

This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Pohjalainen, Ilkka; Moore, Iain; Kron, T.; Raeder, S.; Sonnenschein, Volker; Tomita, H.; Trautmann, N.; Voss, Annika; Wendt, K.

Title: In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

Year: 2016

Version: Accepted version (Final draft)

Copyright: © 2016 Elsevier B.V.

Rights: CC BY-NC-ND 4.0

Rights url: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the original version:

Pohjalainen, I., Moore, I., Kron, T., Raeder, S., Sonnenschein, V., Tomita, H., Trautmann, N., Voss, A., & Wendt, K. (2016). In-gas-cell laser ionization studies of plutonium isotopes at IGISOL. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 233-239. https://doi.org/10.1016/j.nimb.2016.02.019

In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

I. Pohjalainen^{a,*}, I.D. Moore^{a,*}, T. Kron^b, S. Raeder^{c,d}, V. Sonnenschein^e, H. Tomita^e, N. Trautmann^f, A. Voss^a, K. Wendt^b

^aUniversity of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyvaskyla, Finland b Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany Helmholtz-Institut Mainz, 55128, Mainz, Germany d KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium e Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan f Institute of Nuclear Chemistry, University of Mainz, Fritz-Straβmann-Weg 2, 55128 Mainz, Germany

Abstract

In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of ^{238–242}Pu and ²⁴⁴Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

Keywords: Resonance laser ionization, gas phase chemistry, gas cell, plutonium

1. Introduction

13

14

The actinide elements cover the atomic number range from Ac (Z=89) to Lr (Z=103), beyond which lie the superheavy elements. It is this region which poses some of the most difficult and yet exciting challenges to experimentalists, requiring highly sensitive techniques to make efficient use of the limited 30 quantity of isotopes which can be produced. Nuclear struc-31 ture information obtained from optical spectroscopy is limited, 32 in particular above Ra (Z=88) which corresponds to the last 33 isotopic chain for which collinear laser spectroscopy has been performed [1]. This reflects a combination of low production cross sections coupled with a lack of stable isotopes, thus only limited knowledge of optical transitions. Traditionally, actinide 37 spectroscopy has been motivated by atomic energy level analysis, with more recent techniques including resonance ionization mass spectrometry applied to determine fundamental atomic 40 properties such as the ionization potential [2]. Probing the evolution of shell structure and the development of nuclear defor-42 mation of the heaviest elements using model-independent laser spectroscopic techniques is a current goal at a number of fa-44 cilities. It is clear that a step-wise approach will be needed to 45 successfully produce the requisite radioactive beams, includ-46 ing characterisation of optical transitions for selective and effi-47 cient ionization. Further studies will then be required in order 48 to optimize the optical spectroscopy for high-resolution measurements.

Recently, a new programme to study heavy elements using a combination of laser resonance ionization and collinear laser spectroscopy has been initiated at the IGISOL facility, in the Accelerator Laboratory of the University of Jyväskylä. Several elements above Ra have long-lived isotopes for which sufficiently large sample sizes (ng) of material can be produced at nuclear reactors and safely transported to facilities for nuclear structure studies. In collaboration with the Nuclear Chemistry department of the University of Mainz, samples containing Pu isotopes (^{238–242}Pu and ²⁴⁴Pu) were electrolytically deposited onto a tantalum substrate and delivered to Jvväskylä. After electrothermally heating the filament inside a gas cell filled with helium or argon, in-gas-cell resonance laser ionization was applied to selectively ionize the plutonium. The yield of the Pu⁺ ionic fraction was sufficient to perform high-resolution collinear laser spectroscopy. The high resolution data is currently under analysis and will be published elsewhere.

In this article preliminary investigations of a new gas cell for off-line heavy element laser ionization will be presented. A careful analysis of resulting mass spectra using the IGISOL separator has been performed in combination with studies of the ion time profiles following laser ionization with pulsed lasers. Such information is of importance to understand the timescales associated with molecular formation during extraction of the Pu^+ ions from the gas cell. In light of these studies, new modifications are planned to further improve the yield of the ele-

^{*}Corresponding author.

*Email addresses: ilkka.pohjalainen@jyu.fi (I. Pohjalainen),
iain.d.moore@jyu.fi (I.D. Moore)

ment of interest in the form of singly-charged monoatomic ions¹⁰⁸ which directly impacts the sample sizes required for collinear¹⁰⁹ laser spectroscopy. Finally the results of a gamma-ray spec-¹¹⁰ troscopy analysis of one of the plutonium samples is presented,¹¹¹ performed in a low-background counting station. This has al-¹¹² lowed a direct comparison with the original sample assay pro-¹¹³ vided by Mainz.

2. Development of a new gas cell and ionization of Pu

55

65

69

72

77

97

100

101

103

104

The application of gas cell laser ionization at IGISOL was 118 originally motivated by the goal of improving the rather modest₁₁₉ efficiency (~1%) of the heavy-ion fusion-evaporation ion guide (HIGISOL) as well as recognizing the need to move towards a more element-selective approach in the production of radioactive ion beams. A number of considerations were taken into120 account in the design of the gas cell including efficient evac-121 uation of a large recoil stopping volume (optimized gas flow122 transport and exit nozzle type), water cooling and baking capa-123 bilities, and optional filament feedthroughs as well as dc elec-124 trodes. This resulted in a modular construction consisting of a125 gas feeding part, the main body (with optional filament holder)126 and a removable exit nozzle/hole [3]. The volume of the main¹²⁷ body to the exit hole of ~250 cm³ resulted in an evacuation¹²⁸ time of 390 ms for a standard 1.2 mm diameter exit hole using 129 helium as buffer gas.

In order for the successful extraction of atomic ions, the 131 requirement for conditions of high gas purity (sub parts-per-132 billion) has been critical to the success of so-called laser ion133 guides as well as large gas catchers due to the competition 134 between atomic ion survival against molecular formation and 135 evacuation timescales. For several of the refractory elements136 that can only be produced with the gas cell method, the reac-137 tion rate coefficients which govern the time evolution of molec-138 ular formation indicate extremely strong affinity with the main 139 buffer gas contaminants, water and oxygen [4]. In on-line con-140 ditions, the critical loss mechanism for an ion of interest is that 141 of neutralization within the high density of (primarily) buffer₁₄₂ gas ion-electron pairs created by the passage of a primary pro-143 jectile beam. The operational principal of laser ionization in a144 gas cell takes advantage of this fast ion-electron recombination,145 with re-ionization applied in a volume where the ion-electron 146 density is sufficiently low for a high chance of survival of the147 photo-ions. One can understand that the operation of the gas148 cell is strongly dependent on a set of competing time scales. By149 studying the time distribution profiles of (mass separated) ions₁₅₀ one is able to determine the effective volume for laser ioniza-151 tion within the gas cell. At the Leuven laser ion source (LISOL)₁₅₂ it was shown that at time scales of approximately 5 ms, recom-153 bination losses start to gain importance above an ion-electron¹⁵⁴ density of 10⁷-10⁸ pairs/cm³ [5, 6]. At IGISOL, similar exper-155 iments verified that the accessible neutral fraction in the pres-156 ence of a primary beam is restricted to the nozzle region, an157 effective laser ionization volume which is evacuated within mil-158

The current programme focuses on heavy element studies not₁₆₀ requiring the presence of a primary beam. Therefore, much of₁₆₁

the gas cell volume necessitated by the stopping distribution of heavy-ion fusion-evaporation recoils is redundant. Long-lived isotopes of actinide elements including plutonium and thorium can be prepared onto substrates for subsequent evaporation into a volume which may be minimized to reduce possible molecular formation or other loss mechanisms such as diffusion to the walls of the gas cell. Ideally, such a volume is limited only by the efficiency of the laser ionization process. Assuming that an atom can be ionized by a single laser pulse and requiring that every atom is irradiated at least once by the lasers, the minimum volume V_{min} is set by the repetition rate of the laser system and the conductance C of the gas cell,

$$V_{min} = t_{rep}C = t_{rep} \cdot 0.45 \cdot \phi^2, \tag{1}$$

where t_{rep} is the time between the laser pulses and the conductance C has been given in terms of the exit hole diameter ϕ in mm for the case of room temperature helium. Considering the 10 kHz repetition rate of the Ti:sapphire laser system used at IGISOL and with a typical exit hole size $\phi = 1.2$ mm, Eq. 1 results in a volume of 0.07 cm³. However, the assumption that an atom would be ionized by a single laser pulse is unrealistic for a high repetition rate (10 kHz) laser system where the energy per pulse of the fundamental radiation can be a factor of ten lower compared to a medium repetition rate (200 Hz) system. In order for a laser system with a single pulse laser ionization efficiency ϵ_p to result in a total laser ionization efficiency > 80%, the minimum volume defined by Eq. 1 must be scaled by the factor $-2/\ln(1-\epsilon_p)$.

Currently we have no available data on the single pulse laser ionization efficiency at IGISOL, however a recent experiment at LISOL compared the performance of a similar high repetition rate Ti:sapphire laser system with the medium repetition rate dye laser system in studies of copper and cobalt [8]. In that work, by controlling the synchronization of the Ti:sapphire laser pulses, it was possible to match the repetition rates of both laser systems without affecting the energy per pulse of the Ti:sapphire laser. Whereas the dye laser system could saturate the atomic transitions and was seen to saturate the ion signal at ~100 Hz (corresponding to an irradiated volume representing ~40% of the total volume of the ionization chamber, evacuated in about 10 ms), the Ti:sapphire system was unable to saturate all transitions. Furthermore, when operated at the same repetition rate the ionization efficiency was around 200 times smaller. Ferrer and colleagues use this factor to infer an efficiency per pulse of 0.5% for the Ti:sapphire system in those experiments. This value can be inserted into our scaling factor and when multiplied by the minimum volume results in a required ionization volume of $\sim 30 \text{ cm}^3$. We note that by strongly focusing the Ti:sapphire beams in the LISOL experiment the ionization efficiency per pulse was increased to such an extent that the two laser systems performed comparably under on-line

The gas cell design in the current work was primarily motivated by the wish to reduce the redundant HIGISOL volume while being restricted by the practical consideration to reuse the same filament holder. An additional motivation for a dedi-

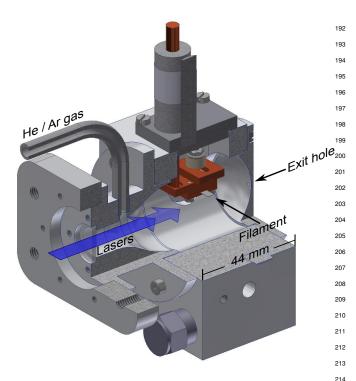


Figure 1: Cross-sectional view of the gas cell used for heavy element studies₂₁₅ with the filament in place.

162

163

164

165

166

168

169

170

172

173

174

176

177

178

180

181

183

184

185

186

187

188

cated gas cell took into account the expected surface contamina-219 tion with long-lived alpha-active isotopes when using actinide sources. Figure 1 presents a cross-sectional view of the gas₂₂₁ cell. Helium or argon buffer gas is fed through an inlet tube into the cell which has a volume of ~30 cm³. This volume of gas,₂₂₃ which is kept at a pressure of ~70 mbar, is extracted through₂₂₄ a 1.2 mm exit hole into a chamber maintained at a pressure of 225 $\sim 10^{-2}$ mbar. With a such a pressure difference the gas flow is₂₂₆ choked and thus the conductance is pressure independent. An₂₂₇ evacuation time for the whole gas cell volume of ~50 ms and₂₂₈ ~150 ms can be estimated for room temperature helium and ar-229 gon, respectively, for any operational pressure. Laser radiation₂₃₀ is introduced through a sapphire window mounted on the rear₂₃₁ of the gas cell, directed along the extraction axis of the cell very 232 close (~1 mm) to the filament. This geometry was designed to₂₃₃ maximise the laser overlap with the highest density of atoms₂₂₄ following evaporation from the filament. Additional elements₂₃₅ include a heater cartridge added for in-situ baking, water cool-236 ing, and the possibility to insert windows and targets for future₂₃₇ introduction of a primary beam.

In total, six filaments (with dimensions 11 mm \times 3.5 mm,₂₃₉ and thickness 50 μ m) were provided from the Nuclear Chem-₂₄₀ istry department of Mainz. Two of the filaments were blank₂₄₁ and were used for testing purposes in order to understand the₂₄₂ behaviour of the voltage across the feedthroughs on the target₂₄₃ chamber as a function of the current applied to the filament, to₂₄₄ measure the temperature of the filament with a pyrometer as a₂₄₅ function of current (and, at a fixed current, the temperature as₂₄₆ a function of gas pressure) and to search for surface ions which₂₄₇ could be used to calibrate the magnetic field of the mass separa-₂₄₈

tor. The other four samples contained a mixture of Pu isotopes with up to $\sim 10^{16}$ atoms for the most abundant isotope 244 Pu, to $\sim 10^{12}$ atoms for 238 Pu. Two of the four samples also contained 239 Pu and were used specifically in connection with the high-resolution laser spectroscopy experiment. In the current work however we focus only on the samples without 239 Pu. To prevent oxidation of the plutonium, the samples were covered with an additional protective Ti layer of about 1 μ m on the surface.

During operation the filaments were heated to a temperature of typically 1000-1200°C depending on the desired release rate of the Pu atoms. Variations in gas pressure affected the temperature and thus the evaporation rate. For a measured current of 28A (heating power 99 W), an increase of helium pressure from 50 mbar to 150 mbar resulted in a corresponding temperature decrease from 1050°C to 950°C.

Initially a three-step ionization scheme using laser radiation at wavelengths of 420.76, 847.26, and 750.24 nm was chosen based on trace analysis studies by Raeder et al [9]. In that work a full saturation of all optical excitation steps was demonstrated ensuring a high efficiency of the ionization process. At IGISOL the laser light was provided by three broadband Ti:sapphire lasers, the characteristics of which can be found elsewhere [10]. In the gas cell however little or no indication of the effect of the second and third IR steps was seen and it was suspected that the excitation preferentially proceeded via a Rydberg state populated by a photon from the first step transition which was subsequently ionized via buffer gas collisions. Indications for such an effect could be clearly observed in the saturation behaviour of the first step. A second laser was therefore introduced operating in the blue wavelength regime, both lasers using intracavity second harmonic generation (SHG) [11]. The first step laser, tuned to a wavelength of 420.76 nm, corresponds to a transition from the $5f^67s^2$ 7F_0 ground state to an excited state at 23766.14 cm⁻¹ with configuration $5f^67s7p^7D_1$. The wavelength of the second step laser was optimised to a resonance observed at a wavelength of 422.53 nm. Further studies showed that the two transitions are able to ionize independently from one another (though with much reduced count rates), which may be explained if the second step is driving population from the lowest-lying metastable state at 2203.61 cm⁻¹ to a state at 25870.69 cm⁻¹. It is of interest for further work to determine whether this state is naturally populated due to the temperature of the hot filament. Nevertheless, ionization will proceed via Rydberg states populated following excitation from the 23766.14 cm⁻¹ level, and/or non-resonantly or to auto-ionizing states if a second path proceeds via the state at 25870.69 cm⁻¹.

Surprisingly, it was seen that the Pu^+ ion count rate was maximised when both of the Ti:sapphire lasers were operated without the etalons in the resonator cavity. This increases the fundamental linewidth from 4-5 GHz to $\sim \! 100$ GHz, or approximately 0.2 nm at a wavelength of 840 nm. The resulting laser linewidth is considerably larger than the atomic linewidth contributions from Doppler and pressure broadening resulting in a lower spectral power density. Nevertheless, the loss in spectral power density may be offset if we are strongly saturating the transition, which is indeed the case for the first step. The modest increase in laser power without the etalon, coupled with the

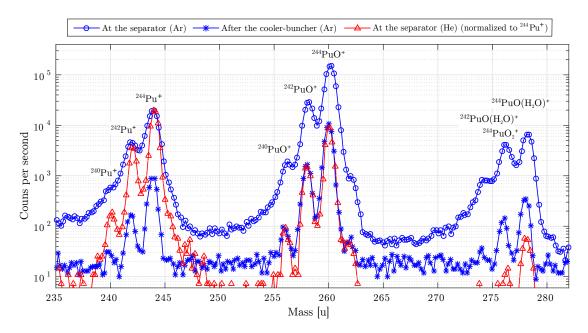


Figure 2: Mass spectra in the region of Pu and related molecules recorded at the focal plane of the IGISOL separator using He and Ar buffer gases and after the cooler-buncher (argon only). See text for details. Colour on-line.

280

simultaneous population of a number of Rydberg states can ex-275 plain the higher ion count rate. In order to better understand the 276 ionization process and to scan for Rydberg levels exhibiting a 277 higher ionization cross section, further investigation is required. 278

3. Gas phase chemistry

250

251

253

255

260

261

263

264

267

268

269

270

271

273

274

The cleanliness of the buffer gas and gas cell was characterized by recording mass spectra (Fig. 2) with a microchannel plate (MCP) detector at the focal plane of the IGISOL mass separator using both He and Ar buffer gases at a pressure of ~ 75 mbar. Additionally, a mass spectrum was taken using Ar₂₈₄ with a MCP detector situated at the end of the collinear laser line located after the radiofrequency (rf) cooler-buncher. This provided additional insight on the effect of the cooler-buncher on the mass spectra and also confidence in transporting Pu⁺ ions to the laser spectroscopy station. All of the spectra show an isotopic abundance pattern that matches the isotope assay of the samples provided by Mainz, both in the region of singly-288 charged monoatomic ions and also at higher masses identified²⁸⁹ with molecular formation of Pu⁺ ions. The transport efficiency²⁹⁰ through the separator system is believed to be rather constant in²⁹¹ this mass range.

The first molecular isotopic pattern is observed 16 mass units 293 heavier than the monoatomic pattern and corresponds to PuO^{+294} ions. There are two possible pathways to oxidize plutonium considering $\mathrm{H_2O}$ and $\mathrm{O_2}$ are two of the main impurities in the 296 gas:

$$Pu^{+} + O_{2} \longrightarrow PuO^{+} + O, \quad k_{2} = 1.5 \cdot 10^{-10} \text{ cm}^{3}/\text{s} \quad (2a)^{300}$$

 $Pu^{+} + H_{2}O \longrightarrow PuO^{+} + H_{2}, \quad k_{2} = 7 \cdot 10^{-12} \text{ cm}^{3}/\text{s}. \quad (2b)^{301}_{302}$

For both reactions, the bimolecular reaction rate k_2 has been calculated from experimental values of reaction efficiencies, or the k_2/k_{ADO} values, measured by Santos *et al* [12]. The accuracy of these values is estimated to be $\pm 50\%$. The average dipole orientation collisional rate, k_{ADO} , was calculated as follows.

$$k_{ADO} = \frac{2\pi q}{\sqrt{\mu}} \left(\sqrt{\alpha} + c\mu_D \sqrt{\frac{2}{\pi kT}} \right), \tag{3}$$

where q is the charge of the ion and μ is the reduced mass [13]. The factor c is the locking constant, α and μ_D are the polarizibility and the permanent dipole of the reagent molecule, respectively, all values of which have been taken from Table 7.1 and Fig. 7.1 in Ref. [14].

After formation, the PuO⁺ ions can react further with water molecules in a termolecular association reaction:

$$PuO^{+} + H_{2}O + M \longrightarrow PuO(H_{2}O)^{+} + M,$$
 (4)

where M is a buffer gas atom. This association reaction accounts for the peaks 34 mass units above the monoatomic Pu^+ ions. In Ar there also appears to be oxidation of the PuO^+ through similar reactions as in Eqs (2a) and (2b) because the count rate at (M/q) = 276 is higher than one would expect from the isotopic ratios.

Even though both helium and argon gases are purified with the IGISOL rare gas purification system [15] and both the gas cell and gas lines are baked before an experiment, the purity conditions appear to be unusually poor. This can be inferred from the large amount of molecular formation as seen in Fig. 2. Assuming molecular formation as discussed, the time constant associated with the process can be defined using $\tau = 1/k_2[M]$, where M is the impurity concentration. With an expected impurity level of 1 ppb of purified gas, the Pu⁺ ion survival time

τ		Helium	Argon	
Rising	Pu ⁺	$0.80 \pm 0.05 \text{ ms}$ $1.17 \pm 0.09 \text{ ms}$ $1.13 \pm 0.04 \text{ ms}$ $1.14 \pm 0.05 \text{ ms}$	$2.57 \pm 0.16 \text{ ms}$	
	PuO ⁺	$1.17 \pm 0.09 \text{ ms}$	$3.25 \pm 0.07 \text{ ms}$	
Falling	Pu ⁺	$1.13 \pm 0.04 \text{ ms}$	$6.96 \pm 0.15 \text{ ms}$	
	PuO ⁺	$1.14 \pm 0.05 \text{ ms}$	$6.75 \pm 0.07 \text{ ms}$	

Table 1: Time parameter τ for rising and falling edges of the Pu⁺ and PuO⁺ ion signal time profiles illustrated in Fig. 3 for helium and argon.

is in order of a few seconds, a timescale much longer than the evacuation time of the gas cell. We therefore suspect that additional impurities result from an unfortunate "dead" volume in the filament holder, which could have trapped some air, or to outgassing of the gas cell while the filament is being heated.

The most notable difference between the mass spectra obtained using helium and argon is the lower mass resolution in the case of argon. This is a reflection of collisions between buffer gas atoms and ions in the extraction region after the gas cell which leads to an energy spread, more pronounced in the case of argon because of the heavier mass. With argon, the effect of transporting the beam through the RF cooler-buncher is seen in an improvement in the mass resolving power (as well as a reduction in the count rate due to reduced transmission). This can be understood if the cooler-buncher acceptance window of 330 ~90 eV is considered. Only the part of the mass-separated beam331 that has the right energy enters the cooler, reducing the peak332 widths.

4. Study of the dynamic processes within the gas cell

In order to investigate the dynamic processes inside the gas³³⁷ cell following the creation of a photo-ion, the temporal behavior³³⁸ of mass-separated ions was studied by chopping the laser beams³³⁹ with a fast shutter mechanism. The resulting time structure of³⁴⁰ the ions was recorded with a multi-channel scaler connected to³⁴¹ the MCP located at the focal plane of the mass separator. Fig-³⁴² ure 3 shows an example of the time profiles of Pu⁺ and PuO⁺ ³⁴³ in He and Ar when the lasers were introduced at time $t \sim 0$ s and ³⁴⁴ turned off at $t \sim 1.13$ s. The small peak visible at the start of the ³⁴⁵ time profile of Pu⁺ in helium is caused by the initial ion cre-³⁴⁶ ation in the nozzle region which is evacuated before molecular ³⁴⁷ formation occurs. This is not seen in argon, probably due to ³⁴⁸ the slower evacuation of the gas cell. Exponential growth and ³⁴⁹ decay curves

$$y(t) = \begin{cases} A_0 \pm A \left(1 - e^{-\frac{t - t_0}{\tau}} \right) & \text{if } t \ge t_0 \\ A_0 & \text{if } t < t_0 \end{cases}$$
 (5)

were fitted to the rising and falling edges of the time profile,355 respectively, to extract a time parameter τ for each fit. These356 parameters represent the time scales during which the ion signal357 develops at the start of a laser pulse and how it decays once the358 lasers are blocked. Table 1 summarizes the time scales for the359 data illustrated in Fig. 3

One can immediately note from the fit parameters that in both $_{361}$ helium and argon the atomic Pu^+ ions achieve saturation sooner $_{362}$

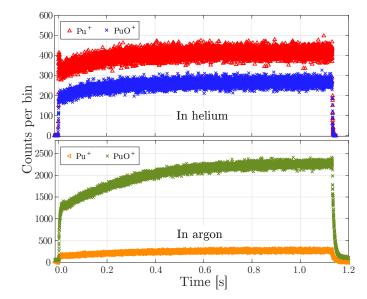


Figure 3: Time distribution profiles of Pu^+ and PuO^+ in He (top) and Ar (bottom). In order to quantify the profiles exponential growth and decay curves were fitted to the rising and falling edges of the distribution in order to determine the different time constants τ , summarized in Table 1. Colour on-line.

than the corresponding PuO⁺ molecule. This is to be expected as the oxide can only be produced following laser ionization of the atomic species. The slower time scale in Ar reflects the reduced conductance of the exit hole. It is interesting to note that the time parameters for the falling edges of the profiles are somewhat longer than the rising edges and both the atomic and molecular species have the same fit parameter within errors. This likely reflects the fact that both species are extracted from the same effective volume.

In all cases τ is notably lower than the total evacuation time of the gas cell indicating a fast loss mechanism of the plutonium (and its corresponding oxide). The alpha particles emanating from the samples in the radioactive decay of Pu are estimated to create an ionization density rate in He, $Q=10^5$ ion-electron pairs cm⁻³s⁻¹, which is negligible if one were to consider recombination losses due to free electrons. In addition, charge exchange between the Pu⁺ ions and buffer gas atoms or typical gas impurities is not possible because of the low ionization potential of Pu. The only conceivable loss mechanisms of the ions are molecular formation and diffusion losses to the walls of the gas cell. The information gained from the mass spectra in Fig. 2 indicates a source of impurities which is independent of whether He or Ar is used and we believe this to be caused by the filament holder as previously mentioned.

Using the known conductance of the exit hole, the time parameter τ translates into an effective volume for laser ionization. This effective volume will be different depending on whether one chooses to use the rising or falling edge of the Pu⁺ ion time distribution. We have chosen to use the falling edge as the starting conditions are different to the situation before laser ionization has commenced; all competing processes which create and destroy the ion of interest are in equilibrium. By taking into account the different conductances of the gas cell in He and

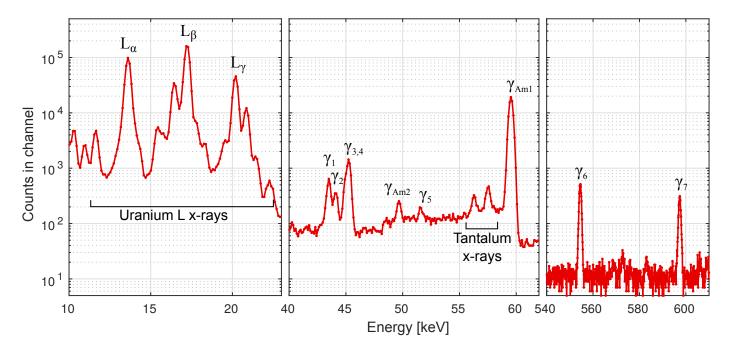


Figure 4: A gamma spectrum from an unused Pu sample. Three energy regions of interest are highlighted. In addition to the gamma radiation associated with the decay of Pu, the spectrum contains low energy X-rays, an ²⁴¹Am contaminant and X-rays of Ta, the material from which the filament is made.

Peak	Energy (keV)	²³⁸ Pu [16]	Isotope bra ²³⁹ Pu [17]	nching (%) ²⁴⁰ Pu [17]	²⁴² Pu [18]	Activity (Bq)
L_{α}	13.6	3.81(3)	1.65(4)	3.73(5)	3.2(2)	1130
L_{β}	17.22	4.26(3)	1.72(4)	3.95(6)	3.4(3)	1050
$\dot{L_{\gamma}}$	20.2	0.992(7)	0.428(14)	0.95(2)	0.79(9)	1165

Table 2: The three uranium x-rays peaks that were used to determine the total activity of a plutonium filament. In addition to peak energies and activities the branching to these peaks are given for each isotope in the filament if found in literature.

Ar buffer gases, the effective volume for the ionization of Pu is 383 $\sim 0.7~\rm cm^3$ in He and $\sim 1.4~\rm cm^3$ in Ar, which is only a few per- 384 cent of the total gas cell volume. This indicates that detected 385 monoatomic laser ions are originating not far from the nozzle 386 region. Gas phase chemistry and related ion time profiles us- 387 ing similarly reactive elements have been previously studied in 388 greater detail at IGISOL and in that work the increase in the 389 effective volume due to a reduction of impurities in the gas was 390 clearly observed [19].

5. Gamma ray spectroscopy of the Pu samples

Gamma ray spectroscopy was used to independently analyze₃₉₆ the content of a filament, in support of the assay provided by₃₉₇ Mainz, and also to have means of monitoring the remaining₃₉₈ activity of a partly used filament. The majority of the Pu iso-₃₉₉ topes in the samples alpha decay directly to the ground state of₄₀₀ a long-lived daughter or to a low-lying excited state, which sub-₄₀₁ sequently decays emitting conversion electrons (the branching₄₀₂ fraction to decay via gamma radiation is very low, <0.05%).₄₀₃ Further difficulties arise in such a measurement because the₄₀₄ gamma energies between different isotopes tend to cluster to₄₀₅

within $\sim 1~keV$ or less. However, using a long enough measurement time in a low-background station which is coupled to a low-energy high-purity germanium detector, a gamma spectrum of one unused Pu filament was successfully measured in the range from 3 keV to 800 keV.

Figure 4 shows three regions of interest of the gamma spectrum: the 10-25 keV region containing L X-ray peaks associated with the U daughter; the 40-65 keV region that has the strongest gamma peaks associated with the decay radiation of Pu; a high-energy region around 580 keV showing the gamma rays of ^{240m}Np which is in the decay chain of ²⁴⁴Pu. In addition an ²⁴¹Am contaminant was detected along with X-rays of Ta induced by the Pu alpha decay in the sample.

The total activity of the Pu isotopes in the filament was determined separately from the three uranium L x-ray peaks using known isotopic abundances from the assay and branching ratios for each peak of each Pu isotope [16, 17, 18]. No information could be found for the branching ratio of these X-rays for ^{244}Pu in the literature however this does not affect the calculation of the total activity as its activity is under 10 Bq. The peak energies, branching ratios and measurement results are summarized in Table 2. The mean value of $\sim\!1120$ Bq matches well with the stated assay activity of 1154 Bq.

Peak	- 61	Isotope	Branching	Activity	Assay
	(keV)		(%)	(Bq)	(Bq)
γ_1	43.5	²³⁸ Pu	0.0392	200	219
γ_2	44.1	^{240}U	1.05	9	7
γ_3	44.9	²⁴² Pu	0.0373	160	182
γ_4	45.2	²⁴⁰ Pu	0.0447	510	518
γ_5	51.624	²³⁹ Pu	0.02722	51	228
γ_6	554.49	^{240m}Np	20.9	7	7
γ_7	597.37	^{240m}Np	11.7	7	7
γ_{Am1}	59.532	²⁴¹ Am	35.9	9	-

Table 3: The list of identified gamma rays from the spectrum in Fig. 4 with peak 452 energies and branching ratios [20]. The determined activities of the plutonium isotopes in the filament using these peaks are listed. The activities of 240 und 454 and 240m Np can be measured for an indirect determination of the activity of 244 Pu 455 The assay of the filament is listed for comparison.

The individual activities of the Pu isotopes in the sample⁴⁵⁹ were determined from the peaks in the 43-52 keV region. Al-460 though some peaks overlap, by fitting simple Gaussian func-462 tions using the peak width extracted from the ²⁴¹Am line and ⁴⁶³ the peak energies for each isotope [20], it was possible to obtain⁴⁶⁴ the yields for each gamma line. By accounting for the detector 465 efficiency and branching ratio for the gamma rays the activities₄₆₇ of the isotopes were calculated (Table 3). The activity of ²⁴⁴Pu⁴⁶⁸ was not directly determined because of its low activity how-469 ever its decay chain contains short-lived ²⁴⁰U and ^{240m}Np hav-⁴⁷⁰₄₇₁ ing sufficiently strong branching ratios for gamma rays. Thus₄₇₂ the activity of ²⁴⁴Pu could be indirectly determined. As seen in⁴⁷³ Table 3 the individual activities agree well with those provided⁴⁷⁴ in the assay except in the case of 239 Pu whose measured activity $_{476}^{475}$ is notably lower. The discrepancy was also seen in the isotopic₄₇₇ abundance pattern of the plutonium mass spectrum from a fil-478 ament containing ²³⁹Pu which was made during a later experi-⁴⁷⁹ 481

6. Conclusion

407

408

409

411

412

413

415

416

417

418

419

420

421

423

425

426

427

428

429

430

433

434

435

437

438

Long-lived isotopes of Pu provided by the Nuclear Chem-488 sitry department of the University of Mainz were successfully489 extracted as low-energy ion beams at IGISOL following res-490 onance laser ionization in a He and Ar buffer gas-filled cell. 491 Although further work is required to fully characterize the ion-493 ization scheme, a sufficient yield of monoatomic Pu⁺ ions was⁴⁹⁴ produced in preparation for high-resolution collinear laser spec-495 troscopy. Studies of the mass spectra as well as ion time profiles₄₉₇ indicate a source of impurities which is likely due to outgassing₄₉₈ of "dead" volumes in the filament holder and perhaps via heat-499 ing of the filament. A new filament holder is currently being500 designed to partially address this issue. These successful stud-502 ies will be continued in the future in order to expand the pro-503 gramme of laser spectrocopy of actinide elements at IGISOL,504 with immediate interest in ²²⁹Th as part of the new EU Horizon... 2020 project, NuClock, which is focused on the study of the 507 low-lying isomeric state.

7. Acknowledgements

This work has been supported by the Academy of Finland programme under the Finnish Centre of Excellence Programme 2012-2017 (Project No. 251353, Nuclear and Accelerator-Based Physics Research at JYFL) and the European Commission (E.C.) 7th Framework Programme project ENSAR.

8. References

457

482

483

484

- [1] S. A. Ahmad, W. Klempt, R. Neugart, E. W. Otten, P. G. Reinhard, G. Ulm, K. Wendt, Mean square charge radii of radium isotopes and octupole deformation in the ^{220–228}Ra region, Nuclear Physics A 483 (2) (1988) 244–268. doi:http://dx.doi.org/10.1016/0375-9474(88)90534-9.
- [2] S. Rothe, A. N. Andreyev, S. Antalic, A. Borschevsky, L. Capponi, T. E. Cocolios, H. De Witte, E. Eliav, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, S. Fritzsche, L. Ghys, M. Huyse, N. Imai, U. Kaldor, Y. Kudryavtsev, U. Köster, J. F. W. Lane, J. Lassen, V. Liberati, K. M. Lynch, B. A. Marsh, K. Nishio, D. Pauwels, V. Pershina, L. Popescu, T. J. Procter, D. Radulov, S. Raeder, M. M. Rajabali, E. Rapisarda, R. E. Rossel, K. Sandhu, M. D. Seliverstov, A. M. Sjödin, P. Van den Bergh, P. Van Duppen, M. Venhart, Y. Wakabayashi, K. D. A. Wendt, Measurement of the first ionization potential of astatine by laser ionization spectroscopy, Nat. Commun. 4 (2013) 1835.
 URL http://dx.doi.org/10.1038/ncomms2819
- [3] I. Moore, P. Dendooven, J. Ärje, The IGISOL technique—three decades of developments, Hyperfine Interactions 223 (1-3) (2014) 17–62. doi:10.1007/s10751-013-0871-0.
 URL http://dx.doi.org/10.1007/s10751-013-0871-0
- [4] G. K. Koyanagi, D. Caraiman, V. Blagojevic, D. K. Bohme, Gas-phase reactions of transition-metal ions with molecular oxygen: room temperature kinetics and periodicities in reactivity, J. Phys. Chem. A 106 (2002) 4581.
- [5] M. Huyse, M. Facina, Y. Kudryavtsev, P. V. Duppen, I. collaboration, Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions, Nucl. Instr. and Meth. in Phys. Res. B 187 (2002) 535.
- [6] M. Facina, B. Bruyneel, S. Dean, J. Gentens, M. Huyse, Y. Kudryavtsev, P. V. den Bergh, P. V. Duppen, A gas cell for thermalizing, storing and transporting radioactive atoms and ions. Part II: On-line studies with a laser ion source, Nucl. Instr. and Meth. in Phys. Res. B 226 (2004) 401.
- [7] I. D. Moore, T. Kessler, T. Sonoda, Y. Kudryavstev, K. Peräjärvi, A. Popov, K. D. A. Wendt, J. Äystö, A study of on-line gas cell processes at IGISOL, Nucl. Instrum. Methods Phys. Res. B 268 (6) (2010) 657 – 670
- [8] R. Ferrer, V. Sonnenschein, B. Bastin, S. Franchoo, M. Huyse, Y. Kudryavtsev, T. Kron, N. Lecesne, I. Moore, B. Osmond, D. Pauwels, D. Radulov, S. Raeder, L. Rens, M. Reponen, J. Roßnagel, H. Savajols, T. Sonoda, J. Thomas, P. V. den Bergh, P. V. Duppen, K. Wendt, S. Zemlyanoy, Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the leuven laser ion source @ LISOL, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 291 (2012) 29 37. doi:http://dx.doi.org/10.1016/j.nimb.2012.08.023.
- [9] S. Raeder, A. Hakimi, N. Stöbener, N. Trautmann, K. Wendt, Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry, Analytical and Bioanalytical Chemistry 404 (8) (2012) 2163–2172.
- [10] M. Reponen, I. D. Moore, T. Kessler, I. Pohjalainen, S. Rothe, V. Sonnenschein, Laser developments and resonance ionization spectroscopy at IGISOL, Eur. Phys. J. A 48 (2012) 45.
- [11] V. Sonnenschein, I. D. Moore, I. Pohjalainen, M. Reponen, S. Rothe, K. Wendt, Intracavity Frequency Doubling and Difference Frequency Mixing for Pulsed ns Ti:Sapphire Laser Systems at On-Line Radioactive Ion Beam Facilities, in: Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014), id.030126, 2015, p. 030126. doi:10.7566/JPSCP.6.030126.
- [12] M. Santos, J. Marçalo, A. P. de Matos, J. K. Gibson, R. G. Haire, Gasphase oxidation reactions of neptunium and plutonium ions investigated via fourier transform ion cyclotron resonance mass spectrometry, The Journal of Physical Chemistry A 106 (31) (2002) 7190–7194.

- [13] T. Su, M. T. Bowers, Chapter 3 classical ion-molecule collision theory,
 in: M. T. Bowers (Ed.), Gas Phase Ion Chemistry, Academic Press, 1979,
 pp. 83 118.
- [14] K. Hiraoka, Gas-phase ion/molecule reactions, in: K. Hiraoka (Ed.), Fundamentals of Mass Spectrometry, Springer New York, 2013, pp. 109–144.
- [15] I. Pohjalainen, I. D. Moore, T. Eronen, A. Jokinen, H. Penttilä, S. Rinta Antila, Gas purification studies at IGISOL-4, Hyperfine Interactions
 227 (1-3) (2014) 169–180.
- [16] P. N. Johnston, P. A. Burns, Absolute L X-ray intensities in the decays of
 230Th, 234U, 238Pu and 244Cm, Nuclear Instruments and Methods in
 Physics Research Section A: Accelerators, Spectrometers, Detectors and
 Associated Equipment 361 (1–2) (1995) 229 239.
- [17] M. Lépy, B. Duchemin, J. Morel, Comparison of experimental and the-oretical L X ray emission probabilities of 241Am, 239Pu and 240Pu,
 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 353 (1–3)
 (1994) 10 15.
- [18] V. P. Chechev, The Evaluation of 238Pu, 240Pu, and 242Pu Decay Data,
 AIP Conference Proceedings 769 (1) (2005) 91–94.
- [19] T. Kessler, I. Moore, Y. Kudryavtsev, K. Peräjärvi, A. Popov, P. Ronkanen, T. Sonoda, B. Tordoff, K. Wendt, J. Äystö, Off-line studies of the laser ionization of yttrium at the IGISOL facility, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 (4) (2008) 681 700.
- [20] National Nuclear Data Center, information extracted from the Chart of
 Nuclides database, accessed: 2015-09-01.
 URL http://www.nndc.bnl.gov/chart/