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Abstract

We study the boundary regularity of solutions to the porous medium equation
ut = Δum in the degenerate range m > 1. In particular, we show that in cylin-
ders the Dirichlet problem with positive continuous boundary data on the parabolic
boundary has a solution which attains the boundary values, provided that the spatial
domain satisfies the ellipticWiener criterion. This condition is known to be optimal,
and it is a consequence of ourmain theoremwhich establishes a barrier characteriza-
tion of regular boundary points for general—not necessarily cylindrical—domains
inRn+1. One of our fundamental tools is a new strict comparison principle between
sub- and superparabolic functions, which makes it essential for us to study both
nonstrict and strict Perron solutions to be able to develop a fruitful boundary reg-
ularity theory. Several other comparison principles and pasting lemmas are also
obtained. In the process we obtain a rather complete picture of the relation between
sub/superparabolic functions and weak sub/supersolutions.

1. Introduction

Let Θ be a bounded open set in a Euclidean space and for every f ∈ C(∂Θ)

let u f be the solution of the Dirichlet problem with boundary data f for a given
partial differential equation. Then a boundary point ξ0 ∈ ∂Θ is regular if

lim
Θ�ζ→ξ0

u f (ζ ) = f (ξ0) for all f ∈ C(∂Θ),

i.e. if the solution to the Dirichlet problem attains the given boundary data contin-
uously at ξ0, for all continuous boundary data f .

In this paper, we characterize regular boundary points for the porous medium
equation

∂t u = Δum (1.1)
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in terms of families of barriers, in the so-called degenerate case 1 < m < ∞, and
for general (not necessarily cylindrical) domains. To our knowledge, Abdulla [1,2]
is the only one who has studied the Dirichlet problem for the porous medium
equation in noncylindrical domains.

The characterization of regular boundary points for different partial differential
equations has a very long history. Poincaré [40] was the first to use barriers, while
Lebesgue [33] coined the name. At that time, barriers were used to study the solv-
ability of the Dirichlet problem for harmonic functions, a question that was later
completely settled using, e.g., Perron solutions. In 1924, Lebesgue [34] character-
ized regular boundary points for harmonic functions by the existence of barriers.
The corresponding characterization for the heat equation was given by Bauer [8] in
1962, but barriers had then already been used to study boundary regularity for the
heat equation since Petrovskiı̆ [39] in 1935; see the introduction in [11] for more
on the history of boundary regularity for the heat equation.

Coming to nonlinear parabolic equations of degenerate and singular types,
the potential theory for p-parabolic equations was initiated by Kilpeläinen and
Lindqvist in [28]. They established the parabolic Perron method, and also sug-
gested a boundary regularity characterization in terms of one barrier. Even if the
single barrier criterion has turned out to be problematic, [28] has been the basis for
the further development by Lindqvist [35], Björn–Björn–Gianazza [9] and Björn–
Björn–Gianazza–Parviainen [10] for the p-parabolic equation

∂t u = Δpu := div(|∇u|p−2∇u). (1.2)

For the porousmediumequation (1.1), potential theory is largely at its inception,
and so far not very much is known about the boundary behaviour of solutions in
general domains. To our knowledge the main contributions in this field are due to
Ziemer [45], Abdulla [1,2] and Kinnunen–Lindqvist–Lukkari [30].

Ziemer [45] studied boundary regularity in cylinders for a class of degenerate
parabolic equations, which includes the porous medium equation with m > 1, but
with boundary data taken in a weak (Sobolev) sense; see Section 11 for further
details.

Abdulla [1,2] investigated the Dirichlet problem for the porous medium equa-
tion with m > 0 in general domains Θ ⊂ Rn+1, n ≥ 2. Existence was established
in [1], while uniqueness, comparison and stability theorems were presented in [2].
Therein, the smoothness condition on the boundary in order to have u ∈ C(Θ) is
given in terms of a parabolic Hölder-type modulus; cf. Theorems 2.4 and 2.5 for
the cylindrical case.

Kinnunen–Lindqvist–Lukkari [30] developed the Perron method for the porous
medium equation in the degenerate range m > 1 and showed that nonnegative
continuous boundary functions are resolutive in arbitrary cylindrical domains. A
boundary function f is resolutive if the upper and lower Perron solutions P f and
P f coincide.

The present paper can be considered as an extension of the previous con-
tributions in several different but strictly related directions, as well as an ini-
tial development of a boundary regularity theory for the porous medium equa-
tion in terms of barriers. Under this second point of view, it is strictly related
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to the works [9] and [10] for the p-parabolic equation (1.2), even though the
porous medium equation has extra difficulties not present for the p-parabolic
equation. In particular, if u is a solution of the porous medium equation (1.1)
and c 	= 0 is a constant, then typically u + c is not a solution. Moreover, we
restrict ourselves to nonnegative functions, and therefore are not allowed to change
sign.

It is possible to study sign-changing solutions of the porous medium equation,
as has been done by some authors, but in addition to causing extra difficulties it
may also cause significant differences when it comes to boundary regularity, as it
seems quite possible that boundary regularity can be different for nonnegative and
sign-changing functions. Here we restrict ourselves to nonnegative, and primarily
positive, functions.

A well-known problem for the porous medium equation is the difficulty of
obtaining a comparison principle between sub- and superparabolic functions. One
of the main achievements in [30] was their comparison principle for cylinders
(cf. Theorem 3.6). In order to even start developing the theory in this paper, it is
fundamental to have a comparison principle in general domains, which we obtain
in Theorem 5.1.

Comparison principles usually require an inequality ≤ on the boundary, and
to establish such a comparison principle for general domains has been a major
problem both for earlier authors and for us. We have chosen a slightly differ-
ent and novel route obtaining a strict comparison principle in general domains,
with the strict inequality < at the boundary (see Theorems 5.1 and 5.3). Using
a strict comparison principle causes extra complications, but we have still been
able to develop a fruitful Perron and boundary regularity theory in general
domains.

For thorough presentations of the theory of the porous medium equation, we
refer the interested reader to Daskalopoulos–Kenig [19] and Vázquez [41]; see also
DiBenedetto–Gianazza–Vespri [23]. We primarily deal with the degenerate case
m ≥ 1, but whenever possible we have given statements for general m > 0. The
singular case 0 < m < 1 will be the object of future research.

The paper is organized as follows. Section 2 is devoted to some preliminary
material. In particular, we recall the different concepts of solutions and sub/super-
solutions, as well as various existence, uniqueness and stability results that will be
essential later on.

Section 3 deals with the notions of sub- and superparabolic functions. In Theo-
rem 3.5, we show that if u is a weak supersolution then its lsc-regularization u∗ is
superparabolic. A corresponding result for weak subsolutions is also obtained. (As
we are not allowed to change sign, the theory for weak subsolutions does not fol-
low directly from the corresponding theory for weak supersolutions.) We conclude
the section by presenting the parabolic comparison principle for cylinders due to
Kinnunen–Lindqvist–Lukkari [30], with a new proof.

In Section 4 we consider further results on sub/superparabolic functions: in par-
ticular, under proper conditions, sub/superparabolic functions are weak sub/super-
solutions. In this way, we establish a rather complete understanding of the relation
between weak sub/supersolutions and sub/superparabolic functions.
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Section 5 is devoted to a series of different comparison principles, for sub- and
superparabolic functions, both of elliptic and parabolic types, and both of strict and
nonstrict types. Several pasting lemmas are also obtained.

In Section 6 we deal with the Perron method, and with boundary regularity. We
introduce the notion of upper regular points, as well as of lower regular points for
positive (resp. nonnegative) boundary data. From here on we restrict ourselves to
bounded open sets Θ ⊂ Rn+1. Moreover, the boundary data are always assumed
to be bounded.

Section 7 is devoted to the characterization of an upper regular point in terms of
a two-parameter family of barriers, with some related properties, whereas Section 8
deals with the characterization of a lower regular point for positive boundary data,
in terms of another two-parameter family of barriers. This reflects the fact that we
can neither add constants nor change sign, which is the crucial difference compared
with the p-parabolic equation (1.2), where a single one-parameter family of barriers
is necessary and sufficient (see [9] and [10]). In this paper, we do not develop the
general theory of lower regularity for nonnegative boundary data.

In Section 9 we show that the earliest points are always regular, while in Sec-
tion 10 we prove that upper regularity, as well as lower regularity (for positive
boundary data), are independent of the future.

Section 11 collects the most important contributions of the paper. First, we
show in Theorem 11.1 that the boundary regularity (for positive boundary data)
of a lateral boundary point (x0, t0) ∈ ∂U × [t1, t2], with respect to the cylinder
U × (t1, t2), is determined by the elliptic regularity of x0 with respect to the spatial
set U . This result is optimal in the sense that every harmonic function u induces
a time-independent solution u1/m of the porous medium equation, and the Wiener
criterion is a necessary and sufficient condition for boundary regularity of harmonic
functions. Then, in Theorem 11.2 we give a unique solvability result in suitable
finite unions of cylinders, which generalizes previous unique solvability results
due to Abdulla [1,2], as well as the resolutivity result by Kinnunen–Lindqvist–
Lukkari [30] for general cylinders.

Finally, “Appendix A” is devoted to the proof of Theorem 3.4; we thought it
better to postpone it, in order not to spoil the flowof themain arguments in Section 3.

2. Preliminaries

Let Θ be an open set in Rn+1, n ≥ 2. We write points in Rn+1 as ξ = (x, t),
where x ∈ Rn and t ∈ R. For m > 0, we consider the porous medium equation

∂t u = Δum := div(∇um), (2.1)

where, from now on, the gradient ∇ and the divergence div are taken with respect
to x . In this paper we only consider nonnegative solutions u. This equation is
degenerate if m > 1 and singular if 0 < m < 1. For m = 1 it is the usual heat
equation. Observe that if u satisfies (2.1), and a ∈ R+, then (in general) au and
u + a do not satisfy (2.1).
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All our cylinders are bounded space-time cylinders, i.e. of the form Ut1,t2 :=
U × (t1, t2) � Rn+1, where U � Rn is open. We say that Ut1,t2 is a C

k,α-cylinder
if U is Ck,α-smooth. The parabolic boundary of Ut1,t2 is

∂pUt1,t2 = (U × {t1}) ∪ (∂U × (t1, t2]).
We define the parabolic boundary of a finite union of open cylinders U j

t j ,s j as
follows:

∂p

( N⋃
j=1

U j
t j ,s j

)
=

( N⋃
j=1

∂pU
j
t j ,s j

)
\

N⋃
j=1

U j
t j ,s j .

Note that the parabolic boundary is by definition compact. Further,

B(x, r) = {z ∈ Rn : |z − x | < r}
stands for the usual Euclidean ball in Rn . We also let

ΘT = {(x, t) ∈ Θ : t < T },
Θ− = {(x, t) ∈ Θ : t < 0},
Θ+ = {(x, t) ∈ Θ : t > 0}.

Let U be a bounded open set in Rn . As usual, W 1,2(U ) denotes the space of
real-valued functions u such that u ∈ L2(U ) and the distributional first partial
derivatives ∂u/∂xi , i = 1, 2, . . . , n, exist in U and belong to L2(U ). We use the
norm

‖u‖W 1,2(U ) =
(∫

U
|u|2 dx +

∫
U

|∇u|2 dx
)1/2

.

The Sobolev space W 1,2
0 (U ) with zero boundary values is the closure of C∞

0 (U )

with respect to the Sobolev norm.
By the parabolic Sobolev space L2(t1, t2;W 1,2(U )), with t1 < t2, we mean the

space of measurable functions u(x, t) such that the mapping x �→ u(x, t) belongs
to W 1,2(U ) for a.e. t1 < t < t2 and the norm

(∫ t2

t1

∫
U

(
|u(x, t)|2 + |∇u(x, t)|2

)
dx dt

)1/2

is finite. The definition of the space L2(t1, t2;W 1,2
0 (U )) is similar. Analogously,

by the space C(t1, t2; L2(U )), with t1 < t2, we mean the space of measurable
functions u(x, t), such that the mapping t �→ u( · , t) ∈ L2(U ) is continuous in the
time interval [t1, t2]. We can now introduce the notion of weak solution.

Definition 2.1. A function u : Θ → [0,∞] is a weak solution of equation (2.1) if
wheneverUt1,t2 � Θ , we have u ∈ C(t1, t2; Lm+1(U )), um ∈ L2(t1, t2;W 1,2(U ))

and u satisfies the integral equality∫ t2

t1

∫
U

∇um · ∇ϕ dx dt −
∫ t2

t1

∫
U
u∂tϕ dx dt = 0 for all ϕ ∈ C∞

0 (Ut1,t2). (2.2)



498 Anders Björn et al.

Continuous weak solutions are called parabolic functions.
A function u : Θ → [0,∞] is a weak supersolution (subsolution) if whenever

Ut1,t2 � Θ , we have um ∈ L2(t1, t2;W 1,2(U )) and the left-hand side above is
nonnegative (nonpositive) for all nonnegative ϕ ∈ C∞

0 (Ut1,t2).

One can also consider sign-changing (and nonpositive) weak (sub/super)solu-
tions, defined analogously, see Kinnunen–Lindqvist [29] for details. The general
sign-changing theory is however much less developed than the theory for nonneg-
ative functions. Moreover, it seems likely that regularity for sign-changing solu-
tions of the porous medium equation may be quite different from regularity when
restricted to positive or nonnegative solutions, which we have chosen to work with
here. For simplicity, we will often omit weak, when talking of weak (sub/super)-
solutions.

In this paper, the name parabolic (and later sub/superparabolic) refers precisely
to the porous medium equation (2.1), which is just one of many parabolic equa-
tions considered in the literature. A more specific terminology could be “porous-
parabolic” but for simplicity and readability we refrain from this nonstandard term.

Remark 2.2. In Definition 2.1, when dealing with the range m > 1, one could
actually require less (see below) on u, namely

u ∈ C(t1, t2; L2(U )) and u(m+1)/2 ∈ L2(t1, t2;W 1,2(U )). (2.3)

This has been done e.g. in DiBenedetto–Gianazza–Vespri [23]. Roughly speaking,
our notion of solution corresponds to using um as a test function in the weak
formulation (2.2), whereas assuming (2.3) amounts to using u. Such a choice seems
more natural in a number of applications, but it seemingly introduces the extra
difficulty that two different notions of solutions are needed, according to whether
m ≤ 1 or m ≥ 1. However, it has recently been proved by Bögelein–Lehtelä–
Sturm [15, Theorem 1.2], that for m ≥ 1 the two notions are equivalent.

Locally bounded solutions are locallyHölder continuous: this result is due to dif-
ferent authors. A full account is given in Daskalopoulos–Kenig [19], DiBenedetto–
Gianazza–Vespri [23] and Vázquez [41]. For m >

(n−2)+
n+2 solutions are automati-

cally locally bounded, whereas for 0 < m ≤ (n−2)+
n+2 explicit unbounded solutions

are known, and in order to guarantee boundedness, an extra assumption on u is
needed (see the discussions in DiBenedetto [21, Chapter V] and DiBenedetto–
Gianazza–Vespri [23, Appendix B]). Although it plays no role in the following,
it is worth mentioning that nonnegative solutions satisfy proper forms of Harnack
inequalities (see [23]).

Next we will present a series of auxiliary results, which will be used later in the
paper.

Besides the notion of weak solutions given in Definition 2.1, we need to be able
to uniquely solve the Dirichlet problem in smooth cylinders. Given measurable
nonnegative functions u0 on U � Rn and g on the lateral boundary Σt1,t2 =
∂U × (t1, t2], we are interested in finding a weak solution u = u(x, t) defined in
Ut1,t2 that solves the boundary value problem
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⎧⎪⎨
⎪⎩

∂t u = Δum in Ut1,t2 ,

u( · , t1) = u0 in U,

um = g in Σt1,t2 .

(2.4)

We need to define in which sense the initial condition and the lateral boundary data
are taken.

It is well known that for sufficiently smooth U , functions f ∈ W 1,2(U ) have
boundary values T∂U f , called traces, on the boundary ∂U (see e.g.DiBenedetto [22,
Theorem 18.1]). Moreover, the linear trace map T∂U mapsW 1,2(U ) onto the space
W 1/2,2(∂U ) ⊂ L2(∂U ), and T∂U f = f |∂U if f ∈ W 1,2(U ) ∩ C(U ). In the time
dependent context, the trace operator can be naturally extended into a continuous
linear map

TΣt1,t2
: L2(t1, t2;W 1,2(U )) −→ L2(t1, t2;W 1/2,2(∂U )) ⊂ L2(Σt1,t2).

In Vázquez [41, Theorems 5.13 and 5.14] the following result is proved, which
addresses the problem of existence and uniqueness in the framework of L p spaces.
A somewhat analogous result is proved in Alt–Luckhaus [3].

Theorem 2.3. Let m > 0 and let Ut1,t2 be a C
2,α-cylinder. Also let u0 ∈ Lm+1(U )

be nonnegative and assume that there exists ḡ ∈ L2(t1, t2;W 1,2(U )) such that

TΣt1,t2
(ḡ) = g

and ḡ, ∂t ḡ ∈ L∞(Ut1,t2). Then there exists a unique weak solution u in Ut1,t2 such
that

(i) TΣt1,t2
(um) = g,

(ii) u( · , t) → u0 in the L1(U ) topology, as t → t1.

Finally, the comparison principle applies to these solutions: if u and û are weak
solutions corresponding to g, u0 and ĝ, û0, respectively, with u0 ≤ û0 a.e. in U
and g ≤ ĝ a.e. in Σt1,t2 , then u ≤ û a.e. in Ut1,t2 .

We also need to consider the existence of continuous solutions. Under this point
of view, if we assign continuous data on the whole parabolic boundary, we have
the following result:

Theorem 2.4. Let m > 0 and let Ut1,t2 be a C1,β -cylinder, where β = m−1
m+1 if

m > 1 and β > 0 if 0 < m ≤ 1. Also let h ∈ C(∂pUt1,t2) be nonnegative. Then
there is a unique function u ∈ C(Ut1,t2) that is parabolic in Ut1,t2 and takes the
boundary values u = h on the parabolic boundary ∂pUt1,t2 .

Moreover, if h ≤ h′ ∈ C(∂pUt1,t2) and u′ ∈ C(Ut1,t2) is the unique function
corresponding to h′ as above, then u ≤ u′ in Ut1,t2 .

Variations of this second boundary value problem have been widely studied.
Aronson–Peletier [6] andGilding–Peletier [26] proved the unique existence as here,
provided Ut1,t2 is a C2,α-cylinder, m > 1, and one has homogeneous conditions
h = 0 on the lateral boundary. We need this unique existence for general boundary
conditions, in which case the result can be seen as a consequence of Abdulla [1,2],
DiBenedetto [20] and Vespri [42]; see the comments in the proof below.
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Proof. In [1,2], Abdulla studies the unique solvability of the Dirichlet problem
with continuous boundary data h in a general (not necessarily cylindrical) open
set Θ ⊂ Rn+1. In particular, conditions A and B of [1, Theorem 2.1] ensure
existence, whereas conditionM of [2, Theorem 2.2] ensures uniqueness. When Θ

is a cylinder,A andB coincide. It is not hard to verify that ifU is a bounded open
C1,β -smooth set, with β as above, then at every point of the parabolic boundary
∂pUt1,t2 conditions B and M are satisfied, yielding the unique existence of a
suitable solution in C(Ut1,t2).

As a matter of fact, Abdulla uses a definition of solution which is weaker
than Definition 2.1. However, the existence of a function u ∈ C(Ut1,t2), that is
parabolic (in our sense) in Ut1,t2 and takes the boundary values u = h on the
parabolic boundary ∂pUt1,t2 , follows from DiBenedetto [20, Remark 1.2] (form >

1) and Vespri [42, Theorem 1.1 and Remarks (a) and (d)] (for 0 < m ≤ 1). Using
integration by parts it can be shown that this parabolic function is a solution in the
sense of Abdulla.

Since solutions in the sense of Abdulla are unique, it follows that the parabolic
function provided by [20] or [42] is the unique continuous weak solution of the
boundary value problem.

Finally, the inequality u ≤ u′ follows from [2, Theorem 2.3]. ��
Having considered existence and uniqueness, we also need the following sta-

bility result from Abdulla [2, Corollary 2.3]:

Theorem 2.5. Let m > 0 and let Ut1,t2 be a C1,β -cylinder, where β = m−1
m+1 if

m > 1 and β > 0 if 0 < m ≤ 1. Also let h j ∈ C(∂pUt1,t2) be nonnegative, and let
u j ∈ C(Ut1,t2) be the corresponding solutions given by Theorem 2.4, j = 0, 1, . . ..
If sup∂pUt1,t2

|h j − h0| → 0 as j → ∞, then u j tends to u0 locally uniformly in
U × (t1, t2] as j → ∞.

We proceed by stating a comparison principle for sub- and supersolutions in
cylinders. It was first proved in R1+1 by Aronson–Crandall–Peletier [5], and in
Rn+1 by Dahlberg–Kenig [16–18]. A further and somewhat different statement of
the comparison principle is given in Abdulla [2, Theorem 2.3]. For the proof of the
following statement, we refer the reader to Daskalopoulos–Kenig [19, pp. 10–12]
and Vázquez [41, pp. 132–134].

Proposition 2.6. (Comparison principle for sub- and supersolutions) Let m > 0
and let Ut1,t2 be a C

2-cylinder. Suppose u and v are a super- and a subsolution in
Ut1,t2 , respectively, such that um, vm ∈ L2(Ut1,t2). Assume, furthermore, that{

(vm − um)+( · , t) ∈ W 1,2
0 (U ) for a.e. t ∈ (t1, t2),

(v − u)+(x, t1) = 0 for a.e. x ∈ U.

Then 0 ≤ v ≤ u a.e. in Ut1,t2 .

Proposition 2.6 is the first of many comparison principles in this paper. This is
the only one between sub- and supersolutions, but we will have several different
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parabolic (Theorems 3.6, 5.1 and 5.4) and one elliptic-type (Theorem 5.3) compar-
ison principles for sub- and superparabolic functions. In addition, sub- and super-
parabolic functions will be defined using yet another type of comparison principle,
for which we also have alternative versions in Proposition 3.8 and Remark 3.9.

3. Definition of Superparabolic Functions

Definition 3.1. A function u : Θ ⊂ Rn+1 → [0,∞] is superparabolic if
(i) u is lower semicontinuous;
(ii) u is finite in a dense subset of Θ;
(iii) u satisfies the following comparison principle on each C2,α-cylinderUt1,t2 �

Θ: If h ∈ C(Ut1,t2) is parabolic in Ut1,t2 and h ≤ u on ∂pUt1,t2 , then h ≤ u
in Ut1,t2 .

That v is subparabolic is defined analogously, except that v : Θ → [0,∞) is
upper semicontinuous and the inequalities are reversed, i.e. we require that if h ≥ v

on ∂pUt1,t2 , then h ≥ v in Ut1,t2 .

Note that as with sub- and supersolutions we implicitly assume that sub- and
superparabolic functions are nonnegative in this paper.

In Kinnunen–Lindqvist [29], Kinnunen–Lindqvist–Lukkari [30] and Avelin–
Lukkari [7] they require (iii) in Definition 3.1 to hold for arbitrary compactly
contained cylinders Ut1,t2 � Θ . (In [29,30] they use the name “viscosity super-
solution” instead of superparabolic, while in [7] they call them “semicontinuous
supersolutions”.)

One of our first aims is to show that our Definition 3.1 is equivalent to the
definition in [7,29,30], when m ≥ 1. This will take some effort and will only be
completed at the end of this section. The reason for our unorthodox definition is that
we want to establish Theorem 3.5, which we have not been able to prove without
using our definition. Once Theorem 3.5 has been deduced we are able to show
that our definition of sub- and superparabolic functions is equivalent to the one in
[7,29,30] , when m ≥ 1, see Remark 3.9.

The following consequences of the definition of sub- and superparabolicity are
almost immediate, so we leave the proof to the reader:

Lemma 3.2. The following hold for all m > 0:

(a) if u and v are superparabolic, then min{u, v} is superparabolic;
(b) if u is finite in a dense set, then u is superparabolic if and only if min{u, k} is

superparabolic for k = 1, 2, . . .;
(c) if u and v are subparabolic, then max{u, v} is subparabolic;
(d) if v is subparabolic, then v is locally bounded.

For a function u we define the lsc-regularization of u as

u∗(ξ0) = ess lim inf
ξ→ξ0

u(ξ).

We also say that u is lsc-regularized if u∗ = u. Avelin–Lukkari [7] proved the
following result:
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Theorem 3.3. Let m ≥ 1 and let u be a supersolution. Then,

u∗(x, t) = u(x, t)

at all Lebesgue points of u such that u(x, t) < ∞. In particular, u∗ = u a.e., and
u∗ is a lower semicontinuous representative of u.

Strictly speaking, Avelin–Lukkari [7] only considers m > 1; the remaining
case m = 1 can be recovered from Kuusi [32] assuming p = 2.

Similarly, for a function u we define the usc-regularization of u as

u∗(ξ0) = ess lim sup
ξ→ξ0

u(ξ)

and say that u is usc-regularized if u∗ = u.

Theorem 3.4. Let m ≥ 1 and let u be a subsolution. Then,

u∗(x, t) = u(x, t)

at all Lebesgue points of u. In particular, u∗ = u a.e., and u∗ is an upper semicon-
tinuous representative of u.

Due to the structure of the porous medium equation, this is not a trivial conse-
quence of Theorem 3.3, but needs to be proved separately. We postpone the proof
of Theorem 3.4 to “Appendix A”.

Note that we do not need to require that u(x, t) is finite in Theorem 3.4, since u
is nonnegative and subsolutions are essentially bounded from above when m ≥ 1;
see Andreucci [4].

Theorem 3.5. Let m ≥ 1. If u is a supersolution then u∗ is superparabolic. Simi-
larly, if v is a subsolution then v∗ is subparabolic.

In a less precise form this result was stated just after Theorem 1.1 in Avelin–
Lukkari [7], without proof. We therefore provide a complete proof of this result,
and this is also the reason for our unorthodox definition of sub- and superparabolic
functions. Once Remark 3.9 has been established below, it follows directly that
Theorem 3.5 is also valid using the sub- and superparabolic definition used in
[7,29,30].

Proof. Assumefirst that u is a supersolution. ByTheorem3.3, u∗ = u a.e., and thus
also u∗ is a supersolution. We want to show that u∗ is superparabolic. Condition (i)
follows from Theorem 3.3, while (ii) follows directly. For (iii), fix a C2,α-cylinder
Ut1,t2 � Θ and let h ∈ C(Ut1,t2) be such that it is parabolic in Ut1,t2 � Θ and
h ≤ u∗ on ∂pUt1,t2 .

According toDefinition 2.1, thismeans thathm ∈ L2(s1, s2;W 1,2(V )) for every
cylinder Vs1,s2 � Ut1,t2 , but this is not enough to directly apply the comparison
principle in Proposition 2.6, which would require hm ∈ L2(t1, t2;W 1,2(U )). We
therefore proceed as follows.
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Let h̄ j ∈ C∞(Rn+1) and h j = h̄ j |∂pUt1,t2
be such that 0 ≤ h j ≤ h on ∂pUt1,t2

and sup∂pUt1,t2
|h j − h| → 0, as j → ∞. Using Theorem 2.3, we can extend

h j so that it is a weak solution in Ut1,t2 which takes the boundary data h j in the
sense of traces and which satisfies hmj ( · , t) ∈ W 1,2(U ) for a.e. t ∈ (t1, t2). By
the comparison principle in Proposition 2.6, h j ≤ u∗ a.e. in Ut1,t2 . Since h j is
continuous, and u∗ is lsc-regularized, it directly follows that h j ≤ u∗ everywhere
in Ut1,t2 .

Moreover, since the boundary data h j are continuous, DiBenedetto [20, The-
orem, p. 421] implies that h j ∈ C(Ut1,t2). Hence h j coincides with the solution
provided by Theorem 2.4. Letting j → ∞, we conclude from Theorem 2.5 that
h ≤ u∗ everywhere inUt1,t2 . Hence u∗ is superparabolic. The proof for subsolutions
is analogous, using Theorem 3.4. ��

To establish the equivalence between our sub- and superparabolic functions and
the ones used in [7,29,30] , we will also need the following parabolic comparison
principle for sub- and superparabolic functions, which was obtained by Kinnunen–
Lindqvist–Lukkari [30, Theorem 3.3].

Theorem 3.6. (Parabolic comparison principle for cylinders) Let m ≥ 1 and let
Ut1,t2 be an arbitrary cylinder inR

n+1. Suppose that u is a bounded superparabolic
function and v is a bounded subparabolic function in Ut1,t2 . Assume that

lim sup
Ut1,t2�(y,s)→(x,t)

v(y, s) ≤ lim inf
Ut1,t2�(y,s)→(x,t)

u(y, s) (3.1)

for all (x, t) ∈ ∂pUt1,t2 . Then v ≤ u in Ut1,t2 .

As the definition of superparabolic functions in [30] is slightly different from
ours, some comments are in order. Since we also had difficulties understanding
how they concluded that u ≤ v everywhere (and not just a.e.) at the end of their
proof, we seize the opportunity to provide our own proof (based partly on the ideas
in [30]).

Proof. Without loss of generality we can assume that both u and v are bounded.
Using (3.1) and the compactness of ∂pUt1,t2 , we can for each ε j = 1/j , j =
1, 2, . . ., find C2,α-cylinders U j

s j ,t2 := U j × (s j , t2) � U × (t1, t2] so that

U 1 � U 2 � · · · �
∞⋃
j=1

U j = U, s1 > s2 > · · · → t1,

and

vm ≤ um + εmj in Ut1,t2 \U j
s j ,t2 , j = 1, 2, . . . .

Since u and v are lower and upper semicontinuous, respectively, we can also find
nonnegative h̄ j ∈ C∞(Rn) such that

vm ≤ h̄mj + εmj ≤ um + εmj in Ut1,t2 \U j
s j ,t2 , j = 1, 2, . . . .
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As in the proof of Theorem3.5,we useTheorem2.3, togetherwithDiBenedetto [20,
Theorem, p. 421], to findweak solutions h j and ĥ j inU

j
s j ,t2 which take the boundary

data h̄ j and (h̄mj +εmj )1/m , respectively, both in the sense of traces and continuously

on ∂pU
j
s j ,t2 . The super/subparabolicity of u and v now yield

u ≥ h j and v ≤ ĥ j in U j
s j ,t2 . (3.2)

If we extend h j and ĥ j as h̄ j and (h̄mj + εmj )1/m outside U j
s j ,t2 , then also

u ≥ h j and v ≤ ĥ j in Ut1,t2 \U j
s j ,t2 . (3.3)

Moreover,

h j ≤ ĥ j ≤ h j + ε j in Ut1,t2 \U j
s j ,t2 and h j ≤ ĥ j in U

j
s j ,t2 , (3.4)

by Proposition 2.6.
Now, Theorem 5.16.1 in DiBenedetto–Gianazza–Vespri [23] shows that both

families {h j }∞j=1 and {ĥ j }∞j=1 are locally equicontinuous in Ut1,t2 . Hence, Ascoli’s
theorem and a diagonal argument provide us with subsequences, also denoted
{h j }∞j=1 and {ĥ j }∞j=1, which converge locally uniformly in Ut1,t2 to continuous

functions h and ĥ. Clearly, h ≤ ĥ and taking limits in (3.2) and (3.3) yields

u ≥ h and v ≤ ĥ in Ut1,t2 . (3.5)

For each j = 1, 2, . . ., Lemma 3.2 in Kinnunen–Lindqvist–Lukkari [30] implies
that ∫ t2

s j

∫
U j

(ĥ j − h j )(ĥ
m
j − hmj ) dx dt ≤ Cε j ,

whereC depends onU and the bounds for u and v, but not on j . Taking into account
(3.4), we thus conclude that

0 ≤
∫ t2

t1

∫
U

(ĥ j − h j )(ĥ
m
j − hmj ) dx dt ≤ Cε j .

Since h j → h and ĥ j → ĥ in Ut1,t2 and all the functions are uniformly bounded,
dominated convergence implies that∫ t2

t1

∫
U

(ĥ − h)(ĥm − hm) dx dt = 0,

and hence h = ĥ a.e. Finally, the continuity of h and ĥ, together with (3.5), yields
v ≤ ĥ = h ≤ u. ��
Remark 3.7. The above proof also shows that the function h = ĥ is a weak
solution in Ut1,t2 . Indeed, the Caccioppoli inequality (Lemma 2.15 in Kinnunen–
Lindqvist [29]) shows that |∇hmj | and |∇ ĥmj | are uniformly bounded in L2(s, t;
W 1,2(V )) for every cylinder Vs,t � Ut1,t2 . Thus, there is a weakly converging
subsequence, for which the integral identity (2.2) on Vs,t � Ut1,t2 pertains.
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Proposition 3.8. Let m ≥ 1. If u is superparabolic in Θ , then it satisfies the fol-
lowing comparison principle on each cylinder Ut1,t2 � Θ: If h ∈ C(Ut1,t2) is
parabolic in Ut1,t2 and h ≤ u on ∂pUt1,t2 , then h ≤ u in Ut1,t2 .

Similarly, if v is subparabolic in Θ , Ut1,t2 � Θ is a cylinder, h ∈ C(Ut1,t2) is
parabolic in Ut1,t2 and h ≥ v on ∂pUt1,t2 , then h ≥ u in Ut1,t2 .

Remark 3.9. This shows that our definition of sub- and superparabolic functions
is equivalent to the one used in Kinnunen–Lindqvist [29], Kinnunen–Lindqvist–
Lukkari [30] and Avelin–Lukkari [7]. It also follows from Theorem 5.4 below, that
one can equivalently assume that the comparison principle holds for all compactly
contained finite unions of cylinders; this equivalence was also pointed out in [29,
p. 147].

Whether it is equivalent to just assuming that the comparison principle holds
for space-time boxes (a1, b1)× . . .×(an, bn)×(t1, t2) is an open problem. Such an
equivalence is known to hold for the p-parabolic equation (1.2), see Korte–Kuusi–
Parviainen [31, Corollary 4.7].

Proof of Proposition 3.8. Let u be superparabolic and letUt1,t2 � Θ be a cylinder.
By Theorem 3.5, h is subparabolic in Ut1,t2 . Since h is continuous on Ut1,t2 , it is
also bounded. By Lemma 3.2, we have that ũ = min{u,maxUt1,t2

h} is a bounded
superparabolic function.Wecan thus apply the comparisonprinciple inTheorem3.6
to conclude that h ≤ ũ ≤ u in Ut1,t2 .

The proof for the subparabolic case is similar. ��

4. Further Results on Superparabolic Functions

We continue with a few more results on superparabolic functions that will be
needed later on.

The deep result below (Theorem 4.1) completes the relation between super-
parabolic functions and supersolutions. In particular, a bounded function is super-
parabolic if and only if it is an lsc-regularized supersolution.

Theorem 4.1. (Kinnunen–Lindqvist [29, Theorems 3.2 and 6.2]) Let m ≥ 1 and u
be superparabolic. Then the following are true:

(a) u is lsc-regularized, and moreover

u(x, t) = ess lim inf
(y,s)→(x,t)

s<t

u(y, s);

(b) if u is locally bounded, then u is a supersolution.

Theorems 3.2 and 6.2 of [29] rely on the results about the obstacle problem
for the porous medium equation discussed in Lemma 2.18 of the same paper. The
main arguments are just sketched, and the interested reader is referred elsewhere
for the details. Recently, the obstacle problem for the porous medium equation
has been extensively studied in Bögelein–Lukkari–Scheven [14] in a rather general
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framework, and it is not hard to check that [29, Lemma 2.18] can be considered as
a special case of [14, Theorem 2.6 and Corollary 2.8].

We will also need the corresponding result for subparabolic functions.

Theorem 4.2. Let m ≥ 1 and u be subparabolic. Then the following are true:

(a) u is usc-regularized, and moreover

u(x, t) = ess lim sup
(y,s)→(x,t)

s<t

u(y, s);

(b) u is a subsolution.

Proof. As Kinnunen–Lindqvist [29] deals also with sign-changing functions, this
follows directly by applying Theorem 4.1 to −u.

For (b) we do not need to assume that u is locally bounded, as this is automatic
for nonnegative subparabolic functions. ��

The following result completes the picture:

Proposition 4.3. Let m ≥ 1 and u be a nonnegative function in Θ . Then u is
parabolic if and only if it is both sub- and superparabolic in Θ .

Note that a parabolic function is, by Definition 2.1, a continuous solution,
whereas sub- and superparabolicity is defined using the quite different Defini-
tion 3.1.

Proof. First assume that u is both sub- and superparabolic. Then, u is continuous.
Let Ut1,t2 ⊂ Θ be a C2,α-cylinder. By Theorem 2.4, there is h ∈ C(Ut1,t2) which
is parabolic in Ut1,t2 and satisfies h = u on ∂pUt1,t2 . Since u is superparabolic,
h ≤ u in Ut1,t2 , and as u is subparabolic, h ≥ u in Ut1,t2 , i.e. u = h in Ut1,t2 , and
in particular u is parabolic in Ut1,t2 . As being a solution of an equation is a local
property, u is parabolic in Θ .

Conversely, assume that u is parabolic. Then u is continuous, and thus u =
u∗ = u∗. By Theorem 3.5, u is both sub- and superparabolic. ��

Recall that ΘT = {(x, t) ∈ Θ : t < T }.
Proposition 4.4. Let m > 0. Assume that v is a subparabolic function in ΘT

satisfying v ≥ c for some c ≥ 0. Then the function

w(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

v(x, t), if (x, t) ∈ ΘT ,

lim sup
ΘT �(y,s)→(x,t)

v(y, s), if (x, t) ∈ Θ and t = T,

c, if (x, t) ∈ Θ and t > T,

is subparabolic in Θ .
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Proposition 4.5. Let m > 0. Assume that v is a superparabolic function in ΘT

satisfying v ≤ M for some M < ∞. Then the function

w(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

v(x, t), if (x, t) ∈ ΘT ,

lim inf
ΘT �(y,s)→(x,t)

v(y, s), if (x, t) ∈ Θ and t = T,

M, if (x, t) ∈ Θ and t > T,

is superparabolic in Θ .

The proofs of these two results are similar, we give the proof of the latter one.

Proof. Since v is lower semicontinuous, so is w, and it is also bounded. It remains
to show the comparison principle. To this end, letUt1,t2 � Θ be aC2,α-cylinder, and
h ∈ C(Ut1,t2) be parabolic in Ut1,t2 and such that h ≤ w on ∂pUt1,t2 . In particular
h ≤ M on ∂pUt1,t2 , and thus by (the comparison part of) Theorem 2.4, h ≤ M in
Ut1,t2 . Since v is superparabolic in ΘT , we see that h ≤ w inUt1,t2 if either t2 < T
or t1 ≥ T .

Assume therefore that t1 < T ≤ t2. Since w = v ≥ h in Ut1,s for each s < T ,
this holds also in Ut1,T . If t2 > T , it follows from the definition of w and the
continuity of h that h ≤ w in U × {T }, and moreover h ≤ M = w in UT,t2 . ��

Using Theorem 2.5 we can obtain the following convergence result:

Proposition 4.6. Let m > 0 and uk be an increasing sequence of superparabolic
functions in Θ . If u := limk→∞ uk is finite in a dense subset of Θ , then u is
superparabolic in Θ .

Proof. As the sequence is increasing, u is automatically lower semicontinuous, and
thus it is only the comparison principle (iii) that we need to prove. Let Ut1,t2 � Θ

be aC2,α-cylinder, and let h ∈ C(Ut1,t2) be parabolic inUt1,t2 and satisfy h ≤ u on
∂pUt1,t2 . Let h j = (h|∂pUt1,t2

−1/j)+ on ∂pUt1,t2 and extend it toUt1,t2 as the unique
continuous extension which is parabolic in Ut1,t2 , as provided by Theorem 2.4. It
follows from the compactness and the lower semicontinuity that for each j there
is k j such that h j ≤ uk j on ∂pUt1,t2 . As uk j is superparabolic, it then follows from
the definition that h j ≤ uk j ≤ u in Ut1,t2 . By Theorem 2.5, h ≤ u in Ut1,t2 . Thus u
is superparabolic. ��

For subparabolic functions we have the following result:

Proposition 4.7. Let m > 0 and uk be a decreasing sequence of subparabolic
functions in Θ . Then u := limk→∞ u is subparabolic in Θ .

Proof. The proof is almost identical to the proof of Proposition 4.6. However, this
time the finiteness is automatic. ��

Using this we can improve on Proposition 3.3 in Kinnunen–Lindqvist [29] as
follows (for nonnegative functions).
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Proposition 4.8. Let m ≥ 1. If uk is an increasing sequence of supersolutions and
u := limk→∞ u is locally bounded, then u is a supersolution.

Similarly, if uk is a decreasing sequence of subsolutions, then u := limk→∞ u
is a subsolution.

Proof. Consider first the case of supersolutions. By Theorem 3.3 we may assume
that uk are lsc-regularized. By Theorem 3.5, uk is superparabolic, and thus u is
superparabolic, by Proposition 4.6. It then follows that u is a supersolution by
Theorem 4.1.

The case for subsolutions is obtained similarly. As before there is no need to
assume local boundedness. ��

We can now also conclude the following result, which we have not seen in the
literature, though it might be well known to experts in the field:

Proposition 4.9. Let m ≥ 1. If u and v are supersolutions, then so is min{u, v}.
Similarly, if u and v are subsolutions, then so is max{u, v}.

To prove this we need the following characterization:

Proposition 4.10. Let m > 0 and u : Θ → [0,∞] be a function such that um ∈
L2(t1, t2;W 1,2(U )) whenever Ut1,t2 � Θ . Then u is a supersolution if and only if
uk := min{u, k} is a supersolution for all k = 1, 2, . . ..

Proof. Assume first that u is a supersolution. Then it follows from DiBenedetto–
Gianazza–Vespri [23, Lemma 3.5.1] that also uk is a supersolution, if m ≥ 1. For
0 < m < 1, this was proved in a slightly different context, and for a wider class of
equations, in Bögelein–Duzaar–Gianazza [13, Lemma 3.1].

Conversely, assume that uk , k = 1, 2, . . ., are supersolutions. Let Ut1,t2 � Θ

be a cylinder and ϕ ∈ C∞
0 (Ut1,t2) be nonnegative. Then∫ t2

t1

∫
U

∇um · ∇ϕ dx dt −
∫ t2

t1

∫
U
u∂tϕ dx dt

= lim
k→∞

(∫ t2

t1

∫
U

∇umk · ∇ϕ dx dt −
∫ t2

t1

∫
U
uk∂tϕ dx dt

)
≥ 0,

and thus u is a supersolution. ��
Using the above characterization we can obtain the following consequence (cf.

Theorem 4.1 (b)):

Proposition 4.11. Let m ≥ 1 and let u be superparabolic in Θ . If um ∈
L2(t1, t2;W 1,2(U )) whenever Ut1,t2 � Θ , then u is a supersolution in Θ .

In general this kind of regularity does not hold for superparabolic functions,
since there are superparabolic functionswhich are not supersolutions, theBarenblatt
solution being perhaps the easiest example, see Kinnunen–Lindqvist [29, p. 148].

Proof. Let k > 0. By Lemma 3.2, uk := min{u, k} is superparabolic, and hence a
supersolution by Theorem 4.1 (b). It then follows from Proposition 4.10, that u is
a supersolution. ��
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Proof of Proposition 4.9. First, assume that u and v are supersolutions. By The-
orem 3.3, we may without loss of generality assume that they are lsc-regularized.
It then follows from Theorem 3.5 that they both are superparabolic, and hence by
Lemma 3.2, so is min{u, v}. Let Ut1,t2 � Θ . As um, vm ∈ L2(t1, t2;W 1,2(U )),
also min{u, v}m ∈ L2(t1, t2;W 1,2(U )). Thus it follows from Proposition 4.11 that
min{u, v} is a supersolution.

Next, we turn to the case when u and v are subsolutions. By Theorem 3.4,
we may assume that they are usc-regularized. It then follows from Theorem 3.5
that they both are subparabolic, and, by Lemma 3.2, so is max{u, v}. Finally, by
Theorem 4.2 (b), max{u, v} is a subsolution. ��

5. Comparison Principles for Sub- and Superparabolic Functions

In this section we obtain a series of different kinds of comparison principles for
sub- and superparabolic functions, which will be important later on. Recall that one
such comparison principle has already been obtained for cylinders when m ≥ 1 in
Theorem 3.6. Note that the next two theorems do not require m ≥ 1.

Theorem 5.1. (Parabolic comparison principle for general sets) Let m > 0 and
Θ be bounded. Suppose that u is superparabolic and v is subparabolic in Θ . Let
T ∈ R and assume that

∞ 	= lim sup
Θ�(y,s)→(x,t)

v(y, s) < lim inf
Θ�(y,s)→(x,t)

u(y, s) (5.1)

for all (x, t) ∈ {(x, t) ∈ ∂Θ : t < T }. Then v ≤ u in {(x, t) ∈ Θ : t < T }.
Remark 5.2. The proof of this comparison principle is very different from the
proof of the nonstrict comparison principle in cylinders in Theorem 3.6. Our proof
is based on the proof in Björn–Björn–Gianazza–Parviainen [10, Theorem 2.4] for
the p-parabolic equation (1.2).

Proof of Theorem 5.1. Let ε > 0 and

E = {(x, t) ∈ Θ : t ≤ T − ε and v(x, t) > u(x, t)}.
By (5.1), together with the compactness of {(x, t) ∈ ∂Θ : t ≤ T − ε} and the
semicontinuity of u and v, we conclude that E is a compact subset of Θ . We argue
by contradiction. Assume that E 	= ∅, and let

T0 = inf{t : (x, t) ∈ E} = min{t : (x, t) ∈ E} and K = {(x, t) ∈ E : t = T0}.
Since K is compact, we can find an open C2,α-smooth set U ⊂ Rn such that

K � U × {T0} � Θ,

and thus also σ < T0 < τ such that

{(x, t) ∈ E : t ≤ τ } � U × (σ, τ ] � Θ.
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In particular, the parabolic boundary ∂pUσ,τ ⊂ Θ \ E , and hence v ≤ u on ∂pUσ,τ .
(Here we could apply Theorem 3.6, but apart from adding the requirementm ≥ 1, it
would also make this proof less elementary.) Due to the semicontinuity of u and v,
there is a continuous function ψ on ∂pUσ,τ such that v ≤ ψ ≤ u. By Theorem 2.4,
we can find a function h ∈ C(Uσ,τ ) which is parabolic in Uσ,τ and continuously
attains its boundary values h = ψ on ∂pUσ,τ .

The comparison principle in the definition of sub/superparabolic functions
applied in Uσ,τ to v and h, and to u and h, shows that v ≤ h ≤ u in Uσ,τ .
Thus, we obtain that Uσ,τ ∩ E = ∅, and so T0 ≥ τ , which gives a contradiction.
Hence E must be empty, and letting ε → 0 concludes the proof. ��

A direct consequence of Theorem 5.1 is the following comparison principle,
which can be considered as a sort of elliptic version of the comparison principle,
since it does not acknowledge the parabolic boundary and uses all boundary points
(to prove it just apply Theorem 5.1 with a large enough T ):

Theorem 5.3. (Elliptic-type comparison principle) Let m > 0 and Θ be bounded.
Suppose that u is superparabolic and v is subparabolic in Θ . If

∞ 	= lim sup
Θ�(y,s)→(x,t)

v(y, s) < lim inf
Θ�(y,s)→(x,t)

u(y, s) (5.2)

for all (x, t) ∈ ∂Θ , then v ≤ u in Θ .

Both in Theorems 5.1 and 5.3wewould have liked to have nonstrict comparison
principles, only assuming nonstrict inequalities in (5.1) and (5.2), but since we
cannot add constants to sub/superparabolic functions, we have not been able to
achieve this. In fact, this is a well-known problem with the comparison principle,
and the nonstrict elliptic comparison principle is known to be equivalent to the
fundamental inequality P f ≤ P f between lower and upper Perron solutions, see
Definition 6.1 below. Moreover, the parabolic-type and elliptic-type comparison
principles in Theorems 5.1 and 5.3 are equivalent, since the former follows from
the latter together with Propositions 4.4 and 4.5.

In both comparison principles the conclusion is nonstrict, even though the
inequalities in (5.1) and (5.2) are strict. If one knew that uψ < uψ+ε, where
ψ ∈ C(∂pUt1,t2) is positive and uψ and uψ+ε are as provided by Theorem 2.4, then
a strict inequality could also be concluded, but this seems to be one of the many
open questions in the area.

Next, we extend the nonstrict parabolic comparison principle in Theorem 3.6 to
unions of bounded cylinders. Note that this improvement also removes the bound-
edness assumption from Theorem 3.6.

Theorem 5.4. (Parabolic comparison principle for unions of cylinders) Let m ≥ 1
and Θ be a finite union of bounded cylinders in Rn+1. Suppose that u is super-
parabolic and v is subparabolic in Θ . Assume that

∞ 	= lim sup
Θ�(y,s)→(x,t)

v(y, s) ≤ lim inf
Θ�(y,s)→(x,t)

u(y, s)

for all (x, t) ∈ ∂pΘ . Then v ≤ u in Θ .
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Proof. Assume that Θ = ⋃N
j=1U

j
t j ,s j and extend u and v to (x, t) ∈ ∂pΘ , by

letting

v(x, t) = lim sup
Θ�(y,s)→(x,t)

v(y, s) and u(x, t) = lim inf
Θ�(y,s)→(x,t)

u(y, s).

Weargue by contradiction, assuming that E = {ξ ∈ Θ : v(ξ) > u(ξ)} is nonempty.
Let τ = inf{t : (x, t) ∈ E} and

S = {
t1, s1, t2, s2, . . . , tN , sN

}
.

We now divide the proof into three cases.
Case 1. τ /∈ S and thus min S < τ < max S. Let

t0 = max{t ∈ S : t < τ } and s0 = min{t ∈ S : t > τ }.
Then t0 < τ < s0, Ut0,s0 = {(x, t) ∈ Θ : t0 < t < s0} is a cylinder, and v ≤ u on
∂pUt0,s0 . Hence v ≤ u in Ut0,s0 by Theorem 3.6. But this contradicts the fact that
τ < s0.

Case 2. τ ∈ S but there is no point (x, τ ) ∈ E. In this case we let t0 = τ and
proceed as in Case 1.

Case 3. τ ∈ S and there is at least one point (xτ , τ ) ∈ E. First, we show that
v is bounded. As v is upper semicontinuous and does not take the value ∞ at the
compact set ∂pΘ , there is M < ∞ such that v < M on ∂pΘ . It then follows from
Theorem 5.1 that v ≤ M in Θ .

Next, since (xτ , τ ) ∈ E ⊂ Θ , we can find a C2,α-cylinder Ut ′,τ � Θ with
xτ ∈ U . Then there is a continuous h : {(x, t) ∈ ∂Ut ′,τ : t < τ } =: A → R such
that v ≤ h ≤ u on A. As v is bounded, we can choose h to be bounded.We can then
iterate Theorem 2.4 on Ut ′,τ−1/j , j = 1, 2, . . ., to find a continuous solution, also
called h, in Ut ′,τ which has h as continuous boundary values on A. By iterating
also Theorem 3.6, we see that v ≤ h ≤ u in Ut ′,τ . By DiBenedetto–Gianazza–
Vespri [23, Theorem 5.16.1], h has a continuous extension (also called h) to the
top U × {τ }. We then get from Theorems 4.1 and 4.2 that

v(xτ , τ ) = ess lim sup
(x,t)→(xτ ,τ )

t<τ

v(x, t) ≤ lim
(x,t)→(xτ ,τ )

t<τ

h(x, t) ≤ ess lim inf
(x,t)→(xτ ,τ )

t<τ

u(x, t) = u(xτ , τ ),

which contradicts the fact that (xτ , τ ) ∈ E . ��
The following lemma is usefulwhen constructing newsuperparabolic functions:

Lemma 5.5. (Pasting lemma) Let m ≥ 1 and G ⊂ Θ be open. Suppose u and v

are superparabolic in Θ and G, respectively. Let

w =
{
min{u, v} in G,

u in Θ \ G.

If {(x, t) ∈ G : v(x, t) < u(x, t)} ∩ Θ ⊂ G, then w is superparabolic in Θ .
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This is a more restrictive pasting lemma than the one for p-parabolic functions
in Björn–Björn–Gianazza–Parviainen [10, Lemma 2.9]. As we only have a strict
comparison principle in Theorem 5.1, the proof in [10] does not carry over to our
situation. If however u is constant, then we can obtain the full pasting lemma. Note
that in applications the pasting lemma is often usedwith a constant “outer” function.

Lemma 5.6. (Pasting lemma) Let m ≥ 1 and 0 ≤ k < ∞. Suppose G ⊂ Θ is open
and v is superparabolic in G. Define

w =
{
min{k, v} in G,

k in Θ \ G.

If w is lower semicontinuous, then w is superparabolic in Θ .

Before proving Lemma 5.5, we first show how it can be used to obtain
Lemma 5.6.

Proof. Let k j = (k − 1/j)+ and

w j =
{
min{k j , v} in G,

k j in Θ \ G,

j = 1, 2, . . .. As w is lower semicontinuous, it follows from the local compactness
of Θ ∩ ∂G that {(x, t) ∈ G : v(x, t) < k j } ∩ Θ ⊂ G. Hence, by Lemma 5.5, w j

is superparabolic. Finally, using Proposition 4.6, w is superparabolic. ��
Proof of Lemma 5.5. Let us first show that w is lower semicontinuous. This is
clear in G and in Θ \ G. Let ξ ∈ Θ ∩ ∂G. Then, by assumption, w = u in a
neighbourhood of ξ and, since u is lower semicontinuous, we conclude that w is
lower semicontinuous at ξ , i.e. w is lower semicontinuous in Θ .

Since 0 ≤ w ≤ u, w is finite in a dense subset of Θ , and we only have to
obtain the comparison principle. Therefore, let Ut1,t2 � Θ be a C2,α-cylinder, and
h ∈ C(Ut1,t2) be parabolic in Ut1,t2 and such that h ≤ w on ∂pUt1,t2 . Since h ≤ u
on ∂pUt1,t2 and u is superparabolic, we directly have that h ≤ u in Ut1,t2 .

Next, let A = {(x, t) ∈ Ut1,t2 ∩ G : v(x, t) < u(x, t)}. Then A � G by
assumption. Thus, by compactness, we can cover A by a finite number of cylinders
V j

σ j ,τ j := V j×(σ j , τ j ) � G. LetΞ = ⋃m
j=1(V

j
σ j ,τ j ∩Ut1,t2), which is a finite union

of cylinders. If ξ ∈ ∂pΞ , then either ξ ∈ ∂pUt1,t2 and thus h(ξ) ≤ w(ξ) ≤ v(ξ),
or ξ ∈ Ut1,t2 \ A in which case h(ξ) ≤ u(ξ) ≤ v(ξ). In either case h ≤ v on ∂pΞ .
Since h is continuous it follows from the comparison principle in Theorem 5.4 that
h ≤ v in Ξ . Thus h ≤ w in Ut1,t2 which shows that w is superparabolic in Θ . ��

We also need the corresponding pasting lemmas for subparabolic functions.
While these are not immediate consequences of the ones for superparabolic func-
tions, the proofs are easy modifications of the proofs for the superparabolic pasting
lemmas. We omit the details.
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Lemma 5.7. (Pasting lemma) Let m ≥ 1 and G ⊂ Θ be open. Suppose u and v

are subparabolic in Θ and G, respectively. Let

w =
{
max{u, v} in G,

u in Θ \ G.

If {(x, t) ∈ G : v(x, t) > u(x, t)} ∩ Θ ⊂ G, then w is subparabolic in Θ .

Lemma 5.8. (Pasting lemma) Let m ≥ 1 and 0 ≤ k < ∞. Suppose G ⊂ Θ is open
and v is subparabolic in G. Define

w =
{
max{k, v} in G,

k in Θ \ G.

If w is upper semicontinuous, then w is subparabolic in Θ .

6. The Perron Method and Boundary Regularity

In Sects. 6–11, Θ ⊂ Rn+1 is always a bounded open set.

Nowwe come to the Perronmethod for (2.1). For us it will be enough to consider
Perron solutions for bounded (and nonnegative) functions, so for simplicity we
restrict ourselves to this case throughout the paper.

Definition 6.1. Given a bounded f : ∂Θ → [0,∞), let the upper class U f be the
set of all superparabolic functions u on Θ such that

lim inf
Θ�η→ξ

u(η) ≥ f (ξ) for all ξ ∈ ∂Θ.

Define the upper Perron solution of f by

P f (ξ) = inf
u∈U f

u(ξ), ξ ∈ Θ.

Similarly, let the lower class L f be the set of all subparabolic functions u on Θ

which are bounded above and such that

lim sup
Θ�η→ξ

u(η) ≤ f (ξ) for all ξ ∈ ∂Θ,

and define the lower Perron solution of f by

P f (ξ) = sup
u∈L f

u(ξ), ξ ∈ Θ.

If P f = P f , then f is called resolutive.

Since we only have strict comparison principles in Theorems 5.1 and 5.3, we
also introduce strict Perron solutions as follows.
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Definition 6.2. Given a bounded f : ∂Θ → [0,∞), let the upper class Ũ f be the
set of all superparabolic functions u on Θ such that

lim inf
Θ�η→ξ

u(η) > f (ξ) for all ξ ∈ ∂Θ.

Define the upper strict Perron solution of f by

S f (ξ) = inf
u∈Ũ f

u(ξ), ξ ∈ Θ.

Similarly, let the lower class L̃ f be the set of all subparabolic functions u on Θ

which are bounded above and such that

lim sup
Θ�η→ξ

u(η) < f (ξ) for all ξ ∈ ∂Θ.

Define the lower strict Perron solution of f by

S f (ξ) = sup
u∈L̃ f

u(ξ), ξ ∈ Θ,

if L̃ f 	= ∅, and set S f ≡ 0 if L̃ f = ∅.

Since L̃ f = ∅ if, and only if, f takes the value 0 at some boundary point
(the constant zero function allowed otherwise is excluded in this case), the lower
strict Perron solution is rather restrictive. A possibility would have been to consider
signed subparabolic functions in the definition of L̃ f , whichwe have refrained from
since that would lead into uncharted territory.

Remark 6.3. Observe that the definitions of Perron solutions always depend on
the set Θ . To emphasize this dependence, we will at times use the notation
PΘ f, PΘ f, SΘ f and SΘ f , as well as U f (Θ),L f (Θ), Ũ f (Θ) and L̃ f (Θ).

It follows from the elliptic-type comparison principle in Theorem 5.3 that v ≤ u
whenever u ∈ Ũ f and v ∈ L f . Hence S f ≤ P f ≤ S f and similarly, S f ≤ P f ≤
S f . The inequality P f ≤ P f is only known for finite unions of cylinders, in which
case it follows directly from the parabolic comparison principle in Theorem 5.4.

A key question in the theory is whether in general P f = P f . If this hap-
pens, the boundary data f are called resolutive. A recent resolutivity result from
Kinnunen–Lindqvist–Lukkari [30, Theorem 5.1] shows that continuous functions
are resolutive on general cylinders when m > 1. In Theorem 11.2 below we gener-
alize this result to certain unions of cylinders. Form = 1 (i.e. for the heat equation)
resolutivity of continuous functions holds in arbitrary bounded open sets, see e.g.
Watson [43, Theorem 8.26].

Note that we have elliptic-type boundary conditions on the full boundary,
not just on the possibly smaller parabolic boundary, whenever it is defined.
This is similar to the case of the p-parabolic equation (1.2) in Björn–Björn–
Gianazza–Parviainen [10]. Nevertheless, the following result is true (recall that
ΘT = {(x, t) ∈ Θ : t < T }):
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Lemma 6.4. Let m > 0, T ∈ R and suppose that f : ∂Θ → [0,∞) is bounded.
Then

P f = P
T
f in ΘT ,

where P
T
f is the infimum of all superparabolic functions in ΘT such that

lim inf
ΘT �η→ξ

u(η) ≥ f (ξ) for all ξ = (x, t) ∈ ∂Θ with t < T .

Similar identity holds for P f , S f and, when f is bounded away from 0, also
for S f , with obvious modifications in the definitions.

Applying Lemma 6.4 to bothΘ andΘT immediately gives the following corol-
lary:

Corollary 6.5. Let m > 0, T ∈ R and suppose that f : ∂Θ ∪ ∂ΘT → [0,∞) is
bounded. Then

PΘT f = PΘ f, SΘT f = SΘ f and PΘT
f = PΘ f in ΘT .

If f is, in addition, bounded away from 0 then also SΘT
f = SΘ f in ΘT .

Remark 6.6. Note that the set {ξ = (x, t) ∈ ∂Θ : t < T } in the definition of P
T
f

is in general not compact.
If Θ = Ut1,t2 is a cylinder, then the parabolic boundary is included in the full

boundary and contains the above set defining P
T
f . Also the corresponding classes

of admissible superparabolic functions are included in each other. From this we
conclude that the Perron solution using only the parabolic boundary ∂pUt1,t2 lies

between the two solutions P f and P
T
f , and thus coincides with them.

If Θ is a finite union of cylinders (and thus the parabolic boundary is defined),
the situation is less clear, unless the boundary points not belonging to the parabolic
boundary are at the same time, in which case the above argument applies.

Proof of Lemma 6.4. The inequality P f ≥ P
T
f is obvious, since the restrictions

of functions fromU f are admissible in the definitions of P
T
f . Conversely, let ε > 0

and u be admissible in the definition of P
T
f . For M = sup∂Θ f + 1, let

v(x, t) =
{
M, if (x, t) ∈ Θ and t > T − ε,

min{u(x, t), M}, if (x, t) ∈ Θ and t ≤ T − ε.

By Lemma 3.2 and Proposition 4.5, v is superparabolic in Θ and thus v ∈ U f .

Taking infimum over all u shows that P f (x, t) ≤ P
T
f (x, t) when t < T − ε.

Letting ε → 0, yields P f ≤ P
T
f in ΘT . The identities for P f , S f and S f are

proved similarly, possibly replacing Proposition 4.5 by Proposition 4.4. ��
Theorem 6.7. Let m ≥ 1 and suppose that f : ∂Θ → [0,∞) is bounded. Then
P f , P f , S f and S f are parabolic, and in particular they are all continuous.
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Proof. For P f and P f in cylinders this is Theorem 4.6 in Kinnunen–Lindqvist–
Lukkari [30] but since everything is local this is true in arbitrary sets, as they in fact
mention in [30, p. 2960]. For m = 1, see e.g. Watson [43].

The proofs carry over essentially verbatim to S f and S f . ��
Since we cannot add constants to solutions of the porous medium equation,

unlike in the elliptic and p-parabolic cases, the boundary regularity might a priori
depend on the value of the boundary function at that point, and could also be
different from above and below. We are therefore led to the following definitions:

Definition 6.8. A boundary point ξ0 ∈ ∂Θ is upper regular with respect to Θ if

lim sup
Θ�ξ→ξ0

P f (ξ) ≤ f (ξ0)

whenever f : ∂Θ → (0,∞) is positive and continuous.
Similarly, ξ0 is lower regular for positive (nonnegative) boundary data with

respect to Θ if
lim inf
Θ�ξ→ξ0

P f (ξ) ≥ f (ξ0)

whenever f : ∂Θ → [0,∞) is positive (nonnegative) and continuous.
Finally, we say that ξ0 is regular for positive (nonnegative) boundary data if it

is both upper regular and lower regular for positive (nonnegative) data.

We will often omit the explicit reference to Θ , whenever no confusion may
arise. The following result is an elementary but useful tool.

Proposition 6.9. Let m > 0 and ξ0 ∈ ∂Θ . Then the following are true:

(a) If f : ∂Θ → [0,∞) is bounded and continuous at ξ0, and ξ0 is upper regular,
then

lim sup
Θ�ξ→ξ0

P f (ξ) ≤ lim sup
Θ�ξ→ξ0

S f (ξ) ≤ f (ξ0).

(b) If f : ∂Θ → [0,∞) is bounded and continuous at ξ0, and ξ0 is lower regular
for nonnegative boundary data, then

lim inf
Θ�ξ→ξ0

P f (ξ) ≥ f (ξ0).

(c) If f : ∂Θ → (0,∞) is bounded, bounded away from 0 and continuous at ξ0,
and ξ0 is lower regular for positive boundary data, then

lim inf
Θ�ξ→ξ0

P f (ξ) ≥ lim inf
Θ�ξ→ξ0

S f (ξ) ≥ f (ξ0).

(d) If f : ∂Θ → (0,∞) is bounded from above, bounded away from 0 and contin-
uous at ξ0, and ξ0 is regular for positive boundary data, then

lim
Θ�ξ→ξ0

S f (ξ) = lim
Θ�ξ→ξ0

P f (ξ) = lim
Θ�ξ→ξ0

P f (ξ) = lim
Θ�ξ→ξ0

S f (ξ) = f (ξ0).
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Proof. (b) Find f̃ ∈ C(∂Θ) so that 0 ≤ f̃ ≤ f and f̃ (ξ0) = f (ξ0). Then

lim inf
Θ�ξ→ξ0

P f (ξ) ≥ lim inf
Θ�ξ→ξ0

P f̃ (ξ) ≥ f̃ (ξ0) = f (ξ0).

(c) First of all, for any ε > 0 small enough, we can find f̃ ∈ C(∂Θ) so that
2ε ≤ f̃ ≤ f on ∂Θ and f̃ (ξ0) = f (ξ0). Now f̃ − ε is positive on ∂Θ , and thus

lim inf
Θ�ξ→ξ0

S f (ξ) ≥ lim inf
Θ�ξ→ξ0

P( f̃ − ε)(ξ) ≥ f̃ (ξ0) − ε = f (ξ0) − ε.

Letting ε → 0 shows the second inequality, while the first one follows directly
from the inequality P f ≥ S f .

(a) This is shown in the same way as (c), using a continuous function f̃ ≥ f +ε

such that f̃ (ξ0) = f (ξ0) + ε.
(d) This follows from (a) and (c) and the inequalities S f ≤ P f and P f ≤

S f . ��
The following are direct consequences of Proposition 6.9:

(i) Upper regularity is the same for positive and nonnegative boundary data, which
is the reason why we did not define them separately. We do not know if such
an equivalence holds for lower regularity.

(ii) Upper regularity can equivalently be defined using the upper strict Perron
solution S. Similarly, lower regularity for positive boundary data can be defined
using the lower strict Perron solution S.

It seems that upper regularity is easier to handle. At this point it is far from clear
whether upper and lower regularity are equivalent or not, nor if one may imply the
other. One can also ask whether (upper/lower) regularity at one level, i.e. for one
given boundary value c ≥ 0 at ξ0, is equivalent to regularity at other levels, and
also if the growth of the functions plays a role for the regularity.

In the next two sections we are going to show that regularity for positive bound-
ary data can be characterized by the existence of two two-parameter families of
barriers, one family from above and one from below.Whether all barriers are really
needed to guarantee regularity is far from obvious, but hopefully future research
will be able to clarify this.

However, it may be worth to compare with the situation for the p-parabolic
equation (1.2) for which regularity was characterized using one one-parameter
family in Björn–Björn–Gianazza–Parviainen [10, Theorem 3.3]. (The crucial dif-
ference here necessitating two two-parameter families instead of one one-parameter
family is the fact that we can neither change sign nor add constants.) In Björn–
Björn–Gianazza [9, Proposition 1.2] it was shown that one barrier is not enough
to characterize regularity for the p-parabolic equation, at least not for p < 2, but
with one barrier one gets regularity for boundary data f not growing too fast, see
[9, Proposition 5.1].

For the heat equation one barrier is enough, as was first shown by Bauer [8,
Theorems 30 and 31] for general domains.

We end the section with the following result:
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Proposition 6.10. Let ξ0 ∈ ∂Θ and a > 0. Assume that m > 0, m 	= 1. Then
ξ0 is upper/lower regular for positive (nonnegative) boundary data for the porous
medium equation (2.1) if and only if it is upper/lower regular for positive (nonneg-
ative) boundary data for the multiplied equation

∂t u = aΔum . (6.1)

Form = 1 it is well-known that this is false, by e.g. the Petrovskiı̆ criterion [38,
39], and our proof breaks down in this case.

Proof. If u is a sub/supersolution of (6.1), then v = a1/(m−1)u is a sub/supersolu-
tion of the porousmediumequation (2.1). Thewhole theory can nowequivalently be
developed for the equation (6.1) and the upper/lower regularity becomes equivalent.
��

Since the space Rn+1 is homogeneous, one can translate the equation and still
have the same regularity. Thus,without loss of generality,wewill sometimes assume
that the boundary point under consideration is the origin ξ0 = (0, 0).

7. Barrier Characterization of Upper Regularity

Definition 7.1. A family of functions wc,k , with c ∈ Q+ and k = 1, 2, . . ., is an
upper barrier family in Θ at ξ0 = (x0, t0) ∈ ∂Θ if for each c ∈ Q+ and k,

(a) wc,k : Θ → [c,∞) is superparabolic;
(b) lim

Θ�ζ→ξ0
wc,k(ζ ) = c;

(c) there is j = j (c, k) ∈ N such that

lim inf
Θ�ζ→(x,t)

wc, j (ζ ) ≥ c + k

for all (x, t) ∈ ∂Θ with |x − x0| + |t − t0| ≥ 1/k.

Here Q+ = {x ∈ Q : x > 0}.
Theorem 7.2. Let m ≥ 1 and ξ0 ∈ ∂Θ . Then the following are equivalent:

(1) ξ0 is upper regular;
(2) there is an upper barrier family at ξ0;
(3) there is an upper barrier family at ξ0 consisting of parabolic functions satisfy-

ing (c) in Definition 7.1 with (x, t) ∈ ∂Θ replaced by (x, t) ∈ Θ .

Proof. We assume, without loss of generality, that ξ0 = (0, 0).
(2) ⇒ (1) Let {wc,k} be an upper barrier family at ξ0.
Assume that f : ∂Θ → (0,∞) is continuous. Let c ∈ Q+ be such that

c > f (ξ0). Then find k ≥ sup∂Θ f such that f (x, t) < cwhenever |x |+|t | < 1/k.
Let j = j (c, k) be as given in Definition 7.1 (c). Since wc, j ≥ c, we see that

lim inf
Θ�ζ→(x,t)

wc, j (ζ ) > f (x, t) for all (x, t) ∈ ∂Θ.
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This implies that wc, j ∈ U f , and thus P f ≤ wc, j in Θ . Consequently,

lim sup
Θ�ζ→ξ0

P f (ζ ) ≤ lim sup
Θ�ζ→ξ0

wc, j (ζ ) = c.

Since this holds for all rational c > f (ξ0), we conclude that

lim sup
Θ�ζ→ξ0

P f (ζ ) ≤ f (ξ0),

and thus ξ0 is upper regular.
(1)⇒ (3)Assume that ξ ∈ ∂Θ is upper regular. Given c ∈ Q+ and j = 1, 2, . . .,

we let

ψc, j (x, t) = (cm + j |x |2 + jbt2)1/m for (x, t) ∈ Rn+1,

where b = mcm−1/diamΘ . Note that ψc, j ≥ c. Direct calculations show that

∂tψc, j = 2 jbt

m
(cm + j |x |2 + jbt2)−1+1/m ≤ 2 jbt

mcm−1

and

Δψm
c, j = jΔ|x |2 = 2 j div x = 2 jn ≥ 0.

Hence

∂tψc, j − Δψm
c, j ≤ 2 j

(
bt

mcm−1 − n

)
≤ 0,

which implies by Theorem 3.5 that ψc, j is subparabolic in Θ . By Theorem 6.7 the
function

wc, j := Pψc, j

is parabolic. Sinceψc, j is subparabolic, it belongs toLψc, j . Therefore, by definition,
we get that wc, j ≥ ψc, j ≥ c, and so (a) in Definition 7.1 holds. As ξ0 is upper
regular, we also obtain using Proposition 6.9 that

lim sup
Θ�ξ→ξ0

wc, j ≤ lim sup
Θ�ξ→ξ0

Sψc, j = c

and thus limΘ�ξ→ξ0 wc, j = c, giving (b) in Definition 7.1. By the form of wc, j it
follows that also (c) in Definition 7.1 is satisfied, and thus the functions wc, j form
an upper barrier family of the type required in (3).

(3) ⇒ (2) This is trivial. ��
The following useful restriction result is a direct consequence of the barrier

characterization in Theorem 7.2 (3):

Corollary 7.3. Let m ≥ 1 and G ⊂ Θ be open. Suppose that ξ0 ∈ ∂Θ ∩ ∂G. If ξ0
is upper regular with respect to Θ , then it is upper regular with respect to G.
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Another consequence of the barrier characterization is that upper regularity is
a local property.

Proposition 7.4. Let m ≥ 1 and ξ0 ∈ ∂Θ , and suppose that B is a ball containing
ξ0. Then ξ0 is upper regular with respect to Θ if and only if it is upper regular with
respect to B ∩ Θ .

Proof. Corollary 7.3 shows that if ξ0 is upper regular with respect to Θ , then it is
also upper regular with respect to B∩Θ . It remains to show the converse direction.

By Theorem 7.2 we have an upper barrier familywc, j in B ∩Θ . Let k0 be large
enough so that 1/k0 < dist(ξ0, ∂B) and let j (c, k0) be as in Definition 7.1 (c).
Define

w′
c,k =

{
min{wc, j (c,k), c + k} in B ∩ Θ,

c + k in Θ \ B,

for k ≥ k0 and w′
c,k = w′

c,k0
for k < k0. By the pasting lemma 5.6 the function

w′
c,k is superparabolic, and thus {w′

c,k} is an upper barrier family inΘ . This implies
that ξ0 is upper regular with respect to Θ . ��

8. Barrier Characterization of Lower Regularity for Positive Boundary Data

Definition 8.1. Afamily of functionswc,k , with c ∈ Q+ and k = 1, 2, . . ., is a lower
barrier family for positive boundary data in Θ at the point ξ0 = (x0, t0) ∈ ∂Θ if
for each c ∈ Q+ and k,

(a) wc,k : Θ → [0, c] is subparabolic;
(b) lim

Θ�ζ→ξ0
wc,k(ζ ) = c;

(c) there is j = j (c, k) ≥ k such that

lim sup
Θ�ζ→(x,t)

wc, j (ζ ) ≤ 1

k

for all (x, t) ∈ ∂Θ with |x − x0| + |t − t0| ≥ 1/k.

Lemma 8.2. Let m > 0. Assume that u is a supersolution (subsolution) in Θ \
(E ×R), where E ⊂ Rn is a set of zero capacity such that Θ \ (E ×R) is open. If
um ∈ L2(t1, t2;W 1,2(U )) for every cylinder Ut1,t2 � Θ , then u is a supersolution
(subsolution) in Θ as well.

For the definition of capacity, see (11.1) below.

Proof. We consider supersolutions. The proof for subsolutions is similar. Let
Ut1,t2 � Θ and ϕ ∈ C∞

0 (Ut1,t2) be arbitrary. Since E has zero capacity, there
exist η j ∈ C∞

0 (Rn) such that 0 ≤ η j ≤ 1 in Rn , η j = 1 in an open neighbourhood
of E and ‖η j‖W 1,2(Rn) < 1/j , j = 1, 2, . . . . Set ϕ j (x, t) = (1 − η j (x))ϕ(x, t).
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Then ϕ j ∈ C∞
0 (Ut1,t2 \ (E × R)). Inserting ∂tϕ j = ∂tϕ − η j∂tϕ and ∇ϕ j =

∇ϕ − (η j∇ϕ + ϕ∇η j ) into (2.2) gives∫ t2

t1

∫
U

∇um · ∇ϕ dx dt −
∫ t2

t1

∫
U
u∂tϕ dx dt

≥
∫ t2

t1

∫
U

∇um · (η j∇ϕ + ϕ∇η j ) dx dt −
∫ t2

t1

∫
U
uη j∂tϕ dx dt.

Since ϕ ∈ C∞
0 (Ut1,t2), there exists M < ∞ such that |ϕ|, |∇ϕ|, |∂tϕ| ≤ M on

Ut1,t2 and hence the Cauchy–Schwarz inequality implies that the right-hand side in
the last inequality is majorized (in absolute value) by

3M

(∫ t2

t1

∫
U

(|∇um |2 + |u|2) dx dt
)1/2(∫ t2

t1

∫
U

(|∇η j |2 + |η j |2) dx dt
)1/2

.

By assumption, the first factor is bounded while the last factor equals

(t2 − t1)
1/2‖η j‖W 1,2(Rn)

and tends to zero as j → ∞. Thus, the left-hand side in (2.2) is nonnegative for
every ϕ ∈ C∞

0 (Ut1,t2), which concludes the proof. ��
Theorem 8.3. Let m ≥ 1 and ξ0 ∈ ∂Θ . Then the following are equivalent:

(1) ξ0 is lower regular for positive boundary data;
(2) there is a lower barrier family for positive boundary data at ξ0;
(3) there is a lower barrier family for positive boundary data at ξ0 consisting of

parabolic functions satisfying (c) in Definition 8.1 with (x, t) ∈ ∂Θ replaced
by (x, t) ∈ Θ .

Proof. We assume, without loss of generality, that ξ0 = (0, 0).
The proof of (2)⇒ (1) is similar to that of Theorem 7.2 and we omit the details.
(3) ⇒ (2) This is trivial.
(1) ⇒ (3) Assume that ξ0 ∈ ∂Θ is lower regular for positive boundary data.

To construct a lower barrier family for positive boundary data at ξ0, let 0 < α <

γ < 1/m and d = 2 + log diamΘ . Given c ∈ Q+ and j = 1, 2, . . ., we define for
(x, t) ∈ Θ ,

vc, j (x, t) =
⎧⎨
⎩
c−1/γ + jαt2 + j

d − log |x | , x 	= 0,

c−1/γ + jαt2, x = 0,
and ψc, j = v

−γ

c, j .

Note that 0 < ψc, j ≤ c. Assume that x 	= 0 for the moment. Direct calculations
show that ∂tvc, j = 2 jαt ,

∇vc, j = j x

|x |2(d − log |x |)2 (8.1)

and

Δvc, j = j
[
(n − 2)(d − log |x |) + 2

]
|x |2(d − log |x |)3 ≥ 2 j

|x |2(d − log |x |)3 ,



522 Anders Björn et al.

since n ≥ 2. Moreover, we have

∂tψc, j = −γ v
−γ−1
c, j ∂tvc, j ,

∇ψm
c, j = ∇v

−γm
c, j = −γmv

−γm−1
c, j ∇vc, j , (8.2)

and thus

Δψm
c, j = −γmv

−γm−1
c, j Δvc, j + γm(γm + 1)v−γm−2

c, j |∇vc, j |2.
It follows that

∂tψc, j − Δψm
c, j = γmv

−γm−2
c, j

[
vc, jΔvc, j − (γm + 1)|∇vc, j |2

−m−1v
1+γ (m−1)
c, j ∂tvc, j

]
.

This will be nonnegative if

I := 2 jvc, j
|x |2(d − log |x |)3 − (γm + 1) j2

|x |2(d − log |x |)4 − 2

m
v
1+γ (m−1)
c, j jαt ≥ 0.

Since vc, j ≥ j/(d − log |x |) and m ≥ 1, we obtain

I ≥ 2 jvc, j
|x |2(d − log |x |)3 − (γm + 1) jvc, j

|x |2(d − log |x |)3 − 2v1+γ (m−1)
c, j jαt

= vc, j

(
(1 − γm) j

|x |2(d − log |x |)3 − 2vγ (m−1)
c, j jαt

)
.

A straightforward calculation shows that ρ �→ ρ2(d − log ρ)3 is increasing on
[0, diamΘ], which together with vc, j ≤ j (c−1/γ + (diamΘ)2 + 1) and the choice
of d yields

I ≥ vc, j

(
(1 − γm) j

8(diamΘ)2
− 2 jα+γ (m−1)(c−1/γ + (diamΘ)2 + 1)γ (m−1) diamΘ

)
.

Since α < γ < 1/m, we have α + γ (m − 1) < 1 and it follows that I ≥ 0
for sufficiently large j . Thus, by Theorem 3.5 we see that ψc, j is superparabolic in
{(x, t) ∈ Θ : x 	= 0} for such j . By (8.1) and (8.2), ∇ψm

c, j ∈ L2(t1, t2;W 1,2(U ))

whenever Ut1,t2 � Θ . Hence Lemma 8.2 shows that ψc, j is superparabolic in Θ

for sufficiently large j .
Set wc, j = Pψc, j . Then wc, j is parabolic, by Theorem 6.7. Since ψc, j is

superparabolic, it belongs to Uψc, j , and thus wc, j ≤ ψc, j ≤ c. By the lower
regularity of ξ0 for positive boundary data and Proposition 6.9 (c), we also have

lim inf
Θ�ζ→ξ0

wc, j (ζ ) ≥ lim inf
Θ�ζ→ξ0

Sψc, j (ζ ) = ψc, j (ξ0) = c,

and thus limΘ�ζ→ξ0 wc, j (ζ ) = c. By the form ofwc, j it follows that (c) is satisfied,
and thus (after renumbering) the functions wc, j form a lower barrier family for
positive boundary data of the type required in (3). ��
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As in the case of upper regularity we have two results. The first is a direct
consequence of the barrier characterization in Theorem 8.3 (3), whereas the proof
of the second is similar to the proof of Proposition 7.4; we omit the details.

Corollary 8.4. Let m ≥ 1 and G ⊂ Θ be open. Suppose that ξ0 ∈ ∂Θ ∩ ∂G. If
ξ0 is lower regular for positive boundary data with respect to Θ , then it is lower
regular for positive boundary data with respect to G.

Proposition 8.5. Let m ≥ 1 and ξ0 ∈ ∂Θ , and suppose that B is a ball containing
ξ0. Then ξ0 is lower regular for positive boundary data with respect to Θ if and
only if it is lower regular for positive boundary data with respect to B ∩ Θ .

9. Earliest Points are Always Regular

To make the notation easier, we consider regularity of the origin. Recall that

Θ− = {(x, t) ∈ Θ : t < 0} and Θ+ = {(x, t) ∈ Θ : t > 0}.
Proposition 9.1. Let m ≥ 1 and ξ0 = (0, 0) ∈ ∂Θ . If ξ0 /∈ ∂Θ−, which in particu-
lar holds if Θ− is empty, then ξ0 is regular for positive boundary data.

Proof. By Propositions 7.4 and 8.5 we may assume that Θ− = ∅.
First, we turn to upper regularity and let c ∈ Q+ be arbitrary. Let

wc, j = (cm + j |x |2 + j2m−1t)1/m and δ = max{diamΘ, 1}.
Then, as 1/m − 1 < 0,

∂twc, j = j2m−1

m
(cm + j |x |2 + j2m−1t)1/m−1 ≥ j2m−1

m
(cm + 2 j2m−1δ2)1/m−1

and Δwm
c, j = jΔ|x |2 = 2 jn. We want to have

∂twc, j − Δwm
c, j ≥ j2m−1

m
(cm + 2 j2m−1δ2)1/m−1 − 2 jn ≥ 0,

which is equivalent to

cm + 2 j2m−1δ2 ≤
(

2nm

j2m−2

)m/(1−m)

= j2m

(2nm)m/(m−1)
,

and this happens if j is large enough. Thus, for such j , wc, j is superparabolic, by
Theorem 3.5. It now follows that {wc, j } (after renumbering) is an upper barrier
family, and thus ξ0 is upper regular.

For lower regularity, let again c ∈ Q+ be arbitrary. This time let

vc, j = (cm − j |x |2 − jat)1/m+ and Θc, j = {(x, t) ∈ Θ : vc, j (x, t) > 0},
where a = 2nmcm−1. In Θc, j we have

∂tvc, j = − ja

m
(cm − j |x |2 − jat)1/m−1 ≤ − ja

m
c1−m = −2 jn
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andΔvmc, j = − jΔ|x |2 = −2 jn. Hence ∂tvc, j −Δvmc, j ≤ 0 and vc, j is subparabolic
in Θc, j , by Theorem 3.5. Lemma 5.8 shows that vc, j is subparabolic in Θ . Hence,
it follows that {vc, j } is a lower barrier family for positive boundary data and thus
by Theorem 8.3, ξ0 = (0, 0) is lower regular for positive boundary data. ��
Remark 9.2. Using the family {vc, j } above one can show that ξ0 = (0, 0) is lower
regular for nonnegative data, in a similar way as the proof of (2) ⇒ (1) in Theo-
rem 8.3. We do not aim at developing the general theory of lower regular points for
nonnegative data here.

10. Independence of the Future

The next result shows that regularity is independent of the future.

Theorem 10.1. Assume m ≥ 1 and ξ0 = (0, 0) ∈ ∂Θ . Then ξ0 is upper regular
(lower regular for positive boundary data) with respect to Θ if and only if either
ξ0 /∈ ∂Θ− or ξ0 is upper regular (lower regular for positive boundary data) with
respect to Θ−.

Proof. We consider first the upper regularity.
If ξ0 is upper regular with respect to Θ , then either ξ0 /∈ ∂Θ− or ξ0 is upper

regular with respect to Θ−, by Corollary 7.3.
As for the converse, if ξ0 /∈ ∂Θ−, then ξ0 is regular by Proposition 9.1. Thus it

remains to consider the case when ξ0 is upper regular with respect to Θ−.
Given c ∈ Q+ and j = 1, 2, . . ., we define for (x, t) ∈ Θ the function

ψc, j = (cm + j |x |2 + jbt2)1/m

with b = mcm−1/diamΘ . By the proof of Theorem 7.2 we know that ψc, j is
subparabolic in Θ .

Let wc, j = PΘψc, j . We want to show that {wc, j } is an upper barrier family at
ξ0 with respect to Θ .

As ψc, j is subparabolic and continuous, SΘψc, j ≥ wc, j ≥ ψc, j in Θ . By
the upper regularity of ξ0 with respect to Θ− as well as by Corollary 6.5 and
Proposition 6.9 (a), we see that

lim sup
Θ−�ζ→ξ0

wc, j (ζ ) ≤ lim sup
Θ−�ζ→ξ0

SΘψc, j (ζ ) = lim sup
Θ−�ζ→ξ0

SΘ−ψc, j (ζ ) ≤ ψc, j (ξ0).

Since wc, j ≥ ψc, j , we obtain

lim
Θ−�ζ→ξ0

wc, j (ζ ) = ψc, j (ξ0).

Moreover, by the continuity of wc, j in Θ we have

lim
Θ\Θ+�ζ→ξ0

wc, j (ζ ) = ψc, j (ξ0). (10.1)
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Next, let

ϕ =
{

ψc, j in ∂Θ ∩ ∂Θ+,

wc, j in Θ ∩ ∂Θ+.

Then ϕ is continuous at ξ0, by (10.1).
If u ∈ Lψc, j (Θ), then u|Θ+ ∈ Lϕ(Θ+), by the definitions of ϕ andwc, j . Hence

wc, j = PΘψc, j ≤ PΘ+ϕ in Θ+.

If v ∈ L̃ϕ(Θ+) then, since wc, j ≥ ψc, j in Θ , we have

lim sup
Θ+�ζ→ξ

v(ζ ) < ϕ(ξ) ≤ lim inf
Θ+�ζ→ξ

wc, j (ζ ) for all ξ ∈ ∂Θ+.

Thus, by Theorem 5.3, v ≤ wc, j in Θ+. Taking supremum over all v ∈ L̃ϕ(Θ+)

shows that

SΘ+ϕ ≤ wc, j ≤ PΘ+ϕ in Θ+.

By Proposition 9.1, the initial points are always regular. Thus using also Proposi-
tion 6.9 (d), we see that

lim
Θ+�ζ→ξ0

SΘ+ϕ(ζ ) = lim
Θ+�ζ→ξ0

PΘ+ϕ(ζ ) = ψc, j (ξ0).

Therefore, we obtain

lim
Θ+�ζ→ξ0

wc, j (ζ ) = ϕ(ξ0),

which, together with (10.1), shows that

lim
Θ�ζ→ξ0

wc, j (ζ ) = ψc, j (ξ0).

All this together now allows us to conclude that {wc, j } is indeed an upper
barrier family at ξ0 with respect to Θ . Thus, by Theorem 7.2, ξ0 is upper regular
with respect to Θ .

Finally, we turn to the lower regularity (for positive boundary data). The proof
is similar to the upper regularity case above, and the first part is analogous. For the
main part, we let 0 < α < γ < 1/m, d = 2 + log diamΘ and define

vc, j (x, t) =
⎧⎨
⎩
c−1/γ + jαt2 + j

d − log |x | , x 	= 0,

c−1/γ + jαt2, x = 0,
and ψc, j = v

−γ

c, j .

This time ψc, j is superparabolic if j ≥ j0(c), by the proof of Theorem 8.3. The
rest of the proof is the same as for upper regularity, with the direction reversed,
and using Proposition 6.9 (c) and Theorem 8.3 at appropriate places. We omit the
details. ��
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11. Regularity of Cylinders

In this section, wewill show that the boundary regularity for the boundary value
problem (2.4) for the porous medium equation in a cylinder is determined by the
elliptic regularity of the corresponding spatial set. For this reason, we recall the
concept of capacity and the elliptic Wiener criterion.

For a bounded set E ⊂ Rn , we define the capacity of E as

cap(E) = inf
u

∫
Rn

(|∇u|2 + |u|2) dx, (11.1)

where the infimumis takenover allu ∈ C∞
0 (Rn) such thatu ≥ 1 in aneighbourhood

of E .
With this definition, the Wiener criterion [44] characterizes the regular bound-

ary points of a bounded open set U ⊂ Rn , i.e. those boundary points x0 ∈ ∂U at
which every solution of the elliptic boundary value problem

{
Δu = 0 in U,

u = g ∈ C(∂U ) on ∂U,

attains its continuous boundary values g. We call these points elliptic regular. More
precisely, x0 ∈ ∂U is elliptic regular if and only if the complement of U is thick at
x0, i.e., if ∫ 1

0

cap(B(x0, r) \U )

rn−2

dr

r
= ∞ (11.2)

(see Wiener [44], Littman–Stampacchia–Weinberger [36, Theorem 9.2] or Malý–
Ziemer [37, Theorem 4.24]).

It is well known, and rather straightforward, that the Wiener condition (11.2)
holds e.g. if x0 is not a point of density ofU or ifU satisfies the following porosity
condition: there is c > 0 and a sequence rk → 0 such that for every k = 1, 2, . . .,
the set B(x0, rk) \ U contains a ball of radius crk . In particular, the famous cone
and corkscrew conditions are sufficient for boundary regularity. Thus, our results
in this section apply to a much larger class of (unions of) cylinders than the ones
considered in Abdulla [1,2].

Theorem 11.1. Let m ≥ 1 and Θ = Ut1,t2 . Also let ξ0 = (x0, t0) ∈ ∂Θ , where
t1 < t0 ≤ t2. Then ξ0 is regular for positive boundary data if and only if x0 is
elliptic regular with respect to U.

Note that by the main result in Kinnunen–Lindqvist–Lukkari [30], continu-
ous functions are resolutive for cylinders (see also Remark 6.3). Also, if t0 = t1
then ξ0, being an earliest point, is always regular for positive boundary data, by
Proposition 9.1.

Proof. Without loss of generality we may assume that ξ0 = (0, 0), and thus that
t1 < 0 ≤ t2.
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Assumefirst that x0 is elliptic regularwith respect toU . Letϕ(x) = |x |, x ∈ Rn ,
and let v be the unique classical solution of{

Δv = −1 in U,

v − ϕ ∈ W 1,2
0 (U ),

which exists by Theorem 4.3 in Gilbarg–Trudinger [25]. Then v is superharmonic
inU . Since ϕ is subharmonic (by a straightforward calculation), we have v ≥ ϕ a.e.,
by Lemma 3.18 in Heinonen–Kilpeläinen–Martio [27]. As v and ϕ are continuous,
v ≥ ϕ everywhere in U . Since x0 is elliptic regular, it satisfies the Wiener test in
Wiener’s criterion. Hence it follows from Gariepy–Ziemer [24, Theorem 2.2] (or
Malý–Ziemer [37, Theorem 4.28]) that limU�x→0 v(x) = ϕ(0) = 0.

We need to create barrier families both for upper and lower regularity. We begin
with upper regularity and let c ∈ Q+ be arbitrary. Let

wc, j = (cm + jv + ajt2)1/m,

where a = cm−1m/2 diamΘ . Then, as 1/m − 1 < 0,

∂twc, j = 2ajt

m
(cm + jv + ajt2)1/m−1 ≥ −2aj diamΘ

m
c1−m,

while Δwm
c, j = jΔv = − j . Hence

∂twc, j − Δwm
c, j ≥ j

(
1 − 2a diamΘ

m
c1−m

)
= 0,

and thus wc, j is superparabolic in Θ , by Theorem 3.5. As limU�x→0 v(x) = 0 and
v ≥ ϕ, it follows that {wc, j } is an upper barrier family and therefore byTheorem7.2,
ξ0 = (0, 0) is upper regular.

Next, we turn to lower regularity for positive boundary data. Let again c ∈ Q+
be arbitrary. This time we let

uc, j = max

{
cm − jv − bj1/mt2,

1

j

}1/m

,

Θc, j =
{
(x, t) ∈ Θ : uc, j (x, t)m >

1

j

}
,

where b = m/2 diamΘ and v is the same function as above. InΘc, j , which is open
as v is continuous, we have

∂t uc, j = −2bj1/mt

m
(cm − jv − bj1/mt2)1/m−1 ≤ 2bj1/m diamΘ

m
j1−1/m = j,

while Δumc, j = − jΔv = j . Hence

∂t uc, j − Δumc, j ≤ j − j = 0,

and thus uc, j is subparabolic in Θc, j , by Theorem 3.5. As v is continuous, uc, j is
also continuous. Hence, Lemma 5.8 shows that uc, j is subparabolic in Θ . Since
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limU�x→0 v(x) = 0 and v ≥ ϕ, it follows that {uc, j } is a lower barrier family for
positive boundary data and thus by Theorem 8.3, ξ0 = (0, 0) is lower regular for
positive boundary data.

Assume now instead that ξ0 = (0, 0) is regular for positive boundary data. We
letψ be a continuous function on ∂U and let h be the harmonic Perron solution with
boundary valuesψ with respect toU .Weneed to show that limU�x→0 h(x) = ψ(0).
As we can scale and add constants to harmonic functions we may assume that
1 ≤ ψ ≤ 2, and thus also 1 ≤ h ≤ 2. Let

f (x, t) =
{

ψ(x), if x ∈ ∂U and t1 < t < t2,

h(x), if x ∈ U , and t = t1 or t = t2.

By Theorem 10.1 we may assume that t2 > 0. Then 1 ≤ f ≤ 2 on ∂Θ and
f is continuous at ξ0. Moreover, if u belongs to the elliptic lower class for the
harmonic Perron solution of ψ , then ũ(x, t) = max{u(x), 1} ∈ L f and hence
P f (x, t) ≥ h(x) for (x, t) ∈ Θ . By Proposition 6.9 (a),

lim sup
U�x→0

h(x) ≤ lim sup
U�x→0

P f (x, 0) ≤ lim sup
U�x→0

S f (x, 0) ≤ f (0, 0) = ψ(0).

It follows similarly that lim infU�x→0 h(x) ≥ ψ(0), and thus limU�x→0 h(x) =
ψ(0). Hence 0 is elliptic regular with respect to U . ��

A related result is proved by Ziemer in [45, Theorem 4.4]. He considers general
degenerate parabolic equations, which include the porous medium equation with
m > 1 as a special case. He deals with signed weak solutions u in a cylinderUt1,t2 ,
and assumes them to be bounded. The boundary data f belong to the Sobolev space
W 1,1

2 (Rn+1) of functions which, together with their distributional first derivatives,
belong to L2(Rn+1), and f |Rn+1\Ut1,t2

is continuous. The boundary condition on
∂Ut1,t2 is taken in a weak (Sobolev) sense, that is u − f is assumed to be in
the W 1,1

2 (Ut1,t2)-closure of smooth functions with compact support in Ut1,t2 . If
ξ0 = (x0, t0) ∈ ∂U × (t1, t2) and x0 is elliptic regular, then by [45, Theorem 4.4],

lim
Ut1,t2�ξ→ξ0

u(ξ) = f (ξ0).

There is no restriction on the boundary behaviour of f at ξ0, which can be positive,
negative, or vanish, but the condition for continuity is only proved to be sufficient.

Our aim in the rest of this section is to obtain the following generalization of
Abdulla’s unique solvability result (Theorem 2.4) form ≥ 1 and positive boundary
data (note that it is a generalization also in the case when Θ is just one cylinder):

Theorem 11.2. Let m ≥ 1 and Θ be a finite union of cylinders. Assume that the
time-sections

Θ(T ) := {(x, t) ∈ Θ : t = T }
are bounded elliptic regular open sets in Rn satisfying

Θ(T1) ⊂ Θ(T2) whenever Tmin < T1 < T2 < Tmax,

where Tmin := inf{t : (x, t) ∈ Θ} and Tmax := sup{t : (x, t) ∈ Θ}. Then
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(a) every point in the parabolic boundary ∂pΘ is regular for positive boundary
data;

(b) every positive f ∈ C(∂pΘ) is resolutive and

u := P f = S f = P f = P f = S f (11.3)

is the unique function in C(Θ) which is parabolic in Θ and takes the boundary
values u = f on the parabolic boundary ∂pΘ;

(c) every nonnegative f ∈ C(∂pΘ) is resolutive and for every ξ0 ∈ ∂pΘ , either

lim
Θ�ξ→ξ0

P f (ξ) = f (ξ0) or 0 = lim inf
Θ�ξ→ξ0

P f (ξ) ≤ lim sup
Θ�ξ→ξ0

P f (ξ) ≤ f (ξ0).

(11.4)

The last part also generalizes the resolutivity result in Kinnunen–Lindqvist–
Lukkari [30, Theorem 5.1] (for general cylinders) to certain finite unions of cylin-
ders.

We will divide the proof into several results. Since they have independent inter-
est we formulate them in greater generality than Theorem 11.2.

Theorem 11.3. Let m ≥ 1 and Θ be a finite union of cylinders. Let h ∈ C(∂Θ) be
nonnegative. Then there is at most one u ∈ C(Θ) that is parabolic in Θ and takes
the boundary values u = h on the parabolic boundary ∂pΘ .

Proof. Let u and v be two solutions of the boundary value problem under consid-
eration. Theorem 5.4 shows that v ≤ u ≤ v in Θ and hence, by continuity, in Θ .
��
Proposition 11.4. Let m > 0. For T ∈ R, let

∂TΘ = {ξ = (x, t) ∈ ∂Θ : t < T }
and assume that f : ∂ΘT → [0,∞) is bounded on ∂ΘT and continuous on ∂TΘ .
Then the following are true:

(a) If every ξ ∈ ∂TΘ is upper regular, then

PΘT f ≤ SΘT f = PΘT
f.

(b) If every ξ ∈ ∂TΘ is lower regular for positive boundary data and f is bounded
away from 0, then

PΘT
f ≥ SΘT

f = PΘT f.

(c) If every ξ ∈ ∂TΘ is lower regular for nonnegative boundary data, then

PΘT f ≤ PΘT
f.

(d) If the comparison principle PΘT
f ≤ PΘT f is valid on ΘT then in any of the

above cases (a)–(c), f is resolutive in ΘT .
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(e) Let 0 < h ∈ C(∂ΘT ) be positive. Then in any of the above cases (a)–(c), there
is a countable set A ⊂ (0, 1) such that

PΘT
( f + ah) = PΘT ( f + ah) for every a ∈ (0, 1) \ A,

i.e. f + ah is resolutive in ΘT .

This result naturally combines with Lemma 6.4 and Corollary 6.5. In particular,
it canbe applied to bounded continuous functions definedonlyon ∂T Θ and extended
arbitrarily in a bounded way to ∂ΘT and ∂Θ .

Proof. (a) Proposition 6.9 (a), togetherwith the upper regularity assumption, shows
that

lim sup
Θ�ζ→ξ

SΘT f (ζ ) ≤ f (ξ) for every ξ ∈ ∂TΘ.

Since SΘT f is parabolic in ΘT , this together with Lemma 6.4 (applied to ΘT )
shows that

SΘT f ≤ PTf = PΘT
f.

The converse inequality PΘT
f ≤ SΘT f follows from Theorem 5.3, while

Remark 6.3 shows that PΘT f ≤ SΘT f .
(b) This is shown in the same way as (a), by interchanging the role of

the upper and lower solutions, and taking into account the positivity of f and
Proposition 6.9 (c).

(c) As in (a), Proposition 6.9 (b), together with the lower regularity assumption,
implies that

lim sup
Θ�η→ξ

PΘT
f (η) ≥ f (ξ) for every ξ ∈ ∂TΘ,

and hence, by Lemma 6.4 (applied to ΘT ), PΘT
f ≥ P

T
f = PΘT f .

(d) This is a direct consequence of (a)–(c) and the general inequalities

SΘT
f ≤ PΘT

f ≤ SΘT f and SΘT
f ≤ PΘT f ≤ SΘT f.

(e) Let E be a countable dense subset of ΘT . For each ξ ∈ E the function
(0, 1) � a �→ P( f + ah)(ξ) is nondecreasing and thus has jumps for at most
countably many values of a; let Aξ be the set of these values of a. Then A :=⋃

ξ∈E Aξ is also countable.
Now let a ∈ (0, 1) \ A. Then, for every ξ ∈ E , using the positivity of h on

∂ΘT and the elliptic comparison principle (Theorem 5.3), together with (a), (b) or
(c) above, we see that

P( f + ah)(ξ) = lim
b→a−

P( f + bh)(ξ) ≤ P( f + ah)(ξ) ≤ P( f + ah)(ξ).

Thus P( f + ah) = P( f + ah) in E and as they both are continuous this holds
everywhere in ΘT , i.e. f + ah is resolutive. ��
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Theorem 11.5. Let m ≥ 1 and let f : ∂Θ → [0,∞) be bounded. Assume in
addition that f is continuous at ξ0 ∈ ∂Θ , f (ξ0) > 0 and that ξ0 is lower regular
for positive boundary data. Then either

lim inf
Θ�ξ→ξ0

P f (ξ) ≥ f (ξ0) or lim inf
Θ�ξ→ξ0

P f (ξ) = 0.

Similarly, either lim infΘ�ξ→ξ0 S f (ξ) ≥ f (ξ0) or lim infΘ�ξ→ξ0 S f (ξ) = 0.

Proof. Assume that lim infΘ�ξ→ξ0 P f (ξ) > 0. Then there exists ε > 0 and a ball
B � ξ0, such that P f ≥ ε on Θ ∩ B and f ≥ ε on ∂Θ ∩ B. Thus, the function

h =
{
f on ∂Θ ∩ B,

P f on ∂B ∩ Θ,

is bounded away from zero on ∂(B ∩ Θ) and continuous at ξ0.
Now, let u ∈ U f (Θ) be arbitrary. Then by definition,

lim inf
Θ�ζ→ξ

u(ζ ) ≥ f (ξ) = h(ξ) for ξ ∈ ∂Θ ∩ B,

while the lower semicontinuity of u, together with the definition of P f and h,
implies that

lim inf
Θ�ζ→ξ

u(ζ ) ≥ u(ξ) ≥ P f (ξ) = h(ξ) for ξ ∈ ∂B ∩ Θ.

It follows that u ∈ Uh(Θ ∩ B) and taking infimum over all such u yields

P f ≥ PB∩Θh ≥ SB∩Θh in B ∩ Θ.

Corollary 8.4 shows that ξ0 is lower regular for positive boundary data with respect
to B ∩ Θ . We therefore conclude from Proposition 6.9 (c) that

lim inf
Θ�ζ→ξ0

P f (ζ ) ≥ lim inf
Θ�ζ→ξ0

SB∩Θh(ζ ) ≥ h(ξ0) = f (ξ0).

The case with S f is obtained similarly. ��
Finally, we are ready to prove Theorem 11.2.

Proof of Theorem 11.2. (a) There are two types of points in ∂pΘ: those belonging
to the lateral surface of one of the cylinders constitutingΘ and those belonging to the
flat bottom of one of these cylinders. Because of the assumption Θ(T1) ⊂ Θ(T2),
none of the parabolic boundary points belongs to the top of any of the cylinders.
(Here by the top of Ut1,t2 we mean ∂Ut1,t2 \ ∂pUt1,t2 .)

The lateral points are regular for positive boundary data by Theorem 11.1,
together with Propositions 7.4 and 8.5, while the bottom points are regular for
positive boundary data by Proposition 9.1.

(b) The resolutivity and the identities in (11.3) follow from Proposition 11.4 (a),
(b) and (d), together with the parabolic comparison principle, Theorem 5.4. The
uniqueness is a direct consequence of Theorem 11.3.
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The continuity of u on ∂pΘ follows from Proposition 6.9 (d), while Theo-
rem 5.16.1 in DiBenedetto–Gianazza–Vespri [23] shows that u has a continuous
extension to all points on the top level ∂Θ \ ∂pΘ .

(c) As in (b), the resolutivity follows from Proposition 11.4 (a) and (d), together
with Theorem 5.4. Proposition 6.9 (a) then shows that

lim sup
Θ�ξ→ξ0

P f (ξ) ≤ f (ξ0) for all ξ0 ∈ ∂pΘ,

while Theorem 11.5 implies that (11.4) holds. ��
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Appendix A. Proof of Theorem 3.4

Kuusi [32], working with the p-parabolic equation (1.2), observed that the crucial step
towards establishing inner regularity results like Theorem 3.4 is a supremum estimate for
subsolutions. Such results had earlier been obtained using weak Harnack inequalities, which
are more difficult to deduce than supremum estimates. Avelin–Lukkari [7] later adapted
Kuusi’s argument to supersolutions of the porous medium equation (establishing Theo-
rem 3.3).
First, we set the notation

Q(x0, t0, ρ) = B(x0, ρ) × (t0 − ρ2, t0 + ρ2) and Q(ρ) = Q(0, 0, ρ).

Proposition A.1. (Supremum estimate for subsolutions) Let m ≥ 1, u be a bounded non-
negative subsolution in Q(x0, t0, ρ), 0 < σ < 1 and M ≥ 0. Then

ess sup
Q(x0,t0,σρ)

(u − M) ≤ C

(
1

|Q(ρ)|
∫∫

Q(x0,t0,ρ)
(u − M)2+ dx dt

)1/λ
, (A.1)

where λ = 2 + (m−1)n
2 , and C only depends on n, m, σ and L := ess supQ(x0,t0,ρ) u, but

not on u, M and ρ.

To prove this estimate we modify the technique used by Andreucci [4]. Note that we do
not have the extra corrective term that appears in [4], since here we directly assume that the
height of the cylinder is ρ2 and allowC to depend on L , which is sufficient for our purposes.
Before proving Proposition A.1, we show how this estimate is used to obtain Theorem 3.4.

http://creativecommons.org/licenses/by/4.0/
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Proof of Theorem 3.4. Let (x0, t0) ∈ Θ be aLebesguepoint ofu.Without loss of generality
we assume that (x0, t0) = (0, 0). We want to show that u∗(0, 0) = u(0, 0). First of all,

u∗(0, 0) ≥ lim
ρ→0

1

|Q(ρ)|
∫∫

Q(ρ)
u dx dt = u(0, 0).

For the converse inequality, first choose r such that Q(r) � Θ . Let L = ess supQ(r) u,
which is finite, see e.g. Andreucci [4]. Then, by Proposition A.1 (with M = u(0, 0) and
σ = 1

2 ), we have for any 0 < ρ < r ,

ess sup
Q(ρ/2)

(u − u(0, 0)) ≤ C

(
1

|Q(ρ)|
∫∫

Q(ρ)
(u − u(0, 0))2+ dx dt

)1/λ

≤ CL1/λ
(

1

|Q(ρ)|
∫∫

Q(ρ)
|u − u(0, 0)| dx dt

)1/λ
,

which tends to 0, as ρ → 0, since (0, 0) is a Lebesgue point. Thus we conclude that
u∗(0, 0) ≤ u(0, 0). ��
Now we turn to the proof of Proposition A.1.

Proof of Proposition A.1. Without loss of generality we assume that (x0, t0) = (0, 0).
Define for all j ≥ 0,

t±j = ±
(

σ 2ρ2 + 1 − σ 2

2 j
ρ2

)
, ρ j = σρ + 1 − σ

2 j
ρ,

B j = B(0, ρ j ), Q j = B j × (t−j , t+j ).

Note that

Q(σρ) � Q j+1 � Q j � Q0 = Q(ρ).

We also consider C∞-cutoff functions ζ j such that 0 ≤ ζ j ≤ 1 and

ζ j ≡ 0 outside Q j , ζ j ≡ 1 in Q j+1,

|∇ζ j | ≤ 2 j+2

(1 − σ)ρ
, 0 ≤ |∂t ζ j | ≤ 2 j+2

(1 − σ 2)ρ2
. (A.2)

Fix k > 0 to be chosen later, set

u j = (u − M − k j+1)+, where k j = k − k

2 j+1
,

and use f j = 2u j ζ
2
j as a test function. Note that

∂t u j = ∂t u and ∇u j = ∇u (A.3)

a.e. in the set where u j 	= 0 (and that ∂t u j = ∇u j = 0 a.e. otherwise). Some of the calcula-
tions below are formal. As far as the time derivative ∂t u j is concerned, the calculations can
be made rigorous by means of a Steklov averaging process, cf. e.g. DiBenedetto–Gianazza–
Vespri [23, pp. 21 and 35], or by a mollification in time, see e.g. Kinnunen–Lindqvist [29,
pp. 141–143]. Another difficulty is represented by ∇u, since in general only ∇um is well-
defined: for a way to deal with this second issue, see e.g. Bögelein–Duzaar–Gianazza [12,
Lemma 2.2]. Note, however, that in the integrals below, ∇u is only considered at points,
where u > k j , and thus ∇u = m−1(um)1/m−1∇um is well defined.
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For all τ ∈ (t−j , t+j ), the time part of the weak formulation of subsolutions, within Qτ
j :=

B j × (t−j , τ ), becomes

∫∫
Qτ

j

f j ∂t u dx dt =
∫∫

Qτ
j

ζ 2j ∂t u
2
j dx dt (A.4)

≥
∫
Bj

u j (x, τ )2ζ j (x, τ )2 dx − 2 j+3

(1 − σ 2)ρ2

∫∫
Qτ

j

u2j dx dt,

wherewe used partial integrationwith respect to dt and properties (A.2) of the cutoff function
ζ j in the second step.
Now we turn to the elliptic part. We have

∇ f j = 2ζ 2j ∇u j + 4u j ζ j∇ζ j a.e.,

and hence, using (A.3), we see that
∫∫

Qτ
j

∇um · ∇ f j dx dt ≥2m
∫∫

Qτ
j

um−1ζ 2j |∇u j |2 dx dt

− 4m
∫∫

Qτ
j

um−1(ζ j |∇u j |)(u j |∇ζ j |) dx dt.

Next, using Young’s inequality, we get that for every θ > 0,
∫∫

Qτ
j

∇um · ∇ f j dx dt ≥(2m − 2mθ)

∫∫
Qτ

j

um−1ζ 2j |∇u j |2 dx dt

− 2m

θ

∫∫
Qτ

j

um−1u2j |∇ζ j |2 dx dt.

We now make the choice θ = 1
2 . Using also that L ≥ u ≥ k j+1 ≥ k/2 when u j 	= 0 (and

that ∇u j = 0 a.e. otherwise), together with (A.2), we conclude that

∫∫
Qτ

j

∇um · ∇ f j dx dt ≥mkm−1

2m−1

∫∫
Qτ

j

ζ 2j |∇u j |2 dx dt

− 4 j+3mLm−1

(1 − σ)2ρ2

∫∫
Qτ

j

u2j dx dt.

Combining this with (A.4) and using that u is a subsolution yields the energy estimate

∫
Bj

u j (x, τ )2ζ j (x, τ )2 dx + km−1
∫∫

Qτ
j

ζ 2j |∇u j |2 dx dt ≤ 4 j γ̂

2ρ2

∫∫
Qτ

j

u2j dx dt,

where γ̂ only depends on m, σ and L , but not on u, M , k, ρ or j . Taking the supremum
separately of each term on the left-hand side and adding the estimates yields

sup
t−j ≤t≤t+j

∫
Bj

u j (x, t)
2ζ 2j (x, t) dx + km−1

∫∫
Q j

ζ 2j |∇u j |2 dx dt

≤ 4 j γ̂

ρ2

∫∫
Q j

u2j dx dt ≤ 4 j γ̂

ρ2
Y j , (A.5)
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where

Y j :=
∫∫

Q j

(u(x, t) − M − k j )
2
+ dx dt.

Next, we need an estimate for the measure of

A j = {(x, t) ∈ Q j : u j (x, t) > 0} = {(x, t) ∈ Q j : u(x, t) > M + k j+1}.
Using that k j+1 − k j = 2−( j+2)k, we see that

Y j ≥
∫∫

A j

(u(x, t) − M − k j )
2
+ dx dt ≥ 4−( j+2)k2|A j |. (A.6)

Let α = 2/(n + 2) and note that 1 − α = n/(n + 2). By Hölder’s inequality and the
parabolic Sobolev embedding (see e.g. DiBenedetto–Gianazza–Vespri [23, Proposition 4.1,
Chapter 1]), we obtain that

Y j+1 ≤
∫∫

Q j

(u j ζ j )
2 dx dt

≤|A j |α
(∫∫

Q j

(u j ζ j )
2/(1−α) dx dt

)1−α

≤γ (n)|A j |α
(∫∫

Q j

(|ζ j∇u j |2 + |u j∇ζ j |2) dx dt
)1−α

×
(

sup
t−j ≤t≤t+j

∫
Bj

u j (x, t)
2ζ j (x, t)

2 dx dt

)α

.

Estimating the factors on the right-hand side using (A.6) and (A.5) we can conclude that

Y j+1 ≤ Ab j Y 1+α
j ,

where

b := 41+α and A := γ̃ (1 + k1−m)1−α

k2αρ2
,

and γ̃ only depends on n, m, σ and L , but not on u, M , k, ρ or j . It is now easily shown by
induction (cf. DiBenedetto–Gianazza–Vespri [23, Lemma 5.1, Chapter 1]) that

Y j ≤ A−1/αb−1/α2
b− j/α → 0 as j → ∞, i.e. u ≤ M + k in Q(σρ),

provided that k is chosen so that Y0 ≤ A−1/αb−1/α2
. Such a condition is satisfied if

Y0 ≤
∫∫

Q0

(u(x, t) − M)2+ dx dt ≤ γ̃ −1/αb−1/α2 k2ρn+2

(1 + k1−m)n/2 .

Choosing

k = γ ′
((

Y0
ρn+2

)1/λ
+

(
Y0

ρn+2

)1/2)
,

with γ ′ large enough only depending on n, m, σ and L , will do. Since Y0/ρ
n+2 ≤

2|B(0, 1)|L2 and 1/2 − 1/λ > 0, we see that

ess sup
Q(σρ)

(u − M) ≤ k ≤ γ

(
Y0

ρn+2

)1/λ
,

where γ again only depends on n, m, σ and L . From this (A.1) follows. ��
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