lower. The
log ft values imply a slightly slower process than the Ru-104 case, which the
calculated matrix elements bear out.

Since tin has 50 protons, it has a full proton shell. Therefore the BCS-model does

not lead to spreading of the proton states. Instead, as can be seen in table 20, the

proton states have occupation amplitude of either 1 or 0, depending on the state.
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Proton Neutron
(0g 9

2

, u = 0.41651) (0g 7

2

, v = 0.91337)

(1d 5

2

, u = 0.99623) (1d 3

2

, v = 0.59648)

(1d 5

2

, u = 0.99623) (1d 5

2

, v = 0.95227)

Table 19: Cadmium-114 proton and neutron states to be combined

Proton Neutron
(0g 9

2

, v = 0.99998), (0g 7

2

, u = 0.47281)

(1d 5

2

, v = 0.0059), (1d 3

2

, u = 0.88439)

(1d 5

2

, v = 0.0059), (1d 5

2

, u = 0.34535)

Table 20: Tin-114 proton and neutron states to be combined

The BCS predictions for the beta decays of Indium-114 are log ft = 3.648 for β+

and log ft = 3.459 for β−. The corresponding experimental values are log ft = 4.8

and log ft = 4.5

α1 α2 log ft log ftexperimental

0.628 -0.778 3.872 4.5
0.857 -0.515 3.597 4.5
0.294 0.956 3.361 4.8
0.309 -0.951 3.861 4.8

Table 21: Two state approximation for In-114

(Previous α) α1 α2 α3 log ft log ftexperimental

(0.63,-0.78) 0.307 -0.381 0.872 3.226 4.8
(0.63,-0.78) 0.302 -0.374 -0.877 3.371 4.8
(0.86,-0.52) 0.306 -0.184 0.934 3.292 4.8
(0.86,-0.52) 0.300 -0.181 -0.937 3.188 4.8
(0.29,0.96) 0.204 0.664 0.719 4.825 4.5
(0.29,0.96) 0.249 0.809 0.532 4.650 4.5
(0.31,-0.95) 0.297 -0.912 -0.283 4.534 4.5
(0.31,-0.95) 0.261 -0.801 -0.539 4.644 4.5

Table 22: Three state approximation for In-114
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BCS double beta decay matrix element Mββ = 0.953. The value based on experi-

mental results is Mββ = 0.076.

α1 α2 Mββ

0.628 -0.778 0.157
0.857 -0.515 0.216
0.294 0.956 0.400
0.309 -0.951 0.225

Table 23: Two state approximation for the double beta decay of Cd-114

α1 α2 α3 Mββ

0.307 -0.381 0.872 0.467
0.302 -0.374 -0.877 0.395
0.306 -0.184 0.934 0.433
0.300 -0.181 -0.937 0.488
0.204 0.664 0.719 0.052
0.249 0.809 0.532 0.064
0.297 -0.912 -0.283 0.073
0.261 -0.801 -0.539 0.065

Table 24: Three state approximation for Cd-114 double beta decay

5 Conclusions

Equations (66)-(69) contain the main results for each of the processes. There are

four values given to the double beta matrix element; the value predicted by the

BCS method in use, the effective value based on the experimental results of the

corresponding single decays, and the best values based on the two- and three-state
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linear approximations.

Zn-70 → Ge-70

MBCS = 0.906,Meff = 0.045

Best approximations:

|pn1〉 = 0.643|p : 1p 3

2

, n : 1p 1

2

〉 − 0.766|p : 0f 5

2

, n : 0f 5

2

〉

|pn1〉 = 0.544|p : 1p 3

2

, n : 1p 1

2

〉 − 0.387|p : 0f 5

2

, n : 0f 5

2

〉 − 0.745|p : 1p 1

2

, n : 1p 1

2

〉

M2α = 0.055,M3α = 0.047

(66)

Se-80 → Kr-80

MBCS = 0.482,Meff = 0.027

Best approximations:

|pn1〉 = 0.596|P : 0g 9

2

, n : 0g 9

2

〉+ 0.803|p : 1p 3

2

, n : 1p 1

2

〉

|pn1〉 = 0.207|P : 0g 9

2

, n : 0g 9

2

〉+ 0.279|p : 1p 3

2

, n : 1p 1

2

〉+ 0.938|p : 1p 1

2

, n : 1p 1

2

〉

M2α = 0.022,M3α = 0.025

(67)

Ru-104 → Pd-104

MBCS = 1.614,Meff = 0.116

Best approximations:

|pn1〉 = 0.345|p : 0g 9

2

, n : 0g 7

2

〉+ 0.939|p : 0g 9

2

, n : 0g 9

2

〉

|pn1〉 = 0.327|p : 0g 9

2

, n : 0g 7

2

〉+ 0.890|p : 0g 9

2

, n : 0g 9

2

〉 − 0.318|p : 1d 5

2

n : 1d 5

2

〉

M2α = 0.271,M3α = 0.119

(68)
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Cd-114 → Su-114

MBCS = 0.953,Meff = 0.076

Best approximations:

|pn1〉 = 0.628|p : 0g 9

2

, n : 0g 7

2

〉 − 0.778|p : 1d 5

2

, n : 1d 3

2

〉

|pn1〉 = 0.297|p : 0g 9

2

, n : 0g 7

2

〉 − 0.912|p : 1d 5

2

, n : 1d 3

2

〉 − 0.283|p : 1d 5

2

, n : 1d 5

2

〉

M2α = 0.157,M3α = 0.073

(69)

It is clear from the above, that the BCS model needs to be extended to account

for quasiparticle interactions, and that these interactions lead to a slower decay

process. The magnitude of the deviation between the BCS and effective values

is explained by remembering that the double decay is a composite of two single

beta decays. The difference between experimental and BCS matrix elements is

inherited by the double beta decay matrix element. This leads to the BCS results

being more than ten times larger than the effective value.

What of the linear combination method that I tried to use to address this? Since

one of the single decay processes is used as a boundary condition, the double beta

decay matrix element approaches the effective value. Since one of the processes is

not bounded, there will almost invariably be some difference between the values.

For these values to be the simultaneously correct, the quasiparticle excitations in

the initial and final BCS vacuums would have to account for the difference in log ft.

As such, the use of linear combinations should be treated as a crude approximation

at most.

The structure of the linear combinations can be divided into two types: those with

only positive coefficients and those with one or more negative coefficients. The

negative coefficients imply a sort of resistive influence on the process. This is likely

due to the boundary condition, the single decay experimental values, being too slow

to be caused by any of the proton-neutron states being used in the combination. A

negative coefficient reduces the absolute value of the matrix element, slowing the

decay process. The positive coefficients, on the other hand, produce superpositions

of quasiparticle states that decay slow enough to be comparable to the experimental

results.

Overall, the results have a certain consistency about them; if a process is predicted
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to be faster in the BCS model, it is estimated to be faster in every approximation.

One should note, however, that the linear combinations do not produce correct

log ft values for the process that was not used as a boundary condition. Generally,

the log ft values swing wildly about their expected values, with the best double

beta results being those closest to the experimental values.

The results presented in this study can be used to evaluate which process might

be relevant to the search for neutrinoless double beta decay. Since a larger matrix

element corresponds to a larger log ft term, the best choice would have the largest

matrix element. If the matrix element was the sole determining factor, the order

of experimental relevance would be: Ru-104, Cd-114, Zn-70 and Se-80. The order

is not final, since this study did not include calculating the phase space for these

processes. Furthermore, experimental considerations would also have to include,

for example, the preparation of the isotope; since the process is slow, a large

amount of the isotope should be prepared. The Q value of the decay process is

also relevant, as the neutrinoless decay can only be measured by observing the

energy of the electrons and comparing it to the Q value. See for example [12] or

[13] for some details on the ongoing experiments.

These results show that additional work needs to be done to reach accurate values

for the double beta decay matrix element. There is a clear difference between the

BCS and the expected matrix elements. The continuation of this work is thus

divided into two parts: determining the phase space f for each of the processes and

correcting the BCS results by adding in the residual interactions not accounted

for in this study. This will lead to a improved matrix element which can be used

to determine the half-life of each of the isotopes that were examined here. These

results can then be used to determine if these isotopes are useful in looking for

neutrinoless double beta decay.
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A Angular momentum coupling

This section shows how to calculate the Wigner 6J-symbol used in (16).

A.1 Clebsch-Gordan coefficients

Start with the following case:

|1, 0〉 = a|1
2

1

2
〉|1
2
− 1

2
〉+ b|1

2
− 1

2
〉|1
2

1

2
〉. (70)

Now

J2|1 0〉 = 2|1 0〉. (71)

On the other hand

J2 = J2
1 + J2

2 + 2J1 · J2 = J2
1 + J2

2 + 2J1zJ2z + J1+J2− + J1−J2+. (72)

Inserting (72) and (70) into (71) leads to

J2|1, 0〉 = a(
1

2
(
1

2
+ 1) +

1

2
(
1

2
+ 1)− 2 · 1

2

1

2
)|1
2

1

2
〉|1
2
− 1

2
〉

+ b(
1

2
(
1

2
+ 1) +

1

2
(
1

2
+ 1)− 1

2
)|1
2
− 1

2
〉|1
2

1

2
〉

+ a

√[
1

2
(
1

2
+ 1)− 1

2
(
1

2
− 1)

]
·
[
1

2
(
1

2
+ 1) +

1

2
(1− 1

2
)

]
|1
2

1

2
〉|1
2
− 1

2
〉

+ b

√[
1

2
(
1

2
+ 1) +

1

2
(1− 1

2
)

]
·
[
1

2
(
1

2
+ 1)− 1

2
(
1

2
− 1)

]
|1
2
− 1

2
〉|1
2

1

2
〉

= (a

[
3

4
+

3

4
− 1

2

]
+ b

√
(
3

4
+

1

4
) · (3

4
+

1

4
))|1

2

1

2
〉|1
2
− 1

2
〉

+ (b

[
3

4
+

3

4
− 1

2

]
+ a

√
(
3

4
+

1

4
) · (3

4
+

1

4
))|1

2
− 1

2
〉|1
2

1

2
〉

= (a+ b)|1
2

1

2
〉|1
2
− 1

2
〉+ (a+ b)|1

2
− 1

2
〉|1
2

1

2
〉

(73)
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Inserting (71) combined with (70) to the left leads to

2a = a+ b ⇒ a = b. (74)

Since the coefficients are normalized, (74) leads to

2a2 = 1 ⇒ a =
1√
2
. (75)

Therefore the Clebsch-Gordan coefficents are

(
1

2

1

2

1

2
− 1

2
|1 0
)

=

(
1

2
− 1

2

1

2

1

2
|1 0
)

=
1√
2

(76)

B Wigner 3J- and 6J-symbols

The Clebsch-Gordan coefficients are connected to the Wigner 3J-symbols by

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3

1√
2j3 + 1

(j1m1 j2m2|j3 −m3) (77)

Therefore

(
1
2

1
2 1

1
2 −1

2 0

)
= (−1)

1

2
− 1

2
−0 1√

2 + 1

(
1

2

1

2

1

2
− 1

2
|1 0
)

=
1√
3
· 1√

2
=

1√
6
.

(78)

The following property of the Wigner 3J-symbols is used later:

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3

m2 m1 m3

)
. (79)
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The Wigner 3J-symbol is related to the Wigner 6J-symbol by

{
j1 j2 j12

j3 j j23

}
=

∑

m1m2m3

m12m23m

(−1)j3+j+j23−m3−m−m23

(
j1 j2 j12

m1 m2 m12

)

×
(

j1 j j23

m1 −m m23

)(
j3 j2 j23

m3 m2 −m23

)(
j3 j j12

−m3 m m12

)
(80)

The 6J-symbol to be calculated is

{
1
2

1
2 1

9
2

7
2 4

}
=

∑

m1m2m3

m12m23m

(−1)12−m33−m−m23

(
1
2

1
2 1

m1 m2 m12

)

×
(

1
2

7
2 4

m1 −m m23

)(
9
2

1
2 4

m3 m2 −m23

)(
9
2

7
2 1

−m3 m m12

)
(81)

The first Wigner 3J-symbol has four possible variations for the different m values

For m12 = ±1 the value of the symbol is −1√
3
, and the m12 = ±0 case has already

been calculated to be 1√
6
. Split the equation into four parts, named A,B,C and

D. Now,

A = (−1)12−3m+ 3

2 (− 1√
3
)

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m− 1 1
2

1
2 −m

)

×
(

9
2

7
2 1

1−m m −1

)
,

(82)
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where the spin numbers were determined by requiring ma +mb +mc = 0 for the

spin numbers in each 3J-symbol, as otherwise the value of the symbol is 0. Now,

B = (−1)12−3m− 3

2 (− 1√
3
)

(
1
2

7
2 4

−1
2 −m m+ 1

2

)(
9
2

1
2 4

m+ 1 −1
2 −(m+ 1

2)

)

×
(

9
2

7
2 1

−(m+ 1) m 1

)

= (−1)12−3m− 3

2 (− 1√
3
)

(
1
2

7
2 4

1
2 m −m− 1

2

)
(−1)

(
9
2

1
2 4

−(m+ 1) 1
2 (m+ 1

2)

)

× (−1)

(
9
2

7
2 1

m+ 1 −m −1

)

= (−1)12+3m+ 1

2 (− 1√
3
)

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m− 1 1
2

1
2 −m

)

×
(

9
2

7
2 1

1−m m −1

)
,

(83)

where the last step is done by changing summation index from m to -m. A and B

are now exceedingly similar, the power expected. However

12− 3m+
3

2
= 12− (3m+

1

2
) +

4

2
= 14− k

12 + 3m+
1

2
= 12 + (3m+

1

2
) = 12 + k,

(84)

i.e. both powers are mutually odd or even, so the A and B terms never cancel each

other out. Therefore

A+B = (−1)12+3m+ 3

2 (
2√
3
)

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m− 1 1
2

1
2 −m

)

×
(

9
2

7
2 1

1−m m −1

)
.

(85)
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The other two terms proceed similarly:

C = (−1)12−3m+ 1

2
1√
6

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m −1
2

1
2 −m

)

×
(

9
2

7
2 1

−m m 0

)
,

(86)

and

D = (−1)12−3m− 1

2
1√
6

(
1
2

7
2 4

−1
2 −m m1

2

)(
9
2

1
2 4

m 1
2 −1

2 −m

)

×
(

9
2

7
2 1

m −m 0

)

= (−1)12+3m+ 3

2
1√
6

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m −1
2

1
2 −m

)

×
(

9
2

7
2 1

−m m 0

)
,

(87)

and therefore

C +D = (−1)12−3m+ 1

2
2√
6

(
1
2

7
2 4

1
2 −m m− 1

2

)(
9
2

1
2 4

m −1
2

1
2 −m

)

×
(

9
2

7
2 1

−m m 0

)
.

(88)

Inserting (85) and (88) into (81) leads to

{
1
2

1
2 1

9
2

7
2 4

}
=

7

2∑

m=− 7

2

(−1)12+3m+ 3

2

(
1
2

7
2 4

1
2 −m m− 1

2

)

×
(
(
2√
3
)

(
9
2

1
2 4

m− 1 1
2

1
2 −m

)(
9
2

7
2 1

1−m m −1

)

+
2√
6

(
9
2

1
2 4

m −1
2

1
2 −m

)(
9
2

7
2 1

−m m 0

))
.

(89)

The rest of the calculation is finding the value of each of the 3J-symbols. As there

are a total of 8 × 5 = 40 3J-symbols in the sum, I’ll use a program to evaluate
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the above sum numerically. The output of the program is -0.192450089729875

+ 0.0342133492853112*I, where the imaginary component is a computing error

caused by too small numbers. Checking the value of the original 6J-symbol, it is

found to be −3
9 ≈ −0.192450089729875. Therefore (89) leads to the exact solution

when it is correctly calculated by hand.

C BCS results

This section contains the BCS values for the rest of the nucleons.

C.1 A = 70

The pairing strength values for Zn-70 were determined to be GN = 0.99181 and

GP = 1.03177

Table 25: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Zn-70

State u v Eqp

1p 1

2

0.22345 0.97472 1.52991

1p 3

2

0.10978 0.99396 3.27359

0f 5

2

0.17896 0.98386 2.17871

0f 7

2

0.04995 0.99875 7.24315

2s 1

2

0.99974 0.02289 5.98011

1d 3

2

0.99964 0.02682 7.48441

1d 5

2

0.99918 0.04060 5.07189

0g 7

2

0.99926 0.03855 8.76910

0g 9

2

0.98338 0.18156 1.63794

0h 11

2

0.99980 0.02015 10.39009
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Table 26: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Zn-70

State u v Eqp

1p 1

2

0.97260 0.23248 2.93090

1p 3

2

0.80294 0.59607 1.20265

0f 5

2

0.96154 0.27465 1.84153

0f 7

2

0.11166 0.99375 4.67149

2s 1

2

0.99987 0.01587 10.63085

1d 3

2

0.99962 0.02772 12.30574

1d 5

2

0.99943 0.03387 9.10044

0g 7

2

0.99948 0.03218 13.07499

0g 9

2

0.99535 0.09630 4.45650

0h 11

2

0.99974 0.02297 13.51674

The pairing strength values for Ge-70 were determined to be GN = 1.19413 and

GP = 1.01141

Table 27: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Ge-70

State u v Eqp

1p 1

2

0.63713 0.77075 1.86397

1p 3

2

0.34868 0.93724 2.97521

0f 5

2

0.49828 0.86702 2.18838

0f 7

2

0.14806 0.98898 6.72657

2s 1

2

0.99891 0.04663 7.52273

1d 3

2

0.99829 0.05850 9.08450

1d 5

2

0.99617 0.08746 6.39946

0g 7

2

0.99669 0.08134 10.11363

0g 9

2

0.95830 0.28577 2.91852

0h 11

2

0.99876 0.04974 11.55482
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Table 28: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Ge-70

State u v Eqp

1p 1

2

0.94106 0.33823 2.40300

1p 3

2

0.63842 0.76969 1.45403

0f 5

2

0.88815 0.45956 1.53687

0f 7

2

0.13539 0.99079 5.29762

2s 1

2

0.99970 0.02462 9.20899

1d 3

2

0.99933 0.03671 10.95861

1d 5

2

0.99880 0.04894 8.06316

0g 7

2

0.99900 0.04464 12.08114

0g 9

2

0.98838 0.15202 3.84675

0h 11

2

0.99946 0.03291 12.61657

C.2 A=80

The pairing strength values for Se-80 were determined to be GN = 1.21517 and

GP = 1.04135

Table 29: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Se-80

State u v Eqp

1p 1

2

0.27024 0.96279 3.57862

1p 3

2

0.17841 0.98396 5.06177

0f 5

2

0.24745 0.96890 4.73010

0f 7

2

0.10179 0.99481 8.95427

2s 1

2

0.99622 0.08689 4.91316

1d 3

2

0.99505 0.09941 6.21940

1d 5

2

0.98884 0.14900 3.69020

0g 7

2

0.98785 0.15539 6.60426

0g 9

2

0.60900 0.79317 1.54079

0h 11

2

0.99785 0.06550 8.28435
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Table 30: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Se-80

State u v Eqp

1p 1

2

0.91965 0.39274 2.40406

1p 3

2

0.60435 0.79672 1.73457

0f 5

2

0.72912 0.68439 1.56398

0f 7

2

0.15689 0.98762 5.67841

2s 1

2

0.99962 0.02755 10.15916

1d 3

2

0.99919 0.04035 11.52035

1d 5

2

0.99839 0.05674 8.23935

0g 7

2

0.99821 0.05980 11.20564

0g 9

2

0.97665 0.21484 3.38526

0h 11

2

0.99910 0.04235 11.96391

The pairing strength values for Kr-80 were determined to be GN = 1.26894 and

GP = 1.06289

Table 31: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Kr-80

State u v Eqp

1p 1

2

0.34682 0.93793 3.25183

1p 3

2

0.22463 0.97444 4.68620

0f 5

2

0.30048 0.95379 4.43415

0f 7

2

0.12177 0.99256 8.62478

2s 1

2

0.99684 0.07948 5.84684

1d 3

2

0.99543 0.09552 7.15596

1d 5

2

0.99020 0.13968 4.44606

0g 7

2

0.98783 0.15551 7.36600

0g 9

2

0.72900 0.68451 1.70930

0h 11

2

0.99760 0.06923 8.94571
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Table 32: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Kr-80

State u v Eqp

1p 1

2

0.85634 0.51641 2.00962

1p 3

2

0.50572 0.86270 2.04317

0f 5

2

0.59687 0.80234 1.76133

0f 7

2

0.14919 0.98881 6.18277

2s 1

2

0.99944 0.03352 9.05898

1d 3

2

0.99890 0.04692 10.44144

1d 5

2

0.99769 0.06792 7.39105

0g 7

2

0.99752 0.07032 10.40105

0g 9

2

0.96436 0.26459 2.89569

0h 11

2

0.99888 0.04729 11.19060

C.3 A=114

The pairing strength values for Cd-114 were determined to be GN = 0.97716 and

GP = 1.07491
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Table 33: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Cd-114

State u v Eqp

1p 1

2

0.08884 0.99605 8.66883

1p 3

2

0.08147 0.99668 9.97001

0f 5

2

0.07055 0.99751 10.48913

0f 7

2

0.05701 0.99837 13.79410

2s 1

2

0.67396 0.73877 1.35153

1d 3

2

0.80263 0.59648 1.35380

1d 5

2

0.30527 0.95227 2.40931

0g 7

2

0.40714 0.91337 1.88234

0g 9

2

0.11083 0.99384 6.50748

2p 1

2

0.99917 0.04065 7.28700

2p 3

2

0.99887 0.04756 6.59505

1f 5

2

0.99870 0.05088 8.39570

1f 7

2

0.99659 0.08245 5.61270

0h 9

2

0.99733 0.07297 8.43672

0h 11

2

0.93737 0.34833 1.84426
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Table 34: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Cd-114

State u v Eqp

1p 1

2

0.29382 0.95586 2.31492

1p 3

2

0.17652 0.98430 3.70271

0f 5

2

0.17160 0.98517 4.50516

0f 7

2

0.07698 0.99703 8.34988

2s 1

2

0.99901 0.04444 6.93293

1d 3

2

0.99832 0.05798 7.45243

1d 5

2

0.99623 0.08681 4.65326

0g 7

2

0.99175 0.12822 5.37529

0g 9

2

0.41651 0.90913 1.43738

2p 1

2

0.99989 0.01482 15.29215

2p 3

2

0.99986 0.01650 14.09936

1f 5

2

0.99986 0.01648 16.10043

1f 7

2

0.99983 0.01848 12.32801

0h 9

2

0.99937 0.03541 15.32542

0h 11

2

0.99818 0.06026 6.89595

The pairing strength values for Sn-114 were determined to be GN = 0.96215 and

GP = 1.00000, with the proton case left as default due to Sn-114 being magic

proton-wise. This leads to discrete proton levels as can be seen in the occupation

amplitude numbers.
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Table 35: Neutron state quantum numbers, occupation amplitudes and quasi-
particle energies for Sn-114

State u v Eqp

1p 1

2

0.08983 0.99596 8.33508

1p 3

2

0.08065 0.99674 9.65648

0f 5

2

0.06889 0.99762 10.18446

0f 7

2

0.05753 0.99834 13.54673

2s 1

2

0.79612 0.60513 1.32733

1d 3

2

0.88439 0.46675 1.52432

1d 5

2

0.34535 0.93847 2.04209

0g 7

2

0.47281 0.88116 1.57340

0g 9

2

0.11533 0.99333 6.21154

2p 1

2

0.99941 0.03448 8.19936

2p 3

2

0.99920 0.04011 7.36802

1f 5

2

0.99901 0.04447 9.16586

1f 7

2

0.99748 0.07095 6.15930

0h 9

2

0.99795 0.06393 8.94017

0h 11

2

0.95619 0.29276 2.12733
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Table 36: Proton state quantum numbers, occupation amplitudes and quasi-
particle energies for Sn-114

State u v Eqp

1p 1

2

0.00576 0.99998 3.78740

1p 3

2

0.00397 0.99999 5.35632

0f 5

2

0.00364 0.99999 6.12138

0f 7

2

0.00213 1.00000 10.09915

2s 1

2

1.00000 0.00247 4.83083

1d 3

2

1.00000 0.00303 5.33967

1d 5

2

0.99998 0.00590 2.53197

0g 7

2

0.99998 0.00625 3.20727

0g 9

2

0.00662 0.99998 2.85522

2p 1

2

1.00000 0.00060 12.93079

2p 3

2

1.00000 0.00069 11.68079

1f 5

2

1.00000 0.00069 13.73080

1f 7

2

1.00000 0.00091 10.13216

0h 9

2

1.00000 0.00124 13.16315

0h 11

2

1.00000 0.00309 4.85415
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