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Abstract. In this paper, we introduce the MuRO-NIMBUS method for
solving multiobjective optimization problems with uncertain parameters.
The concept of set-based minmax robust Pareto optimality is utilized to
tackle the uncertainty in the problems. We separate the solution process
into two stages: the pre-decision making stage and the decision making
stage. We consider the decision maker’s preferences in the nominal case,
i.e., with the most typical or undisturbed values of the uncertain pa-
rameters. At the same time, the decision maker is informed about the
objective function values in the worst case to support her/him to make an
informed decision. To help the decision maker to understand the behav-
iors of the solutions, we visually present the objective function values.
As a result, the decision maker can find a preferred balance between
robustness and objective function values under the nominal case.

Keywords: Multiple criteria decision making, uncertainty, robustness,
interactive methods, robust Pareto optimality

1 Introduction

Many real-life optimization problems involve multiple (conflicting) objectives.
Multiobjective optimization methods (see e.g., [11] and [18]) solve these prob-
lems by optimizing the conflicting objectives simultaneously. For multiobjective
optimization problems, there usually is a set of mathematically equally good so-
lutions with different trade-offs among the multiple objectives. These solutions
are called Pareto optimal solutions. In most cases, only one Pareto optimal solu-
tion is chosen as the final solution to implement. This solution is usually found
by utilizing preferences of a decision maker, who is an expert in the problem
domain.

Different types of methods can be identified depending on the role of the
decision maker [11]. In interactive multiobjective optimization methods [3] , the
decision maker actively directs the solution process towards a most preferred so-
lution by iteratively specifying her/his preferences. With an active involvement,
which is not possible in other types of methods, the decision maker can gradu-
ally learn about the problem and its feasible solutions as well as how attainable
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her /his preferred solutions are. In this way, interactive methods can best support
the decision maker to find the most preferred solution.

In addition to multiple objectives, the presence of uncertainty in real-life op-
timization problems should be considered due to imprecise data, uncertain op-
eration environments, and uncertain future developments, etc. The uncertainty
can be reflected in parameters or decision variables in problem formulations. In
this paper, we concentrate on problems with uncertain parameters in objective
functions. With different realizations of uncertain parameters, the corresponding
outcomes (i.e., objective function values) are different.

On one hand, without considering the uncertainty, the outcome correspond-
ing to a deterministic Pareto optimal solution can become very bad when the
uncertain parameters realize differently. Many robustness concepts have been de-
fined for multiobjective optimization problems (see e,g., [9] [19]). They guarantee
the immunity of solutions to uncertainty by transforming uncertain problems to
deterministic ones with respect to the worst case. On the other hand, the out-
comes in the nominal case are very important for the decision maker, because
the nominal case describes the most typical behavior of uncertain parameters. In
addition, the robustness and quality of solutions, i.e., the outcome in the nomi-
nal case, usually conflict with each other [1]. In other words, objective function
values of a robust Pareto optimal solution are usually not as good as those of a
deterministic Pareto optimal solution in the nominal case.

When considering uncertainty, the decision maker faces the challenge of mak-
ing a decision with respect to different possible outcomes because of different
realizations of uncertain parameters. Considering multiple possible realizations
simultaneously can be too challenging for the decision maker. In addition, it is
desirable for the decision maker to find a preferred balance between robustness
and quality of the solutions. With the help of multiobjective robust optimization,
we can guarantee the robustness of solutions by finding the best solutions with
respect to the worst case but at the same time, the decision maker needs support
to find a most preferred balance between robustness and quality of solutions.

In the literature, most research efforts have been devoted to different defi-
nitions of robust Pareto optimality and only a few solution methods have been
developed (e.g., in [5] and [10]). In addition, in [2], necessary and sufficient condi-
tions for scalarizing functions with some special properties are discussed, which
can be used to transform a multiobjective optimization problem to a single-
objective one. In [7], [8], [14], and [15], interactive methods have been utilized to
find a final solution for multiobjective optimization problems with uncertainty.

In [7] and [8], a robust version of the augmented weighted Chebyshev method
[17] was developed for multiobjective linear optimization problems by extending
the concept of the budget of uncertainty [1] to multiobjective optimization prob-
lems. Uncertainty was tackled in a so-called all-in-one approach in [14], where the
decision maker considers all possible realizations of uncertain parameters simul-
taneously. During the solution process, the decision maker chooses the possible
realizations to concentrate on and formulates her/his preferences with respect
to them. In [15], the decision maker is expected to specify weights to alter the
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relative importance of objectives and robustness when they are combined to
formulate a single-objective optimization problem.

In this paper, we develop an interactive method called MuRO-NIMBUS to
better support the decision maker. The MuRO-NIMBUS method integrates the
concept of set-based minmax robustness [5] into the NIMBUS framework, which
to the best of our knowledge, is the first interactive method for supporting a
decision making to find set-based minmax robust Pareto optimal solutions.

The properties of desirable interactive methods were summarized in [16] in
terms of understandability, easiness to use, and features of being supportive. In
order to ensure those properties in MuRO-NIMBUS, we first guarantee the ro-
bustness of solutions by utilizing the set-based minmax robust Pareto optimality
to find a set of best possible solutions in the worst case. For this step, we develop
a robust achievement scalarizing function approach, which can also be used in-
dependently. Then we incorporate the preferences of the decision maker to find
a solution corresponding to a most preferred outcome in the nominal case. At
the same time, the decision maker is informed about the worst possible values.
In order to support the decision maker to understand the solution in terms of its
objective function values in the nominal case and the objective function values in
the worst case, we augment the value path visualization (see e.g., [6]) to visually
present different types of information. In this way, we can support the decision
maker to grasp a total balance in the robustness and quality of solutions during
the solution process.

By applying MuRO-NIMBUS, the decision maker is not expected to con-
sider all possible realizations of the uncertain parameters simultaneously as in
[14]. Unlike in [7] and [8] where solutions once discarded cannot be recovered,
the decision maker can move freely from one robust Pareto optimal solution to
another. Instead of providing preferences as weights which do not have concrete
meanings as in [15], MuRO-NIMBUS allows the decision maker to concretely
consider the objective function values of a more desired solution.

The rest of the paper is organized as follows: in the next section, we introduce
some basic concepts. In Section 3, we introduce MuRO-NIMBUS. We simulate
the solution process of a multiobjective ship design problem as a numerical
example in Section 4 to demonstrate the application of the new method. Finally,
we conclude the paper in Section 5.

2 Basic Concepts

2.1 Deterministic Multiobjective Optimization

A deterministic multiobjective optimization problem is of the form

minimize or maximize {fi(x),..., fx(x)} (1)
subject to x € X,

involving objective functions (objectives) f; : X — R to be simultaneously opti-
mized, where 1 < i < k and k > 2. Objective vectors f(z) = (f1(), ..., fr(x))T
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consist of objective function values which are the images of decision vectors x =
(w1, 22, ...,2,)T. Decision vectors belong to the nonempty feasible set X C R”
and their components are called decision variables. In this paper, we refer to deci-
sion vectors as solutions and objective vectors as outcomes or objective function
values of solutions. For two feasible solutions, we say a solution dominates the
other when the value of at least one of the objectives is better and others are at
least as good as that of the other. For simplicity, we assume that the objective
functions are to be minimized.

Definition 1. A solution x* € X is said to be Pareto optimal or efficient if
there does not exist another solution x € X such that fi(x) < fi(x*) for all
i=1,...,k and f;(x) < fj(a*) for at least one j.

With the help of the nonnegative ordering cone RE = {z € R¥|z; > 0 for i =
1,....k} , we say that &* is Pareto optimal if there does not exist & € X such
that f(x) € f(x*) — RE. We refer to the set of Pareto optimal solutions as the
Pareto optimal set.

For (1), the set of Pareto optimal solutions usually contains more than one
element. For the decision maker, it is often useful to know the ranges of the
objective function values in the Pareto optimal set. The ranges are given by
the ideal objective vector z* = (zf,....,2;)T and the nadir objective vector
znad = (ppad »nad)T The ideal objective vector is formed by individual op-
tima of each objective function in the feasible set. For computational reasons,
we use the utopian objective vector z**, which is strictly better than z*. In
practice, z;* is set as 2z —a for ¢ = 1, ..., k, where a > 0 is a small scalar. The
nadir objective vector, which represents the worst objective function values, can
be approximated for example by a so-called pay-off table (see [11] for further
details). If the objective function values have different magnitudes, 2"¢¢ and z**
can be used to normalize them for computing purposes.

For calculating Pareto optimal solutions, one approach is to scalarize, i.e., to
formulate a single objective optimization problem such that its optimal solution
is a Pareto optimal solution for (1). In this, a single objective solver which is
appropriate for the characteristics of the problem must be used. The achievement
scalarizing function [20] is one of the widely used scalarizing functions. In this
paper, we consider the achievement scalarizing function of the following form:

k
minimize max; [w;(f;(x) —z;)] + pzwz(fz(iﬂ) ) (2)

subject to x € X,

where p is a small scalar binding the trade-offs, Z is a reference point and its
component z; is the aspiration level which represents the desired value of the
objective function f; given by the decision maker. The positive weight vector w
sets a direction toward which the reference point is projected onto the Pareto
optimal set.

As discussed in the literature (e.g., [3], [11], and [20]), the optimal solution
of (2) is a Pareto optimal solution for (1) and any Pareto optimal solution with
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trade-offs bounded by p can be found by changing Z. The achievement scalarizing
function has many advantages, for example, the reference point can be feasible
or infeasible and the problem can be convex or nonconvex.

2.2 Uncertain Multiobjective Optimization Problems and Set-based
Minmax Robustness

For multiobjective optimization problems with uncertain parameters, given an
uncertainty set &/ C R™, the uncertain multiobjective optimization problem is
given as a collection of deterministic multiobjective optimization problems:

{ minimize f(z, £) }geu. (3)

subject to x € X

Every problem in the collection is called an instance, which is characterized
by a particular element & € U. Depending on different realized values of € , a
decision vector can have different corresponding outcomes. As a result, we have
a set of outcomes corresponding to a feasible decision vector. We denote the set
of outcomes (i.e., the objective vectors) of a solution & € X for all £ € U as
fu(@) = {ful@,€) : € €U} as in [5).

As briefly mentioned, among all the possible realizations of uncertain param-
eters, the nominal case é describes the most typical behavior of the uncertain
parameters. It usually comes from previous experiences or the expert knowledge
of the decision maker. The worst case describes the situation where the objective
functions attain their worst values within /. For a fixed solution & € X, we need
to solve the following problem to find the worst case:

maximize  {fi(x,§), ..., fu(x, &)} (4)
subject to & € U.

If the components of & do not relate to each other, there is a single worst case.
If they are related to each other, there can be multiple worst cases. With the
found worst case, the corresponding outcomes for the solution in question can
be calculated. The worst case does not necessarily realize in practice, but the
information on the outcomes provides the upper bounds of the objective function
values of a solution within U.

Analogously to the definition of Pareto optimality for deterministic problems,
set-based minmax Pareto optimality was defined in [5] by comparing the sets of
all outcomes corresponding to solutions.

Definition 2. A solution x* is a set-based minmazx robust Pareto optimal solu-
tion for (3), if there does not exist another x € X such that fy(x) C fu(w*)ng

In other words, a feasible solution x* is a set-based minmax robust Pareto
solution if there does not exist another feasible solution x such that for all
outcomes f(x,€) € fy(x), there exists an outcome f(xz*,€) € fy(x*) with
filx, &) < fi(x*,€) for all i« = 1,--- k. We apply this concept in MuRO-
NIMBUS to be introduced. With this concept, the decision maker can under-
stand that for all set-based minmax robust Pareto optimal solutions, there does
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not exist a feasible solution with better objective function values in every possible
realization of the uncertain parameters.

By interpreting the supremum of a set as the set itself, the robust counterpart
of (3) which transforms (3) to a deterministic problem to identify robust Pareto
optimal solutions is given in [5] as:

minimize supf(x, &)
geu (5)
subject to = € X.

Set-based minmax robust Pareto optimal solutions are the best possible solutions
in the worst case because they are obtained by minimizing the suprema of the
sets of outcomes. As explained earlier, finding the worst case outcomes for a
fixed solution ® € X requires solving a multiobjective optimization problem
with objectives to be maximized as (4). The notation sup in (5) denote the
supreme of the outcome sets which is used to identify the worst case outcomes.
For simplicity, in what follows, we refer to set-based minmax robust Pareto
optimal solutions as robust Pareto optimal solutions.

2.3 Interactive Multiobjective Optimization

As mentioned, in interactive methods, the decision maker directs the solution
process towards a most preferred solution by iteratively specifying her /his prefer-
ences. A typical solution process (e.g., [3] ) starts by presenting a Pareto optimal
solution to the decision maker. If the decision maker is satisfied, the final solu-
tion is found. If the decision maker is not satisfied, (s)he is expected to specify
preferences for a more desired solution. Based on the preferences, a new Pareto
optimal solution which satisfies the preferences best is found and presented to
her/him. The solution process continues until the decision maker finds a most
preferred solution.

NIMBUS ([11] and [13]) is a family of classification-based interactive meth-
ods. In NIMBUS, the decision maker can classify the objectives to indicate what
kind of objective vector would be more preferred than the current one. The
objective functions can be assigned to up to five different classes including;:

I< for those to be improved (i.e., decreased in case of minimizing, increased
in case of maximizing),

I< for those to be improved until some desired aspiration level 2;,

I= for those that are satisfactory at their current level,

IZ for those that may be impaired till a bound ¢;, and

I® for those that are temporarily allowed to change freely.

If aspiration levels or bounds are used, the decision maker is expected to provide
them. If the classification is feasible, i.e., the decision maker allows at least one of
the objectives to be impaired to improve some objectives, a scalarizing problem
is solved to find a new Pareto optimal solution reflecting the preferences. In the
so-called synchronous NIMBUS method, up to four different solutions can be
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found in each iteration by solving different scalarizing problems. Since we have
to consider robustness and quality of the solutions, we limit the cognitive load
to the consideration of only one solution at a time. We will return later to the
variant of the NIMBUS scalarizing problems we use in MuRO-NIMBUS.

MuRO-NIMBUS inherits the advantage of classifying the objectives. First,
classification can remind the decision maker that it is not possible to improve all
objective function values at the same time but impairment in some objective(s)
must be allowed. Second, the decision maker deals with objective function values
and (s)he does not need to connect different types of information. Instead, (s)he
only needs to know what kind of changes (s)he desires for a new solution.

3 MuRO-NIMBUS

In this section, we introduce MuRO-NIMBUS. To be able to present it, we first
introduce some building blocks that we need for designing the method.

3.1 Building Blocks of MuRO-NIMBUS

As a building block of MuRO-NIMBUS, we first present the robust version of
(2). Based on it, we introduce the robust achievement scalarizing function (ASF)
approach to calculate a set of robust Pareto optimal solutions.

Based on the concept of robust Pareto optimality and the robust counterpart
as introduced in Section 2, the robust version of (2) can be formulated as:

k
minimize  sup max[w;(fi(x, &) — Z;)] + pd_w;(fi(x, &) — Z;)

geu =1 (6)
subject to x € X forall £ elU.

Just like (2), the robust version involves a reference point and a weight vector.
We now prove the sufficient condition of the robust Pareto optimality:

Theorem 1. Given an uncertain multiobjective optimization problem (3), if «*
is an optimal solution to (6) for some Z and w, and maxecy fi(x,&) exists for
allx € X and for alli=1,....k, then * is a robust Pareto optimal solution for

(3).

Proof. Assume that «* is not a robust Pareto optimal solution for (3). Then
there exists ' € X such that fy(z’) C f(z*) — RE. Based on Lemma 3.4
in [5], for all & € U, there exists § € U such that fi(z’,€) < fi(x*,n) for
i =1,...,k and for at least one i the strict inequality holds. Since w; > 0, we

have mlax[wi(fi(x',é) —-zZ)] + pzk:l(fi(m',ﬁ) - %) < mgX[wi(fi(w*m) —Z)| +

k
P> (fi(x*,m)—Zz), where for all &€ € U there exists a n € U which satisfy the in-
i=1
k
equality. Further, we know that mex max(w; (f;(x',&)—2;)|+p>_ (fi(x',€)—Z) <
€ v i=1
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k

max max[w; (fi(z*,n’) — )]+ p 3 (fi(x*,n') — %). So max max[w;(f;(x’,§’) —
n'eu v i=1 e

Zi)| + kal(fi(w’, ¢)—-z) < max max[w;(fi(2*,n') = z)] + pi(fi(w*, n') —Z).

This contradicts with the assumption that x* is the optimal solution for (6). So
x* is a robust Pareto optimal solution for (3).

This result agrees with the sufficient condition presented in Theorem 4.4 in [2]
for strongly increasing scalarizing functions, which states that the optimal so-
lution of a strongly increasing scalarizing function is set-based minmax Pareto
optimal to (3). In [2], the detailed proof was omitted. The necessary condition
and the proof for strictly increasing scalarizing function are given in Theorem
4.1 in [2]. As a strongly increasing scalarizing function, (6) is also a strictly
increasing scalarizing function. For the properties of strongly and strictly in-
creasing scalarizing function see [2] and [20]. Based on (6), we introduce the
robust ASF approach with (3) as the input to calculate a set of robust Pareto
optimal solutions X,,, as the output:

Step 1. Set X,,, = 0 and generate a set of reference points Z.

Step 2. If Z = (), stop.

Step 3. Choose a z € Z, and set Z = Z\ {z}.

Step 4. Find an optimal solution &* to (6) using z as the reference point
and set w accordingly, e.g., w; = 21%2, where z** is the utopian objective
vector. Set X,po = Xypo U {z*}.

Step 5. Go to step 2.

In the robust ASF approach, we alter z and set w accordingly for efficiently
gaining a good representative set of robust Pareto optimal solutions X,,,. When
we evaluate their outcomes in the nominal case é, some of them can be dom-
inated. We should only present nondominated solutions to the decision maker.
So we refer to the robust Pareto optimal solutions whose corresponding out-
comes are nondominated as nominal nondominated robust Pareto optimal solu-
tions: a robust Pareto optimal solution * is a nominal nondominated robust
Pareto optimal solution if there does not exist another x € X,,, such that
f<w>£) € f(w*’g) - R;

For finding a nondominated robust Pareto optimal solution based on a NIM-
BUS classification, we solve a variant of the synchronous NIMBUS scalarizing
problem presented in [13]:

k
minimize  max[w;(f;(x, &) — ), w;(f;(®,€) — )]+ p Y _ wifi(x, &)

subject to  x € X, (7)
fi(x, &) < fi(xc, &) for alli e ISUIS UI=,
fl(a:,é) < ¢ foralliclI?,

where I<, I=, IZ, I<, and I® represent the corresponding classes of objectives
and x¢ is the current solution.
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Proposition 1. The solution of (7) is a nominal nondominated robust Pareto
optimal solution for problem (3).

Proof. Problem (7) is equivalent to a deterministic problem in the nominal case
with the feasible set X,,,. The proof that the solution of (7) is Pareto optimal
for deterministic problems was given in [13]. Thus it fulfills the requirements to
be a nominal nondominated robust Pareto optimal solution.

3.2 MuRO-NIMBUS

Based on the building blocks discussed above, we introduce MuRO-NIMBUS
which can support the decision maker to find a most preferred solution for (3).
We first discuss the idea of MuRO-NIMBUS in general. Then we present its
steps followed by a discussion on the technical details of each step.

As mentioned before, e.g., in [1], the robustness and the quality of solutions
usually conflict with each other. If the decision maker is not willing to sacrifice
some quality to gain robustness, we can solve (3) in the nominal case as a
deterministic problem. On the other hand, if the decision maker is willing to
make some sacrifice to gain robustness, (s)he prefers to have a robust Pareto
optimal solution by bearing the fact that its quality may not be as good as a
Pareto optimal solution in the nominal case. MuRO-NIMBUS is developed for
solving (3) when the decision maker is willing to sacrifice some quality to gain
robustness. Because outcomes in the nominal case are very important for the
decision maker and robustness of solutions can be guaranteed by finding best
possible solutions in the worst case, we have three tasks during the solution
process.

First, we need to guarantee the robustness of the solutions. Second, the nom-
inal case has to be considered in terms of corresponding outcomes of solutions
to satisfy the decision maker’s preferences as much as can. Third, to help the
decision maker to make an informed decision, corresponding outcomes in the
worst case should be found. It is not possible to guarantee the robustness and
consider two different kinds of realizations of the uncertain parameters at the
same time during the solution process. So we separate the consideration into two
stages in MuRO-NIMBUS: pre-decision making and decision making.

In the pre-decision making stage, we first concentrate on robustness, i.e.,
finding a set of robust Pareto optimal solutions. Then we consider the preferences
of the decision maker in the decision making stage. Specifically, we support the
decision maker to direct the solution process towards a most preferred robust
Pareto optimal solution among the ones calculated. As a result, the final solution
selected is robust Pareto optimal and at the same time corresponding to a most
preferred outcome by the decision maker in the nominal case. In addition, the
decision maker is informed of the outcome in the worst case.

We should be aware of the necessity of asking the decision maker whether
(s)he is willing to sacrifice some quality to gain robustness before the solution
process of a problem. Now we can present the overall algorithm of MuRO-
NIMBUS as follows:
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1. Pre-decision making.

(a) Calculate the set X,,, with the robust ASF approach. Calculate also the

ideal and nadir objective vectors in the nominal case.
2. Decision making

(a) Classify all the objectives into the class I< of the NIMBUS classification
and solve (7) (by including only the first constraint) to find an initial
nominal nondominated robust Pareto optimal solution x°.

(b) Present the ideal and nadir objective vectors calculated in the nominal
case to the decision maker.

(¢) Present the outcomes in the nominal and the worst cases corresponding
to x° to the decision maker. If the decision maker is satisfied, ¢ is the
final solution. Otherwise, continue.

(d) Ask the decision maker to classify the objectives at the current solution,
i.e., the outcome in the nominal case. Then solve (7) to find a new
nominal nondominated solution and set it as ¢ and go to step 2(c).

In step 1, the presence of the decision maker is not required. We use the robust
ASF approach which can handle general problems (for example, the weighted-
sum method in [5] assumes the problem to be solved is convex). In addition,
in robust ASF, we apply the idea from [4] to alter the reference points z and
set w accordingly to efficiently obtain the set X,,,. As for efficiently solving
the scalarized problem and handling the constraints which should be fulfilled
for all the possible realizations of the uncertain parameters, we discretize the
uncertainty set to reformulate (6).

After step 1, we start the stage where the decision maker actively participates
in the solution process. The goal is to find the most preferred solution from the
set X,po by considering the corresponding outcomes in the nominal case. As
an inherited advantage, MuRO-NIMBUS only requires the decision maker to
classify the objectives based on the outcome of the current solution.

The decision making stage starts by calculating an initial nominal nondomi-
nated robust Pareto optimal solution. Before presenting the initial solution, the
calculated ideal and nadir objective vectors are presented to the decision maker
to help her/him to have a general idea on the ranges of the values of each ob-
jective function in the nominal case. With this information, when the outcome
corresponding to the initial solution in the nominal case is presented, the de-
cision maker can have a concrete understanding on its quality. As background
information, the outcome(s) in the worst case is/are also shown to the decision
maker to help her/him to make an informed decision.

As a tool for presenting the solutions to the decision maker, we utilize the
value path visualization (see e.g., [6]). One can also modify some other visu-
alization methods (see e.g., [12]) for this purpose. As said, depending on the
characteristics of the involved uncertainty, there can exist multiple worst cases.
We indicate the information on the outcomes in the worst cases accordingly in
the visualization.

Figure 1 presents the idea of calculating the worst case objective function
values in the visual presentation of a solution. In the figure, we have five different
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realizations of the uncertain parameters and the uncertain parameters do not
relate to each other. The outcome in the nominal case is presented as the value
path in the figure in blue. Outcomes with other realizations are presented in
grey. By solving (4), we obtain the individual maxima of each objective in the
uncertainty set as the outcome in the worst case. The corresponding outcome in
the worst case is marked by triangles in the figure. The same idea applies when
the uncertain parameters are related to each other. Instead of single values, we
get ranges of values as the outcomes in the worst cases.

f1 f f3 fa fs

Fig. 1. Outcomes in the worst case

After having seen the initial solution, the decision maker can classify the
objectives into up to five classes as discussed in Section 2 to express her/his
preferences for a more desired solution. Based on the classification, we solve the
scalarizing problem (7) to find a new nominal nondominated robust Pareto opti-
mal solution which satisfies the classification best. The new solution is presented
to the decision maker with an updated visualization. The solution process con-
tinues until the decision maker finds the most preferred nominal nondominated
robust Pareto optimal solution.

4 Numerical Example

In this section, we simulate the solution process of the multiobjective ship design
problem [21] to demonstrate the application of MuRO-NIMBUS. The problem
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has three objectives: minimizing the transportation cost, minimizing the light
ship mass and maximizing the annual cargo. A detailed presentation of the
problem in the deterministic case is in the Appendix A of [21].

The problem was originally studied as a deterministic problem. In the uncer-
tain version studied in this paper, we consider two parameters which stem from
given intervals: the fuel price and the round trip mileage. The fuel price affects
the transportation cost. The round trip mileage affects both the transportation
cost and the annual cargo. The fuel price can fluctuate for example due to the
change of the energy market situation. The round trip mileage can vary if the
weather conditions change. We treat the values of the two parameters in the
deterministic formulation as their nominal values since they are supposed to de-
scribe the most typical values of the parameters. We implemented the problem
in MATLAB®and used a build-in solver with MultiStart to find Xrpo-

12.81 2.04 0.85
0.58
v -
/ v
10.5 1.09
9.48 0.72 0.37
TP cost (€) { Mass (*103 tons ) ! Cargo (*10° tons ) 1

Fig. 2. Iteration 1 of ship design problem

Before the solution process, we communicated with the decision maker and
she was willing to sacrifice some quality to gain robustness. In step 1 of MuRO-
NIMBUS, we calculated a representative set of 150 robust Pareto optimal solu-
tions with the robust ASF approach and we also calculated the ideal and nadir
objective vectors in the nominal case. Based on our computational experiments,
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150 solutions were sufficient for this problem. Then we started the first iteration
of the decision making stage.

Step 2(a) We set the three objectives in I< and solved (7). We found an
initial nominal nondominated Pareto optimal solution from X,,.

Step 2(b) We presented the ideal objective vector z* = (9.479,716.3,0.8534)T
and the nadir objective vectors 2" = (12.813,2040.1,0.372)7 in the nominal
case to the decision maker. Their components corresponding to each objective
are also shown in the visual illustration. In the visual presentation, we used 103
tonne as the unit, i.e., the ideal and nadir values for the light ship mass was
marked as 0.7163 and 2.0401 respectively. To help the decision maker to quickly
read the number, we used a million tonnes as the unit for annual cargo.

Step 2(c) Then we presented the initial outcome to the decision maker as
illustrated in Figure 2. In the nominal case, 10.5 pounds/tonne for the trans-
portation cost, 1090 tonnes light ship mass and the ship can handle 0.58 million
tonnes cargo annually. The outcome in the worst case is marked in the figure.
Even though one of the considered uncertain parameters affects two objectives,
we had only one worst case because the two objectives are not conflicting with
each other. The decision maker was not satisfied with the solution and wanted
to continue the solution process.

Step 2(d) The decision maker specified her preferences by classifying the
objectives and wanted to improve the annual cargo as much as she can while
allowing the light ship mass to be impaired until 1800 tonnes. In the NIMBUS
classification, this corresponds to: I< = {f3}, IZ = {fo} with e; = 1800 and
I® = f1. Based on this classification, we solved (7). As a result, we got a new
nominal nondominated robust Pareto optimal solution.

Iteration 2. We presented the new solution to the decision maker as in
Figure 3. The transportation cost was 9.51 pounds/tonne, and the light ship
mass was 1640 tonnes while the annual cargo was 0.77 million tonnes in the
nominal case. The decision maker observed in the visual presentation that the
worst case outcome of the transportation cost did not degrade as much as in the
initial outcome. Even though she seemed to have a solution whose outcome in
the worst case did not degrade much compared to the outcome in the nominal
case, she could not accept the light ship mass. So she decided to reduce the light
ship mass to 1100 tonnes by allowing the transportation cost to increase until
10.9 pounds/tonne and the annual cargo to reduce until 0.5 million tonnes, i.e.,
she classified the objectives as IS = {f,} with an aspiration level 2, = 1100 and
IZ = {fi1, f3} with bounds €; = 10.9 and €3 = 0.5. Based on this classification,
problem (7) was solved to get a new solution.

Iteration 3. We presented the new solution to the decision maker as in
Figure 4 with 10.59 pounds/tonne for the transportation cost, 1040 tonnes as
the light ship mass and 0.57 million tonnes annual cargo. With this solution, the
decision maker noticed that even though the light ship mass was quite low, the
other two objectives were at the same time approaching her specified bounds. She
also observed that the value of the first objective function has higher degradation
than the previous solution. She understood that she cannot have lower light ship
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Fig. 3. Iteration 2 of ship design problem

mass if she is not willing to impair the other two objectives further and decided
to stop. Naturally, if the decision maker is not satisfied, she can continue the
solution process until she finds a most preferred solution.

During the solution process of the uncertain version of the multiobjective
ship design problem, the decision maker was able to consider the outcomes in
the nominal case with guaranteed robustness of solutions. Bearing in mind that
the outcome in the nominal case of her final solution might not be as good as
a deterministic Pareto optimal solution, she could still direct the interactive so-
lution process towards a most preferred one among the robust Pareto optimal
solutions according to their outcomes in the nominal case. Expressing her pref-
erences by classifying the objectives did not bring her additional cognitive load.
With the visualized information, she observed the outcomes of the solutions in
the worst case in addition to the outcomes in the nominal case. Even though she
could not interfere directly how the outcomes in the worst cases behaved, the
information was critical for her to make an informed decision. In addition, if the
worst case is realized, the solution the decision maker has would still be valid.

5 Conclusions

In this paper, we introduced MuRO-NIMBUS which is an interactive method
for solving multiobjective optimization problems with uncertain parameters. In
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Fig. 4. Iteration 3 of ship design problem

MuRO-NIMBUS, we support the decision maker to find a preferred balance by
interacting in the nominal case but also following what happens in the worst case.
We divided the consideration of the robustness and the outcomes in the nominal
cases into the pre-decision making and the decision making stages. With the two-
stage solution process, the decision maker finds a robust Pareto optimal solution
with a preferred outcome in the nominal case and at the same time, the outcome
in the worst case is also acceptable. In this way, the information provided to and
requested from the decision maker is understandable in MuRO-NIMBUS. The
decision maker can also be easily involved in the interactive solution process
without much additional cognitive load. By providing the information in both
nominal and worst cases, MuRO-NIMBUS supports the decision maker to make
an informed decision. We demonstrated the application of MuRO-NIMBUS with
an example problem.

The development of MuRO-NIMBUS has initiated many avenues for further
research. First, some additional features on the decision making stage can be
developed. We can allow the decision maker to choose whether (s)he would like
to find a most preferred solution based on the corresponding outcome in the
nominal case (as is done in MuRO-NIMBUS), or in the worst case. This will
allow the decision maker to consider different aspects during the decision making
process. As an essential part to support the decision maker, we can also consider
how to visualize the solutions more effectively. Second, a decision maker might
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want to find a robust Pareto optimal solution but with only a limited amount
of sacrifice on the quality. To achieve this, we can study some other robustness
concepts and analyze their properties from the decision making point of view
aiming at finding a good trade-off between robustness and quality.
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