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The effective attractive interaction between electrons, mediated by electron-phonon coupling, is a well-
established mechanism of conventional superconductivity. In metals exhibiting a Fermi surface, the critical
temperature of superconductivity is exponentially smaller than the characteristic phonon energy. Therefore, such
superconductors are found only at temperatures below a few kelvin. Systems with flat energy bands have been
suggested to cure the problem and provide a route to room-temperature superconductivity, but previous studies
are limited to only BCS models with an effective attractive interaction. Here we generalize Eliashberg’s theory
of strong-coupling superconductivity to systems with flat bands and relate the mean-field critical temperature to
the microscopic parameters describing electron-phonon and electron-electron interaction. We also analyze the
strong-coupling corrections to the BCS results and construct the phase diagram exhibiting superconductivity
and magnetic phases on an equal footing. Our results are especially relevant for novel quantum materials where
electronic dispersion and interaction strength are controllable.

DOI: 10.1103/PhysRevB.98.054515

I. INTRODUCTION

The overarching idea in quantum materials is to design the
electronic (or optical, magnetic, etc.) properties of materials
to perform the desired functionality [1]. This goal is aided by
generic models and concepts, such as specific lattice models
that lead to certain topological phases. Often the studied
models and the resulting topological phases for electronic
systems are noninteracting and do not include the possibility
of spontaneous symmetry breaking. However, such noninter-
acting models are platforms for exotic electron dispersions
that provide a basis for studying symmetry-broken interacting
phases. In particular, certain models support approximate flat
bands [2-10], and here we consider microscopic mechanisms
for symmetry-breaking phases in such systems.

We analyze the interplay of electron-phonon [11] and
(screened) electron-electron interaction in providing means
for a symmetry-broken phase transition, thereby coupling
together works on flat-band superconductivity [2,7,10,12] with
those on flat-band (Stoner) magnetism [9,13—17]. In both
cases the resulting mean-field critical temperature is linearly
proportional to the coupling constant [18], thus allowing for
a very high critical temperature. The two types of inter-
action mechanisms work in opposite directions and, in the
case of weak interactions, in a symmetric way. However,
upon increasing the coupling strength the retarded nature
of the electron-phonon interaction shows up (as opposed
to the instantaneous electron-electron interaction), breaking
the symmetry between the two. In particular, we generalize
Eliashberg’s strong-coupling theory of superconductivity [19],
usually formulated for systems with a Fermi surface, for
flat bands. As a result, we describe the dimensionless BCS
attractive interaction [20] in terms of the electron-phonon
coupling and the characteristic phonon frequency [Eq. (8)].
In addition, we provide the generalization of the well-known
McMillan formula of strong-coupling superconductivity (for
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Fermi surface systems) [21] to the case with flat bands in
Eq. (14).

In addition to superconductivity, we consider flat-band
Stoner magnetism. Because of the retarded nature of the
electron-phonon interaction, the combined interaction can
simultaneously have attractive and repulsive components, and
thus the system can be unstable with respect to both singlet su-
perconductivity and magnetism (see a generic strong-coupling
phase diagramin Fig. 1). Often one of the phases still dominates
and suppresses the other, but we find that when the critical
temperatures of the phases are similar, both phases are local
minima of the free energy at low temperatures. We find that
their bulk coexistence and the resulting odd-frequency triplet
superconducting order [22,23] are only realized as an unstable
solution. On the other hand, these phases can form metastable
domains inside the sample, and therefore an odd-frequency
triplet order parameter can appear at the domain walls.

The structure of this paper is as follows. In Sec. II we
introduce the model of surface bands with electron-phonon
and Coulomb interactions. In Sec. III we formulate the
Eliashberg model extension for the surface bands, describe
all possible ordered states that can appear within this model,
and calculate the critical temperatures of the superconducting
and antiferromagnetic states. We study the competition and
possible coexistence of these two types of ordering in Sec. IV.
Conclusions are given in Sec. V.

II. MODEL

As a low-energy model for the flat band, we assume two
sublattices coupled through an electronic Hamiltonian [3]

H 0 & ith r\ )
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FIG. 1. Strong-coupling phase diagram for flat-band systems
as a function of electron-phonon attraction A for electron-electron
repulsion u = 0.5wg [Eq. (8)]. TSE is the temperature at which the
T¢’s of magnetic and superconducting order coincide. In the striped
region these phases can form metastable domains inside the sample.
This diagram is for N — oo. For finite N the overlap region between
the phases is smaller.

where an integer N parametrizes the flatness of the dispersion,
and g is the energy at p = ppg. The model is electron-hole
symmetric and the two energy bands have the dispersions £e¢,.
For large N, the states with low momenta, |p| < pgp, are almost
at zero energy and the density of states is very high. The
states with momenta larger than prg do not contribute much
to the momentum integrals due to their low density of states.
Therefore, the results for large N do not depend much on the
momentum cutoff, as long as it is larger than pgg. In our model
we take the cutoff to infinity and consider only the cases N > 2.
This is in contrast to models with isolated flat bands extending
throughout the Brillouin zone. The effects discussed below in
the case of large N are mostly applicable also to such models
(provided they have the type of sublattice degree of freedom
discussed below), as long as pggp is taken as the size of the
Brillouin zone. Equation (1) is approximately realized for the
surface states of N-layer rhombohedrally stacked graphite. In
that system the surface states delocalize into the bulk at the
edges of the flat band and this gives a momentum-dependent
correction in the low-energy Hamiltonian [12,24]. In the case
of N — oo the delocalization of the surface states to the bulk
leads to strong amplitude mode fluctuations invalidating the
mean-field theory [24]. Therefore, the theory considered in
this paper is applicable to rhombohedral graphite only in the
case where N is not too large.

We model the electron-electron interaction as a repul-
sive on-site Hubbard interaction [25] with energy U. The
magnitude of U depends on the microscopic details of the
system and its environment. The coupling between electrons
and phonons, with strength g, creates an effective attraction
between the electrons and makes the system susceptible to
superconductivity [19]. We mostly consider Einstein phonons
with constant energy w, = wg and discuss generalizations in
the Supplemental Material [26].

The total Hamiltonian incorporating these effects is
H =) W HapVpo+ ) wgbl b,
p.o q.p

4 i i
+ W Z wp+q,apwqu,g'pwk,a’pwp,ap

p.k,q
p,0,0/

g L
v DD A /AN AP )

P:q,0,p

where N is the number of lattice points in the system and
\I’;a = W;om ’\”;a ) is apseudospinor in sublattice space. We
assume that the low-energy states on the two sublattices p =
A/ B are spatially separated (e.g., localized on the two surfaces
in rhombohedral graphite), so that neither the electron-electron
interactions nor the phonons couple them. The only coupling
between the sublattices comes from the off-diagonal dispersion
relation. In the Supplemental Material we also show that
the flat-band phenomenology applies to linear, graphenelike
dispersion with an electronic Hamiltonian

0 Dx —ipy ,
and with an energy cutoff ¢, and Fermi velocity vy, provided
the interaction energy scales are large compared to ¢.. Hence,
our results may also apply as an effective model for twisted
bilayer graphene close to its “magic” angles [30].

In the theory of electron-phonon superconductivity of met-
als, the neglect of higher-order diagrams in the perturbation
theory is typically justified with the help of the Migdal theorem
[31]. In that case, the expansion parameter gets an additional
factor of wg/Ef, where Ef is the Fermi energy. Because of
the Migdal theorem, the theory of superconductivity for metals
is not strictly limited to weak coupling with respect to the
interaction parameter.

In the flat band, however, the chemical potential is located at
the bottom of the band and there is no Fermi energy with which
to compare the Debye energy. Migdal’s theorem cannot be used
in this case. In the intermediate case of narrow electronic bands,
corrections in the higher orders of the adiabatic parameter
wg / EF have been studied in Refs. [32—-35] and the Eliashberg
theory has been found also to be in agreement with Monte
Carlo results in the weak-coupling regime when wg/Ef = 1
in Ref. [36]. We find that the diagrams beyond the mean-field
approximation do not influence the self-energies significantly
if the effective pairing constant introduced below in Eq. (8) is
small, L < 1, and wg, u <K &p. Moreover, although the mean-
field theory is applied beyond its formal limits of validity in
the strong-coupling regime, this theory captures the interesting
possibility that the retarded nature of the electron-phonon
interaction can lead to the presence of attractive and repulsive
components at the same time. As a result, the system can
be simultaneously unstable with respect to the appearance of
both singlet superconductivity and magnetism as discussed in
Sec. IV.
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FIG. 2. Quasiparticle dispersions E(p) for different kinds of
symmetry breakings with N = 5. (a) In the noninteracting case,
the spin bands are degenerate with E(p) = £e(p). (b) For the
ferromagnetic (FM) or the superconducting (SC) phase witha 6 = &
phase shift between the sublattices, one quasiparticle band is shifted
up and the other down in energy. In this case, no energy gap is opened.
(c) For the antiferromagnetic (AFM) or the SC phase with 6§ = 0 an
energy gap is opened and quasiparticle bands are doubly degenerate.

III. ORDERED STATES

Hamiltonian (2) allows for a number of spontaneous
symmetry-breaking phases. We restrict our study to spatially
homogeneous phases. Therefore, the order parameter can
appear in the spin, sublattice (pseudospin), and electron-hole
(Nambu) spaces. The general self-energy is

3

S(ion) = Y Tiulio)To;m 3)
i,j,k=0

where 7;, 0}, and p; are the Pauli matrices in electron-hole,
spin, and sublattice spaces, respectively. We characterize the
different components X;;; and determine their values within
the self-consistent Hartree-Fock model. This reduces to solv-
ing a set of nonlinear integral equations, known as Eliashberg
equations in the context of conventional superconductors.

To explore the possible phases of the system, we first
assume that the U (1) gauge symmetry is broken, but the SU (2)
spin-rotation symmetry is not. After fixing the overall phase
of the superconducting order parameter, we are left with the
self-energy oo (i, ) and three degrees of freedom for the su-
perconducting singlet order parameter: the magnitudes of the
order parameter on the sublattices A 4 and Az and the relative
phase 6. Choosing 6§ =0 leads to a gapped quasiparticle
dispersion [Fig. 2(c)], whereas & = m would imply a gapless
dispersion [Fig. 2(b)]. Thus, in the case of an instantaneous
interaction the total energy is minimized when 6 =0 and
A4 = Ap. Generalizing the above to the frequency-dependent
interactions, we choose the singlet to be proportional to the

1,072 09 component, whose magnitude and the functional form
are obtained from the self-consistency equation. The self-
energy for the fermionic Matsubara frequency w, is

Sscliw,) = —iE)1 4+ ¢, 1002, 4

where % = (1 — Z,)w, is the frequency renormalization
by the retarded interaction [19]. To simplify the equations,
we define renormalized frequencies @, = Z,w,. We use the
symbol ¢, for the “bare” singlet order parameter and A for the
maximum value of the renormalized singlet order parameter
A, = ¢,/ Z, related to the energy gap.

When SU(2) spin-rotation symmetry is broken but U (1)
gauge symmetry is not, the self-energies describe the frequency
renormalization and the magnetization. After fixing the di-
rection of the magnetization on one sublattice, the relevant
degrees of freedom are reduced to three similarly as in the
superconducting case. These can be chosen as the magnitudes
of the magnetizations in the two sublattices 44 and hp and
the relative angle ¢ between their directions. The quasiparticle
dispersion in the magnetic case is the same as in the supercon-
ducting case if we identify Ay p = hs p and 6 = T —¢ (see
Fig. 2). In this case, the relative angle ¢ = 0 leads to a gapless
quasiparticle dispersion [Fig. 2(b)], and ¢ = 7 to a gapped
dispersion [Fig. 2(c)]. Thus, the energy minimum is obtained
with hy = hp and ¢ = m. The stable magnetization is hence
antiferromagnetic, with opposite magnetizations on the two
sublattices, so that the self-energy is

Yarm(iow,) = —i X1 + h, 130303, )

where h, is the frequency-dependent exchange field. This
result agrees with density functional theory (DFT) studies on
rhombohedral graphite [37], and similar magnetization struc-
ture has been predicted also in the case of flat bands appearing
at the zigzag edges of graphene nanoribbons [38—40]. We also
note that the AFM state is insulating [see Fig. 2(c)]. If the
noninteracting dispersion is completely flat at zero energy, the
sublattices are uncoupled and the antiferromagnetic state is
degenerate with the ferromagnetic ¢ = 0 state.

By calculating the Hartree-Fock self-energies, we find the
self-consistency equations, from which we can determine the
values of the self-energy terms. For the superconducting (SC)
self-energy (4), they are

ol 00
dp p o
G0 =27 3 Gum—u) / _ . ®
m;oo 0 DPip @4+l + ¢
00 00
o dp p Zn

Z, =142T ,\nm—/ _ G,
m;oo wu Jo  pig @ +EL+ P2 @

where the interaction kernel is —
Loy /@2 + (0, — ©,)*]. The functional form of the
interaction kernel is determined by the phonon propagator
from which it is derived. The width in frequency space is
determined by the characteristic phonon frequency, which in
this case is the Einstein frequency wg. The effective interaction
constants in the flat band are

& O _ UQpp

=521
wy 2Bz Qpz

®)
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where Qpp and Qpz are the momentum-space areas of the flat
band and of the first Brillouin zone, respectively.

For an antiferromagnet with self-energy (5), the self-
consistency equations are

dpp hom
h, =2T Anm ’ 9
Lo [Py @
m Ood Zm
Z, _1+2T2xnm"’ PP “m . (10)
o= onlJo prg @ +e;+hy

Superconductivity and magnetism are thus symmetric with
each other also on the level of the self-consistency equations,
but with the roles of u and A, switched. Tovmasyan et al. have
shown that this duality is also broken by taking into account
higher-order terms in the perturbation theory [41].

To solve the self-consistency equations (6)—(10), we trun-
cate the Matsubara sums with a cutoff wc ~ 10wg. This causes
no numerical error if we use the pseudopotential trick and
simultaneously replace u with an effective value u*, which
depends on the cutoff [42]. For superconductivity (magnetism),
cutting off high-energy scatterings is compensated by a reduc-
tion (increase) in the low-energy effective interaction.

After the pseudopotential trick, the solutions are found by
a fixed-point iteration. The iteration is continued until all of
the components have converged. The fixed-point method only
finds the stable solutions; to find the unstable solutions, we
used a solver based on Newton’s method.

The number of parameters in Egs. (6)~(10) can be reduced
by defining new interaction constants A = A(wg/g9)*" and
i = ua)i/ Nt /&N, so that one parameter is eliminated com-
pletely and the results become proportional to wg.

For weak coupling, A < 1, the frequency dependence of
Aum can be disregarded and we can approximate Z &~ 1 and
A = ¢. Assuming A\wg > u,the superconducting gapat7 = 0
and the critical temperature are

Ao _ 1 G-V (G—x) | 1)
or 2 Nen(P0-3) |
e _ 1 [a-me-peion)t o
wE o Nsin(%) '

These results are valid for N > 2 as the momentum integrals
diverge without a cutoff for N < 2. Note that the 7 =0
limit can thus be taken before the flat-band limit of large N.
Analogous results have been obtained before within the BCS
model in Ref. [12]. For large N, Ay is linear in the coupling
and its magnitude is proportional to the phonon energy scale.
Hence the associated critical temperature can be very large.
Relabeling Ay — hg and A <> ii, we find similar equations for
magnetism. Here & is the magnetic order parameter at 7 = 0.

At strong coupling, the retardation matters and the results
for magnetism and superconductivity diverge from each other.
For superconductivity, we can improve on the weak-coupling
result by including some of the corrections from the Eliashberg
theory when N—oo. We still neglect the full frequency
dependence, but we include the electron mass renormalization
as a static factor Zyp = 1 4+ A. The order parameter at zero

0.15
—u/wg=0 1
—u/wg=0.3
& 0.10 u/wp=0.6
3 —u/wr=0.9
o ---Approx 005
71@) .
& 0.05 =
0 0
0 0.5 1 0 0.5 1
A u/wg
(a) (b)
0.25
=0 1
0.20H—X=0.3
= A=0.6
30150 _x=o09 .
3
£20.10 205
3
0.05
0 0
0 0.5 1 0 0.5 1
u/wg A
(c) (d)

FIG. 3. Critical temperatures for superconducting and magnetic
phases for N — o0o. (a) Superconductivity is suppressed when A <
u/wg. Above the critical point Ac(u), T is linear in A. With
increasing A, the electron-phonon renormalization increases and this
limits the critical temperature. The dashed line is the approximation
in Eq. (14). (b) Critical interaction strength for superconductivity as
a function of u. When A < Ac(u), superconductivity is suppressed.
The dashed line is the instantaneous approximation. (¢) Magnetism
is suppressed when u/wg < A. Above the critical point uc (1), T2 is
linearin u. (d) Critical interaction strength for magnetism as a function
of electron-phonon interaction. When u < u¢ (1), magnetism is sup-
pressed. The dashed line is the instantaneous approximation. In this
figure, we do not take into account the possible magnetic instability
of the superconducting state, or vice versa.

temperature becomes

Awg—1u
Ag= ——E—= 13
T2 +20) (13)

In metals with a Fermi surface [43], the electron-phonon
interaction renormalizes the pairing potential with the factor of
1+A instead of 1422 as in Eq. (13). Thus, for weak coupling,
the electron-phonon renormalization is more effective in the
flat band than in the usual metals. This difference is more
pronounced at strong coupling, as we see next.

By linearizing Eqgs. (6) and (7) with respect to ¢, we can
solve for the critical temperature [see Fig. 3(a)]. We find that
when N — oo, the critical temperature scales as T o< A%?wg
for large A. In metals [43] the asymptotic scaling goes as T
M 2wp.

Whenu # 0, there is a critical point A¢ such thatfor A < A¢
there is no superconducting transition at any temperature. For
small u/wg, Ac is linearly proportional to the Coulomb inter-
action. For large u, A¢ increases sublinearly [see Fig. 3(b)].
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FIG. 4. Effect of finite N on critical temperature when u = 0. For
small A, the results coincide with the instantaneous approximation
of Eq. (12) (shown with the dashed lines). For large A, the strong-
coupling corrections limit the increase in 7.

An approximate numerical equation for T;° is
log —u(l —0.3u/wEg)
4(1 4 2.61038)

This is a flat-band analog of the McMillan equation [21],
which for the conventional superconductors incorporates the
Eliashberg and Coulomb corrections to 7¢°. The u? term in the
numerator accounts for the retardation correction to A¢ as in
Fig. 3(b). The form of the denominator is chosen to show the
102 power-law behavior for large A. The factor 2.6 is obtained
by a fit in the region A < 1 for u = 0. The fit is shown as the
dashed line in Fig. 3(a).

The ratio Ag/T¢° is not constant, but depends on both N
and A. For N — o0, the ratio has the value 2 for weak coupling
and increases as A increases. For A = 1 the ratio is 2.56. For
the critical temperature at finite N, see Fig. 4.

The phenomenology of the magnetism can be understood as
follows. According to the Stoner criterion, the magnetization is
related to the competition between the exchange energy gain
and the kinetic energy penalty from moving electrons from
one spin band to another. For a flat band with N — oo, there
is no kinetic energy penalty, and at zero temperature with
A =0 even a small exchange interaction leads to a complete
magnetization of the flat band. In the presence of the electron-
phonon interaction the competition is between the exchange
energy gain and the electron-phonon energy penalty, which
coincide at u = uc. If we can neglect the retardation, the total
interaction in Eq. (9) is u — Awg. The flat band is completely
magnetized when u > u¢ & Awg. Due to retardation, for large
A the critical point is reduced from the linear estimate [see
Fig. 3(d)].

Above, we have discussed the superconducting order pa-
rameter ¢. The other important property of the superconduct-
ing state is the existence of a supercurrent. In the flat band the
electronic group velocity vanishes and it is not immediately
clear that there can be a finite supercurrent. However, the flat-
band surface states of superconducting rhombohedral graphite
do support a finite supercurrent [44] and similarly it is known
that quantum Hall pseudospin ferromagnets can support a
finite pseudospin supercurrent [16]. More generally, Peotta
and Torméd [7] have shown that for a topological flat band

TS = (14)

0.8t p

Super- .
conducting v
7

0.6

Magnetic
0.2} &

0 02 04 06 08 1

u/wg

FIG. 5. Mean-field phase diagram for N = oo obtained by deter-
mining the line on which the critical temperatures for superconductiv-
ity and antiferromagnetism are equal. The thin dashed line shows the
phase boundary A = u/wg in the case of instantaneous interactions.
When the energy scales of interactions are small compared to wg we
recover the BCS results. The phase diagram for finite N looks similar
but the retardation effects are weaker, so that the deviation from the
BCS approximation is smaller.

there is an additional geometric contribution to the superfluid
weight so that the critical current is finite. As we have not
fixed the underlying topology in our model, it can be applied
to topologically nontrivial flat bands.

As one can see, the Eliashberg model describes the nucle-
ation of both the magnetic and superconducting phases which
can have rather close critical temperatures as shown in Fig. 3.
In the next section we consider the nonlinear problem by
calculating the entire phase diagram of the ordered states to
study the competition and the possible coexistence between
the superconductivity and antiferromagnetism.

IV. COMPETITION BETWEEN THE PHASES

If the electron-phonon interaction is approximated as in-
stantaneous, we can sum the two interactions together and
have either a total interaction, which makes the normal state
unstable to the superconducting transition (Awg—u > 0) or
to the magnetic transition (Awg—u < 0), but not to both at
once. On the other hand, if the electron-phonon interaction
is retarded, the situation is different, as the total interaction
can be attractive for low frequencies but repulsive for high
frequencies. There is then a parameter range in which both
phases are local minima of the free energy. This occurs when
A is large enough to overcome the suppressing effect of u in the
case of superconductivity [A > A¢(u) in Fig. 3(b)], but at the
same time u is large enough to overcome the suppressing effect
of A and create a magnetic instability [# > uc(A) in Fig. 3(d)].

We study the phase diagram of the system by determining
the state with a higher critical temperature as a function of u and
A (Fig. 5). The phase diagram is almost symmetric with respect
to SC and AFM phases except that the lack of retardation in
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electron-electron repulsion favors the AFM phase for strong
coupling.

Even if there is a parameter region in 7, u, and A where
both SC and AFM self-consistency equations have a finite
solution, it does not mean that both phases are necessarily
simultaneously present. To determine the stability, we con-
struct the coupled self-consistency equations in the case when
both order parameters are nonzero and interact with each other
[26]. By linearizing the coupled self-consistency equation with
respect to SC, and solving the AFM part fully, the stability
of the AFM phase with respect to the SC transition can be
determined, and vice versa. Figure 1 shows the region in A-T
space with fixed u, where the two phases are stable. The figure
shows that in the region where SC is dominant, the AFM
phase is unstable near the expected second-order transition (the
solid line between the magnetic and paramagnetic phases) but
becomes a local minimum of free energy at lower temperatures.
The same happens for superconductivity when the AFM phase
dominates. The transition between SC and AFM phases is of
the first order.

When discussing superconductivity in the presence of an
exchange field (either induced or spontaneous), we have an
additional ingredient in the self-energy, namely, the supercon-
ducting triplet order parameter [22,45], which has been dis-
cussed in the context of the Eliashberg model in Ref. [46]. The
triplet is spatially isotropic, and in order to satisfy the fermionic
antisymmetry, ithas to be odd in frequency. It is generated in the
self-energy only when there is an odd-frequency component
in the interaction. In the retarded interaction, this is always
satisfied. When calculating the stability of the AFM phase with
respect to SC, the triplet appears in the linear order. It hence
modifies the boundaries of the region where both AFM and
SC phases are stable. We have taken this effect into account in
Fig. 1.

Besides the competition between AFM and SC phases,
we need to consider the possibility of a coexistence phase in
the dashed region of Fig. 1, where both phases can show up
alone. We indeed have numerically found such a coexistence
solution, but tests based on fixed-point iteration revealed it to
be unstable at every temperature that we checked. This finding
is in accordance with a simplified model where both interaction
channels are instantaneous and independent of each other [26].

However, the fact that the two phases are simultaneously
local minima of the free energy suggests that this system
could have domains of antiferromagnetic order coexisting with
superconducting domains. Such domains would be separated
by a domain wall mixing the two kinds of phases and inducing
odd-frequency triplet pairing, as schematically illustrated in
Fig. 6. In addition to providing a mechanism for the appearance
of odd-frequency triplet pairing, the domain walls can support
interesting excitations. In particular, it is known that flat-
band ferromagnets can support interesting topological and
domain-wall excitations in the form of different kinds of spin
textures [16,47], and various combinations of spin textures
and superconductivity may lead to the appearance of Majorana
zero modes [48-52]. Also, alternatively to the intrinsic domain
structure generation, the ferromagnetic superconductors can
support different types of nonuniform magnetic order and
spontaneous vortex states [53-55]. A detailed analysis of
different possibilities goes beyond the scope of this paper.

singlet

magnetization

X

FIG. 6. Sketch of a domain wall between magnetic (red) and su-
perconducting (blue) domains. At the domain wall a triplet component
(purple) is induced.

V. CONCLUSIONS

We have proposed a simplified model of a flat-band system
with a retarded electron-phonon interaction and a repulsive
Hubbard interaction. For this model, we have determined the
self-consistency equations in the Hartree-Fock approximation
and all the possible homogeneous phases. Antiferromagnetism
and superconductivity are essentially symmetric in this system,
with the only difference coming from the retardation of
the electron-phonon interaction. For large A, the retardation
suppresses the increase in A more effectively in a flat band
than in metals with a Fermi surface. We find that the retardation
also creates a situation in which both phases are separately
local minima of the free energy, suggesting a possibility of
coexisting antiferromagnetic and superconducting domains
inside the sample.

Our results indicate how flat-band superconductivity can
be generated from electron-phonon interaction and provides
means to estimate the mean-field critical temperature when
the details of the electron-phonon coupling and the screened
interaction are known. The superfluid transition in low-
dimensional systems occurs in the form of a Berezinskii-
Kosterlitz-Thouless (BKT) transition at a temperature that is
lower than the mean-field transition temperature. That the
latter is nonzero is ensured by the possibility of having a
nonvanishing supercurrent (see, for example, Refs. [7,10,44])
in a flat-band superconductor. Our results are of relevance in
designing novel types of quantum materials for the interplay
of superconducting and magnetic order, and the search for
systems exhibiting exotic superconductivity with a very high
critical temperature, up to room temperature. They may also
shed light on recent evidence of high-temperature supercon-
ductivity in graphite interfaces [56].

Our results could also explain some of the phenomena
associated with the recent experiments on bilayer graphene
[30,57]. (For amore microscopic description of that case within
the BCS model, see Refs. [58,59].) In the experiment, the twist
angle between two superimposed graphene layers is chosen
to a certain magic angle, so that the two Dirac cones in the
graphene layers hybridize, forming a pair of flat bands. Our
model can be adjusted to describe this situation with small
changes (see the Supplemental Material [26] for details). When
the chemical potential was tuned to the lower of these bands,
the system became an insulator. From our point of view, this
could be the insulating AFM state we describe. When the
chemical potential is tuned slightly off from the flat band, a
superconducting dome in the 7' - phase diagram was observed
on both sides. These domes can be the s-wave SC phases
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we describe here. The competition between the particle-hole
(AFM) and the particle-particle (SC) channels in the presence
of the chemical potential was considered by Loéthman and
Black-Schaffer in Ref. [8], and for a range of parameters, they
reproduce a similar phase diagram near the flat band, with the
AFM state at the level of the flat band and two superconducting
domes with doping away from the flat band (see Fig. 2(b) in
Ref. [8]). In the experiments, SC domes are only observed
on the hole-doped side. The electron-doped side exhibits only
insulating behavior near the flat band. One possible explanation
is the difference in screening, which changes the relative
magnitude of the repulsive and attractive interactions, so that

the AFM state covers the SC domes completely. However,
we leave the detailed treatment of the effects of doping and
screening (both intrinsic and that provided by the environment)
for further work.
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