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On the computation of symmetrized
M-estimators of scatter

Jari Miettinen, Klaus Nordhausen, Sara Taskinen and David E. Tyler

Abstract This paper focuses on the computational aspects of symmetrized M-
estimators of scatter, i.e. the multivariate M-estimators of scatter computed on the
pairwise differences of the data. Such estimators do not require a location estimate,
and more importantly, they possess the important block and joint independence
properties. These properties are needed, for example, when solving the indepen-
dent component analysis problem. Classical and recently developed algorithms for
computing the M-estimators and the symmetrized M-estimators are discussed. The
effect of parallelization is considered as well as new computational approach based
on using only a subset of pairwise differences. Efficiencies and computation time
comparisons are made using simulation studies under multivariate elliptically sym-
metric models and under independent component models.

1 Introduction

Almost all of the classical multivariate methods, including principal component
analysis, multivariate regression, canonical correlation analysis, etc., are dependent
on the use of the sample covariance matrix. It is well known that under the as-
sumption of multivariate normality, the methods based on this estimator are opti-
mal. However, if the normality assumption is not satisfied, e.g., if the data are con-
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taminated with outlying observations or have heavier tails than that of the normal
distribution, then methods based on the sample covariance matrix perform poorly.

A widely used approach for robustifying classical multivariate methods is the so-
called plug-in approach. In this approach, the sample covariance matrix is replaced
by a robust scatter matrix. As a consequence a vast variety of robust alternatives
for the sample covariance matrix have been proposed in the literature. Some widely
used robust estimators include M-estimators (Maronna, 1976; Huber, 1981), MCD-
estimators (Rousseeuw, 1985) and S-estimators (Davies, 1987; Lopuhaä, 1989),
among others. For an overview of robust multivariate methods, see Maronna et al
(2006).

When robust plug-in methods are proposed, one important issue is often ignored,
namely that a multivariate method may not be valid unless the robust scatter ma-
trix satisfies certain crucial properties that hold for the sample covariance matrix.
In Nordhausen and Tyler (2015) a thorough discussion of such properties is given.
Focusing on the so-called joint and block independence properties (defined in the
next section), Nordhausen and Tyler (2015) give several examples of plug-in multi-
variate methods, which are not valid unless the scatter matrix possesses these prop-
erties. Examples include independent component analysis, observational regression,
and graphical modeling. For the role of scatter matrices in independent component
analysis, see also Oja et al (2006), Nordhausen et al (2008), and Tyler et al (2009),
among others.

In Oja et al (2006) it is shown that by computing any scatter matrix using
pairwise differences rather than the observations themselves produces an estima-
tor with the joint independence property. Sirkiä et al (2007) discuss general sym-
metrized M-estimators, and give as examples the symmetrized Huber estimators,
and Dümbgen’s (1998) estimator, which is a symmetrized version of Tyler’s (1987)
M-estimator. Croux et al (1994) and Roelant et al (2009) propose using symmetrized
S-estimators in univariate and multivariate regression settings, respectively, with
their main focus being on improving efficiency at the normal model.

As symmetrized estimators are defined using pairwise differences, the computa-
tions become intensive with increasing sample size. In this paper we focus on the
computational aspects and consider a few practical ways to handle this problem,
especially in the context of M-estimates. The paper is organized as follows. In Sec-
tion 2 we recall the definitions of scatter matrix and block and joint independence,
and in Section 3 the definition and main properties of symmetrized M-estimators
of scatter. Section 4 provides some new approaches for computing symmetrized
estimators. In Sections 5 and 6 simulation studies are given to compare efficiencies
and computation times of different approaches, respectively. The paper is concluded
with some discussion in Section 7.

2 Scatter matrices and block independence

Recall first the definition of a scatter matrix functional.
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Definition 1. Let x be a p-variate random vector with cumulative distribution func-
tion Fx. Then a p× p matrix valued functional V = V(Fx) is a scatter matrix func-
tional if it is symmetric, positive semi-definite and affine equivariant in the sense
that

V(FAx+b) = AV(Fx)At (1)

for any full rank p× p matrix A and any p-vector b.

A scatter matrix is then naturally defined as V̂ = V(Fn), where Fn is the empirical
cdf. Most robust counterparts of covariance matrix satisfy (1). However, they usu-
ally do not satisfy the so-called joint and block independence properties, which are
characteristic of the covariance matrix, and are defined as follows.

Definition 2. Assume that x = (xt
1, . . . ,x

t
k)

t is a p-vector consisting of k mutually
independent subvectors with dimension pi, i = 1, . . . ,k, such that ∑k

i=1 pi = p.
i) The scatter matrix functional V(Fx) is said to have the block independence prop-

erty if it is a block diagonal matrix with block sizes pi, i = 1, . . . ,k.
ii) If k = p, which means that x has independent components, and V(Fx) is a diag-

onal matrix, then it is said to have the joint independence property.

Note that the block independence property implies the joint independence property,
but not vice versa. In Nordhausen and Tyler (2015) several examples of multivariate
methods are given for which it is necessary for a scatter matrix to possess the joint
or block independence property.

Most scatter functionals do not posses the joint or block independence property.
A common conjecture here is that only scatter matrices which can be expressed
as functions of pairwise differences have this property. For example COV(x) =
E((x − E(x))(x − E(x))t) = 2−1E((x1 − x2)(x1 − x2)

t), where x1 and x2 denote
independent copies of x, can be written in such a way.

What about scatter matrices which cannot be expressed using pairwise differ-
ences? A quite simple but ingenious approach is to apply a scatter functional to the
pairwise differences, which is known as symmetrization. Theorem 1 in Oja et al
(2006) shows that when a scatter matrix functional is applied to the pairwise differ-
ences of the observations, then the resulting functional possesses the joint indepen-
dence property. In Nordhausen and Oja (2011) and Nordhausen and Tyler (2015) it
is shown that symmetrization yields to a more general block independence property.

A formal definition of symmetrization is given as follows.

Definition 3. Let V(Fx) be any scatter functional. Then the corresponding sym-
metrized scatter functional is defined as

Vs(Fx) = V(Fx1−x2),

where x1 and x2 are two independent copies of x.

In this paper we are mainly interested in computational aspects of symmetrized
scatter matrices. Although the computational issues discussed herein apply to any
symmetrized scatter matrix, this paper focuses on symmetrized M-estimators of
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scatter (Sirkiä et al, 2007), which, as to be seen, can be made computationally fea-
sible for fairly large sample sizes. The next section reviews the definition and basic
properties of symmetrized M-estimators of scatter.

3 Symmetrized M-estimators of scatter

Write again x for a p-variate random vector with cumulative distribution function
Fx. In this paper we focus on elliptically symmetric distributions. Such a distribution
family is often used in robustness studies as it includes distributions with heavy tails
(e.g. elliptical Cauchy distribution) as well as distributions which can be used to
generate atypical observations (e.g. contaminated normal distribution).

An elliptically symmetric distribution is obtained as an affine transformation of a
spherical distribution. Recall that a p-variate random vector z is spherically symmet-
ric around the origin if Uz∼ z for all orthogonal p× p matrices U. Then x=ΩΩΩz+µµµ ,
where ΩΩΩ is a full rank p× p matrix and µµµ a p-vector, has an elliptically symmetric
distribution with density of the form

f (x; µµµ,ΣΣΣ ,g) = |ΣΣΣ |−1/2g(ΣΣΣ−1/2(x−µµµ)),

where g(z) = exp(−ρ(||z||)) represents the density of z, with ρ(·) being a non-
negative function, and ΣΣΣ = ΩΩΩΩΩΩ t . Without loss of generality, ΣΣΣ 1/2 is taken to be
the symmetric positive definite square-root of ΣΣΣ . Note that the density of z depends
only on the value of its radius ||z||, and the function ρ(·) does not depend on the
parameters µµµ and ΣΣΣ .

The parameter µµµ is the location center of the distribution and the scatter matrix
ΣΣΣ is proportional to the regular covariance matrix (if it exists). Examples of func-
tion g(·) include g(z) = (2π)−p/2 exp(−ztz/2), which corresponds to the p-variate
normal distribution, and

g(z) =
Γ ((p+ν)/2)

Γ (ν/2)(πν)p/2

(
1+

ztz
ν

)−(p+ν)/2

,

which corresponds to the p-variate t-distribution on ν degrees of freedom. Within
the class of elliptical distribution, i.e. for unknown g, only the location µµµ and the
“shape” of ΣΣΣ , i.e. the value of ΣΣΣ up to proportionality, is well defined, whereas the
constant of proportionality is confounded with the function g.

Next, we recall the definition of the symmetrized M-functional as given in Sirkiä
et al (2007).

Definition 4. Assume that x is a p-variate random vector with cdf Fx, and let x1 and
x2 be two independent copies of x. A symmetrized M-functional Vs = Vs(Fx1−x2) is
defined as a solution to

E[w1(r12)(x1 −x2)(x1 −x2)
t −w2(r12)Vs] = 0,
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where r12 = [(x1 −x2)
tV−1

s (x1 −x2)]
1/2, and w1 and w2 are some real-valued func-

tions on [0,∞).

Sirkiä et al (2007) observe that the assumptions on the weight functions and on
the distribution of the pairwise differences needed for the existence and unique-
ness of symmetrized M-functionals follow from Huber’s (1981) results for (non-
symmetrized) M-functionals. When x has an elliptical distribution, Vs ∝ ΣΣΣ , with the
constant of proportionality being dependent on the weight functions w1 and w2 and
the density g, but not on the parameters µµµ or ΣΣΣ .

An estimator corresponding to a scatter matrix functional Vs is obtained when
Fx1−x2 in Definition 4 is replaced with the empirical distribution function of the
pairwise differences. A symmetrized M-estimator of scatter, V̂s, then solves(

n
2

)−1

∑∑
i< j

[w1(ri j)(xi −x j)(xi −x j)
t −w2(ri j)Vs] = 0,

where w1 and w2 are real-valued functions on [0,∞). Notice that choices w1(r) =
ρ ′(r)/r and w2(r) = 2 yield the maximum likelihood estimator under a specific
elliptical distribution. The robustness properties and limiting distributions of general
symmetrized M-estimators were discussed in Sirkiä et al (2007).

In this paper we consider the following symmetrized M-estimators:

• The sample covariance matrix, which corresponds to w1(r) = 1 and w2(r) = 2,
or equivalently to w1(r) = 1/2 and w2(r) = 1

• The symmetrized Cauchy M-estimator, which has weight functions correspond-
ing to those of the maximum likelihood estimator for the elliptical Cauchy dis-
tribution, i.e. w1(r) = (1+ p)/(1+ r2) and w2(r) = 1. It is worth noting that this
is not the same as the maximum likelihood estimator based on the pairwise dif-
ferences from a random sample of an elliptical Cauchy distribution.

• The symmetrized Huber estimators, which have weight functions w2(r) = 1 and

w1(r) =

{
1/σ2, r2 ≤ c2

c2/(r2σ2), r2 > c2,

where c is a tuning constant defined so that q=Pr(χ2
p ≤ c2/2) for a chosen q. The

scaling factor σ is chosen so that E[w1(||x1−x2||)] = p, where x1,x2 ∼ N(0,Ip),
which makes the estimator Fisher-consistent for ΣΣΣ at the multivariate normal
model.

• Dümbgen’s (1998) estimator, which corresponds to choosing w1(r) = p/r2 and
w2(r) = 1.

Dümbgen’s estimator is only define up to proportionality, i.e. both V̂s,1 and V̂s,2 sat-
isfy the corresponding estimating equations, if and only if V̂s,1 ∝ V̂s,2. Furthermore,
as noted previously, under sampling from an elliptical distribution, the symmetrized
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Cauchy M-estimator is Fisher-consistent for the parameter ΣΣΣ only up to proportion-
ality. This is also true of the sample covariance matrix and the symmetrized Huber
M-estimator at elliptical models other than the multivariate normal. These factors,
though, are not important to the efficiency comparisons given in Section 5 since
only the shape of the scatter matrices are considered in these comparisons.

4 Computation of symmetrized M-estimators

Hereafter, we consider only the case w2(·) = 1, which agrees with the original def-
inition of the M-estimators given in Maronna (1976). Note that this case holds for
the three M-estimators discussed in the previous section, as well as for the maxi-
mum likelihood estimators of scatter under an elliptical family of distributions, i.e.
with a fixed g. A general recent overview of the M-estimators of scatter for the case
w2(·) = 1 can be found in Dümbgen et al (2015b). They point out that the most
commonly used method to compute such M-estimates is via a simple fixed point
algorithm, which is known to converge under very general conditions to a unique
solution, regardless of the initial value, as shown in Kent and Tyler (1991).

Assume in the following that we have a sample of n vectors X = (x1, . . . ,xn) and
the goal is to compute the symmetrized M-scatter matrix Vs of interest. The most
naive approach would be to apply the fixed point algorithm for the unsymmetrized
scatter of interest to all n(n−1) pairwise differences xi −x j with i ̸= j. Notice that
now the location center does not need to be estimated as for the symmetrized vectors
the location center is naturally the origin. Nevertheless, even for a moderate sample
size n, the computational burden can be tremendous and so new approaches are
needed to to deal with this. In the following we will consider a few practical ways
to reduce the computational burden and memory demand.

The number of pairwise differences can be halved since only the n(n−1)/2 pair-
wise differences xi − x j with i < j are needed to compute the symmetrized scatter
matrix. Hence the most basic algorithm is the fixed point algorithm with updating
step at iteration k:

Vk+1
s (X) =

(
n
2

)−1

∑
i< j

{
w1(rk

i j)(xi −x j)(xi −x j)
t
}
,

where rk
i j is based on the current scatter estimate Vk

s . Recently, Nordhausen and
Tyler (2015) suggested rewriting the above algorithm as

Vk+1
s (X) = 2(n(n−1))−1

n

∑
i=2

Sk+1
i (X),

where

Sk+1
i (X) =

i−1

∑
j=1

w1(rk
i j)(xi −x j)(xi −x j)

t .
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The computation of Sk+1
i (X) then can be naturally divided into several threads. We

refer to this algorithm as the the parallel algorithm and study, in Section 6, how
much this approach speeds up computations.

Dümbgen et al (2015a) have recently argued that using a fixed point algorithm for
computing M-estimates of scatter can be less than optimal. They consider several al-
ternative algorithms and recommended a partial Newton (PN) algorithm, which, in
most cases, is considerably faster. The basic idea behind the PN algorithm is to first
perform a few fixed point steps and to then evaluate whether shifting to a Newton-
Raphson step with an approximated Hessian is better. We refer to the reader to the
aforementioned paper for more details regarding the algorithm. A restriction of the
PN algorithm is that the weight functions must be smooth, which excludes, for ex-
ample, Huber’s weight functions. Two versions of the PN algorithm were introduced
in Dümbgen et al (2015a), with one version requiring all pairwise differences xi−x j
with i < j being in the memory, and the other version being a sequential algorithm
which avoids storing all pairwise differences. The sequential algorithm seems to be,
in most cases, faster than the one that stores all pairwise differences.

We have, thus, several algorithms available so far for the computation of sym-
metrized M-estimators of scatter. However, these are all computationally intensive
as they either store all pairwise differences xi − x j with i < j in the memory or
compute sequentially all quantities of interest. This computational burden is demon-
strated later in Section 6.

A possible way to ease this computational problem can be motivated by noting
the resemblance of the symmetrized scatter matrix to a U-statistic of order two.
Recall that for a sample X = (x1, . . . ,xn) a U-statistic for a parameter θ based on a
symmetric kernel h(x(1), . . . ,x(K)) of order K is defined as

U = N−1
N

∑
i=1

h(x(1), . . . ,x(K)),

where N =
(n

K

)
and the kernel is computed for all possible subsamples of size K

denoted by x(1), . . . ,x(K). A simple example of a U-statistic is the sample covariance
matrix, which has a kernel of order two and can be expressed as

h(x(1),x(2)) = 2−1(x(1)−x(2))(x(1)−x(2))t

and hence

COV(X) =

(
n
2

)−1

∑
i ̸= j

2−1(x(i)−x( j))(x(i)−x( j))
t .

In general, though, not all symmetrized scatter matrices can be expressed as U-
statistics, since they typically have only an implicit rather than an explicit represen-
tation in terms of pairwise differences.

In the context of U-statistics, Blom (1976) noted that it is possible to use less
than N terms without losing much information when estimating θ , and he called
such estimates incomplete U-statistics. Such estimates have also been referred to as
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weighted U-statistics, with weights 0 or 1, or as reduced U-statistics. In Blom (1976)
and Brown and Kildea (1978) the statistical properties of incomplete U-statistics are
derived.

Following the idea of incomplete U-statistics, many ways to choose the terms
used in computations are possible. The most basic one is independent subsampling,
where m sets out all N sets are chosen at random. This can, however, give dif-
ferent weight to different observations in the data. Another convenient choice for
kernels of order K = 2, which gives each observation equal weight, is what we
refer to as a “running average of length m”. For this purpose, we treat the order-
ing of the data as cyclic and define an extended data matrix X∗ = (x∗1, . . . ,x

∗
n+m) =

(x1, . . . ,xn,x1, . . . ,xm). Our incomplete symmetrized M-estimator of length m, V̂I ,
then solves

VI =
1

nm

n

∑
i=1

i+m

∑
j=i+1

w1(ri j)(x∗i −x∗j)(x
∗
i −x∗j)

t .

In the following we explore the idea of computing symmetrized scatter matrices
by using running averages of different lengths m, and compare the loss in efficiency
to the gain in computation time. From a practical point of view, the observation
order should be randomly permuted in order to avoid the effect of how the data was
recorded. Using permutations in the simulations, though, are not needed since the
simulated data set follows the same model as any permutation of it.

5 Efficiency comparisons

In this section, we compare the efficiencies of the incomplete (using only mn pair-
wise differences) symmetrized estimators to that of the corresponding complete
symmetrized estimator. We include the symmetrized Huber estimator with q= 0.90,
Dümbgen’s estimator and the symmetrized Cauchy M-estimator in the comparisons.
Since, as previously discussed, the estimators are only comparable up to proportion-
ality, we standardize all estimators so that their traces are equal to p.

To compare the finite sample efficiencies, we first carried out a simulation study
with samples of size n =1000, 2000 and 4000, dimensions p = 3 and p = 8, and
under the normal distribution (N), the contaminated normal distribution (cN) and
the t-distribution on 5 degrees of freedom (t5). The cumulative distribution func-
tion of the contaminated normal distribution is Φε,c(x) = (1− ε)Φ(x)+ εΦ(x/c),
where ε,c > 0 and Φ denotes the cumulative distribution function of the standard
multivariate normal distribution. In our simulation settings, we used ε = 0.1 and
c = 3.

The asymptotic efficiencies of the three standardized robust scatter estimators rel-
ative to the standardized sample covariance matrix are listed in Table 1. The asymp-
totic relative efficiencies were computed using the results in Sirkiä et al (2007),
wherein they observed that the symmetrized Huber estimator and the Dümbgen’s
estimator are highly efficient not only at heavy tailed distributions but also at the
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multivariate normal distribution. The symmetrized Cauchy M-estimator, though,
suffers from some efficiency loss at the multivariate normal distribution case.

Table 1 Asymptotic efficiencies of the symmetrized Huber M-estimator, Dümbgen’s estimator and
the symmetrized Cauchy M-estimator relative to the sample covariance matrix. The asymptotic rel-
ative efficiencies are evaluated at the normal (N), the contaminated normal (cN) and t-distribution
on 5 degrees of freedom (t5).

p=3 p=8

N cN t5 N cN t5
symmetrized Huber 0.99 1.67 2.12 1.00 1.65 2.12

Dümbgen 0.93 2.27 2.40 0.96 2.43 2.60

symmetrized Cauchy 0.77 2.03 1.04 0.85 2.26 1.20

To compare the finite sample efficiencies, the mean squared errors of the off-
diagonal elements of the standardized scatter matrices, that is,

MSE(V̂) =
2

N p(p−1)

N

∑
k=1

p−1

∑
i=1

p

∑
j=i+1

(V̂(k)
i j − Ii j)

2,

were computed using N = 2000 samples. The efficiencies were then defined by
taking the ratios of the corresponding MSEs. The results are listed in Tables 2-4.
For all of the estimators, there is some loss, but somewhat surprising not a large
loss, in efficiency when m = 10, and when m = 20, the efficiency loss is always less
than 5%. The loss in efficiency is slightly worst for the Dümbgen’s estimator than
for the other estimators.

Among the symmetrized scatter matrices considered in this paper, only the sam-
ple covariance matrix is a U-statistic. Nevertheless, the simulations indicate that all
scatter matrices computed using running averages of length m seem to behave in a
similar fashion. These empirical results suggest that theoretical results obtained for
the incomplete sample covariance matrix may give us insight into the behavior of
other incomplete symmetrized estimates of scatter.

In particular, results from Brown and Kildea (1978) for incomplete U-statistics,
allow us to compute the asymptotic relative efficiency of the incomplete sample
covariance estimator with respect to the complete sample covariance matrix. For a
spherically symmetric distribution with COV(z) = Ip, the efficiency of the incom-
plete symmetrized sample covariance matrix relative to the complete one is

ARE(V̂s, V̂
(m)
I ) =

2mκ
0.5+(2m−1)κ

, (2)

where κ = E[z2
i z2

j ]/(2(E[z
2
i z2

j ]+1)), and zi and z j are different components of z. In
Figure 1 we plot the asymptotic relative efficiency of the symmetrized incomplete
sample covariance matrix as a function of m for the 3-variate normal, contaminated
normal and t5-distribution, for which κ = 1/4, 25/68, and 3/8 respectively. We also
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Table 2 Finite sample relative efficiencies (MSE from 2000 samples) of the incomplete sym-
metrized Huber M-estimator with respect to the complete estimator.

p=3 p=8

m N cN t5 N cN t5

n=1000

10 0.94 0.95 0.94 0.95 0.96 0.95

20 0.97 0.97 0.98 0.97 0.98 0.97

50 0.98 0.98 0.98 0.98 0.98 0.98

100 0.97 0.99 0.98 0.98 0.98 0.98

n=2000

10 0.94 0.95 0.95 0.95 0.96 0.95

20 0.97 0.98 0.97 0.97 0.98 0.97

50 0.99 0.99 0.98 0.98 0.99 0.99

100 0.99 0.99 0.99 0.99 0.99 0.99

n=4000

10 0.95 0.97 0.96 0.95 0.96 0.97

20 0.98 0.98 0.97 0.97 0.98 0.98

50 0.99 1.00 0.99 0.99 0.99 0.99

100 0.99 0.99 0.99 0.99 0.99 0.99

Table 3 Finite sample relative efficiencies (MSE from 2000 samples) of incomplete Dümbgen’s
estimators with respect to the complete estimator.

p=3 p=8

m N cN t5 N cN t5

n=1000

10 0.90 0.93 0.91 0.94 0.94 0.94

20 0.95 0.95 0.96 0.96 0.97 0.97

50 0.97 0.97 0.97 0.98 0.98 0.98

100 0.98 0.97 0.97 0.98 0.98 0.98

n=2000

10 0.90 0.92 0.92 0.93 0.94 0.94

20 0.94 0.96 0.96 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.98 0.99

100 0.98 0.99 0.98 0.99 0.99 0.99

n=4000

10 0.90 0.92 0.92 0.94 0.94 0.95

20 0.95 0.96 0.96 0.97 0.97 0.97

50 0.98 0.97 0.99 0.98 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99

simulated the finite sample efficiencies, which correspond to the dash lines in the
figures, computed as ratios of MSEs using n = 1000 and N = 2000 repetitions. It
can be seen that the efficiencies increase rapidly as a function of m, with a limit of
one as m → ∞. Interestingly, the efficiency at m = 1 is notably higher in the case
of heavy tailed distributions than in the case of the normal distribution. The choice
m = 20 is sufficient to produce an estimator with very high efficiency.
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Table 4 Finite sample relative efficiencies (MSE from 2000 samples) of incomplete Cauchy M-
estimators with respect to the complete estimator.

p=3 p=8

m N cN t5 N cN t5

n=1000

10 0.93 0.94 0.95 0.94 0.95 0.95

20 0.96 0.97 0.98 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.98 0.98

100 0.98 0.99 0.98 0.98 0.98 0.98

n=2000

10 0.93 0.95 0.95 0.94 0.95 0.95

20 0.96 0.97 0.98 0.97 0.97 0.97

50 0.98 0.98 0.98 0.98 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99

n=4000

10 0.93 0.94 0.93 0.94 0.95 0.95

20 0.96 0.97 0.96 0.97 0.97 0.97

50 0.98 0.99 0.99 0.99 0.99 0.99

100 0.98 0.99 0.99 0.99 0.99 0.99

All simulations so far have focused on data coming from an elliptical model,
among which the only distribution with independent marginals is the multivariate
normal distribution. However, there are many areas of applications, such as inde-
pendent components analysis, for which independent marginals outside of the mul-
tivariate normal distribution are of interest. Consequently, we also simulated data
for different sample sizes and dimensions from a model with mutually independent
components where each component has a standard exponential distribution. Here,
if the scatter functional possesses the joint independence property, then the off-
diagonal values of the scatter matrix are equal to zero. For this setting, we compare
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Fig. 1 Finite sample efficiencies of the incomplete symmetrized sample covariance matrix with
respect to the symmetrized sample covariance matrix (dashed lines) for different distributions with
n = 1000 and p = 3. The distributions from left to right are the normal distribution, the con-
taminated normal distribution and the t5-distribution. The solid lines give the asymptotic relative
efficiencies.
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the symmetrized M-estimators (Dümbgen’s estimator and the Cauchy M-estimator)
based on all pairwise differences to the corresponding estimators using running av-
erages of length 20. Figure 2 gives the mean squared errors of the off-diagonal
values based on 1000 repetitions. The figure shows that in this case the incomplete
estimators with m = 20 behave similarly to the regular symmetrized estimators.

For comparison, we also compute the corresponding non-symmetrized versions
of the scatter matrices (Tyler’s estimator and the Cauchy M-estimator, which corre-
sponds to the MLE for the Cauchy distribution, respectively). These estimators do
not possess the desired joint independence property, and so the corresponding func-
tionals of these non-symmetrized versions do not have zero off-diagonal elements
even though the variables are independent. Consequently, as seen in Figure 2, their
MSEs do not go to zero as n increases.

As this section demonstrates, using running average sets of pairwise differences
with small to moderate values of m results in only a small loss of efficiency relative
to their complete version. In the next section we will see how this small loss in
efficiency pays off in computation time.

6 Computation times

In comparing the computation times of the different algorithms presented in Sec-
tion 4, we again chose the two dimensions p = 3 and p = 8, and use five sample
sizes n =1000, 2000, 4000, 8000, 16000. For each combination of p and n, 50 sam-
ples from the multivariate t-distribution with 5 degrees of freedom are generated,
and the computation times of the different algorithms are measured. The scatter ma-
trices under consideration are the same as those used in previous sections. For the
symmetrized Cauchy M-estimator and for the Dümbgen’s estimator, both the fixed
point algorithms and the partial Newton algorithms can be found in the R-packages
ICSNP (Nordhausen et al, 2012) and fastM (Dümbgen et al, 2014), respectively.
The symmetrized Huber estimator can also be computed using the R-package IC-
SNP. Currently, there are plans to implement the running average versions of the
estimators in these package.

Our main interest in the following comparisons is two-fold. First, we are in-
terested in when parallelization is beneficial, and second, in how fast the running
average versions are relative to the standard implementations. In the simulations we
chose m = 20 for the incomplete estimators as this was in all cases considered to
yield highly efficient estimators. We also used the partial Newton algorithm from
the fastM package that uses sequential computations as this seems to be faster than
having all pairwise differences in the memory (Dümbgen et al, 2015a). All functions
are mainly written in C or C++ with an R interface and should be therefore compa-
rable (but have sometimes slightly different convergence criteria). The comparisons
were done using R 3.1.1 (R Core Team, 2014) on a Intel(R) Core(TM) i7-3770 CPU
with 3.40 GHz, 32 GB of memory using 64-bit Red Hat Linux.
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Fig. 2 Mean squared errors of the off-diagonal elements of the Dümbgen’s estimate, the incom-
plete Dümbgen’s estimate with m = 20, and Tyler’s estimate on the left, and MSE of the sym-
metrized Cauchy M-estimate, the incomplete symmetrized Cauchy M-estimate with m = 20, and
non-symmetrized Cauchy M-estimate on the right, when the three-dimensional (on the top row)
and eight-dimensional (on the bottom row) data are generated from a distribution with mutually
independent and exponentially (with mean 1) distributed components.

Medians of the computation times (on the logscale) of the symmetrized Cauchy
M-estimator, Dümbgen’s estimator and the symmetrized Huber estimator are given
in Figures 3, 4 and 5, respectively.

As expected, the regular fixed point algorithm utilizing all pairwise differences
is the slowest while the incomplete estimator is the fastest to compute. The ratio of
their computation times is approximately the ratio of the number of pairs, which is
0.5(n− 1)/m. With large sample sizes, using two cores gains approximately 50%
in computation time and using four cores approximately 75% relative to using only
one core. We compared also the computation times when using six cores, but the
computation times did not differ significantly different the version using four cores.
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Notice that the gain percentage of the parallel computation grows with the sample
size and the dimension until it reaches a limiting level. Parallelization becomes ben-
eficial somewhere around n =2000 when p = 3 and around n =1000 when p = 8.

As already pointed out in Dümbgen et al (2015a), the partial Newton algorithm is
not considerably faster than the fixed point algorithm when computing Dümbgen’s
estimator. However, the PN algorithm computes Dümbgen’s estimator and the sym-
metrized Cauchy M-estimator equally fast, whereas all the other algorithms com-
pute Dümbgen’s estimator much faster than the symmetrized Cauchy M-estimator;
for p = 3 and p = 8, approximately 5 and 18 times faster, respectively. Hence, the
PN algorithm is superior to parallelized fixed point algorithm using four cores for
the symmetrized Cauchy M-estimator, and vice versa for Dümbgen’s estimator. Re-
call that the PN algorithm cannot be applied to the Huber estimator since the weight
functions are not smooth. The computation time of the symmetrized Huber estima-
tor is approximately the same as that of the Dümbgen’s estimator when p = 3, but
twice as long when p = 8.
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Fig. 3 Median computation times in seconds on a logscale for various algorithms used to compute
the symmetrized Cauchy M-estimator. For each sample size, the median computation time is based
on 50 independent random samples from the multivariate t5-distribution. In the left panel p= 3 and
in the right panel p = 8.

7 Discussion

The relevance of symmetrized scatter matrices has only recently been recognized
within the statistics literature. The benefit of using such scatter matrices is twofold:
(i) they do not require a location estimate, and (ii) they possess the joint and the
block independence properties, which are necessary properties for many multivari-
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Fig. 4 Median computation times in seconds on a logscale for various algorithms used to compute
Dümbgen’s estimator. For each sample size, the median computation time is based on 50 indepen-
dent random samples from the multivariate t5-distribution. In the left panel p = 3 and in the right
panel p = 8.
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Fig. 5 Median computation times in seconds on a logscale for various algorithms used to compute
the symmetrized Huber M-estimator with q = 0.90 For each sample size, the median computation
time is based on 50 independent random samples from the multivariate t5-distribution. In the left
panel p = 3 and in the right panel p = 8.

ate methods. These benefits, however, come at a cost, namely that symmetrized scat-
ter matrices tend to be more computationally intensive and are slightly less robust
than their unsymmetrized counterparts. In this paper, the computational aspects of
symmetrized M-estimators have been considered. In particular, it is shown that par-
allelization of the fixed-point algorithm is possible for these M-estimators and that
this provides a considerable gain when, for example, four cores are used. Paralleiza-
tion of the fixed point algorithm alone, though, is not as computationally efficient as
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more recently proposed partial Newton algorithms. Another computational alterna-
tive, proposed within the paper, is motivated by results on incomplete U-statistics,
namely to reduce the number of pairwise differences used in computations. Such
an approach proves to be promising. A huge gain in computation time is achieved
with only a small loss in efficiency. Finally, we note that while the parallelization
approach is specific for M-estimators, the subsampling of pairwise differences can
be applied to any symmetrized scatter matrix.
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Dümbgen L (1998) On Tyler’s M-functional of scatter in high dimension. Annals
of the Institute of Statistical Mathematics 50:471–491
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