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INSTITUT FÜR MATHEMATIK

UND STATISTIK

BERICHT 166

REGULARITY OF QUASILINEAR SUB-ELLIPTIC EQUATIONS
IN THE HEISENBERG GROUP

SHIRSHO MUKHERJEE

JYVÄSKYLÄ
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INSTITUT FÜR MATHEMATIK

UND STATISTIK

BERICHT 166

REGULARITY OF QUASILINEAR SUB-ELLIPTIC EQUATIONS
IN THE HEISENBERG GROUP

SHIRSHO MUKHERJEE

To be presented, with the permission of the Faculty of Mathematics and Science
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INTRODUCTION

In this dissertation, we study the local interior regularity of solutions for a general class of certain
quasilinear equations in divergence form. The considered setting is the Heisenberg Group, which
has a structure that appears naturally in the quest of obtaining regularity for solutions of general
second order equations. The techniques used for this purpose, involve methods from classical
regularity theory with a longstanding history, along with some current results in contemporary
literature.

1. Historical background

1.1. Classical Elliptic Regularity.
The main prototype model for quasilinear equations of divergence form arise from minimization of
scalar variational integrals. To illustrate this, we consider a domain Ω ⊂ Rn and a smooth function
f : Rn → R; the minimizer u : Ω→ R of the functional

(1.1) I(w) =

∫

Ω
f(∇w) dx,

in the admissible class K =
{
w ∈ C1(Ω̄) : w = u0 in ∂Ω

}
for a given function u0 ∈ C1(Ω̄), is a

solution of the corresponding Euler-Lagrange equation

(1.2) div(∇f(∇u)) = 0.

This equation is said to be uniformly elliptic, if we have

(1.3) λ|ξ|2 ≤
〈
D2f(z) ξ, ξ

〉
≤ Λ|ξ|2 ∀ z, ξ ∈ Rn,

for some positive constants Λ ≥ λ > 0. The admissible class K needs to be extended to

K =
{
w ∈W 1,2(Ω) : w − u0 ∈W 1,2

0 (Ω)
}

in which the existence of minimizer can be shown from the so called Direct methods in Calculus of
Variations and the minimizer is the weak solution of the equation (1.2), see [23]. It is also possible
to show that a minimizer u ∈W 1,2(Ω) is unique.

The question of smoothness of the minimizer u, first posed by Hilbert in 1900, remained unknown
for few decades. By the Caccioppoli inequalities and difference-quotient arguments, one can show
that u ∈W 2,2

loc (Ω) and that the weak partial derivative uxi = ∂xiu ∈W 1,2
loc (Ω) is a local weak solution

of the equation

div(D2f(∇u)∇uxi) = 0,

for every i ∈ {1, . . . , n}. However, higher order Sobolev regularity of u could not be obtained
by similar approach. The smoothness of minimizers was previously known by virtue of Schauder
estimates, only for equations with continuous coefficients, i.e.

(1.4) div(A(x)∇u) = 0 in Ω,

where A : Ω→ Rn×n is bounded and continuous. Nevertheless, the problem was ultimately settled
by Morrey [46] for the planar case n = 2 and by De Giorgi [7], Nash [50] independently, for n ≥ 3.
It was shown that, if u ∈ W 1,2(Ω) is a weak solution of equation (1.4) along with bare minimum
hypothesis that A is only L∞ and satisfies

λ|ξ|2 ≤
〈
A(x) ξ, ξ

〉
≤ Λ|ξ|2,
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then u ∈ C 0,α(Ω) for some α = α(n,Λ/λ) ∈ (0, 1). Hence, for weak solutions u ∈ W 1,2(Ω) of
the equation (1.2) with f satisfying (1.3), we can substitute A(x) = D2f(∇u(x)) and conclude
∇u ∈ C 0,α(Ω,Rn). This, not only implies u ∈ C1,α(Ω), but also that it is smooth by the Schauder
theory, thereby providing full affirmation to the Hilbert’s problem. Later, a new proof of this
theorem was provided by Moser [48] using Harnack inequalities, that follow from an iteration
technique and the John-Nirenberg lemma, see [32].

The method of De Giorgi [7] is based on the fact that the weak solution u of (1.4) satisfy the
following integral inequality

(1.5)

∫

Br′
|∇(u− k)±|2 dx ≤ c

(r − r′)2

∫

Br

|(u− k)±|2 dx,

for every k ∈ R, 0 < r′ < r and some c = c(n,Λ/λ) > 0, whenever Br ⊂ Ω and Br′ is concentric to
Br. Nowadays, the classes of all W 1,2-functions satisfying the inequality (1.5), are called De Giorgi
classes DG±(Ω) and DG(Ω) = DG+(Ω)∩DG−(Ω). By application of Poincaré-Sobolev inequality,
the integral inequality (1.5) and an iteration argument, it was shown that every w ∈ DG(Br)
satisfies the oscillation estimate

(1.6) oscBr/2 w ≤ b0 oscBr w,

for some b0 ∈ (0, 1). Consequently for every 0 < r′ < r, one has oscBr′ w ≤ c(r′/r)α oscBr w by
a standard iteration on (1.6), which thereby shows that all functions in the De Giorgi’s class are
locally Hölder continuous.

De Giorgi’s ideas also shed light on the study of regularity for more general quasilinear elliptic
equations. In the following decades, the techniques of [7] have been employed for investigating
regularity for equations of the form divA(∇u) = 0 with

(1.7) λF(|z|)|ξ|2 ≤
〈
DA(z) ξ, ξ

〉
≤ ΛF(|z|)|ξ|2 ∀ z, ξ ∈ Rn,

where A : Rn → Rn and F : (0,∞) → (0,∞); the equation is degenerated or singular, depending
on the behavior of F. The main prototype is the p-Laplace equation

(1.8) div(|∇u|p−2∇u) = 0, 1 < p <∞,
which is degenerated for p > 2 and singular for 1 < p < 2. It is easy to see that the solutions of
equation (1.8) are also minimizers of (1.1) with f(t) = tp and existence can be shown in the class

K = {w ∈ W 1,p(Ω) : w − u0 ∈ W 1,p
0 (Ω)} by the Direct methods. Before any inspection of local

regularity, the regularization div
(
(ε + |∇u|2)(p−2)/2∇u

)
is necessary and the limit ε → 0 can be

taken after obtaining uniform apriori estimates. Following this procedure, it can be shown easily
by Moser’s iteration that, a weak solution u ∈W 1,p(Ω) of (1.8) satisfies

(1.9) sup
Bσr

|∇u| ≤ c(n, p)

(1− σ)n/p

(∫

Br

|∇u|p dx
) 1
p

whenver Br ⊂ Ω and 0 < σ < 1 and hence, ∇u ∈ L∞loc(Ω,Rn). Higher regularity have been studied
for p > 2 by Ladyzhenskaya-Ural’tseva [37] and Evans [12] (see also Uhlenbeck [62] for systems);
it was shown that the weak solution u is locally C1,α, which is optimal in this case, see [38]. The
partial derivatives uxi of a weak solution u satisfy a degenerated integral inequality, i.e. (1.5) with

a weight (ε + |∇u|2)(p−2)/2. Nevertheless, the guiding principle in this respect also follows from
[7], that if the degeneracy is locally confined in a set that is small in measure, then there is good
control of it, thereby leading to the oscillation estimate (1.6) for uxi . The singular case 1 < p < 2,
is more difficult and the C1,α-regularity was ultimately established in the 80’s independently by
DiBenedetto [8], Lewis [39] and Tolksdorf [59]. In [8], it was shown that for the singular case,

uxi |uxi |(p−2)/2 satisfies an integral estimate slightly more general than (1.5), which is also good
6



enough for the purpose. However, the proof by Tolksdorf [59], remarkably, provides a unitary
treatment of both cases 1 < p < 2 and p ≥ 2, which is based on using the truncation

(1.10) v = min
(
m(r)/4, max(m(r)/2− uxl , 0)

)
,

where m(r) = max1≤i≤n supBr |uxi | for some fixed Br ⊂ Ω and l ∈ {1, . . . , n}. Noticeably, letting
E = {x ∈ Ω : m(r)/4 < uxl < m(r)/2}, there is no singularity of |∇u| inside the set E ∩ Br; also
∇v = −∇uxl a.e. in E and ∇v vanishes almost everywhere in Ω \ E. Thus, using v for the
integral estimates, it is possible to obtain a Caccioppoli type inequality reminiscent of that for
uniformly elliptic equation, devoid of the weight (ε + |∇u|2)(p−2)/2 and the proof follows from
Moser’s iteration, thereafter. The technique was followed up in [40] for equations with more general
structure conditions.

We also remark that equation (1.8) is very singular for p = 1 and counterexamples can be found
which show that, in this case the solutions have bounded but discontinuous gradient and hence,
they are not C1,α. We refer to [45, 52, 8] for more details.

Alongside the development of the above topics, equations of the form

(1.11) divA(x, u,∇u) +B(x, u,∇u) = 0

has also been a subject of deep scrutiny and exploration over a long period. The minimizers of
general functionals of the form

I(w) =

∫

Ω
f(x,w,∇w) dx,

are solutions of equations of the form (1.11) and this provides a perspective to study such equations
from the variational point of view as well. For the equation (1.11), the existence of weak solutions
are shown using variational inequalities corresponding to monotone operators. A comprehensive
detail on this can be found in the book by Kinderlehrer-Stampacchia [33]. The local behavior of
weak solutions have been investigated substantially by Serrin [57], with the structure conditions

(1.12)

〈
A(x, u, z), z

〉
≥ |z|α − a1|u|α − a2;

|A(x, u, z)| ≤ a3|z|α−1 + a4|u|α−1 + a5;

|B(x, u, z)| ≤ b0|z|α−1 + b1|u|α−1 + b2,

for (x, u, z) ∈ Ω×R×Rn, α > 1 and non-negative constants ai, bj . Following the iteration technique
of Moser [48], it was shown that the Harnack inequality holds for solutions of equation (1.11) with A
and B satisfying (1.12), which immediately implies that the solutions are Hölder continuous. Similar
results can also be found in [37] and [61]. Now, similarly as in the aforementioned illustration, the
standard technique was to differentiate the equation (1.11) and obtain the equation satisfied by
the derivatives of the solution, in order to look for higher regularity. This requires the function
A(x, u, z) to be differentiable in all variables. However, it was shown by Giaquinta-Giusti [21],
that this is superfluous and C1,α regularity can be obtained just by assuming that A(x, u, z) is
uniformly differentiable with respect to z and Hölder continuous with respect to (x, u). Their
technique involved a non-linear version of the freezing argument of Schauder estimates, followed by
a perturbation argument of Campanato [2]. Although, their growth and ellipticity condition was
uniform, but with the gradient bound as in (1.9), polynomial degeneracy similar to (1.12) can also
be included in order to establish C1,α regularity.

More detailed exposition on regularity theory and other related topics associated to quasilinear
equations, can be found in the classical books by Gilbarg-Trudinger [22], Ladyzhenskaya-Ural’tseva
[37] and Morrey [47].
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1.2. Hypoellipticity and Hörmander’s condition.
The development of distribution theory by Schwartz [55, 56] gave rise to the formation of a robust
conceptual framework for solutions of linear partial differential equation of the form Lu = f , for
distributions u, f ∈ D ′(Ω) and a generic linear operator of order m given by

(1.13) L =
∑

|α|≤m
aα(x)Dα,

where aα : Ω → C for some Ω ⊆ RN and for every α = (α1, . . . , αN ) ∈ NN , |α| =
∑N

j=1 αj and
Dα = ∂α1

x1 . . . ∂
αN
xN

. If f is compactly supported in Ω, then a particular solution is given by the

convolution u = Γ0 ∗ f ; here Γx ∈ D ′(RN ) is the fundamental solution of L (if it exists) satisfying

LΓx = δx,

where δx is the Dirac distribution. A general solution of the problem, can be obtained by combining
this with solutions of Lu = 0. The question of existence of solutions lead to the notion of local
solvability, that is, L is said to be locally solvable at x0 ∈ Ω if there exists a neighborhood U ⊆ Ω
containing x0 such that for every f ∈ C∞0 (U), there exists u ∈ D ′(U) solving Lu = f . The ellipticity
of L is defined via the principal symbol of (1.13), i.e.

p0(x, ξ) =
∑

|α|=m
aα(x)ξα,

as L is elliptic if Z(p0) =
{
ξ ∈ RN : p0(x, ξ) = 0

}
= {0}. It is known that if the coefficients

aα ∈ C∞(Ω,C) and L as in (1.13) is elliptic, then L is locally solvable everywhere, see [36]. In case
of constant coefficients aα ∈ C, even if ellipticity is dropped, a fundamental solution for L always
exists by the Malgrange-Ehrenpreis theorem.

The regularity of solutions of Lu = f is addressed by the notion of hypoellipticity, where the
operator L of (1.13) is said to be hypoelliptic in Ω if aα ∈ C∞(Ω,C) and the singular support of
every distribution is L-invariant i.e. for every u ∈ D ′(Ω)

sing supp Lu = sing supp u;

in other words, for any open U ⊆ Ω and u ∈ D ′(U), if Lu ∈ C∞(U) then we have u ∈ C∞(U). For
the case of constant coefficients aα ∈ C, a classical theorem (see [60]) states that L is hypoelliptic
if and only if there exists a fundamental solution Γ0 ∈ C∞(RN \ {0}). In fact, in this case, the
hypoelliptic operators have been characterized by Hörmander as L is hypoelliptic if and only if

lim
|ξ|→∞

|∇p(ξ)|
|p(ξ)| = 0,

where p(ξ) is the polynomial defined via Fourier transform L̂u(ξ) = p(ξ)û(ξ). Hence, the Laplace
equation, heat equation and Cauchy-Riemann equations are hypoelliptic but the wave equation and
Schrödinger equation are not. More generally, similarly as local solvability, if aα ∈ C∞(Ω,C) and L
is elliptic, then it is also hypoelliptic, see [36]. However, if ellipticity is dropped, then there was no
criterion to check hypoellipticity of linear operators just from the coefficients aα(x). In connection
with Kolmogorov operator (see [35]) and operators related to Fokker-Planck equation, numerous
examples of operators have been found which were hypoelliptic. The following examples in R2,

(1) L = x1∂
2
x2x2 + ∂x1 hypoelliptic but not locally solvable at any (0, x2) ∈ R2,

(2) L = x1∂
2
x2x2 − ∂x1 locally solvable everywhere but not hypoelliptic,

further illustrate the difficulty! The way hypoellipticity of most operators were checked, was by
explicit computation of fundamental solutions, which in general can be a cumbersome task.
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Thereafter, for the case of second order linear operators with smooth real coefficients, a major
breakthrough was made by Hörmander [26] in 1967. First, it was shown that if

(1.14) L =
N∑

i,j=1

aij(x)∂2
xixj +

N∑

i=1

bi(x)∂xi + c(x)

is hypoelliptic and aij , bi, c ∈ C∞(Ω), then the quadratic form is semidefinite in Ω. In other words∑N
i,j=1 aij(x)ξiξj ≥ 0 (or ≤ 0) for every x ∈ Ω and ξ = (ξ1, . . . , ξN ) ∈ RN ; hence in an open subset

of {rank(aij(x)) = r}, the operator L (or −L) of (1.14) can be expressed as

(1.15) L =
r∑

i=1

X2
i +X0 + c for some Xi =

N∑

k=1

bik(x)∂xk ,

where bik, c are real and C∞ on the open set and X2
i u = XiXiu. Now, if the Lie algebra

L (X0, X1, . . . , Xr) generated by the vector fields of the above has dimension m in the open ball B1,
then its basis can be written as {∂y1 , . . . , ∂ym} for some different coordinate system (y1, . . . , yN ) by
Frobenius theorem. Hence in this coordinate, the operator L as in (1.15), is generated by ∂2

yiyj , ∂yi
for i, j ∈ {1, . . . ,m}. If m < N , then notice that for any w ∈ C∞(B1) with Lw ∈ C∞(B1), we
have that Lw̃ = Lw where w̃ = w1{yN>0} /∈ C∞(B1), which thereby violates hypoellipticity. Thus,
a plausible natural condition sufficient for hypoellipticity would be m = N everywhere. This is
exactly the theorem proved by Hörmander in [26], which states that if

(1.16) dim
(
L (X0, X1, . . . , Xr)

)
= N

holds at every point in Ω, then the operator L as in (1.15) is hypoelliptic in Ω. Henceforth, the
condition (1.16) is known as Hörmander’s condition. It is noteworthy that although (1.16) has been
effective in checking hypoellipticity, it is sufficient but not exactly a necessary condition unless the
coefficients of (1.14) are constants i.e. aij , bi ∈ R. Also, in this case all commutators vanish
and hence (1.16) holds if and only if either span{X1, . . . , Xr} = RN and r = N (L is elliptic) or
span{X0, X1, . . . , Xr} = RN and r = N − 1 (L is parabolic). Thus all real constant coefficient
hypoelliptic operators are either elliptic or parabolic. However, still no general assertion can be
made on necessity of (1.16) for hypoelliptic operators of variable smooth coefficients, e.g. in R2 the

operator L = ∂2
x1x1 + e−2/x12∂2

x2x2 is hypoelliptic (see [6]), but X1 = ∂x1 and X2 = e−1/x12∂x2 do
not satisfy (1.16) on {x1 = 0}. Further inspection on the nature failure of Hörmander’s condition

while hypoellipticity is preserved, was carried out by Olĕinik-Radkevič [51] and Christ [6].
We refer to the books [27, 28, 29, 30] and references therein for more details on distribution

theory and Hörmander’s work on linear partial differential operators.

2. Sub-elliptic theory

A different proof of Hörmander’s theorem was later found by Kohn [34], involving so called
pseudo-differential operators. In both of the papers Kohn [34] and Hörmander [26], the proofs are
based on apriori estimates, so called sub-elliptic estimates, of the type

(2.1) ‖u‖Hm+ε(Ω′) ≤ c
(
‖Lu‖Hm(Ω) + ‖u‖L2(Ω)

)

for every Ω′ ⊂⊂ Ω and m ≥ 0, where ε > 0 is small and Hs(Ω) = W s,2(Ω) are Sobolev spaces
that include fractional order. Although sufficient for the purpose of hypoellipticity, this is somehow
unsatisfactory. If the given data are only partially smooth, then the estimate (2.1) does not provide
any reasonable improvement in regularity unlike the case of elliptic operators L as in (1.14) where,
given aij , bi, c ∈ Cm+1(Ω), we have ‖u‖Hm+2(Ω′) ≤ c

(
‖Lu‖Hm(Ω) + ‖u‖L2(Ω)

)
. Obtaining improved
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sub-elliptic estimates was one of the main following quests undertaken during the mid 70’s by
Folland [16, 15], Folland-Stein [17] and Rothschild-Stein [53].

2.1. Homogeneous groups.
It is evident that constant coefficient operators are none other than translation-invariant operators
on the Abelian Lie group (RN ,+). The models considered by Folland [16], are based on the following
viewpoint : given any set of Hörmander vector fields, if there is a group operation making RN into
a (non-Abelian) Lie group such that the vector fields are translation-invariant with respect to it,
then techniques from standard harmonic analysis could be applied to obtain better estimates for
the corresponding operator.

To this end, consider a connected Lie group G = (RN , ·) with the origin as identity and with its
corresponding Lie algebra g being spanned by left invariant vector fields X1, . . . , XN that coincide
with ∂x1 , . . . , ∂xN at the origin; also consider that for some r ≤ N , the vector fields X1, . . . , Xr

satisfy the Hörmander’s condition at every point. Notice that, this trivially holds for r = N
since linear independence is maintained everywhere in G starting from the origin, by virtue of left
invariance and connectedness. But more intricate strucutures appear for r < N since, in this case g
can be generated by taking the span of commutators [Xi, Xj ], [Xi, [Xj , Xk]], etc. among X1, . . . , Xr

until the full dimension N , is reached. In other words, the Lie algebra g = V1 ⊕ V2 ⊕ . . . ⊕ Vs is
graded and nilpotent with some s ∈ N such that N =

∑s
j=1 dim(Vj), V1 = span{X1, . . . , Xr} and

the other subspaces inductively defined as

(2.2)
[V1,Vj ] = Vj+1 ∀ j ∈ {1, . . . , s− 1}
[V1,Vs] = {0}.

A graded algebra
⊕s

j=1 Vj with the structure (2.2), is said to be stratified. The Lie algebra g admits

a canonical map νλ : g→ g for every λ ∈ (0,∞), as νλ
(∑s

j=1 Vj
)

=
∑s

j=1 λ
jVj , where Vj ∈ Vj for

every j ∈ {1, . . . , s}. Since g is nilpotent, the exponential map exp : g→ G is a diffeomorphism (see
[25]) and hence νλ give rise to a one parameter family of automorphisms called dilations, δλ : G→ G
given by δλ(x1, x2, . . . , xN ) = (λα1x1, λ

α2x2, . . . , λ
αNxN ) where αk = 1 for 1 ≤ k ≤ r = dim(V1)

and αk = j whenever dim(Vj−1) < k ≤ dim(Vj), for every k > r. This makes G a homogeneous
group with its homogeneous dimension defined by

(2.3) Q =

N∑

k=1

αk =

s∑

j=1

j dim(Vj),

and thus, if µ is a (bi-invariant) Haar measure on G, then we have µ(δλ(E)) = λQµ(E) for every
measurable E ⊂ G. Although, there are many varities of smooth group operations on RN , the
presence of homogeneous dilations δλ restrict them to be polynomials. Precisely, x·y = x+y+p(x, y)
where p(x, y) is a polynomial satisfying p(x, 0) = 0 = p(0, y) for every x, y ∈ RN ; in other words, p
does not contain monomials, see Stein [58]. In addition, one can take x−1 = −x with an appropriate
choice of coordinate system. These further imply that the Lebesgue measure of RN is invariant
under group translation and hence is a Haar measure of G, unique upto multiplicative constant.

Simply connected homogeneous Lie groups with their Lie algebra stratified as in (2.2) are called
Carnot groups of step s. There are several ways to define a homogeneous norm ‖.‖ : G → [0,∞)
satisfying ‖δλx‖ = λ‖x‖ and ‖x · y‖ ≤ c(‖x‖+ ‖y‖) for all x, y ∈ G and all are equivalent. One of
the popular choices is

(2.4) ‖x‖ =
( N∑

k=1

|xk|Q/αk
)1/Q

∀ x = (x1, . . . , xN ) ∈ RN .
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Homogeneous norms give rise to left-invariant (quasi) distance functions as d(x, y) = ‖y−1 · x‖
satisfying d(δλx, δλy) = λd(x, y) and as a consequence, the Hausdorff dimension with respect to
d, coincides with the homogeneous dimension Q. There are other ways to construct equivalent
metrics on Carnot groups; the Carnot-Carathèodory metric is an example, which is constructed
using the horizontal curves, i.e. absolutely continuous curves γ such that γ′(t) is spanned by
X1|γ(t), . . . , Xr|γ(t). Since the Lebesgue measure is a Haar measure, we have |Br| = c(N)rQ for any
metric ball Br ⊂ G, regardless of the choice of metric.

A particular example of a Carnot group of step 2, is the Heisenberg Group, denoted as Hn for
n ≥ 1, where in this case N = 2n+ 1. The group operation is defined as

(2.5) x · y :=
(
x1 + y1, . . . , x2n + y2n, t+ s+

1

2

n∑

i=1

(xiyn+i − xn+iyi)
)

for every x = (x1, . . . , x2n, t), y = (y1, . . . , y2n, s) ∈ Hn and the Lie algebra g ∼= R2n ⊕R is spanned
by the left invariant vector fields

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i +

xi
2
∂t

for every i ∈ {1, . . . , n} and the only non-zero commutator T = ∂t = [Xi, Xn+i]. According to the
above notions, here r = 2n and the homogeneous dimension Q = 2n+ 2.

2.2. Sub-elliptic linear operators.
The operator L =

∑r
i=1X

2
i , so called the sub-elliptic Laplacian or sub-Laplacian, is hypoelliptic by

Hörmander’s theorem if the condition (1.16) holds for X1, . . . , Xr, as illustrated before. Towards
obtaining better sub-elliptic estimates, first it was shown by Folland [16] that, any operator L that
is homogeneous of degree 2 in G = (RN , ·) with Q > 2, admits a unique fundamental solution
Γ0 ∈ C∞0 (G \ {0}), which is homogeneous of degree 2 − Q i.e. Γ0(δλx) = λ2−QΓ0(x). This
implies that for any f ∈ C∞0 (G) the convolution u = f ∗ Γ0 defined via group operation, solves
Lu = f . The proof is not constructive and relies on some abstract results from distribution theory.
However, for the case of sub-Laplacian in the Heisenberg group, the explicit fundamental solution
Γ0(x) = c(n)‖x‖2−Q was found earlier by Folland [15]. The behavior of fundamental solutions for
subLaplacian of general Carnot groups, have been studied in extensive details in the monograph
by Bonfiglioli-Lanconelli-Uguzzoni [1].

Upon obtaining fundamental solution on homogeneous groups, the estimates are usually carried
out by obtaining representation formula of the type

XiXju = p.v. (Lu ∗XiXjΓ0) + cijLu
and using Calderòn-Zygmund theory for the kernel K(x) = XiXjΓ0(x), leading to the apriori
estimate ‖XiXju‖Lp(G) ≤ c‖Lu‖Lp(G) for 1 < p < ∞. This was first carried out for Heisenberg

groups in Folland-Stein [17]. Thereafter, by introduction of Sobolev spaces HW k,p (that is Spk or

Sk,p as the earlier notation) involving kth order Lp derivatives with respect to X1, . . . , Xr, the
results in [17] can be extended to obtain sharper sub-elliptic estimates

‖u‖HWk+2,p(G) ≤ c
(
‖Lu‖HWk,p(G) + ‖u‖HWk,p(G)

)
;

subsequently these techniques for homogeneous groups have been used along with the so called,
lifting and approximation technique, and apriori estimates like the above have been obtained for
general Hörmander type operators by Rothschild-Stein [53].

In addition to this, Nagel-Stein-Wainger [49] have studied properties of certain metrics that
appear naturally from family of Hörmander type vector fields and based on ideas from this, a
general treatment of fundamental solutions for second order hypoelliptic operators was carried out
later by Fefferman and Sánchez-Calle, see [54, 13].

11



2.3. Quasilinear sub-elliptic equation.
It is evident that the developments for sub-elliptic linear operators have remarkable structural
similarity to that of Laplacian and linear elliptic operators. Hence, it is natural to seek a cor-
responding theory of quasilinear equations in the sub-elliptic setting that is reminiscent of the
classical regularity theory for quasilinear elliptic equations.

Let Xu = (X1u, . . . ,Xru). The following Poincaré inequality for u ∈ C 0,1(Br)

(2.6)
(∫

Br

|u− {u}Br |p dx
)1/p

≤ c r
(∫

Br

|Xu|p dx
)1/p

was proved by Jerison [31], first for homogeneous groups and then for general Hörmander vector
fields following the lifting and approximation technique of [53] and exploiting certain results from
[49]. The inequality (2.6), together with doubling condition for metric balls, implies a Sobolev
embedding theorem which has been shown in different levels of generality by Garofalo-Nhieu [20],
Franchi-Lu-Wheeden [19], Hajlasz-Koskela [24]. From Moser’s iteration, this further implies the
Harnack inequalities for weak solutions u ∈ HW 1,p(Ω) for the, so called the sub-elliptic p-Laplacian
given by

(2.7) divH(|Xu|p−2Xu) = 0

with divH defined by the vector fields X1, . . . , Xr, as shown by Capogna-Danielli-Garofalo [4].
This thereby leads to Hölder continuity of weak solutions of the equation (2.7). The class of
quasilinear equations of the form divH A(Xu) = 0, which are uniformly sub-elliptic, i.e. ν−1|ξ|2 ≤〈
DA(z)ξ, ξ

〉
≤ ν|ξ|2, have been studied by Capogna [3] for the Heisenberg group. For weak solutions

u ∈ HW 1,2
loc (Ω), it was shown in [3] thatXiu, Tu ∈ HW 1,2

loc (Ω) by using difference quotient arguments
in exponential coordinates; thus equation differentiable and then following Sobolev inequality and
Moser’s iteration, one can conclude Xiu, Tu ∈ C 0,α

loc (Ω) (by this notation, here we mean Hölder
continuity in the sense of Folland-Stein [18] i.e. with respect to a homogeneous metric, which has
been referred as Γα or Γ 0,α in [3] and others).

For the equation (2.7) with p 6= 2, there has not been any satisfactory result for quite some
time regarding regularity of solutions higher than Hölder continuity even in the Heisenberg group,
let alone Carnot groups or general Hörmander vector fields. The main source of difficulty was
the non-commutativity of the vector fields X1, . . . , Xr unlike the equation (1.8) in the Euclidean
setting. Regularity for Xu outside a measure-zero set, was obtained by Capogna-Garofalo [5] and for
systems, by Föglein [14]. Hölder continuity of Xu was obtained for a small range of p by Domokos-
Manfredi [10] using sub-elliptic Cordes perturbation technique of [11]. Then, it was shown by
Domokos [9] that for weak solutions u ∈ HW 1,p(Ω) of (2.7), Tu ∈ Lploc(Ω) for 1 < p < 4, thereby
extending an earlier result of Marchi [43]. Using this integrability result of [9], Lipschitz continuity
of u was shown by Manfredi-Mingione [42] and later improved by Mingione-Zatorska-Zhong [44] to
the range 2 ≤ p < 4. However, the imposed restriction p < 4 could not be removed.

This begs the natural question that, if there is any C1,α regularity (Γ1,α as in Folland-Stein [18])
for weak solutions of the equation (2.7) atleast in the Heisenberg group, reminiscent of the classical
theory for the p-Laplace equation (1.8) in the Euclidean setting. To this end, the first result has
been recently obtained by Zhong [63] where it was shown that the weak solution u ∈ HW 1,p(Ω) of
(2.7), is locally Lipschitz and whenever B2r ⊂ Ω,

(2.8) sup
Br

|Xu| ≤ c(n, p)
(∫

B2r

|Xu|p dx
) 1
p

holds for every 1 < p < ∞, similarly as in (1.9). Furthermore, Hölder continuity of Xu was also
shown in [63] for p ≥ 2. However, the proof does not work for the singular case 1 < p < 2 and the
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problem is significantly more difficult in this case. Finally, the problem is resolved in full strength
in the paper [A], where we prove the following theorem.

Theorem 2.1 ([A, Theorem 1.3]). Let 1 < p <∞, δ ≥ 0 and u ∈ HW 1,p(Ω) be a weak solution of
the equation

divH
(
(δ + |Xu|2)

p−2
2 Xu

)
= 0

in a domain Ω ⊂ Hn. Then Xu is locally Hölder continuous. Moreover, there exists a positive
exponent α = α(n, p) ≤ 1 such that for any ball Br0 ⊂ Ω and any 0 < r ≤ r0, we have

max
1≤l≤2n

oscBr Xlu ≤ c
( r
r0

)α(∫

Br0

(δ + |Xu|2)
p
2 dx

) 1
p
,

for some c = c(n, p) > 0.

This combined with (2.8), implies ‖Xu‖C 0,α(Br;R2n) ≤ c(n, p)‖Xu‖Lp(B2r;R2n), when B2r ⊂ Ω,

for every weak solution u ∈ HW 1,p(Ω) of (2.7). The theorem is proved first for δ > 0 to en-
sure differentiablity of the equation by virtue of [3]; then the limit δ → 0 is taken upon the
uniform estimate. The main idea behind the proof of Theorem 2.1 is to use the truncation
v = min

(
µ(r)/8,max(µ(r)/4 − Xlu, 0)

)
with µ(r) = max1≤i≤2n supBr |Xiu|, similarly as (1.10)

and use Moser’s iteration and De Giorgi’s arguments together with an integrability estimate of Tu,
obtained in [63].

The ideas and techniques of [63] and [A] were applied for more general quasilinear equation of
the form divH A(Xu) = 0, which has structure condition similar to (1.7) with F(t) = g(t)/t for a
given C1 function g satisfying

(2.9) δ ≤ tg′(t)
g(t)

≤ g0 for all t > 0,

for some constants g0 ≥ δ > 0 (this δ is a fixed constant and the usage is different from that in
Theorem 2.1). The condition (2.9) have been previously introduced by Lieberman [41], in order to
produce a natural extension of the structure conditions previously considered by Ladyzhenskaya and
Ural’tseva [37]. Thus, the equation can be degenerated or singular, depending on the behavior of F;
however (2.9) ensures that g is doubling and non-decreasing, which is necessary for the purpose. In
this case, the natural domain for weak solutions is the horizontal Orlicz-Sobolev space HW 1,G(Ω)

for G(t) =
∫ t

0 g(s) ds, see [B] for the definition.

Theorem 2.2 ([B, Theorem 1.1], [C, Theorem 1.3]). Let u ∈ HW 1,G(Ω) be a weak solution of the
equation divH A(Xu) = 0 where the matrix DA is symmetric and satisfies the structure condition

(2.10)

g(|z|)
|z| |ξ|

2 ≤
〈
DA(z) ξ, ξ

〉
≤ L g(|z|)

|z| |ξ|
2;

|A(z)| ≤ Lg(|z|),

for every z, ξ ∈ R2n, where L ≥ 1, G(t) =
∫ t

0 g(s) ds and g satisfies condition (2.9) with g0 ≥ δ > 0.
Then Xu is locally Hölder continuous and there exists positive constants σ = σ(n, g0, L) ∈ (0, 1)
and c = c(n, δ, g0, L) > 0 such that for any Br0 ⊂ Ω and 0 < r < r0/2, we have

(2.11)

(i) sup
Bτr

G(|Xu|) ≤ c

(1− τ)Q

∫

Br

G(|Xu|) dx for any τ ∈ (0, 1);

(ii) max
1≤l≤2n

∫

Br

G(|Xlu− {Xlu}Br |) dx ≤ c
( r
r0

)σ ∫

Br0

G(|Xu|) dx.
13



The proof of the first part of Theorem 2.2, requires an adaptation of the arguments in [63]; the
whole of the paper [B] is devoted to this. The second part follows similarly as the proof of Theorem
2.1 in [A], which has been provided in [C].

Finally, we also consider equations of the form divH A(x, u,Xu) + B(x, u,Xu) = 0 in order to
reproduce the classical regularity results of the equation (1.11), in the Heisenberg group. We show
the Harnack inequalities and hence, the Hölder continuity of solutions, with structure conditions
similar to (1.12) in [C], along the same lines of [61, 41]. In addition, assuming the following structure
condition

(2.12)

g(|z|)
|z| |ξ|

2 ≤
〈
Dz A(x, u, z) ξ, ξ

〉
≤ L g(|z|)

|z| |ξ|
2;

|A(x, u, z)−A(y, w, z)| ≤ L′
(
1 + g(|z|)

)(
|x− y|α + |u− w|α

)
;

|B(x, u, z)| ≤ L′
(
1 + g(|z|)

)
|z|,

for every x, y ∈ Ω, u, w ∈ [−M0,M0] and z, ξ ∈ R2n, for some α ∈ (0, 1],M0 > 0, g satisfying (2.9)
and L,L′ ≥ 1, we also prove C1,α regularity following arguments of [2, 21].

Theorem 2.3 ([C, Theorem 1.2]). Let u ∈ HW 1,G(Ω) ∩ L∞(Ω) be a weak solution of

divH A(x, u,Xu) +B(x, u,Xu) = 0,

with G(t) =
∫ t

0 g(s)ds and |u| ≤ M0 in Ω. Suppose the structure condition (2.12) holds for some
L,L′ ≥ 1, α ∈ (0, 1] and a function g satisfying (2.9) for some g0 ≥ δ > 0, then there exists a

constant β = β(n, δ, g0, α, L) ∈ (0, 1) such that u ∈ C1,β
loc (Ω) and for any open Ω′ ⊂⊂ Ω, we have

(2.13) |Xu|C 0,β(Ω′,R2n) ≤ C
(
n, δ, g0, α, L, L

′,M0, g(1), dist(Ω′, ∂Ω)
)
.

Thus, from the progress in [A, B, C], now it is evident that the regularity theory for Heisenberg
group is the same as that in the classical Euclidean setting. This should pave the way for further
developments in sub-elliptic theory, in the setting of more general Carnot groups and general
Hörmander vector fields.
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[55] L. Schwartz. Théorie des distributions. Tome I. Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ.
Strasbourg 9. Hermann & Cie., Paris, 1950.
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C1,α-REGULARITY FOR VARIATIONAL PROBLEMS IN THE
HEISENBERG GROUP

SHIRSHO MUKHERJEE AND XIAO ZHONG

Abstract. We study the regularity of minima of scalar variational integrals of
p-growth, 1 < p <∞, in the Heisenberg group and prove the Hölder continuity of
horizontal gradient of minima.

1. Introduction

Following [40], we continue to study in this paper the regularity of minima of
scalar variational integrals in the Heisenberg group Hn, n ≥ 1. Let Ω be a domain
in Hn and u : Ω → R a function. We denote by Xu = (X1u,X2u, . . . , X2nu) the
horizontal gradient of u. We study the following variational problem

(1.1) I(u) =

∫

Ω

f(Xu) dx,

where the convex integrand function f ∈ C2(R2n;R) is of p-growth, 1 < p < ∞. It
satisfies the following growth and ellipticity conditions

(1.2)
(δ + |z|2)

p−2
2 |ξ|2 ≤ 〈D2f(z)ξ, ξ〉 ≤ L(δ + |z|2)

p−2
2 |ξ|2;

|Df(z)| ≤ L(δ + |z|2)
p−2
2 |z|

for all z, ξ ∈ R2n, where δ ≥ 0, L ≥ 1 are constants.
It is easy to prove that a function in the horizontal Sobolev space HW 1,p(Ω)

is a local minimizer of functional (1.1) if and only if it is a weak solution of the
corresponding Euler-Lagrange equation of (1.1)

(1.3) divH
(
Df(Xu)

)
=

2n∑

i=1

Xi

(
Dif(Xu)

)
= 0.

where Df = (D1f,D2f, . . . , D2nf) is the Euclidean gradient of f . See Section 2
for the definitions of horizontal Sobolev space HW 1,p(Ω), weak solutions and local
minimizers.

A prototype example of integrand functions satisfying conditions (1.2) is

f(z) =
(
δ + |z|2

) p
2
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for a constant δ ≥ 0. Then the Euler-Lagrange equation (1.3) is reduced to the
non-degenerate p-Laplacian equation

(1.4) divH
((
δ + |Xu|2

) p−2
2 Xu

)
= 0,

when δ > 0, and the p-Laplacian equation

(1.5) divH
(
|Xu|p−2Xu

)
= 0,

when δ = 0. The weak solutions of equation (1.5) are called p-harmonic functions.
For the regularity of weak solutions of equation (1.3), the second author proved

in [40] the following theorem, Theorem 1.1 of [40], from which follows the Lipschitz
continuity of weak solutions for all 1 < p < ∞. We remark that this result holds
both for the non-degenerate case (δ > 0) and for the degenerate one (δ = 0). We
also remark that it holds under a bit more general growth condition on the integrand
function f than (1.2). Precisely, in [40] the integrand function f is assumed to satisfy

(1.6)
(δ + |z|2)

p−2
2 |ξ|2 ≤ 〈D2f(z)ξ, ξ〉 ≤ L(δ + |z|2)

p−2
2 |ξ|2;

|Df(z)| ≤ L(δ + |z|2)
p−1
2

for all z, ξ ∈ R2n, where δ ≥ 0, L ≥ 1 are constants.

Theorem 1.1. Let 1 < p < ∞, δ ≥ 0 and u ∈ HW 1,p(Ω) be a weak solution
of equation (1.3) satisfying the structure condition (1.6). Then Xu ∈ L∞loc(Ω;R2n).
Moreover, for any ball B2r ⊂ Ω, we have that

(1.7) sup
Br

|Xu| ≤ c
(
−
∫

B2r

(
δ + |Xu|2

) p
2 dx

) 1
p
,

where c > 0 depends only on n, p, L.

Here and in the following, the ball Br is defined with respect to the Carnot-
Carathèodory metric (CC-metric) d; B2r is the double size ball with the same center,
see Section 2 for the definitions.

The second author also proved in [40] that the horizontal gradient of weak solutions
of equation (1.3) is Hölder continuous when p ≥ 2. We remark again that this result
holds under the condition (1.6), and that it holds both for the non-degenerate case
(δ > 0) and for the degenerate one (δ = 0).

Theorem 1.2. Let 2 ≤ p < ∞, δ ≥ 0 and u ∈ HW 1,p(Ω) be a weak solution of
equation (1.3) satisfying the structure condition (1.6). Then the horizontal gradient
Xu is Hölder continuous. Moreover, there is a positive exponent α = α(n, p, L) ≤ 1
such that for any ball Br0 ⊂ Ω and any 0 < r ≤ r0, we have

(1.8) max
1≤l≤2n

oscBrXlu ≤ c
( r
r0

)α(
−
∫

Br0

(
δ + |Xu|2

) p
2 dx

) 1
p
,

where c > 0 depends only on n, p, L.

We refer to the paper [40] and the references therein, e.g. [24, 19, 18, 26, 2, 3, 4, 8,
10, 17, 14, 15, 13, 33, 34, 32] for the earlier work on the regularity of weak solutions
of equation (1.3).

The result in Theorem 1.2 leaves open the Hölder continuity of horizontal gradient
of weak solutions for equation (1.3) in the case 1 < p < 2. In this paper, we prove
that the same result holds for this case, under the structure condition (1.2). This is
the main result of this paper.
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Theorem 1.3. Let 1 < p < ∞, δ ≥ 0 and u ∈ HW 1,p(Ω) be a weak solution of
equation (1.3) satisfying the structure condition (1.2). Then the horizontal gradient
Xu is Hölder continuous. Moreover, there is a positive exponent α = α(n, p, L) ≤ 1
such that for any ball Br0 ⊂ Ω and any 0 < r ≤ r0, we have

(1.9) max
1≤l≤2n

oscBrXlu ≤ c
( r
r0

)α(
−
∫

Br0

(
δ + |Xu|2

) p
2 dx

) 1
p
,

where c > 0 depends only on n, p, L.

For p 6= 2, it is well known that weak solutions of equations of type (1.3) in
the Euclidean spaces are of the class C1,α, that is, they have Hölder continuous
derivatives, see [39, 29, 16, 12, 30, 37]. The C1,α-regularity is optimal when p > 2.
This can been seen by examples. Theorem 1.3 shows that the regularity theory for
equation (1.3) in the setting of Heisenberg group is similar to that in the setting of
Euclidean spaces.

The proof of Theorem 1.3 is based on De Giorgi’s method [11] and it works for all
1 < p < ∞. The approach is similar to that of Tolksdorff [37] and Lieberman [31]
in the setting of Euclidean spaces. The idea is to consider the double truncation
of the horizontal derivative Xlu, l = 1, 2, ..., 2n, of the weak solution u to equation
(1.3) satisfying the structure condition (1.2) with δ > 0

v = min
(
µ(r)/8,max(µ(r)/4−Xlu, 0)

)
,

where

µ(r) = max
1≤i≤2n

sup
Br

|Xiu|,

and Br ⊂ Ω is a ball. The whole difficulties of this work lie in proving the following
Caccioppoli type inequality for v. In the following lemma, η ∈ C∞0 (Br) is a non-
negative cut-off function such that 0 ≤ η ≤ 1 in Br, η = 1 in Br/2 and that
|Xη| ≤ 4/r, |XXη| ≤ 16n/r2, |Tη| ≤ 32n/r2 in Br.

Lemma 1.1. Let γ > 1 be a number. We have the following Caccioppoli type
inequality

∫

Br

ηβ+4vβ+2|Xv|2 dx ≤ c(β + 2)2 |Br|1−1/γ

r2
µ(r)4

(∫

Br

ηγβvγβ dx
)1/γ

for all β ≥ 0, where c = c(n, p, L, γ) > 0.

The proof of Lemma 1.1 is based on the integrability estimate for Tu, the vertical
derivative of u, established in [40], see Lemma 2.4 and Lemma 2.5. To prove Lemma
1.1, we consider the equation for Xlu, see equations (2.3) and (2.4) of Lemma 2.1 in
Section 2. We take the usual testing function

ϕ = ηβ+4vβ+3

for equations (2.3) and (2.4), where β ≥ 0. In the case p ≥ 2, when equation
(1.3) is degenerate, the proof of Lemma 1.1 is not difficult. On the contrary, in
the case 1 < p < 2, when equation (1.3) is singular, it is dedicated to prove the
desired Caccioppoli inequality in Lemma 1.1. In order to prove Lemma 1.1, we
prove two auxiliary lemmas, Lemma 3.1 and Lemma 3.2, where we establish the
Caccioppoli type inequalities for Xu and Tu involving v. The essential feature of
these inequalities is that we add weights such as the powers of |Xu|, in order to deal
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with the singularity of equation (1.3) in the case 1 < p < 2. The proof of Lemma
1.1 is given in Section 3.

Once Lemma 1.1 is established, the proof of Theorem 1.3 is similar to that in the
setting of Euclidean spaces. We may follow the same line as that in [40]. The proof
of Theorem 1.3 is given in Section 4. The proof of the auxiliary lemma, Lemma 3.1,
is given in the Appendix.

2. Preliminaries

In this section, we fix our notation and introduce the Heisenberg group Hn and
the known results on the sub-elliptic equation (1.3).

Throughout this paper, c is a positive constant, which may vary from line to
line. Except explicitly being specified, it depends only on the dimension n of the
Heisenberg group, and on the constants p and L in the structure condition (1.2).
But, it does not depend on δ in (1.2).

2.1. Heisenberg group Hn. The Heisenberg group Hn is identified with the Eu-
clidean space R2n+1, n ≥ 1. The group multiplication is given by

xy = (x1 + y1, . . . , x2n + y2n, t+ s+
1

2

n∑

i=1

(xiyn+i − xn+iyi))

for points x = (x1, . . . , x2n, t), y = (y1, . . . , y2n, s) ∈ Hn. The left invariant vector
fields corresponding to the canonical basis of the Lie algebra are

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i +

xi
2
∂t,

and the only non-trivial commutator

T = ∂t = [Xi, Xn+i] = XiXn+i −Xn+iXi

for 1 ≤ i ≤ n. We denote by X = (X1, X2, . . . , X2n) the horizontal gradient. The
second horizontal derivatives are given by the horizontal Hessian XXu of a function u,
with entries Xi(Xju), i, j = 1, . . . , 2n. Note that it is not symmetric, in general. The
standard Euclidean gradient of a function v in Rk is denoted by Dv = (D1v, . . . , Dkv)
and the Hessian matrix by D2v.

The Haar measure in Hn is the Lebesgue measure of R2n+1. We denote by |E| the
Lebesgue measure of a measurable set E ⊂ Hn and by

−
∫

E

f dx =
1

|E|

∫

E

f dx

the average of an integrable function f over set E.
A ball Bρ(x) = {y ∈ Hn : d(y, x) < ρ} is defined with respect to the Carnot-

Carathèodory metric (CC-metric) d. The CC-distance of two points in Hn is the
length of the shortest horizontal curve joining them.

Let 1 ≤ p < ∞ and Ω ⊂ Hn be an open set. The horizontal Sobolev space
HW 1,p(Ω) consists of functions u ∈ Lp(Ω) such that the horizontal weak gradient
Xu is also in Lp(Ω). HW 1,p(Ω), equipped with the norm

||u ||HW 1,p(Ω) = ||u || Lp(Ω) + ||Xu || Lp(Ω),

is a Banach space. HW 1,p
0 (Ω) is the closure of C∞0 (Ω) in HW 1,p(Ω) with this norm.

We denote the local space by HW 1,p
loc (Ω).
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The following Sobolev inequality hold for functions u ∈ HW 1,q
0 (Br), 1 ≤ q < Q =

2n+ 2,

(2.1)
(
−
∫

Br

|u|
Qq
Q−q dx

)Q−q
Qq ≤ cr

(
−
∫

Br

|Xu|q dx
) 1
q
,

where Br ⊂ Hn is a ball and c = c(n, q) > 0.

2.2. Known results on sub-elliptic equation (1.3). A function u ∈ HW 1,p(Ω)
is a local minimizer of functional (1.1), that is,

∫

Ω

f(Xu) dx ≤
∫

Ω

f(Xu+ Xϕ) dx

for all ϕ ∈ C∞0 (Ω), if and only if it is a weak solution of equation (1.3), that is,
∫

Ω

〈Df(Xu),Xϕ〉 dx = 0

for all ϕ ∈ C∞0 (Ω).
In the rest of this subsection, u ∈ HW 1,p(Ω) is a weak solution of equation (1.3)

satisfying the structure condition (1.2) with δ > 0. By Theorem 1.1, we have that

Xu ∈ L∞loc(Ω;R2n).

Thanks to this and to the fact that we assume δ > 0, equation (1.3) is uniformly
elliptic. Then we can apply Capogna’s results in [3]. Theorem 1.1 and Theorem 3.1
of [3] show that Xu and Tu are Hölder continuous in Ω, and that

(2.2) Xu ∈ HW 1,2
loc (Ω;R2n), Tu ∈ HW 1,2

loc (Ω) ∩ L∞loc(Ω).

With the above regularity, we can easily prove the following three lemmas. They
are Lemma 3.1, Lemma 3.2 and Lemma 3.3 of [40], respectively. We refer to [40] for
the proofs.

Lemma 2.1. Let vl = Xlu, l = 1, 2, . . . , n. Then vl is a weak solution of

(2.3)
2n∑

i,j=1

Xi

(
DjDif(Xu)Xjvl

)
+

2n∑

i=1

Xi

(
Dn+lDif(Xu)Tu

)
+ T

(
Dn+lf(Xu)

)
= 0;

Let vn+l = Xn+lu, l = 1, 2, . . . , n. Then vn+l is a weak solution of

(2.4)
2n∑

i,j=1

Xi

(
DjDif(Xu)Xjvn+l

)
−

2n∑

i=1

Xi

(
DlDif(Xu)Tu

)
− T

(
Dlf(Xu)

)
= 0;

Lemma 2.2. Tu is a weak solution of

(2.5)
2n∑

i,j=1

Xi

(
DjDif(Xu)Xj(Tu)

)
= 0.

Lemma 2.3. For any β ≥ 0 and all η ∈ C∞0 (Ω), we have
∫

Ω

η2
(
δ + |Xu|2

) p−2
2 |Tu|β|X(Tu)|2 dx ≤ c

(β + 1)2

∫

Ω

|Xη|2
(
δ + |Xu|2

) p−2
2 |Tu|β+2 dx.

where c = c(n, p, L) > 0.
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The following lemma is Corollary 3.2 of [40]. It shows the integrability of Tu. It is
critical for the proof of the Hölder continuity of the horizontal gradient of solutions
u in [40].

Lemma 2.4. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have that
∫

Ω

ηβ+2
(
δ + |Xu|2

) p−2
2 |Tu|β+2 dx ≤ c(β)K

β+2
2

∫

spt(η)

(
δ + |Xu|2

) p+β
2 dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(β) > 0 depends on n, p, L and β.

In this paper, we need the following version of Lemma 2.4, which is a bit stronger.
The reason that this stronger version holds is that we have a stronger structure
condition (1.2) than that one (1.6) in [40].

Lemma 2.5. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have that
∫

Ω

ηβ+2
(
δ + |Xu|2

) p−2
2 |Tu|β+2 dx ≤ c(β)K

β+2
2

∫

spt(η)

(
δ + |Xu|2

) p−2
2 |Xu|β+2 dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(β) > 0 depends on n, p, L and β.

The following corollary follows easily from Lemma 2.3 and Lemma 2.5.

Corollary 2.1. For any q ≥ 4 and all non-negative η ∈ C∞0 (Ω), we have
∫

Ω

ηq+2
(
δ + |Xu|2

) p−2
2 |Tu|q−2|X(Tu)|2 dx ≤ c(q)K

q+2
2

∫

spt(η)

(
δ + |Xu|2

) p−2
2 |Xu|q dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(q) = c(n, p, L, q) > 0.

In the rest of this subsection, we comment on the proof of Lemma 2.5. The proof
of Lemma 2.5 is almost the same as that of Lemma 2.4 in [40]; it requires only minor
modifications. Lemma 2.4 follows from two lemmas, that is, Lemma 3.4, Lemma 3.5
in [40]. To prove Lemma 2.5, we need stronger versions of Lemma 3.4 and Lemma
3.5 of [40], which we state here. The following lemma is a stronger version of Lemma
3.4 of [40].

Lemma 2.6. For any β ≥ 0 and all η ∈ C∞0 (Ω), we have
∫

Ω

η2
(
δ + |Xu|2

) p−2
2 |Xu|β|XXu|2 dx ≤c

∫

Ω

(|Xη|2 + η|Tη|)
(
δ + |Xu|2

) p−2
2 |Xu|β+2 dx

+c(β + 1)4

∫

Ω

η2
(
δ + |Xu|2

) p−2
2 |Xu|β|Tu|2 dx,

where c = c(n, p, L) > 0.

The proof of Lemma 2.6 follows the same line as that of Lemma 3.4 of [40] with

minor modifications. To prove Lemma 3.4 of [40], one uses ϕ = η2
(
δ+ |Xu|2

)β/2
Xlu

as a testing function for equations (2.3) when l = 1, 2, ..., n and for equation (2.4)
when l = n + 1, n + 2, ..., 2n. Now, to prove Lemma 2.6, we use instead the testing
function ϕ = η2|Xu|βXlu. The proof then is the same as that of Lemma 3.4 of
[40] with obvious changes. To get through the proof, we remark that the structure
condition (1.2) is essential. We omit the details of the proof of Lemma 2.6.

The following lemma is a stronger version of Lemma 3.5 of [40].
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Lemma 2.7. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have
∫

Ω

ηβ+2
(
δ + |Xu|2

) p−2
2 |Tu|β|XXu|2 dx

≤ c(β + 1)2‖Xη‖2
L∞

∫

Ω

ηβ
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|β−2|XXu|2 dx,

where c = c(n, p, L) > 0.

The proof of Lemma 2.7 is almost the same as that of Lemma 3.5, with obvious
minor changes. The only difference is that we use the structure condition (1.2)
whenever the structure condition (1.6) is used in the proof of Lemma 3.5 in [40]. We
omit the details.

Once Lemma 2.6 and Lemma 2.7 are established, the proof of Lemma 2.5 is exactly
the same as that of Lemma 2.4 in [40].

3. Proof of the main lemma, Lemma 1.1

Throughout this section, u ∈ HW 1,p(Ω) is a weak solution of equation (1.3)
satisfying the structure condition (1.2) with δ > 0. For any ball Br ⊂ Ω, we denote
for i = 1, 2, ..., 2n,

(3.1) µi(r) = sup
Br

|Xiu|, µ(r) = max
1≤i≤2n

µi(r).

Now fix l ∈ {1, 2, .., 2n}. We consider the following double truncation of Xlu

(3.2) v = min
(
µ(r)/8,max(µ(r)/4−Xlu, 0)

)
.

We denote

(3.3) E = {x ∈ Ω : µ(r)/8 < Xlu < µ(r)/4}.
We note the following trivial inequality, which we use several times in this section

(3.4) µ(r)/8 ≤ |Xu| ≤ (2n)1/2µ(r) in E ∩Br.

It follows from the regularity results (2.2) that

(3.5) Xv ∈ L2
loc(Ω;R2n), T v ∈ L2

loc(Ω)

and moreover

(3.6) Xv =

{
−XXlu a.e. in E;

0 a.e. in Ω \ E, Tv =

{
−TXlu a.e. in E;

0 a.e. in Ω \ E.
We note that the function

h(t) =
(
δ + t2

) p−2
2 tq

is non-decreasing on [0,∞) if δ ≥ 0 and q ≥ 0 such that p + q − 2 ≥ 0. Thus we
have the following inequality, which is used several times in this section

(3.7)
(
δ + |Xu|2

) p−2
2 |Xu|q ≤ c(n, p, q)

(
δ + µ(r)2

) p−2
2 µ(r)q in Br,

where c(n, p, q) = (2n)(q+p−2)/2 if p ≥ 2 and c(n, p, q) = (2n)q/2 if 1 < p < 2.
To prove Lemma 1.1, we need the following two lemmas. The first lemma is similar

to Lemma 3.3 of [40]. In this lemma, we prove a weighted Caccioppoli inequality
for Xu involving v. It has an extra weight |Xu|2, comparing to that in Lemma 3.3
of [40]. This is essential for us to deal with the case 1 < p < 2 when equation (1.3)



8 SHIRSHO MUKHERJEE AND XIAO ZHONG

is singular. The proof is also similar to that of Lemma 3.3 of [40]. It is standard,
but lengthy. We give a detailed proof in the Appendix.

Lemma 3.1. Let 1 < p < ∞. For any β ≥ 0 and all non-negative η ∈ C∞0 (Ω), we
have that

(3.8)

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

≤ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2

(
δ + |Xu|2

) p−2
2 |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx,

where c = c(n, p, L) > 0.

In the following is the second lemma that we need for the proof of Lemma 1.1,
where we prove a weighted Caccioppoli inequality for Tu involving v. It has a weight
|Xu|4, which is needed for us to deal with the case 1 < p < 2. To state the lemma,
we fix, throughout the rest of this section, a ball Br ⊂ Ω and a cut-off function
η ∈ C∞0 (Br) that satisfies

(3.9) 0 ≤ η ≤ 1 in Br, η = 1 in Br/2

and

(3.10) |Xη| ≤ 4/r, |XXη| ≤ 16n/r2, |Tη| ≤ 32n/r2 in Br.

Lemma 3.2. Let Br ⊂ Ω be a ball and η ∈ C∞0 (Br) be a cut-off function satisfying
(3.9) and (3.10). Let τ ∈ (1/2, 1) and γ ∈ (1, 2) be two fixed numbers. Then, for
any β ≥ 0, we have

(3.11)

∫

Ω

ητ(β+2)+4 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|X(Tu)|2 dx

≤ c(β + 2)2τ |Br|1−τ
r2(2−τ)

(
δ + µ(r)2

) p−2
2 µ(r)6 Jτ ,

where c = c(n, p, L, τ, γ) > 0 and

(3.12) J =

∫

Br

ηβ+4vβ+2|Xv|2 dx + µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Proof. We denote by M the left hand side of (3.11)

(3.13) M =

∫

Ω

ητ(β+2)+4 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|X(Tu)|2 dx,

where 1/2 < τ < 1. We use the following function

ϕ = ητ(β+2)+4 vτ(β+4)|Xu|4 Tu
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as a testing function for equation (2.5). We obtain that

(3.14)

∫

Ω

2n∑

i,j=1

ητ(β+2)+4 vτ(β+4)|Xu|4DjDif(Xu)XjTuXiTu dx

=− (τ(β + 2) + 4)

∫

Ω

2n∑

i,j=1

ητ(β+2)+3 vτ(β+4)|Xu|4TuDjDif(Xu)XjTuXiη dx

− τ(β + 4)

∫

Ω

2n∑

i,j=1

ητ(β+2)+4 vτ(β+4)−1|Xu|4TuDjDif(Xu)XjTuXiv dx

− 4

∫

Ω

2n∑

i,j,k=1

ητ(β+2)+4 vτ(β+4)|Xu|2XkuTuDjDif(Xu)XjTuXiXku dx

=K1 +K2 +K3,

where the integrals in the right hand side of (3.14) are denoted by K1, K2, K3 in
order, respectively. We estimate both sides of (3.14) as follows. For the left hand
side, we have by the structure condition (1.2) that

(3.15) left of (3.14) ≥
∫

Ω

ητ(β+2)+4 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|X(Tu)|2 dx = M.

For the right hand side of (3.14), we estimate each item Ki, i = 1, 2, 3, one by one.
To this end, we denote

(3.16) K̃ =

∫

Ω

η(2τ−1)(β+2)+6 v(2τ−1)(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|Tu|2|X(Tu)|2 dx.

First, we estimate K1 by the structure condition (1.2) and Hölder’s inequality. We
have

(3.17)

|K1| ≤c(β + 2)

∫

Ω

ητ(β+2)+3 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|Tu||X(Tu)||Xη| dx

≤c(β + 2)K̃
1
2

(∫

Ω

ηβ+2vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|4|Xη|2 dx

) 1
2
,

where c = c(n, p, L, τ) > 0.
Second, we estimate K2 also by the structure condition (1.2) and Hölder’s inequal-

ity. We have

(3.18)

|K2| ≤c(β + 2)

∫

Ω

ητ(β+2)+4 vτ(β+4)−1
(
δ + |Xu|2

) p−2
2 |Xu|4|Tu||X(Tu)||Xv|dx

≤c(β + 2)K̃
1
2

(∫

Ω

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

) 1
2
.

Finally, we estimate K3. In the following, the first inequality follows from the
structure condition (1.2), the second from Hölder’s inequality and the third from
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Lemma 3.1. We have

(3.19)

|K3| ≤ c

∫

Ω

ητ(β+2)+4 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|3|Tu||X(Tu)||XXu| dx

≤ cK̃
1
2

(∫

Ω

ηβ+4vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

) 1
2

≤ c K̃
1
2 I

1
2 ,

where I is the right hand side of (3.8) in Lemma 3.1

(3.20)

I =c(β + 2)2

∫

Ω

ηβ+2vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|4

(
|Xη|2 + η|Tη|

)
dx

+ c(β + 2)2

∫

Ω

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+4vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx.

and c = c(n, p, L) > 0. Notice that the integrals on the right hand side of (3.17) and
(3.18) are both controlled from above by I. Hence, we can combine (3.17), (3.18)
and (3.19) to obtain that

|K1|+ |K2|+ |K3| ≤ cK̃
1
2 I

1
2 ,

from which, together with the estimate (3.15) for the left hand side of (3.14), it
follows that

(3.21) M ≤ cK̃
1
2 I

1
2 ,

where c = c(n, p, L, τ) > 0. Now, we estimate K̃ by Hölder’s inequality as follows.

(3.22)

K̃ ≤
(∫

Ω

ητ(β+2)+4 vτ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|X(Tu)|2 dx

) 2τ−1
τ

×
(∫

Ω

η
2τ
1−τ +4

(
δ + |Xu|2

) p−2
2 |Xu|4|Tu| 2τ

1−τ |X(Tu)|2 dx
) 1−τ

τ

=M
2τ−1
τ G

1−τ
τ ,

where M is as in (3.13) and we denote by G the second integral on the right hand
side of (3.22)

(3.23) G =

∫

Ω

η
2τ
1−τ +4

(
δ + |Xu|2

) p−2
2 |Xu|4|Tu| 2τ

1−τ |X(Tu)|2 dx.

Now (3.22) and (3.21) yield that

(3.24) M ≤ cG1−τIτ ,

where c = c(n, p, L, τ) > 0. To estimate K, we estimate G and I from above. We
estimate G by Corollary 2.1 with q = 2/(1− τ), and we obtain that

(3.25)

G ≤cµ(r)4

∫

Ω

ηq+2
(
δ + |Xu|2

) p−2
2 |Tu|q−2|X(Tu)|2 dx

≤ c

rq+2
µ(r)4

∫

Br

(
δ + |Xu|2

) p−2
2 |Xu|q dx

≤ c

rq+2
|Br|

(
δ + µ(r)2

) p−2
2 µ(r)q+4,
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where c = c(n, p, L, τ) > 0 and in the last inequality we used (3.7).
Now, we fix 1 < γ < 2 and estimate each term of I in (3.20) as follows. For the

first term of I, we have by Hölder’s inequality and (3.7) that

(3.26)

∫

Ω

ηβ+2vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|4

(
|Xη|2 + η|Tη|

)
dx

≤ c

r2

(
δ + µ(r)2

) p−2
2 µ(r)8|Br|1−

1
γ

(∫

Br

ηγβvγβ dx
) 1
γ
.

For the second term of I, we have by (3.7) that

(3.27)

∫

Ω

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

≤ c
(
δ + µ(r)2

) p−2
2 µ(r)4

∫

Br

ηβ+4vβ+2|Xv|2 dx

For the third term of I, we have that

(3.28)

∫

Ω

ηβ+4vβ+4
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx

≤
(∫

Ω

η
2γ
γ−1
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|

2γ
γ−1 dx

)1− 1
γ

×
(∫

Ω

ηγ(β+2)vγ(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|2 dx

) 1
γ

≤ c

r2

(
δ + µ(r)2

) p−2
2 µ(r)8|Br|1−

1
γ

(∫

Br

ηγβvγβ dx
) 1
γ

where c = c(n, p, L, γ) > 0. Here in the above inequalities, the first one follows
from Hölder’s inequality and the second from Lemma 2.5 and (3.7). Therefore, the
estimates for three items of I above (3.26), (3.27) and (3.28) give us the following
one for I

(3.29) I ≤ c(β + 2)2
(
δ + µ(r)2

) p−2
2 µ(r)4J,

where J is defined as in (3.12)

J =

∫

Br

ηβ+4vβ+2|Xv|2 dx + µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Now from the estimates (3.25) for G and (3.29) for I, we obtain the desired estimate
for M by (3.24). Combing (3.25), (3.29) and (3.24), we end up with

(3.30) M ≤ c(β + 2)2τ |Br|1−τ
r2(2−τ)

(
δ + µ(r)2

) p−2
2 µ(r)6Jτ ,

where c = c(n, p, L, τ, γ) > 0. This completes the proof. �
Now we prove the main lemma, Lemma 1.1. We restate Lemma 1.1 here.

Lemma 3.3. Let γ > 1 be a number and for Br ⊂ Ω, η ∈ C∞0 (Br), be a cut-
off function satisfying (3.9) and (3.10). We have the following Caccioppoli type
inequality

(3.31)

∫

Br

ηβ+4vβ+2|Xv|2 dx ≤ c(β + 2)2µ(r)4 |Br|1−1/γ

r2

(∫

Br

ηγβvγβ dx
)1/γ
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for all β ≥ 0, where c = c(n, p, L, γ) > 0.

Proof. We note that we may assume that γ < 3/2, since otherwise we can apply
Hölder’s inequality to the integral in the right hand side of the claimed inequality
(3.31). So, we fix 1 < γ < 3/2. Recall that

v = min
(
µ(r)/8,max(µ(r)/4−Xlu, 0)

)
,

where l ∈ {1, 2, ..., 2n}. We only prove the lemma for l ∈ {1, 2, ..., n}; we can prove
the lemma similarly for l ∈ {n+ 1, n+ 2, ..., 2n}. Now fix l ∈ {1, 2, ..., n}. Let β ≥ 0
and η ∈ C∞0 (Br) be a cut-off function satisfying (3.9) and (3.10). We use

ϕ = ηβ+4vβ+3

as a test function for equation (2.3) to obtain that

(3.32)

−
∫

Ω

2n∑

i,j=1

DjDif(Xu)XjXluXiϕdx =

∫

Ω

2n∑

i=1

Dn+lDif(Xu)TuXiϕdx

−
∫

Ω

T
(
Dn+lf(Xu)

)
ϕdx.

Note that

Xiϕ = (β + 3)ηβ+4vβ+2Xiv + (β + 4)ηβ+3vβ+3Xiη.

Thus (3.32) becomes

(3.33)

−(β + 3)

∫

Ω

2n∑

i,j=1

ηβ+4vβ+2DjDif(Xu)XjXluXiv dx

= (β + 4)

∫

Ω

2n∑

i,j=1

ηβ+3vβ+3DjDif(Xu)XjXluXiη dx

+ (β + 4)

∫

Ω

2n∑

i=1

ηβ+3vβ+3Dn+lDif(Xu)TuXiη dx

+ (β + 3)

∫

Ω

2n∑

i=1

ηβ+4vβ+2Dn+lDif(Xu)Xiv Tu dx

−
∫

Ω

ηβ+4vβ+3 T
(
Dn+lf(Xu)

)
dx.

Note that

XjXl −XlXj = 0, if j 6= n+ l,

and that

Xn+lXl −XlXn+l = −T.
Therefore we have

2n∑

i,j=1

DjDif(Xu)XjXluXiη +
2n∑

i=1

Dn+lDif(Xu)TuXiη

=
2n∑

i,j=1

DjDif(Xu)XlXjuXiη =
2n∑

i=1

Xl

(
Dif(Xu)

)
Xiη.
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Now we can combine the first two integrals in the right hand side of (3.33) by the
above equality. Then (3.33) becomes

(3.34)

−(β + 3)

∫

Ω

2n∑

i,j=1

ηβ+4vβ+2DjDif(Xu)XjXluXiv dx

= (β + 4)

∫

Ω

2n∑

i=1

ηβ+3vβ+3Xl

(
Dif(Xu)

)
Xiη dx

+ (β + 3)

∫

Ω

2n∑

i=1

ηβ+4vβ+2Dn+lDif(Xu)XivTu dx

−
∫

Ω

ηβ+4vβ+3T
(
Dn+lf(Xu)

)
dx

= I1 + I2 + I3.

Here we denote the terms in the right hand side of (3.34) by I1, I2, I3, respectively.
We will estimate both sides of (3.34) as follows. For the left hand side, we have

by the structure condition (1.2) that

(3.35)

left of (3.34) ≥ (β + 3)

∫

Ω

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xv|2 dx

≥ c0(β + 2)
(
δ + µ(r)2

) p−2
2

∫

Br

ηβ+4vβ+2|Xv|2 dx,

where c0 = c0(n, p, L) > 0. Here we used (3.6) and (3.4).
For the right hand side of (3.34), we claim that each item I1, I2, I3 satisfies the

following estimate

(3.36)

|Im| ≤
c0

6
(β + 2)

(
δ + µ(r)2

) p−2
2

∫

Br

ηβ+4vβ+2|Xv|2 dx

+ c(β + 2)3 |Br|1−1/γ

r2

(
δ + µ(r)2

) p−2
2 µ(r)4

(∫

Br

ηγβvγβ dx
)1/γ

,

where m = 1, 2, 3, 1 < γ < 3/2 and c is a constant depending only on n, p, L and
γ. Then the lemma follows from the estimate (3.35) for the left hand side of (3.34)
and the above claim (3.36) for each item in the right. This completes the proof of
the lemma, modulo the proof of the claim (3.36).

In the rest of the proof, we estimate I1, I2, I3 one by one. First, for I1, we have
by integration by parts that

I1 = −(β + 4)

∫

Ω

2n∑

i=1

Dif(Xu)Xl

(
ηβ+3vβ+3Xiη

)
dx,
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from which it follows by the structure condition (1.2) that

(3.37)

|I1| ≤ c(β + 2)2

∫

Ω

ηβ+2vβ+3
(
δ + |Xu|2

) p−2
2 |Xu|

(
|Xη|2 + η|XXη|

)
dx

+ c(β + 2)2

∫

Ω

ηβ+3vβ+2
(
δ + |Xu|2

) p−2
2 |Xu||Xv‖Xη| dx

≤ c

r2
(β + 2)2

(
δ + µ(r)2

) p−2
2 µ(r)4

∫

Br

ηβvβ dx

+
c

r
(β + 2)2

(
δ + µ(r)2

) p−2
2 µ(r)2

∫

Br

ηβ+2vβ+1|Xv| dx,

where c = c(n, p, L) > 0. Here the second inequality follows from (3.7), from the
definitions of µ(r) and v, and from the factor that the support of η lies in Br. Now
we apply Young’s inequality to the last term of inequality (3.37) to end up with the
following estimate for I1.

(3.38)

|I1| ≤
c0

6
(β + 2)

(
δ + µ(r)2

) p−2
2

∫

Br

ηβ+4vβ+2|Xv|2 dx

+
c

r2
(β + 2)3

(
δ + µ(r)2

) p−2
2 µ(r)4

∫

Br

ηβvβ dx,

where c = c(n, p, L) > 0 and c0 is the same constant as in (3.35). Now the claimed
estimate (3.36) for I1 follows from the above estimate (3.38) and Hölder’s inequality.

Second, to estimate I2, we have by the structure condition (1.2) that

|I2| ≤ c(β + 2)

∫

Ω

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xv||Tu| dx,

from which it follows by Hölder’s inequality that

(3.39)

|I2| ≤ c(β + 2)
(∫

E

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xv|2 dx

) 1
2

×
(∫

E

ηγ(β+2)vγ(β+2)
(
δ + |Xu|2

) p−2
2 dx

) 1
2γ

×
(∫

Ω

ηq
(
δ + |Xu|2

) p−2
2 |Tu|q dx

) 1
q
,

where q = 2γ/(γ − 1). Here we used (3.6) so that in the second integral we can put
the integration domain to be the set E, defined as in (3.3). This is critical, otherwise
we would not have estimate for this integral and for the first integral in the case
1 < p < 2. But now in set E we have (3.4), and we have the following estimates for
these two integrals for the full range 1 < p <∞.

∫

E

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xv|2 dx ≤ c

(
δ + µ(r)2

) p−2
2

∫

Br

ηβ+4vβ+2|Xv|2 dx,(3.40)

and
∫

E

ηγ(β+2)vγ(β+2)
(
δ + |Xu|2

) p−2
2 dx ≤ c

(
δ + µ(r)2

) p−2
2 µ(r)2γ

∫

Br

ηγβvγβ dx,(3.41)
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where c = c(n, p) > 0. We estimate the last integral in the right hand side of (3.39)
by Lemma 2.5. We have

(3.42)

∫

Ω

ηq
(
δ + |Xu|2

) p−2
2 |Tu|q dx ≤ c

rq

∫

Br

(
δ + |Xu|2

) p−2
2 |Xu|q dx

≤ c|Br|
rq
(
δ + µ(r)2

) p−2
2 µ(r)q,

where c = c(n, p, L, γ) > 0. Here we used (3.7) again. Now combining the above
three estimates (3.40), (3.41) and (3.42) for the three integrals in (3.39) respectively,
we end up with the following estimate for I2

|I2| ≤ c(β+ 2)
|Br|

1
q

r

(
δ+µ(r)2

) p−2
2 µ(r)2

(∫

Br

ηβ+4vβ+2|Xv|2 dx
) 1

2
(∫

Br

ηγβvγβ dx
) 1

2γ
,

from which, together with Young’s inequality, the claim (3.36) for I2 follows.
Finally, we prove (3.36) for I3. Recall that

I3 = −
∫

Ω

ηβ+4vβ+3T
(
Dn+lf(Xu)

)
dx.

Due to the regularity (3.5) for v, integration by parts yields

(3.43)

I3 =

∫

Ω

Dn+lf(Xu)T
(
ηβ+4vβ+3

)
dx

= (β + 4)

∫

Ω

ηβ+3vβ+3Dn+lf(Xu)Tη dx

+ (β + 3)

∫

Ω

ηβ+4vβ+2Dn+lf(Xu)Tv dx = I1
3 + I2

3 ,

where we denote the last two integrals in the above equality by I1
3 and I2

3 , respec-
tively. The estimate for I1

3 is easy. By the structure condition (1.2) and by (3.7),
we have

(3.44)

|I1
3 | ≤ c(β + 2)

∫

Ω

ηβ+3vβ+3
(
δ + |Xu|2

) p−2
2 |Xu||Tη| dx

≤ c

r2

(
δ + µ(r)2

) p−2
2 µ(r)4

∫

Br

ηβvβ dx.

Thus by Hölder’s inequality, I1
3 satisfies estimate (3.36). Now we estimate I2

3 . We
note that by (3.6) and the structure condition (1.2) we have

(3.45) |I2
3 | ≤ c(β + 2)

∫

E

ηβ+4vβ+2
(
δ + |Xu|2

) p−2
2 |Xu||X(Tu)| dx,

where the set E is

E = {x ∈ Ω : µ(r)/8 < Xlu < µ(r)/4},
defined as in (3.3). We continue to estimate I2

3 by Hölder’s inequality

|I2
3 | ≤ c(β + 2)

(∫

E

η(2−γ)(β+2)+4v(2−γ)(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|2|X(Tu)|2 dx

) 1
2

×
(∫

E

ηγ(β+2)vγβ+4(γ−1)
(
δ + |Xu|2

) p−2
2 dx

) 1
2
.
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We remark that in set E we have (3.4). Thus

(3.46) |I2
3 | ≤ c(β + 2)

(
δ + µ(r)2

) p−2
4 µ(r)2(γ−1)−1M

1
2

(∫

Br

ηγβvγβ dx
) 1

2
,

where

(3.47) M =

∫

Ω

η(2−γ)(β+2)+4 v(2−γ)(β+4)
(
δ + |Xu|2

) p−2
2 |Xu|4|X(Tu)|2 dx.

Now we are in a position to apply Lemma 3.2 to estimate M from above. Lemma
3.2 with τ = 2− γ gives us that

(3.48) M ≤ c(β + 2)2(2−γ) |Br|γ−1

r2γ

(
δ + µ(r)2

) p−2
2 µ(r)6 J2−γ

where c = c(n, p, L, γ) > 0 and J is defined as in (3.12)

(3.49) J =

∫

Br

ηβ+4vβ+2|Xv|2 dx+ µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Now, it follows from (3.48) and (3.46) that

|I2
3 | ≤ c(β + 2)3−γ(δ + µ(r)2

) p−2
2 µ(r)2γ |Br|

γ−1
2

rγ
J

2−γ
2

(∫

Br

ηγβvγβ dx
) 1

2
.

By Young’s inequality, we end up with

|I2
3 | ≤

c0

12
(β + 2)

(
δ + µ(r)2

) p−2
2 J

+ c (β + 2)
4
γ
−1
(
δ + µ(r)2

) p−2
2 µ(r)4 |Br|1−

1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
,

where c0 > 0 is the same constant as in (3.36). Note that J is defined in (3.49).
Thus I2

3 satisfies a similar estimate to (3.36). Now the desired claim (3.36) for I3

follows, since both I1
3 and I2

3 satisfy similar estimates. This concludes the proof of
the claim (3.36), and hence the proof of the lemma. �
Remark 3.1. We can prove in the same way as that of Lemma 1.1 that the conclusion
(3.31) holds for

v′ = min
(
µ(r)/8,max(µ(r)/4 +Xlu, 0)

)
.

The following corollary follows from Lemma 1.1 by Moser’s iteration. It is proved
for the case p ≥ 2 in [40], see Lemma 4.4 of [40]. Its proof is standard and is the
same as in the Euclidean setting, see Proposition 4.1 of [12] or Lemma 2 of [37]. We
include the proof here.

Corollary 3.1. There exists a constant θ = θ(n, p, L) > 0 such that the following
statements hold. If we have

(3.50) |{x ∈ Br : Xlu < µ(r)/4}| ≤ θ|Br|
for an index l ∈ {1, . . . , 2n} and for a ball Br ⊂ Ω, then

inf
Br/2

Xlu ≥ 3µ(r)/16;

Analogously, if we have

(3.51) |{x ∈ Br : Xlu > −µ(r)/4}| ≤ θ|Br|,
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for an index l ∈ {1, . . . , 2n} and for a ball Br ⊂ Ω, then

sup
Br/2

Xlu ≤ −3µ(r)/16.

Proof. Suppose that (3.50) holds for an index l ∈ {1, 2, ..., 2n}. We will apply Lemma
3.3 to prove Corollary 3.1. The case that (3.51) holds can be handled similarly by
Lemma 3.3 for the function v′, see Remark 3.1.

Let β ≥ 0 and

w = ηβ/2+2vβ/2+2,

where η ∈ C∞0 (Br) is a cut-off function satisfying (3.9) and (3.10) and v is defined
as in (3.2). Then for any γ > 1, we have that

(3.52)

∫

Br

|Xw|2 dx ≤c(β + 2)2
(∫

Br

ηβ+2vβ+4|Xη|2 dx+

∫

Br

ηβ+4vβ+2|Xv|2 dx
)

≤c(β + 2)4µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
,

where c = c(n, p, L, γ) > 0. Here the second inequality follows from Hölder’s in-
equality and Lemma 3.3. By the Sobolev inequality (2.1), we also have that

(3.53)
(
−
∫

Br

|w|2χ dx
) 1
χ ≤ c(n) r2 −

∫

Br

|Xw|2 dx,

where χ = Q/(Q− 2) = (n+ 1)/n. Combining (3.52) and (3.53), we obtain that

(3.54)
(
−
∫

Br

(ηv)χ(β+4) dx
) 1
χ ≤ c(β + 2)4 µ(r)4

(
−
∫

Br

(ηv)γβ dx
) 1
γ
,

where c = c(n, p, L, γ) > 0. Now, we choose γ = (n + 2)/(n + 1). Thus 1 < γ < χ.
We will iterate inequality (3.54). Let

βi =
4χ

χ− γ
((χ
γ

)i+1 − 1
)
, i = 0, 1, 2, . . . .

Note that γβi+1 = χ(βi + 4). Thus (3.54) with β = βi becomes

(3.55) Mi+1 ≤ ciM
χ
γ

βi
βi+1

i

for every i = 0, 1, 2, . . ., where

ci = c
χ
γ

1
βi+1 β

4χ
γ

1
βi+1

i+1 ,

and

Mi =

(
−
∫

Br

(
ηv/µ(r)

)γβi dx
) 1

γβi

.

Iterating (3.55), we obtain that

(3.56) Mi ≤ cM

(
χ
γ

)i
β0
βi

0 ,

where c = c(n, p, L) > 0. Let i→∞, we end up with

lim sup
i→∞

Mi ≤ cM
1−γ/χ
0 ,



18 SHIRSHO MUKHERJEE AND XIAO ZHONG

that is,

(3.57) sup
Br

ηv/µ(r) ≤ c
(
−
∫

Br

(
ηv/µ(r)

)4χ
dx
) 1

4χ
(1−γ/χ)

,

where c = c(n, p, L) > 0. Now, since η satisfies (3.9) and (3.10), we derive from
(3.57) by our assumption (3.50) that

sup
Br/2

v ≤ cµ(r) θ
1
4χ

(1−γ/χ) ≤ µ(r)/16,

provided that θ is small enough. This implies that Xlu ≥ 3µ(r)/16 in Br/2. The
proof is finished. �

4. Hölder continuity of the horizontal gradient

In this section, we prove Theorem 1.3. This proof is divided into two cases, δ > 0
and δ = 0, in subsection 4.1 and subsection 4.2, respectively. The proof for the case
δ > 0 is the same as that of Theorem 1.2 of [40], with minor modifications. The
proof for the case δ = 0 follows from an approximation arguments, see [40]. We
include the proof here.

4.1. Proof of Theorem 1.3 for the case δ > 0. Let u ∈ HW 1,p(Ω) be a weak
solution of equation (1.3) satisfying the structure condition (1.2) with δ > 0. We fix
a ball Br0 ⊂ Ω. For all balls Br, 0 < r < r0, with the same center as Br0 , we denote
for l = 1, 2, ..., 2n,

µl(r) = sup
Br

|Xlu|, µ(r) = max
1≤l≤2n

µl(r),

and

ωl(r) = oscBrXlu, ω(r) = max
1≤l≤2n

ωl(r).

Clearly, we have ω(r) ≤ 2µ(r).
We define for any function w

A+
k,ρ(w) = {x ∈ Bρ : (w(x)− k)+ = max(w(x)− k, 0) > 0};

and we define A−k,ρ(w) similarly. To prove Theorem 1.3, we need the following lemma.

Lemma 4.1. Let Br0 ⊂ Ω be a ball and 0 < r < r0/2. Suppose that there is τ > 0
such that

(4.1) |Xu| ≥ τµ(r) in A+
k,r(Xlu)

for an index l ∈ {1, 2, ..., 2n} and for a constant k ∈ R. Then for any q ≥ 4 and
any 0 < r′′ < r′ ≤ r, we have

(4.2)

∫

Br′′

(
δ + |Xu|2

) p−2
2 |X(Xlu− k)+|2 dx

≤ c

(r′ − r′′)2

∫

Br′

(
δ + |Xu|2

) p−2
2 |(Xlu− k)+|2 dx+ cK|A+

k,r′(Xlu)|1− 2
q

where K = r−2
0 |Br0|2/q

(
δ + µ(r0)2

)p/2
and c = c(n, p, L, q, τ) > 0.
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Lemma 4.1 is similar to Lemma 4.3 of [40], which is valid for p ≥ 2. Under our
extra assumption (4.1), the proof of Lemma 4.1 is exactly the same as that of Lemma
4.3 of [40]. All of the steps go through in the same way. We remark here that there
are two places in the proof of Lemma 4.3 of [40] where the assumption p ≥ 2 is used.
Now due to our assumption (4.1), we may get through the proof for 1 < p <∞. We
omit the details of the proof of Lemma 4.1.

Remark 4.1. Similarly, we can obtain an inequality, corresponding to (4.2), with
(Xlu− k)+ replaced by (Xlu− k)− and A+

k,r(Xlu) replaced by A−k,r(Xlu).

Theorem 1.3 follows easily from the following theorem by an interation argument.

Theorem 4.1. There exists a constant s = s(n, p, L) ≥ 1 such that for every 0 <
r ≤ r0/16, we have

(4.3) ω(r) ≤ (1− 2−s)ω(8r) + 2s
(
δ + µ(r0)2

) 1
2

(
r

r0

)α
,

where α = 1/2 when 1 < p < 2 and α = 1/p when p ≥ 2.

Proof. To prove Theorem 4.1, we fix a ball Br, with the same center as Br0 , such
that 0 < r < r0/16. We may assume that

(4.4) ω(r) ≥
(
δ + µ(r0)2

) 1
2

(
r

r0

)α
,

since, otherwise, (4.3) is true with s = 1. In the following, we assume that (4.4) is
true, and we prove Theorem 4.1. We divide the proof of Theorem 4.1 into two cases.

Case 1. For at least one index l ∈ {1, . . . , 2n}, we have either

(4.5) |{x ∈ B4r : Xlu < µ(4r)/4}| ≤ θ|B4r|
or

(4.6) |{x ∈ B4r : Xlu > −µ(4r)/4}| ≤ θ|B4r|,
where θ = θ(n, p, L) > 0 is the constant in Corollary 3.1. Assume that (4.5) is true;
the case (4.6) can be treated in the same way. We apply Corollary 3.1 and we obtain
that

|Xlu| ≥ 3µ(4r)/16 in B2r.

Thus we have

(4.7) |Xu| ≥ 3µ(2r)/16 in B2r.

Due to (4.7), we can apply Lemma 4.1 with q = 2Q to obtain that

(4.8)

∫

Br′′
|X(Xiu− k)+|2 dx ≤ c

(r′ − r′′)2

∫

Br′
|(Xiu− k)+|2 dx

+ cK
(
δ + µ(2r)2

) 2−p
2 |A±k,r′(Xiu)|1− 1

Q

where K = r−2
0 |Br0|1/Q

(
δ + µ(r0)2

)p/2
. The above inequality holds for all 0 < r′′ <

r′ ≤ 2r, i ∈ {1, . . . , 2n} and all k ∈ R. This means that for each i, Xiu belongs
to the De Giorgi class DG+(B2r), see Section 4.1 of [40] for the definition. The
corresponding version of Lemma 4.1 for (Xiu − k)−, see Remark 4.1, shows that
Xiu also belong to DG−(B2r). So, Xiu belongs to DG(B2r). Now we can apply
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Theorem 4.1 of [40] to conclude that there is s0 = s0(n, p, L) > 0 such that for each
i ∈ {1, 2, ..., 2n}

(4.9) oscBrXiu ≤ (1− 2−s0)oscB2rXiu+ cK
1
2

(
δ + µ(2r)2

) 2−p
4 r

1
2 .

Now notice that when 1 < p < 2, we have that
(
δ + µ(2r)2

) 2−p
4 ≤

(
δ + µ(r0)2

) 2−p
4 .

When p ≥ 2, our assumption (4.4) with α = 1/p gives

(
δ + µ(2r)2

) 2−p
4 ≤ 2

p−2
2 ω(r)

2−p
2 ≤ 2

p−2
2

(
δ + µ(r0)2

) 2−p
4

(
r

r0

) 2−p
2p

,

where in the first inequality we used that µ(2r) ≥ ω(2r)/2 ≥ ω(r)/2. In both cases,
(4.9) becomes

(4.10) oscBrXiu ≤ (1− 2−s0)oscB2rXiu+ c
(
δ + µ(r0)2

) 1
2

(
r

r0

)α
,

where c = c(n, p, L) > 0, α = 1/2 when 1 < p < 2 and α = 1/p when p ≥ 2. This
shows that in this case Theorem 4.1 is true.

Case 2. If Case 1 does not happen, then for every i ∈ {1, . . . , 2n}, we have

(4.11) |{x ∈ B4r : Xiu < µ(4r)/4}| > θ|B4r|,
and

(4.12) |{x ∈ B4r : Xiu > −µ(4r)/4}| > θ|B4r|,
where θ = θ(n, p, L) > 0 is the constant in Corollary 3.1. Note that on the set
{x ∈ B8r : Xiu > µ(8r)/4}, we have trivially

(4.13) |Xu| ≥ µ(8r)/4 in A+
k,8r(Xiu)

for all k ≥ µ(8r)/4. Thus, we can apply Lemma 4.1 with q = 2Q to conclude that

(4.14)

∫

Br′′
|X(Xiu− k)+|2 dx ≤ c

(r′ − r′′)2

∫

Br′
|(Xiu− k)+|2 dx

+ cK
(
δ + µ(8r)2

) 2−p
2 |A+

k,r′(Xiu)|1− 1
Q

where K = r−2
0 |Br0|1/Q

(
δ + µ(r0)2

)p/2
, whenever k ≥ k0 = µ(8r)/4 and 0 < r′′ <

r′ ≤ 8r. The above inequality is true all i ∈ {1, 2, ..., 2n}. We note that (4.11)
implies trivially that

|{x ∈ B4r : Xiu < µ(8r)/4}| > θ|B4r|.
Now we can apply Lemma 4.2 of [40] to conclude that there exists s1 = s1(n, p, L) > 0
such that

(4.15) sup
B2r

Xiu ≤ sup
B8r

Xiu− 2−s1
(

sup
B8r

Xiu− µ(8r)/4
)

+ cK
1
2

(
δ + µ(8r)2

) 2−p
4 r

1
2 .

From (4.12), we can derive similarly, see Remark 4.1, that

(4.16) inf
B2r

Xiu ≥ inf
B8r

Xiu+ 2−s1
(
− inf

B8r

Xiu− µ(8r)/4
)
− cK 1

2

(
δ + µ(8r)2

) 2−p
4 r

1
2 .

Note that the above two inequalities (4.15) and (4.16) yield

oscB2rXiu ≤ (1− 2−s1)oscB8rXiu+ 2−s1−1µ(8r) + cK
1
2

(
δ + µ(8r)2

) 2−p
4 r

1
2 ,
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and hence

(4.17) ω(2r) ≤
(
1− 2−s1

)
ω(8r) + 2−s1−1µ(8r) + cK

1
2

(
δ + µ(8r)2

) 2−p
4 r

1
2 .

Now notice that when 1 < p < 2, we have that

(
δ + µ(8r)2

) 2−p
4 ≤

(
δ + µ(r0)2

) 2−p
4

When p ≥ 2, our assumption (4.4) with α = 1/p gives

(
δ + µ(8r)2

) 2−p
4 ≤ 2

p−2
2 µ(r)

2−p
2 ≤ 2

p−2
2

(
δ + µ(r0)2

) 2−p
4

(
r

r0

) 2−p
2p

,

where in the first inequality we used the fact that µ(8r) ≥ ω(8r)/2 ≥ ω(r)/2. In
both cases, (4.17) becomes

ω(2r) ≤
(
1− 2−s1

)
ω(8r) + 2−s1−1µ(8r) + c

(
δ + µ(r0)2

) 1
2

(
r

r0

)α
.

Now we notice from the conditions (4.11) and (4.12) that

ω(8r) ≥ µ(8r)− µ(4r)/4 ≥ 3µ(8r)/4.

Then from the above two inequalities we arrive at

ω(2r) ≤
(
1− 2−s1−2

)
ω(8r) + c

(
δ + µ(r0)2

) 1
2

(
r

r0

)α
,

where c = c(n, p, L) > 0, α = 1/2 when 1 < p < 2 and α = 1/p when p ≥ 2. This
shows that also in this case Theorem 4.1 is true. Thus, Theorem 4.1 is true with
the choice of s = max(1, s0, s1 + 2, log2 c). The proof of Theorem 4.1 is finished. �

4.2. Proof of Theorem 1.3 for the case δ = 0. The proof of Theorem 1.3 for
this case follows from an approximation argument, exactly in the same way as that
in Section 5.3 of [40]. Suppose that the integrand f of functional (1.1) satisfies the
structure condition

(4.18)
|z|p−2|ξ|2 ≤ 〈D2f(z)ξ, ξ〉 ≤ L|z|p−2|ξ|2;

|Df(z)| ≤ L|z|p−1

for all z, ξ ∈ R2n, where L ≥ 1 is a constant. We may assume that f(0) = 0. For
δ > 0, we define

(4.19) fδ(z) =

{(
δ + f(z)

2
p
) p

2 , if 1 < p < 2;

δ
p−2
2 |z|2 + f(z), if p ≥ 2.

Then, it is easy to see that fδ satisfies a structure condition similar to (1.2) for all
δ > 0, that is,

(4.20)

1

L̃
(δ + |z|2)

p−2
2 |ξ|2 ≤ 〈D2fδ(z)ξ, ξ〉 ≤ L̃(δ + |z|2)

p−2
2 |ξ|2;

|Dfδ(z)| ≤ L̃(δ + |z|2)
p−2
2 |z|,

where L̃ = L̃(p, L) ≥ 1. Now let u ∈ HW 1,p(Ω) be a solution of (1.3) satisfying
the structure condition (4.18). We denote by uδ the unique weak solution of the
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following Dirichlet problem

(4.21)

{
divH

(
Dfδ(Xw)

)
= 0 in Ω;

w − u ∈ HW 1,p
0 (Ω).

Then we may apply Theorem 1.3 for the case δ > 0 to solution uδ. We obtain the
uniform estimate (1.9) for uδ. Letting δ → 0, we conclude the proof of Theorem 1.3
for the case δ = 0. The proof is finished.

5. Appendix

Proof of Lemma 3.1. Fix l ∈ {1, 2, ..., n} and β ≥ 0. Let η ∈ C∞0 (Ω) be a non-
negative cut-off function. Set

(5.1) ϕ = ηβ+2vβ+2|Xu|2Xlu.

We use ϕ as a test-function in equation (2.3) to obtain that

(5.2)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+2DjDif(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx

=− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+1vβ+2|Xu|2XluDjDif(Xu)XjXluXiη dx

− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+1|Xu|2XluDjDif(Xu)XiXluXiv dx

−
∫

Ω

2n∑

i=1

Dn+lDif(Xu)TuXi

(
ηβ+2vβ+2|Xu|2Xlu

)
dx

+

∫

Ω

T
(
Dn+lf(Xu)

)
ηβ+2vβ+2|Xu|2Xlu dx

= I l1 + I l2 + I l3 + I l4.

Here we denote the integrals in the right hand side of (5.2) by I l1, I
l
2, I

l
3 and I l4 in

order respectively. Similarly, by equation (2.4) we have for all l ∈ {n+1, n+2, ..., 2n}
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that

(5.3)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+2DjDif(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx

=− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+1vβ+2|Xu|2XluDjDif(Xu)XjXluXiη dx

− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+1|Xu|2XluDjDif(Xu)XiXluXiv dx

+

∫

Ω

2n∑

i=1

Dl−nDif(Xu)TuXi

(
ηβ+2vβ+2|Xu|2Xlu

)
dx

−
∫

Ω

T
(
Dl−nf(Xu)

)
ηβ+2vβ+2|Xu|2Xlu dx

= I l1 + I l2 + I l3 + I l4.

Again we denote the integrals in the right hand side of (5.3) by I l1, I
l
2, I

l
3 and I l4 in

order respectively. Summing up the above equation (5.2) and (5.3) for all l from 1
to 2n, we end up with

(5.4)

∫

Ω

∑

i,j,l

ηβ+2vβ+2DjDif(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx =

∑

l

4∑

m=1

I lm.

Here all sums for i, j, l are from 1 to 2n.
In the following, we estimate both sides of (5.4). For the left hand of (5.4), note

that

Xi

(
|Xu|2Xlu

)
= |Xu|2XiXlu+Xi(|Xu|2)Xlu.

Then by the structure condition (1.2), we have that
∑

i,j,l

DjDif(Xu)XjXluXi

(
|Xu|2Xlu

)
≥
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2,

which gives us the following estimate for the left hand side of (5.4)

(5.5) left of (5.4) ≥
∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx.

Then we estimate the right hand side of (5.4). We will show that I lm satisfies the
following estimate for each l = 1, 2, ..., 2n and each m = 1, 2, 3, 4

(5.6)

|I lm| ≤
1

36n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2

(
δ + |Xu|2

) p−2
2 |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx,
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where c = c(n, p, L) > 0. Then the lemma follows from the above estimates (5.5)
and (5.6) for both sides of (5.4). The proof of the lemma is finished, modulo the
proof of (5.6). In the rest, we prove (5.6) in the order of m = 1, 2, 3, 4.

First, when m = 1, we have for I l1, l = 1, 2, ..., 2n, by the structure condition (1.2)
that

|I l1| ≤ c(β + 2)

∫

Ω

ηβ+1|Xη|vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|3|XXu| dx,

from which it follows by Young’s inequality that

(5.7)

|I l1| ≤
1

36n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4 dx.

Thus (5.6) holds for I l1, l = 1, 2, ..., 2n.
Second, when m = 2, we have for I l1, l = 1, 2, ..., 2n, by the structure condition

(1.2) that

|I l2| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|3|XXu‖Xv| dx,

from which it follows by Young’s inequality that

(5.8)

|I l2| ≤
1

36n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx.

This proves (5.6) for I l2, l = 1, 2, ..., 2n.
Third, when m = 3, we note that

∣∣Xi

(
ηβ+2vβ+2|Xu|2Xlu

)∣∣ ≤ 3ηβ+2vβ+2|Xu|2|XXu|
+ (β + 2)ηβ+1vβ+2|Xu|3|Xη|+ (β + 2)ηβ+2vβ+1|Xu|3|Xv|.

Thus by the structure condition (1.2), we have

|I l3| ≤ c
∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu||Tu| dx

+ c(β + 2)

∫

Ω

ηβ+1|Xη|vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|3|Tu| dx

+ c(β + 2)

∫

Ω

ηβ+2vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|3|Xv‖Tu| dx,

from which it follows by Young’s inequality that

(5.9)

|I l3| ≤
1

36n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx.
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This proves (5.6) for I l3, l = 1, 2, ..., 2n.
Finally, when m = 4, we prove (5.6) for I l4. We consider only the case l = 1, 2, ..., n.

The case l = n+ 1, n+ 2, ..., 2n can be treated similarly. Let

(5.10) w = ηβ+2|Xu|2Xlu.

Then we can write test-function ϕ defined as in (5.1) as ϕ = vβ+2w. We rewrite T
as T = X1Xn+1 −Xn+1X1. Then integration by parts yields

(5.11)

I l4 =

∫

Ω

T
(
Dn+lf(Xu)

)
ϕdx

=

∫

Ω

X1

(
Dn+lf(Xu)

)
Xn+1ϕ−Xn+1

(
Dn+lf(Xu)

)
X1ϕdx.

Note that

Xϕ = (β + 2)vβ+1wXv + vβ+2Xw.

Thus (5.11) becomes

(5.12)

I l4 = (β + 2)

∫

Ω

vβ+1w
(
X1

(
Dn+lf(Xu)

)
Xn+1v −Xn+1

(
Dn+lf(Xu)

)
X1v

)
dx

+

∫

Ω

vβ+2
(
X1

(
Dn+lf(Xu)

)
Xn+1w −Xn+1

(
Dn+lf(Xu)

)
X1w

)
dx

= J l +K l.

Here we denote the first and the second integral in the right hand side of (5.11) by
J l and K l, respectively. We estimate J l as follows. By the structure condition (1.2)
and the definition of w as in (5.10),

|J l| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|3|XXu‖Xv| dx,

from which it follows by Young’s inequality, that

(5.13)

|J l| ≤ 1

72n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx.

The above inequality shows that J l satisfies similar estimate as (5.6) for all l =
1, 2, ..., n. Then we estimate K l. Integration by parts again, yields

(5.14)

K l = (β + 2)

∫

Ω

vβ+1Dn+lf(Xu)
(
Xn+1vX1w −X1vXn+1w

)
dx

−
∫

Ω

vβ+2Dn+lf(Xu)Tw dx

=K l
1 +K l

2.

For K l
1, we have by the structure condition (1.2) that

|K l
1| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|3|XXu‖Xv| dx

+ c(β + 2)2

∫

Ω

ηβ+1vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv‖Xη| dx
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from which it follows by Young’s inequality that

(5.15)

|K l
1| ≤

1

144n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4 dx.

The above inequality shows that K l
1 also satisfies similar estimate as (5.6) for all

l = 1, 2, ..., n. We continue to estimate K l
2 in (5.14). Note that

Tw = (β + 2)ηβ+1|Xu|2XluTη + ηβ+2|Xu|2XlTu+
2n∑

i=1

2ηβ+2XluXiuXiTu.

Therefore we write K l
2 as

K l
2 = − (β + 2)

∫

Ω

ηβ+1vβ+2Dn+lf(Xu)|Xu|2XluTη dx

−
∫

Ω

ηβ+2vβ+2Dn+lf(Xu)|Xu|2XlTu dx

− 2
2n∑

i=1

∫

Ω

ηβ+2vβ+2Dn+lf(Xu)XluXiuXiTu dx.

For the last two integrals in the above equality, we apply integration by parts. We
obtain that

K l
2 = − (β + 2)

∫

Ω

ηβ+1vβ+2Dn+lf(Xu)|Xu|2XluTη dx

+

∫

Ω

Xl

(
ηβ+2vβ+2Dn+lf(Xu)|Xu|2

)
Tu dx

+ 2
2n∑

i=1

∫

Ω

Xi

(
ηβ+2vβ+2Dn+lf(Xu)XluXiu

)
Tu dx.

Now we may estimate the integrals in the above equality by the structure condition
(1.2). We obtain the following estimate for K l

2.

|K l
2| ≤ c(β + 2)

∫

Ω

ηβ+1vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|4|Tη| dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu‖Tu| dx

+ c(β + 2)

∫

Ω

ηβ+2vβ+1
(
δ + |Xu|2

) p−2
2 |Xu|3|Xv‖Tu| dx

+ c(β + 2)

∫

Ω

ηβ+1vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|3|Xη‖Tu| dx.
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By Young’s inequality, we end up with the following estimate for K l
2

(5.16)

|K l
2| ≤

1

144n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2

(
δ + |Xu|2

) p−2
2 |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx.

This shows that K l
2 also satisfies similar estimate as (5.6). Now we combine the

estimates (5.15) for K l
1 and (5.16) for K l

2. Recall that K l is the sum of K l
1 and K l

2

as denoted in (5.14). We obtain that the following estimate for K l.

(5.17)

|K l| ≤ 1

72n

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2

(
δ + |Xu|2

) p−2
2 |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβ
(
δ + |Xu|2

) p−2
2 |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2
(
δ + |Xu|2

) p−2
2 |Xu|2|Tu|2 dx.

Recall that I l4 is the sum of J l and K l. We combine the estimates (5.13) for J l and
(5.17) for K l, and we can see that the claimed estimate (5.6) holds for I l4 for all
l = 1, 2, ..., n. We can prove (5.6) similarly for I l4 for all l = n+ 1, n+ 2, ..., 2n. This
finishes the proof of the claim (5.6) for I lm for all l = 1, 2, ..., 2n and all m = 1, 2, 3, 4,
and hence also the proof of the lemma. �

References

[1] T. Bieske, On∞-harmonic functions on the Heisenberg group, Comm. Partial Differential
Equations 27 (2002), no. 3-4, 727–761.

[2] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie groups and potential theory
for their sub-Laplacians, Springer-Verlag Berlin Heidelberg, 2007.

[3] L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Comm. Pure
Appl. Math. 50 (1997), 867–889.

[4] L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot
groups, Mathematische Annalen 313 (1999), 263–295.

[5] L. Capogna, C. Giovanna and M. Manfredini, Regularity of non-characteristic minimal
graphs in the Heisenberg group H1, preprint (2008).

[6] L. Capogna, C. Giovanna and M. Manfredini, Smoothness of Lipschitz intrinsic minimal
graphs in the Heisenberg group Hn, n > 1, preprint (2008).

[7] L. Capogna and M. Cowling, Conformality and Q-harmonicity in Carnot groups, Duke
Math. J. 135 (2006), 455–479.

[8] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack in-
equality for nonlinear subelliptic equations, Comm. P.D.E 18 (1993), 1765–1794.

[9] L. Capogna, D. Danielli, S.D. Pauls and J. Tyson An introduction to the Heisenberg
group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, 259,
Birkhauser, 2007.



28 SHIRSHO MUKHERJEE AND XIAO ZHONG

[10] L. Capogna and N. Garofalo, Regularity of minimizers of the calculus of variations in
Carnot groups via hypoellipticity of systems of Hörmander type, J. Eur. Math. Soc.
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[24] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967),

147–171.
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ON LOCAL LIPSCHITZ REGULARITY FOR QUASILINEAR
EQUATIONS IN THE HEISENBERG GROUP

SHIRSHO MUKHERJEE

Abstract. The goal of this article is to establish local Lipschitz continuity of weak solutions
for a class of degenerated elliptic equations of divergence form, in the Heisenberg Group.
The considered hypothesis for the growth and ellipticity condition, is a natural generalisation
of the p-Laplace equation and more general quasilinear elliptic equations with polynomial
or exponential type growth.

1. Introduction

Lipschitz continuity of weak solutions for variational problems in the Heisenberg Group
Hn, has been studied in [36], where equations with growth conditions of p-Laplacian type
was considered. The purpose this paper is to reproduce this result, for a larger class of more
general quasilinear equations.

In a domain Ω ⊂ Hn, for n ≥ 1, we consider the equation

(1.1)
2n∑

i=1

Xi(Ai(Xu)) = 0,

where X1, . . . , X2n are the horizontal vector fields, Xu = (X1u, . . . , X2nu) is the horizontal
gradient of a function u : Ω → R and Ai : R2n → R are given C1 functions. We denote
A : R2n → R2n as A(z) = (A1(z),A2(z), . . . ,A2n(z)) for z ∈ R2n and DA(z) as the 2n× 2n
Jacobian matrix (∂Ai(z)/∂zj)ij. We assume that DA(z) is symmetric and satisfies

(1.2)

g(|z|)
|z| |ξ|

2 ≤
〈
DA(z) ξ, ξ

〉
≤ L

g(|z|)
|z| |ξ|

2;

|A(z)| ≤ Lg(|z|),
for every z, ξ ∈ R2n, where L ≥ 1 and g : [0,∞) → [0,∞) is a C1 function, g(0) = 0 and
there exists constants g0 ≥ δ > 0, such that the following holds

(1.3) δ ≤ tg′(t)

g(t)
≤ g0 for all t > 0.

In the Euclidean setting, conditions (1.2) and (1.3) have been introduced by Lieberman
[23], in order to produce a natural extension of the structure conditions for elliptic operators
in divergence form, previously considered by Ladyzhenskaya and Ural’tseva [21], which in his
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Key words and Phrases. Heisenberg Group, Quasilinear equation, Lipschitz regularity.
The author was supported by the European Unions Seventh Framework Programme Metric Analysis For
Emergent Technologies (MAnET), Marie Curie Actions-Initial Training Network, under Grant Agreement
No. 607643.
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words is “ in a sense, the best generalization ”. The most prominent model case is produced
from minimization of scalar variational integrals of the form

I(u) =

∫

Ω

G(|Xu|) dx,

where G(t) =
∫ t

0
g(s) ds. Clearly, the corresponding Euler-Lagrange equation is

(1.4) divH

(
g(|Xu|) Xu

|Xu|
)

=
2n∑

i=1

Xi

(
g(|Xu|) Xiu

|Xu|
)

= 0,

which forms a prototype example of the equation (1.1) with the structure condition (1.2).
The condition (1.3) can appear naturally if one considers defining

(1.5) δ = inf
t>0

tg′(t)

g(t)
and g0 = sup

t>0

tg′(t)

g(t)
.

In view of this, one can check out the special case when g is a power-like function e.g.

g(t) = t(ε + t2)
p−2

2 ; in this case tg′(t)/g(t) = 1 + (p − 2)t2/(ε + t2), which corresponds to
δ = min{1, p − 1} and g0 = max{1, p − 1}. Moreover, if g(t) = tp−1 in particular, for
1 < p < ∞, then it satisfies (1.3) with δ = p − 1 = g0 and (1.4) becomes the sub-elliptic
p-laplace equation divH(|Xu|p−2Xu) = 0.

We refer to [32, 7, 33, 16, 15, 35, 12, 22] and references therein, for earlier works on
regularity theory of elliptic equations in divergence form, including the p-laplace equations
in the setting of the Euclidean spaces.

The conditions (1.2) and (1.3) encompass quasilinear equations for a wide class of structure
function g. Some natural examples include functions having growth similar to that of power-
like functions and there logarithmic perturbations. We enlist two particular examples:

(1) g(t) = (e+ t)a+b sin(log log(e+t)) − ea for b > 0, a ≥ 1 + b
√

2

(2) g(t) = tα(log(a+ t))β for α, β > 0, a ≥ 1,

see [14, 26]. In addition, multiple candidates satisfying condition (1.3) can be glued together
to form the function g. A suitable gluing of the monomials tα−ε, tα and tβ+ε for β > α > ε as
shown in [23], can be constructed in such a way that certain non-standard growth conditions
(so called (p, q)-growth condition) of Marcellini [25], can also be included in this setting.
Lastly, we remark that the positivity of the constants in (1.5), is essential and the techniques
do not apply to the borderline cases e.g. δ = 0. Thus, the equations of the form (1.4) exclude
the 1-laplace equation or minimal surface equation.

Regularity theory in the Heisenberg Group, begins from the seminal work of Hörmander
[18], where linear equations have been considered. For the case of quasilinear equations in
this setting, we refer to [2, 3, 5, 13, 10, 11, 27, 24, 9] etc. for earlier results on regularity
of weak solutions. The local Lipschitz continuity of weak solutions for p-laplace equation in
Hn, has been shown in [36]. The techniques used in there, paves the way for this paper.

The natural domain for the weak solution of (1.1) is the Horizontal Orlicz-Sobolev space
HW 1,G(Ω) (see Section 2 for details). This is defined similarly as the Horizontal Sobolev
space HW 1,p(Ω) (see [24, 28, 36]). The following theorem is our main result.
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Theorem 1.1. Let u ∈ HW 1,G(Ω) be a weak solution of equation (1.1) with g is as in (1.2)

and (1.3) and G(t) =
∫ t

0
g(s) ds. Then Xu ∈ L∞loc(Ω,R2n) and moreover for any Br ⊂ Ω, we

have the estimate

(1.6) sup
Bσr

G(|Xu|) ≤ c

(1− σ)Q

∫

Br

G(|Xu|) dx

for any 0 < σ < 1, where c = c(n, δ, g0, L) > 0 is a constant.

This paper is organised as follows. We provide some preliminary facts on Heisenberg
group, Orlicz-Sobolev spaces and sub-elliptic equations in Section 2. Then we prove several
Caccioppoli type inequalities of the horizontal and vertical derivatives in Section 3, followed
by the proof of Theorem 1.1 in the end.

Finally, we remark that local C1,α-regularity of weak solutions of the p-laplace equation in
Hn, has been shown recently in [30]; the techniques can be adopted to show the same result
for the equation (1.1), as well. Furthermore, C1,α-regularity can also be shown for general
quasilinear equations of the form

divH A(x, u,Xu) +B(x, u,Xu) = 0,

with appropriate growth and ellipticity conditions. These topics shall be addressed in a
follow up article [29], yet to appear.

2. Preliminaries

In this section, we fix the notations used and introduce the Heisenberg Group Hn. Also,
we provide some essential facts on Orlicz-Sobolev spaces and sub-elliptic equations.

Throughout this paper, we shall denote a postive constant by c which may vary from line
to line. But c would depend only on the dimension n, the constant g0 and L of (1.3) and
(1.2), unless it is explicitly specified otherwise. The dependence on δ of (1.3) shall appear
at the very end.

2.1. Heisenberg Group.
Here we provide the definition and properties of Heisenberg group that would be useful in
this paper. For more details, we refer the reader to the books [1, 4].

Definition 2.1. For n ≥ 1, the Heisenberg Group denoted by Hn, is identified to the
Euclidean space R2n+1 with the group operation

(2.1) x · y :=
(
x1 + y1, . . . , x2n + y2n, t+ s+

1

2

n∑

i=1

(xiyn+i − xn+iyi)
)

for every x = (x1, . . . , x2n, t), y = (y1, . . . , y2n, s) ∈ Hn.

Thus, Hn with the group operation (2.1) forms a non-Abelian Lie group, whose left in-
variant vector fields corresponding to the canonical basis of the Lie algebra, are

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i

+
xi
2
∂t,

for every 1 ≤ i ≤ n and the only non zero commutator is T = ∂t. We have

(2.2) [Xi , Xn+i] = T and [Xi , Xj] = 0 ∀ j 6= n+ i.
3



We call X1, . . . , X2n as horizontal vector fields and T as the vertical vector field. For a scalar
function f : Hn → R, we denote

Xf := (X1f, . . . , X2nf) and XXf := (Xi(Xjf))i,j

as the Horizontal gradient and Horizontal Hessian, respectively. From (2.2), we have the
following trivial but nevertheless, an important inequality

(2.3) |Tf | ≤ 2|XXf |.
For a vector valued function F = (f1, . . . , f2n) : Hn → R2n, the Horizontal divergence is
defined as divH(F ) :=

∑2n
i=1Xifi.

The Euclidean gradient of a function g : Rk → R, shall be denoted by∇g = (D1g, . . . , Dkg)
and the Hessian matrix by D2g.

A piecewise smooth rectifiable curve γ is called a horizontal curve if its tangent vectors
are contained in the horizontal sub-bundle H = span{X1, . . . , X2n}, that is γ′(t) ∈ Hγ(t) for
almost every t. For any x, y ∈ Hn, if the set of all horizontal curves is denoted as

Γ(x, y) =
{
γ : [0, 1]→ Hn : γ(0) = x, γ(1) = y, γ′(t) ∈ Hγ(t)

}
,

then Chow’s accessibility theorem (see [6]) gurantees Γ(x, y) 6= ∅. The Carnot-Carathèodory
metric (CC-metric) is defined in terms of the length `(γ) of horizontal curves, as

(2.4) d(x, y) = inf {`(γ) : γ ∈ Γ(x, y)} .
This is equivalent to the Korànyi metric dHn(x, y) = ‖y−1 · x‖Hn , where the Korànyi norm
for x = (x1, . . . , x2n, t) ∈ Hn is given by

(2.5) ‖x‖Hn :=
( 2n∑

i=1

x2
i + |t|

) 1
2
.

Throughout this article we use CC-metric balls denoted by Br(x) = {y ∈ Hn : d(x, y) < r}
for r > 0 and x ∈ Hn. However, by virtue of the equivalence of the metrics, all assertions
for CC-balls can be restated to Korànyi balls.

The Haar measure of Hn is just the Lebesgue measure of R2n+1. The Hausdorff dimension
with respect to the metric d is also the homogeneous dimension of the group Hn, which shall
be denoted as Q = 2n+ 2, throughout this paper. Thus, for any CC-metric ball Br, we have
that |Br| = c(n)rQ.

For 1 ≤ p < ∞, the Horizontal Sobolev space HW 1,p(Ω) consists of functions u ∈ Lp(Ω)
such that the distributional horizontal gradient Xu is in Lp(Ω ,R2n). HW 1,p(Ω) is a Banach
space with respect to the norm

(2.6) ‖u‖HW 1,p(Ω) = ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,R2n).

We define HW 1,p
loc (Ω) as its local variant and HW 1,p

0 (Ω) as the closure of C∞0 (Ω) in HW 1,p(Ω)
with respect to the norm in (2.6). The Sobolev Embedding theorem has the following version
in the setting of Heisenberg group (see [3, 4]).

Theorem 2.2 (Sobolev Embedding). Let Br ⊂ Hn and 1 < q < Q. For all u ∈ HW 1,q
0 (Br),

there exists constant c = c(n, q) > 0 such that

(2.7)

(∫

Br

|u|
Qq
Q−q dx

)Q−q
Qq

≤ c r

(∫

Br

|Xu|q dx
) 1

q

.
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We remark that the Lipshcitz continuity that is considered, is implied in the sense of
Folland-Stein i.e. the Lipshcitz continuity with respect to the CC-metric. It does not make
any assertion on the regularity of the vertical derivative.

2.2. Orlicz-Sobolev Spaces.
In this subsection, we recall some facts on Orlicz-Sobolev functions, which shall be necessary
later. Further details can be found in textbooks e.g. [20, 31].

Definition 2.3 (Young function). If ψ : [0,∞)→ [0,∞) is an non-decreasing, left continuous
function with ψ(0) = 0 and ψ(s) > 0 for all s > 0, then any function Ψ : [0,∞)→ [0,∞] of
the form

(2.8) Ψ(t) =

∫ t

0

ψ(s) ds

is called a Young function. A continuous Young function Ψ : [0,∞) → [0,∞) satisfying
Ψ(t) = 0 iff t = 0, limt→∞Ψ(t)/t =∞ and limt→0 Ψ(t)/t = 0, is called N-function.

There are several different definitions available in various references. However, within a
slightly restricted range of functions (as in our case), all of them are equivalent. We refer to
the book by Rao-Ren [31], for a more general discussion.

Definition 2.4 (Conjugate). The generalised inverse of a montone function ψ is defined as

ψ−1(t) := inf{s ≥ 0 | ψ(s) > t}. Given any Young function Ψ(t) =
∫ t

0
ψ(s)ds, its conjugate

function Ψ∗ : [0,∞)→ [0,∞] is defined as

(2.9) Ψ∗(s) :=

∫ s

0

ψ−1(t) dt

and (Ψ,Ψ∗) is called a complementary pair, which is normalised if Ψ(1) + Ψ∗(1) = 1.

A Young function Ψ is convex, increasing, left continuous and satisfies Ψ(0) = 0 and
limt→∞Ψ(t) =∞. The generalised inverse of Ψ is right continuous, increasing and coincides
with the usual inverse when Ψ is continuous and strictly increasing. In general, the inequality

(2.10) Ψ(Ψ−1(t)) ≤ t ≤ Ψ−1(Ψ(t))

is satisfied for all t ≥ 0 and equality holds when Ψ(t) and Ψ−1(t) ∈ (0,∞). It is also evident
that that the conjugate function Ψ∗ is also a Young function, Ψ∗∗ = Ψ and for any constant
c > 0, we have (cΨ)∗(t) = cΨ∗(t/c). Here are two standard examples of complementary
pair of Young functions.

(1) Ψ(t) = tp/p and Ψ∗(t) = tp
∗
/p∗ when 1 < p, p∗ <∞ and 1/p+ 1/p∗ = 1.

(2) Ψ(t) = (1 + t) log(1 + t)− t and Ψ∗(t) = et − t− 1.

Lemma 2.5. If (Ψ,Ψ∗) is a complementary pair of N-functions, then for any t > 0 we have

(2.11) Ψ∗
(

Ψ(t)

t

)
≤ Ψ(t).

Proof. Let Ψ(t) =
∫ t

0
ψ(s)ds. From mean value theorem, there exists s0 ∈ (0, t] such that

ψ(s0) =
1

t

∫ t

0

ψ(s) ds =
Ψ(t)

t
5



for every t > 0. Using definition (2.9) and mean value theorem again, we find that there
exist r0 ∈ (0, ψ(s0)), such that we have

Ψ∗
(

Ψ(t)

t

)
=

∫ Ψ(t)/t

0

ψ−1(r) dr =
Ψ(t)

t
ψ−1(r0).

Since ψ and ψ−1 are non-decreasing functions, hence ψ−1(r0) ≤ ψ−1(ψ(s0)) = s0 ≤ t. Using
this on the above, one easily gets (2.11), to complete the proof. �

The following Young’s inequality is well known. We refer to [31] for a proof.

Theorem 2.6 (Young’s Inequality). Given a Young function Ψ(t) =
∫ t

0
ψ(s)ds, we have the

following for all s, t > 0;

(2.12) st ≤ Ψ(s) + Ψ∗(t)

and equality holds iff t = ψ(s) or s = ψ−1(t).

Definition 2.7 (Doubling function). The Young function Ψ is called doubling if there exists
a constant C2 > 0 such that for all t ≥ 0, we have

Ψ(2t) ≤ C2 Ψ(t).

In the growth and ellipticity condition (1.2), the structure function g satisfying (1.3), is a
doubling function. Its doubling constant C2 = 2g0 (see Lemma 2.12 below). Henceforth, we
restrict to Orlicz spaces of doubling functions, thereby avoiding unnecessary technicalities.

Definition 2.8. Let Ω ⊂ Rm be open and µ be a σ-finite measure on Ω. For a doubling
Young function Ψ, the Orlicz space LΨ(Ω, µ) is defined as the vector space generated by
the set {u : Ω → R | u measurable,

∫
Ω

Ψ(|u|) dµ < ∞}. The space is equipped with the
following Luxemburg norm

(2.13) ‖u‖LΨ(Ω,µ) := inf
{
k > 0 :

∫

Ω

Ψ

( |u|
k

)
dµ ≤ 1

}

If µ is the Lebesgue measure, the space is denoted by LΨ(Ω) and any u ∈ LΨ(Ω) is called a
Ψ-integrable function.

The function u 7→ ‖u‖LΨ(Ω,µ) is lower semi continuous and LΨ(Ω, µ) is a Banach space with
the norm in (2.13). The following theorem is a generalised version of Hölder’s inequality,
which follows easily from the Young’s inequality (2.12), see [31] or [34].

Theorem 2.9 (Hölder’s Inequality). For every u ∈ LΨ(Ω, µ) and v ∈ LΨ∗(Ω, µ), we have

(2.14)

∫

Ω

|uv| dµ ≤ 2 ‖u‖LΨ(Ω,µ)‖v‖LΨ∗ (Ω,µ)

Remark 2.10. The factor 2 on the right hand side of the above, can be dropped if (Ψ,Ψ∗) is
normalised and one is replaced by Ψ(1) in the definition (2.13) of Luxemburg norm.

The Orlicz-Sobolev space W 1,Ψ(Ω) can be defined similarly by LΨ norms of the function
and its gradient, see [31], that resembles W 1,p(Ω) for the special case of Ψ(t) = tp. But here
for Ω ⊂ Hn, we require the notion of Horizontal Orlicz-Sobolev spaces, analoguous to the
horizontal Sobolev spaces defined in the previous subsection.
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Definition 2.11. We define the space HW 1,Ψ(Ω) = {u ∈ LΨ(Ω) | Xu ∈ LΨ(Ω,R2n)} for an
open set Ω ⊂ Hn and a doubling Young function Ψ, along with the norm

‖u‖HW 1,Ψ(Ω) := ‖u‖LΨ(Ω) + ‖Xu‖LΨ(Ω,R2n);

the spaces HW 1,Ψ
loc (Ω), HW 1,Ψ

0 (Ω) are defined, similarly as earlier.

We remark that, all these notions can be defined for a general metric space, equipped with
a doubling measure and upper gradient. More details of these can be found in [34].

2.3. Sub-elliptic equations.
Here, we discuss the known results on existence and uniqueness of weak solutions of the
equation (1.1). Using the notation of horizontal divergence, we rewrite (1.1) as

(2.15) − divH(A(Xu)) = 0 in Ω,

where A : R2n → R2n satisfies (1.2) and the matrix DA(z) is symmetric. Now, we enlist
some important properties of the structure function g, in the following lemma.

Lemma 2.12. Let g ∈ C1([0,∞)) be a function that satisfies (1.3) for some constant g0 > 0

and g(0) = 0. If G(t) =
∫ t

0
g(s)ds, then the following holds.

(1) G ∈ C2([0,∞)) is convex ;(2.16)

(2) tg(t)/(1 + g0) ≤ G(t) ≤ tg(t) ∀ t ≥ 0;(2.17)

(3) g(s) ≤ g(t) ≤ (t/s)g0g(s) ∀ 0 ≤ s < t;(2.18)

(4) G(t)/t is an increasing function ∀ t > 0;(2.19)

(5) tg(s) ≤ tg(t) + sg(s) ∀ t, s ≥ 0.(2.20)

The proof of the above lemma is trivial (see Lemma 1.1 of [23]), so we omit it. Notice
that (2.18) implies that g is increasing and doubling, with g(2t) ≤ 2g0g(t). In fact, it is easy
to see that, (1.3) implies t 7→ g(t)/tg0 is decreasing and t 7→ g(t)/tδ is increasing. Thus,

(2.21) min{αδ, αg0}g(t) ≤ g(αt) ≤ max{αδ, αg0}g(t) for all α, t ≥ 0.

Here onwards, we fix the following notations,

(2.22) F(t) := g(t)/t and G(t) :=

∫ t

0

g(s) ds.

Thus, F and G are also doubling functions and G is a Young function. Now we restate the
structure condition (1.2). For every z, ξ ∈ R2n, we have that

(2.23)
F(|z|)|ξ|2 ≤

〈
DA(z) ξ, ξ

〉
≤ LF(|z|)|ξ|2;

|A(z)| ≤ L |z|F(|z|).
Definition 2.13. Any u ∈ HW 1,G(Ω) is called a weak solution of the equation (2.15) if for
every ϕ ∈ C∞0 (Ω), we have that

(2.24)

∫

Ω

〈
A(Xu),Xϕ

〉
dx = 0.

In addition, for all non-negative ϕ ∈ C∞0 (Ω), if the integral above is positive (resp. negative)
then u is called a weak supersolution (resp. subsolution) of the equation (2.15).

7



Monotonicity of the operator A is required for existence of weak solutions. This follows
from the structure condition (2.23). First, notice that, from (2.23)

〈
A(z)−A(w), z − w

〉
=

∫ 1

0

〈
DA

(
w + t(z − w)

)
(z − w), (z − w)

〉
dt

≥ |z − w|2
∫ 1

0

F(|w + t(z − w)|) dt,

for any z, w ∈ R2n. Now, it is possible to show that

|z|/2 ≤ |tz + (1− t)w| ≤ 3|z|/2 if |z − w| ≤ 2|z|, t ≥ 3/4,

|z − w|/4 ≤ |tz + (1− t)w| ≤ 3|z − w|/2 if |z − w| > 2|z|, t ≤ 1/4,

with appropriate use of triangle inequality. Combining the above inequalities and using the
doubling property, we have the following monotonicity inequality

(2.25)
〈
A(z)−A(w), z − w

〉
≥ c(g0)

{
|z − w|2 F(|z|) if |z − w| ≤ 2|z|
|z − w|2 F(|z − w|) if |z − w| > 2|z|

and therefore the following ellipticity condition

(2.26)
〈
A(z), z

〉
≥ c(g0) |z|2F(|z|) ≥ c(g0)G(|z|).

Remark 2.14. The inequality in (2.25) is reminiscent of the monotonicity inequality for the
p-laplacian operator. Precisely, when A(z) = |z|p−2z for 1 < p <∞, we have

(
|z|p−2z − |w|p−2w

)
· (z − w) ≥ c(p)

{
|z − w|2(|z|+ |w|)p−2 if 1 < p < 2

|z − w|p if p ≥ 2
(2.27)

and from this, one can also derive (2.25) for this special case.

Theorem 2.15 (Existence). If u0 ∈ HW 1,G(Ω) is a given function and the operator A has
the structure condition (2.23), then there exists a unique weak solution u ∈ HW 1,G(Ω) for
the Dirichlet problem

(2.28)

{
− divH(A(Xu)) = 0 in Ω;

u− u0 ∈ HW 1,G
0 (Ω).

The proof of this theorem is a standard variant of that for the Euclidean setting and
relies on literature of variational inequalities for monotone operators by Kinderlehrer and
Stampacchia [19]. Similarly as the proof of Theorem 17.1 in [17], it is possible to show that
there exists u ∈ K satisfying the variational inequality

∫

Ω

〈
A(Xu),Xw − Xu

〉
dx ≥ 0

for all w ∈ K, where K = {v ∈ HW 1,G(Ω) | v − u0 ∈ HW 1,G
0 (Ω)}. Arguing with w = u ± ϕ

for any ϕ ∈ C∞0 (Ω), it is easy to see that u satisfies (2.24) and hence, is a weak solution of
(2.28). The conditions for existence of u, can be established from the monotonicity (2.25).

The uniqueness, follows from the following comparison principle, which can be easily
proved by choosing an appropriate test function on (2.15) and using monotonicity.
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Lemma 2.16 (Comparison Principle). Given u, v ∈ HW 1,G(Ω), if u and v respectively are
weak super and subsolution of the equation (2.15) and u ≥ v on ∂Ω in the trace sense, then
we have u ≥ v a.e. in Ω.

We would also require that, the weak solution of the Dirichlet problem (2.28) is Lipschitz
with respect to CC-metric, if it has smooth boundary value in strictly convex domain. The
proof of this resembles the Hilbert-Haar theory in the Euclidean setting. Actually, this is
the only place where we require that DA is symmetric.

We consider a bounded domain D ⊂ R2n+1 which is convex and there exists a constant
ε0 > 0 such that the following holds : for every y ∈ ∂D, there exists b(y) ∈ R2n+1 with
|b(y)| = 1, such that

(2.29) b(y) · (x− y) ≥ ε0|x− y|2

for all x ∈ D̄. Here (·) is the Euclidean inner product and |.| is the Euclidean norm of
R2n+1. The following theorem shows existence of Lipschitz continuous solutions of (2.15).
The statement and the proof of this theorem, are the same as those of Theorem 5.1 of [36].
For sake of completeness, we provide the proof here.

Theorem 2.17. Let D ⊂ Hn be a bounded and convex domain satisfying (2.29) for some
ε0 > 0. Given u0 ∈ C2(D̄), if u ∈ HW 1,G(D) is the weak solution of the Dirichlet problem

(2.30)

{
divH(A(Xu)) = 0 in D;

u− u0 ∈ HW 1,G
0 (D).

then there exists a constant M = M
(
n, ε0, ‖∇u0‖L∞(D̄) +‖D2u0‖L∞(D̄), diam(D)

)
> 0, such

that we have

‖Xu‖L∞(D) ≤M

Proof. This proof is the same as that of Theorem 5.1 in [36], with minor changes. Here, we
provide a brief outline for the reader’s convenience. It is enough to show that

(2.31) |u(x)− u(y)| ≤Md(x, y) ∀ x, y ∈ D̄
for some constant M = M

(
n, ε0, ‖∇u0‖L∞(D̄) + ‖D2u0‖L∞(D̄), diam(D)

)
> 0. To this end,

first we fix y ∈ ∂D, then we consider the barrier functions

L±(x) = u0(y) + [∇u0(y)±K b(y)] · (x− y),

where K = (2n+1)2

2ε0
‖D2u0‖L∞(D̄). Taking ξ as an appropriate point between x and y and

using Taylor’s formula followed by the condition (2.29), we obtain

u0(x) = u0(y) +∇u0(y) · (x− y) +
1

2
D2u0(ξ)(x− y) · (x− y)

≤ u0(y) +∇u0(y) · (x− y) +Kε0|x− y|2 ≤ L+(x)

and hence we get L−(x) ≤ u0(x) ≤ L+(x) for all x ∈ D̄. Thus, if u ∈ HW 1,G(D) is the
weak solution of (2.30), since u0 is continuous on the boundary, we have

(2.32) L−(x) ≤ u(x) ≤ L+(x) ∀ x ∈ ∂D
upto a continuous representative of u.
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Now, letting b(y) = (b̃(y), bt(y)) ∈ R2n × R, it is easy to get

XXL±(x) =
1

2

[
∂tu0(y)±K bt(y)

]( 0 In
−In 0

)

for every x ∈ D̄. Thus divH [A(XL±)] = Tr
(
DA(XL±)TXXL±

)
= 0, since the matrix DA(z)

has been assumed to be symmetric. Thus, L± are solutions of the equation (2.30). Using
(2.32) and comparison principle (Lemma 2.16), we get

L−(x) ≤ u(x) ≤ L+(x) ∀ x ∈ D.
Since L± are Lipschitz and L±(y) = u(y), it is evident that there exists M > 0 such that

(2.33) −Md(x, y) ≤ u(x)− u(y) ≤Md(x, y) ∀ x ∈ D̄, y ∈ ∂D
Now, we need the fact that if u be a Lipschitz solution of (2.30), then the following holds

(2.34) sup
x,y∈D̄

( |u(x)− u(y)|
d(x, y)

)
= sup

x∈D̄, y∈∂D

( |u(x)− u(y)|
d(x, y)

)
.

We refer to [36] for a proof of (2.34). From (2.33) and (2.34), we immediately get (2.31) and
the proof is finished. �

3. Local Boundedness of Horizontal gradient

We prove Theorem 1.1 in this section. In the following three subsections we prove some
Caccioppoli type inequalities of the horizontal and vertical vector fields, under two supple-
mentary assumptions (see (3.1) and (3.2) below). The proof of Theorem 1.1 is given at the
end of this section, where we remove both assumptions one by one. Throughout this section,
we denote u ∈ HW 1,G(Ω) as a weak solution of (2.15). We assume the growth and ellipticity
conditions (2.23), retaining the notation (2.22).

Now we make two supplementary assumptions.

(1) There exists m1,m2 > 0 such that lim
t→0

F(t) = m1 and lim
t→∞

F(t) = m2;(3.1)

(2) There exists M > 0 such that ‖Xu‖L∞(Ω) ≤M.(3.2)

The purpose of the assumptions, is to ensure the regularity of weak solutions of the equation
(2.15). Since F(t) = g(t)/t and g is monotonic, F has possible singularities at t → 0 or
t→∞ (or both). The assmption (3.1) avoids this and consequently, the structure condition
(2.23) along with (3.1) and (3.2), imply

(3.3)
ν−1|ξ|2 ≤

〈
DA(Xu) ξ, ξ

〉
≤ ν |ξ|2;

|A(Xu)| ≤ ν |Xu|,
for some ν = ν(g0, L,M,m1,m2) > 0. Thus, the equation (2.15) with (3.3), satisfies the
conditions considered by Capogna in [2]. From Theorem 1.1 and Theorem 3.1 of [2], we get

(3.4) Xu ∈ HW 1,2
loc (Ω,R2n) ∩ C0,α

loc (Ω,R2n), Tu ∈ HW 1,2
loc (Ω) ∩ C0,α

loc (Ω).

However, every estimates in this section, are independent of the constants M,m1,m2. This
enables us to remove both the assumptions (3.1) and (3.2), in the end.
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3.1. Caccioppoli type inequalities.
By virtue of (3.4), we can differentiate the equation (2.15) and obtain the equations satisfied
by Xlu and Tu. This is shown in the following two lemmas.

Lemma 3.1. If u ∈ HW 1,G(Ω) is a weak solution of (2.15), then Tu is a weak solution of

(3.5)
2n∑

i,j=1

Xi(DjAi(Xu)Xj(Tu)) = 0.

The proof of the above lemma is quite easy and similar to Lemma 3.2 in [36]. So, we omit
the proof. The following lemma is similar to Lemma 3.1 in [36].

Lemma 3.2. If u ∈ HW 1,G(Ω) is a weak solution of (2.15), then for any l ∈ {1, . . . , n}, we
have that Xlu is weak solution of

(3.6)
2n∑

i,j=1

Xi(DjAi(Xu)XjXlu) +
2n∑

i=1

Xi(DiAn+l(Xu)Tu) + T (An+l(Xu)) = 0

and similarly, Xn+lu is weak solution of

(3.7)
2n∑

i,j=1

Xi(DjAi(Xu)XjXn+lu)−
2n∑

i=1

Xi(DiAl(Xu)Tu)− T (Al(Xu)) = 0.

Proof. We only prove (3.6), the proof of (3.7) is similar. Let l ∈ {1, 2, . . . , n} and ϕ ∈ C∞0 (Ω)
be fixed. We choose test function Xlϕ in (2.15) to get

∫

Ω

2n∑

i=1

Ai(Xu)XiXlϕdx = 0.

Recalling the commutation relation (2.2) and using integral by parts, we obtain

(3.8)

0 =

∫

Ω

2n∑

i=1

Ai(Xu)XlXiϕdx−
∫

Ω

An+l(Xu)Tϕdx

=−
∫

Ω

2n∑

i=1

Xl(Ai(Xu)Xiϕ)dx+

∫

Ω

T (An+l(Xu))ϕdx.

From (2.2) again, notice that for every i ∈ {1, 2, . . . , 2n},

(3.9) Xl(Ai(Xu)) =
2n∑

j=1

DjAi(Xu)XjXlu+DiAn+l(Xu)Tu.

Thus, (3.8) and (3.9) together completes the proof. �
The following Caccioppoli type inequality for Tu is quite standard and similar to that of

Lemma 3.3 in [36]. We provide a proof for the reader’s convenience.

Lemma 3.3. For any γ ≥ 0 and η ∈ C∞0 (Ω), there exists c = c(n, g0, L) > 0 such that
∫

Ω

η2G(|Tu|)γ+1F(|Xu|)|X(Tu)|2 dx ≤ c

(γ + 1)2

∫

Ω

G(|Tu|)γ+1F(|Xu|)|Tu|2|Xη|2dx.
11



Proof. For some fixed η ∈ C∞0 (Ω) and γ ≥ 0, we choose test funcion

ϕ = η2G(|Tu|)γ+1Tu

in the equation (3.5) to get

2n∑

i,j=1

∫

Ω

η2G(|Tu|)γ+1DjAi(Xu)Xj(Tu)Xi(Tu) dx

+ (γ + 1)
2n∑

i,j=1

∫

Ω

η2G(|Tu|)γg(|Tu|)|Tu|DjAi(Xu)Xj(Tu)Xi(Tu) dx

= −2
2n∑

i,j=1

∫

Ω

η G(|Tu|)γ+1TuDjAi(Xu)Xj(Tu)Xiη dx.

We use the condition (2.17) on the first term and then use the structure condition (2.23), to
estimate both sides of the above equality. We obtain

∫

Ω

η2G(|Tu|)γ+1F (|Xu|) |X(Tu)|2 dx

≤ c

(γ + 1)

∫

Ω

|η|G(|Tu|)γ+1|Tu|F (|Xu|) |X(Tu)||Xη| dx

≤ cτ

∫

Ω

η2G(|Tu|)γ+1F (|Xu|) |X(Tu)|2 dx

+
c

τ(γ + 1)2

∫

Ω

G(|Tu|)γ+1F(|Xu|)|Tu|2|Xη|2 dx,

where we have used Young’s inequality to obtain the latter inequality of the above. With
the choice of a small enough τ > 0, the proof is finished. �

The following Caccioppoli type inequality for the horizontal vector fields is more involved
than the above, due to the non-commutativity (2.2). For the case of p-laplace equations,
similar inequalities have been proved before, using difference quotients for 2 ≤ p ≤ 4 in [28]
and directly, for 1 < p <∞ in [36].

Lemma 3.4. For any γ ≥ 0 and η ∈ C∞0 (Ω), there exists c = c(n, g0, L) > 0 such that

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |XXu|2 dx ≤ c

∫

Ω

G(|Xu|)γ+1|Xu|2F (|Xu|)
(
|Xη|2 + |ηTη|

)
dx

+ c (γ + 1)4

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu|2 dx.
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Proof. We fix l ∈ {1, . . . , n} and η ∈ C∞0 (Ω). Now, we choose ϕl = η2G(|Xu|)γ+1Xlu as a
test function in (3.6) and obtain the following,

(3.10)

2n∑

i,j=1

∫

Ω

η2G(|Xu|)γ+1DjAi(Xu)XjXluXiXlu dx

+ (γ + 1)
2n∑

i,j=1

∫

Ω

η2G(|Xu|)γXluDjAi(Xu)XjXluXi(G(|Xu|)) dx

= −2
2n∑

i,j=1

∫

Ω

η G(|Xu|)γ+1XluDjAi(Xu)XjXluXiη dx

−
2n∑

i=1

∫

Ω

DiAn+l(Xu)XiϕlTu dx

+

∫

Ω

T (An+l(Xu))ϕl dx

= J1,l + J2,l + J3,l.

Similarly, we choose ϕn+l = η2G(|Xu|)γ+1Xn+lu in (3.7) to get

(3.11)

2n∑

i,j=1

∫

Ω

η2G(|Xu|)γ+1DjAi(Xu)XjXn+luXiXn+lu dx

+ (γ + 1)
2n∑

i,j=1

∫

Ω

η2G(|Xu|)γXn+luDjAi(Xu)XjXn+luXi(G(|Xu|)) dx

= −2
2n∑

i,j=1

∫

Ω

η G(|Xu|)γ+1Xn+luDjAi(Xu)XjXn+luXiη dx

+
2n∑

i=1

∫

Ω

DiAl(Xu)Xiϕn+lTu dx

−
∫

Ω

T (Al(Xu))ϕn+l dx

= J1,n+l + J2,n+l + J3,n+l.

We shall add (3.10) and (3.11) and estimate both sides. First, notice that

Xi(G(|Xu|)) =
g(|Xu|)
|Xu|

2n∑

k=1

XkuXiXku.

We shall use the above along with (2.17). Adding (3.10) and (3.11) and using the structure
condition (2.23), we obtain that

(3.12)
2n∑

l=1

(J1,l + J2,l + J3,l) ≥
∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |XXu|2 dx

13



Now we claim the following, which combined with (3.12) concludes the proof of the lemma.
Claim : For every k ∈ {1, 2, 3}, l ∈ {1, . . . , 2n} and some c = c(n, g0, L) > 0, we have

(3.13)

|Jk,l| ≤
1

12n

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |XXu|2 dx

+ c

∫

Ω

G(|Xu|)γ+1|Xu|2F (|Xu|)
(
|Xη|2 + |ηTη|

)
dx

+ c (γ + 1)4

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu|2 dx.

We prove the claim by estimating each Jk,l in (3.10) and (3.11), using (2.23).
For the first term, we obtain

|J1,l| ≤ c

∫

Ω

|η|G(|Xu|)γ+1|Xu|F(|Xu|)|XXu||Xη| dx

and the claim (3.13) for J1,l, follows from Young’s inequality.
We calculate Xϕl and similary estimate the second term using (2.23), to get

(3.14)

|J2,l| ≤ c

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu||XXu| dx

+ c (γ + 1)

∫

Ω

η2G(|Xu|)γg(|Xu|)|Xu|F(|Xu|)|Tu||XXu| dx

+ c

∫

Ω

|η|G(|Xu|)γ+1|Xu|F(|Xu|)|Xη||Tu| dx.

Recalling tg(t) ≤ (1 + g0)G(t) from (2.17), note that the second term of the right hand side
of (3.14) can be replaced by the first term. Then the claim (3.13) for J2,l, follows by applying
Young’s inequality on each terms of the above.

For the third term, we show the estimate only for (3.10) i.e. for l ∈ {1, . . . , n}, since the
estimate for the other case is the same. We first use integral by parts, then we calculate Tϕl
and obtain the following;

J3,l = −
∫

Ω

η2G(|Xu|)γ+1An+l(Xu)Xl(Tu) dx

− (γ + 1)

∫

Ω

η2G(|Xu|)γXluAn+l(Xu)T (G(|Xu|)) dx

− 2

∫

Ω

η G(|Xu|)γ+1XluAn+l(Xu)Tη dx.

Now, notice that

T (G(|Xu|)) =
g(|Xu|)
|Xu|

2n∑

k=1

XkuXk(Tu) = F (|Xu|)
2n∑

k=1

XkuXk(Tu).
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Using this, we carry out integral by parts again, for the first two terms of J3,l and obtain

J3,l =

∫

Ω

Xl

(
η2G(|Xu|)γ+1An+l(Xu)

)
Tu dx

− (γ + 1)

∫

Ω

2n∑

k=1

Xk

(
η2G(|Xu|)γF(|Xu|)XluAn+l(Xu)Xku

)
Tu dx

− 2

∫

Ω

η G(|Xu|)γ+1XluAn+l(Xu)Tη dx.

From standard calculations and structure condition (2.23), we get

(3.15)

|J3,l| ≤ c (γ + 1)2

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu||XXu| dx

+ c (γ + 1)2

∫

Ω

η2G(|Xu|)γg(|Xu|)|Xu|F(|Xu|)|Tu||XXu| dx

+ c (γ + 1)

∫

Ω

|η|G(|Xu|)γ+1|Xu|F(|Xu|)|Xη||Tu| dx

+ c

∫

Ω

|η|G(|Xu|)γ+1|Xu|2F (|Xu|) |Tη| dx.

Similarly as the estimate of J2,l in (3.14), we use (2.17) to combine the first two terms of the
right hand side of (3.15). Then, by applying Young’s inequality on all terms except the last
one, the claim (3.13) for J3,l follows. Thus, the proof is finished. �
3.2. A Reverse type inequality.
We follow the technique of Zhong [36] and obtain a reverse type inequality for Tu in the
following lemma. This shall be crucial for obtaining estimates for horizontal and vertical
derivatives, later. The following lemma is reminiscent to Lemma 3.5 in [36].

Lemma 3.5. For any γ ≥ 1 and all non-negative η ∈ C∞0 (Ω), we have

(3.16)

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

≤ c (γ + 1)2‖Xη‖2
L∞

∫

Ω

G(η|Tu|)γ+1|Tu|−2|Xu|2F (|Xu|) |XXu|2 dx

for some c = c(n, g0, L) > 0.

Proof. First, notice that from (2.17), we have G(η|Tu|)γ+1|Tu|−2 ≤ η2G(η|Tu|)γ−1g(η|Tu|)2

for every γ ≥ 1. In other words, the integral in right hand side of (3.16), is not singular.
To prove the lemma, we fix l ∈ {1, . . . , n} and invoke (3.8), i.e. for any ϕ ∈ C∞0 (Ω)

∫

Ω

2n∑

i=1

Xl(Ai(Xu)Xiϕ)dx =

∫

Ω

T (An+l(Xu))ϕdx.

We choose the test function ϕ = η2G(η|Tu|)γ+1Xlu in the above. Notice that

Xiϕ = η2G(η|Tu|)γ+1XiXlu+ (γ + 1)η3G(η|Tu|)γg(η|Tu|)XluXi(|Tu|)
+
(

2ηG(η|Tu|)γ+1 + (γ + 1)η2G(η|Tu|)γg(η|Tu|)|Tu|
)
XluXiη
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and from (2.2), recall that Xn+lXl = XlXn+l − T . Using these, we obtain

2n∑

i=1

∫

Ω

η2G(η|Tu|)γ+1Xl(Ai(Xu))XlXiu dx

=

∫

Ω

η2G(η|Tu|)γ+1Xl(An+l(Xu))Tu dx

− (γ + 1)
2n∑

i=1

∫

Ω

η3G(η|Tu|)γg(η|Tu|)XluXl(Ai(Xu))Xi(|Tu|) dx

−
2n∑

i=1

∫

Ω

(
2ηG(η|Tu|) + (γ + 1)η2g(η|Tu|)|Tu|

)
G(η|Tu|)γXluXl(Ai(Xu))Xiη dx

+

∫

Ω

η2G(η|Tu|)γ+1XluT (An+l(Xu)) dx

= I1 + I2 + I3 + I4.

We shall estimate both sides of the above. To estimate the left hand side, we use the structure
condition (2.23), to obtain

2n∑

i=1

∫

Ω

η2G(η|Tu|)γ+1Xl(Ai(Xu))XlXiu dx ≥
∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |Xl(Xu)|2 dx.

For the right hand side, we claim the following for every k ∈ {1, 2, 3, 4},

(3.17)

|Ik| ≤ cτ

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

+
c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

G(η|Tu|)γ+1|Tu|−2|Xu|2F (|Xu|) |XXu|2 dx

for some c = c(n, g0, L) > 0, where τ > 0 is any arbitrary constant. Assuming the claim and
combining it with the previous estimate, we end up with

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |Xl(Xu)|2 dx ≤ τ

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

+
c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

G(η|Tu|)γ+1|Tu|−2|Xu|2F (|Xu|) |XXu|2 dx

for some c = c(n, g0, L) > 0 and every l ∈ {1, . . . , n}. Similarly, the above inequality can
also be obtained when l ∈ {n, . . . , 2n}. Then, by summing over the two inequalities and
choosing τ > 0 small enough, it is easy to obtain (3.16), as required to complete the proof.

16



Thus, we are left with proving the claim (3.17), which we accomplish by estimating each
Ik, one by one. For I1, first we use integral by parts to get

I1 = −
∫

Ω

Xl

(
η2G(η|Tu|)γ+1Tu

)
An+l(Xu) dx

= −
∫

Ω

η2G(η|Tu|)γ
[
G(η|Tu|) + (γ + 1)η|Tu|g(η|Tu|)

]
An+l(Xu)Xl(Tu) dx

−
∫

Ω

η G(η|Tu|)γ
[
2G(η|Tu|) + (γ + 1)η|Tu|g(η|Tu|)

]
TuAn+l(Xu)Xlη dx

= I11 + I12.

Recall that tg(t) ≤ (1+g0)G(t) for all t > 0 from (2.17). Using this along with the structure
condition (2.23), we will show that the claim (3.17) holds for both I11 and I12.

For I11, using (2.17),(2.23) and Young’s inequality, we obtain

(3.18)

|I11| ≤ c (γ + 1)

∫

Ω

η2G(η|Tu|)γ+1|Xu|F (|Xu|) |X(Tu)| dx

≤ τ

‖Xη‖2
L∞

∫

Ω

η4G(η|Tu|)γ+1F (|Xu|) |X(Tu)|2 dx

+
c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

G(η|Tu|)γ+1|Xu|2F (|Xu|) dx

Now, the following inequality can be proved in a way similar to that of the Caccioppoli type
inequality of Tu in Lemma 3.3,

∫

Ω

η4G(η|Tu|)γ+1F (|Xu|) |X(Tu)|2 dx ≤ c

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |Tu|2|Xη|2 dx,

for some c = c(n, g0, L) > 0. After using the above inequality for the first term of (3.18) and
then using |Tu| ≤ 2|XXu| for both terms, it is easy to see that (3.17) holds for I11.

For I12, using structure condition (2.23) and (2.17) again, we get

(3.19) |I12| ≤ c (γ + 1)

∫

Ω

|η|G(η|Tu|)γ+1|Xu|F (|Xu|) |Tu||Xη| dx

from which, (3.17) follows easily from Young’s inequality and |Tu| ≤ 2|XXu|. Thus, com-
bining the estimates (3.18) and (3.19), we conclude that the claim (3.17), holds for I1.

The estimate of I2 is similar. We use (2.23), (2.17) and Young’s inequality, to get

|I2| ≤ c (γ + 1)

∫

Ω

η2G(η|Tu|)γ+1|Tu|−1|Xu|F (|Xu|) |XXu||X(Tu)| dx

≤ τ

‖Xη‖2
L∞

∫

Ω

η4G(η|Tu|)γ+1F (|Xu|) |X(Tu)|2 dx

+
c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

G(η|Tu|)γ+1|Tu|−2|Xu|2F (|Xu|) |XXu|2 dx.

Notice that, the first term on the right hand side of the latter inequality of the above, is
identical to that of (3.18). Hence, the claim (3.17) for I2, follows similarly.
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For I3, using (2.17) and structure condition (2.23) again, we obtain

|I3| ≤ c (γ + 1)

∫

Ω

|η|G(η|Tu|)γ+1|Xu|F (|Xu|) |XXu||Xη| dx

which together with Young’s inequality, is enough for claim (3.17). Finally, the fourth term
has the following estimate.

I4 =

∫

Ω

η2G(η|Tu|)γ+1Xlu

2n∑

i=1

DiAn+l(Xu)Xi(Tu) dx

≤
∫

Ω

η2G(η|Tu|)γ+1|Xu|F (|Xu|) |X(Tu)| dx,

which is identical to the upper bound of I11 in (3.18). Hence, the claim (3.17) holds for I4

as well and the proof is complete. �

The inequality (3.16) of the above lemma yields the following intermediate inequality,
which shall be essential for proving the final estimate for the horizontal gradient.

Corollary 3.6. For any γ ≥ 1 and all non-negative η ∈ C∞0 (Ω), we have

(3.20)

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

≤ c
γ+1

2 (γ + 1)(γ+1)(1+g0)

∫

Ω

η2G
(
‖Xη‖L∞ |Xu|

)γ+1
F (|Xu|) |XXu|2 dx

where c = c(n, g0, L) > 0.

Proof. Let us denote Ψ(s) = τG(
√
s)γ+1, where τ > 0 is an arbitrary constant. Notice that

Ψ is a N-function if γ ≥ 1. Now we restate the inequality (3.16) of Lemma 3.5, as

(3.21)

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

≤ c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

Ψ(η2|Tu|2)

|Tu|2 |Xu|2F (|Xu|) |XXu|2 dx.

Taking Ψ∗ as the conjugate function of Ψ, we apply the Young’s inequality (2.12) on the
right hand side of the above to get

(3.22)

c

τ
(γ + 1)2‖Xη‖2

L∞

∫

Ω

Ψ(η2|Tu|2)

|Tu|2 |Xu|2F (|Xu|) |XXu|2 dx

≤
∫

Ω

η2 Ψ∗
(

Ψ(η2|Tu|2)

η2|Tu|2
)
F (|Xu|) |XXu|2 dx

+

∫

Ω

η2 Ψ
( c
τ

(γ + 1)2‖Xη‖2
L∞|Xu|2

)
F (|Xu|) |XXu|2 dx.

Recalling (2.11), notice that

Ψ∗
(

Ψ(η2|Tu|2)

η2|Tu|2
)
≤ Ψ(η2|Tu|2) = τG(η|Tu|)γ+1
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and using this together with (3.21) and (3.22), we end up with
∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

≤ τ

∫

Ω

η2G(η|Tu|)γ+1F (|Xu|) |XXu|2 dx

+

∫

Ω

η2 τG
(√

c/τ (γ + 1)‖Xη‖L∞|Xu|
)γ+1

F (|Xu|) |XXu|2 dx.

Thus, with a small enough τ > 0 and the doubling property of G, the proof is finished. �
The inequality (3.20) is required in a slightly different form, which we state here in the

following corollary. It is an easy consequence of Corollary 3.6, above.

Corollary 3.7. For any γ, ω ≥ 1 and all non-negative η ∈ C∞0 (Ω), we have

(3.23)

∫

Ω

η2G

(
η|Tu|√
ωKη

)γ+1

F (|Xu|) |XXu|2 dx

≤ c
γ+1

2 (γ + 1)(γ+1)(1+g0)

ω
γ+1

2

∫

Ω

η2G
(
|Xu|

)γ+1
F (|Xu|) |XXu|2 dx

where Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω) and c = c(n, g0, L) > 0 is a constant.

Proof. Given any ω ≥ 1, note that from Lemma 2.12,

(3.24) G

(
t√
ω

)
≤ t√

ω
g

(
t√
ω

)
≤ 1 + g0√

ω
G(t).

Taking Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω), we use η/

√
ωKη in place of η in (3.20), to get that

∫

Ω

η2

ωKη

G

(
η|Tu|√
ωKη

)γ+1

F (|Xu|) |XXu|2 dx

≤ c
γ+1

2 (γ + 1)(γ+1)(1+g0)

∫

Ω

η2

ωKη

G

(‖Xη‖L∞|Xu|√
ωKη

)γ+1

F (|Xu|) |XXu|2 dx

≤ c
γ+1

2 (γ + 1)(γ+1)(1+g0)

ω
γ+1

2

∫

Ω

η2

ωKη

G(|Xu|)γ+1F (|Xu|) |XXu|2 dx.

In the latter inequality of the above, we have used ‖Xη‖L∞ ≤
√
Kη, monotonicity of G and

the inequality (3.24). After removing the factor 1/ωKη from both sides of the above, we end
up with (3.23). This completes the proof. �

3.3. Horizontal and Vertical estimates.
We first show that, the Caccioppoli type inequality of Lemma 3.4, can be improved using
Corollary 3.7. This would be essential for the proof of Theorem 1.1.

Proposition 3.8. If u ∈ HW 1,G(Ω) is a weak solution of equation (2.15), then for any
γ ≥ 1 and all non-negative η ∈ C∞0 (Ω), we have the following estimate
∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |XXu|2 dx ≤ c(γ + 1)10(1+g0)Kη

∫

supp(η)

G(|Xu|)γ+1|Xu|2F (|Xu|) dx,
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where Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω) and c = c(n, g0, L) > 0 is a constant.

Proof. First, we recall the Caccioppoli type estimate of Lemma 3.4,

(3.25)

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |XXu|2 dx ≤ cKη

∫

Ω

G(|Xu|)γ+1|Xu|2F (|Xu|) dx

+ c (γ + 1)4

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu|2 dx,

where Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω) and c = c(n, g0, L) > 0. Thus, to complete the proof,

we require an estimate of the second integral of the right hand side of the above.
To this end, let us denote

(3.26) Φ(s) = ωKη sG(
√
s)γ+1

where ω ≥ 1 is a constant at our disposal, which shall be specified later. Let Φ∗ be the
conjugate of Φ. We estimate the last integral of (3.25) using the Young’s inequality (2.12),
as follows;

c(γ + 1)4

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu|2 dx

≤
∫

Ω

Φ

(
c(γ + 1)4η

2|Tu|2
ωKη

)
F (|Xu|) dx+

∫

Ω

Φ∗
(
ωKηG(|Xu|)γ+1

)
F (|Xu|) dx

= Z1 + Z2

where Z1 and Z2 are the respective terms of the right hand side. Now, we estimate Z1 and
Z2, one by one. First, using doubling property for G and |Tu| ≤ 2|XXu|, notice that

(3.27)

Z1 = c(γ + 1)4

∫

Ω

η2|Tu|2G
(√

c(γ + 1)2 η|Tu|√
ωKη

)γ+1

F (|Xu|) dx

≤ c
γ+1

2 (γ + 1)4+2(γ+1)(1+g0)

∫

Ω

η2G

(
η|Tu|√
ωKη

)γ+1

F (|Xu|) |XXu|2 dx

for some c = c(n, g0, L) > 0. Now, we apply the estimate (3.23) from Corrollary 3.7 on the
last term of (3.27), to get that

(3.28)
Z1 ≤

cγ+1(γ + 1)4+3(γ+1)(1+g0)

ω
γ+1

2

∫

Ω

η2G
(
|Xu|

)γ+1
F (|Xu|) |XXu|2 dx

=
1

2

∫

Ω

η2G
(
|Xu|

)γ+1
F (|Xu|) |XXu|2 dx,

where ω is chosen as

(3.29) ω = 2
2

γ+1 c2(γ + 1)6(1+g0)+ 8
γ+1 .

for an appropriate constant c = c(n, g0, L) > 0.
To estimate Z2, first notice that, from the inequality (2.11) and the definition (3.26)

(3.30) Φ∗
(
ωKηG(|Xu|)γ+1

)
= Φ∗

(
Φ(|Xu|2)

|Xu|2
)
≤ Φ(|Xu|2) = ωKη|Xu|2G(|Xu|)γ+1.
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Using the above, we immediately have that

(3.31) Z2 ≤ ωKη

∫

Ω

G(|Xu|)γ+1|Xu|2F (|Xu|) dx.

Combining (3.28) and (3.31) with ω as in (3.29), we finally end up with

c(γ + 1)4

∫

Ω

η2G(|Xu|)γ+1F (|Xu|) |Tu|2 dx ≤ 1

2

∫

Ω

η2G
(
|Xu|

)γ+1
F (|Xu|) |XXu|2 dx

+ c(γ + 1)6(1+g0)+ 8
γ+1Kη

∫

Ω

G(|Xu|)γ+1|Xu|2F (|Xu|) dx

for some c = c(n, g0, L) > 0. This, together with (3.25), is enough to conclude the proof. �

The following local estimate for the vertical derivative is an immediate consequence of the
horizontal estimate of Proposition 3.8 and Corrollary 3.7, with the use of |Tu| ≤ 2|XXu|.
Corollary 3.9. If u ∈ HW 1,G(Ω) is a weak solution of equation (2.15), then for any γ ≥ 1
and all non-negative η ∈ C∞0 (Ω), we have the following estimate.

∫

Ω

η2G

(
η|Tu|√
Kη

)γ+1

F (|Xu|) |Tu|2 dx ≤ c(γ)Kη

∫

supp(η)

G(|Xu|)γ+1|Xu|2F (|Xu|) dx

where Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω) and c(γ) = c(n, g0, L, γ) > 0 is a constant.

3.4. Proof of Theorem 1.1.
We recall that all the estimates above, rely on the apriori assumptions (3.1) and (3.2). We
prove Theorem 1.1 here in three steps; first by assuming both (3.1) and (3.2), then by
removing them one by one.

Proof of Theorem 1.1. First notice that, it is enough to establish the estimate (1.6) to fin-
ish the proof. If (1.6) holds apriori for a weak solution u ∈ HW 1,G(Ω) of (2.15), then
monotonicity of g immediately implies |Xu| ∈ L∞(Bσr) along with the estimate

sup
Bσr

|Xu| ≤ max

{
1 ,

c

g(1)(1− σ)Q

∫

Br

G(|Xu|) dx
}
.

Step 1 : We assume both (3.1) and (3.2).
The estimate (1.6) follows from Proposition 3.8 by standard Moser’s iteration. Here, we

provide a brief outline. Letting w = G(|Xu|), note that from (2.17)

|Xw|2 ≤ |Xu|2F (|Xu|)2 |XXu|2 ≤ (1 + g0)wF (|Xu|) |XXu|2,
and hence, from Proposition 3.8 we obtain

(3.32)

∫

Ω

η2wγ|Xw|2 dx ≤ c (γ + 1)10(1+g0)Kη

∫

supp(η)

wγ+2 dx

for some c = c(n, g0, L) > 0 and Kη = ‖Xη‖2
L∞(Ω) + ‖ηTη‖L∞(Ω). Now we use a standard

choice of test function η ∈ C∞0 (Br) such that 0 ≤ η ≤ 1 and η ≡ 1 in Br′ for 0 < r′ < r,

|Xη| ≤ 4/(r − r′) and |XXη| ≤ 16n/(r − r′)2.
21



Letting κ = Q/(Q− 2) and using Sobolev’s inequality (2.7) for q = 2 on (3.32), we get that

(∫

Br′
w(γ+2)κ dx

) 1
κ

≤ c(γ + 2)12(1+g0)

(r − r′)2

∫

Br

wγ+2 dx

for every γ ≥ 1. Iterating this with γi = 3κi − 2 and ri = σr + (1− σ)r/2i, we get

sup
Bσr

w ≤ c

(1− σ)Q/3

(∫

Br

w3 dx

) 1
3

for c = c(n, g0, L) > 0 and this holds for every Br ⊂ Ω and every 0 < σ < 1. Then, a
standard interpolation argument (see [8], p. 299–300) leads to

sup
Bσr

w ≤ c(q)

(1− σ)Q/q

(∫

Br

wq dx

) 1
q

for every q > 0 and some c(q) = c(n, g0, L, q) > 0. Taking q = 1, we get the estimate (1.6).

Step 2 : We assume (3.1) but remove (3.2).
Let Br = Br(x0) ⊂ Ω be a fixed CC-ball. Given the weak solution u ∈ HW 1,G(Ω), there

exists a smooth approximation φm ∈ C∞(Br) such that φm → u in HW 1,G(Br) as m→∞.
By virtue of equivalence with the Korànyi metric, it is possible to find a concentric Korànyi
ball Kθr ⊂⊂ Br, for some constant θ = θ(n) > 0.

Now, let um be the weak solution of the following Dirichlet problem,

(3.33)

{
divH(A(Xum)) = 0 in Kθr

um − φm ∈ HW 1,G
0 (Kθr).

The choice of test function um − φm, yields

(3.34)

∫

Kθr

〈
A(Xum),Xum

〉
dx =

∫

Kθr

〈
A(Xum),Xφm

〉
dx

Now, there exists k = c(g0, L) > 1 such that combining ellipticity (2.26) and structure
condition (2.23), one has

〈
A(z), z

〉
≥ (2/k) |z||A(z)|. Using this along with (2.23) and

doubling property of g, we estimate the right hand side of (3.34), as
∫

Kθr

〈
A(Xum),Xφm

〉
dx =

∫

|Xum|≥k|Xφm|

〈
A(Xum),Xφm

〉
dx+

∫

|Xum|<k|Xφm|

〈
A(Xum),Xφm

〉
dx

≤ 1

k

∫

Kθr

|A(Xum)||Xum| dx +

∫

|Xum|<k|Xφm|
Lg(|Xum|) |Xφm| dx

≤ 1

2

∫

Kθr

〈
A(Xum),Xum

〉
dx + kg0L

∫

Kθr

g(|Xφm|) |Xφm| dx.

Combining the above with (3.34) and using (2.26), we get

(3.35)

∫

Kθr

G(|Xum|) dx ≤ c

∫

Kθr

G(|Xφm|) dx ≤ c

∫

Kθr

G(|Xu|) dx+ o(1/m)
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for c = c(n, g0, L) > 0 and o(1/m) → 0 as m → ∞. Now, since φm is smooth and Kθr

satisfies the strong convexity condition (2.29), the equation (3.33) is an example of the
Dirichlet problem (2.30). From Proposition 2.17, we have that

‖Xum‖L∞(Kθr) ≤M

which is the assumption (3.2) for um. Now we can apply Step 1 and conclude

(3.36) sup
Bστr

G(|Xum|) ≤
c

(1− σ)Q

∫

Bτr

G(|Xum|) dx

for some c = c(n, g0, L) > 0, σ ∈ (0, 1) and τ = τ(n) > 0 chosen such that Bτr ⊂ Kθr. This is
followed up with standard argument, since (3.35) ensures that there exists ũ ∈ HW 1,G(Kθr)

such that upto a subsequence um ⇀ ũ. Since, um − φm ∈ HW 1,G
0 (Kθr), hence we have

ũ− u ∈ HW 1,G
0 (Kθr) and combined with the monotonicity (2.25), one can show ũ is a weak

solution of (2.15). From uniqueness, ũ = u. Taking m→∞ in (3.36) and (3.35), we conclude

sup
Bστr

G(|Xu|) ≤ c

(1− σ)Q

∫

Br

G(|Xu|) dx

and (1.6) follows from a simple covering argument.

Step 3: We remove both (3.2) and (3.1).
The assumption (3.1) is removed by a standard approximation argument. We use the

regularization constructed in Lemma 5.2 of [23]. Here, we give a brief outline.
For any fixed 0 < ε < 1 and some ηε ∈ C0,1([0,∞)), we define

(3.37) Fε(t) = F
(

min{ t+ ε , 1/ε }
)

and A ε(z) = ηε(|z|)Fε(|z|) z +
(

1− ηε(|z|)
)
A(z)

where A is given and F(t) = g(t)/t. Thus, Fε satisfies the assumption (3.1) with m1 = F(ε)
and m2 = F(1/ε). Also, with the choice of ηε as in [23](p. 343), it is possible to show that

(3.38)

1

L̃
Fε(|z|)|ξ|2 ≤

〈
DA ε(z) ξ, ξ

〉
≤ L̃Fε(|z|)|ξ|2;

|A ε(z)| ≤ L̃|z|Fε(|z|),

for some L̃ = L̃(δ, g0, L) > 0. Reducing to a subsequence if necessary, it is easy to see that
A ε → A uniformly and Fε → F uniformly on compact subsets of (0,∞), as ε→ 0.

Given weak solution u ∈ HW 1,G(Ω) of (2.15), we consider uε as the weak solution of the
following regularized equation

(3.39)

{
− divH(A ε(Xuε)) = 0 in Ω′;

uε − u ∈ HW 1,G
0 (Ω′),

for any Ω′ ⊂⊂ Ω. Now, we are able to apply Step 2, to obtain uniform estimates for uε.
Taking limit ε→ 0, we can obtain (1.6). This concludes the proof. �
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[9] András Domokos. Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg
group. J. Differential Equations, 204(2):439–470, 2004.

[10] András Domokos and Juan J. Manfredi. C1,α-regularity for p-harmonic functions in the Heisenberg
group for p near 2. 370:17–23, 2005.

[11] András Domokos and Juan J. Manfredi. Subelliptic Cordes estimates. Proc. Amer. Math. Soc.,
133(4):1047–1056 (electronic), 2005.

[12] Lawrence C. Evans. A new proof of local C1,α regularity for solutions of certain degenerate elliptic p.d.e.
J. Differential Equations, 45(3):356–373, 1982.
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C1,α-REGULARITY OF QUASILINEAR EQUATIONS ON THE
HEISENBERG GROUP

SHIRSHO MUKHERJEE

Abstract. In this article, we reproduce results of classical regularity theory of quasilinear
elliptic equations in the divergence form, in the setting of Heisenberg Group. The conditions
encompass a very wide class of equations with isotropic growth conditions, which are a
generalization of the p-Laplace type equations in this respect; these also include all equations
with polynomial or exponential type growth. In addition, some even more general conditions
have also been explored.
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1. Introduction

Regularity theory for weak solutions of second order quasilinear elliptic equations in the
Euclidean spaces, has been well-developed over a long period of time since the pioneering
work of De Giorgi [9] and has involved significant contributions of many authors. For more
details on this topic, we refer to [38, 10, 39, 20, 18, 42, 15, 27], etc. and references therein.
A comprehensive study of the subject can be found in the nowadays classical books by
Gilbarg-Trudinger [22], Ladyzhenskaya-Ural’tseva [26] and Morrey [33].

The goal of this paper is to obtain regularity results in the setting of Heisenberg Group
Hn, that are previously known in the Euclidean setting. We consider the equation

(1.1) Qu = divH A(x, u,Xu) +B(x, u,Xu) = 0
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Emergent Technologies (MAnET), Marie Curie Actions-Initial Training Network, under Grant Agreement
No. 607643.
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in a domain Ω ⊂ Hn for any n ≥ 1, where Xu = (X1u, . . . , X2nu) is the horizontal gradient of
a function u : Ω→ R and divH is the horizontal divergence of a vector field (see Section 2 for
details). Here A : Ω×R×R2n → R2n and B : Ω×R×R2n → R are given locally integrable
functions. We also assume that A is differentiable and the (2n× 2n) matrix DpA(x, z, p) =
(∂Ai(x, z, p)/∂pj)ij is symmetric for every x ∈ Ω, z ∈ R and p = (p1, . . . , p2n) ∈ R2n. Thus,
the results of this setting can also be applied to minimizers of a variational integral

I(u) =

∫

Ω

f(x, u,Xu) dx

for a smooth scalar function f : Ω×R×R2n → R; the Euler-Lagrange equation corresponding
to the functional I, would be an equation of the form (1.1). The equations in settings similar
to ours, are often referred as sub-elliptic equations.

In addition to A and B, we consider a C1-function g : [0,∞)→ [0,∞) also as given data,
which satisfies g(0) = 0 and there exists constants g0 ≥ δ ≥ 0 such that the following holds,

(1.2) δ ≤ tg′(t)

g(t)
≤ g0 for all t > 0.

The function g shall be used in the hypothesis of growth and ellipticity conditions satisfied by
A and B, as given below. The condition (1.2) appears in the work of Lieberman [29], in the
Euclidean setting. In the case of Heisenberg Groups, a special class of quasilinear equations
with growth conditions involving (1.2), has been recently studied in [35]. We remark that
the special case g(t) = tp−1 for 1 < p < ∞, would correspond to equations with p-laplacian
type growth. For a more detailed discussion on the relevance of the condition (1.2) and more
examples of such function g, we refer to [29, 31, 1, 35] etc.

The study of regularity theory for sub-elliptic equations goes back to the fundamental
work of Hörmander [24]. We refer to [5, 6, 8, 16, 13, 14, 32, 30, 12] and references therein,
for earlier results on regularity of weak solutions of quasilinear equations.

The structure conditions for the equation (1.1) used in this paper, have been introduced
in [29], which are generalizations of the so called natural conditions for elliptic equations in
divergence form; these have been extensively studied by Ladyzhenskaya-Ural’tseva in [26]
for equations in the Euclidean setting. The first structure condition is as follows.

Given some non-negative constants a1, a2, a3, b0, b1 and χ, we assume that A and B satisfies

(1.3)

〈
A(x, z, p), p

〉
≥ |p|g(|p|)− a1 g

( |z|
R

) |z|
R
− g(χ)χ;

|A(x, z, p)| ≤ a2 g(|p|) + a3 g

( |z|
R

)
+ g(χ);

|B(x, z, p)| ≤ 1

R

[
b0 g(|p|) + b1 g

( |z|
R

)
+ g(χ)

]
,

where (x, z, p) ∈ Ω×R×R2n and 0 < R < 1
2

diam(Ω). Similar growth conditions have been
considered previously in [22],[26] and [40] for the special case g(t) = tα−1 for α > 1.

For weak solutions of equation (1.1) with the above structure conditions, the appropriate
domain is the Horizontal Orlicz-Sobolev space HW 1,G(Ω) (see Section 2 for the definition),

where G(t) =
∫ t

0
g(s)ds. The following is the first result of this paper.
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Theorem 1.1. Let u ∈ HW 1,G(Ω) ∩ L∞(Ω) be a weak solution of the equation (1.1), with

G(t) =
∫ t

0
g(s)ds and |u| ≤ M in Ω. Suppose the structure condition (1.3) holds for some

χ ≥ 0, 0 < R ≤ R0 and a function g satisfying (1.2) with δ > 0, then there exists c > 0 and
α ∈ (0, 1) dependent on n, δ, g0, a1, a2, a3, b0M, b1 such that u ∈ C 0,α

loc (Ω) and

(1.4) oscBr u ≤ c
( r
R

)α (
oscBR u+ χR

)
,

whenver BR0 ⊂⊂ Ω and Br, BR are concentric to BR0 with 0 < r < R ≤ R0.

The above theorem follows as a consequence of Harnack inequalities, Theorem 3.4 and
Theorem 3.5 in Section 3. Similar Harnack inequalities in the sub-elliptic setting, has also
been shown in [6] for the special case of polynomial type growth. The proof of these are
standard imitations of the corresponding classical results due to Serrin [37], see also [40, 29].

Theorem 1.1 is necessary for our second result, the C1,α-regularity of weak solutions. This
is new and relies on some recent development in [35], which in turn is based on the work of
Zhong [43]. The structure conditions considered for this, are as follows.

Given the constants L,L′ ≥ 1 and α ∈ (0, 1], we assume that the following holds,

(1.5)

g(|p|)
|p| |ξ|

2 ≤
〈
DpA(x, z, p) ξ, ξ

〉
≤ L

g(|p|)
|p| |ξ|

2;

|A(x, z, p)− A(y, w, p)| ≤ L′
(
1 + g(|p|)

)(
|x− y|α + |z − w|α

)
;

|B(x, z, p)| ≤ L′
(
1 + g(|p|)

)
|p|,

for every x, y ∈ Ω, z, w ∈ [−M0,M0] and p, ξ ∈ R2n, where M0 > 0 is another given constant.
The following theorem is the second result of this paper.

Theorem 1.2. Let u ∈ HW 1,G(Ω) ∩ L∞(Ω) be a weak solution of the equation (1.1), with

G(t) =
∫ t

0
g(s)ds and |u| ≤ M0 in Ω. Suppose the structure condition (1.5) holds for some

L,L′ ≥ 1, α ∈ (0, 1] and a function g satisfying (1.2) with δ > 0, then there exists a constant

β = β(n, δ, g0, α, L) ∈ (0, 1) such that u ∈ C1,β
loc (Ω) and for any open Ω′ ⊂⊂ Ω, we have

(1.6) |Xu|C 0,β(Ω′,R2n) ≤ C
(
n, δ, g0, α, L, L

′,M0, g(1), dist(Ω′, ∂Ω)
)
.

Pertaining to the growth conditions involving (1.2), local Lipshcitz continuity for the class
of equations of the form divH A(Xu) = 0, has been shown in [35]. As a follow up, here we
show the C1,α-regularity for this case as well, with a robust gradient estimate unlike (1.6).

Theorem 1.3. Let u ∈ HW 1,G(Ω) be a weak solution of the equation divH A(Xu) = 0, where
A : R2n → R2n, the matrix DA is symmetric and the following structure condition holds,

(1.7)

g(|p|)
|p| |ξ|

2 ≤
〈
DA(p) ξ, ξ

〉
≤ L

g(|p|)
|p| |ξ|

2;

|A(p)| ≤ Lg(|p|).
for every p, ξ ∈ R2n, L ≥ 1 is a given constant and g satisfies (1.2) with δ > 0. Then Xu is
locally Hölder continuous and there exists σ = σ(n, g0, L) ∈ (0, 1) and c = c(n, δ, g0, L) > 0
such that for any Br0 ⊂ Ω and 0 < r < r0/2, we have

(1.8) max
1≤l≤2n

∫

Br

G(|Xlu− {Xlu}Br |) dx ≤ c
( r
r0

)σ ∫

Br0

G(|Xu|) dx.
3



The proof of the above theorem, follows similarly along the line of that in [34]. It involves
Caccioppoli type estimates of the horizontal and vertical vector fields along with the use of
an integrability estimate of [43] and a double truncation of [39] and [28].

We remark that the spaces C 0,α and C1,α considered in this paper, are in the sense of
Folland-Stein [17]. In other words, the spaces are defined with respect to the homogeneous
metric of the Heisenberg Group, see Section 2 for details. No assertions are made concerning
the regularity of the vertical derivative.

This paper is organised as follows. In Section 2, we provide a brief review on Heisenberg
Group and Orlicz spaces. Then in Section 3, first we prove a global maximum principle
exploring some generalised growth conditions along the lines of [29]; then we prove the
Harnack inequalities, thereby leading to the proof of Theorem 1.1. The whole of Section 4
is devoted to the proof of Theorem 1.3. Finally in Section 5, the proof of Theorem 1.2 is
provided and some possible extensions of the structure conditions are discussed.

2. Preliminaries

In this section, we fix the notations used and provide a brief introduction of the Heisenberg
Group Hn. Also, we provide some essential facts on Orlicz spaces and the Horizontal Sobolev
spaces, which are required for the purpose of this setting.

2.1. Heisenberg Group.
Here we provide the definition and properties of Heisenberg group that would be useful in
this paper. For more details, we refer the reader to [2],[7], etc.

Definition 2.1. For n ≥ 1, the Heisenberg Group denoted by Hn, is identified to the
Euclidean space R2n+1 with the group operation

(2.1) x · y :=
(
x1 + y1, . . . , x2n + y2n, t+ s+

1

2

n∑

i=1

(xiyn+i − xn+iyi)
)

for every x = (x1, . . . , x2n, t), y = (y1, . . . , y2n, s) ∈ Hn.

Thus, Hn with the group operation (2.1) forms a non-Abelian Lie group, whose left in-
variant vector fields corresponding to the canonical basis of the Lie algebra, are

Xi = ∂xi −
xn+i

2
∂t, Xn+i = ∂xn+i

+
xi
2
∂t,

for every 1 ≤ i ≤ n and the only non zero commutator T = ∂t. We have

(2.2) [Xi , Xn+i] = T and [Xi , Xj] = 0 ∀ j 6= n+ i.

We call X1, . . . , X2n as horizontal vector fields and T as the vertical vector field. For a scalar
function f : Hn → R, we denote Xf = (X1f, . . . , X2nf) and XXf = (Xi(Xjf))i,j as the
Horizontal gradient and Horizontal Hessian, respectively. From (2.2), we have the following
trivial but nevertheless, an important inequality |Tf | ≤ 2|XXf |. For a vector valued function
F = (f1, . . . , f2n) : Hn → R2n, the Horizontal divergence is defined as

divH(F ) =
2n∑

i=1

Xifi.

The Euclidean gradient of a function g : Rk → R, shall be denoted by ∇g = (D1g, . . . , Dkg)
and the Hessian matrix by D2g.
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The Carnot-Carathèodory metric (CC-metric) is defined as the length of the shortest
horizontal curves, connecting two points. This is equivalent to the Korànyi metric, denoted
as dHn(x, y) = ‖y−1 · x‖Hn , where the Korànyi norm for x = (x1, . . . , x2n, t) ∈ Hn is

(2.3) ‖x‖Hn :=
( 2n∑

i=1

x2
i + |t|

) 1
2
.

Throughout this article we use CC-metric balls denoted by Br(x) = {y ∈ Hn : d(x, y) < r}
for r > 0 and x ∈ Hn. However, by virtue of the equivalence of the metrics, all assertions
for CC-balls can be restated to Korànyi balls.

The Haar measure of Hn is just the Lebesgue measure of R2n+1. For a measurable set
E ⊂ Hn, we denote the Lebesgue measure as |E|. For an integrable function f , we denote

{f}E =

∫

E

f dx =
1

|E|

∫

E

f dx.

The Hausdorff dimension with respect to the metric d is also the homogeneous dimension of
the group Hn, which shall be denoted as Q = 2n+ 2, throughout this paper. Thus, for any
CC-metric ball Br, we have that |Br| = c(n)rQ.

For 1 ≤ p < ∞, the Horizontal Sobolev space HW 1,p(Ω) consists of functions u ∈ Lp(Ω)
such that the distributional horizontal gradient Xu is in Lp(Ω ,R2n). HW 1,p(Ω) is a Banach
space with respect to the norm

(2.4) ‖u‖HW 1,p(Ω) = ‖u‖Lp(Ω) + ‖Xu‖Lp(Ω,R2n).

We define HW 1,p
loc (Ω) as its local variant and HW 1,p

0 (Ω) as the closure of C∞0 (Ω) in HW 1,p(Ω)
with respect to the norm in (2.4). The Sobolev Embedding theorem has the following version
in the setting of Heisenberg group (see [6],[7]).

Theorem 2.2 (Sobolev Embedding). Let Br ⊂ Hn and 1 < q < Q. For all u ∈ HW 1,q
0 (Br),

there exists constant c = c(n, q) > 0 such that

(2.5)

(∫

Br

|u|
Qq
Q−q dx

)Q−q
Qq

≤ c r

(∫

Br

|Xu|q dx
) 1

q

.

Hölder spaces with respect to homogeneous metrics have appeared in Folland-Stein [17]
and therefore, are sometimes called are known as Folland-Stein classes and denoted by Γα

or Γ 0,α in some literature. However, here we maintain the classical notation and define

(2.6) C 0,α(Ω) = {u ∈ L∞(Ω) : |u(x)− u(y)| ≤ c d(x, y)α ∀ x, y ∈ Ω}
for 0 < α ≤ 1, which are Banach spaces with the norm

(2.7) ‖u‖C 0,α(Ω) = ‖u‖L∞(Ω) + sup
x,y∈Ω

|u(x)− u(y)|
d(x, y)α

.

These have standard extensions to classes Ck,α(Ω) for k ∈ N, which consists of functions
having horizontal derivatives up to order k in C 0,α(Ω). The local counterparts are denoted

as Ck,α
loc (Ω). Now, the definition of Morrey and Campanato spaces in sub-elliptic setting

differs in different texts. Here, we adopt the definition similar to the classical one.
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For any domain Ω ⊂ Hn and λ > 0, we define the Morrey space as

(2.8) M1,λ(Ω) =

{
u ∈ L1

loc(Ω) :

∫

Br

|u| dx < c rλ ∀ Br ⊂ Ω, r > 0

}

and the Campanato space as

(2.9) L1,λ(Ω) =

{
u ∈ L1

loc(Ω) :

∫

Br

∣∣u− {u}Br
∣∣ dx < c rλ ∀ Br ⊂ Ω, r > 0

}
,

where in both definitions Br represents balls with metric d. These spaces are Banach spaces
and have properties similar to the classical spaces in the Euclidean setting. We shall use the
fact that for every 0 < α < 1 and Q = 2n+ 2, we have

(2.10) L1,Q+α(Ω) ⊂ C 0,α(Ω),

where the inclusion is to be understood as taking continuous representatives. For details on
classical Morrey and Campanato spaces, we refer to [25] and for the sub-elliptic setting we
refer to [7].

2.2. Orlicz-Sobolev Spaces.
In this subsection, we recall some basic facts on Orlicz-Sobolev functions, which shall be
necessary later. Further details can be found in textbooks e.g. [25],[36].

Definition 2.3 (Young function). If ψ : [0,∞)→ [0,∞) is an non-decreasing, left continuous
function with ψ(0) = 0 and ψ(s) > 0 for all s > 0, then any function Ψ : [0,∞)→ [0,∞] of
the form

(2.11) Ψ(t) =

∫ t

0

ψ(s) ds

is called a Young function. A continuous Young function Ψ : [0,∞) → [0,∞) satisfying
Ψ(t) = 0 iff t = 0, limt→∞Ψ(t)/t =∞ and limt→0 Ψ(t)/t = 0, is called N-function.

There are several different definitions available in various references. However, within a
slightly restricted range of functions (as in our case), all of them are equivalent. We refer to
the book of Rao-Ren [36], for a more general discussion.

Definition 2.4 (Conjugate). The generalised inverse of a montone function ψ is defined as

ψ−1(t) := inf{s ≥ 0 | ψ(s) > t}. Given any Young function Ψ(t) =
∫ t

0
ψ(s)ds, its conjugate

function Ψ∗ : [0,∞)→ [0,∞] is defined as

(2.12) Ψ∗(s) :=

∫ s

0

ψ−1(t) dt

and (Ψ,Ψ∗) is called a complementary pair, which is normalised if Ψ(1) + Ψ∗(1) = 1.

A Young function Ψ is convex, increasing, left continuous and satisfies Ψ(0) = 0 and
limt→∞Ψ(t) =∞. The generalised inverse of Ψ is right continuous, increasing and coincides
with the usual inverse when Ψ is continuous and strictly increasing. In general, the inequality

(2.13) Ψ(Ψ−1(t)) ≤ t ≤ Ψ−1(Ψ(t))

is satisfied for all t ≥ 0 and equality holds when Ψ(t) and Ψ−1(t) ∈ (0,∞). It is also evident
that that the conjugate function Ψ∗ is also a Young function, Ψ∗∗ = Ψ and for any constant
c > 0, we have (cΨ)∗(t) = cΨ∗(t/c).
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Here are two standard examples of complementary pair of Young functions.

(1) Ψ(t) = tp/p and Ψ∗(t) = tp
∗
/p∗ when 1 < p, p∗ <∞ and 1/p+ 1/p∗ = 1.

(2) Ψ(t) = (1 + t) log(1 + t)− t and Ψ∗(t) = et − t− 1.

The following Young’s inequality is well known. We refer to [36] for a proof.

Theorem 2.5 (Young’s Inequality). Given a Young function Ψ(t) =
∫ t

0
ψ(s)ds, we have

(2.14) st ≤ Ψ(s) + Ψ∗(t)

for all s, t > 0 and equality holds if and only if t = ψ(s) or s = ψ−1(t).

A Young function Ψ is called doubling if there exists a constant C2 > 0 such that for all
t ≥ 0, we have Ψ(2t) ≤ C2 Ψ(t). By virtue of (1.2), the structure function g is doubling with
the doubling constant C2 = 2g0 and hence, we restrict to Orlicz spaces of doubling functions.

Definition 2.6. Let Ω ⊂ Rm be Borel and ν be a σ-finite measure on Ω. For a doubling
Young function Ψ, the Orlicz space LΨ(Ω, ν) is defined as the vector space generated by the
set {u : Ω→ R | u measurable,

∫
Ω

Ψ(|u|) dν <∞}. The space is equipped with the following
Luxemburg norm

(2.15) ‖u‖LΨ(Ω,ν) := inf
{
k > 0 :

∫

Ω

Ψ

( |u|
k

)
dν ≤ 1

}

If ν is the Lebesgue measure, the space is denoted by LΨ(Ω) and any u ∈ LΨ(Ω) is called a
Ψ-integrable function.

The function u 7→ ‖u‖LΨ(Ω,ν) is lower semi continuous and LΨ(Ω, ν) is a Banach space with
the norm in (2.15). The following theorem is a generalised version of Hölder’s inequality,
which follows easily from the Young’s inequality (2.14), see [36] or [41].

Theorem 2.7 (Hölder’s Inequality). For every u ∈ LΨ(Ω, ν) and v ∈ LΨ∗(Ω, ν), we have

(2.16)

∫

Ω

|uv| dν ≤ 2 ‖u‖LΨ(Ω,ν)‖v‖LΨ∗ (Ω,ν)

Remark 2.8. The factor 2 on the right hand side of the above, can be dropped if (Ψ,Ψ∗) is
normalised and one is replaced by Ψ(1) in the definition (2.15) of Luxemburg norm.

The Orlicz-Sobolev space W 1,Ψ(Ω) can be defined similarly by LΨ norms of the function
and its gradient, see [36], that resembles W 1,p(Ω). But here for Ω ⊂ Hn, we require the notion
of Horizontal Orlicz-Sobolev spaces, analoguous to the horizontal Sobolev spaces defined in
the previous subsection.

Definition 2.9. We define the space HW 1,Ψ(Ω) = {u ∈ LΨ(Ω) | Xu ∈ LΨ(Ω,R2n)} for an
open set Ω ⊂ Hn and a doubling Young function Ψ, along with the norm

‖u‖HW 1,Ψ(Ω) := ‖u‖LΨ(Ω) + ‖Xu‖LΨ(Ω,R2n).

The spaces HW 1,Ψ
loc (Ω), HW 1,Ψ

0 (Ω) are defined, similarly as earlier.

We remark that, all these notions can be defined for a general metric space, equipped with
a doubling measure. We refer to [41] for the details.

The following theorem, so called (Ψ,Ψ)-Poincaré inequality, has been proved (see Propo-
sition 6.23 in [41]) in the setting of a general metric space with a doubling measure and
metric upper gradient. We provide the statement in the setting of Heisenberg Group.
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Theorem 2.10. Given any doubling N-function Ψ with doubling constant c2 > 0, every
u ∈ HW 1,Ψ(Ω) satisfies the following inequality for every Br ⊂ Ω and some c = c(n, c2) > 0,

(2.17)

∫

Br

Ψ

( |u− {u}Br |
r

)
dx ≤ c

∫

Br

Ψ(|Xu|) dx.

In case of Ψ(t) = tp, the inequality is referred as (p, p)-Poincaré inequality. The following
corrollary follows easily from (2.17) and the (1, 1)-Poincaré inequality on Hn.

Corollary 2.11. Given a convex doubling N-function Ψ with doubling constant c2 > 0, there
exists c = c(n, c2) such that for every Br ⊂ Ω and u ∈ HW 1,Ψ(Ω) ∩HW 1,1

0 (Ω), we have

(2.18)

∫

Br

Ψ

( |u|
r

)
dx ≤ c

∫

Br

Ψ(|Xu|) dx.

Given a domain Ω ⊂ Hn, using (2.18) and arguments with chaining method (see [23]), it
is also possible to show that for u,Ψ and c = c(n, c2) > 0 as in Corrollary 2.11, we have

(2.19)

∫

Ω

Ψ

( |u|
diam(Ω)

)
dx ≤ c

∫

Ω

Ψ(|Xu|) dx.

Now we enlist some important properties of the function g that satisfies (1.2).

Lemma 2.12. Let g ∈ C1([0,∞)) be a function that satisfies (1.2) for some constant g0 > 0

and g(0) = 0. If G(t) =
∫ t

0
g(s)ds, then the following holds.

(1) G ∈ C2([0,∞)) is convex ;(2.20)

(2) tg(t)/(1 + g0) ≤ G(t) ≤ tg(t) ∀ t ≥ 0;(2.21)

(3) g(s) ≤ g(t) ≤ (t/s)g0g(s) ∀ 0 ≤ s < t;(2.22)

(4) G(t)/t is an increasing function ∀ t > 0;(2.23)

(5) tg(s) ≤ tg(t) + sg(s) ∀ t, s ≥ 0.(2.24)

The proof is trivial (see Lemma 1.1 of [29]), so we omit it. Notice that (2.22) implies that
g is increasing and doubling, with g(2t) ≤ 2g0g(t) and

(2.25) min{1, αg0}g(t) ≤ g(αt) ≤ max{1, αg0}g(t) for all α, t ≥ 0.

Since G is convex, an easy application of Jensen’s inequality yields

(2.26)

∫

Ω

G(|w − {w}Ω|) dx ≤ c(g0) min
k∈R

∫

Ω

G(|w − k|) dx ∀w ∈ LG(Ω)

All the above properties hold even if δ = 0 in (1.2) and they are purposefully kept that way.
However, the properties corresponding to δ > 0, shall be required in some situations. For
this case, (2.21) and (2.22) becomes

tg(t)/(1 + g0) ≤ G(t) ≤ tg(t)/(1 + δ) ∀ t ≥ 0;(2.27)

(t/s)δg(s) ≤ g(t) ≤ (t/s)g0g(s) ∀ 0 ≤ s < t,(2.28)

and hence t 7→ g(t)/tg0 is decreasing and t 7→ g(t)/tδ is increasing.
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3. Hölder continuity of weak solutions

In this section, we show that weak solutions of quasilinear equations in the Heisenberg
Group satisfy the Harnack inequalities, which leads to the Hölder continuity, thereby proving
Theorem 1.1. The techniques are standard, based on appropriate modifications of similar
results in the Euclidean setting, by Trudinger [40] and Lieberman [29].

On a domain Ω ⊂ Hn, we consider the prototype quasilinear operator in divergence form

(3.1) Qu = divH A(x, u,Xu) +B(x, u,Xu)

throughout this paper, where A : Ω× R × R2n → R2n and B : Ω× R × R2n → R are given
functions. Appropriate additional hypothesis on structure conditions satisfied by A and B,
shall be assumed in the following subsections, accordingly as required.

Here onwards, throughout this paper, we fix the notations

(3.2) F(t) := g(t)/t and G(t) :=

∫ t

0

g(s) ds.

We remark that the conditions chosen for A, always ensure some sort of ellipticity for
the operator (3.1) and the existence of weak solutions u ∈ HW 1,G(Ω) for Qu = 0 is always
assured. Any pathological situation, where this does not hold, is avoided.

3.1. Global Maximum principle.
Given weak solution u ∈ HW 1,G(Ω) for Qu = 0, here we show global L∞ estimates of
u under appropriate boundary conditions. The method and techniques are adaptations of
similar classical results in [29] for quasilinear equations in the Euclidean setting.

Here, we assume that u satisfies the boundary condition u − u0 ∈ HW 1,G
0 (Ω) for some

u0 ∈ L∞(Ω̄). In addition, we assume that there exists b0 > 0 and M ≥ ‖u0‖L∞ such that
〈
A(x, z, p), p

〉
≥ |p|g(|p|)− f1(|z|);(3.3)

zB(x, z, p) ≤ b0

〈
A(x, z, p), p

〉
+ f2(|z|),(3.4)

holds for all x ∈ Ω, |z| ≥ M and p ∈ R2n, where f1, f2 and g are non-negative increasing
functions. Also, we require

〈
A(x, u,Xu),Xu

〉
∈ L1(Ω) and u ∈ L∞(Ω). The first condition

(3.3), can be viewed as a weak ellipticity condition.
Additional conditions on f1 and f2, yields apriori integral estimates as in the following

lemma. Similar results in Euclidean setting, can be found in [22] and [26].

Lemma 3.1. Let u ∈ HW 1,G(Ω) be a weak solution of Qu = 0 in Ω along with the conditions

(3.3) and (3.4) and u− u0 ∈ HW 1,G
0 (Ω). If the functions f1, f2 and g satisfy

(1) tg(t) ≤ a1G(t);(3.5)

(2) tg(t)f1(Rt) +G(t)f2(Rt) ≤ a1G(t)2,(3.6)

for some a1 ≥ 1, R > 0 and every t > M/R, then there exists c(n) > 0 such that for
Q = 2n+ 2 and c = c(n)[(1 + a1)(1 + 2b0)]Q, we have

(3.7) sup
Ω

G(|u|/R) ≤ max
{ c

RQ

∫

Ω

G(|u|/R) dx , (1 + a1)G(M/R)
}
.
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Proof. The proof is similar to that of Lemma 2.1 in [29] (see also Lemma 10.8 in [22]) and
follows from standard Moser’s iteration. We provide a brief outline.

Note that, we can assume |u| ≥M without loss of generality, as otherwise we are done; we
provide the proof for u ≥ M , the proof for u ≤ −M is similar. The test function ϕ = h(u)
is used for the equation Qu = 0, where letting G = G(|u|/R) and τ = G(M/R), we choose

h(u) = uGβ
∣∣(1− τ/G

)+∣∣Qβ+1
,

for β ≥ 2b0 and Q = 2n + 2. Thus ϕ/u ≥ 0 and ϕ = 0 on ∂Ω, since M ≥ ‖u0‖L∞ . Hence,
applying ϕ as a test function and using (3.4), we get

(3.8)

∫

Ω

〈
A(x, u,Xu),Xϕ

〉
dx =

∫

Ω

B(x, u,Xu)ϕdx

≤
∫

Ω

[
b0

〈
A(x, u,Xu),Xu

〉
+ f2(|u|)

]ϕ
u
dx.

Note that Xϕ = h′(u)Xu and we have

h′(u) =
ϕ

u
+

[
β
(

1− τ

G

)
+ (Qβ + 1)

τ

G

]
Gβ−1

∣∣(1− τ/G)+
∣∣Qβg

( |u|
R

)
u

R
,

which implies h′(u) ≥ (β+ 1)ϕ/u and h′(u) ≤ a1(Q+ 2)(β+ 1)|(1− τ/G)+|QβGβ from (3.5).
For every β ≥ 2b0, we obtain that

(3.9)

1

2

∫

Ω

h′(u)g(|Xu|)|Xu| dx ≤
∫

Ω

(
h′(u)− b0ϕ/u

)[〈
A(x, u,Xu),Xu

〉
+ f1(|u|)

]
dx

≤
∫

Ω

[
f2(|u|)ϕ/u+

(
h′(u) − b0ϕ/u

)
f1(|u|)

]
dx,

where we have used h′(u) ≥ 2b0 ϕ/u and (3.3) for the first inequality and (3.8) for the second
inequality of the above. From (3.9) and (3.6), we obtain

(3.10)
1

2

∫

Ω

h′(u)g(|Xu|)|Xu| dx ≤ a1(β + 1)(2n+ 4)

∫

Ω

∣∣(1− τ/G)+
∣∣QβGβ+1 dx.

Now, leting w = ψ(G) = 1
2
Gβ+1|(1− τ/G)+|Qβ+1, note that |ψ′(G)| ≤ h′(u)g(|u|/R)|Xu|/R.

Then, we use (2.24) of Lemma 2.12 with t = |Xu| and s = |u|/R, to obtain

(3.11)

∫

Ω

|Xw| dx ≤
∫

Ω

h′(u)g

( |u|
R

) |Xu|
R

dx ≤
∫

Ω

h′(u)

[
g

( |u|
R

) |u|
R2

+ g(|Xu|) |Xu|
R

]
dx

≤ c(n)

R
a1(β + 1)

∫

Ω

∣∣(1− τ/G)+
∣∣QβGβ+1 dx

for some c(n) > 0, where for the last inequality of the above, we have used (3.10) and (3.5).
Recalling Sobolev’s inequality (2.5) with q = 1, we have

(∫

Ω

wκ dx
)1/κ

≤ c(n)

∫

Ω

|Xw| dx

for κ = Q/(Q− 1) = (2n+ 2)/(2n+ 1). Combining this with (3.11), we obtain

(3.12)
(∫

Ω

∣∣(1− τ/G)+
∣∣κ(Qβ+1)

Gκ(β+1) dx
)1/κ

≤ c(n)

R
a1(β + 1)

∫

Ω

∣∣(1− τ/G)+
∣∣QβGβ+1 dx
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which can be reduced to ‖v‖Lκγ(Ω,µ) ≤ (γ/γ0)1/γ‖v‖Lγ(Ω,µ), where v = G|(1 − τ/G)+|Q,

γ = β + 1, γ0 = 2b0 + 1 and the measure µ satisfying dµ = ( c(n)
R
a1γ0)Q(1 − τ/G)−Qdx.

Iterating with γm = κmγ0 for m = 0, 1, 2, . . . and taking m→∞, we finally obtain

sup
Ω

G|(1− τ/G)+|Q ≤ c(n)

(
a1(2b0 + 1)

R

)Q ∫

Ω

Gdx

for some c(n) > 0. It is easy to see that this yields (3.7), since supΩG > (1 + a1)τ implies

supΩ G|(1− τ/G)+|Q ≥
(

a1

1+a1

)Q
supΩG. Thus, the proof is finished. �

Now, we are ready to prove the global maximum principle. For the Euclidean setting,
similar theorems have been proved before, see e.g. Theorem 10.10 in [22].

Theorem 3.2. Let u ∈ HW 1,G(Ω) be a weak solution of Qu = 0 in Ω with sup∂Ω |u| < ∞.
We assume that there exists non-negative increasing functions f1, f2 and g such that the
conditions (3.3) and (3.4) hold for R = diam(Ω) and 0 < b0 < 1; furthermore we assume
Ψ(t) = tg(t) is convex and g satisfies (3.5) for some a1 ≥ 1. Then there exists c0 = c0(n, a1)
sufficiently small such that, if f1 and f2 satisfy

(3.13) f1(|z|) +
f2(|z|)
1− b0

≤ c0Ψ

( |z|
R

)

for all |z| ≥ sup∂Ω |u|, then for some c(n, b0, a1) > 0, we have

(3.14) sup
Ω

G(|u|/R) ≤ c(n, b0, a1) sup
∂Ω

G(|u|/R)

Proof. First notice that, since Ψ(t) = tg(t) and g is increasing, we have G(t) ≤ Ψ(t) and
from (3.5), we have Ψ(t) ≤ a1G(t). These together imply that G is convex and doubling and
so is Ψ, with 2a1 as their doubling constant.

Let us denote M = sup∂Ω |u| and Ω+ = {u > M}. We choose ϕ = (u −M)+ as a test
function for Qu = 0 and use (3.4) to get

(3.15)

∫

Ω+

〈
A(x, u,Xu),Xu

〉
dx =

∫

Ω+

(u−M)B(x, u,Xu) dx

≤
∫

Ω+

(
1−M/u

)[
b0

〈
A(x, u,Xu),Xu

〉
+ f2(|u|)

]
dx

≤
∫

Ω+

b0

〈
A(x, u,Xu),Xu

〉
dx+

∫

Ω+

f2(|u|) dx,

and then we use (3.15) together with (3.3) and (3.13) to obtain

(3.16)

∫

Ω+

Ψ(|Xu|) dx ≤
∫

Ω+

[
f1(|u|) +

f2(|u|)
1− b0

]
dx ≤ c0

∫

Ω+

Ψ

( |u|
R

)
dx.

Now, from the Poincaré inequality (2.19), we have

(3.17)

∫

Ω

Ψ

(
ϕ

R

)
dx ≤ c(n, a1)

∫

Ω

Ψ(|Xϕ|) dx = c(n, a1)

∫

Ω+

Ψ(|Xu|) dx.
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We have Ψ(2ϕ/R) ≤ 2a1Ψ(ϕ/R) from the doubling condition and letting Ω∗ = {u > 2M},
notice that Ψ(u/R) ≤ Ψ(2ϕ/R) on Ω∗. Using these together with (3.17) and (3.16), we get

(3.18)

∫

Ω∗
Ψ

( |u|
R

)
dx ≤ τ0

∫

Ω+

Ψ

( |u|
R

)
dx = τ0

[ ∫

Ω∗
Ψ

( |u|
R

)
dx+

∫

Ω+\Ω∗
Ψ

( |u|
R

)
dx

]

where τ0 = 2a1c(n, a1)c0 < 1 for small enough c0. Hence, from (3.18), we arrive at

(1− τ0)

∫

Ω∗
Ψ

( |u|
R

)
dx ≤ τ0

∫

Ω+\Ω∗
Ψ

( |u|
R

)
dx,

which, after adding (1− τ0)
∫

Ω+\Ω∗ Ψ(|u|/R)dx on both sides, imply

(3.19) (1− τ0)

∫

Ω+

Ψ

( |u|
R

)
dx ≤

∫

Ω+\Ω∗
Ψ

( |u|
R

)
dx ≤ |Ω+|Ψ(2M/R).

From a similar argument with Ω− = {u < −M}, we can obtain

(3.20) (1− τ0)

∫

Ω−
Ψ

( |u|
R

)
dx ≤ |Ω−|Ψ(2M/R).

Now for Ω0 = {|u| ≤M}, we directly have

(3.21) (1− τ0)

∫

Ω0

Ψ

( |u|
R

)
dx ≤ |Ω0|Ψ(2M/R)

since Ψ is increasing. Thus, adding (3.19),(3.20) and (3.21), we obtain

(3.22) (1− τ0)

∫

Ω

Ψ

( |u|
R

)
dx ≤ |Ω|Ψ(2M/R).

Now, if c0 < 1/a1, notice that multiplying Ψ(|z|/R) on both sides of (3.13) and using
inequality G(t) ≤ Ψ(t) ≤ a1G(t), we can obtain

Ψ(|z|/R)f1(|z|) +G(|z|/R)
f2(|z|)
1− b0

≤ a1G(|z|/R)2

which is similar to (3.6). Hence, we can combine (3.7) of Lemma 3.1 with (3.22) and conclude
supΩ G(|u|/R) ≤ c(n, b0, a1)G(M/R), which completes the proof. �
Remark 3.3. With minor modifications of the above arguments, the global bound can also
be shown corresponding to u+ for weak supersolutions u i.e. for Qu ≥ 0.

3.2. Harnack Inequality.
Here we show that weak solutions of Qu = 0, satisfy Harnack inequality. The proofs are
standard modifications of those in [40] and [29] for the Euclidean setting. We also refer to
[6] for the Harnack inequalities on special cases, in the sub-elliptic setting.

In this subsection, we consider

〈
A(x, z, p), p

〉
≥ |p|g(|p|)− a1 g

( |z|
R

) |z|
R
− g(χ)χ(3.23)

|A(x, z, p)| ≤ a2 g(|p|) + a3 g

( |z|
R

)
+ g(χ)(3.24)

for given non-negative constants a1, a2, a3, and χ,R > 0.
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Theorem 3.4. In BR ⊂ Ω, let u ∈ HW 1,G(BR)∩L∞(BR) be a weak supersolution, Qu ≥ 0
with |u| ≤M in BR and with the structure conditions (3.23),(3.24) and

(3.25) sign(z)B(x, z, p) ≤ 1

R

[
b0 g(|p|) + b1 g

( |z|
R

)
+ g(χ)

]

for given non-negative constants a1, a2, a3, b0, b1 and g ∈ C1([0,∞)) that satisfies (1.2) with
δ ≥ 0. Then for any q > 0 and 0 < σ < 1, there exists c = c(n, g0, a1, a2, a3, b0M, b1, q) > 0
such that, letting Q = 2n+ 2, we have

(3.26) sup
BσR

u+ ≤ c

(1− σ)(1+g0)Q/q

[(∫

BR

|u+|q dx
) 1

q

+ χR.

]

Proof. The proof is based on Moser’s iteration, similar to that of Theorem 1.2 in [29]. We
provide an outline. First notice that, using z̄ = z+χR, the structure conditions (3.23),(3.24)
and (3.25) can be reduced to

〈
A(x, z, p), p

〉
≥ |p|g(|p|)− (1 + a1)g

(
|z̄|/R

)
|z̄|/R;(3.27)

|A(x, z, p)| ≤ a2 g(|p|) + (1 + a3)g
(
|z̄|/R

)
;(3.28)

z̄B(x, z, p) ≤ b0|p|g(|p|) + (1 + b0 + b1)g
(
|z̄|/R

)
|z̄|/R.(3.29)

To obtain (3.29), we multiply z̄ on (3.25) and use (2.24) of Lemma 2.12 with t = |z̄|/R and
s = |p|.

Hence, we use ū = u+ + χR for the proof. Given any σ ∈ (0, 1), we choose a standard
cutoff function η ∈ C∞0 (BR) such that 0 ≤ η ≤ 1, η = 1 in BσR and |Xη| ≤ 2/(1 − σ)R.
Then, for some γ ∈ R and β ≥ 1 + |γ| which are chosen later, we use

ϕ = ηγū G(ηū/R)β−1eb0ū

as a test function for Qu ≥ 0, to get

(3.30)

(1 + b0)

∫

BR

ηγG(ηū/R)β−1eb0ū
〈
A(x, u,Xu),Xū

〉
dx

+
β − 1

R

∫

BR

ηγū G(ηū/R)β−2g(ηū/R)eb0ū
〈
A(x, u,Xu),Xū

〉
dx

≤ −β − 1

R

∫

BR

ηγ|ū|2G(ηū/R)β−2g(ηū/R)eb0ū
〈
A(x, u,Xu),Xη

〉
dx

− γ

∫

BR

ηγ−1ū G(ηū/R)β−1eb0ū
〈
A(x, u,Xu),Xη

〉
dx

+

∫

BR

ηγG(ηū/R)β−1eb0ūū B(x, u,Xu) dx.

Now we use the structure condition (3.27) for the left hand side and (3.28),(3.29) for the
right hand side of the above inequality. Then, we use (2.21) and (2.22) of Lemma 2.12 and
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also the fact that eb0χR ≤ eb0ū ≤ eb0(M+χR), since |u| ≤M in BR. We obtain

(3.31)

β

∫

BR

ηγG(ηū/R)β−1g(|Xū|)|Xū| dx

≤ a2β e
b0M

(1− σ)

∫

BR

ηγ−1G(ηū/R)β−1 ū

R
g(|Xū|) dx

+ β(1 + g0)C1e
b0M

∫

BR

ηγ−1G(ηū/R)β−1g

(
ū

R

)
ū

R
dx

= I1 + I2

where C1 = (1 + a1)(1 + b0) + (1 + b0 + b1) + (1 + a3)/(1 − σ). Here onwards, we use
c = c(n, g0, a1, a2, a3, b0M, b1) > 0 as a large enough constant, throughout the rest of the
proof. Now we estimate both I1 and I2 as follows.

For I1, we use (2.24) with t = 2
(1−σ)

a2e
b0M ū/ηR and s = |Xū|, to obtain

(3.32)

I1 ≤
β

2

∫

BR

ηγG(ηū/R)β−1g(|Xū|)|Xū| dx

+
cβ

(1− σ)

∫

BR

ηγG(ηū/R)β−1 ū

ηR
g

(
ū

(1− σ)ηR

)
dx

≤ β

2

∫

BR

ηγG(ηū/R)β−1g(|Xū|)|Xū| dx

+
cβ

(1− σ)1+g0

∫

BR

ηγ−(2+2g0)G(ηū/R)β dx,

where we have used g(ū/ηR) ≤ η−2g0g(ηū/R) for the latter inequality of the above.
For I2, we trivially have

(3.33) I2 ≤
cβ

(1− σ)

∫

BR

ηγ−1G(ηū/R)β dx.

Letting θ = 2 + 2g0 and combining (3.31) with (3.32) and (3.33), we obtain

(3.34)
β

2

∫

BR

ηγG(ηū/R)β−1g(|Xū|)|Xū| dx ≤ cβ

(1− σ)θ/2

∫

BR

ηγ−θG(ηū/R)β dx.

Now, we use Sobolev inequality
(∫

BR

|w|κ dx
) 1
κ ≤ c(n)

∫

BR

|Xw| dx

for κ = Q/(Q−1) = (2n+2)/(2n+1) and w = ηγG(ηū/R)β with the choice of γ = −(Q−1)θ,
so that κγ = −Qθ = γ − θ. Combining with (3.34), we obtain

(∫

BR

η−QθG(ηū/R)κβ dx
) 1
κ ≤ cβ

(1− σ)θ/2

∫

BR

η−QθG(ηū/R)β dx.

Iterating the above with β0 = q ≥ Qθ and βm = κmβ0 and letting m→∞, we get

(3.35) sup
BR

G(ηū/R) ≤ c(q)

(1− σ)Qθ/2q

(∫

BR

η−QθG(ηū/R)q dx
) 1
q
.
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Hence, using (2.21), we get

sup
BσR

ū ≤ c(q)

(1− σ)Qθ/2q

(∫

BR

|ū|q dx
) 1
q

for all q ≥ Qθ and c(q) = c(n, g0, a1, a2, a3, b0M, b1, q) > 0. Then from the interpolation
argument in [11], we get the above for all q > 0. This concludes the proof. �
Theorem 3.5. In BR ⊂ Ω, let u ∈ HW 1,G(BR) ∩ L∞(BR) be a weak subsolution, Qu ≤ 0
with 0 ≤ u ≤M in BR and with the structure conditions (3.23),(3.24) and

(3.36) sign(z)B(x, z, p) ≥ − 1

R

[
b0 g(|p|) + b1 g

( |z|
R

)
+ g(χ)

]

for given non-negative constants a1, a2, a3, b0, b1 and g ∈ C1([0,∞)) that satisfies (1.2) with
δ > 0. Then there exists positive constants q0 and c depending on n, δ, g0, a1, a2, a3, b0M, b1

such that, letting Q = 2n+ 2, we have

(3.37)

(∫

BR/2

uq0 dx

) 1
q0 ≤ c

(
inf
BR/4

u+ χR
)

Proof. Taking ū = u + χR and η ∈ C∞0 (BR/2) similarly as in the proof of Theorem 3.4, we
can use the test function ϕ = ηγūG(ū/ηR)e−b0ū on Qu ≤ 0 and obtain

(3.38)

(∫

BR/2

ū−q dx

)− 1
q

≤ c(q) inf
BR/4

ū

for any q > 0. Now for any 0 < r ≤ R, we choose η ∈ C∞0 (Br) such that 0H ≤ η ≤ 1, η = 1
in Br/2 and |Xη| ≤ 2/r. Then we choose test function ϕ = ηg0ūG(ū/r)−1 in Qu ≤ 0. Here
we use the fact that g satisfies (1.2) with δ > 0, so that from (2.27) and (2.28), we have

G(ū/r)−1 −G(ū/r)−2g(ū/r)ū/r ≤ −G(ū/r)−1δ/(1 + δ).

Thus, using test function ϕ and structure conditions (3.27),(3.28) and (3.36), we obtain
∫

Br

ηg0
g(|Xū|)|Xū|
G(ū/r)

dx ≤ c

∫

Br

[
(a1 + a3 + b0 + b1)

g(ū/r)ū/r

G(ū/r)

]
dx ≤ crQ

where we suppress the dependence of ai, bj, g0, δ and denote constant as c. Now, recalling
(2.24), we use t ≤ tg(t)/g(s) + s, with t = |Xu| and s = ū/r, to obtain

(3.39)

∫

Br/2

|Xū|
ū

dx ≤
∫

Br/2

[g(|Xū|)|Xū|
ūg(ū/r)

+
1

r

]
dx

≤ c

r

∫

Br

[
ηg0

g(|Xū|)|Xū|
G(ū/r)

+ 1
]
dx ≤ c rQ−1

Taking w = log(ū), we use Poincaré inequality and (3.39) to get
∫

Br/2

|w − {w}Br/2| dx ≤ c r

∫

Br/2

|Xw| dx =
c

rQ−1

∫

Br/2

|Xū|
ū

dx ≤ c,

which shows that w ∈ BMO(Br/2). John-Nirenberg type inequalities in the setting of metric
spaces with doubling measures, is known; we refer to [3]. This is applicable in our setting
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and the above inequality imples exponential inetegrability for w = log(ū). Thus there exists
q0 > 0 and c0 > 0 such that

(3.40)

(∫

Br/2

ū−q0 dx

)(∫

Br/2

ūq0 dx

)
≤
(∫

Br/2

e
q0|w−{w}Br/2 | dx

)2

≤ c2
0.

for any r ≤ R. Thus, (3.38) with q = q0 and (3.40), concludes the proof. �
From Theorem 3.4 and Theorem 3.5, the following corrollary is immediate.

Corollary 3.6. In BR ⊂ Ω, let u ∈ HW 1,G(BR) ∩ L∞(BR) be a weak solution of Qu = 0
with 0 ≤ u ≤M in BR and with the structure conditions (3.23),(3.24) and

(3.41) |B(x, z, p)| ≤ 1

R

[
b0 g(|p|) + b1 g

( |z|
R

)
+ g(χ)

]

for given non-negative constants a1, a2, a3, b0, b1 and g ∈ C1([0,∞)) that satisfies (1.2) with
δ > 0. Then there exists c = c(n, δ, g0, a1, a2, a3, b0M, b1) > 0 such that we have

(3.42) sup
BR/4

u ≤ c
(

inf
BR/4

u+ χR
)

Thus, bounded weak solutions satisfy the Harnack inequality (3.42), which implies the
Hölder continuity of weak solutions. By standard arguments, it is possible to show that there
exists α = α(n, δ, g0, a1, a2, a3, b0M, b1) ∈ (0, 1) and c = c(n, δ, g0, a1, a2, a3, b0M, b1) > 0 such
that, we have

(3.43) oscBr u ≤ c
( r
R

)α (
oscBR u+ χR

)
.

for every 0 < r < R and BR ⊂ Ω. This is enough to prove Theorem 1.1.

Remark 3.7. The growth and ellipticity conditions (3.23),(3.24) and (3.41) are special cases
of the more general conditions in (3.3) and (3.4). When g satisfies (1.2), it is easy to
see that (3.5) holds with a1 = 1 + g0 and (3.3), (3.4) and (3.6) holds if f1(|z|), f2(|z|) ∼
g(|z|/R)|z|/R + g(χ)χ. Therefore, it is not restrictive to assume |u| ≤ M since we have
Theorem 3.2 for the above cases. Furthermore, (3.41) can be relaxed to

(3.44) |zB(x, z, p)| ≤ b0|p|g(|p|) + b1g

( |z|
R

) |z|
R

+ g(χ)χ

so that, in this case (3.29) can be obtained immediately.

4. Hölder continuity of Horizontal gradient

In this section, we consider a homogenous quasilinear equation where the operator does
not depend on x and u. Estimates for this equation shall be necessary in Section 5. However,
all results in this section are obtained independently, without any reference to the rest of
this paper, apart from the usage of the structure function g in (1.2).

We warn the reader that in this section z is used as a variable in R2n, unlike the other
sections. This is done to maintain continuity with [35].

In a domain Ω ⊂ Hn, we consider

(4.1) divH(A(Xu)) = 0 in Ω,
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where A : R2n → R2n is a given C1 function. We denote A(z) = (A1(z),A2(z), . . . ,A2n(z))
for all z ∈ R2n and DA(z) as the 2n× 2n Jacobian matrix (∂Ai(z)/∂zj)ij. We assume that
DA(z) is symmetric and satisfies

(4.2)
F(|z|)|ξ|2 ≤

〈
DA(z) ξ, ξ

〉
≤ LF(|z|)|ξ|2;

|A(z)| ≤ L |z|F(|z|).
for every z, ξ ∈ R2n and L ≥ 1, where we denote F(t) = g(t)/t maintaining the notation
(3.2). Here g : [0,∞)→ [0,∞) is a given C1 function satisfying (1.2) and g(0) = 0.

The above equation has been considered previously in [35] where local boundedness of Xu
for a weak solution u of (4.1), has been established. The goal of this section is to prove the
local Hölder continuity of Xu. We restate Theorem 1.3 here, which is the main result of this
section.

Theorem 4.1. Let u ∈ HW 1,G(Ω) be a weak solution of the equation (4.1) with structure
condition (4.2) and g satisfies (1.2) with δ > 0. Then Xu is locally Hölder continuous and
there exists σ = σ(n, g0, L) ∈ (0, 1) such that for any Br0 ⊂ Ω and 0 < r < r0/2, we have

(4.3) max
1≤l≤2n

∫

Br

G(|Xlu− {Xlu}Br |) dx ≤ c
( r
r0

)σ ∫

Br0

G(|Xu|) dx

where c > 0 depends on n, δ, g0, L.

4.1. Previous Results.
Here we provide some results that are known and previously obtained, which would be
essential for our purpose. For more details, we refer to [35] and references therein.

The following monotonicity and ellipticity inequalities follow easily from (4.2).

(1)
〈
A(z)−A(w), z − w

〉
≥ c(g0)

{
|z − w|2 F(|z|) if |z − w| ≤ 2|z|
|z − w|2 F(|z − w|) if |z − w| > 2|z|(4.4)

(2)
〈
A(z), z

〉
≥ c(g0) |z|2F(|z|) ≥ c(g0)G(|z|)(4.5)

for all z, w ∈ R2n and some constant c(g0) > 0. These are essential to show the existence of
a weak solution u ∈ HW 1,G(Ω) of the equation (4.1). We refer to [35] for a brief discussion
on existence and uniqueness for (4.1). The following theorem is Theorem 1.1 of [35], which
shows the local Lipschitz continuity of the weak solutions.

Theorem 4.2. Let u ∈ HW 1,G(Ω) be a weak solution of equation (4.1) satisfying structure
condition (4.2) and g satisfies (1.2) with δ > 0. Then Xu ∈ L∞loc(Ω,R2n); moreover for any
Br ⊂ Ω, we have

(4.6) sup
Bσr

G(|Xu|) ≤ c

(1− σ)Q

∫

Br

G(|Xu|) dx

for any 0 < σ < 1, where c = c(n, g0, δ, L) > 0 is a constant.

Now, we also require the following apriori assumption as considered in [35], in order to
temporarily remove possible singularities of the function F. Here onwards, this shall be
assumed until the end of this section.

(4.7) (A) : There exists m1,m2 > 0 such that lim
t→0

F(t) = m1 and lim
t→∞

F(t) = m2.
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This combined with the local boundedness of Xu from Theorem 4.2, makes the equation
(4.1) to be uniformly elliptic and enables us to conlcude

(4.8) Xu ∈ HW 1,2
loc (Ω,R2n) ∩ C 0,α

loc (Ω,R2n), Tu ∈ HW 1,2
loc (Ω) ∩ C 0,α

loc (Ω)

from Theorem 1.1 and Theorem 3.1 of Capogna [5]. However, every estimates in this section,
are independent of the constants m1 and m2 and (4.7) shall be ultimately removed.

The regularity (4.8) is necessary to differentiate the equation (4.1) and obtain the equations
satisfied by Xlu and Tu, as shown in the following two lemmas. The proofs are simple and
omitted here, we refer to [35] and [43] for details.

Lemma 4.3. If u ∈ HW 1,G(Ω) is a weak solution of (4.1), then Tu is a weak solution of

(4.9)
2n∑

i,j=1

Xi(DjAi(Xu)Xj(Tu)) = 0.

Lemma 4.4. If u ∈ HW 1,G(Ω) is a weak solution of (4.1), then for any l ∈ {1, . . . , n}, we
have that Xlu is weak solution of

(4.10)
2n∑

i,j=1

Xi(DjAi(Xu)XjXlu) +
2n∑

i=1

Xi(DiAn+l(Xu)Tu) + T (An+l(Xu)) = 0

and similarly, Xn+lu is weak solution of

(4.11)
2n∑

i,j=1

Xi(DjAi(Xu)XjXn+lu)−
2n∑

i=1

Xi(DiAl(Xu)Tu)− T (Al(Xu)) = 0.

We enlist some Caccioppoli type inequalitites, that are very similar to those in [43] and
[34]. They will be essential for the estimates in the next subsection.

The following lemma is similar to Lemma 3.3 in [43], the proof is trivial and omitted here.

Lemma 4.5. For any β ≥ 0 and all η ∈ C∞0 (Ω), we have, for some c = c(n, g0, L) > 0, that∫

Ω

η2 F (|Xu|) |Tu|β|X(Tu)|2 dx ≤ c

(β + 1)2

∫

Ω

|Xη|2F (|Xu|) |Tu|β+2 dx.

The following lemma is similar to Corollary 3.2 of [43] and Lemma 2.5 of [34]. This is
crucial for the proof of the Hölder continuity of the horizontal gradient. The proof of the
lemma is similar to that in [43] and involves few other Caccioppoli type estimates. An outline
is provided in Appendix II, for the reader’s convenience.

Lemma 4.6. For any q ≥ 4 and all non-negative η ∈ C∞0 (Ω), we have that

(4.12)

∫

Ω

ηq F (|Xu|) |Tu|q dx ≤ c(q)Kq/2

∫

supp(η)

F (|Xu|) |Xu|q dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(q) = c(n, g0, L, q) > 0.

The following corollary follows immediately from Lemma 4.5 and Lemma 4.6.

Corollary 4.7. For any q ≥ 4 and all non-negative η ∈ C∞0 (Ω), we have∫

Ω

ηq+2 F (|Xu|) |Tu|q−2|X(Tu)|2 dx ≤ c(q)K
q+2

2

∫

spt(η)

F (|Xu|) |Xu|q dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(q) = c(n, g0, L, q) > 0.
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4.2. The truncation argument.
In this subsection, we follow the technique of [34] and prove Caccioppoli type inequalities
invovling a double truncation of horizontal derivatives. In the setting of Euclidean spaces,
similar ideas have been implemented previously by Tolksdorff [39] and Lieberman [28].

Here onwards, throughout this section, we shall denote u ∈ HW 1,G(Ω) as a weak solution
of (4.1) and equipped with local Lipschitz continuity from Theorem 4.2, we denote

(4.13) µi(r) = supBr |Xiu|, µ(r) = max
1≤i≤2n

µi(r).

for a fixed ball Br ⊂ Ω.
We fix any l ∈ {1, 2, .., 2n} and consider the following double truncation

(4.14) v := min
(
µ(r)/8 , max (µ(r)/4−Xlu, 0)

)
.

It is important to note that, from the regularity (4.8), we have

(4.15) Xv ∈ L2
loc(Ω;R2n), T v ∈ L2

loc(Ω)

and moreover, letting

(4.16) E = {x ∈ Ω : µ(r)/8 < Xlu < µ(r)/4},
we have that

(4.17) Xv =

{
−XXlu a.e. in E;

0 a.e. in Ω \ E, and Tv =

{
−TXlu a.e. in E;

0 a.e. in Ω \ E.
The properties of this truncation shall be exploited for proving all the following Caccioppoli
type estimates. In particular, notice that

(4.18) µ(r)/8 ≤ |Xu| ≤ (2n)1/2µ(r) in E ∩Br;

since F(t) = g(t)/t, (4.18) combined with (2.25) implies

(4.19)
1

8g0(2n)1/2
F(µ(r)) ≤ F(|Xu|) ≤ 8(2n)g0/2F(µ(r)) in E ∩Br,

which shall be used several times during the estimates that follow in this subsection. The
main lemma required to prove Theorem 4.1, is the following.

Lemma 4.8. Let v be the truncation (4.14) and η ∈ C∞0 (Br) be a non-negative cut-off
function such that 0 ≤ η ≤ 1 in Br, η = 1 in Br/2 and that |Xη| ≤ 4/r, |XXη| ≤ 16n/r2.
Then we have the following Caccioppoli type inequality

(4.20)

∫

Br

ηβ+4vβ+2|Xv|2 dx ≤ c(β + 2)2 |Br|1−1/γ

r2
µ(r)4

(∫

Br

ηγβvγβ dx
)1/γ

for all β ≥ 0 and γ > 1, where c = c(n, g0, L, γ) > 0 is a constant.

In the setting of equations with p-laplace type growth, the above lemma has been shown
previously in [34](see Lemma 1.1). The proof is going to be similar. Hence, we would require
two auxillary lemmas, similarly as in [34].

We also remark that the inequality (4.20) also holds corresponding to the truncation

v′ = min
(
µ(r)/8,max(µ(r)/4 +Xlu, 0)

)
,

and the proof can be carried out in the same way as that of Lemma 4.8.
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The following lemma is the analogue of Lemma 3.1 of [34]. The proof is similar and
lengthy, which we provide in the Appendix I.

Lemma 4.9. For any β ≥ 0 and all non-negative η ∈ C∞0 (Ω), we have that

(4.21)

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

≤ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2F (|Xu|) |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|Tu|2 dx,

where v is as in (4.14) and c = c(n, g0, L) > 0.

Throughout the rest of this subsection, we fix a ball Br ⊂ Ω and a cut-off function
η ∈ C∞0 (Br) that satisfies

(4.22) 0 ≤ η ≤ 1 in Br, η = 1 in Br/2

and

(4.23) |Xη| ≤ 4/r, |XXη| ≤ 16n/r2, |Tη| ≤ 32n/r2 in Br.

The following technical lemma, that is required for the proof of Lemma 4.8, is a weighted
Caccioppoli inequality for Tu involving v similar to that in Lemma 3.2 of [34]. We provide
the proof here for sake of completeness.

Lemma 4.10. Let Br ⊂ Ω be a ball and η ∈ C∞0 (Br) be a cut-off function satisfying (4.22)
and (4.23). Let τ ∈ (1/2, 1) and γ ∈ (1, 2) be two fixed numbers. Then, for any β ≥ 0, we
have the following estimate,

(4.24)

∫

Ω

ητ(β+2)+4 vτ(β+4)F (|Xu|) |Xu|4|X(Tu)|2 dx ≤ c(β + 2)2τ |Br|1−τ
r2(2−τ)

F(µ(r))µ(r)6 Jτ ,

where c = c(n, g0, L, τ, γ) > 0 and

(4.25) J =

∫

Br

ηβ+4vβ+2|Xv|2 dx + µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Proof. We denote the left hand side of (4.24) by M ,

(4.26) M =

∫

Ω

ητ(β+2)+4 vτ(β+4)F (|Xu|) |Xu|4|X(Tu)|2 dx,
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where 1/2 < τ < 1. Now we use ϕ = ητ(β+2)+4 vτ(β+4)|Xu|4 Tu as a test function for the
equation (4.9). We obtain that

(4.27)

∫

Ω

2n∑

i,j=1

ητ(β+2)+4 vτ(β+4)|Xu|4DjAi(Xu)XjTuXiTu dx

=− (τ(β + 2) + 4)

∫

Ω

2n∑

i,j=1

ητ(β+2)+3 vτ(β+4)|Xu|4TuDjAi(Xu)XjTuXiη dx

− τ(β + 4)

∫

Ω

2n∑

i,j=1

ητ(β+2)+4 vτ(β+4)−1|Xu|4TuDjAi(Xu)XjTuXiv dx

− 4

∫

Ω

2n∑

i,j,k=1

ητ(β+2)+4 vτ(β+4)|Xu|2XkuTuDjAi(Xu)XjTuXiXku dx

=K1 +K2 +K3,

where the integrals in the right hand side of (4.27) are denoted by K1, K2, K3 in order. To
prove the lemma, we estimate both sides of (4.27) as follows.

For the left hand side, we have by the structure condition (4.2) that

(4.28) left of (4.27) ≥
∫

Ω

ητ(β+2)+4 vτ(β+4)F (|Xu|) |Xu|4|X(Tu)|2 dx = M,

and for the right hand side of (4.27), we estimate each item Ki, i = 1, 2, 3, one by one.
To this end, we denote

(4.29) K̃ =

∫

Ω

η(2τ−1)(β+2)+6 v(2τ−1)(β+4)F (|Xu|) |Xu|4|Tu|2|X(Tu)|2 dx.

First, we estimate K1 by the structure condition (4.2) and Hölder’s inequality, to get

(4.30)

|K1| ≤c(β + 2)

∫

Ω

ητ(β+2)+3 vτ(β+4)F (|Xu|) |Xu|4|Tu||X(Tu)||Xη| dx

≤c(β + 2)K̃
1
2

(∫

Ω

ηβ+2vβ+4F (|Xu|) |Xu|4|Xη|2 dx
) 1

2
,

where c = c(n, g0, L, τ) > 0.
Second, we estimate K2 also by the structure condition (4.2) and Hölder’s inequality,

(4.31)

|K2| ≤c(β + 2)

∫

Ω

ητ(β+2)+4 vτ(β+4)−1F (|Xu|) |Xu|4|Tu||X(Tu)||Xv|dx

≤c(β + 2)K̃
1
2

(∫

Ω

ηβ+4vβ+2F (|Xu|) |Xu|4|Xv|2 dx
) 1

2
.
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Finally, we estimate K3. In the following, the first inequality follows from the structure
condition (4.2), the second from Hölder’s inequality and the third from Lemma 4.9. We have

(4.32)

|K3| ≤ c

∫

Ω

ητ(β+2)+4 vτ(β+4)F (|Xu|) |Xu|3|Tu||X(Tu)||XXu| dx

≤ cK̃
1
2

(∫

Ω

ηβ+4vβ+4F (|Xu|) |Xu|2|XXu|2 dx
) 1

2

≤ c K̃
1
2 I

1
2 ,

where I is the right hand side of (4.21) in Lemma 4.9

(4.33)

I = c(β + 2)2

∫

Ω

ηβ+2vβ+4F (|Xu|) |Xu|4
(
|Xη|2 + η|Tη|

)
dx

+ c(β + 2)2

∫

Ω

ηβ+4vβ+2F (|Xu|) |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+4vβ+4F (|Xu|) |Xu|2|Tu|2 dx.

where c = c(n, g0, L) > 0. Notice that the integrals on the right hand side of (4.30) and
(4.31) are both controlled from above by I. Hence, we can combine (4.30), (4.31) and (4.32)
to obtain

|K1|+ |K2|+ |K3| ≤ cK̃
1
2 I

1
2 ,

from which, together with the estimate (4.28) for the left hand side of (4.27), it follows that

(4.34) M ≤ cK̃
1
2 I

1
2 ,

where c = c(n, g0, L, τ) > 0. Now, we estimate K̃ by Hölder’s inequality as follows.

(4.35)

K̃ ≤
(∫

Ω

ητ(β+2)+4 vτ(β+4)F (|Xu|) |Xu|4|X(Tu)|2 dx
) 2τ−1

τ

×
(∫

Ω

η
2τ

1−τ +4F (|Xu|) |Xu|4|Tu| 2τ
1−τ |X(Tu)|2 dx

) 1−τ
τ

=M
2τ−1
τ H

1−τ
τ ,

where M is as in (4.26) and we denote by H the second integral on the right hand side of
(4.35)

(4.36) H =

∫

Ω

η
2τ

1−τ +4F (|Xu|) |Xu|4|Tu| 2τ
1−τ |X(Tu)|2 dx.

Combining (4.35) and (4.34), we get

(4.37) M ≤ cH1−τIτ ,

for some c = c(n, g0, L, τ) > 0. To estimate M , we estimate H and I from above. We
estimate H by Corollary 4.7 with q = 2/(1− τ) and monotonicity of g, to obtain

(4.38)

H ≤ cµ(r)4

∫

Ω

ηq+2F (|Xu|) |Tu|q−2|X(Tu)|2 dx

≤ c

rq+2
µ(r)4

∫

Br

F (|Xu|) |Xu|q dx ≤ c

rq+2
|Br|F(µ(r))µ(r)q+4,
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where c = c(n, g0, L, τ) > 0.
Now, we fix 1 < γ < 2 and estimate each term of I in (4.33) as follows. For the first term

of I, we have by Hölder’s inequality and monotonicity of g that

(4.39)

∫

Ω

ηβ+2vβ+4F (|Xu|) |Xu|4
(
|Xη|2 + η|Tη|

)
dx

≤ c

r2
F(µ(r))µ(r)8|Br|1−

1
γ

(∫

Br

ηγβvγβ dx
) 1
γ
.

For the second term of I, we similarly have

(4.40)

∫

Ω

ηβ+4vβ+2F (|Xu|) |Xu|4|Xv|2 dx ≤ cF(µ(r))µ(r)4

∫

Br

ηβ+4vβ+2|Xv|2 dx.

For the third term of I, we have that

(4.41)

∫

Ω

ηβ+4vβ+4F (|Xu|) |Xu|2|Tu|2 dx

≤
(∫

Ω

η
2γ
γ−1F (|Xu|) |Xu|2|Tu|

2γ
γ−1 dx

)1− 1
γ

×
(∫

Ω

ηγ(β+2)vγ(β+4)F (|Xu|) |Xu|2 dx
) 1
γ

≤ c

r2
F(µ(r))µ(r)8|Br|1−

1
γ

(∫

Br

ηγβvγβ dx
) 1
γ

where c = c(n, g0, L, γ) > 0. Here in the above inequalities, the first one follows from Hölder’s
inequality and the second from Lemma 4.6 and monotonicity of g. Combining the estimates
for three items of I above (4.39), (4.40) and (4.41), we get the following estimate for I,

(4.42) I ≤ c(β + 2)2F(µ(r))µ(r)4J,

where J is defined as in (4.25)

J =

∫

Br

ηβ+4vβ+2|Xv|2 dx + µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Now from the estimates (4.38) for G and (4.42) for I, we obtain the desired estimate for M
by (4.37). Combing (4.38), (4.42) and (4.37), we end up with

(4.43) M ≤ c(β + 2)2τ |Br|1−τ
r2(2−τ)

F(µ(r))µ(r)6Jτ ,

where c = c(n, g0, L, τ, γ) > 0. This completes the proof. �
Now we provide the proof of Lemma 4.8, for completeness.

Proof of Lemma 4.8. First, notice that we may assume γ < 3/2, since otherwise we can
apply Hölder’s inequality to the integral in the right hand side of the claimed inequality
(4.20). Also, we recall from (4.14), that for some l ∈ {1, . . . , 2n},

v = min
(
µ(r)/8 , max (µ(r)/4−Xlu, 0)

)
.

We prove the lemma assuming l ∈ {1, . . . , n}; the case for l ∈ {n+ 1, . . . , 2n} can be proven
similarly. Henceforth, we fix 1 < γ < 3/2 and l ∈ {1, . . . , n} throughout the rest of the
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proof. Let β ≥ 0 and η ∈ C∞0 (Br) be a cut-off function satisfying (4.22) and (4.23). Using
test function ϕ = ηβ+4vβ+3 for the equation (4.10), we obtain

(4.44)

−(β + 3)

∫

Ω

2n∑

i,j=1

ηβ+4vβ+2DjAi(Xu)XjXluXiv dx

= (β + 4)

∫

Ω

2n∑

i,j=1

ηβ+3vβ+3DjAi(Xu)XjXluXiη dx

+ (β + 4)

∫

Ω

2n∑

i=1

ηβ+3vβ+3DiAn+l(Xu)TuXiη dx

+ (β + 3)

∫

Ω

2n∑

i=1

ηβ+4vβ+2DiAn+l(Xu)Xiv Tu dx

−
∫

Ω

ηβ+4vβ+3 T
(
An+l(Xu)

)
dx.

Now notice that from (2.2), we have

2n∑

i,j=1

DjAi(Xu)XjXluXiη +
2n∑

i=1

DiAn+l(Xu)TuXiη

=
2n∑

i,j=1

DjAi(Xu)XlXjuXiη =
2n∑

i=1

Xl

(
Ai(Xu)

)
Xiη.

Thus, we can combine the first two integrals in the right hand side of (4.44) by the above
equality. Then (4.44) becomes

(4.45)

−(β + 3)

∫

Ω

2n∑

i,j=1

ηβ+4vβ+2DjAi(Xu)XjXluXiv dx

= (β + 4)

∫

Ω

2n∑

i=1

ηβ+3vβ+3Xl

(
Ai(Xu)

)
Xiη dx

+ (β + 3)

∫

Ω

2n∑

i=1

ηβ+4vβ+2DiAn+l(Xu)XivTu dx

−
∫

Ω

ηβ+4vβ+3T
(
An+l(Xu)

)
dx

= I1 + I2 + I3,

where we denote the terms in the right hand side of (4.45) by I1, I2, I3, respectively.
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We will estimate both sides of (4.45) as follows. For the left hand side, denoting E as in
(4.16) and using structure condition (4.2), we have

(4.46)

left of (4.45) ≥ (β + 3)

∫

E

ηβ+4vβ+2F (|Xu|) |Xv|2 dx

≥ c0(β + 2)F(µ(r))

∫

Br

ηβ+4vβ+2|Xv|2 dx,

for a constant c0 = c0(n, g0, L) > 0. Here we have used (4.17) and (4.19).
For the right hand side of (4.45), we claim that each item I1, I2, I3 satisfies

(4.47)

|Im| ≤
c0

6
(β + 2)F(µ(r))

∫

Br

ηβ+4vβ+2|Xv|2 dx

+ c(β + 2)3 |Br|1−1/γ

r2
F(µ(r))µ(r)4

(∫

Br

ηγβvγβ dx
)1/γ

,

where m = 1, 2, 3, 1 < γ < 3/2 and c is a constant depending only on n, g0, L and γ. Then
the lemma follows from the estimate (4.46) for the left hand side of (4.45) and the above
claim (4.47) for each item in the right. Thus, we are only left with proving the claim (4.47).

In the rest of the proof, we estimate I1, I2, I3 one by one. First for I1, using integration
by parts, we have that

I1 = −(β + 4)

∫

Ω

2n∑

i=1

Ai(Xu)Xl

(
ηβ+3vβ+3Xiη

)
dx,

from which it follows by the structure condition (4.2), that

(4.48)

|I1| ≤ c(β + 2)2

∫

Ω

ηβ+2vβ+3F (|Xu|) |Xu|
(
|Xη|2 + η|XXη|

)
dx

+ c(β + 2)2

∫

Ω

ηβ+3vβ+2F (|Xu|) |Xu||Xv‖Xη| dx

≤ c

r2
(β + 2)2F(µ(r))µ(r)4

∫

Br

ηβvβ dx

+
c

r
(β + 2)2F(µ(r))µ(r)2

∫

Br

ηβ+2vβ+1|Xv| dx,

where c = c(n, g0, L) > 0. For the latter inequality of (4.48), we have used the fact that
g(t) = tF(t) is monotonically increasing. Now we apply Young’s inequality to the last term
of (4.48) to end up with

(4.49)

|I1| ≤
c0

6
(β + 2)F(µ(r))

∫

Br

ηβ+4vβ+2|Xv|2 dx

+
c

r2
(β + 2)3F(µ(r))µ(r)4

∫

Br

ηβvβ dx,

where c = c(n, g0, L) > 0 and c0 is the same constant as in (4.46). The claimed estimate
(4.47) for I1, follows from the above estimate (4.49) and Hölder’s inequality.
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To estimate I2, we have by the structure condition (4.2) that

|I2| ≤ c(β + 2)

∫

Ω

ηβ+4vβ+2F (|Xu|) |Xv||Tu| dx,

from which it follows by Hölder’s inequality that

(4.50)

|I2| ≤ c(β + 2)
(∫

E

ηβ+4vβ+2F (|Xu|) |Xv|2 dx
) 1

2

×
(∫

E

ηγ(β+2)vγ(β+2)F (|Xu|) dx
) 1

2γ

×
(∫

Ω

ηq F (|Xu|) |Tu|q dx
) 1
q
,

where q = 2γ/(γ−1). The fact that the integrals are on the set E, is crucial since we can use
(4.19) and the following estimates can not be carried out unless the function F is increasing.
We have the following estimates for the first two integrals of the above, using (4.19).

∫

E

ηβ+4vβ+2F (|Xu|) |Xv|2 dx ≤ cF(µ(r))

∫

Br

ηβ+4vβ+2|Xv|2 dx,(4.51)

and ∫

E

ηγ(β+2)vγ(β+2)F (|Xu|) dx ≤ cF(µ(r))µ(r)2γ

∫

Br

ηγβvγβ dx,(4.52)

where c = c(n, g0, L) > 0. We estimate the last integral in the right hand side of (4.50) by
(4.12) of Lemma 4.6 and monotonicity of g, to obtain

(4.53)

∫

Ω

ηq F (|Xu|) |Tu|q dx ≤ c

rq

∫

Br

F (|Xu|) |Xu|q dx ≤ c|Br|
rq

F(µ(r))µ(r)q,

where c = c(n, g0, L, γ) > 0. Now combining the above three estimates (4.51), (4.52) and
(4.53) for the three integrals in (4.50) respectively, we end up with the following estimate
for I2

|I2| ≤ c(β + 2)
|Br|

γ−1
2γ

r
F(µ(r))µ(r)2

(∫

Br

ηβ+4vβ+2|Xv|2 dx
) 1

2
(∫

Br

ηγβvγβ dx
) 1

2γ
,

from which, together with Young’s inequality, the claim (4.47) for I2 follows.
Finally, we prove the claim (4.47) for I3. Recall that

I3 = −
∫

Ω

ηβ+4vβ+3T
(
An+l(Xu)

)
dx.

By virtue of the regularity (4.15) for v, integration by parts yields

(4.54)

I3 =

∫

Ω

An+l(Xu)T
(
ηβ+4vβ+3

)
dx

= (β + 4)

∫

Ω

ηβ+3vβ+3An+l(Xu)Tη dx

+ (β + 3)

∫

Ω

ηβ+4vβ+2An+l(Xu)Tv dx = I1
3 + I2

3 ,
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where we denote the last two integrals in the above equality by I1
3 and I2

3 , respectively. The
estimate for I1

3 easily follows from the structure condition (4.2) and monotonicity of g, as

(4.55)

|I1
3 | ≤ c(β + 2)

∫

Ω

ηβ+3vβ+3F (|Xu|) |Xu||Tη| dx

≤ c

r2
(β + 2)F(µ(r))µ(r)4

∫

Br

ηβvβ dx.

Thus by Hölder’s inequality, I1
3 satisfies estimate (4.47). To estimate I2

3 , note that by (4.17)
and the structure condition (4.2) we have

(4.56) |I2
3 | ≤ c(β + 2)

∫

E

ηβ+4vβ+2F (|Xu|) |Xu||X(Tu)| dx,

where the set E is as in (4.16). For 1 < γ < 3/2, we continue to estimate I2
3 by Hölder’s

inequality as follows,

|I2
3 | ≤ c(β + 2)

(∫

E

η(2−γ)(β+2)+4v(2−γ)(β+4)F (|Xu|) |Xu|2|X(Tu)|2 dx
) 1

2

×
(∫

E

ηγ(β+2)vγβ+4(γ−1)F (|Xu|) dx
) 1

2
.

Since, we have (4.19) on the set E, hence

(4.57) |I2
3 | ≤ c(β + 2)F(µ(r))

1
2µ(r)2(γ−1)−1M

1
2

(∫

Br

ηγβvγβ dx
) 1

2
,

where

(4.58) M =

∫

Ω

η(2−γ)(β+2)+4 v(2−γ)(β+4)F (|Xu|) |Xu|4|X(Tu)|2 dx.

Now we can apply Lemma 4.10 to estimate M from above. Note that Lemma 4.10 with
τ = 2− γ, gives us that

(4.59) M ≤ c(β + 2)2(2−γ) |Br|γ−1

r2γ
F(µ(r))µ(r)6 J2−γ

where c = c(n, g0, L, γ) > 0 and J is defined as in (4.25)

(4.60) J =

∫

Br

ηβ+4vβ+2|Xv|2 dx+ µ(r)4 |Br|1−
1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
.

Now, it follows from (4.59) and (4.57) that

|I2
3 | ≤ c(β + 2)3−γF(µ(r))µ(r)2γ |Br|

γ−1
2

rγ
J

2−γ
2

(∫

Br

ηγβvγβ dx
) 1

2
.

By Young’s inequality, we end up with

|I2
3 | ≤

c0

12
(β + 2)F(µ(r))J

+ c(β + 2)
4
γ
−1F(µ(r))µ(r)4 |Br|1−

1
γ

r2

(∫

Br

ηγβvγβ dx
) 1
γ
,
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where c0 > 0 is the same constant as in (4.47). Note that, with J as in (4.60), I2
3 satisfies an

estimate similar to (4.47). Now the desired claim (4.47) for I3 follows, since both I1
3 and I2

3

satisfy similar estimates. This concludes the proof of the claim (4.47), and hence the proof
of the lemma. �

The following corollary follows from Lemma 4.8 by Moser’s iteration. We refer to [34] for
the proof.

Corollary 4.11. There exists a constant θ = θ(n, g0, L) > 0 such that the following state-
ments hold. If we have

(4.61) |{x ∈ Br : Xlu < µ(r)/4}| ≤ θ|Br|
for an index l ∈ {1, . . . , 2n} and for a ball Br ⊂ Ω, then

inf
Br/2

Xlu ≥ 3µ(r)/16;

Analogously, if we have

(4.62) |{x ∈ Br : Xlu > −µ(r)/4}| ≤ θ|Br|,
for an index l ∈ {1, . . . , 2n} and for a ball Br ⊂ Ω, then

sup
Br/2

Xlu ≤ −3µ(r)/16.

4.3. Proof of Theorem 4.1.
At the end of this subsection, we provide the proof of Theorem 4.1. As before, we denote
u ∈ HW 1,G(Ω) as a weak solution of equation (4.1) We fix a ball Br0 ⊂ Ω. For all balls
Br, 0 < r < r0, concentric to Br0 , we denote for l = 1, 2, ..., 2n,

µl(r) = sup
Br

|Xlu|, µ(r) = max
1≤l≤2n

µl(r),

and
ωl(r) = oscBr Xlu, ω(r) = max

1≤l≤2n
ωl(r).

We clearly have ω(r) ≤ 2µ(r). For any function w, we define

A+
k,ρ(w) = {x ∈ Bρ : (w(x)− k)+ = max(w(x)− k, 0) > 0};

and A−k,ρ(w) is similarly defined.
The following lemma is similar to Lemma 4.1 of [34] and Lemma 4.3 of [43]. For sake of

completeness, we provide a proof in Appendix I.

Lemma 4.12. Let Br0 ⊂ Ω be a ball and 0 < r < r0/2. Suppose that there is τ > 0 such
that

(4.63) |Xu| ≥ τµ(r) in A+
k,r(Xlu)

for an index l ∈ {1, 2, ..., 2n} and for a constant k ∈ R. Then for any q ≥ 4 and any
0 < r′′ < r′ ≤ r, we have

(4.64)

∫

Br′′
F (|Xu|) |X(Xlu− k)+|2 dx

≤ c

(r′ − r′′)2

∫

Br′
F (|Xu|) |(Xlu− k)+|2 dx + cK|A+

k,r′(Xlu)|1− 2
q
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where K = r−2
0 |Br0|2/qµ(r0)2F(µ(r0)) and c = c(n, p, L, q, τ) > 0.

Remark 4.13. Similarly, we can obtain an inequality, corresponding to (4.64), with (Xlu−k)+

replaced by (Xlu− k)− and A+
k,r(Xlu) replaced by A−k,r(Xlu).

Lemma 4.14. There exists a constant s = s(n, g0, L) ≥ 0 such that for every 0 < r ≤ r0/16,
we have the following,

(4.65) ω(r) ≤ (1− 2−s)ω(8r) + 2sµ(r0)

(
r

r0

)α
,

where α = 1/2 when 0 < g0 < 1 and α = 1/(1 + g0) when g0 ≥ 1.

Proof. To prove the lemma, we fix a ball Br concentric to Br0 , such that 0 < r < r0/16.
Letting α = 1/2 when 0 < g0 < 1 and α = 1/(1 + g0) when g0 ≥ 1, we may assume that

(4.66) ω(r) ≥ µ(r0)

(
r

r0

)α
,

since, otherwise, (4.65) is true with s = 0. In the following, we assume that (4.66) is true
and we divide the proof into two cases.

Case 1. For at least one index l ∈ {1, . . . , 2n}, we have either

(4.67) |{x ∈ B4r : Xlu < µ(4r)/4}| ≤ θ|B4r|
or

(4.68) |{x ∈ B4r : Xlu > −µ(4r)/4}| ≤ θ|B4r|,
where θ = θ(n, g0, L) > 0 is the constant in Corollary 4.11. Assume that (4.67) is true; the
case (4.68) can be treated in the same way. We apply Corollary 4.11 to obtain that

|Xlu| ≥ 3µ(4r)/16 in B2r.

Thus we have

(4.69) |Xu| ≥ 3µ(2r)/16 in B2r.

Due to (4.69), we can apply Lemma 4.12 with q = 2Q to obtain

(4.70)

∫

Br′′
|X(Xiu− k)+|2 dx ≤ c

(r′ − r′′)2

∫

Br′
|(Xiu− k)+|2 dx

+ cKF(µ(2r))−1|A+
k,r′(Xiu)|1− 1

Q

where K = r−2
0 |Br0 |1/Qµ(r0)2F(µ(r0)). The above inequality holds for all 0 < r′′ < r′ ≤

2r, i ∈ {1, . . . , 2n} and all k ∈ R, which means that for each i, Xiu belongs to the De
Giorgi class DG+(B2r), see [43] for details. The corresponding version of Lemma 4.12 for
(Xiu − k)−, see Remark 4.13, shows that Xiu also belong to DG−(B2r) and hence Xiu
belongs to DG(B2r). Now we can apply Theorem 4.1 of [43] to conclude that there is
s0 = s0(n, p, L) > 0 such that for each i ∈ {1, 2, ..., 2n}
(4.71) oscBr Xiu ≤ (1− 2−s0) oscB2r Xiu+ cK

1
2F(µ(2r))−

1
2 r

1
2 .

Now, from doubling property of g, see (2.22) of Lemma 2.12, we have g(µ(r0)) ≤
(µ(r0)
µ(2r)

)g0g(µ(2r))

whenever 2r ≤ r0 and hence

F(µ(r0))/F(µ(2r)) ≤
(
µ(r0)/µ(2r)

)g0−1
.
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Thus, notice that when 0 < g0 < 1, we have

F(µ(2r))−1 ≤ F(µ(r0))−1

and when g0 ≥ 1, our assumption (4.66) with α = 1/(1 + g0) gives

F(µ(2r))−1 ≤
(
µ(r0)

µ(2r)

)g0−1

F(µ(r0))−1 ≤ 2g0−1F(µ(r0))−1

(
µ(r0)

ω(r)

)g0−1

≤ 2g0−1F(µ(r0))−1

(
r

r0

) 1−g0
1+g0

where in the second inequality we used that µ(2r) ≥ ω(2r)/2 ≥ ω(r)/2. In both cases, we
find that (4.71) becomes

(4.72) oscBr Xiu ≤ (1− 2−s0) oscB2r Xiu+ cµ(r0)

(
r

r0

)α
,

where c = c(n, g0, L) > 0, α = 1/2 when 0 < g0 < 1 and α = 1/(1 + g0) when g0 ≥ 1. This
shows that the lemma holds in this case.

Case 2. If Case 1 does not happen, then for every i ∈ {1, . . . , 2n}, we have

(4.73) |{x ∈ B4r : Xiu < µ(4r)/4}| > θ|B4r|,
and

(4.74) |{x ∈ B4r : Xiu > −µ(4r)/4}| > θ|B4r|,
where θ = θ(n, g0, L) > 0 is the constant in Corollary 4.11.

Note that on the set {x ∈ B8r : Xiu > µ(8r)/4}, we trivially have

(4.75) |Xu| ≥ µ(8r)/4 in A+
k,8r(Xiu)

for all k ≥ µ(8r)/4. Thus, we can apply Lemma 4.12 with q = 2Q to conclude that

(4.76)

∫

Br′′
|X(Xiu− k)+|2 dx ≤ c

(r′ − r′′)2

∫

Br′
|(Xiu− k)+|2 dx

+ cK F(µ(8r))−1|A+
k,r′(Xiu)|1− 1

Q

where K = r−2
0 |Br0 |1/Qµ(r0)2F(µ(r0)), whenever k ≥ k0 = µ(8r)/4 and 0 < r′′ < r′ ≤ 8r.

The above inequality is true all i ∈ {1, 2, ..., 2n}. We note that (4.73) trivially implies

|{x ∈ B4r : Xiu < µ(8r)/4}| > θ|B4r|.
Now we can apply Lemma 4.2 of [43] to conclude that there exists s1 = s1(n, p, L) > 0 such
that the following holds,

(4.77) sup
B2r

Xiu ≤ sup
B8r

Xiu− 2−s1
(

sup
B8r

Xiu− µ(8r)/4
)

+ cK
1
2F(µ(8r))−1/2r

1
2 .

From (4.74), we can derive similarly, see Remark 4.13, that

(4.78) inf
B2r

Xiu ≥ inf
B8r

Xiu+ 2−s1
(
− inf

B8r

Xiu− µ(8r)/4
)
− cK 1

2F(µ(8r))−1/2r
1
2 .

The above two inequalities (4.77) and (4.78) yield

oscB2r Xiu ≤ (1− 2−s1) oscB8r Xiu+ 2−s1−1µ(8r) + cK
1
2F(µ(8r))−1/2r

1
2 ,
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and hence

(4.79) ω(2r) ≤
(
1− 2−s1

)
ω(8r) + 2−s1−1µ(8r) + cK

1
2F(µ(8r))−1/2r

1
2 .

By using doubling condition of g and the inequality µ(8r) ≥ ω(8r)/2 ≥ ω(r)/2 along with the
assumption (4.66), we proceed by the same argument as in the preceeding case, to conclude

ω(2r) ≤
(
1− 2−s1

)
ω(8r) + 2−s1−1µ(8r) + cµ(r0)

(
r

r0

)α

for α = 1/2 when 0 < g0 < 1 and α = 1/(1 + g0) when g0 ≥ 1.
Now we notice that (4.73) implies that infB4r Xiu ≤ µ(4r)/4 and (4.74) implies that

supB4r
Xiu ≥ −µ(4r)/4 for every i ∈ {1, . . . , 2n}. Hence

ω(8r) ≥ µ(8r)− µ(4r)/4 ≥ 3µ(8r)/4.

Then from the above two inequalities we arrive at

ω(2r) ≤
(
1− 2−s1−2

)
ω(8r) + cµ(r0)

(
r

r0

)α
,

where c = c(n, g0, L) > 0, α = 1/2 when 0 < g0 < 1 and α = 1/(1 + g0) when g0 ≥ 1. This
shows that also in this case the lemma is true. Thus, the proof of the lemma follows from
choice of s = max(0, s0, s1 + 2, log2 c). �
Proof of Theorem 4.1.
We first consider the apriori assumption (4.7) so that, equipped with this assumption, we
have the above lemma, Lemma 4.14. Now, by an iteration on (4.65), it is easy to see that

(4.80) ω(r) ≤ c
( r
r0

)σ[
ω(r0/2) + µ(r0/2)

]

for some σ = σ(n, g0, L) ∈ (0, 1), r ≤ r0/2 and c = c(n, g0, L) > 0. Using (4.80), observe
that

(4.81)

∫

Br

G(|Xlu− {Xlu}Br |) dx ≤ cG(ωl(r)) ≤ cG

(( r
r0

)σ[
ω(r0/2) + µ(r0/2)

])

≤ c
( r
r0

)σ
sup
Br0/2

G(|Xu|)

where we have used (2.26) for the first inequality and (2.21) for the last inequality of the
above. Hence from (4.6), we end up with

(4.82)

∫

Br

G(|Xlu− {Xlu}Br |) dx ≤ c
( r
r0

)σ ∫

Br0

G(|Xu|) dx

which gives us the estimate (4.3).
Now, to complete the proof, first we need to show that the estimate (4.82) is uniform,

without the assumption (4.7). This involves a standard approximation argument, using the
following regularization, as constructed [29];

(4.83) Fε(t) = F
(

min{ t+ ε , 1/ε }
)

and A ε(z) = ηε(|z|)Fε(|z|) z +
(

1− ηε(|z|)
)
A(z)

where 0 < ε < 1, ηε ∈ C 0,1([0,∞)) as in [29] and F(t) = g(t)/t for g satisfying (1.2) with
δ > 0. Then, given u ∈ HW 1,G(Br) we consider uε that solves divH(Aε(Xuε)) = 0 and

31



uε − u ∈ HW 1,G
0 (Br). We have Aε → A and Fε → F uniformly on compact subsets and Fε

satisfies the assumption (4.7) with m1 = F(ε) and m2 = F(1/ε). Since the estimate (4.82)
are independent of m1 and m2, hence the limit ε → 0 can be taken to obtain the uniform
estimate, where the constant depends on n, δ, g0, L.

Now, we show that the uniform estimate (4.82) implies that Xlu is Hölder continuous for
every l ∈ {1, . . . , 2n}. Using (2.21) and Jensen’s inequality on (4.82), notice that

(4.84)

(∫

Br

|Xlu− {Xlu}Br | dx
)
g
(∫

Br

|Xlu− {Xlu}Br | dx
)

≤ (1 + g0)G
(∫

Br

|Xlu− {Xlu}Br | dx
)
≤ c
( r
r0

)σ ∫

Br0

G(|Xu|) dx

for some c = c(n, δ, g0, L) > 0. Now, observe that if
∫
Br
|Xlu− {Xlu}Br | dx ≥ 1 then,

(∫

Br

|Xlu− {Xlu}Br | dx
)
g
(∫

Br

|Xlu− {Xlu}Br | dx
)
≥ g(1)

∫

Br

|Xlu− {Xlu}Br | dx;

otherwise if
∫
Br
|Xlu− {Xlu}Br | dx ≤ 1, then from doubling condition

(∫

Br

|Xlu− {Xlu}Br | dx
)
g
(∫

Br

|Xlu− {Xlu}Br | dx
)
≥ g(1)

(∫

Br

|Xlu− {Xlu}Br | dx
)1+g0

.

Notice that, both cases of the above when combined with (4.84), yield

(4.85)

∫

Br

|Xlu− {Xlu}Br | dx ≤ C
(
n, δ, g0, L, g(1), ‖u‖HW 1,G(Ω)

)( r
r0

) σ
1+g0

which implies that Xlu ∈ L1,Q+σ′(Br) and hence, recalling (2.10), Xlu ∈ C 0,σ′(Br) with
σ′ = σ/(1 + g0) for some σ = σ(n, g0, L) ∈ (0, 1). This completes the proof. �

Remark 4.15. Let BR ⊂ BR0 ⊂⊂ Ω be concentric balls for 0 < R < R0. As illustrated in the
above proof, if w ∈ HW 1,G(Ω) with ‖u‖HW 1,G(Ω) ≤M , satisfies the inequality

∫

BR

G(|Xw − {Xw}BR |) dx ≤ C(R/R0)λ

for some positive constants C = C(n, δ, g0, R0,M) > 0 and λ ∈ (0, Q+ 1) with Q = 2n+ 2,
then we have Xw ∈ L1,λ′(BR,R2n); where if λ ∈ (0, Q) then λ′ = λ and if λ ∈ (Q,Q + 1)
then λ′ = Q+ (λ−Q)/(1 + g0). This shall be used in the next section.

5. C1,α-regularity of weak solutions

In this section, we prove Theorem 1.2. In a fixed subdomain Ω′ compactly contained in
Ω, we show that the weak solutions are locally C1,β in Ω′. The proof is standard, based on
the results of the preceeding section and a Campanato type perturbation technique. Similar
arguments in the Euclidean setting, can be found in [10, 18, 29], etc.
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5.1. The perturbation argument.
Given Ω′ ⊂⊂ Ω, we fix x0 ∈ Ω′ and a ball BR = BR(x0) ⊂ Ω′ for R ≤ R0 = 1

2
dist(Ω′, ∂Ω)

and consider u ∈ HW 1,G(BR) ∩ L∞(BR) as weak solution of Qu = 0 in BR, where Q is
defined as in (3.1). We recall the structure conditions for Theorem 1.2, as follows;

g(|p|)
|p| |ξ|

2 ≤
〈
DpA(x, z, p) ξ, ξ

〉
≤ L

g(|p|)
|p| |ξ|

2;(5.1)

|A(x, z, p)− A(y, w, p)| ≤ L′
(
1 + g(|p|)

)(
|x− y|α + |z − w|α

)
;(5.2)

|B(x, z, p)| ≤ L′
(
1 + g(|p|)

)
|p|(5.3)

for all (x, z, p) ∈ Ω × R × R2n and the matrix DpA(x, z, p) is symmetric. In addition, we
recall the hypothesis of Theorem 1.2 that, there exists M0 > 0 such that |u| ≤M0 in Ω′.

From structure condition (5.1), it is not difficult to check that A(x, z, p) satisfies conditions
reminiscent of (3.23) and (3.24); the condition on variable z for (3.23) and (3.24) are absolved
in the constants L and L′, since the solution u is bounded. However, the condition (5.3) on
B is more relaxed than (3.41) and (3.44), which is necessary for C1,β-regularity.

Thus, this allows us to apply Theorem 1.1 and conclude u is Hölder continuous with

(5.4) oscBR u ≤ θ(R) = γRτ

for some γ = γ(M0, dist(Ω′, ∂Ω)) > 0 and τ ∈ (0, 1) can be chosen to be as small as required.
Here onwards, we suppress the dependence of the data n, δ, g0, α, L, L

′,M0, dist(Ω′, ∂Ω); all
positive constants depending on these shall be denoted as c, throughout this subsection,
until the end of the proof of theorem 1.2.

Let us denote A : R2n → R2n as

(5.5) A(p) = A(x0, u(x0), p),

so that from (5.1), A satisfies the structure condition (4.2) and hence also the monotonicity
and ellipticity conditions (4.4) and (4.5) (with possible dependence on g0 and δ). Hence, for
the problem

(5.6)

{
divH(A(Xũ)) = 0 in BR;

ũ− u ∈ HW 1,G
0 (BR).

we can use the monotonicity inequalities and uniform estimates from Section 4.

Lemma 5.1. If u ∈ HW 1,G(BR)∩C(B̄R) is given, then there exists a unique weak solution
ũ ∈ HW 1,G(BR) ∩ C(B̄R) for the problem (5.6), which satisfies the following:

(i) sup
BR

|u− ũ| ≤ oscBR u ;(5.7)

(ii)

∫

BR

G(|Xũ|) dx ≤ c

∫

BR

G(|Xu|) dx.(5.8)

Proof. Existence and uniqueness is standard from monotonicity of A, we refer to [35] for
more details. Also, (5.7) follows easily from Comparison principle and the fact that

inf
∂BR

u ≤ ũ ≤ sup
∂BR

u in BR,
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which is easy to show by considering ϕ = (ũ− sup∂BR u)+ (and similarly the other case) as
a test function for (5.6), see Lemma 5.1 in [10].

The proof of (5.8) is also standard. Using test function ϕ = ũ− u on (5.6), we get

(5.9)

∫

BR

〈
A(Xũ),Xũ

〉
dx =

∫

BR

〈
A(Xũ),Xu

〉
dx.

Now we choose k = k(δ, g0, L) > 0 such that combining ellipticity (4.5) and boundedness of
A, we have

〈
A(p), p

〉
≥ (2/k)|p||A(p)|. Hence, we obtain

∫

BR

〈
A(Xũ),Xu

〉
dx ≤ 1

k

∫

|Xũ|≥k|Xu|
|A(Xũ)||Xũ| dx +

∫

|Xũ|<k|Xu|
|A(Xũ)||Xu| dx

≤ 1

2

∫

BR

〈
A(Xũ),Xũ

〉
dx + kg0c

∫

BR

g(|Xu|) |Xu| dx.

which combined with (5.9) and the ellipticity (4.5), concludes the proof. �
To proceed with the proof of Theorem 1.2, we shall need the following technical lemma

which is a variant of a lemma of Campanato [4]. This is elementary but a fundamental
lemma. We refer to [21] or [19, Lemma 2.1] for a proof.

Lemma 5.2. Let φ : (0,∞) → [0,∞) be a non-decreasing function and A,B > 1, α > 0 be
fixed constants. Suppose that for any ρ < r ≤ R0 and ε > 0, we have

φ(ρ) ≤ A
[(ρ
r

)α
+ κ
]
φ(r) +Brα−ε;

then there exists a constant κ0 = κ0(α,A,B) > 0 such that if κ < κ0, we have

φ(ρ) ≤ c
(ρ
r

)α−ε [
φ(r) +Brα−ε

]

for all ρ < r ≤ R0, where c = c(α, ε, A) > 0 is a constant.

Proof of Theorem 1.2.
Let u ∈ HW 1,G(Ω) be a weak solution of Qu = 0. For BR ⊂ Ω′ ⊂⊂ Ω, we have |u| ≤M0 in
B̄R and we can regard that u ∈ HW 1,G(BR) ∩ C(B̄R). Let us denote

(5.10) I =

∫

BR

〈
A(Xu), (Xu− Xũ)

〉
dx,

where A is as in (5.5) and ũ ∈ HW 1,G(BR) ∩ C(B̄R) is the weak solution of (5.6). Since
u = ũ in ∂BR, the function u − ũ can be used to test the equations satisfied by u and ũ,
which shall be used to estimate I to obtain both lower and upper bounds.

First, using u− ũ as test function for Qu = 0, we obtain

(5.11)

I =

∫

BR

〈
A(x0, u(x0),Xu)− A(x, u,Xu), (Xu− Xũ)

〉
dx

+

∫

BR

B(x, u,Xu)(u− ũ) dx

≤ c
(
Rα + θ(R)α

) ∫

BR

g(1 + |Xu|)|Xu− Xũ| dx

+ c θ(R)

∫

BR

g(1 + |Xu|)|Xu| dx
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with θ(R) as in (5.4), where we have used structure condition (5.2) and (5.3) for the first
term and (5.7) for the second term of the right hand side of (5.11). Now we use (2.24) of
Lemma 2.12 and (5.8) of Lemma 5.1 to estimate the first term of the above and obtain that

(5.12) I ≤ c θ(R)α
∫

BR

G(1 + |Xu|) dx.

Secondly, to obtain the upper bound for I, we shall use the monotonicity inequality (4.4).
Let us denote S1 = {x ∈ BR : |Xu− Xũ| ≤ 2|Xu|} and S2 = {x ∈ BR : |Xu− Xũ| > 2|Xu|}.
Taking u− ũ as test function for (5.6) and using (4.4), we obtain

(5.13)

I =

∫

BR

〈
A(Xu)−A(Xũ), (Xu− Xũ)

〉
dx

≥ c

∫

S1

F(|Xu|)|Xu− Xũ|2 dx+ c

∫

S2

F(|Xu− Xũ|)|Xu− Xũ|2 dx

Recalling G(t) ≤ t2F(t) from (2.21), we have from (5.12) and (5.13), that

(5.14)

∫

S2

G(|Xu− Xũ|) dx ≤ c θ(R)α
∫

BR

G(1 + |Xu|) dx.

Now since |Xu − Xũ| ≤ 2|Xu| in S1 by definition, we obtain the following from (2.21),
monotonicity of g and Hölder’s inequality;

(5.15)

∫

S1

G(|Xu− Xũ|) dx ≤ c
(∫

S1

F(|Xu|)|Xu− Xũ|2 dx
) 1

2
(∫

S1

G(|Xu|) dx
) 1

2

≤ c θ(R)α/2
∫

BR

G(1 + |Xu|) dx

where the latter inequality of the above follows from (5.12) and (5.13). Now, we add (5.14)
and (5.15) to obtain the estimate of the integral over whole of BR,

(5.16)

∫

BR

G(|Xu− Xũ|) dx ≤ c θ(R)α/2
∫

BR

G(1 + |Xu|) dx.

Recalling (4.6) and (5.8), note that for any 0 < r ≤ R/2, we have
∫

Br

G(|Xũ|) dx ≤ rQ sup
BR/2

G(|Xũ|) ≤ c
( r
R

)Q ∫

BR

G(|Xũ|) dx ≤ c
( r
R

)Q ∫

BR

G(|Xu|) dx.

where Q = 2n+ 2. Combining the above with (5.16), we obtain

(5.17)

∫

Br

G(|Xu|) dx ≤ c
( r
R

)Q ∫

BR

G(|Xu|) dx+ c θ(R)α/2
∫

BR

G(1 + |Xu|) dx.

Now, we follow the bootstrap technique of Giaquinta-Giusti [18]. Here onwards the constants
dependent on g(1) in addition to the aforementioned data, shall be denoted as C.

For 0 < ρ ≤ R0, let us denote Φ(ρ) =
∫
Bρ
G(|Xu|) dx, so that we rewrite (5.17) as

(5.18) Φ(r) ≤ c
( r
R

)Q
Φ(R) + cRϑ

∫

BR

G(1 + |Xu|) dx
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where ϑ = τα/2 with τ ∈ (0, 1) as in (5.4). We proceed by induction, with the hyposthesis

(5.19)

∫

BR

G(1 + |Xu|) dx ≤ CR(k−1)ϑ for some k ∈ N, kϑ < Q.

The hypothesis clearly holds for k = 0. Assuming the hypothesis (5.19) holds for some
k ∈ N, first notice that by virtue of (2.26), we have

∫

BR

G(|Xu− {Xu}BR |) dx ≤ CR(k−1)ϑ

which further implies that Xu ∈ L1,(k−1)ϑ(Ω′), see Remark 4.15. Now using (5.19) in (5.18),
we apply Lemma 5.2 to obtain that

Φ(R) ≤ c

(
R

R0

)kϑ [
Φ(R0) + C

]
,

which, from definition of Φ, implies the hypothesis (5.19) for k + 1 and Xu ∈ L1,kϑ(Ω′). We
choose can choose ϑ small enough and carry on a finite induction for k = 0, 1, . . . (m − 1)
where m is chosen such that (m − 1)ϑ < Q < mϑ < Q + 1. Thus, after the last induction
step, we conclude that Φ(R) ≤ CRmϑ and we have

∫

BR

G(|Xu− {Xu}BR |) dx ≤ CRmϑ.

Hence from Remark 4.15, Xu ∈ L1,λ(Ω′) where λ = Q+ (mϑ−Q)/(1 +g0). Recalling (2.10),
this further implies Xu ∈ C 0,β(Ω′) with β = mϑ−Q

1+g0
and the proof is finished. �

5.2. Concluding Remarks.
Here we discuss some possible extensions of the structure conditions that can be included
and results similar to the above can be obtained with minor modifications of the arguments.

(1) Any dependence of x in structure conditions for A(x, z, p) and B(x, z, p) has been
suppressed so far, for sake of simplicity. However, we remark that for some given
non-negative measurable functions a1, a2, a4, a5, b1, b2, the structure condition

〈
A(x, z, p), p

〉
≥ |p|g(|p|)− a1(x) g

( |z|
R

) |z|
R
− a2(x);

|A(x, z, p)| ≤ a3 g(|p|) + a4(x) g

( |z|
R

)
+ a5(x);

|B(x, z, p)| ≤ 1

R

[
b0 g(|p|) + b1(x) g

( |z|
R

)
+ b2(x)

]
,

can also be considered for obtaining the Harnack inequalities. In this case, we would
require a1, a2, a4, a5, b1, b2 ∈ Lqloc(Ω) for some q > Q. Similar arguments can be
carried out with a choice of χ > 0, such that ‖a5‖Lq(BR) + ‖b2‖Lq(BR) ≤ g(χ) and
‖a2‖Lq(BR) ≤ g(χ)χ. We refer to [29] and [6] for more details of such cases.

(2) The function g(t)/t in the growth conditions can be replaced by f(t), where f is a
continuous doubling positive function on (0,∞) and t 7→ f(t)t1−δ is non-decreasing.
A C1-function g̃ can be found satisfying (1.2) and g̃(t) ∼ tf(t)(see [29, Lemma 1.6]),
which is sufficient to carry out all of the above arguments.
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Appendix I

Proof of Lemma 4.9.
Fix l ∈ {1, 2, ..., n} and β ≥ 0. Let η ∈ C∞0 (Ω) be a non-negative cut-off function. Using

(5.20) ϕ = ηβ+2vβ+2|Xu|2Xlu

as a test-function in equation (4.10), we get

(5.21)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+2DjAi(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx

=− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+1vβ+2|Xu|2XluDjAi(Xu)XjXluXiη dx

− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+1|Xu|2XluDjAi(Xu)XiXluXiv dx

−
∫

Ω

2n∑

i=1

DiAn+l(Xu)TuXi

(
ηβ+2vβ+2|Xu|2Xlu

)
dx

+

∫

Ω

T
(
An+l(Xu)

)
ηβ+2vβ+2|Xu|2Xlu dx

= I l1 + I l2 + I l3 + I l4.

Here we denote the integrals in the right hand side of (4.10) by I l1, I
l
2, I

l
3 and I l4 in order

respectively. Similarly for all l ∈ {n+ 1, n+ 2, ..., 2n}, from equation (4.11), we have

(5.22)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+2DjAi(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx

=− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+1vβ+2|Xu|2XluDjAi(Xu)XjXluXiη dx

− (β + 2)

∫

Ω

2n∑

i,j=1

ηβ+2vβ+1|Xu|2XluDjAi(Xu)XiXluXiv dx

+

∫

Ω

2n∑

i=1

DiAl−n(Xu)TuXi

(
ηβ+2vβ+2|Xu|2Xlu

)
dx

−
∫

Ω

T
(
Al−n(Xu)

)
ηβ+2vβ+2|Xu|2Xlu dx

= I l1 + I l2 + I l3 + I l4.

Again we denote the integrals in the right hand side of (5.22) by I l1, I
l
2, I

l
3 and I l4 in order

respectively. Summing up the above equation (5.21) and (5.22) for all l from 1 to 2n, we
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end up with

(5.23)

∫

Ω

∑

i,j,l

ηβ+2vβ+2DjAi(Xu)XjXiuXi

(
|Xu|2Xlu

)
dx =

∑

l

4∑

m=1

I lm,

where all sums for i, j, l are from 1 to 2n.
In the following, we estimate both sides of (5.23). For the left hand of (5.23), note that

Xi

(
|Xu|2Xlu

)
= |Xu|2XiXlu+Xi(|Xu|2)Xlu.

Then by the structure condition (4.2), we have that
∑

i,j,l

DjAi(Xu)XjXluXi

(
|Xu|2Xlu

)
≥ F (|Xu|) |Xu|2|XXu|2,

which gives us the following estimate for the left hand side of (5.23)

(5.24) left of (5.23) ≥
∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx.

Now we estimate the right hand side of (5.23). We will show that I lm satisfies the following
estimate for each l = 1, 2, ..., 2n and each m = 1, 2, 3, 4

(5.25)

|I lm| ≤
1

36n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2F (|Xu|) |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|Tu|2 dx,

where c = c(n, g0, L) > 0. Then the lemma follows from the above estimates (5.24) and
(5.25) for both sides of (5.23). The proof of the lemma is finished, modulo the proof of
(5.25). In the rest, we prove (5.25) in the order of m = 1, 2, 3, 4.

First, when m = 1, we have for I l1, l = 1, 2, ..., 2n, by the structure condition (4.2) that

|I l1| ≤ c(β + 2)

∫

Ω

ηβ+1|Xη|vβ+2F (|Xu|) |Xu|3|XXu| dx,

from which it follows by Young’s inequality that

(5.26)

|I l1| ≤
1

36n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2F (|Xu|) |Xu|4 dx.

Thus (5.25) holds for I l1, l = 1, 2, ..., 2n.
Second, when m = 2, we have for I l1, l = 1, 2, ..., 2n, by the structure condition (4.2) that

|I l2| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1F (|Xu|) |Xu|3|XXu‖Xv| dx,
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from which it follows by Young’s inequality that

(5.27)

|I l2| ≤
1

36n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx.

This proves (5.25) for I l2, l = 1, 2, ..., 2n.
Third, when m = 3, we use

∣∣Xi

(
ηβ+2vβ+2|Xu|2Xlu

)∣∣ ≤ 3ηβ+2vβ+2|Xu|2|XXu|
+ (β + 2)ηβ+1vβ+2|Xu|3|Xη|+ (β + 2)ηβ+2vβ+1|Xu|3|Xv|.

and the structure condition (4.2), to obtain

|I l3| ≤ c
∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu||Tu| dx

+ c(β + 2)

∫

Ω

ηβ+1|Xη|vβ+2F (|Xu|) |Xu|3|Tu| dx

+ c(β + 2)

∫

Ω

ηβ+2vβ+1F (|Xu|) |Xu|3|Xv‖Tu| dx,

from which it follows by Young’s inequality that

(5.28)

|I l3| ≤
1

36n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|Tu|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2F (|Xu|) |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx.

This proves (5.25) for I l3, l = 1, 2, ..., 2n.
Finally, when m = 4, we prove (5.25) for I l4. We consider only the case l = 1, 2, ..., n. The

case l = n+ 1, n+ 2, ..., 2n can be treated similarly. Let us denote

(5.29) w = ηβ+2|Xu|2Xlu.

so that we can write test-function ϕ defined as in (5.20) as ϕ = vβ+2w. Then, for I l4 in
(5.21), we rewrite T = X1Xn+1 −Xn+1X1 and use integration by parts to obtain

(5.30) I l4 =

∫

Ω

T
(
An+l(Xu)

)
ϕdx =

∫

Ω

X1

(
An+l(Xu)

)
Xn+1ϕ−Xn+1

(
An+l(Xu)

)
X1ϕdx.
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Using Xϕ = (β + 2)vβ+1wXv + vβ+2Xw in (5.30), we get

(5.31)

I l4 = (β + 2)

∫

Ω

vβ+1w
(
X1

(
An+l(Xu)

)
Xn+1v −Xn+1

(
An+l(Xu)

)
X1v

)
dx

+

∫

Ω

vβ+2
(
X1

(
An+l(Xu)

)
Xn+1w −Xn+1

(
An+l(Xu)

)
X1w

)
dx

= J l +K l.

Here we denote the first and the second integral in the right hand side of (5.30) by J l and
K l, respectively. Now we estimate J l as follows. From structure condition (4.2) and (5.29)

|J l| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1F (|Xu|) |Xu|3|XXu‖Xv| dx,

from which it follows by Young’s inequality, that

(5.32)

|J l| ≤ 1

72n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx.

The above inequality shows that J l satisfies similar estimate as (5.25) for all l = 1, 2, ..., n.
Now we estimate K l. Integration by parts again, yields

(5.33)

K l = (β + 2)

∫

Ω

vβ+1An+l(Xu)
(
Xn+1vX1w −X1vXn+1w

)
dx

−
∫

Ω

vβ+2An+l(Xu)Tw dx

=K l
1 +K l

2.

For K l
1, we have by the structure condition (4.2) that

|K l
1| ≤ c(β + 2)

∫

Ω

ηβ+2vβ+1F (|Xu|) |Xu|3|XXu‖Xv| dx

+ c(β + 2)2

∫

Ω

ηβ+1vβ+1F (|Xu|) |Xu|4|Xv‖Xη| dx

from which it follows by Young’s inequality that

(5.34)

|K l
1| ≤

1

144n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx

+ c(β + 2)2

∫

Ω

ηβ|Xη|2vβ+2F (|Xu|) |Xu|4 dx.

The above inequality shows that K l
1 also satisfies similar estimate as (5.25) for all l =

1, 2, ..., n. We continue to estimate K l
2 in (5.33). Note that

Tw = (β + 2)ηβ+1|Xu|2XluTη + ηβ+2|Xu|2XlTu+
2n∑

i=1

2ηβ+2XluXiuXiTu.
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Therefore we write K l
2 as

K l
2 = − (β + 2)

∫

Ω

ηβ+1vβ+2An+l(Xu)|Xu|2XluTη dx

−
∫

Ω

ηβ+2vβ+2An+l(Xu)|Xu|2XlTu dx

− 2
2n∑

i=1

∫

Ω

ηβ+2vβ+2An+l(Xu)XluXiuXiTu dx.

For the last two integrals in the above equality, we apply integration by parts to get

K l
2 = − (β + 2)

∫

Ω

ηβ+1vβ+2An+l(Xu)|Xu|2XluTη dx

+

∫

Ω

Xl

(
ηβ+2vβ+2An+l(Xu)|Xu|2

)
Tu dx

+ 2
2n∑

i=1

∫

Ω

Xi

(
ηβ+2vβ+2An+l(Xu)XluXiu

)
Tu dx.

Now we may estimate the integrals in the above equality by the structure condition (4.2),
to obtain the following estimate for K l

2.

|K l
2| ≤ c(β + 2)

∫

Ω

ηβ+1vβ+2F (|Xu|) |Xu|4|Tη| dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu‖Tu| dx

+ c(β + 2)

∫

Ω

ηβ+2vβ+1F (|Xu|) |Xu|3|Xv‖Tu| dx

+ c(β + 2)

∫

Ω

ηβ+1vβ+2F (|Xu|) |Xu|3|Xη‖Tu| dx.

By Young’s inequality, we end up with the following estimate for K l
2

(5.35)

|K l
2| ≤

1

144n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2F (|Xu|) |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|Tu|2 dx.

This shows that K l
2 also satisfies similar estimate as (5.25). Now we combine the estimates

(5.34) for K l
1 and (5.35) for K l

2. Recall that K l = K l
1 +K l

2 as denoted in (5.33). We obtain
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that the following estimate for K l.

(5.36)

|K l| ≤ 1

72n

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|XXu|2 dx

+ c(β + 2)2

∫

Ω

ηβ
(
|Xη|2 + η|Tη|

)
vβ+2F (|Xu|) |Xu|4 dx

+ c(β + 2)2

∫

Ω

ηβ+2vβF (|Xu|) |Xu|4|Xv|2 dx

+ c

∫

Ω

ηβ+2vβ+2F (|Xu|) |Xu|2|Tu|2 dx.

Recall that I l4 = J l + K l. We combine the estimates (5.32) for J l and (5.36) for K l, and
we can see that the claimed estimate (5.25) holds for I l4 for all l = 1, 2, ..., n. We can prove
(5.25) similarly for I l4 for all l = n+1, n+2, ..., 2n. This finishes the proof of the claim (5.25)
for I lm for all l = 1, 2, ..., 2n and all m = 1, 2, 3, 4, and hence also the proof of the lemma. �

Proof of Lemma 4.12.
Recalling (4.63), notice that τµ(r) ≤ |Xu| ≤ (2n)

1
2µ(r) in A+

k,r(Xlu). Then this combined
with doubling condition of g, implies that

(5.37)
τ g0

(2n)1/2
F(µ(r)) ≤ F(|Xu|) ≤ (2n)g0/2

τ
F(µ(r)) in A+

k,r(Xlu).

In the proof, we only consider l ∈ {1, . . . , n}; the proof is similar for l ∈ {n, . . . , 2n}. In
addition, note that we can also assume |k| ≤ µ(r0) without loss of generality, to prove (4.64).
This proof is very similar to that of Lemma 4.3 in [43].

Let η ∈ C∞0 (Br′) is a standard cutoff function such that η = 1 in Br′′ and |Xη| ≤ 2/(r′−r′′),
we choose ϕ = η2(Xlu− k)+ as a test function in equation (4.10) to get

∫

Br

∑

i,j

η2DjAi(Xu)XjXluXi((Xlu− k)+) dx

= − 2

∫

Br

∑

i,j

η(Xlu− k)+DjAi(Xu)XjXluXiη dx

−
∫

Br

∑

i

DiAn+l(Xu)TuXi(η
2(Xlu− k)+) dx

+

∫

Br

η2(Xlu− k)+T (An+l(Xu)) dx
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Using structure condition (4.2) and Young’s inequality, we obtain

(5.38)

∫

Br

η2 F (|Xu|)|X(Xlu− k)+|2 dx

≤ c

∫

Br

|Xη|2F (|Xu|) |(Xlu− k)+|2 dx

+ c

∫

A+
k,r

η2 F (|Xu|) |Tu|2 dx

+ c

∫

Br

η2(Xlu− k)+F (|Xu|) |X(Tu)| dx

= J1 + J2 + J3.

Notice that to show (4.64) from (5.38), we need to estimate J2 and J3. First, we estimate
J2 using Hölder’s inequality, (4.12) and (5.37) as follows.

(5.39)
J2 ≤

(∫

Br0/2

F (|Xu|) |Tu|q dx
) 2
q
(∫

A+
k,r

F (|Xu|) dx
)1− 2

q

≤ c r−2
0 µ(r0)2F(µ(r0))|Br0|

2
q |A+

k,r(Xlu)|1− 2
q

for c = c(n, g0, L, q, τ) > 0.
The estimate of J3 is more involved. We wish to show the following, which combined with

(5.38) and (5.39), completes the proof of this lemma.

(5.40) J3 ≤M/2 + c r−2
0 µ(r0)2F(µ(r0))|Br0 |

2
q |A+

k,r(Xlu)|1− 2
q

for some c = c(n, p, L, q, τ) > 0, where

(5.41) M :=

∫

Br

η2F (|Xu|) |X(Xlu− k)+|2 dx+

∫

Br

|Xη|2F (|Xu|) |(Xlu− k)+|2 dx.

In order to prove the claim (5.40), we follow the iteration argument of Zhong [43].
For any κ ≥ 0, we take η2|(Xlu−k)+|2|Tu|κTu as a test function in (4.9) and use structure

condition (4.2), to obtain

(κ+ 1)

∫

Br

η2|(Xiu−k)+|2F (|Xu|) |Tu|κ|X(Tu)|2dx

≤ c

∫

Br

η|(Xiu− k)+|2F (|Xu|) |Tu|κ+1|X(Tu)||Xη| dx

+c

∫

Br

η2|(Xlu− k)+|F (|Xu|) |Tu|κ+1|X(Tu)||X(Xlu− k)+| dx

Using Cauchy-Schwartz inequality on the above, we obtain

(5.42)

∫

Br

η2|(Xiu−k)+|2F (|Xu|) |Tu|κ|X(Tu)|2dx

≤ cM 1
2

(∫

Br

η2|(Xiu− k)+|2F (|Xu|) |Tu|2κ+2|X(Tu)|2dx
) 1

2
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for c = c(n, g0, L) > 0 and M as defined in (5.41). Now we iterate (5.42), choosing the
sequence κm = 2m − 2 for m ∈ N. For any m ≥ 1, we set

am =

∫

Br

η2F (|Xu|) |(Xlu− k)+|2|Tu|κm |X(Tu)|2dx

and obtain a1 ≤ (cM)
1
2a

1
2
2 ≤ . . . ≤ (cM)(1− 1

2m
) a

1
2m

m+1, for every m ∈ N. Now, for some
large enough m to be chosen later, we estimate am+1. Recalling, |k| ≤ µ(r0) and using
Corrolary 4.7, we obtain

(5.43)

am+1 ≤ c µ(r0)2

∫

Br0/2

F (|Xu|) |Tu|κm+1|X(Tu)|2 dx

≤ c r
−(κm+1+4)
0

∫

Br0

F (|Xu|) |Xu|κm+1+2 dx

for some c = c(n, g0, L,m) > 0. Hence, we get

(5.44) am+1 ≤ c r
−(κm+1+4)
0 F(µ(r0))µ(r0)κm+1+4 |Br0 |.

Now we go back to the estimate of J3. From Hölder’s inequality and (5.37),

J3 ≤ c
(∫

Br

η2F (|Xu|) |(Xlu− k)+|2|X(Tu)|2 dx
) 1

2
(∫

A+
k,r

F (|Xu|) dx
) 1

2

≤ c a
1/2
1 F(µ(r0))1/2|A+

k,r(Xlu)|1/2.

for c = c(n, g0, L, τ) > 0. We continue further, using the iteration to estimate a
1/2
1 in terms

of am+1 and M. Then we use (5.44) and obtain

J3 ≤ cM 1
2

(1− 1
2m

) a
1

2m+1

m+1 F(µ(r0))1/2|A+
k,r(Xlu)| 12

≤ c

r
(1+ 1

2m
)

0

M 1
2

(1− 1
2m

)F(µ(r0))
1
2

(1+ 1
2m

)µ(r0)(1+ 1
2m

)|Br0|
1

2m+1 |A+
k,r(Xlu)| 12

Using Young’s inequality on the above, we finally obtain

(5.45) J3 ≤M/2 + c r−2
0 F(µ(r0))µ(r0)2|Br0|

1
2m+1 |A+

k,r(Xlu)| 2m

2m+1

for some c = c(n, g0, L, τ,m) > 0. The claim (5.40) follows immediately from (5.45), with
the choice of m = m(q) ∈ N such that 2m/(2m+1) ≥ 1−2/q. This completes the proof. �

Appendix II

Here we provide an outline of the proof of Lemma 4.6 for the reader’s convenience. It
requires some Caccioppoli type estimates of horizontal and vertical derivatives, similar to
those in [43]. The proof of Lemma 4.6 shall follow in the end.

The following Lemma is similar to Lemma 3.4 in [43] and Lemma 2.6 in [34]. The proof
is similar and easier than the proof of Lemma 4.9 in Appendix I, so we omit it. We refer the
reader to [34] for some remarks on the proof of Lemma 2.6 in it.
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Lemma 5.3. For any β ≥ 0 and η ∈ C∞0 (Ω), there exists c = c(n, g0, L) > 0 such that
∫

Ω

η2 F (|Xu|) |Xu|β|XXu|2 dx ≤ c

∫

Ω

(|Xη|2 + η|Tη|)F (|Xu|) |Xu|β+2 dx

+ c(β + 1)4

∫

Ω

η2 F (|Xu|) |Xu|β|Tu|2 dx.

The following lemma is similar to Lemma 3.5 of [43].

Lemma 5.4. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have
∫

Ω

ηβ+2F (|Xu|) |Tu|β|XXu|2 dx ≤ c(β + 1)2‖Xη‖2
L∞

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β−2|XXu|2 dx,

for some constant c = c(n, g0, L) > 0.

Proof. Note that have the following identity for any ϕ ∈ C∞0 (Ω), which can be easily obtained
using Xlϕ as a test function in equation (4.1) (see the proof of Lemma 3.5 in [35]).

(5.46)

∫

Ω

2n∑

i=1

Xl(Ai(Xu)Xiϕ) dx =

∫

Ω

T (An+l(Xu))ϕdx

Let η ∈ C∞0 (Ω) be a non-negative cut-off function. Fix any l ∈ {1, 2, . . . , n} and β ≥ 2, let
ϕ = ηβ+2|Tu|βXlu. We use ϕ as a test function in (5.46). Note that

Xiϕ = ηβ+2|Tu|βXiXlu+ βηβ+2|Tu|β−2TuXluXi(Tu) + (β + 2)ηβ+1Xiη|Tu|βXlu

and that Xn+lXl = XlXn+l − T . Using these, we obtain

(5.47)

∫

Ω

∑

i

ηβ+2|Tu|βXl(Ai(Xu))XlXiu dx =

∫

Ω

ηβ+2Xl(An+l(Xu))|Tu|βTu dx

− (β + 2)

∫

Ω

∑

i

ηβ+1|Tu|βXl(Ai(Xu))XluXiη dx

+

∫

Ω

ηβ+2T (An+l(Xu)) |Tu|βXlu dx.

− β
∫

Ω

∑

i

ηβ+2|Tu|β−2TuXluXl(Ai(Xu))XiTu dx

= I1 + I2 + I3 + I4.

We will estimate both sides of (5.47) as follows. For the left hand side, the structure condition
(4.2) implies that

∫

Ω

∑

i

ηβ+2|Tu|βXl(Ai(Xu))XlXiu dx ≥
∫

Ω

ηβ+2F (|Xu|) |Tu|β|XlXu|2 dx.

For the right hand side, we will show that for each item, the following estimate is true.

(5.48)

|Ik| ≤ cτ

∫

Ω

ηβ+2F (|Xu|) |Tu|β|XXu|2 dx

+
c(β + 1)2‖Xη‖2

L∞

τ

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β−2|XXu|2 dx,
45



for k = 1, 2, 3, 4, where c = c(n, p, L) > 0 and τ > 0 is a constant. By the above estimates
for both sides of (5.47), we end up with∫

Ω

ηβ+2F (|Xu|)|Tu|β|XlXu|2 dx ≤ cτ

∫

Ω

ηβ+2F (|Xu|) |Tu|β|XXu|2 dx

+
c(β + 1)2‖Xη‖2

L∞

τ

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β−2|XXu|2 dx.

The above inequality is true for all l = 1, 2, . . . , n. Similarly, we can prove that it is true
also for all l = n + 1, . . . , 2n. Now, by choosing τ > 0 small enough, we complete the proof
of the lemma, assuming the proof of (5.48).

To prove (5.48), we start with I4. By structure condition (4.2) and Young’s inequality

|I4| ≤ cβ
∫

Ω

ηβ+2F (|Xu|) |Xu||Tu|β−1|XlXu‖X(Tu)| dx

≤ τ

‖Xη‖2
L∞

∫

Ω

ηβ+4F (|Xu|) |Tu|β|X(Tu)|2 dx

+
cβ2‖Xη‖2

L∞

τ

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β−2|XlXu|2 dx.

We then apply Lemma 4.5 to estimate the first integral in the right hand side.

(5.49)

∫

Ω

ηβ+4F (|Xu|) |Tu|β|X(Tu)|2 dx ≤ c

∫

Ω

ηβ+2|Xη|2F (|Xu|) |Tu|β+2 dx.

Using this, we obtain

(5.50)

|I4| ≤ cτ

∫

Ω

ηβ+2F (|Xu|) |Tu|β+2 dx

+
cβ2‖Xη‖2

L∞

τ

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β−2|XlXu|2 dx.

Since |Tu| ≤ 2|XXu|, (5.50) implies that I4 satisfies (5.48).
To prove that (5.48) holds for I1, integration by parts yields

I1 =−
∫

Ω

An+l(Xu)Xl(η
β+2|Tu|βTu) dx

=− (β + 1)

∫

Ω

ηβ+2|Tu|βAn+l(Xu)Xl(Tu) dx

− (β + 2)

∫

Ω

ηβ+1An+l(Xu)Xlη|Tu|βTu dx = I11 + I12.

We will show that (5.48) holds for both I11 and I12. For I11, by structure condition (4.2)
and Young’s inequality,

|I11| ≤ c(β + 1)

∫

Ω

ηβ+2F (|Xu|) |Xu||Tu|β|X(Tu)| dx

≤ τ

‖Xη‖2
L∞

∫

Ω

ηβ+4F (|Xu|) |Tu|β|X(Tu)|2 dx

+
c(β + 1)2‖Xη‖2

L∞

τ

∫

Ω

ηβF (|Xu|) |Xu|2|Tu|β dx,
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which, together with (5.49) and the fact |Tu| ≤ 2|XXu|, implies that (5.48) holds for I11.
For I12, (5.48) follows from

|I12| ≤ c(β + 2)

∫

Ω

ηβ+1|Xη|F (|Xu|) |Xu||Tu|β+1 dx,

and Young’s inequality. This proves that I1 satisfies (5.48).
For I2, we have by structure condition (4.2), that

|I2| ≤ c(β + 2)

∫

Ω

ηβ+1|Xη|F (|Xu|) |Xu||Tu|β|XlXu| dx,

from which, together with Young’s inequality and |Tu| ≤ 2|XXu|, (5.48) for I2 follows.
Finally, I3 has the same bound as that of I11. We have

|I3| ≤ c

∫

Ω

ηβ+2F (|Xu|) |Xu||Tu|β|X(Tu)| dx,

thus I3 satisfies (5.48), too. This completes the proof of (5.48), and hence that of the
lemma. �

The following corollary is easy to prove, by using Hölder’s inequality on Lemma 5.4.

Corollary 5.5. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have
∫

Ω

ηβ+2F (|Xu|) |Tu|β|XXu|2 dx ≤ c
β
2 (β + 1)β‖Xη‖βL∞

∫

Ω

η2 F (|Xu|) |Xu|β|XXu|2 dx,

where c = c(n, g0, L) > 0.

Now, we resate Lemma 4.6 as follows.

Lemma 5.6. For any β ≥ 2 and all non-negative η ∈ C∞0 (Ω), we have that

(5.51)

∫

Ω

ηβ+2 F (|Xu|) |Tu|β+2 dx ≤ c(β)K
β+2

2

∫

supp(η)

F (|Xu|) |Xu|β+2 dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c(β) = c(n, g0, L, β) > 0.

Proof. First, we show the following claim. For all non-negative η ∈ C∞0 (Ω), we show that

(5.52)

∫

Ω

η2 F (|Xu|) |Xu|β|XXu|2 dx ≤ c(β + 1)10K

∫

supp(η)

F (|Xu|) |Xu|β+2 dx,

where K = ‖Xη‖2
L∞ + ‖ηTη‖L∞ and c = c(n, g0, L) > 0. Then, (5.51) follows easily from

Corollary 5.5, the estimate (5.52) and the fact that |Tu| ≤ 2|XXu|. Thus, we are only left
with the proof of the claimed estimate (5.52).

To prove (5.52), notice that by Lemma 5.3, we only need to estimate the integral
∫

Ω

η2 F (|Xu|) |Xu|β|Tu|2 dx.

From Hölder’s inequality, we have
∫

Ω

η2F (|Xu|) |Xu|β|Tu|2 dx ≤
(∫

Ω

ηβ+2F (|Xu|) |Tu|β+2 dx
) 2
β+2
(∫

supp(η)

F (|Xu|) |Xu|β+2 dx
) β
β+2

.
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Then, using |Tu| ≤ |XXu| on the above, we obtain the following from Lemma 5.3, Corollary
5.5 and Young’s inequality,∫

Ω

η2 F (|Xu|) |Xu|β|XXu|2 dx ≤ c(β + 1)
4(β+2)
β

+2K

∫

supp(η)

F (|Xu|) |Xu|β+2 dx,

which proves the claim (5.52) and hence completes the proof. �
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134. TÖRMÄKANGAS, TIMO, Simulation study on the properties of quantitative trait model
estimation in twin study design of normally distributed and discrete event-time phenotype
variables. (417 pp.) 2012

135. ZHANG, GUO, Liouville theorems for stationary flows of generalized Newtonian fluids. (14 pp.)
2012

136. RAJALA, TUOMAS, Use of secondary structures in the analysis of spatial point patterns.
(27 pp.) 2012

137. LAUKKARINEN, EIJA, On Malliavin calculus and approximation of stochastic integrals for
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146. JYLHÄ, HEIKKI, On generalizations of Evans and Gangbo’s approximation method and L∞
transport. (20 pp.) 2014

147. KAURANEN, AAPO, Space-filling, energy and moduli of continuity. (16 pp.) 2015
148. YLINEN, JUHA, Decoupling on the Wiener space and variational estimates for BSDEs.

(45 pp.) 2015
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