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Preface

A basic fact in real analysis says that if every continuous real-valued
function defined in E ⊂ Rn is bounded, then E is compact and therefore
each continuous function in E is uniformly continuous. There seems to
be a recurrent and fruitful scheme: studying ‘geometric’ properties sat-
isfied by suitable classes of functions with given regularity, defined in a
set, helps investigating geometric or topological restrictions on the set;
on the other hand, suitable geometric properties of sets indicate better
regularity for certain classes of functions or mappings defined in the
set. Among the numerous instances of this phenomenon, we mention
for example the property of admitting a local Poincaré type inequal-
ity by Lipschitz functions defined in a set in a suitable metric space,
which under appropriate conditions imposes further geometric restric-
tions on the set (linear local connectedness; see Heinonen-Koskela [19],
for example). Such properties prove useful in studying quasiconformal
mappings defined in these sets (see [19]).

The present dissertation may be considered to fit roughly into this
scheme. For instance, the analytical properties of conformal parametriza-
tions are used in [A] to study boundary accessibility in simply con-
nected domains from which a pointwise weighted Hardy inequality for
compactly supported smooth functions can be deduced. The approach
in [A] is of course classical and provides quantitative estimates for the
size of the accessible boundary. In the other direction, certain hyper-
bolic type domains are shown to be suitable for the density of functions
with bounded derivatives in the (homogeneous) Sobolev classes defined
in them (see [D], and also [C]). The article [B] also contributes in this
direction where we study domains which have good geometric proper-
ties (overlapping with the other articles in the dissertation) from the
point of view mentioned above of admitting nice properties for classes
of functions and mappings defined in them. Hyperbolicity, or exis-
tence of suitable metrics with ‘negative curvature’ is the key property
in many of the domains we consider. We will introduce next some of
the concepts being used in this dissertation and then discuss some of
the motivation and possible applications of the included articles.





1. Background

1.1. Quasihyperbolic metric. The quasihyperbolic metric, a gener-
alization of the hyperbolic metric of simply connected planar domains
was introduced in Gehring-Palka [8] in 1976. Given a domain Ω ( Rn

and points x, y ∈ Ω, the quasihyperbolic distance between x and y is
defined as

kΩ(x, y) = inf
γ

∫ |dz|
dΩ(z)

,

where the infimum is taken over all rectifiable curves joining x and y
in Ω, the integral is the line integral of the density 1/dΩ(·) over such a
curve γ and dΩ(z) is the distance from any z ∈ Ω to the boundary ∂Ω.
It coincides with the hyperbolic metric when Ω is the half plane and
is comparable to it in the general case by an application of the Koebe-
distortion theorem (see for example Pommerenke [31]). It follows from
the Arzela-Ascoli theorem that (Ω, kΩ) is a geodesic space.

1.2. John and Ball separation.

Definition 1.1 (Ball separation property). Let Ω ( Rn be a domain.
A curve Γ ⊂ Ω satisfies the c-ball separation property, for some c ≥ 1,
if for every point z ∈ Γ, the intrinsic ball B = BΩ(z, cdΩ(z)) separates
any x, y ∈ Γ \ B in Ω such that z ∈ Γ(x, y), where Γ(x, y) denotes
the subcurve of Γ between x and y. The domain Ω has the c-ball
separation property if every quasihyperbolic geodesic in Ω satisfies the
c- ball separation property.

Definition 1.2 (John domains). Let A ≥ 1. We say that a domain
Ω ( Rn is John with center x0 if x0 ∈ Ω is such that for any point
x ∈ Ω, there exists a curve γx joining x and x0 in Ω such that

l(γx(x, z)) ≤ AdΩ(z),

for all z ∈ γx. The curves γx are called A-John curves.

The ball separation property was introduced in Koskela-Buckley [5]
where it was shown that if a domain has the separation property and
admits a Sobolev-Poincaré inequality, then it is a John domain. It is
easy to see that John curves satisfy the separation property. It makes
sense to ask under what conditions John domains have the property
that all quasihyperbolic geodesics are John curves. It was shown in
Gehring-Hag-Martio [10] that in planar simply connected domains this
is true and they also gave examples of domains where it is false. It
turns out that planar simply connected domains satisfy the separation
condition which is sufficient for this purpose and the topological condi-
tion of simply connectedness is not relevant. In fact the theorem below
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states that the domain needs to only be checked for the weaker local
connectivity property (see Section 1.3 for the definitions of ϕ-LC-2 and
ϕ-John).

Theorem 1.3 (Proposition 5.5, [B]). Let Ω ( Rn be a domain with the
C-ball separation property. Then Ω is ϕ-John if and only if Ω is ϕ-LC-
2, quantitatively. Moreover, the quasihyperbolic geodesics are ψ-John
curves, where ψ(t) = ψ(Ct).

1.3. Generalized John domains. We recall the quasihyperbolic bound-
ary condition defined in Gehring-Martio [11]. This condition appeared
already in Becker-Pommerenke [2] where it was used to study Hölder
continuity of conformal mappings. A domain Ω satisfies the quasihy-
perbolic boundary condition if there exists a point x0 ∈ Ω such that
for all x ∈ Ω,

kΩ(x0, x) ≤ a log

(
dΩ(x0)

dΩ(x)

)
+ b,

where a ≥ 1 and b ≥ 0 are constants. It was shown in [2] that confor-
mal mappings from a disk onto a domain which has the quasihyperbolic
boundary condition are Hölder continuous. It was proved in [11] that a
quasiconformal mapping from a domain in Rn is Hölder continuous on
all balls contained in the domain (with uniformly bounded constants
for Hölder continuity) if and only if the image satisfies the quasihy-
perbolic boundary condition. Also, certain global Poincaré inequal-
ities hold in domains with the quasihyperbolic boundary conditions.
See for example Smith-Steganga [32]. See also Koskela-Onninen-Tyson
[26] for validity of (q, p)-Poincaré inequalities in domains satisfying the
quasihyperbolic boundary condition leading to solvability conditions
for Neumann problems in planar domains. See Koskela-Onninen-Tyson
[25] for global Hölder continuity of quasiconformal mappings (in the in-
trinsic metric, obtained via capacity estimates) when the image satisfies
the quasihyperbolic boundary condition.

The quasihyperbolic boundary condition implies for quasihyperbolic
geodesics Γx joining the fixed point x0 to a point x ∈ Ω the inequality

kΩ(x0, z) ≤ a log

(
dΩ(x0)

l(Γx(x, z))

)
+ b1,

for any z ∈ Γx, where b1 = b1(a, b) (see [32]). It is not difficult to
see that John domains satisfy the quasihyperbolic boundary condition
with a and b depending only on the John constant of Ω. Domains which
satisfy the quasihyperbolic boundary condition, are s-John domains in
the sense that the quasihyperbolic geodesics Γx joining the center x0
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to an arbitrary point x satisfy

l(Γx(x, z)) ≤ AdΩ(z)s,

where 0 < s ≤ 1 depends only on a, b, x0 and Ω. See Haj lasz-Koskela
[16] for Sobolev imbedding theorems in these domains. It makes sense
to generalize the definition of John domains in the following way. Given
a homeomorphism ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 and ϕ(t) ≥ t,
for t ∈ [0,∞), we say Ω is ϕ-John if there exists a center x0 such that
quasihyperbolic geodesics Γx starting from x0 satisfy

l(Γx(x, z)) ≤ ϕ(dΩ(z)),

whenever z ∈ Γx. This generalization was introduced in Guo-Koskela
[13] where several properties of these domains were studied. See Guo
[12] for modulus of continuity (in terms of ϕ) of quasiconformal map-
pings when the image is ϕ-John; see also Guo-Koskela [14].

Next we state two properties which were introduced by Gehring in [6]

for characterizing quasidisks. A set E ⊂ Ṙn is called Linearly Locally
Connected (LLC) if there is a constant C ≥ 1 such that

(LLC-1) each pair of points in B(x, r)∩E can be joined in B(x,Cr)∩
E, and

(LLC-2) each pair of points in E\B(x,Cr) can be joined in E \
B(x, r).

The LLC-condition can be generalized to the non-linear case as follows:
a set E ⊂ Ṙn is (ϕ, ψ)-locally connected ((ϕ, ψ)-LC) if

(ϕ-LC-1) each pair of points inB(x, r)∩E can be joined inB(x, ϕ(r))∩
E, and

(ψ-LC-2) each pair of points in E\B(x, r) can be joined in E\B(x, ψ(r)),

where ϕ, ψ : [0,∞)→ [0,∞) are smooth increasing functions such that
ϕ(0) = ψ(0) = 0, ϕ(r) ≥ r and ψ(r) ≤ r for all r > 0. Depending on
what is meant by joining, one can consider pathwise and continuumwise
versions of ϕ-LC-1, ψ-LC-2, and (ϕ, ψ)-LC. It is known that for Jordan
curves in the plane that if one of the complementary domains is LLC-
1, then the other is LLC-2 (see Näkki-Väisälä [29] and also [13] for
the generalized case in the plane). Väisälä [34] generalized this duality
to higher dimensions. We have the following generalization of metric
duality results of Väisälä [34] to the non linear case.

Theorem 1.4 (Proposition 1.1, [B]). Let Ω ⊂ Rn be a bounded domain
such that Ω satisfies the ball separation property and that H1(Ω) = 0.
Then the following conditions are quantitatively equivalent:

1). Ω is ϕ-diam John;
2). Ω is ϕ-LC-2;
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3). the complementary domain Ω′ = Rn\Ω is homologically (n −
2, ϕ)-bounded turning.

In the above theorem, homologically (p, ϕ)-bounded turning is the
generalization of the bounded turning condition for curves (which says
that given any pair of points in the domain there exists a continuum
joining them of diameter comparably smaller than the distance between
the points) to higher dimensions, by using p-cycles and (p + 1)-chains
(see [34], and [B] for the non-linear version). There is also an analog of
higher dimensional bounded turning that uses homotopy groups (see
Section 7, [B]). It is shown in [B, Theorem 1.4] that homotopically
bounded turning and homologically bounded turning are quantitatively
not the same.

1.4. Gehring-Hayman property.

Definition 1.5 (Gehring-Hayman property). Let Ω ( Rn be a domain.
A curve Γ ⊂ Ω satisfies the c-Gehring-Hayman property, for c ≥ 1, if

l(Γ(x, y)) ≤ cλΩ(x, y),

for all x, y ∈ Γ, where λΩ(x, y) is the infimum of the lengths of all curves
joining x and y in Ω. The domain Ω has the c-Gehring-Hayman prop-
erty if every quasihyperbolic geodesic Γ ⊂ Ω satisfies the c-Gehring-
Hayman property.

There is also the corresponding diameter version (see below) of this
condition which is sometimes useful. A curve Γ has the diameter
Gehring-Hayman property if for all x, y ∈ Γ

diam(Γ(x, y)) ≤ cδΩ(x, y),

where δΩ(x, y) is the infimum of the diameters of all curves joining x and
y in Ω. The Gehring-Hayman property was first proved for hyperbolic
geodesics in simply connected domains in Gehring-Hayman [7]. It was
later shown to hold for quasihyperbolic geodesics in quasiconformal
images of uniform domains [20] and for conformal metric deformations
of unit balls [3]. In [D] we use suitable local versions of the Gehring-
Hayman property for quasihyperbolic geodesics.

1.5. Whitney decomposition. Given a domain Ω ( Rn the Whitey
decomposition W of Ω is a collection of cubes (edges parallel to coor-
dinate axes) with disjoint interiors which cover Ω and satisfy:

(i) if Q ∈ W , then

1

λ1

√
n l(Q) ≤ d(Q, ∂Ω) ≤ λ2

√
n l(Q),
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and
(ii) if Q,Q′ ∈ W intersect, then

1

λ1

l(Q) ≤ l(Q′) ≤ λ2l(Q),

where λ1, λ2 ≥ 4 and l(Q) denotes the edge-length of a cube Q (see
for example Whitney [35] or the book of Stein [33]). Given a Whitney
cube Q ∈ W , a simple computation shows that

log

(
2 + λ2

1 + λ2

)
≤ diamk(Q) ≤ λ1, (1)

where diamk(Q) is the diameter of Q in the quasihyperbolic metric
kΩ. In applications, we do not require the sets in the decomposition
to be restricted to cubes and allow for more general connected sets Q
which satisfy the properties above with edge length of cubes replaced
by diameter of the respective sets which are additionally required to
satisfy B(x, c1diam(Q)) ⊂ Q ⊂ B(x, c2diam(Q)), for some 0 < c1, c2

and x ∈ Q.

1.6. Gromov hyperbolicity.

Definition 1.6 (Gromov hyperbolicity). Let 0 ≤ δ < ∞. A domain
Ω ( Rn is δ-Gromov hyperbolic if all quasihyperbolic geodesic triangles
are δ-thin in the quasihyperbolic metric. That is, given any three points
x, y, z ∈ Ω and quasihyperbolic geodesics Γxy,Γyz and Γzx joining them
pairwise, it holds for any w lying in any of the three geodesics that the
ball of radius δ, in the quasihyperbolic metric, centered at w intersects
the union of the remaining two geodesics.

Gromov hyperbolicity of domains was introduced and studied in [4],
where more general spaces were considered. The Whitney decompo-
sition of a domain provides another way to identify the Gromov hy-
perbolicity of a domain. Indeed, let Ω ⊂ Rn be bounded and W its
Whitney decomposition. Enumerate W as {Q0, Q1, . . .} where Q0 is
one of the cubes with the largest diameter. Let xi be the center of
Qi. Let G(W) be the graph with {xi}i as the set of vertices and edges
consisting of pairs {xj, xl} where Qj and Ql intersect in a face. Equip
G(W) with the graph metric dG, for which dG(xi, xj) is the smallest
number of edges in a path joining xi to xj in G. It follows from (1)
that

dG(xi, xj) ' kΩ(xi, xj),

with constants depending only on λ1 and λ2 (see for example [25]).
Thus (G, dG) and (Ω, k) are quasiisometric with constants given by λ1
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and λ2. It follows that Ω is Gromov hyperbolic, if and only if G(W) is
Gromov hyperbolic.

Definition 1.7 (Uniform spaces [4]). A non-complete metric space X
is A-uniform if there exists a constant A ≥ 1 such that for each pair of
points x, y ∈ X, there exists a curve γxy ⊂ Ω joining x and y such that

(i) l(γxy) ≤ A|x− y|,
(ii) For any z ∈ γxy, l(γxy(x, z) ∧ l(γxy(z, y))) ≤ AdX(z),

where dX(z) is the distance between z and the boundary ∂X. The
curves γxy are called uniform curves. Curves that satisfy only the
second requirement are called doubly-John.

It was shown in [4] that A-uniform domains are δ(A)-Gromov hy-
perbolic. On the other hand, every Gromov hyperbolic domain can be
equipped with a metric, obtained via a conformal deformation of the
euclidean metric, which makes it a uniform space.

Definition 1.8 (Conformal modulus). Let Q > 1. Let X be a recti-
fiably connected metric space. Let µ be a Borel measure in X. The
Q-modulus of a family G of curves in X is

modQ(G) = inf

∫

X

fQdµ,

where the infimum is taken over all Borel functions f : X → [0,∞]
such that ∫

γ

fds ≥ 1

for all γ ∈ G.

Definition 1.9 (Loewner Spaces). Let Q > 1. Let X be a rectifiably
connected metric space. Let µ be a Borel measure in X. Then X is
Loewner space if the function

ϕ(t) = inf{modQ(E,F ;X) : ∆(E,F ) ≤ t}
is positive for each t > 0, where E and F are any non-degenerate
disjoint continua in X with

∆(E,F ) =
dist(E,F )

diam E ∧ diam F

and (E,F ;U) is the family of all curves in U joining the sets E,F ⊂ U.

The following characterization of Gromov hyperbolic domains is avail-
able.
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Figure 1. First
four generations
of a Whitney de-
compositionW of
the unit disc.
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Figure 2. The
graph G(W).

Theorem 1.10 ([4],[1]). A δ-Gromov hyperbolic domain has both the
c1-ball separation property and the c2-Gehring-Hayman property, for
c1 = c1(δ, n) and c2 = c2(δ, n). Conversely, a domain which has both
the c1-ball separation property and the c2-Gehring-Hayman property is
also δ-Gromov hyperbolic, for δ = δ(c1, c2, n).

We show in [D] that the diameter version of the Gehring-Hayman
condition is also true.

Theorem 1.11. Suppose that Ω ⊂ Rn is a δ-Gromov hyperbolic do-
main. Then there exists a constant M = M(δ, n) such that for any pair
of points x, y ∈ Ω we have

diam(Γ) ≤MδΩ(x, y) (2)

for any quasihyperbolic geodesic Γ joining x and y in Ω.

For the counterpart of Theorem 1.11 in the special case of hyperbolic
geodesics in simply connected domains see Pommerenke [31, page 88].
For the proof of Theorem 1.11 we use the aforementioned method of
uniformization developed in [4]. It can be shown that the uniform space
thus obtained is a bounded Loewner space (when equipped with corre-
sponding measure) and that conformal modulus of families of curves is
preserved under this deformation. Also the boundary of the deformed
spaces is quasisymmetrically equivalent to the boundary of (Ω, k) with
its quasisymmetric gauge (of visual metrics).

1.7. A dense subset of Sobolev spaces. Let Ω ⊂ Rn. Let p ∈ [1,∞]
and k ∈ N. We write Lk,p(Ω) for the space of Sobolev functions with
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p-integrable distributional derivatives of order k;

Lk,p(Ω) = {u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω), if |α| = k}.

We equip it with the homogeneous Sobolev seminorm
∑
|α|=k ‖∇αu‖Lp(Ω).

The (non-homogeneous) Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω), if |α| ≤ k}

and is equipped with the norm
∑
|α|≤k ‖∇αu‖Lp(Ω). Here and below an

n-multi-index α is an n-vector of non-negative integers and |α| is its
`1-norm.

In articles [C] and [D], we study the question of density of functions
with bounded derivatives in the homogeneous Sobolev spaces. Such a
density does not hold in general (see for example [23]). It was proved
in Koskela-Zhang [22] that in the class of first order Sobolev spaces in
planar simply connected domains, W 1,∞ functions are dense in both the
homogeneous and non-homogeneous Sobolev norms. The same density
result was generalized to the case of Gromov hyperbolic domains in all
dimensions higher than or equal to two in Koskela-Rajala-Zhang [23].
We generalize their results for higher order Sobolev spaces with the
homogeneous norm.

Theorem 1.12 (Theorem 1.1, [C]). Let k ∈ N, p ∈ [1,∞) and Ω ⊂ R2

be a bounded simply connected domain. Then the subspace W k,∞(Ω) ∩
C∞(Ω) is dense in the space Lk,p(Ω).

Theorem 1.13 (Theorem 1.1, [D]). Let 0 ≤ δ < ∞, k ∈ N and
p ∈ [1,∞). Let Ω ⊂ Rn be a bounded δ-Gromov hyperbolic domain.
Then W k,∞(Ω) ∩ C∞(Ω) is dense in Lk,p(Ω).

For defining an approximating sequence, we use the values of a
smooth approximation of the Sobolev function u to be approximated,
in an increasing (nested) sequence of precompact subdomains (cores)
of Ω to assign values to points in the rest of the domain by a suitable
reflection procedure (inner extension). The smooth approximation to
u, is approximated by polynomials in Whitney cubes (see for example
Jones [21]) and the ball separation property is used to decompose the
remaining domain (outside of the core) into components blocked from
the core by suitable neighbourhoods of Whitney cubes at the bound-
ary of the core. The Gehring-Hayman inequality is used to find chains
of Whitney cubes of bounded length (for example in the metric dG
for the centers) joining cubes whose neighbourhoods intersect. The
Poincaré inequality is then used to obtain bounds on the oscillations
of the polynomial approximations in cubes whose neighbourhoods in-
tersect. Finally, a suitable partition of unity is used to show that the
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polynomials can be smoothly summed up to obtain an approximating
function with bounded k-derivatives.

1.8. Boundary accessibility. We prove the following theorem about
the Hausdorff content of the set of points in the boundary of a simply
connected planar domain which can be joined by a John curve (with
suitable John constant) starting from a given point in the domain and of
length comparable to the distance from the given point to the boundary.

Theorem 1.14 (Theorem 1.1, [A]). Let Ω be a bounded, simply con-
nected domain in the plane. Let 0 < α < 1 be fixed. Given z ∈ Ω,
there is a John subdomain Ωz ⊂ Ω with center z and John constant
depending only on α such that

Hα
∞(∂Ωz ∩ ∂Ω) ≥ c(α)dΩ(z)α.

In the above theorem, we used the following definition of Hausdorff
content where to each A ⊂ R2 and α ≥ 0 is assigned the number

Hα
∞(A) := inf{

∞∑

j=1

diam(Ej)
α : Ej ⊂ R2, A ⊂ ∪

j∈N
Ej}.

Theorem 1.14 tells in particular that the Hausdorff dimension of the
set of points in the boundary which are the vertices of a twisted interior
cone of suitable length is bounded below by one. It may be viewed as
the quantitative version of a result of Makarov [28].

1.9. Weighted Hardy inequalities. For a domain Ω ⊂ Rn and a
compactly supported smooth function, u ∈ C∞0 (Ω) the inequality

∫

Ω

|u(x)|pdΩ(x)β−p dx ≤ C

∫

Ω

|∇u(x)|pdΩ(x)β dx

is the weighted (classical) Hardy inequality (see [17],[18] for the classical
Hardy inequality and [30], [24] for higher dimensional versions of it).

The integral Hardy inequality above follows from the stronger point-
wise version:

|u(x)| ≤ CdΩ(x)1−β
p sup

0<r<2dΩ(x)

(
−
∫

B(x,r)∩Ω

|∇u|qdqβ/pΩ

)1/q

, (3)

where 1 < q < p and −∞ < β < ∞. This pointwise version of the
Hardy inequality is a corollary of Theorem 1.14.

Corollary 1.15. Let Ω ⊂ C be simply connected. Let 1 < p < ∞.
Then, for each β < p − 1 there exist 1 < q(β, p) < p and C > 0
for which the weighted pointwise Hardy inequality (3) holds for each
u ∈ C∞0 (Ω) and x ∈ Ω.
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The corresponding integral weighted Hardy inequalities were already
established in [27] by different methods.
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Abstract. For a bounded simply connected domain Ω ⊂ R2, any
point z ∈ Ω and any 0 < α < 1, we give a lower bound for the α-
dimensional Hausdorff content of the set of points in the boundary
of Ω which can be joined to z by a John curve with a suitable John
constant depending only on α, in terms of the distance of z to ∂Ω.
In fact this set in the boundary contains the intersection ∂Ωz ∩∂Ω
of the boundary of a John sub-domain Ωz of Ω, centered at z, with
the boundary of Ω. This may be understood as a quantitative
version of a result of Makarov. This estimate is then applied to
obtain the pointwise version of a weighted Hardy inequality.

1. Introduction

Let Ω ⊂ C be a domain. We say that Ω is C-John with center z0 if
for any z ∈ Ω there exists a rectifiable curve γz joining z and z0 in Ω
such that for any point z′ in the image of γz, it holds that

CdΩ(z′) ≥ l(γz(z
′, z)),

where dΩ(z′) := dist(z′, ∂Ω) and l(γz(z
′, z)) is the length of the sub-

curve between z′ and z. Given A ⊂ C, we define the α-Hausdorff
content as

Hα
∞(A) := inf{

∞∑

j=1

diam(Ej)
α : Ej ⊂ C, A ⊂ ∪

j∈N
Ej}.

Given a simply connected John domain and z ∈ Ω there is a John
subdomain Ωz with center z so that, for the ball in the intrinsic metric
(defined by taking the infimum of the lengths of rectifiable paths in the
domain joining pairs of points) of radius 2dΩ(z), we haveBΩ(z, 2dΩ(z)) ⊂
Ωz; see [5], for example. This statement is quantitative in the sense that
the John constant of Ωz depends only on the John constant of Ω. It
is easy to see that this conclusion fails for general simply connected
Ω: we may not capture all of ∂BΩ(z, 2dΩ(z)) ∩ ∂Ω by ∂Ωz for a John
subdomain Ωz for a fixed John constant. The best we can hope for is

Key words and phrases. simply connected, John domain, Hardy inequality.
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e Innovación. P. Koskela and D. Nandi were partially supported by the Academy
of Finland grant 307333.

1



2 P. KOSKELA, D. NANDI, AND A. NICOLAU

to capture a part of ∂Ω of H1-content of the order of dΩ(z). Our main
result gives a rather optimal conclusion.

Theorem 1.1. Let Ω be a bounded, simply connected domain in the
plane. Let 0 < α < 1 be fixed. Given z ∈ Ω, there is a John subdomain
Ωz ⊂ Ω with center z and John constant depending only on α such that

Hα
∞(∂Ωz ∩ ∂Ω) ≥ c(α)dΩ(z)α.

The motivation for Theorem 1.1 partially arises from the weighted
pointwise Hardy inequalities (see [1], [4], [5])

(1) |u(x)| ≤ CdΩ(x)1−β
p sup

0<r<2dΩ(x)

(
−
∫

B(x,r)∩Ω

|∇u|qdqβ/pΩ

)1/q

where u ∈ C∞0 (Ω), 1 < q < p and −∞ < β < ∞. This inequality im-
mediately yields the usual weighted Hardy inequality (see [2],[3] for the
classical Hardy inequality and [8], [5] for higher dimensional versions
of it) ∫

Ω

|u(x)|pdΩ(x)β−p dx ≤ C

∫

Ω

|∇u(x)|pdΩ(x)β dx

via the boundedness of the Hardy-Littlewood maximal operator on
Lp/q. The pointwise Hardy inequalities were shown in [5] to hold for any
simply connected John domain for all 1 < p <∞ and every β < p− 1.
This is the optimal range even for Lipschitz domains; see [8]. From
Theorem 1.1 together with Theorem 5.1 in [5] we have the following
corollary.

Corollary 1.2. Let Ω ⊂ C be simply connected. Let 1 < p < ∞.
Then, for each β < p − 1 there exist 1 < q(β, p) < p and C > 0 such
that the weighted pointwise Hardy inequality (1) holds for each x ∈ Ω.

Above, q and C are independent of Ω. The corresponding weighted
Hardy inequalities were already established in [6]. Our proof of The-
orem 1.1 is based on the following estimate for conformal maps which
we expect to be of independent interest. Let H be the upper half plane.

Theorem 1.3. Let f : H→ Ω be a conformal map. Let 0 < α < 1 be
fixed. Then there exists C(α) > 0 such that the following holds.

Given z0 = x0 + iy0 ∈ H, there exists a set E = E(z0, α) ⊂ (x0 −
y0/2, x0 + y0/2) such that

(a) Hα
∞(E) ≥ yα0

C(α)

(b) 1
C(α)
|f ′(z0)| ≤ |f ′(w)| ≤ C(α)|f ′(z0)|

for any point w in the sawtooth region S(E) := {x + iy : x ∈ (x0 −
y0/2, x0 + y0/2), d(x,E) ≤ y < y0}.

Theorem 1.3 can be understood as a quantitative version of a result of
Makarov; see Theorem 5.1 of [7], see also corollary 1.4 of [11]. Our proof
of Theorem 1.3 uses Makarov’s idea of approximating Bloch functions
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by dyadic martingales. Theorem 1.1 then follows from Theorem 1.3
and Lemma 3.3 below; in fact we have that (Ωz0 , dΩz0

) is bilipschitz
equivalent to the sawtooth region in Theorem 1.3.

2. Preliminaries

Let D be the unit disk in the complex plane. A function g : D→ C
is called a Bloch function if it is analytic and

‖g‖B := sup
z∈D

(1− |z|2)|g′(z)| <∞.

This defines a seminorm. The Bloch functions form a complex Banach
space B with the norm |g(0)|+ ‖g‖B.

Given a univalent analytic function f : D → C we have that the
function log f ′ is a Bloch function by the Koebe Distortion theorem
with ‖ log f ′‖B ≤ 6. Conversely, given a function g ∈ B with ‖g‖B ≤ 2,
there exists a univalent function f : D → C such that g = log f ′, see
(Chapter 4, [10]). Given a conformal map f : H → C, it follows by a
conformal change of coordinates that

sup
z∈H

Im(z)|g′(z)| < 6

where g is the function log f ′.
Let us introduce some notation. Given a closed interval I ⊂ R we

denote by xI the center of I and zI := xI + i|I|. We denote by Q(I) the
square {x + iy : x ∈ I, y ∈ (0, |I|)}. The intrinsic metric of a domain
Ω ⊂ C is given by dΩ(x, y) := inf{l(γx,y) : γx,y is a rectifiable curve
joining x and y in Ω}. The euclidean disk with center z and radius r
is denoted by B(z, r) and BΩ(z, r) is the corresponding intrinsic ball.
We denote by diam(A), the diameter of a set A ⊂ C. We denote by
diamΩ(A) the diameter of a subset A ⊂ Ω measured with respect to
the intrinsic metric of Ω.

3. Proofs of the theorems

We first sketch the proof of Theorem 1.3. The set E constructed
below is a Cantor-type set. One considers the harmonic function u =
log |f ′|, the real part of the Bloch function log f ′, where f is the con-
formal map from Theorem 1.3. The construction involves selecting
“good” parts in the boundary near which the function u remains es-
sentially bounded and estimating the size of the “bad” parts in the
boundary where the difference from a fixed value is large and positive
or large and negative. The good parts correspond to the points in the
boundary, accessible from some interior point of Ω by a John curve.
The key observation is that it is possible to recursively choose subsets
from the bad parts of the boundary, near which the difference from the
fixed value is “up” and “down” at consecutive generations so that the
final error in the intersection is not too large. The set E consists of
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the good parts and an intersection of suitable nested sets of the bad
part. The Hausdorff content of E is shown to be large by the mass
distribution principle after defining a limit measure supported on E.

We use the following well known lemma in the proof of Theorem 1.3;
see Lemma 2.2 of [9].

Lemma 3.1. Let u be a harmonic function in the upper half plane H
such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Let I ⊂ R be an interval and let {Ij} be a collection of pairwise disjoint
dyadic subintervals of I and assume additionally that u is bounded in
Q(I)\ ∪j Q(Ij). Then we have

(2) u(zI) =
∑

j

u(zIj)
|Ij|
|I| +

1

|I|

∫

I\∪jIj
u(x)dx+O(A).

Proof. Let us write y for the imaginary part of z and fix 0 < ε < 1.
Green’s theorem applied to the harmonic functions u and y in the
domain Uε := (Q(I)\∪j(Q(Ij))) ∩ {y > ε} gives

∫

Uε

y∆u−
∫

Uε

u∆y =

∫

∂Uε

y∇u · νds−
∫

∂Uε

u∇y · νds

and thus

(3)

∫

∂Uε

u∇y · νds =

∫

∂Uε

y∇u · νds

where ν is the outward unit normal vector. The absolute value of
the latter integral is bounded by 10A|I| by assumption. Note that
the oscillation of u on the upper edges of Q(I) and Q(Ij) is bounded;
indeed

|u(x+ i|Ij|)− u(x′ + i|Ij|)| ≤ A|x− x′|/|Ij|
for x, x′ ∈ Ij. From (3) we have

u(zI) =
∑

|Ij |>ε
u(zIj)

|Ij|
|I| +

1

|I|

∫

I

u(x+ iε)χI\( ∪
|Ij |>ε

Ij)(x) dx+O(A)

because the vertical sides of ∂(Q(Ij)) do not contribute to the integral.
The estimate now follows once we let ε → 0, since the function u has
radial limits almost everywhere in I\ ∪j Ij. �

Lemma 3.2. Let u be a harmonic function in the upper half plane H
such that

sup
z∈H

Im(z)|∇u(z)| ≤ A.

Then there is a number M0 = M0(A) such that the following holds for
any M > M0.
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Given any interval I ⊂ R, define

G(I) := {Re(z) : z ∈ Q(I), sup
0<Im(z)<|I|

|u(z)− u(zI)| ≤M + A
√

2},

and assume that |G(I)| ≤ |I|
100

. Consider the family F(I) of maximal
dyadic subintervals Ij ⊂ I such that |u(zIj) − u(zI)| ≥ M . Then we
have

(a) |u(z) − u(zI)| ≤ M + A
√

2 for any z ∈ Q(I)\ ∪
j
Q(Ij). In

particular, |u(zIj)− u(zI)| ≤M + A
√

2.

(b) |Ij| ≤ 2
− M
A
√

2 |I| for every Ij ∈ F(I).
(c) Consider the family F+(I) (respectively F−(I)) of intervals in
F(I) such that u(zIj)−u(zI) ≥M (respectively u(zIj)−u(zI) ≤
−M). Then we have
(i)

∑
Ij∈F+(I)

|Ij| ≥ |I|/4

(ii)
∑

Ij∈F−(I)

|Ij| ≥ |I|/4

Proof. Given z = x + iy ∈ H such that x ∈ I (respectively Ij) and
|I|/2 < y < |I| (respectively |Ij|/2 < y < |Ij|) it follows that |u(z) −
u(zI)| ≤ A

√
2 (respectively |u(z)− u(zIj)| ≤ A

√
2) by our hypothesis.

Part (b) follows by iterating the above inequality and part (a) follows
from the maximality of the dyadic intervals.

For part (c) we write the estimate from Lemma 3.1 as

∑

j

(u(zIj)− u(zI))
|Ij|
|I| +

1

|I|

∫

I\∪
j
Ij

(u(x)− u(zI))dx = δ

where δ = δ(u,A) lies in the interval [−δA, δA], where δA is a constant
that depends only on A. We observe that I\ ∪

j
Ij ⊂ G(I). Thus the

absolute value of the integral is bounded by M+A
√

2
100

, by part (a) and
the assumption that |G(I)| ≤ |I|/100. Hence we have

∣∣∣∣∣∣
∑

j

(u(zIj)− u(zI))
|Ij|
|I|

∣∣∣∣∣∣
≤ M + A

√
2

100
+ |δ|.

Next we note that M ≤ |u(zIj) − u(zI)| ≤ M + A
√

2 for any j. Part
(c) then follows from this. Indeed, if

(4)
∑

Ij∈F+(I)

|Ij|
|I| ≤

1

4
,

then we have ∑

Ij∈F−(I)

|Ij|
|I| ≥

74

100
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and

−M + A
√

2

100
− |δ| ≤ M + A

√
2

4
+

∑

Ij∈F−(I)

(u(zIj)− u(zI))
|Ij|
|I|

from which we get

∑

Ij∈F−(I)

|Ij|
|I| ≤

26

100
+

26A
√

2

4M
+
δA
M
.

This contradicts (4) if M > M0(A). The other inequality in part (c)
follows similarly. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let 0 < α < 1 be fixed.
We may assume without loss of generality that z0 = i. We construct

the set E as follows. Set u(z) = log(|f ′(z)|). Then u is the real part of
a Bloch function and thus satisfies the hypothesis of Lemma 3.2 with
A = 6.

Denote by I0 the interval (−1
2
, 1

2
). Consider the set Q(I(0)) and the

subset G(I(0)) as defined in Lemma 3.2. An interval I is called “good”
if |G(I)| ≥ |I|/100 and “bad” otherwise. If |G(I(0))| ≥ |I(0)|/100, then
set E = G(I(0)). Then Hα

∞(E) & 1 and the claim follows.
So we assume that the other case holds and consider the maximal

family F(I(0)) of subintervals Ij ⊂ I0 as chosen in Lemma 3.2, with
M = M(α) to be fixed later. Thus I0 is a bad interval and we may
apply Lemma 3.2. We have

|I| ≤ 2
− M

6
√

2 |I(0)| if I ∈ F+(I(0))

and ∑

I∈F+(I(0))

|I| ≥ |I(0)|/4.

The first generation G1 = G1(I(0)) is formed by the subsets G(I) of
the good intervals I ∈ F+(I(0)) and by the bad intervals I ∈ F+(I(0)).
We write G1 = Gg1 ∪ Gb1 where

Gg1(I(0)) = {G(I) : I ∈ F+(I(0)) is good}
and

Gb1(I(0)) = {I ∈ F+(I(0)) : I is bad}.
We also have ∑

I∈G1

|I| ≥ |I(0)|/400.

The construction stops in the sets in the family Gg1 of good sets. In
the sets I ∈ Gb1 it continues as follows.
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Fix I(1) ∈ Gb1. Since I(1) is bad we can apply Lemma 3.2 and consider
the collection F−(I(1)) which satisfies

|I| ≤ 2
− M

6
√

2 |I(1)| if I ∈ F−(I(1))

and ∑

I∈F−(I(1))

|I| ≥ |I(1)|/400.

The first generation G1(I(1)) of the interval I(1) ∈ Gb1 is written Gg1(I(1)) =
G1(I(1)) ∪ Gb1(I(1)), where

Gg1(I(1)) = {G(I) : I ∈ F−(I(1)) is good}
and

Gb1(I(1)) = {I ∈ F−(I(1)) : I is bad}.
We use the first generation as defined above, of members of the

collection Gb1(I(0)), to define the second generation G2(I(0)) = Gg2(I(0))∪
Gb2(I(0)), where

Gg2(I(0)) = ∪
I(1)∈Gb1(I(0))

Gg1(I(1))

and

Gb2(I(0)) = ∪
I(1)∈Gb1(I(0))

Gb1(I(1)).

We also have
∑

I⊂I(1)

I∈G2

|I| ≥ |I(1)|/400 for any I(1) ∈ Gb1.

Observe that u oscillates to the right of u(zI0) in the first step of the
construction and to the left of u(zI) in the second. We have

|u(zI)− u(zI(0))| ≤ 12
√

2 for any I ∈ Gb2.
Again the construction continues in the intervals of Gb2(I(0)). Since

the errors cancel but do not vanish, we use a slightly different value
of M , if needed, for choosing the maximal family F(I) for the bad
intervals I ∈ Gb2, so that the errors do not add up. More precisely, given
I(2) ∈ Gb2, we choose a value M ′ from the interval [M − 6

√
2,M + 6

√
2]

such that u(zI(2)) +M ′ = u(zI(0)) +M .
So the construction stops after finitely many steps or continues in-

definitely providing new generations Gn. Let I(n) ∈ Gn. Either I(n) is
of the form G(Ĩ) and the construction stops in I(n) or I(n) ∈ Gbn(I(0))
and the construction provides new sets and intervals of Gn+1 contained
in I(n) which satisfy

|I| ≤ 2
− M

6
√

2 |I(n)| if I ⊂ I(n) , I ∈ Gn+1
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and ∑

I⊂I(n)

I∈Gn+1

|I| ≥ |I(n)|/400.

We define

E := (∪nGgn) ∪ (∩nGbn).

By construction for any x ∈ E and any 0 ≤ y ≤ 1 we have

| log |f ′(x+ iy)| − log |f ′(i)|| ≤ 2M + 24.

Consider the set S(E) as defined in the statement of the theorem. Since
u is a Bloch function, the previous estimate gives that

e−2M−30|f ′(i)| ≤ |f ′(w)| ≤ e2M+30|f ′(i)|
for any w ∈ S(E). Thus part (b) of the statement follows.

Part (a) of the statement follows if it is shown that

Hα
∞(E) ≥ c(α).

To prove the last estimate, it suffices by the mass distribution principle
to construct a positive measure µ with µ(E) ≥ 1 such that there exists
a constant c(α) > 0 with

µ(I) ≤ c(α)|I|α,
for any interval I ⊆ I0. The measure µ will be the limit of certain
measures µn supported in the union ( ∪

k≤n
Ggk) ∪ Gbn, where Ggk are the

good parts of the previous generations.
Next we construct the measure µ. Let µ0 = dx

¬
I(0). Consider

a(I(0)) =
|I(0)|∑
I∈G1
|I|

which satisfies a(I(0)) ≤ 400. By defining

µ1 := a(I(0))
∑

I∈G1

dx
¬
I

we have µ1(I(0)) = 1. The measure µ2 will coincide with µ1 on Gg1 .
On G2 the measure µ2 will be defined by redistributing the mass of µ1.
More concretely, if I(1) ∈ Gb1 set

a(I(1)) =
µ1(I(1))∑
I⊂I(1)

I∈G2

|I| .

Since

a(I(1)) =
|I(1)|∑
I⊂I(1)

I∈G2

|I|
µ1(I(1))

|I(1)| = a(I(0))
|I(1)|∑
I⊂I(1)

I∈G2

|I| ,



ACCESSIBLE PARTS OF BOUNDARY FOR SIMPLY CONNECTED DOMAINS 9

we deduce that a(I(1)) ≤ 4002. Define

µ2 = µ1
¬ Gg1 +

∑

I(1)∈Gb1

a(I(1))
∑

I⊂I(1)

I∈G2

dx
¬
I.

The measures µ3, . . . , µn, . . . are defined recursively. Observe that µk(I) =
µn(I) for any k ≥ n, provided I ∈ Gn. Moreover, if I ∈ Gn we have

µn(I)

|I| ≤ 400n.

Finally set
µ = lim

n→∞
µn.

It is clear that sptµ ⊂ E and µ(E) = 1. We want to check that
µ(I) ≤ c(α)|I|α for any interval I ⊆ I0. Let J ⊂ I0 be an interval. We
may assume that there is a positive integer j such that

2
−M(j+1)

6
√

2 ≤ |J | ≤ 2
− Mj

6
√

2 .

Let Gj(J) (respectively Ggk(J)) be the family of sets of generation Gj
(respectively Ggk) which intersect J . Let Aj(J) be the family of sets in

∪j−1
k=0Ggk(J) of diameters smaller than 2

− Mj

6
√

2 . Since the sets in Gj(J) ∪
Aj(J) intersect J and have diameter smaller than 2|J |, we have

Gj(J) ∪ Aj(J) ⊂ 4J.

Hence

µ(J) ≤
∑

I∈Gj(J)

µ(I) +

j−1∑

k=0

∑

I∈Ggk(J)

µ(I ∩ J)

≤
∑

I∈Gj(J)∪Aj(J)

µ(I) +
∑

I∈∪j−1
k=0G

g
k(J)\Aj(J)

µ(I ∩ J)

=: A+B.

If I ∈ Gj(J) ∪ Aj(J), then we have

µ(I) = µj(I) =
µj(I)

|I| |I| ≤ 400j|I|.

Hence
A ≤ 400j

∑

I⊂4J
I∈Gj(J)∪Aj(J)

|I| ≤ 4 · 400j|J |.

Since the sets in ∪j−1
k=0Ggk(J)\Aj(J) intersect J and are contained in

intervals of length larger than |J | which are pairwise disjoint, the col-
lection ∪j−1

k=0Ggk(J)\Aj(J) is contained in at most two intervals L1 and
L2. Now

B ≤
2∑

i=1

µ(Li) ≤ 400j
2∑

i=1

|Li ∩ J | ≤ 400j[J |.
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Hence µ(J) ≤ A+B ≤ 5 · 400j|J |.
Since |J | ≤ 2

− Mj

6
√

2 , we deduce that

µ(J) ≤ 5|J |1− 6
√

2 ln2(400)
M .

We choose M large enough so that 1 − 6
√

2 ln2(400)
M

> α. The theorem
follows with this value of M . �

The proof of Theorem 1.1 uses the following auxiliary result.

Lemma 3.3. Assume that a set E = E(z0, α) ⊂ R exists, for which
part (b) of Theorem 1.3 is satisfied. Then we have that f(S(E)) is a
John domain with John constant depending on α. Moreover,

Hα
∞(f(E)) ≥ c(α)|f ′(z0)|αHα

∞(E).

Proof. We may assume that E is compact. We have for f(z) ∈ f(S(E))
that

df(S(E))(f(z), ∂f(S(E))) & c(α)|f ′(z0)|dS(E)(z)

from which it follows that f(S(E)) is John, with John curves being the
images of the John curves in S(E) (which we may take to be the vertical
line segment joining the point z to the upper edge of Q(I) followed by
a horizontal line segment till zI). The constant only depends on α.

Let {Bi}i be a countable (possibly finite) collection of disks covering
f(E). We may assume that f(z0) /∈ Bi for all indices i. For each point
f(ẑ) ∈ f(E) ∩ Bi consider the John curve γẑ joining f(ẑ) to the John
center f(z0). Let f(z) ∈ γẑ be a point such that l(γẑ(f(ẑ), f(z))) =
rad(Bi) =: Ri. By the John condition we have that df(S(E))(f(z)) ≥

1
c(α)

Ri.

In the following we write S ′(E) for the set f(S(E)). Consider the
collection of intrinsic balls {BS′(E)(f(z), c(α)dS′(E)(f(z)))}f(ẑ) in the
intrinsic metric of S ′(E). The balls in this collection cover the set
f(E) ∩Bi. By the 5r-covering theorem we find pairwise disjoint balls

BS′(E)(f(zij), c(α)dS′(E)(f(zij))), j = 1, 2, . . .

such that {BS′(E)(f(zij), 5c(α)dS′(E)(f(zij)))}j covers f(E) ∩Bi.
We have also an upper bound N(α) for the number Ni of the pairwise

disjoint intrinsic balls found above for each f(E)∩Bi, since every ball
BS′(E)(f(zij), c(α)dS′(E)(f(zij))) in the collection contains the euclidean

disk B(f(zij), Ri/c(α)). Let the collection of finitely many such intrinsic
balls chosen for each index i be denoted together {Bij} i∈N

1≤j≤Ni
where for

given i and 1 ≤ j ≤ Ni, Bij = BS′(E)(f(zij), 5c(α)dS′(E)(f(zij))). We



ACCESSIBLE PARTS OF BOUNDARY FOR SIMPLY CONNECTED DOMAINS11

have

∑

i

(diam(Bi))
α &

∑

i

Ni∑

j=1

(diamS′(E)(Bij))
α

≥ c(α)|f ′(z0)|α
∑

i,j

(diamS(E)(f
−1(Bij)))

α

≥ c(α)|f ′(z0)|αHα
∞(E)

The lemma follows. �

Proof of Theorem 1.1. Let f be the conformal map from H to Ω. Con-
sider the set E = E(f−1(z), α) obtained using Theorem 1.3. Applying
Lemma 3.3 we have

Hα
∞(f(E)) & (e−2M |f ′(f−1(z))|)αHα

∞(E).

Theorem 1.1 now follows by combining the above estimate with part
(a) of Theorem 1.3 and observing that, by part (b), z can be joined to
∂Ω by a curve which is the bilipschitz image of a curve in H of length
comparable to Im f−1(z) joining f−1(z) to R.

�
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CHARACTERIZATIONS OF GENERALIZED JOHN DOMAINS IN
Rn VIA METRIC DUALITY
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Abstract. Using the metric duality theory developed by Väisälä, we character-
ize generalized John domains in terms of higher dimensional homological bounded
turning for their complements under mild assumptions. Simple examples indi-
cate that our assumptions for such a characterization are optimal. Furthermore,
we show that similar results in terms of higher dimensional homotopic bounded
turning do not hold in dimension three.
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1. Introduction

Recall that a bounded domain Ω ⊂ Rn is a John domain if there is a constant
C and a point x0 ∈ Ω so that, for each x ∈ Ω, one can find a rectifiable curve
γ : [0, 1]→ Ω with γ(0) = x, γ(1) = x0 and with

Cd(γ(t), ∂Ω) ≥ l(γ([0, t])) (1.1)

for each 0 < t ≤ 1. Alternatively, one may replace the right-hand side with |γ(t)− x|
or with diam(γ([0, t])), see [24], and rectifiability of γ is not needed in these two

2000 Mathematics Subject Classification. 57N65,55M05.
Key words and phrases. John domain, uniform domain, metric duality, ball separation property,
homological joinability, homotopical joinability.
P. Goldstein was partially supported by FNP grant POMOST BIS/2012-6/3 and by NCN grant
no 2012/05/E/ST1/03232. C.-Y. Guo was supported by Swiss National Science Foundation Grant
153599 and 165848. P. Koskela and D. Nandi were partially supported by the Academy of Finland
grant 307333.

1



2 P. GOLDSTEIN, C.-Y. GUO, P. KOSKELA, AND D. NANDI

modifications to the above definition. Here John refers to F. John, who used this
condition in his work on elasticity [21]; the terminology was introduced by Martio
and Sarvas [22]. The class of John domains includes all smooth domains, Lipschitz
domains and certain fractal domains (for example snowflake-type domains).

In the planar case, Näkki and Väisälä [24] performed a detailed study of the John
disks, i.e., simply connected planar John domains. In particular, all the different
definitions of a John disk were shown to be equivalent, quantitatively (see Section 2
for a precise meaning of that term). Moreover, the following well known properties
of John disks were proved there:

i). a bounded simply connected domain is a John disk if and only if it is inner
uniform,

ii). a bounded simply connected domain is a John disk if and only if it is LLC-2
and if and only if its complement is of bounded turning.

Moreover, both statements are quantitative in the sense that the coefficients asso-
ciated to John disks, inner uniform domains, LLC-2 domains and bounded turning
domains depend only on each other. See Section 2 below for the precise definitions
of inner uniform domains, LLC-2 sets and bounded turning sets.

Motivated by the recent studies on generalized quasidisks [16, 14], Guo and Koskela
have introduced in [15] the class of ϕ-John domains, which forms a natural gener-
alization of the class of John domains. Let ϕ : [0,∞) → [0,∞) be a continuous,
increasing function with ϕ(0) = 0 and ϕ(t) ≥ t for all t > 0. A bounded domain Ω
in Rn is called a ϕ-length John domain when (1.1) is replaced with

ϕ(Cd(γ(t), ∂Ω)) ≥ l(γ([0, t])). (1.2)

The concepts of ϕ-dist and ϕ-diam John domains are defined analogously. A corre-
sponding curve γ is called a ϕ-dist (diam, length) John curve.

Unlike the John disk case, being a ϕ-length John domain is not necessarily quan-
titatively equivalent with being a ϕ-diam John domain, despite of the fact that
the latter is quantitatively equivalent with being a ϕ-dist John domain; see [15].
However, the well-known properties i) and ii) above do have natural formulations
in the category of generalized John disks [15]. Property i) and the first part of
property ii) were further generalized to higher dimensions in [13], where the simply
connectedness assumption was replaced by Gromov-hyperbolicity with respect to the
quasihyperbolic metric (see e.g. [7] for the precise definition).

In this paper, we aim at finding a natural substitute to the bounded turning of
the complement in ii) for a certain class of domains in higher dimensions. Instead of
more or less standard assumption Ω being Gromov-hyperbolic with respect to the
quasihyperbolic metric, we require a weaker ball separation property, introduced in
[8] and studied further for instance in [7, 6]. This property has turned out to be useful
in many problems, for example in connection with Sobolev-Poincare inequalities [8]
and uniform continuity of quasiconformal mappings into irregular domains [13].

A crucial observation towards this generalization was made by Väisälä in [26],
where he discovered a general metric duality property:

quantitative metric properties of open subsets of Euclidean spaces can
be derived from corresponding properties of their closed complements,
and vice versa.

This is in spirit similar to Ahlfors’ three point characterization of quasidisks [2]:
intrinsic properties of a Jordan curve provide quantitative geometric information
about the two complementary components, and conversely.
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A principal difference from the planar case, as discovered by Väisälä (see also [4,
5, 19]), is that one needs p-dimensional analogues of the linear local connectivity
and bounded turning properties. These definitions, based on homology for open sets
U ⊂ Ṙn and on cohomology for closed sets X ⊂ Ṙn, are given in Section 3.

We begin by recording the following result that follows rather easily from the
techniques in [26]. We will provide a detailed proof in Section 5 below.

Proposition 1.1. Let Ω ⊂ Rn be a bounded domain such that Ω satisfies the ball
separation property and that H1(Ω) = 0. Then the following conditions are quanti-
tatively equivalent:

1). Ω is ϕ-diam John;
2). Ω is ϕ-LC-2;
3). the complementary domain Ω′ = Rn\Ω is homologically (n − 2, ϕ)-bounded

turning.

Under the assumption of Proposition 1.1, the condition 2) (or equivalently 3))
implies that not only Ω is ϕ-diam John, but also that quasihyperbolic geodesics
starting from the John center are ϕ-diam John curves; see Proposition 6.1 below.

The boundedness assumption on Ω in Proposition 1.1 is not needed if we extend
the notion of ϕ-diam John domains to the unbounded case, as in Section 5. Thus
Proposition 1.1 can be regarded as a bounded version of the following, slightly more
general result.

Proposition 1.2. Let Ω ( Rn be a proper subdomain such that Ω satisfies the
ball separation property and that H1(Ω) = 0. Then the following conditions are
quantitatively equivalent:

1). Ω is (0,ϕ)-John;
2). Ω is ϕ-LC-2;

3). the complementary domain Ω′ = Ṙn\Ω is homologically (n − 2, ϕ)-bounded
turning.

The equivalence of 1) and 3) in Proposition 1.2 in the linear case (ϕ(t) = t)
actually (under stronger assumptions than ours) can be obtained as a corollary to
the main results in [26] . However, some extra (nontrivial) work is necessary because
of nonlinearity of ϕ and our weaker assumption of the ball separation property.
Moreover, this additional separation property cannot be dropped from Proposition
1.2 as indicated by the following example.

Example 1.3. There exists a domain Ω ( R3 with H1(Ω) = 0 such that Ω is
LLC-2, but not C-diam John for any C ≥ 1. In particular, Ω fails to have the ball
separation property.

Construction of Example 1.3. Simply rotate |y| = (1 − x)2, 0 ≤ x ≤ 1 about the
y-axis to sweep out a cusp domain in the space (see Figure 1).

�
The duality in Proposition 1.1 is formulated in terms of homological bounded turn-

ing, which in general looks apparently weaker than the homotopic bounded turning.
On the other hand, when n = 2 and Ω is simply connected, these two concepts are
indeed quantitatively equivalent. Thus one could still expect that a stronger form of
Theorem 1.2 in terms of homotopic bounded turning could hold, if Ω enjoys a suit-
able higher dimensional “simply connectedness” assumption. As already mentioned
earlier, one natural such kind of assumption would be the Gromov-hyperbolicity with
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Figure 1. Example 1.3

respect to the quasihyperbolic metric. We will refer to these domains as Gromov-
hyperbolic domains. Somewhat surprisingly, our main result of this paper shows
that this expectation is false when n = 3.

Theorem 1.4. There exists a domain Ω ⊂ R3 with the following properties

1). Ω is homeomorphic to the open unit ball B;
2). Ω is homeomorphic to the closed unit ball B;
3). Ω is a uniform domain with ball separation property;
4). U = R3\Ω is homologically (1, C)-bounded turning for some positive constant

C > 1.
5). U is not homotopically (1, C)-bounded turning for any C > 1.

The definition of a uniform domain is given in Section 2 below. Bounded uni-
form domains are John domains and quasiconformal images of uniform domains are
typical examples of Gromov-hyperbolic domains, see [7].

Let us shortly comment on the ideas behind the construction of the domain Ω.
The starting point for the construction was the question, whether there exists a
domain U homeomorphic to a closed ball, which is hlog-(1, C)-inner joinable, but
not htop-(1, C)-inner joinable for any C > 0, or, in other words, that, for any a ∈ U
and any ball B(a, r) ⊂ Rn, every loop contained in U \ B(a, Cr) is homologically
trivial in U \ B(a, r), however, for all C there are a ∈ U , r > 0 and a loop γ in
U \ B(a, Cr) which is not homotopically trivial in U \ B(a, r). Such γ is then a
commutator of loops in U \B(a, r).

In sufficiently high dimension n, one can easily find a domain U with these prop-
erties: let M be a manifold with perfect, non-trivial fundamental group (e.g. let M
be the Poincaré sphere). Recall that a group is perfect if its abelianization is trivial,
i.e. every element is a commutator. Then M embeds in Sk for k sufficiently large,
and we may take V to be a small tubular neighborhood of M in Sk. We construct
U by embedding a countable number of copies Vm of V in Sk = ∂Bk+1 = B and
attaching to B along Vm a cylinder Vm × [0,m], for m = 1, 2, . . .. Then, for any
r > 1, U \ B(0, r) consists of a countable number of cylinders over V , which have
perfect fundamental groups, and thus every loop in U \B(0, r) is a commutator. On
the other hand, if r > 1 and C > 1, every non-trivial loop in U \ B(0, Cr) is still
non-trivial in U \B(0, r).

In dimension n = 3, however, it is not obvious how to construct a domain U
homeomorphic to a ball and such that U \ B, for an Euclidean ball B, has perfect
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fundamental group. A well known example of a domain with perfect π1 is the
complement of the Alexander’s horned sphere ([17, Example 2B.2]), but then it is
given as a Euclidean ball minus a set diffeomorphic to a ball, and not the other way
around. In fact, as Ian Agol pointed to us in a discussion on MathOverflow [1], at
least one component of U \ B has a non-perfect fundamental group – or all have
trivial fundamental groups. Thus in dimension 3 we have to proceed differently. The
construction of U mimics the construction of an infinite grope (see e.g. [9, Section
38]), but, since we wish to have in the end a domain, we construct finite gropes
and attach a countable number of them to a half-space, just like we could do with
cylinders in high dimensions.

Our construction of Theorem 1.4 relies heavily on three dimensional topology,
in particular, the close relation of the fundamental group and the first homology
group. Thus, this kind of constructions do not generalize easily to higher dimensions
(i.e. n ≥ 4). In fact, we do not know whether Theorem 1.2 holds in terms of the
homotopic bounded turning assumption when n ≥ 4.

Some of the arguments that we use in the proofs of our results in Section 3 and
Section 4 are rather similar to the ones in [24] for the case of ϕ(t) = t. For the
convenience of the readers we have included full details even in these cases.

The paper is organized as follows. Section 2 fixes the notation and basic defi-
nitions. We introduce the joinability conditions in Section 3 and study their basic
properties in Section 4. In Section 5, we prove Proposition 1.1 and show its sharp-
ness in terms of given assumptions. Some remarks on quasihyperbolic geodesics in
domains with the ball separation property are given in Section 6. In Section 7, we
discuss the relation of homotopic bounded turning and homological bounded turn-
ing, and present a basic example to indicate their differences, and in the final section,
Section 8, we present our construction of Theorem 1.4.

2. Notation and Definitions

Notation. The one-point compactification of Rn is denoted by Ṙn, that is Ṙn =
Rn ∪ {∞}. The closure of a set U ⊂ Rn is denoted U and the boundary ∂U . The
open ball of radius r > 0 centered at x ∈ Rn is denoted by B(x, r) and in the
case of the unit ball we omit the centre and the radius, writing B := B(0, 1). The
boundary of B(x, r) will be denoted by S(x, r) and in the case of the boundary of
the unit ball, by S := S(0, 1). The symbol Ω always refers to a domain, i.e. a
connected and open subset of Rn. Whenever we write γ(x, y) or γxy, it refers to

a curve or an arc from x to y. For an open or closed set X in Ṙn, we denote by
Hp(X) the reduced singular p-homology group of X and by Hp(X) the Alexander-
Spanier p-cohomology group, both with coefficients in Z. Occasionally, we shall
need the unreduced integral zero-homology and cohomology groups of X, which,
following Väisälä ([26]), we denote by H0(X) and H0(X), recall that if X 6= ∅,

H0(X) = H0(X)⊕ Z and H0(X) = H0(X)⊕ Z.
If a condition P with data v implies a condition P ′ with data v′ so that v′ depends

only on v, then we say that P implies P ′ quantitatively, and we say that P and P ′

are quantitatively equivalent, if in addition P implies P quantitatively, as well.

Local connectivity. A set E ⊂ Ṙn is called Linearly Locally Connected (LLC) if there
is a constant C ≥ 1 such that

(LLC-1) each pair of points in B(x, r) ∩ E can be joined in B(x,Cr) ∩ E,
and

(LLC-2) each pair of points in E\B(x,Cr) can be joined in E \B(x, r).
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The LLC-condition can be generalized to the non-linear case as follows: a set E ⊂ Ṙn

is (ϕ, ψ)-locally connected ((ϕ, ψ)-LC) if

(ϕ-LC-1) each pair of points in B(x, r) ∩ E can be joined in B(x, ϕ(r)) ∩ E,
and

(ψ-LC-2) each pair of points in E\B(x, r) can be joined in E \B(x, ψ(r)),

where ϕ, ψ : [0,∞) → [0,∞) are smooth increasing functions such that ϕ(0) =
ψ(0) = 0, ϕ(r) ≥ r and ψ(r) ≤ r for all r > 0. Depending on what is meant
by joining, one can consider pathwise and continuumwise versions of ϕ-LC-1, ψ-
LC-2, and (ϕ, ψ)-LC. If E is locally compact, and locally path-connected, then
pathwise connectivity is quantitatively equivalent to continuumwise connectivity
(see e.g. [20]).

Bounded turning. A subset E ⊂ Ṙn is ϕ-bounded turning if there exists a continuous
function ϕ such that each pair of points x, y ∈ E can be joined by a continuum γ in
E satisfying

diam(γ) ≤ ϕ(|x− y|). (2.1)

When ϕ(t) = Ct, we recover the so-called C-bounded turning or simply bounded
turning sets.

Uniformity. A domain Ω ⊂ Rn is called a uniform domain, if there exists a constant
A ≥ 1 such that each pair of points x1, x2 ∈ Ω can be joined by a rectifiable curve
γ in Ω for which

min
i=1,2

l(γ([xj, γ(t)])) ≤ Ad(γ(t), ∂Ω) (2.2)

and
l(γ) ≤ Ad(x1, x2). (2.3)

A curve γ as above is called an A-uniform curve.

Inner uniformity. A domain Ω ⊂ Rn is ϕ-dist (diam, length) inner uniform, if there
exists a constant C > 0 such that each pair of points x1, x2 ∈ Ω can be joined by a
curve γ in Ω for which

min
i=1,2

S(γ([xj, γ(t)])) ≤ ϕ(Cd(γ(t), ∂Ω)) (2.4)

and
S(γ) ≤ CdI(x1, x2) (2.5)

with S(γ) equal to |γ(1)− γ(0)|, diam(γ) and l(γ), respectively. When ϕ(t) = t, we
recover the definition of an inner uniform domain.

Quasihyperbolic metric and quasihyperbolic geodesics. The quasihyperbolic metric
kΩ in a domain Ω ( Rn is defined to be

kΩ(x, y) = inf
γ
kΩ-length(γ),

where the infimum is taken over all rectifiable curves γ in Ω that join x to y and

kΩ-length(γ) =

∫

γ

ds

d(x, ∂Ω)

denotes the quasihyperbolic length of γ in Ω. This metric was introduced by Gehring
and Palka in [12]. A curve γ joining x to y for which kΩ-length(γ) = kΩ(x, y) is
called a quasihyperbolic geodesic. Quasihyperbolic geodesics joining any two points
of a proper subdomain of Rn always exist but they need not be unique; see [11,
Lemma 1]. Given a pair of points x, y ∈ Ω, we denote by [x, y] a quasihyperbolic
geodesic that joins x and y.
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Ball separation property. Let Ω ⊂ Rn be a proper domain. We say that Ω satisfies
the ball separation property if there exists a constant C > 0 such that for each pair
of points x, y ∈ Ω, for each z ∈ [x, y], and for every curve γ in Ω joining x to y it
holds that

BΩ(z, Cd(z, ∂Ω)) ∩ γ 6= ∅, (2.6)

where BΩ(z, r) is the ball of radius r > 0 in the intrinsic length metric of Ω, defined
as the infimum of the lengths of curves in Ω joining any pair of points.

3. Basic algebraic topology concepts

In this section, we define a nonlinear variant of the joinability conditions intro-
duced by Väisälä [26].

Let

A
α−→ B

β−→ C (3.1)

be a short sequence of groups and homomorphisms. We say that the sequence is fast
if ker(βα) = kerα or, equivalently, ker(βα) ⊂ kerα. Dually, the sequence is slow if
im(βα) = imβ or, equivalently, imβ ⊂ im(βα). In particular, the short sequence
in (3.1) is fast if α = 0 and slow if β = 0.

Let A ⊂ Ṙn, a ∈ A\{∞}, r > 0 and ϕ : [0,∞) → [0,∞) be a homeomorphism

such that ϕ(r) ≥ r and ϕ(r)
r

is non-decreasing. For each integer p, inclusions induce
four sequences

(a): Hp(A ∩B(a, r))→ Hp(A ∩B(a, ϕ(r)))→ Hp(A);
(b): Hp(A\B(a, ϕ(r)))→ Hp(A\B(a, r))→ Hp(A);
(c): Hp(A)→ Hp(A ∩B(a, ϕ(r)))→ Hp(A ∩B(a, r));
(d): Hp(A)→ Hp(A\B(a, r))→ Hp(A\B(a, ϕ(r))).

If the sequence (a) is fast for every a ∈ A\{∞} and r > 0, we say that A is
homologically outer (p, ϕ)-joinable. If (b) is fast for all such a, r, then A is homolog-
ically inner (p, ϕ)-joinable. If (c) is slow for all such a, r, then A is cohomologically
outer (p, ϕ)-joinable. If (d) is slow for all such a, r, then A is cohomologically inner
(p, ϕ)-joinable.

We shall abbreviate the words “homologically” and “cohomologically” by hlog and
cohlog, respectively. We say that A is hlog (p, ϕ)-joinable if A is both hlog outer
(p, ϕ)-joinable and hlog inner (p, ϕ)-joinable. The concept of cohlog (p, ϕ)-joinability
is defined in an analogous way.

The homological joinability properties can be defined more explicitly in terms of
cycles and chains. For example, an open set U ⊂ Rn is homologically outer (p, ϕ)-
joinable if and only if, given a ∈ U and r > 0, a p-cycle in U ∩ B(a, r) bounds in
U ∩B(a, ϕ(r)) whenever it bounds in U .

Note that in the definitions of four (p, ϕ)-joinability properties, one requires the
corresponding sequences (a), (b), (c) and (d) to be fast or slow for all a ∈ A\{∞}.
Hence, these properties are intrinsic properties of A (referred as absolute joinability).
It is often convenient to consider these conditions also for points a outside A and
we say that A has one of the four properties in Rn (refereed as relative joinability)
if the corresponding condition holds for all a ∈ Rn. The next lemma shows that
the relative joinability is in fact quantitatively equivalent to the absolute joinability;
compare with [26, Lemma 2.5].

Lemma 3.1. If p ≥ 0 and if A ⊂ Ṙn is hlog outer (p, ϕ)-joinable for all a ∈ A\{∞}
and r > 0, then A is hlog outer (p, 2ϕ + id)-joinable in Rn. The corresponding
statement is valid for the other three joinability properties as well.
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Proof. Let a ∈ Rn, r > 0. Writing ϕ′(r) = 2ϕ(r) + r, we must show that the
sequence

Hp(A ∩B(a, r))→ Hp(A ∩B(a, ϕ′(r)))→ Hp(A)

is fast. If A ∩B(a, r) = ∅, the first group is trivial, and, consequently, the sequence
is fast. If A ∩B(a, r) 6= ∅, choose a point x ∈ A ∩B(a, r). Now

B(a, r) ⊂ B(x, 2r) ⊂ B(x, 2ϕ(r)) ⊂ B(a, ϕ′(r)),

and we obtain the commutative diagram

Hp(A ∩B(a, r)) −−−→ Hp(A ∩B(a, ϕ′(r))) −−−→ Hp(A)y
x

Hp(A ∩B(x, 2r)) −−−→ Hp(A ∩B(x, 2ϕ(r))) −−−→ Hp(A).

Since the lower row is fast, so is the upper row.
Next assume that A is hlog inner (p, ϕ)-joinable and that a ∈M , r > 0. We must

show that the sequence

Hp(A\B(a, ϕ′(r)))→ Hp(A\B(a, r))→ Hp(A)

is fast. If A ∩ B(a, r) = ∅, the sequence is trivially fast since then the second map
is the identity. If A ∩B(a, r) 6= ∅, choose x ∈ A ∩B(a, r)- Now

B(a, r) ⊂ B(x, 2r) ⊂ B(x, 2ϕ(r)) ⊂ B(a, ϕ′(r)),

and we can proceed essentially as in the first case.
The cohlog cases are treated by analogous arguments.

�
The following Metric Duality Theorem is due to Väisälä [26, Theorem 2.7]. (The

statement in [26, Theorem 2.7] is written in the case ϕ(t) = ct, but the proof there
works for general ϕ without change.)

Theorem 3.2 (Metric Duality Theorem). Suppose that U is an open set in Ṙn and

p is an integer with 0 ≤ p ≤ n− 2. Set X = Ṙn\U and q = n− 2− p. Then

(1) U is hlog outer (p, ϕ)-joinable in Rn if and only if X is cohlog inner (q, ϕ)-
joinable in Rn;

(2) U is hlog inner (p, ϕ)-joinable in Rn if and only if X is cohlog outer (q, ϕ)-
joinable in Rn;

(3) U is hlog (p, ϕ)-joinable in Rn if and only if X is cohlog (q, ϕ)-joinable in
Rn.

Note that in the formulation of Theorem 3.2, one uses relative joinability. With
the aid of Lemma 3.1, one obtains also the corresponding absolute version of the
duality theorem: if U or X is outer or inner (p, ϕ)-joinable, then X or U is inner or
outer (q, 2ϕ+ id)-joinable.

4. Basic properties of joinability

In this section, we consider some useful consequences of the non-linear joinability
that we have introduced in the previous section. The presentation here is parallel
to [26, Section 3] for the linear case.

As in [26], to simplify terminology, we omit the word “hlog” if A is open in Ṙn

and the word “cohlog” if A is closed in Ṙn.
The following theorem was proved in [26, Theorem 3.2] for the linear case. The

proof in [26, Theorem 3.2] also works in our more general situation.
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Theorem 4.1. Suppose that A ⊂ Ṙn is open or closed. Then A is outer or inner
(p, ϕ)-joinable if and only if each component of A is outer or inner (p, ϕ)-joinable,
respectively.

Lemma 4.2 ([26], Lemma 3.4). Let X ⊂ Ṙn be a measurable subset and let A ⊂
B ⊂ X. Then the following conditions are equivalent:

(1) The sequence H0(A)→ H0(B)→ H0(X) is fast;
(2) The sequence H0(A)→ H0(B)→ H0(X) is fast;
(3) Points x, y ∈ A can be joined by a path in B whenever they can be joined by

a path in X.

A direct application of Lemma 4.2 gives us the following result.

Theorem 4.3. Let A ⊂ Ṙn. Then the following two conditions are equivalent:

• A is hlog outer (0, ϕ)-joinable in Rn;
• Every path component of A is pathwise ϕ-LC-1.

The following two conditions are also equivalent:

• A is hlog inner (0, ϕ)-joinable in Rn;
• Every path component of A is pathwise ϕ-LC-2.

Recall that two points x and y ∈ A are separated in a topological space T , if
x and y belong to different quasi-components of A, that is, A can be written as a
disjoint union of two closed set E and F with x in E and y in F . Equivalently, there
is a continuous map α : A→ {0, 1} with α(x) = 1 and α(y) = 1.

Lemma 4.4. [26, Lemma 3.7] Let X ⊂ Ṙn be a measurable subset and assume that
A ⊂ B ⊂ X. Then the following two conditions are equivalent:

(1) The sequence H0(X)→ H0(B)→ H0(A) is slow;
(2) The sequence H0(X)→ H0(B)→ H0(A) is slow.

Moreover, they imply the condition
“If points x, y ∈ A are separated in B, then they are separated in X.”
If X is compact metrizable and if A is closed in X, then all three conditions are

equivalent.

Theorem 4.5. Let A ⊂ Ṙn be compact. Then the following two conditions are
equivalent:

• A is cohlog outer (0, ϕ)-joinable in Rn;
• Every path component of A is continuumwise ϕ-LC-1.

The following two conditions are also equivalent:

• A is cohlog inner (0, ϕ)-joinable in Rn;
• Every path component of A is continuumwise ϕ-LC-2.

Proof. We only prove the first part, since the proof of the second part is similar.
Suppose that A is cohlog outer (p, ϕ)-joinable, that C is a component of A and that
a ∈ Rn, r > 0. Let x, y ∈ C ∩B(a, r). Then, the sequence

H0(A)→ H0(A ∩B(a, ϕ(r)))→ H0(A ∩B(a, r))

is slow. Since x and y are not separated in A, it follows from Lemma 4.4 that they
are not separated in A ∩ B(a, ϕ(r)). Since this set is compact and since the quasi-
components of a compact set are components, there is a component of A∩B(a, ϕ(r))
containing x and y. Hence every component of A is continuumwise ϕ-LC-1.
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Conversely, assume that every component of A is continuumwise ϕ-LC-1. Let
a ∈ Rn and r > 0. It suffices to show that the sequence

H0(A)→ H0(A ∩B(a, ϕ(r)))→ H0(A ∩B(a, r))

is slow. Let x, y ∈ A ∩ B(a, r) be points which are not separated in A. Since A
is compact, these points belong to a component C of A. By the ϕ-LC-1 condition,
there is a continuum α with {x, y} ⊂ α ⊂ C ∩ B(a, ϕ(r)). Hence x and y are
not separated in A ∩ B(a, ϕ(r)). It follows again from Lemma 4.4 that the above
sequence is slow and hence the theorem follows. �

The following duality theorem in the plane generalizes the corresponding results
in the linear case [26, Theorem 3.11].

Theorem 4.6 (Duality in the plane). Let U be open in Ṙ2 and let X = Ṙ2\U . Then

(1) The components of U are pathwise ϕ-LC-1 if and only if the components of
X are continuumwise ϕ-LC-2;

(2) The components of U are pathwise ψ-LC-2 if and only if the components of
X are continuumwise ψ-LC-1;

(3) The components of U are pathwise (ϕ, ψ)-LC if and only if the components
of X are continuumwise (ψ, ϕ)-LC.

Proof. The claim follows from Theorem 3.2, Theorem 4.3 and Theorem 4.5. �
Remark 4.7. 1. If X is assumed to be connected, then the components of U are
simply connected domains in Ṙ2. For such domains, the property ϕ-LC-2 is known
to be quantitatively equivalent to ϕ-diam John property, see [15]. Recall that ϕ-LC-1

is equivalent to ϕ-bounded turning. Hence we obtain that: a continuum X ⊂ Ṙ2

is of ϕ-bounded turning if and only if, quantitatively, all components of Ṙ2\X are
ϕ-diam John domains.

2. If X ⊂ Ṙ2 is compact and locally path-connected, one can replace the ‘contin-
uumwise (ψ, ϕ)-LC”, quantitatively, by “(ψ, ϕ)-LC”.

5. Joinability, bounded turning and John condition

Let Ω be a domain in Ṙn. Following [26], we say that Ω is (p, ϕ)-John if Hp(Ω) = 0
and for every p-cycle z bounding in Ω there is a (p+1)-chain g ⊂ Ω such that ∂g = z
and

d(x, |z|) ≤ ϕ(d(x, ∂Ω)) for all x ∈ |g|. (5.1)

As in the classical case, we call the above condition (5.1) the lens condition. It
is straightforward to check that bounded (0, ϕ)-John domains are ϕ-diam John,
quantitatively.

Let Ω ⊂ Ṙn be a set. If each p-cycle z in Ω bounds a chain g with diam(|g|) ≤
ϕ(diam(|z|)), then Ω is said to be hlog (p, ϕ)-bounded turning, or briefly hlog (p, ϕ)-
BT. Note that when ϕ(r) = cr, we recover the definitions of hlog (p, c)-bounded
turning. For p = 0, it is easy to see that the definition is equivalent to the usual
ϕ-bounded turning.

The next lemma is an easy consequence of the definition of hlog bounded turning.

Lemma 5.1. Let p ∈ N and Ω ⊂ Ṙn be a set such that Hp(Ω) = 0. Then the
following two conditions are quantitatively equivalent:

• Ω is hlog (p, ϕ)-BT;
• Ω is hlog outer (p, ϕ)-joinable.
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Proof. Suppose Ω is hlog (p, ϕ)-BT. Then every p-cycle z in Ω bounds a chain g ⊂ Ω
such that diam(|g|) ≤ ϕ(diam(|f |)). This implies that for a ∈ Ω and r > 0, the
sequence

Hp(Ω ∩B(a, r))→ Hp(Ω ∩B(a, 2ϕ(r)))→ Hp(Ω) (5.2)

is fast. Hence by Lemma 3.1, Ω is hlog (p, ϕ′)-joinable. Conversely, if (5.2) is fast for
all a ∈ Ω and r > 0, then by the assumption Hp(Ω) = 0, we deduce that the mapping
Hp(Ω ∩ B(a, r)) → Hp(Ω ∩ B(a, 2ϕ(r))) is zero as a homomorphism. Therefore, Ω
is (p, ϕ′)-BT. �

Lemma 5.2. [26, Lemma 5.3] Suppose that 0 ≤ p ≤ n− 2 and that A, V ⊂ Ṙn are
such that V is open, Hp(V ) = 0, and V c ⊂ intA. Then the map Hp(A∩V )→ Hp(A)
is an isomorphism.

The next result can be regarded as a p-dimensional version of the fact that ϕ-diam
John domains are ϕ-LC-2, quantitatively.

Theorem 5.3. Let U ⊂ Ṙn be a (p, ϕ)-John domain with 0 ≤ p ≤ n − 2. Then U
is hlog inner (p, ϕ)-joinable, quantitatively.

Proof. Let a ∈ Rn and r > 0. Let z be a p-cycle in U\B(a, 2ϕ(r) + r) bounding in
U . We need to show that z bounds in U\B(a, r). Since U is (p, ϕ)-John, z = ∂g for
some (p+ 1)-chain g satisfying the lens condition in U . If |g| ∩B(a, r) = ∅, there is
nothing to prove. In the opposite case, we fix a point x ∈ |g| ∩B(a, r). Now

2ϕ(r) = 2ϕ(r) + r − r < d(x, |z|) ≤ ϕ(d(x, ∂U)),

and hence B(a, r) ⊂ B(a, ϕ−1(2ϕ(r))) ⊂ U . Applying Lemma 5.2 with A = U and
V = B(a, r)c we see that z bounds in U\B(a, r). �

As a particular consequence of Theorem 5.3, we infer that ϕ-diam John domains
U in Rn are ϕ-LC-2, quantitatively.

Proposition 5.4. Let Ω ⊂ Ṙn be a set such that H1(Ω) = 0. Then Ω is ϕ-LC-2 if

and only if, Ω′ = Ṙn\Ω is (n− 2, ϕ)-bounded turning, quantitatively.

Proof. By the Alexander duality (see e.g. [23, Theorem 74.1]), Hn−2(Ω′) = 0. Now,

Ω′ is (n− 2, ϕ)-bounded turning
Lemma 5.1⇐⇒ Ω′ is hlog outer (n− 2, ϕ)-joinable

Theorem 3.2⇐⇒ Ω is cohlog inner (0, ϕ)-joinable

Theorem 4.5⇐⇒ Ω is cohlog inner (0, ϕ)-joinable.

�
Proposition 5.5. Let Ω ⊂ Rn be a proper domain with the ball separation property.
Then Ω is (0,ϕ)-John if and only if Ω is ϕ-LC-2, quantitatively.

Proof. Based on Theorem 5.3, it suffices to show that if Ω is ϕ-LC-2, then it is
(0, ψ)-John for some ψ that is quantitatively equivalent to ϕ, i.e., there exists some
positive constant C such that ψ(t) = ϕ(Ct) for all t > 0. We first claim that for
each pair of points x, y ∈ Ω, there exists a quasihyperbolic geodesic γ that joins x
and y with the property that

either γzx or γzy is contained in B
(
z, ψ

(
d(z, ∂Ω)

))
(5.3)

for all z ∈ γ with ψ = ϕ(Ct), where C is the constant from the ball separation
property. Indeed, if (5.3) fails for some z ∈ γ, then there exists x0 ∈ γzx and y ∈ γzy
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such that x and y are outside the ball B
(
z, ψ

(
d(z, ∂Ω)

))
. Then, by the ϕ-LC-2

condition, they can be joined outside B(z, Cd(z, ∂Ω)), which contradicts the fact
that Ω satisfies the ball separation property with constant C. Thus (5.3) holds for
all z ∈ γ, and consequently, Ω is (0,ψ)-John. �

Proof of Proposition 1.2. Proposition 1.2 follows from Proposition 5.4 and Proposi-
tion 5.5 upon noticing that for a domain in Rn, Ω is ϕ-LC-2 if and only if, quanti-
tatively, Ω is ϕ-LC-2. �

We also point out the following characterization of John domains in three dimen-
sion, which is essentially due to Väisälä [26].

Theorem 5.6. Let Ω ⊂ R3 be a domain with trivial homology groups, such that
Ω′ = Ṙ3\Ω is LLC-1. Then Ω is John if and only if Ω′ is hlog (1, c)-bounded
turning, quantitatively.

Proof. The necessity is a direct consequence of Theorem 5.3, Lemma 5.1 and Theo-
rem 3.2.

For the sufficiency, note that by [26, Theorem 5.21], if Ω satisfies H1(Ω) = 0 =
H2(Ω) and if Ω is hlog inner (0, c0)-joinable and hlog (1, c)-inner joinable, then Ω
is c′-John, quantitatively. In our situation, by the metric duality Theorem 3.2, Ω
being hlog (1, c)-inner joinable is quantitatively equivalent to the condition that Ω′ is
LLC-1 and Ω being LLC-2 is quantitatively equivalent to being outer (1, c)-joinable,
which is further equivalent to being hlog (1, c)-bounded turning by Lemma 5.1. Thus
the claim follows. �

6. Quasihyperbolic geodesics in domains with ball separation
property

Recall that from Proposition 5.5, we know that if Ω ⊂ Rn is a bounded domain
with the ball separation property and if Ω is ϕ-LC-2, then Ω is a ϕ-diam John
domain with a center point x0. Moreover, the proof implies that quasihyperbolic
geodesics starting from x0 are ϕ-diam John curves. We formulate this result as a
separate proposition below.

Proposition 6.1. Let Ω ⊂ Rn be a bounded domain with the ball separation prop-
erty. If Ω is ϕ-LC-2, then Ω is a ϕ-diam John domain with a center point x0 and
quasihyperbolic geodesics starting from x0 are ϕ-diam John curves.

Note that Proposition 6.1 was previously known to hold for bounded Gromov
hyperbolic ϕ-diam John domains [13, Proposition 3.8]. As a consequence of Propo-
sition 6.1 and [13, Proof of Theorem 3.1 (2)], we obtain the following result, that
generalizes [13, Theorem 3.1 (2)] by removing the a priori Gromov-hyperbolicity
assumption.

Theorem 6.2. Let Ω ⊂ Rn be a bounded domain with the ball separation property.
If Ω is ϕ-LC-2, then Ω is η-length John for

η(t) = C

∫ ϕ(Ct)

0

( s

ϕ−1(s)

)n−1

ds, (6.1)

provided this integral converges. The statement is essentially sharp in the sense that
η defined in (6.1) is best possible.
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α

β

[α, β]

Figure 2. A pinched torus – the
loop at the cut is a commutator of the
loops α and β.

Figure 3. Filling α and β with
disks.

7. The bounded example

Let p ∈ N, ϕ : [0,∞) → [0,∞) be a homeomorphism, and Ω ⊂ Ṙn be a domain.

If every map f : Sp → Ω has an extension g : B
p+1 → Ω such that

diam(|g|) ≤ ϕ(diam(|f |)), (7.1)

then Ω is said to be htop (p, ϕ)-bounded turning, or briefly htop (p, ϕ)-BT. Equiv-
alently, Ω is htop (p, ϕ)-bounded turning if πp(Ω) = 0 and the sequence

πp(Ω ∩B(x, r))→ πp(Ω ∩B(x, ϕ(r)))→ πp(Ω)

is fast. Here πp denotes the p-th order homotopy group (see e.g. [17, 25] for the
definition). As always, Ω is htop (p, C)-bounded turning if it is htop (p, ϕ)-bounded
turning with ϕ(r) = Cr.

Similarly, we can define htop inner joinability as in the homology case (simply
replacing Hp with πp).

Next, we construct a bounded domain Ω ⊂ R3, topologically equivalent to an
open ball, that is hlog (1, C)-bounded turning for some C > 1, but not htop (1, C)-
bounded turning for any C > 1.

7.1. An infinite mushroom – construction. The starting point of our construc-
tion is a pinched torus, i.e., a torus with a disk cut out.

Since we are interested in constructing a domain, not a surface, we use a ‘thick-
ened’ torus, i.e. a tubular neighborhood of the torus surface. The thickness of the
torus is uniform, and equal to 10−3 of the diameter of the whole torus.

In the next step, we glue (thickened) disks along the loops α and β, see Figure
3. The resulting set has trivial fundamental group and it is homeomorphic (and
diffemorphic, if we keep the boundary smooth) to a unit ball. This can be easily
visualized if we (diffeomorphically) thicken the disks plugging the loops α and β so
that they almost fill the torus, see Figure 4. Note also that if we plugged only alpha
with a thickened disk, we would obtain a set diffeomorphic to a filled torus.

Note that if the tentacles are cut off at some level, the resulting set is again
(diffeomorphic to) a pinched torus from Figure 2.

We extend the tentacles further down, cut off the one representing the β loop,
and attach a pinched torus to it. In the resulting space, the loop β, seen on Figure
6 as the cut in the larger tentacle, becomes a commutator of the two loops in the
attached pinched torus.

Next, we extend another two tentacles from the disks glued into the smaller
pinched torus (see Figure 8), then, we iterate the construction. Of the two loops
generating the fundamental group of the pinched torus attached at stage k, one (αk)
is filled with a disk, extended to a tentacle, the other (βk) - with a pinched torus. If
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Figure 4. The piched torus with α
and β filled with thickened disks is dif-
feomorphic to a 3-ball.

Figure 5. Extending ‘tentacles’ out
of plugging disks.

Figure 6. Cutting the tentacle rep-
resenting β loop and attaching a
pinched torus to it. Cutting off both
tentacles reproduces a pinched torus.

Figure 7. Filling the loops in the
smaller pinched torus with thickened
disks.

Figure 8. Extending tentacles from
the attached pinched torus.

Figure 9. The infinite mushroom.

we cut off the tentacles constructed at stage (k + 2), αk becomes contractible (the
tentacle extended from αk ends in stage (k + 1)) and βk represents the commutator
[αk+1, βk+1]. Of course, we cannot keep the thickness of the tubular neighborhood
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β2

α1

β1

α2

r1

r2

r3

Figure 10. The loop β1 is a commutator of β2 and α2.

fixed – it has to decrease with subsequent stages of the construction, but we keep
the thickness in parts modified at stage k comparable to 10−3 of the diameter of the
pinched torus attached at stage k.

Note that at each stage we attach along βk a pinched torus with both loops filled
with disks, i.e. a space diffeomorphic to a ball, or, equivalently, to a thickened disk,
which shows that the k + 1-st stage of our construction is diffeomorphic to the k-th
stage, and, by induction, to the first stage – to a pinched torus with both loops
plugged with thickened disks, i.e. to a space diffeomorphic to a ball.

The resulting setM∞, to which we shall refer as the infinite mushroom, is presented
in Figure 9.

Denote the limit point of M∞ by z. At each point y ∈ M∞ the thickness of the
mushroom, the size of the stage of construction and the distance to z are comparable.
Assume we have a ball B = B(x, r) centered at x 6= z such that B ∩M∞ 6= ∅. We
either have B ⊂⊂ intM∞ (and then the fundamental group of M∞ \ B is the same
as that of M∞), or the diameter of B is greater than the thickness of M∞ at points
where B cuts M∞. Then, if k-th stage of M∞ is the earliest stage cut by B, the
inflated ball 104B = B(x, 104r) contains all the stages of M∞ from (k − 2)-th up.

Let (ri) be the sequence of radii such that rk
rk+2

= c0 << 100 for all k and that the

sphere S(z, rk) separates stage k of M from stages (k+1), (k+2), . . . (see Figure 10).
The set S1 = M∞ \ B(z, r1) is homeomorphic to a pinched torus plus a thick

cylinder obtained from a dissected tentacle. Therefore, any loop in S1 is generated by
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α1, β1 and α2. However, in S3 = M∞\B(z, r3), the loops α1 and α2 are contractible,
and the loop β1 binds a pinched torus attached at stage 2 of our construction, thus
it becomes a commutator (up to orientation, β1 = [β2, α2]). Therefore, the inclusion

map S1
i1
↪−→ S3 induces a zero mapping on the first homology group.

The same phenomenon holds for any inclusion M∞ \B(z, rk)
ik
↪−→M∞ \B(z, rk+2).

Note also that the infinite mushroom M∞ is contractible (it is homeomorphic to
a thick cylinder that thins to a single point at the center, or, more precisely, to a
closed ball minus a double open cone). Thus the sequence

H1(M∞ \B(z, rk))
(ik)∗
↪−−→ H1(M∞ \B(z, rk+2))→ H1(M∞) = 0

is fast.
Since the ratio rk/rk+2 is constant and much less than 100, we have that for any

r > 0 the sequence

H1(M∞ \B(z, 100r))
(ik)∗
↪−−→ H1(M∞ \B(z, r))→ H1(M∞) = 0 (7.2)

is fast.
By earlier remarks, the sequence

H1(M∞ \B(x, 104r))
(ik)∗
↪−−→ H1(M∞ \B(x, r))→ H1(M∞) = 0, (7.3)

for any x ∈ Rn and r > 0, is fast, as well.
On the other hand, the sequence analogous to (7.2) in the first homotopy groups

π1(M∞ \B(z, rk))
(ik)∗
↪−−→ π1(M∞ \B(z, rk+2))→ π1(M∞) = 0 (7.4)

is not fast at all – the loop β1 is not contractible in M∞ \B(z, rk) for any k.

7.2. Finite mushrooms. The problem with M∞ is that it is not a domain, and its
interior does not have the above property, since it is not contractible – and neither
the homology sequence (7.2), nor the homology sequence (7.4) is fast with intM∞
in place of M∞.

To overcome this difficulty, we observe that if, instead of constructing an infinite
mushroom M∞, we stop at some finite stage Mk (e.g. M2 depicted in Figure 8),
we obtain, as we observed before, a set diffeomorphic to a ball, with closure diffeo-
morphic to a closed ball, which is both hlog and htop inner (1, C)-joinable, but the
higher k, the higher is the constant C in htop inner (1, C)-joinability. This comes
from the fact that for balls B(z, r) centered at the limit point of the infinite mush-
room M∞, there is no difference between M∞ \B(z, r) and Mk \B(z, r), unless r is
sufficiently small. Thus the sequence

π1(Mk \B(z, r1))
(ik)∗
↪−−→ π1(Mk \B(z, r))→ π1(Mk) = 0

is fast only if r < rk (and the ratio r1/rk tends to infinity). At the same time the
analogous sequences for homology grups are fast, because, as before, the inclusion
maps induce zero maps on homology.

These observations are now valid also for the interiors of the mushrooms Mk and
are independent of scaling.
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Figure 11. Finite mushrooms, to be planted on a ball

7.3. Mushrooms on a ball. Our example Ω of a bounded domain in R3, which
is hlog inner (1, C)-joinable for C > 104, but not htop inner (1, C)-joinable for any
C > 0 will consist of an open ball B, with an infinite countable family of finite
mushrooms Mk attached to it. We attach the mushrooms sufficiently far away from
each other: the distance between any two mushrooms is more than twice the size
of the larger of these two. This can be obtained by attaching not the original
mushrooms Mk, but their sufficiently small copies: Mk rescaled by a factor λk (we
shall refer to this smaller copy of Mk as to λkMk. This is to ensure that if any
ball B(x, r) cuts two different mushrooms, then B(x, 2r) contains both mushrooms
– and thus any loop in Ω \B(x, 2r) lies outside these two mushrooms and thus it is
contractible outside B(x, r)).

Then, there is no uniform constant C such that Ω is htop inner (1, C)-joinable,
since for any C we can find k such that r1/rk > C – and then, for the ball B = B(z, r)
of radius r = λk+1rk, centered at the limit point z of the mushroom λk+1Mk+1 the
sequence

π1(Ω \B(z, Cr))
(i)∗
↪−−→ π1(Ω \B(z, r))→ π1(Ω) = 0

is not fast.
At the same time, by the same arguments as for the infinite mushroom M∞, Ω is

hlog inner (1, C)-joinable for C > 104. We can also deduce this fact via the metric
duality theorem as follows: by Theorem 4.6 and Theorem 4.5, Ω is hlog inner (1, C)-
joinable if and only if quantitatively its complementary is C1-LLC-1. In our case, it
is clear that Ṙn\Ω is 104-LLC-1.

Note that each of the finite mushrooms Mk is diffeomorphic to a ball, and by
taking that ball sufficiently small, we may assure that the diffeomorphism has small
derivative. Therefore, Ω is homeomorphic to an open ball, and the homeomorphism
is differentiable (in particular, it is Lipschitz). The inverse homeomorphism, how-
ever, is not differentiable.

8. The unbounded example

In this section, we give the explicit construction of the example in Theorem 1.4.
The basic idea behind that example is quite similar to the bounded example in the
previous section, except that this time, we break the htop outer joinability.

8.1. Trumpets. Geometrically, a k-trumpet is a k-mushroom that, if extended to
∞-mushroom, would have a limit point at infinity. In particular, every stage of
construction is of the same size and thickness. A 3-trumpet is depicted on Figure
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γ

Figure 12. A 3-trumpet and its γ loop.

−5 −4 −3 −2 −1 0

Figure 13. Vertical planes intersecting a trumpet.

12 (as in the case of mushrooms, the trumpet is an open tubular neighborhood of
the contractible surface that one sees on the picture).

Every k-trumpet is diffeomorphic to the mushroom Mk, and thus is diffeomorphic
to an open ball, and its closure is diffeomophic to a closed ball. It also shares
the crucial property of the mushroom: any loop that is contained in the first `
stages of construction becomes homologically trivial (i.e. either contractible, or a
commutator) when considered as a loop in the first `+ 2 stages.

Assume the last, trivial stage of the k-trumpet Tk (the “mouthpiece”) is contained
in {−1 < x1 < 0}. Then, denoting by L` the half-space {(x1, . . . , xn) ∈ Rn : x1 ≤ `}
we have that the inclusion mapping Tk ∩L`

i
↪−→ Tk ∩L`+2 induces a zero mapping in

the first homology group, thus the sequence

H1(Tk ∩ L`) i∗−→ H1(Tk ∩ L`+2)→ H1(Tk) = 0

is fast. At the same time, the sequence

π1(Tk ∩ L`) i∗−→ π1(Tk ∩ L`+2)→ π1(Tk) = 0

is not fast as long as ` ∈ [−k,−3] – this is exactly the same phenomenon as in the
case of a finite mushroom. Indeed, to each k-trumpet we can associate the loop γ
of the pinched torus in the first stage of the construction (c.f. loop [α, β] in Figure
2). Then γ is not contractible in Tk ∩ L` for any ` ≤ −1.

8.2. Trumpet wall. To construct our infinite example U , we attach an infinite
countable family of trumpets Tk to a vertical wall (i.e. the half-space {(x1, . . . , xn) :
x1 > 0}), assuming again that the trumpets are far apart from each other: the
distance between any two is at least twenty times the size of the larger one. It is
clear that the complementary domain Ω = Ṙn\U is a (0, C)-John domain and it
satisfies the ball separation property (recall definition from Section 5). Every k-
trumpet is diffeomorphic to a ball and its closure is diffeomorphic to a closed ball,
thus, Ω satisfies the conditions 1) and 2) in Example 1.4, since it is, essentially, a
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half-space with some (sets diffeomorphic to) balls nicely attached, each away from
the other ones.

We next show that the trumpet wall U is an example of a domain which is homo-
logically (1, C)-bounded turning for some positive constant C > 1, but not homo-
topically (1, C)-bounded turning for any C > 1.

To see that it is not htop (1, C)-BT for any given C > 1, it suffices to consider the
γ loops of different trumpets in the trumpet wall. Each of these loops is contractible
(i.e. it binds a disk in U), but such a disk has to reach the wall, and thus its
diameter is as large as the diameter of the whole trumpet. Since we have trumpets
of arbitrary length, U is not htop (1, C)-BT for any given constant C > 1.

To see that it is hlog (1, C)-bounded turning for some constant C > 1, let us
assume γ is a loop in U .

If γ passes through more than one trumpet, then the ball B centered at some
point of it, of radius equal to diam(γ), contains all the trumpets that γ intersects
(thanks to the fact that the distances between trumpets are at least twice their
sizes) and the loop γ is contractible in U ∩B (and thus it bounds a disk of diameter
comparable with diam(γ)).

Assume now that γ is contained in a single trumpet. Then we have two possible
cases:

• γ has very small diameter – less than the thickness of the trumpet. Then it
binds a small disk of comparable diameter (recall that a trumpet is diffeo-
morphic and bi-Lipschitz equivalent to a ball, or if one prefers, thick cylinder
plugged at one end, along which end it is attached to the half-space).
• γ has diameter comparable or much larger than the size of a single stage of

the trumpet. Let T denote the sum of stages of the trumpet intersected by
γ. Form T̃ by adding to T two more stages of the trumpet towards the wall
(add one or none if T already contains last-but-one or the last stage of the
trumpet towards the wall). Then T̃ has diameter comparable with T , thus
comparable with diam(γ) and γ is homologicaly trivial in T̃ (it is a boundary
in T̃ ).

Thus we conclude that U is hlog (1, C)-bounded turning with C > 100. Alterna-
tively, we can also conclude U being hlog (1, C)-bounded turning by noticing that

Ṙn\U is C-LLC-2 with some absolute constant C > 100.

8.3. Uniformity. Finally, we show that Ω is an A-uniform domain for some con-
stant A ≥ 1. For this, it suffices to show that for each pair of points x, y ∈ Ω, we
may find an A-uniform curve γxy in Ω joining x and y.

Before turning to the rigorous proof, let us briefly point out the difficulty in finding
a uniform curve between the points x and y. If the points are sufficiently close to
each other (say very close in a small neighborhood of the same trumpet), then by
our construction of trumpet, we know that (away from the hyperplane) it consists
of self-similar “mushrooms”, each of which is a Lipschitz domain, in particular an
A-uniform domain, and so we may connect them by a A-uniform curve. If the
points are very far away from each other (say stay in neighborhoods of different
trumpets), then it is not difficult to connect them by curves with property (2.2).
Moreover, since the distance between each two trumpets is at least twenty times the
size of the larger one, it is easy to adjust the corresponding curve so that it also
satisfies (2.3). Thus, the essential difficulty lies in the case when these two points
stay in the same neighborhood of some trumpet but are not so close to each other.
This would correspond to Case 2 below.
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Figure 14. A piece of the trumpet wall.

Figure 15. T ik has 4 components.

Let k ∈ N, k > 2. Let Ci
k be the cubical neighbourhood with one of its faces

intersecting (perpendicularly) the mouth of the i-th level of the trumpet Tk such
that the opposite face intersects the mouth of the (i + 2)-th level of the trumpet.
Let Bi

k be the cubical neighbourhood contained in Ci
k with its edge parallel to e3 and

e2 of the same length as edge parallel to e3 and respectively e2 of Ci
k and the edge

normal to the e1 direction of length half as edge parallel to e1 of Ci
k; see Figures 15

and 16.
We will call the two intersecting faces horizontal faces and the four other faces

vertical faces of Ci
k. For each k there are ik = k−2 such neighbourhoods which cover

the “middle portion” of the trumpet Tk. We also define a cubical neighbourhood C0
k

which has one of its faces lying in ∂H3 and the opposite face intersecting the mouth
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Bi
k

T ikT i+2
k

Ci
k

e1

e2

e3

Figure 16. The rectangular parallelepiped Ci
k contains T i+1

k and T i+2
k .

of the 2-nd level and a neighbourhood Cik+1
k with one of its faces intersecting the

mouth of the (ik − 1)-th level as shown in Figure 16. Recall that the thickness of
the trumpet is 10−3 and the diameter of each level T ik and the distance between
consecutive levels are 1 (in particular comparable to 10−3). The distance between
each of the vertical faces of Ci

k to the i-th level T ik is at least 10 and comparably
smaller than 1. Note also that the distance between the non-intersecting horizontal
surface of Cik+1

k to Tk is at least 1 and comparably smaller than 1. Set

Uk =

ik+1⋃

i=0

Ci
k

and notice that Tk ⊂ Uk. We consider the following cases.
Case 1: x, y ∈ Uk for some k ∈ N and |x− y| < 10−3.
In this case, we assign to the pair (x, y) any one of the Ci

k such that x, y ∈ Ci
k

and obtain an A-uniform curve γxy joining x and y in Ci
k ∩ Ω.

Case 2: x, y ∈ Uk and |x− y| ≥ 10−3.
In this case, we may assume that {x, y} 6⊂ C l

k for any l. Let Ci
k and Cj

k be the
cubical neighbourhoods containing x and y, respectively. If x ∈ Bi

k then let γx be
a quasihyperbolic geodesic joining x to a point x′ in the vertical face J i of Ci

k that
has the standard coordinate vector e1 as the outward normal and such that

δCi
k
(x, x′) ≤ 2d(x, J i),

where δCi
k
(x, x′) is the diameter distance in Ci

k obtained by taking the infimum over

the diameter of all curves joining x and x′ in Ci
k.

Let x′′ be the point where γx meets ∂Bi
k. With a slightly abuse of notation, from

now on, we also denote by γx the subcurve of γx lying between x and x′′. Similarly,
if y ∈ Bj

k, we may find a point y′′ ∈ Bj
k and a quasihyperbolic geodesic γy joining

y and y′′. We let γx′′y′′ denote the half-circle not intersecting Bi
k with centre as the
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k Cj
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x′
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y′′
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γy

γx′′y′′

... ...

Figure 17. Case 2.

midpoint of the line segment joining x′′ and y′′; of diameter |x′′ − y′′| and lying in
the plane that is normal to the plane coinciding with J i and intersecting it along
the line containing x′′ and y′′. We denote by γxy the curve joining x and y obtained
by concatenation of the curves γx, γx′′y′′ and γy; see Figure 17. It is clear that

l(γxy) ≤ A|x− y|
for some absolute constant A ≥ 1. Furthermore, it also follows from our construction
that γxy satisfies (2.2) for a suitable constant A ≥ 1 and thus it is an A-uniform
curve joining x and y.

In the case when either x /∈ Bi
k or y /∈ Bj

k, we denote by x′′ (resepectively y′′)
the normal projection of x (respectively y) in the plane coinciding with J i and
choose a similar half-circle passing through x′′ and y′′ and then obtain a curve γxy
by concatenation of the corresponding curves. It is straightforward to check as in
the previous case that γxy is an A-uniform curve for some absolute constant A ≥ 1.

Case 3: x, y ∈ Ω\ ∪k Uk.
In this case, observe that Ω\∪kUk is an A-uniform domain (indeed even a Lipschitz

domain) for some large enough constant A and that an A-uniform curve joining x
and y in Ω\ ∪k Uk is also an A-uniform curve joining x and y in Ω.

Case 4: x ∈ Ui and y ∈ Uj, i 6= j, or x ∈ Ui for some i and y /∈ Uj for any j.
In this case, the required A-uniform curve joining x and y can be obtained by

arguing as in Case 2 and concatenating the corresponding uniform curves. We leave
the details to the interested readers.
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A DENSITY RESULT FOR HOMOGENEOUS SOBOLEV SPACES
ON PLANAR DOMAINS

DEBANJAN NANDI, TAPIO RAJALA, AND TIMO SCHULTZ

Abstract. We show that in a bounded simply connected planar domain Ω the smooth
Sobolev functionsW k,∞(Ω)∩C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω).

1. Introduction

By the result of Meyers-Serrin [16] it is known that C∞(Ω) is dense in W k,p(Ω) for every
open set Ω in Rd. The space C∞(Rd) is not always dense in W k,p(Ω), for example when Ω is
a slit disk. However, a slit disk is not a very appealing example as it is not the interior of its
closure. Counterexamples for the density satisfying Ω = int(Ω) were given by Amick [1] and
Kolsrud [9]. In fact, in these examples even C(Ω) is not dense in W k,p(Ω). Going further in
counterexamples, O’Farrell [18] constructed a domain satisfying Ω = int(Ω) whereW k,∞(Ω)
is not dense in W k,p(Ω) for any k and p. The domain constructed by O’Farrell was infinitely
connected. From the recent results of Koskela-Zhang [14] and Koskela-Rajala-Zhang [13]
we can conclude that this is necessary for such constructions in the plane, since W 1,∞(Ω)
is dense in W 1,p(Ω) for all finitely connected bounded planar domains (see also the earlier
work by Giacomini-Trebeschi [4]). Further examples of domains where W 1,p(Ω) is not
dense in W 1,q(Ω) were constructed by Koskela [11] and Koskela-Rajala-Zhang [13].

In this note we continue the study of density of W k,∞(Ω) in W k,p(Ω). Let us remark
that such density clearly holds in the case where the Sobolev functions in W k,p(Ω) can be
extended to Sobolev functions defined on the whole R2. By work of Jones [8], this is true
when ∂Ω is a quasi-circle. (See also the works [6, 5, 7].) Geometric characterizations of
Sobolev extension domains are known, especially in the planar simply connected domains
when k = 1, see [3, 10, 19, 12].

Being an extension domain is only a sufficient condition for the density. For example,
there are Jordan domains Ω and functions f ∈ W 1,p(Ω) that cannot be extended to a
function in W 1,p(R2). However, global smooth functions are dense in W 1,p(Ω) for any
Jordan domain and any p ∈ [1,∞], see Lewis [15] and Koskela-Zhang [14]. For W k,p(Ω)
with k ≥ 2 this is still unknown.

In [20] Smith-Stanoyevitch-Stegenga studied the density of C∞(R2) as well as the density
of functions in C∞(Ω) with bounded derivatives, in W k,p(Ω). For the latter class they
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obtained a density result assuming Ω to be starshaped or to satisfy an interior segment
condition. For the smaller class of functions C∞(R2) they also required an extra assumption
on the boundary points to be m2-limit points. (See also Bishop [2] for a counterexample
on a related question.)

The result of Koskela-Zhang [14] showing that W 1,∞(Ω) is dense in W 1,p(Ω) for every
bounded simply connected planar domain was generalized to higher dimensions by Koskela-
Rajala-Zhang [13]. They showed that simply connectedness is not sufficient to give such
a density result, but Gromov hyperbolicity in the hyperbolic distance is. In this paper
we provide another generalization to the Koskela-Zhang result by going to higher order
Sobolev spaces. We show that if we restrict attention to the homogenous norm, then being
simply connected is sufficient for domains in the plane.

For a domain Ω ⊂ R2 and p ∈ [1,∞), by homogenous Sobolev space Lk,p(Ω) we mean
functions with p-integrable distributional derivatives of order k;

Lk,p(Ω) = {u ∈ L1
loc(Ω) : ∇αu ∈ Lp(Ω), if |α| = k},

with semi-norm
∑
|α|=k ‖∇αu‖Lp(Ω), where α is any 2-vector of non-negative integers and

|α| is its `1-norm. The (non-homogenous) Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ L1
loc(Ω) : ∇αu ∈ Lp(Ω), if |α| ≤ k},

with norm
∑
|α|≤k ‖∇αu‖Lp(Ω).

Theorem 1.1. Let k ∈ N, p ∈ [1,∞) and Ω ⊂ R2 be a bounded simply connected domain.
Then the subspace W k,∞(Ω) ∩ C∞(Ω) is dense in the space Lk,p(Ω).

The approach in [13] differs from ours in that there the approximating functions are de-
fined via shifting matters to the disk via the Riemann mapping. Instead, we directly make
a Whitney decomposition of the domain and a rough reflection to define our approximating
sequence. We achieve this via an elementary use of simply connectedness in the plane. In
both of these approaches the values of the function in a suitable compact set are used to
define a smooth function in the entire domain which approximates the original function in
Sobolev norm. For this we employ similar tools as used by Jones in [8].

In p-Poincaré domains, that is domains Ω where a p-Poincaré inequality∫

Ω

|u− uD|p dx ≤ C

∫

Ω

|∇u|p dx

holds, we can bound the integrals of the lower order derivatives by the integrals of the
higher order ones and thus we obtain the following corollary to our Theorem 1.1.

Corollary 1.2. Let k ∈ N, p ∈ [1,∞) and Ω ⊂ R2 be a bounded simply connected p-
Poincaré domain. Then W k,∞(Ω) ∩ C∞(Ω) is dense in the space W k,p(Ω).

For instance Hölder-domains are p-Poincaré domains for p ≥ 2, see Smith-Stegenga [21].
It still remains an open question whether Corollary 1.2 holds if one drops the assumption
of being a p-Poincaré domain.

Next we come to the question of density of C∞(R2) functions in Lk,p(Ω) in our setting of
bounded simply connected domains. We have the following corollary which is analogous to
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[14, Corollary 1.2], where it is shown that Ω being Jordan is sufficient. A small modification
of the argument there applies to our situation as well. See the end of Section 4 for the
proof.

Corollary 1.3. Let k ∈ N, p ∈ [1,∞) and Ω ⊂ R2 be a Jordan domain. Then C∞(R2) is
dense in the space Lk,p(Ω).

In Section 2, we collect the necessary ingredients which will be used for defining the
approximating sequence; these include a suitable Whitney-type decomposition of a simply
connected domain and a local polynomial approximation of Sobolev functions. In Section
3 we describe a partition of the domain using the Whitney-type decomposition of Section
2, which is needed for obtaining a suitable partition of unity. Then in Section 4, we define
the approximating sequence and present the necessary estimates for proving Theorem 1.1
and Corollary 1.3.

2. Preliminaries

For sets A,B ⊂ R2 we denote the diameter of A by diam(A) and the distance between
A and B by dist(A,B). We denote by B(x, r) the open ball with center x ∈ R2 and radius
r > 0 and more generally, by B(A, r) the open r-neighbourhood of a set A ⊂ R2. Given a
connected set E ⊂ R2 and points x, y ∈ E, we define the inner distance dE(x, y) between
x and y in E to be the infimum of lengths of curves in E joining x to y. (Notice that in
general the infimum might have value ∞.) We write the inner distance in E between sets
A,B ⊂ E as distE(A,B).

With a slight abuse of notation, by a curve γ we refer to both, a continuous mapping
γ : [0, 1] → R2 and its image γ([0, 1]). Given two curves γ1, γ2 : [0, 1] → R2 such that
γ1(1) = γ2(0), we denote by γ1 ∗ γ2 : [0, 1]→ R2 the concatenated curve γ1 ∗ γ2(t) = γ1(2t)
for t ≤ 1/2 and γ1 ∗ γ2(t) = 2t− 1 for t ≥ 1/2. We denote the length of a curve γ by L(γ).

We will use the following facts in plane topology whose proofs can be found in the book
of Newman [17, Chapter VI, Theorem 5.1 and Chapter V, Theorem 11.8].

Lemma 2.1. Let Ω be a simply connected domain in R2 and γ : [0, 1]→ R2 a continuous
curve that is injective on (0, 1), whose endpoints γ(0) and γ(1) are in ∂Ω and interior
γ((0, 1)) in Ω. Then Ω \ γ has two connected components, both of which are simply con-
nected.

In the case where Ω is Jordan and γ is homeomorphic to a closed interval, the two
connected components of Ω \ γ have boundaries γ ∪ J1 and γ ∪ J2, where J1 and J2 are the
two connected components of ∂Ω \ γ.

2.1. A dyadic decomposition. Although it is standard to consider a Whitney decom-
position of a domain in Rd (see for instance Whitney [23] or the book of Stein [22, Chapter
VI]), we will use a precise construction of such a decomposition. We present this construc-
tion below. Here and later on we denote the sidelength of a square Q by l(Q).

For notational convenience we start the Whitney decomposition below from squares with
sidelength 2−1. Formally, by rescaling, we may consider all bounded domains Ω ⊂ R2 to



4 DEBANJAN NANDI, TAPIO RAJALA, AND TIMO SCHULTZ

have diam(Ω) ≤ 1 in which case no Whitney decomposition would have squares larger than
the ones used below regardless of the starting scale.

Definition 2.2 (Whitney decomposition). Let Ω ⊂ R2 be a bounded (simply connected)
open set. Let Qn be the collection of all closed dyadic squares of sidelength 2−n. Define
a Whitney decomposition as F̃ :=

⋃
n∈N F̃n where the sets F̃n are defined recursively as

follows. Define

F̃1 :=




Q ∈ Q1 :

⋃

Q′∈Q1

Q′∩Q 6=∅

Q′ ⊂ Ω





and

F̃n+1 :=




Q ∈ Qn+1 : Q 6⊂ F̃n and

⋃

Q′∈Qn+1

Q′∩Q6=∅

Q′ ⊂ Ω




,

where F̃n =
⋃
j≤n
⋃
Q∈F̃j

Q.

Lemma 2.3. A Whitney decomposition given by Definition 2.2 has the following properties.

(W1) Ω =
⋃
Q∈F̃ Q

(W2) l(Q) < dist(Q,Ωc) ≤ 3
√

2l(Q) = 3diam(Q) for all Q ∈ F̃
(W3) intQ1 ∩ intQ2 = ∅ for all Q1, Q2 ∈ F̃ , Q1 6= Q2

(W4) If Q1, Q2 ∈ F̃ and Q1 ∩Q2 6= ∅, then l(Q1)
l(Q2)

≤ 2.

Proof. Although the proof is very elementary, we give it here for completeness.
For (W1), take any x ∈ Ω and n ∈ N such that x ∈ Q ∈ Qn, where 2−n+2

√
2 <

dist(x,Ωc) ≤ 2−n+3
√

2. Then for any Q′ ∈ Qn with Q′ ∩Q 6= ∅ we have Q′ ⊂ Ω. Hence by
definition either Q ∈ F̃n or x ∈ Q ⊂ Q′′ ∈ F̃i for some i < n.

In order to see (W2), let Q ∈ F̃n. Then all Q′ ⊂ Ω for all Q′ ∈ Qn with Q′ ∩ Q 6= ∅.
Consequently, dist(Q,Ωc) > 2−n = l(Q). For the upper bound, suppose distQ,Ωc >
3
√

22−n. Let Q2 ∈ Qn−1 be such that Q ⊂ Q2. Then dist(Q2,Ω
c) >

√
22−n+1 and so

Q3 ⊂ Ω for all Q3 ∈ Qn−1 for which Q2 ∩ Q3 6= ∅. Thus Q2 ∈ F̃n−1 or Q2 ⊂ Q4 ∈ F̃i for
some i < n− 1. In either case, Q /∈ F̃n giving a contradiction.

Property (W3) holds by the recursion in the definition and the fact that the dyadic
squares are nested.

Suppose (W4) is not true. Then there exist Q1 ∈ F̃n and Q2 ∈ F̃m with n < m− 1 and
Q1 ∩Q2 6= ∅. Let Q3 ∈ F̃n+1 be such that Q2 ⊂ Q3. Then

⋃

Q′∈Qn+1

Q′∩Q3 6=∅

Q′ ⊂
⋃

Q′∈Qn

Q′∩Q1 6=∅

Q′ ⊂ Ω

and so either Q3 ∈ F̃n+1 or Q3 ⊂ F̃n. In both cases Q2 ⊂ F̃n+1 and so Q2 /∈ F̃m. �
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Ω
Q0

Figure 1. A core part Dn is selected from the Whitney decomposition of
Ω by taking the connected component containing Q0 of the interior of the
union of Whitney squares with sidelength at least 2−n.

By a chain of dyadic squares {Qi}mi=1 we mean a collection of sets Qi ∈ F̃ such that
Qi ∩ Qi+1 is a non-degenerate line segment for all i ∈ {1, . . . ,m − 1}. We say that the
chain connects Q1 and Qm.

2.2. Approximating polynomials. We record here the following two Lemmas from [8]
which will be used when estimating the approximation in Section 4.

Lemma 2.4 (Lemma 2.1, [8]). Let Q be any square in R2 and P be a polynomial of degree
k defined in R2. Let E,F ⊂ Q be such that |E|, |F | > η|Q| where η > 0. Then

‖P‖Lp(E) ≤ C(η, k)‖P‖Lp(F ).

Given a function u ∈ C∞(Ω) and a bounded set E ⊂ Ω, we define (see [8]) the polynomial
approximation of u in E , Pk(u,E) to be the polynomial of order k − 1 which satisfies

∫

E

∇α(u− Pk(u,E)) = 0

for each α = (α1, α2) such that |α| = α1 + α2 ≤ k − 1. Once k is fixed, we denote the
polynomial approximation of u in a dyadic square Q as PQ

The next lemma is a consequence of Poincaré inequality for Lipschitz domains.

Lemma 2.5 (Lemma 3.1, [8]). Let Ω ⊂ R2 be a bounded simply connected domain and F̃
a Whitney decomposition of Ω. Fix α such that |α| ≤ k. Let {Qi}mi=1 in F̃ be a chain of
dyadic squares in F̃ .Then we have

‖∇α(PQ1 − PQm)‖Lp(Q1) ≤ Cl(Q1)k−|α|‖∇ku‖Lp(
⋃m

i=1Qi),

where ∇ku is the vector (∇αu)|α|=k normed by the `2-norm and C = C(m).

In what follows, given β = (β1, β2) and α = (α1, α2), we write β ≤ α if the inequality
holds coordinate-wise.
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3. Decomposition of the domain

From now on we fix a bounded simply connected domain Ω ⊂ R2 and a Whitney decom-
position F̃ of Ω given by Definition 2.2. For our purposes we need to choose at each level
a nice enough subcollection of F̃n, namely we take connected components of the Whitney
decomposition (see Figure 1). More precisely we fix Q0 ∈ F̃1 and for each n ∈ N let Cn be
the connected component of the interior of F̃n that has intQ0 as a subset. We define

Fn,j := {Q ∈ F̃j : intQ ⊂ Cn}
and using this the families of squares

Fn := Fn,n, Dn :=
⋃

j≤n
Fn,j

and the corresponding sets for two of the above collections by

Fn :=
⋃

Q∈Fn

Q and Dn :=
⋃

Q∈Dn

Q = Cn.

The collection of boundary layer squares in Dn is denoted by

∂Dn :=
{
Q ∈ Dn : Q ∩ (Ω \Dn) 6= ∅

}
.

With this notation we have the following lemma.

Lemma 3.1. The above collections have the properties:

(i) Dn ⊂ Dn+1 for all k ∈ N.
(ii) Ω =

⋃
n∈NDn.

(iii) If Q1, Q2 ∈ Fn and Q1 ∩ Q2 is a singleton, then there exists Q3 ∈ Dn for which
Q1 ∩Q2 ∩Q3 6= ∅.

(iv) If Q ∈ ∂Dn, then Q ∈ Fn.

(v) If Q ∈ ∂Dn, then Q ∩ (Ω \ F̃n) 6= ∅.
(vi) The set Cn is simply connected.

Proof. The property (i) is obvious by the definitions of Fn,j and Dn since Cn ⊂ Cn+1.

For (ii) it suffices to prove that for every Q ∈ F̃ there exists n ∈ N so that Q ∈ Dn. Let
Q ∈ Fn. Since Ω is connected and open, there exists a path γ in Ω joining Q to Q0. By
the fact that F̃j ⊂ int F̃j+1 and the property (W1) of the decomposition F̃ we have that

Ω = ∪j∈Nint F̃j. Then by the compactness of γ there exists m ≥ n so that γ ⊂ int F̃m.
Hence Q ∈ Dm.

For (iii) let Q1, Q2 ∈ Fn be so that Q1 ∩ Q2 is a singleton {q}. Assume that the claim
is false. Then for the two squares Q ∈ Qn that intersect both Q1 and Q2 it is true that
Q 6∈ F̃n and Q 6⊂ Q′ for all Q′ ∈ F̃n−1. Let q1 and q2 be the centres of the squares Q1 and
Q2 respectively. Consider a curve γ′ : [0, 1] → Ω for which γ′0 = q1, γ′1 = q1 and γ′ ⊂ Cn.
Such a curve exists by the definition of Cn. We may also assume that γ′ is an injective
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γ
q

Q
Q1

Q2

q1

q2

Figure 2. The constructed Jordan curve γ in the proof of Lemma 3.1 ((iii))
has in its interior domain a dyadic square Q that also has to be an element
of Dn.

curve. Let t0 := sup{t : γ′(t) ∈ Q1} and t1 := inf{t ≥ t0 : γ′(t) ∈ Q2}. Define a Jordan
curve

γ := γ1 ∗ γ2 ∗ γ′|[t0,t1]∗γ3 ∗ γ4,

where γ1, γ2, γ3 and γ4 correspond to the line segments [q, q1], [q1, γ
′
t0

], [γ′t1 , q2] and [q2, q]
respectively. By Jordan curve theorem γ divides R2 into two components, one of which is
precompact (see Figure 2). Denote the precompact component by A.

For small enough ball B around q we have by the definition of γ that B \ γ has exactly
two components. Since γ is a Jordan curve one of those components has to contain an
interior point of A and thus the whole component lies inside A. On the other hand that
component has to intersect with one of the dyadic squares in Qn touching both Q1 and
Q2 (but being different from Q1 and Q2). Let Q ∈ Qn be that square. Now for all the
neighbouring squares Q̃ ∈ Qn (except the opposite one) of Q either Q̃ ∩ γ([0, 1]) 6= ∅
implying that Q̃ ∈ Dn or Q̃ is in the precompact component of R2 \ γ([0, 1]) and thus by
simply connectedness Q̃ ⊂ Ω. Since Q1 ∈ Fn, also the opposite square of Q is a subset of
Ω. Hence Q ∈ F̃n or Q ⊂ Q′ ∈ Fn−1 which is a contradiction. Thus we have proven (iii).

In order to see (iv), suppose that there exists Q ∈ ∂Dn such that Q /∈ Fn. Then
Q ∈ Fn,i ⊂ F̃i for some i < n. By Property (W4), for all the Q′ ∈ F̃ with Q′ ∩Q 6= ∅ we

have Q′ ∈ F̃j for j ≤ i+ 1 ≤ n. Thus, Q′ ⊂ Dn and Q /∈ ∂Dn giving a contradiction.

If property (v) fails for some Q ∈ ∂Dn, then for every Q′ ∈ F̃ with Q′ ∩Q 6= ∅ we have
Q′ ∈ F̃i for some i ≤ n. Thus, again Q′ ⊂ Dn and Q /∈ ∂Dn giving a contradiction.

Finally, we prove property (vi). Since Cn is open it suffices to prove that every Jordan
curve is loop homotopic to a constant loop. Suppose this is not the case. Then there exists
a Jordan curve γ that is not homotopic to a constant loop, and a point x ∈ Ω \ Cn that
lies inside γ. In particular there exists Q ∈ Qn such that Q 6⊂ Dn which lies inside γ and
for which Q ∩Dn is an edge of a square. Now by similar argument as in (iii) we conclude
that Q ∈ Dn, which is a contradiction. �
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The next lemma shows that we can connect the boundary of Dn to the boundary of Ω
with a short curve in the complement of Dn.

Lemma 3.2. For each point x ∈ ∂Dn, there exists an injective curve γ : [0, 1] → R2 so
that γ(0) = x, γ(1) ∈ ∂Ω, γ(0, 1) ⊂ Ω \ intDn and L(γ) ≤ 2

√
2l(Q).

Proof. Let Q ∈ ∂Dn be such that x ∈ Q ∩ ∂Dn. By Lemma 3.1 (v) we have that there
exists a square Q′ ∈ Qn touching Q at x so that Q′ /∈ F̃n and Q′ 6⊂ Q̃ for every Q̃ ∈ F̃j,
j < n. Thus, there exists a neighbouring square Q′′ ∈ Qn of Q′ and a point y ∈ ∂Ω ∩Q′′.
Let γ1 be a curve corresponding to a line segment connecting x to a point z ∈ Q′ ∩ Q′′
and let γ2 be a curve corresponding to a line segment connecting z to y. Moreover, let
t0 := inf{t : γ2

t ∈ ∂Ω}. Since ∂Ω is closed, we have that γ2
t0
∈ ∂Ω. Define a curve

γ := γ1 ∗γ2|[0,t0]. For γ we have that γ(0, 1) ⊂ (Ω\ intDn)∩ (Q′∪Q′′), γ(0) = x, γ(1) ∈ ∂Ω

and L(γ) ≤ d(Q′) + d(Q′′) = 2
√

2l(Q). �
Observe that by Lemma 3.1 (iv) we have ∂Dn =

⋃
Q∈∂Dn

(Q∩∂Dn). Thus, by Lemma 3.1

(iii) we have that ∂Dn is locally homeomorphic to the real line. Since by Lemma 3.1 (vi)
Cn is simply connected, we have that ∂Dn = ∂Cn is connected. Hence, ∂Dn is a Jordan
curve. Thus, we may write

∂Dn =
Ln⋃

i=1

Ii, (3.1)

where Ii = [yi, yi+1] is an edge of a square in Fn with vertices yi and yi+1, and y1 = yLn+1.
For the rest of the paper we fix a constant M > (4

√
2 + 2). However, the following

lemma is true for any M > 0 and with C depending on M .

Lemma 3.3. There exists C ∈ N so that for any n ∈ N and x, y ∈ ∂Dn with d∂Dn(x, y) ≥
2−nC, and for any γ in Ω\ intDn connecting x to y we have that γ∩(Ω \B(x,M2−n)) 6= ∅.
In particular, L(γ) ≥M2−n.

Proof. By taking a slightly larger C, namely C + 2, we may assume that x = yi and
y = yj for some i and j, where yi, yj are two endpoints of intervals from the collection {Ii}
forming the boundary as noted above. Moreover, by symmetry we may assume that i < j
and j − i ≤ n + 1 − j. Since each Ii is a side for two squares in Qn, by taking C large
enough, we obtain

H2(B(x, 2(M + 1)2−n)) = π(2(M + 1)2−n)2 <
1

2
C(2−n)2 ≤ H2(

⋃
Q),

where the union is taken over all Q ∈ Qn having Im as one of it sides for some i < m ≤ j−1.
Therefore, one of the intervals Im1 , for i < m1 ≤ j−1, has to intersect with the complement
of the ball B(x, 2M2−n). Let Q′1 ∈ ∂Dn be the boundary square corresponding to that
interval and let q1 ∈ Im1 \ B(x, 2M2−n). By symmetry, there also exists Q′2 ∈ ∂Dn whose
side is some Im2 with m2 /∈ {i+1, i+1, . . . , j−1} such that there is q2 ∈ Im2 \B(x, 2M2−n).

Suppose now that there exists a curve γ in Ω\intDn joining x to y with γ ⊂ B(x,M2−n).
We may assume that γ is injective, and by compactness that γ(t) ∈ Ω \ Dn for every
t ∈ (0, 1). Then, for i = 1, 2 we have that B(Q′i, 2

√
2l(Q′i)) ⊂ B(q,M2−n) and hence
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Q′
1

Q′
2

Q′′
1

Q′′
2

x
y

γ

Figure 3. In the proof of Lemma 3.3 we assume towards a contradiction
that x and y can be connected by a short curve γ in Ω \Dn. This will imply
that one more square in Qn (here Q′′1) will be a subset of Dn.

B(Q′i, 2
√

2l(Q′))∩ γ = ∅. Now by definition of Q′i there is a neighbouring square Q′′i ∈ Qn
of Q′i which is not a subset of Dn, see Figure 3. We claim that either Q′′1 or Q′′2 lies inside
the Jordan curve γ′ obtained by concatenating the curve γ and the part of the boundary,
denoted by γ′′, obtained from the intervals {Ih}j−1

h=i, or by concatenating γ and ∂Dn \ γ′′.
This can be seen in the following way. Consider Ω

h−→ R2 ↪→ S2, where h is a homeomor-
phism and the inclusion R2 ↪→ S2 is the inverse of the stereographic projection. Under this
composite map S2\Dn is a simply connected domain. Hence, by Lemma 2.1 (S2\Dn)\γ has
exactly two components whose boundaries are the two connected components of ∂Dn \ γ
together with γ. Thus, (Ω \ Dn) \ γ = (S2 \ Dn) \ γ has exactly two components. Since
∂Q′′1 ∩ ∂Dn and ∂Q′′2 ∩ ∂Dn are in two different connected components of ∂Dn \ γ, we
conclude that Q′′1 and Q′′2 are in different components of (Ω \Dn) \ γ. We denote the Q′′i
that lies inside the Jordan curve by Q′′.

Since Q′′ ⊂ B(Q′,
√

2l(Q′)), we have that every neighbouring square of Q′′ either lies
inside γ′ or is an element of ∂Dn. In particular, by the simply connectedness of Ω they all
are subsets of Ω. Hence, Q′′ ⊂ Dn which is a contradiction. Thus, we have proven that
γ ∩ (Ω \B(x,M2−n)) 6= ∅. �

Let us now partition Ω \ Dn in the following way. Recall (3.1). Notice that for large
enough n we have that Ln ≥ 2C. Define x1 := y1 and then xm := y(m−1)C until Ln+1−(m−
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x1

x2

x3

x4

x5x6x7

x8

γ1

γ2

γ3

γ4

γ5γ6
γ7

γ8

H̃1

H̃2

H̃3

H̃4H̃5
H̃6

H̃7

H8

D3

Figure 4. Here the domain Ω is decomposed into the core part D3 and
eight boundary parts H̃i. A neighbourhood H8 of H̃8 is also illustrated.

1)C < 2C. Notice that for every i 6= j we have d∂Dn(xi, xj) ≥ 2−nC. We now partition the

set Ω \Dn up to Lebesgue measure zero into connected sets {H̃j}mj=1 where H̃j is the open

set bounded by γj, γj+1 given by Lemma 3.2 for points xj and xj+1, and Jj :=
⋃C(j+1)
i=Cj Ii

(with interior in Ω \Dn). This partition is well defined by Lemma 2.1. Notice that since
L(γi) ≤M for all i, we have that γi∩γj = ∅ for all i 6= j. Let us define Hj as the connected

component containing H̃j of the set Ω ∩
(
H̃j ∪BR2(γj ∪ γj+1 ∪ Jj, δ)

)
, where δ = 2−n−3.

See Figure 4 for an illustration of the decomposition. Although the decomposition depends
on n, for simplicity we do not display the dependence in the notation. A crucial property
of our decomposition is the following lemma.

Lemma 3.4. We have Hj ∩Hi 6= ∅, if and only if |i− j| ≤ 1 in a cyclic manner.

Proof. Trivially γi+1 ∈ Hi ∩ Hi+1. Thus, we only need to show that Hj ∩ Hi 6= ∅ implies
|i− j| ≤ 1. We may assume that i 6= j. Let x ∈ Hi ∩Hj.

Suppose first that x ∈ H̃i. Then, by (path) connectedness of Hj there exists a path γ in

Hj from x to H̃j. Let

t0 := inf{t ∈ [0, 1] : γ(t) /∈ H̃i}.
Then, γ(t0) /∈ H̃i but γ(t) ∈ Hi∩Hj. Thus it suffices to consider the case when x /∈ H̃i∪H̃j.

Suppose now that x ∈ Dn. Since δ < 2−n

2
, we have that x ∈ Q for some Q ∈ ∂Dn. Then,

there are neighbouring squares Qi, Qj ∈ Qn of Q for which Qi ∩ H̃i 6= ∅ and Qj ∩ H̃j 6= ∅.
Since δ is small, we may choose the Qi, Qj so that Qi ∩Qj 6= ∅. If Qi = Qj or if Qi and Qj

have a common edge, then there is a curve γ′ in Qi ∪ Qj from H̃i to H̃j with L(γ′) < 2δ.
If Qi ∩Qj is a singleton, then by Lemma 3.1 (iii) the neighbouring square Q′ 6= Q of both
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Qi and Qj lies in Ω \ intDn. Indeed, if this were not the case, then Q′, Q ∈ Fn and Q′ ∩Q
is a singleton, implying that Qi ∈ Dn or Qj ∈ Dn. Thus, there exists a curve γ′ in Ω \Dn

joining Qi and Qj with L(γ′) < 4δ.
Now, we have Qi ∩ Ji 6= ∅ or Qi ∩ (γi ∪ γi+1) 6= ∅. Notice that γi ∩ Ji 6= ∅ 6= γi+1 ∩ Ji.

By Lemma 3.2 we have max(l(γi), l(γi+1)) ≤ 2
√

2 · 2−n. Combining these observations
with the analogous ones for Qj, we have that Ji and Jj can be connected by a curve in

Ω \Dk with length less than 4δ + 4
√

2 · 2−n < 2−nM . Hence, we have by Lemma 3.3 that
dist∂Dn(Ji, Jj) ≤ C. Thus, |i− j| ≤ 1 in cyclical manner.

We are left with the case where x ∈ Ω \ (Dn ∪ H̃i ∪ H̃j). By definition we have that
B(Dn, 2δ) ⊂ Ω. Thus, if dist(x, Ji) < δ, we may join x to Ji by a curve in Ω \ intDn with
length less than δ. If dist(x, Ji) ≥ δ, then x ∈ B(γm, δ), where m ∈ {i, i + 1}. By path
connectedness of Hi there is a curve γ in Hi connecting x to γi ∪ γi+1 ∪ Ji. We want to
prove that x can be joined to γm in δ-neighbourhood of γm. If (a subcurve of) γ is not
such a curve, then we may define

t0 := inf{t ∈ [0, 1] : γ(t) ∈ B(Dn, δ)}.
Then, γ|[0,t0]⊂ B(γm, δ). Therefore, there exists a point y ∈ γm with d(γ(t0), y) < δ. In
particular, the line segment [γ(t0), y] lies in (Ω \Dn) ∩ B(γm, δ) and thus we have proven
that there exists a curve γ′ in (Ω \Dn)∩B(γm, δ) connecting x to γm. By the definition of
γm we have that γ′ ⊂ B(γm(0), 2

√
2·2−n+δ). By the same argument for j we conclude that

Ji and Jj can actually be connected by a curve γ in (Ω \ intDn)∩B(γ(0), 4
√

2 · 2−n + 2δ).
Hence, by Lemma 3.3 dist∂Dn(Ji, Jj) < C, and thus |i− j| ≤ 1 in cyclical manner. �

4. Approximation

In this section we finish the proof of Theorem 1.1 by making a partition of unity using
the decomposition of Ω constructed in Section 3 and by approximating a given function by
polynomials in this decomposition. Recall that our aim is to show that for any u ∈ Lk,p(Ω)
and ε > 0 there exists a function uε ∈ W k,∞(Ω) ∩ C∞(Ω) with ‖∇ku − ∇kuε‖Lp(Ω) . ε.
By noting that Lk,p(Ω) ∩ C∞(Ω) is dense in Lk,p(Ω) we may assume that function u ∈
Lk,p(Ω) ∩ C∞(Ω). From now on, let u and ε > 0 be fixed.

Using the notation from Section 3, we write the domain Ω as the union of the core part
Dn and the boundary regions {Hi}li=1. For each H̃i we let Ii be the collection of squares Q
in ∂Dn such that Q ∩ H̃i 6= ∅, which are bounded in number independently of n. We need
to decide what polynomial to attach to each set Hi. For this purpose, for each 1 ≤ i ≤ l
we assign a square Qi ∈ Ii. We call Qi the associated square of Hi.

Given Q ∈ Ii we set PQ :=
⋃i+1
j=i−1{Q′ ∈ Ij}, which is a collection of squares from a

suitable neighbourhood of Q.
Recall the approximating polynomials PQ introduced in Section 2.2. We abbreviate

Pi = PQi
for the associated squares Qi.

We make a smooth partition of unity by using a Euclidean mollification. (Compare to
[14] where the inner distance in Ω was used for the mollification.) Let ρr denote a standard

Euclidean mollifier supported in B(0, r). We start with a collection of functions {ψ̃i}li=0,
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where ψ̃0 = χDn ∗ ρ2−n−5 and ψ̃i =
(
χH̃i
∗ ρ2−n−5

)
|Hi

for i ≥ 1. Using this we obtain a

partition of unity {ψi}li=0 by setting ψi = ψ̃i/
∑l

j=0 ψ̃j.

Now the partition of unity {ψi}li=0 satisfies the following.

(1) The function ψ0 is supported in B(Dn,
2−n

10
).

(2) For i ≥ 1 the function ψi is supported in Hi.
(3) For all i, 0 ≤ ψi ≤ 1.
(4)

∑
ψi ≡ 1 on Ω.

(5) For all i, |∇αψi| ≤ Cα2−n|α| for all multi-indeces α.

We will fix n later such that for the function uε defined as

uε(x) := u(x)ψ0(x) +
l∑

i=1

ψi(x)Pi(x)

for x ∈ Ω, we have
‖∇ku−∇kuε‖Lp(Ω) < Cε.

Note that uε = u on Dn−1; indeed Dn−1 ∩ ψi = ∅ for i ≥ 1, see Lemma 3.1 (iv).
First of all, we consider only n large enough so that

‖∇ku‖Lp(Ω\Dn−1) ≤ ε. (4.1)

Now, we need to show that n can actually be chosen large enough so that also

‖∇kuε‖Lp(Ω\Dn−1) ≤ Cε.

So, we compute for Q ∈ Ii and |α| = k

‖∇αuε‖Lp(Q) ≤
∑

β≤α

(∫

Q

|∇βu−∇βPi(x)|p|∇α−βψ0(x)|p dx

)1/p

+
∑

β≤α

∑

j

(∫

Q

|∇βPj(x)−∇βPi(x)|p|∇α−βψj(x)|p dx

)1/p

=: A1 + A2,

(4.2)

where A1 and A2 are the first and second terms on the right hand side of the inequality
and we used that for β < α,

∑
j∇α−βψj = 0 and order of Pi is at most k − 1. We first

estimate A1 as

A1 .
∑

β≤α
2n(|α|−|β|)‖∇βu−∇βPi‖Lp(Q)

.
∑

β≤α
2n(|α|−|β|)(‖∇βPi −∇βPQ‖Lp(Q) + ‖∇βu−∇βPQ‖Lp(Q))

.
∑

β≤α
2n(|α|−|β|)2n(|β|−k)‖∇ku‖Lp(∪Q̃)

. ‖∇ku‖Lp(∪Q̃),

(4.3)
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where in the third inequality we used that Qi (associated square of H̃i) and Q may be
joined by a chain of bounded number of squares from Ii by our construction, and therefore
we may apply Lemma 2.5. Similarly we estimate A2 as

A2 .
∑

β≤α

i+1∑

j=i−1

(∫

Q

|∇βPj(x)−∇βPi(x)|p|∇α−βψj(x)|p dx

)1/p

.
∑

β≤α
2n(|α|−|β|)

i+1∑

j=i−1

(‖∇βPj −∇βPQ‖Lp(Q) + ‖∇βPi −∇βPQ‖Lp(Q))

.
∑

β≤α
2n(|α|−|β|)2n(|β|−k)‖∇ku‖Lp(∪Q̃)

. ‖∇ku‖Lp(∪Q̃),

(4.4)

where again in the second inequality we used that if ψj(x) 6= 0 for x ∈ Q ∈ Ii then by
our construction Qj and Q can be joined by a chain of bounded number of squares as j is
either i− 1, i or i+ 1 (cyclically); and therefore we can apply Lemma 2.5.

For Q ∈ F̃ \ Dn such that Q ∩ spt(ψ0) 6= ∅, we assign to Q a square Q′ ∈ Ii, such that
Q ∩ Q′ 6= ∅. Note that such a square Q′ exists by our construction. Then Q and Q′ can
be joined by a chain of bounded (by an absolute constant) number of squares from Dn+1.
We choose such a chain for Q and denote it by BQ. We also set

Jn := {Q ∈ F̃ \ Dn : Q ∩ spt(ψ0) 6= ∅}.

We estimate using Lemma 2.5 exactly as above (see (4.2)) to obtain for |α| = k

‖∇αuε‖Lp(Q) ≤
∑

β≤α

(∫

Q

|∇βu−∇βPQ(x)|p|∇α−βψ0(x)|p dx

)1/p

+
∑

β≤α

∑

j

(∫

Q

|∇βPj(x)−∇βPQ(x)|p|∇α−βψj(x)|p dx

)1/p

=: B1 +B2.

(4.5)

Again, we estimate separately,

B1 .
∑

β≤α
2n(|α|−|β|)‖∇βu−∇βPQ‖Lp(Q)

. ‖∇ku‖Lp(Q)
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and

B2 .
∑

β≤α

i+1∑

j=i−1

(∫

Q

|∇βPj(x)−∇βPQ(x)|p|∇α−βψj(x)|p dx

)1/p

.
∑

β≤α
2n(|α|−|β|)

i+1∑

j=i−1

(‖∇βPj −∇βPQ′‖Lp(Q) + ‖∇βPQ′ −∇βPQ‖Lp(Q))

.
∑

β≤α
2n(|α|−|β|)2n(|β|−k)(‖∇ku‖Lp(

⋃
Q′′∈PQ′

Q′′) + ‖∇ku‖Lp(
⋃

Q′′∈BQ′
Q′′)

. ‖∇ku‖Lp(
⋃

Q′′∈PQ′
⋃BQ′

Q′′).

Next we note that ∇kuε ≡ 0 in H̃i\ ∪j 6=i spt(ψj) and we compute for |α| = k

‖∇αuε‖Lp(Hi) ≤
∑

Q∈Q̃i

‖∇αuε‖Lp(Q) +
∑

Q∈Jn,Q∩Hi 6=∅
‖∇αuε‖Lp(Q)

+
i+1∑

j=i−1

‖∇αuε‖Lp((spt(ψj)∩spt(ψi))\
⋃

Q′′∈∂Dn
⋂Jn

Q′′)

(4.6)

The terms in the first and second summands have been estimated earlier. Denoting H ′i :=
(∪i+1

j=i−1spt(ψj) ∩ spt(ψi)) \
⋃

Q′′∈∂Dn
⋂Jn

Q′′, we estimate now the third one;

‖∇αuε‖Lp(H′i) .
∑

β≤α
2n(|α|−|β|)

i+1∑

j=i−1

‖∇βPj −∇βPi‖Lp(H′i)

.
∑

β≤α
2n(|α|−|β|)(‖∇βPj −∇βPi‖Lp(Qi)

.
∑

β≤α
2n(|α|−|β|)2n(|β|−k)‖∇ku‖Lp(

⋃
Q′∈PQi

Q′)

. ‖∇ku‖Lp(
⋃

Q′∈PQi

Q′),

(4.7)

where we used the facts that for β < α, ∇α−β∑
j(ψj) = 0 and ψ0 ≡ 0 in H ′i in the first

inequality, Lemma 2.4 in the second inequality since H ′i ⊂ CQi for some absolute constant
C coming from Lemma 3.2 and in the third inequality we used Lemma 2.5.

Remark 4.1. Note that for each Q ∈ Ii we have PQ = PQi
where Qi is the associated

square of H̃i. We note that any Q′ ∈ ∂Dn occurs in at most three distinct collections PQi
.

Moreover any Q ∈ Dn+1 appears in only a bounded number of the collections BQ′′ , where
Q′′ ∈ Jn. In particular, any Q′ ∈ ∂Dn appears in only a bounded number of the collections
BQ′′ , where Q′′ ∈ Jn. The bounds are provided by absolute constants coming from volume
comparison.
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Now it follows from equations (4.3), (4.4), (4.5), (4.6) and (4.7) that

‖∇αuε‖Lp(Ω\Cn) .
∑

i

‖∇ku‖Lp(Hi) + ‖∇ku‖Lp(
⋃

Q∈∂Dn

Q)

. ‖∇ku‖Lp(
⋃

Q∈∂Dn

Q) + ‖∇ku‖Lp(
⋃

Q∈Jn
Q) + ‖∇ku‖Lp(

⋃
Q∈Jn
Q′∈BQ

Q′)
(4.8)

when |α| = k. By Remark 4.1 we may choose n such that

‖∇ku‖Lp(
⋃

Q∈∂Dn

Q) + ‖∇ku‖Lp(
⋃

Q∈Jn
Q) + ‖∇ku‖Lp(

⋃
Q∈Jn
Q′∈BQ

Q′) < ε.

Then, the claim follows from (4.1) and (4.8).

Remark 4.2. We note that when k = 1 we may take the function to be smooth as well
as bounded for showing the density of W 1,∞(Ω) in W 1,p(Ω). This is because truncations
approximate the functions in W 1,p(Ω). This allows us to also approximate the Lp norm of
u. Indeed let u ∈ W 1,p(Ω)∩C∞(Ω)∩L∞(Ω) such that ‖u‖L∞ ≤M . Decompose the domain
as in the above construction; then choose n large enough such that ‖u‖W 1,p(Ω\Dn−1) ≤ ε and
M |Ω \Dn−1| < ε. Then it follows from estimates in the proof that the function uε defined
as above approximates u in W 1,p(Ω) with error given by ε. This conclusion is the content
of [14].

Finally, let us show how the smooth approximation in Jordan domains is done.

Proof of Corollary 1.3. The argument we need follows the one used to prove [14, Corollary
1.2]. As in [14], given a bounded Jordan domain we approximate it from outside by a
nested sequence of Lipschitz and simply connected domains Gs which are obtained for
example by taking the complement of the unbounded connected component of the union
Whitney squares larger than 2−s from the Whitney decomposition of the complementary
Jordan domain of Ω.

Then, we note that for given n, taking sn large enough, we have that the squares in ∂Dn
are Whitney type sets in Gsn , meaning they have diameters comparable to the distance
from the boundary of Gsn .

Note that Gsn ⊂ B(Ω, 2−sn+5) are simply connected. Now the set Gsn \ C̄n (recall that
Cn is a suitable connected component of the interior of the union of the Whitney squares
of scale less than 2−n) can be decomposed in the same way as Ω \ C̄n was decomposed into
the sets H̃i in Section 3.

We may then follow the argument used in the proof of Theorem 1.1 to obtain an approx-
imating sequence of functions un in Gsn which are in the space W k,∞(Gsn) ∩ Lk,p(Gsn) ∩
C∞(Gsn). By multiplying with a smooth cut-off function that is 1 on Ω and compactly
supported in Gsn , we obtain a sequence of global smooth functions having the desired
properties. �
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A DENSITY RESULT FOR HOMOGENEOUS SOBOLEV SPACES

DEBANJAN NANDI

Abstract. We show that in a bounded Gromov hyperbolic domain Ω smooth functions
with bounded derivatives C∞(Ω) ∩W k,∞(Ω) are dense in the homogeneous Sobolev spaces
Lk,p(Ω).

1. Introduction

We continue the study of density of functions with bounded derivatives in the space of
Sobolev functions in a domain in Rn. It was shown by Koskela-Zhang [13] that for a simply
connected planar domain Ω ⊂ R2, W 1,∞ is dense in W 1,p and in the special case of Jordan
domains also C∞(R2) ∩ W 1,∞(Ω) is dense. The above result of Koskela-Zhang has been
generalized to have the density of W k,∞ in the homogeneous Sobolev space Lk,p for k ∈ N in
planar simply connected domains by Nandi-Rajala-Schultz [19]. In dimensions higher than
two however simply connectedness is not sufficient (see for example [14]). Recall that simply
connected planar domains are negatively curved in the (quasi) hyperbolic metric. A useful
metric generalization of negatively curved spaces was introduced by Gromov [8], in the context
of group theory. Following Bonk-Heinonen-Koskela [4], we call a domain Gromov hyperbolic
if, when equipped with the quasihyperbolic metric, it is δ-hyperbolic in the sense of Gromov,
for some δ ≥ 0 (see Section 3 for definitions). Gromov hyperbolicity has turned out to be a
sufficient condition for the density of W 1,∞ in W 1,p, as shown by Koskela-Rajala-Zhang [14],
and these are primarily the domains we consider in this paper.

A simply connected domain, equipped with the quasihyperbolic metric (equivalent to the
hyperbolic metric by the Koebe distortion theorem) in the plane, as mentioned before, is
Gromov hyperbolic. Conversely, a Gromov hyperbolic domain with uniqueness of quasihy-
perbolic geodesics is simply connected. The latter is of course true in higher dimensions as
well (indeed, in this case, for any pair of points, any curve γ joining the points is homotopic to
the unique quasihyperbolic geodesic Γ joining the given points, with the homotopy given by
quasihyperbolic geodesics joining the points γ(t) and Γ(t) once Γ is parametrized suitably).
Gromov hyperbolic domains are often seen as a topological generalization of planar simply
connected domains; for it was shown by Bonk-Heinonen-Koskela [4] that Gromov hyper-
bolic domains are conformally equivalent to suitable uniform metric spaces equipped with the
quasihyperbolic metric and corresponding suitable measures. Finally, we note that in higher
dimensions, simply connectedness alone does not imply Gromov hyperbolicity; consider for
example the unit ball in R3 deformed to have a cuspidal-wedge along an equator.

We denote by Lk,p the space of functions with finite homogeneous Sobolev norm (see Section
3 for definition). We obtain the following extension of the result of Koskela-Rajala-Zhang [14]
to Sobolev spaces of higher order.

Key words and phrases. Sobolev space, Gromov hyperbolic, density, quasihyperbolic.
This research has been supported by the Academy of Finland via the Centre of Excellence in Analysis and

Dynamics Research (project No. 307333).
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Theorem 1.1. Let 0 ≤ δ < ∞, k ≥ 1 and 1 ≤ p < ∞. If Ω ⊂ Rn is a bounded δ-Gromov
hyperbolic domain, then C∞(Ω) ∩W k,∞(Ω) is dense in Lk,p(Ω).

We have the following corollary to Theorem 1.1.

Corollary 1.2. Let 0 ≤ δ <∞, k ≥ 1 and 1 ≤ p <∞. If Ω is a bounded δ-Gromov hyperbolic
domain with C0-boundary, then C∞(Rn) ∩W k,∞(Ω) is dense in Lk,p(Ω).

In the statement of Corollary 1.2, for a domain with C0-boundary, we require that given
x ∈ ∂Ω, there is a neighbourhood Ux ⊂ Rn of x such that Ux ∩ Ω has the representation
yn < f(y1, . . . , yn−1) in suitable coordinates, with a continuous function f (see Maz’ya [18]).

The approximating functions are obtained by an inner extension of a smooth approximation
to the function to be approximated, from an increasing sequence of suitable compact subsets,
to the domain in question. This method of inner extension for this purpose has been used
in [13], [14] and [19]. In [13] this extension is done using the conformal parametrization of
simply connected domains. In [19], the topology of the plane is utilized directly to construct
an approximating sequence although the hyperbolic structure of planar simply connected
domains plays an implicit role in the construction. Our approach in this paper is along the
lines of [14].

The information coming from the conformal invariance may be read off in terms of any
suitable Whitney decomposition of our domain and towards that end we use as tools the uni-
formization of Gromov hyperbolic domains developed in [4] along with two of its geometric
implications also from [4], employed already in [14], namely the ball separation condition and
the Gehring-Hayman condition (see Section 3 below for defintions). Using uniformization
we prove a diameter counterpart of the usual Gehring-Hayman condition (see Theorem 5.6)
which in its original form relates the lengths of quasihyperbolic geodesics with the intrin-
sic distance between the points they join (see Pommerenke [20] for the property in simply
connected domains). We use also the polynomial approximations of smooth functions in
precompact subsets of the domain (see Section 3.3) which were utilized by Jones [11] for
showing the extendibility of Sobolev functions defined in uniform domains and also in [19] for
the inner extension. We actually prove the density under weaker assumptions than Gromov
hyperbolicity (see Theorem 4.1).

One may want to know under what other conditions such density results could hold. Recall
that a domain Ω is called c-John with center x0 if for each x ∈ Ω there exists a curve γx joining
x to x0 such that at each point z ∈ γx of the curve, c times the distance to the boundary is
larger than the length of the subcurve joining x to z. The curve γx is called a c-John curve.
The domain Ω is c-quasiconvex if for each pair of points x, y ∈ Ω, c d(x, y) ≥ λΩ(x, y). Here
λΩ is the intrinsic distance; see Section 2. There are domains that are simultaneously John
and quasiconvex for which the density of C∞ ∩W k,∞-functions in the Sobolev classes W k,p

in the homogeneous Lk,p-norm fails to hold. As an example, we recall the following class of
domains which appear in a paper of Koskela [12].

Example 1.3. Let E ⊂ Rn−1 be a p-porous set for 1 < p ≤ n. Then E is removable for
W 1,p in Rn. Moreover, for each 1 < p ≤ n, there exists a p-porous set E ⊂ Rn−1 that is
non-removable for W 1,q for any q < p.

Here a set E is called removable for the class W 1,p(Rn) if we have that the norm preserving
restriction operator W 1,p(Rn) ↪→W 1,p(Rn\E) is an isomorphism. If E is removable for W 1,p

then it is removable for W 1,q for q > p by the Hölder inequality and since a set being removable
is a local condition. The complements of sets removable for W 1,q for q > n are quasiconvex;
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see for example Koskela-Reitich [15]. Therefore for p ≤ n − 1, the unit ball with a suitable
(p + 1)-porous set as in Example 1.3 removed from the intersection of a (n − 1)-hyperplane
with the concentric ball of radius half, is a John and quasiconvex domain, for which the
C∞∩W 1,q functions, for q > p+ 1, can not be dense in the class W 1,p. The Sobolev-Poincare
inequality holds in John domains (see Bojarski [2]) from which it follows that L1,p = W 1,p in
John domains and in particular that C∞ ∩W 1,q is not dense in L1,p for q > p+ 1.

We note however that domains where the John curves may be chosen to be quasihyperbolic
geodesics and a suitable quasiconvexity condition involving the lengths of the quasihyperbolic
geodesics holds, are Gromov hyperbolic (see Section 3.2) and the required density therefore
follows.

We say that a domain Ω admits a global p-Poincaré inequality if for functions u ∈ L1(Ω)
with (weak) first order p-integrable derivatives it holds

∫

Ω
|u− uΩ|p ≤ C

∫

Ω
|∇u|p,

for C = C(Ω), where uΩ = −
∫

Ω u. We have the following corollary to Theorem 1.1.

Corollary 1.4. Let 0 ≤ δ < ∞, k ≥ 1 and 1 ≤ p < ∞. If Ω ( Rn is a δ-hyperbolic domain
which admits a global p-Poincaré inequality, then W k,∞(Ω) is dense in W k,p(Ω).

The paper is arranged as follows. In Section 2, we set some of the notation to be used below.
In Section 3, we introduce definitions of relevant function spaces and geometric conditions on
domains being used in this paper. In Section 4, we prove the density result under the (weaker)
geometric conditions from Section 3. In Section 5, we verify that Gromov hyperbolic domains
satisfy the geometric assumptions sufficient for the density result which proves Theorem 1.1
and then prove some technical facts required for the proof of Theorem 4.1 in Section 4.

2. Notation

We write #A for the cardinality of a set A and the Lebesgue Ln-measure of sets A ⊂ Rn
is denoted |A|. For an open cube Q with edges parallel to the coordinate axes, l(Q) denotes
its edge length. For a point x ∈ Ω we write dΩ(x) for d(x, ∂Ω). For a set A ⊂ Rn and ε > 0,
B(A, ε) is the ε-neighbourhood of A in Rn. When A = {x}, we just write B(x, r).

The intrinsic length metric of a domain Ω, denoted λΩ(x, y), is the infimum of the euclidean
lengths of paths in Ω joining a given pair of points x, y ∈ Ω. The intrinsic diameter metric
is the infimum of euclidean diameters of paths in Ω joining a pair of points and is denoted
δΩ(x, y). For a curve γ ⊂ Ω (with injective parametrization) and x, y ∈ γ we write γ(x, y) for
the subcurve of γ between the points x and y. We write l(γ) for the length of a rectifiable
curve γ.

For x ∈ Ω, we write BΩ(x, ε), for the set of points y in Ω such that λΩ(x, y) < ε, that is the
ε ball in the intrinsic metric of Ω. Similarly for sets A ⊂ Ω we write BΩ(A, ε) for the intrinsic
ε-neighbourhoods. We use dist(·, ·) to denote the distance between sets obtained by taking
infimum of pairwise distances of points lying in the respective sets.

For a set A ⊂ Ω, the domain Ω in question being fixed, we will write Ā for the closure of
A in the relative topology of Ω.
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3. Preliminaries

Let Ω ⊂ Rn. Let p ∈ [1,∞] and k ∈ N. We write Lk,p(Ω) for the space of Sobolev functions
with p-integrable distributional derivatives of order k;

Lk,p(Ω) = {u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω), if |α| = k}.

We equip it with the homogeneous Sobolev seminorm
∑
|α|=k ‖∇αu‖Lp(Ω). The (non-homogeneous)

Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω), if |α| ≤ k}

and is equipped with the norm
∑
|α|≤k ‖∇αu‖Lp(Ω). Here and below an n-multi-index α is an

n-vector of non-negative integers and |α| is its `1-norm.

3.1. Whitney decomposition. We use the standard Whitney decomposition of a domain
Ω ⊂ Rn (see for instance Whitney [23] or the book of Stein [21, Chapter 6]).

3.2. Some geometric conditions.

Definition 3.1 (Uniform domain). A domain Ω ( Rn is A-uniform if there exists a constant
A ≥ 1 such that for each pair of points x, y ∈ Ω, there exists a curve γxy ⊂ Ω joining x and y
such that

(i) l(γxy) ≤ A|x− y|,
(ii) For any z ∈ γxy, l(γxy(x, z) ∧ l(γxy(z, y))) ≤ AdΩ(z).

The curves γxy are called uniform curves. Curves that satisfy only the second requirement
are called doubly-John.

Uniform domains, introduced by Martio-Sarvas [17] are more general than Lipschitz do-
mains but nice enough for being Sobolev extension domains (see Jones [11]). Therefore
Lipschitz functions are dense both in the homogeneous and non-homogeneous Sobolev spaces
defined in these domains. They come up naturally in the theory of quasiconformal mappings,
for example as a characterization for the quasisymmetric images of disks. Note that the def-
inition requires only a non-complete metric space. We may similarly define uniform spaces
as metric spaces with non empty topological boundary that satisfy the conditions above. We
will require the notion of uniform spaces in Section 5.

Definition 3.2. (Quasihyperbolic metric) Let Ω ( Rn be a domain. Given x, y ∈ Ω the
quasihyperbolic distance is defined as

kΩ(x, y) := inf
γxy

∫ |dz|
dΩ(z)

where the infimum is taken over all rectifiable curves joining x and y in Ω.

It is a consequence of the Arzela-Ascoli theorem that a quasihyperbolic geodesic (for which
the infimum is achieved) exists for each pair of points; see for example the paper of Gehring-
Osgood [6] where several facts about the quashyperbolic metric and its relation with quasi-
conformal mappings had been proved. It was also shown in [6] that in uniform domains

kΩ(x, y) ' log

(
1 +

|x− y|
dΩ(x) ∧ dΩ(y)

)
(1)
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for x, y ∈ Ω. It may be noted that quasihyperbolic distance dominates the logarithmic term
in (1) in general, that is

kΩ(x, y) ≥ log

(
1 +

λΩ(x, y)

dΩ(x) ∧ dΩ(y)

)
(2)

for x, y ∈ Ω, where Ω need not be uniform. We use this and its consequence

kΩ(x, y) ≥
∣∣∣∣log

(
dΩ(x)

dΩ(y)

)∣∣∣∣ , (3)

later in Section 5. We note that the equivalence in (1) characterises uniformity (see [6]).
We define here two more quantities (which are equivalent to the logarithmic term in (1) in
uniform domains but not in general), which we will require later. Set

∆Ω(x, y) = log

(
1 +

δΩ(x, y)

dΩ(x) ∧ dΩ(y)

)

and

ΛΩ(x, y) = log

(
1 +

λΩ(x, y)

dΩ(x) ∧ dΩ(y)

)
,

for x, y ∈ Ω ( Rn. These quantities are quasi-metrics in uniform domains.

Definition 3.3 (Ball separation property). Let Ω ( Rn be a domain. A curve Γ ⊂ Ω
satisfies the c-ball separation property, for some c ≥ 1, if for every point z ∈ Γ, the intrinsic
ball B = BΩ(z, cdΩ(z)) separates any x, y ∈ Γ \ B in Ω such that z ∈ Γ(x, y). The domain
Ω has the c-ball separation property if every quasihyperbolic geodesic in Ω satisfies the c-ball
separation property.

The above separation property was perhaps first introduced by Buckley-Koskela [5] who
showed that in the class of domains satisfying the above property, if the domain admits a
global (np/(n−p), p)-Sobolev-Poincaré inequality for 1 ≤ p < n, then the separation condition
of geodesics improves to geodesics being John. If a domain Ω is the quasiconformal image of a
uniform domain, then the quasihyperbolic geodesics of Ω are the images of diameter-uniform
curves (that is properties (i) and (ii) in Definition 3.1 hold with length replaced by diameter;
existence of such curves for each pair of points is quantitatively equivalent to the definition
of uniformity given here, see Martio-Sarvas [17] for this) under the quasiconformal mapping,
see Heinonen-Näkki [9]. An argument using the conformal modulus (see [5]) then shows that
quasiconformal images of diameter uniform curves (and thus the quasihyperbolic geodesics in
quasiconformal images of uniform domains in particular) have the ball separation property.

Definition 3.4 (Gehring-Hayman property). Let Ω ( Rn be a domain. A curve Γ ⊂ Ω
satisfies the c-Gehring-Hayman property, for c ≥ 1, if

l(Γ(x, y)) ≤ cλΩ(x, y),

for all x, y ∈ Γ. The domain Ω has the c-Gehring-Hayman property if every quasihyperbolic
geodesic Γ ⊂ Ω satisfies the c-Gehring-Hayman property.

The Gehring-Hayman property appears first perhaps in the paper [7] where it was shown
to hold for hyperbolic geodesics in simply connected domains in the plane. Subsequently, it
was shown to hold for quasiconformal images of uniform domains by Heinonen-Rohde [10]
and for conformal metric deformations of the euclidean unit ball by Bonk-Koskela-Rohde [3]).
We will define below a local version of this property which will suffice for our purpose.
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By a Gromov hyperbolic domain we mean a domain Ω such that the space (Ω, kΩ) is
Gromov hyperbolic.

Definition 3.5 (Gromov hyperbolicity). Let 0 ≤ δ < ∞. A domain Ω ( Rn is δ-Gromov
hyperbolic if all quasihyperbolic geodesic triangles are δ-thin in the quasihyperbolic metric.
That is, given any three points x, y, z ∈ Ω and quasihyperbolic geodesics Γxy,Γyz and Γzx
joining them pairwise, it holds for any w lying in any of the three geodesics that the ball of
radius δ, in the quasihyperbolic metric, centered at w intersects the union of the remaining
two geodesics.

Quasiconformal images of uniform domains are Gromov hyperbolic (for example by the
results in [10] and [5] combined with Theorem 3.6 below). A strictly weaker version of
uniformity obtained by using the intrinsic metric of the domain instead of the euclidean
metric, for the quasiconvexity of the uniform curve, is often useful. Domains satisfying this
latter property are called inner uniform. Inner uniform domains are Gromov hyperbolic (see
[4]), and thus functions with bounded derivatives are dense in the homogeneous Sobolev
spaces in these domains by Theorem 4.1. In fact, the density in this case holds also in
the non-homogeneous Sobolev norm as the hypotheses of Corollary 1.4 are satisfied (see for
example [2]). The next theorem is a known characterization of Gromov hyperbolic domains.
The geometric implications were proved in [4] using uniformization. It was later shown by
Balogh-Buckley [1] that they characterize Gromov hyperbolicity.

Theorem 3.6 ([4],[1]). A δ-Gromov hyperbolic domain has both the c1-ball separation property
and the c2-Gehring-Hayman property, for c1 = c1(δ, n) and c2 = c2(δ, n). Conversely, a
domain which has both the c1-ball separation property and the c2-Gehring-Hayman property
is also δ-Gromov hyperbolic, for δ = δ(c1, c2, n).

We define the following local versions of the Gehring-Hayman condition defined above
which are suitable to our purpose. Recall the definitions of ΛΩ(·, ·) and ∆Ω(·, ·) from the
discussion following Definition 3.2.

Definition 3.7 (Local length/diameter Gehring-Hayman). Let Ω ( Rn be a domain and
c ≥ 1, R ≥ 0 be fixed. Let E ⊂ Ω be given. We say that E has the (c,R)-length Gehring-
Hayman property if for any pair of points x, y ∈ E for which

ΛΩ(x, y) ≤ R,
each quasihyperbolic geodesic Γxy joining x and y in Ω satisfies

l(Γxy) ≤ c λΩ(x, y).

We say that E has the (c,R)-diameter Gehring-Hayman property if for any pair of points
x, y ∈ E for which

∆Ω(x, y) ≤ R,
each quasihyperbolic geodesic Γxy joining x and y in Ω satisfies

diam(Γxy) ≤ c δΩ(x, y).

Remark 3.8. The above definition may be equivalently reformulated by saying E ⊂ Ω has the
above (c,R)-length Gehring-Hayman property if for all x, y ∈ E, for which

1

R
dΩ(x) ≤ dΩ(y) ≤ R dΩ(x) (4)
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and
λΩ(x, y) ≤ R (dΩ(x) ∧ dΩ(y)), (5)

each quasihyperbolic geodesic Γxy joining x and y in Ω satisfies

l(Γxy) ≤ c λΩ(x, y).

Similarly, we may say that E has the (c,R)-diameter Gehring-Hayman property if

diam(Γxy) ≤ c δΩ(x, y)

holds for any pair of points x, y ∈ E and quasihyperbolic geodesics Γxy joining them, where x
and y satisfy the condition (4) of being comparably distant from the boundary as above and

δΩ(x, y) ≤ R (dΩ(x) ∧ dΩ(y)).

Note that the value of R in this reformulation is related to but different from the R in the
previous defintion.

The first condition (4) says for example that quasihyperbolic unit balls centred at x and
y have comparable sizes in the euclidean geometry. It is not known if the (c,R)-length
and diameter Gehring-Hayman conditions defined above are quantitatively equivalent for
domains which have the ball separation property. However, in the case of domains where
quasihyperbolic geodesics are doubly-John curves (see Definition 3.1) the equivalence holds
in the global sense. A domain is (c,∞)-diameter Gehring-Hayman, if it has the (c,R)-diameter
Gehring-Hayman property for all R > 0.

Lemma 3.9. Let Ω ⊂ Rn be a domain such that the quasihyperbolic geodesics are A-doubly-
John curves. Suppose Ω has the (c0,∞)-diameter Gehring-Hayman property. Then Ω also
has the c-Gehring-Hayman property, where c = c(A, c0, n), that is, Ω is inner uniform. The
converse is also true quantitatively.

Proof. Let Γ be a quasihyperbolic geodesic joining x, y ∈ Ω. Let z ∈ Γ be the midpoint, that
is l(Γ(x, z)) = l(Γ(z, y)) = l(Γ)/2. We may assume that δΩ(x, y) ≥ dΩ(z)/2. Then by the
John property of Γ, we have

3AδΩ(x, y) ≥ AdΩ(z) ≥ l(Γ(x, z)).

The converse follows from Lemma 5.6. �
The converse utilizes conformal uniformization (see Section 5) and the proof can not be

applied if the global inequalities are replaced by the local ones. Lemma 3.11 below says that if
there exists any curve that joins x and y and lies uniformly away from the boundary then the
local diameter Gehring-Hayman property implies the local length Gehring-Hayman property
for the pair {x, y}. We need to state the following simple lemma before Lemma 3.11.

Lemma 3.10. Let M > 0 be a given number. Suppose Ω has the (c,R)-diameter Gehring-
Hayman property and the c0-ball separation property. Let x, y ∈ Ω be such that

1

R
dΩ(x) ≤ dΩ(y) ≤ RdΩ(x)

and
δΩ(x, y) ≤ R(dΩ(x) ∧ dΩ(y)).

Suppose there exists a curve γ ⊂ Ω joining x and y such that for each z ∈ γ, dΩ(z) ≥
(dΩ(x) ∧ dΩ(y))/M . Then

kΩ(x, y) ≤ c′(c,R,M, n).
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Proof. Assume that δΩ(x, y) ≤ R(dΩ(x) ∧ dΩ(y)). Then we have by the (c,R)-diameter
Gehring-Hayman property that diam(Γ) ≤ cRdΩ(x) for any quasihyperbolic geodesic Γ join-
ing x and y. Fix such a geodesic Γ. The ball separation condition implies that, for any z ∈ Γ,
there exists a z′ ∈ γ such that λΩ(z, z′) ≤ c0dΩ(z). Along with our assumption for the curve
γ, it follows that

dΩ(z) ≥ 1

M(c0 + 1)
dΩ(x),

and a similar estimate then follows for the edge-lengths of the Whitney cubes intersecting
Γ. Since all these cubes lie in a ball of radius at most 2RdΩ(x), by the upper bound on
the diameter of Γ, there are at most c′(c,R,M, n) of these. This gives an upper bound for
kΩ(x, y). �
Lemma 3.11. Let M > 0 be a given number. Suppose Ω has the (c,R)-diameter Gehring-
Hayman property and the c0-ball separation property. Let x, y ∈ Ω be such that

1

R
dΩ(x) ≤ dΩ(y) ≤ RdΩ(x)

and
λΩ(x, y) ≤ R(dΩ(x) ∧ dΩ(y)).

Suppose there exists a curve γ ⊂ Ω joining x and y such that for each z ∈ γ, dΩ(z) ≥
(dΩ(x) ∧ dΩ(y))/M . Then,

l(Γxy) ≤ c(c,R,M, n)λΩ(x, y)

where Γxy is any quasihyperbolic geodesic joining x and y in Ω.

Proof. Since δΩ(x, y) ≤ λΩ(x, y), we have by the previous lemma that kΩ(x, y) ≤ c′(c,R,M, n).
We may assume that λΩ(x, y) ≥ 1

2dΩ(x). Fix a quasihyperbolic geodesic Γ joining x and
y. Note that l(Γ ∩Q) ≤ 5l(Q), for each Whitney cube Q; see [10] for example. Thus, we get
that

l(Γ) ≤ c′ · 5 · 2RdΩ(x) ≤ 20c′RλΩ(x, y)

since the number of Whitney cubes intersecting Γ is comparable with kΩ(x, y) and their sizes
are comparably smaller that dΩ(x). �

Thus the local diameter Gehring-Hayman is a priori a stronger condition than the length
counterpart, in the sense of the above lemma when the points x and y are chosen correctly.
In the next definition we introduce the class of domains for which we show the W k,∞-density
to hold.

Definition 3.12 ((c0, c, R)-radially hyperbolic). Let c0, c ≥ 1, R ≥ 0. We say that a domain
Ω ( Rn is (c0, c, R)-radially hyperbolic with center x0, if it has the c0-ball separation property
and there exists x0 ∈ Ω so that for any x0 6= x ∈ Ω and any quasihyperbolic geodesic Γx
joining x0 to x, the following are true:

(i) Γx has the (c,R)-diameter Gehring-Hayman property (from Definition 3.7).
(ii) Whenever x0 6= y ∈ Ω and Γy is a quasihyperbolic geodesic from x0 to y such that

(Γx ∩ Γy) \ {x0} 6= ∅, the set Γx ∪ Γy satisfies either of the two:
(a) the (c,R)-length Gehring-Hayman property,
(b) the (c,R)-diameter Gehring-Hayman property.

We will refer to the curves Γx for x0 6= x ∈ Ω as radial geodesics. We will say Ω is (c0, c, R)-
radially hyperbolic when reference to the center x0 is not required or when x0 is fixed and
understood.
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Remark 3.13. We note the following.
(i) It is clear that a (c0, c, R)-radially hyperbolic domain is also (c0, c, R

′)-radially hyper-
bolic whenever R > R′.

(ii) When the geodesics are unique the second requirement of above definition becomes
vacuous. An example of this class would have to be simply connected as noted previ-
ously; a planar simply connected domain for example.

(iii) If we have that the (c,R)-diameter Gehring-Hayman property holds for all relevant
pairs of points in the second requirement, then we get the first requirement as an
implication of it. This need not be the case in general, and therefore we specify the
first requirement separately.

(iv) It follows from Theorem 3.6 and Lemma 5.6 below that a δ-Gromov Hyperbolic domain
is a (c0, c,∞)-radially hyperbolic domain (for any choice of center), where c = c(δ, n)
and c0 = c0(δ, n). We do not know if the converse is true as the Gehring-Hayman
conditions above are required to hold only radially. Also note that when R is close
enough to zero, say R < 1/2, the domains defined above may only have the ball
separation property, as the local Gehring-Hayman conditions above become vacuous.
We would like to know if for some R ∈ (0,∞], (c0, c, R)-radially hyperbolic domains
are Gromov hyperbolic.

3.3. Approximating polynomial. Let v ∈ W k,p
loc (Ω). For each measurable set E b Ω, let

us denote by PE = P (v; k,E) the unique polynomial of order k − 1 such that∫

E
∇α(v − PE) = 0,

for all multi-indices α such that |α| ≤ k (see Jones [11, page 79]).
We note the following general result.

Lemma 3.14 (Lemma 2.1, [11]). Let Q be any cube in Rn and P be a polynomial of degree
k defined in Rn. Let E,F ⊂ Q be such that |E|, |F | > η|Q| where η > 0. Then

‖P‖Lp(E) ≤ C(η, k)‖P‖Lp(F ).

Let Q,Q′ ∈ W be Whitney cubes where W is the Whitney decomposition of a domain
Ω ⊂ Rn, such that there is a chain of N0 Whitney cubes {Q = Q1, Q2, . . . , QN0 = Q′} ⊂ W
forming a continuum joiningQ andQ′ such that consecutive cubes from the collection intersect
in faces. Then we have the following estimate from [11], which follows via chaining, using the
Poincaré inequality.

Lemma 3.15 (Lemma 3.1, [11]). Fix α such that |α| ≤ k and let v ∈W k,p
loc (Ω). Then for any

pair of Whitney cubes as above, we have

‖∇α(PQ − PQ′)‖Lp(Q) ≤ C(n,N0)l(Q)k−|α|‖∇kv‖
Lp(∪N0

i=1Qi)

where |∇kv| is the `2-norm of the vector {∇αv}|α|=k.

4. Density in the Lk,p-norm

In this section we prove the following density result.

Theorem 4.1. Let Ω ⊂ Rn be a bounded c0-ball separation domain. Then, given c ≥ 1, there
exists R0 = R0(c0, c, n) such that, if Ω is (c0, c, R)-radially hyperbolic for any R ≥ R0, we
have that C∞(Ω) ∩W k,∞(Ω) is dense in Lk,p(Ω).
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Let ε > 0 be fixed. Let u ∈ Lk,p(Ω) be given. We will define a function uε ∈ W k,∞(Ω) ∩
Lk,p(Ω) ∩ C∞(Ω) such that ‖u− uε‖Lk,p(Ω) . ε. We begin by constructing a suitable decom-
position of Ω into subsets with finite overlap.

4.1. A decomposition of Ω. In this section let Ω ( Rn be a domain with the c0
10 -ball

separation property for c0 ≥ 10. We denote by W the Whitney decomposition of the domain
Ω.

We briefly describe the role of the ball separation condition in the decomposition of Ω.
Recall that we want to extend the function from a connected compact ‘core’ (where a smooth
aproximation of the function u to be approximated has bounded derivatives of order up to k)
formed by large Whitney cubes to the rest of the domain in such a way that the derivatives of
the extension are still bounded. Suitable neighbourhoods (to be determined by the separation
property) of cubes in the boundary of the core block parts of the remaining domain which
appear as ‘tentacles’ separated from other tentacles and the core (see Figure 1). The points
in a tentacle should then receive their values for the extension of the given function from the
cube whose neighbourhood separates it from the core and the other tentacles. However, (it
may be seen below that) we need to deal with the case when there are more than one possible
choices of cubes which block a given such tentacle. In particular, we need the polynomial
approximations (Section 3.3) to our function, in cubes whose neighbourhoods intersect, to
oscillate in a controlled way with respect to each other, so that the derivatives are not very
large. The construction in [14] takes care of this by considering intrinsic neighbourhoods
of cubes for blocking the tentacles. The Gehring-Hayman condition in that case ensures
that if suitable intrinsic neighbourhoods of two Whitney cubes intersect, for example with
a tentacle, then the euclidean length of the quasihyperbolic geodesic joining their centres is
at most, say a constant multiple of the diameter of the larger cube. This is then used to
obtain suitable estimates for the oscillations. We will however need to work with euclidean
neighbourhoods to define a euclidean partition of unity. This is because the intrinsic distance
is only (locally) Lipschitz and we need a partition of unity with k-derivatives. Thus we modify
the construction in [14], allowing us also to work under slightly weaker hypothesis. We do
this below.

Let Ω
(1)
m denote the interior of the connected component containing x0 of the set ∪{Q :

l(Q) ≥ 2−m}, where m is large enough so that Ω
(1)
m is well defined (contains the point x0).

Define

W(1)
m := {Q ∈ W : Q ⊂ Ω(1)

m }
and

P(1)
m := {Q ∈ W(1)

m : 2−m ≤ l(Q) < 2−(m−2)}.
Given Q ∈ W, λ > 0, λQ is the concentric cube with edge length λ times that of Q. We write
(λQ)c for the component of λQ ∩ Ω that contains Q. Set

BQ =

(
11

10
c0Q

)

c

.

Given a Whitney cube Q and a set A in Ω, we say that Q blocks A if x0 and A lie in different
components of Ω\(c0Q)c. Given another Whitney cube Q′, we write Q|Q′, if Q blocks the set
BQ′ . Set

P(−1)
m :=

{
Q ∈ P(1)

m : ∃Q′ ∈ P(1)
m such that Q′|Q

}
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and subtract this collection from the original collection to define

Pm = P(1)
m \P(−1)

m .

Let us denote the components of Ω\ ∪
Q∈Pm

(c0Q)c by V ′i for i = 0, 1, 2 . . . where V ′0 is the

component containing x0. Set

V ′i := {Q ∈ Pm : V
′
i ∩ (c0Q)c 6= ∅}

for i = 0, 1, 2, . . .
The member cubes of V ′i together separate the set V ′i from x0. We want the sets V ′i for i > 0
to correspond to the tentacles mentioned above while V ′0 corresponds to the core. After that,
we would like to find bounds on oscillations of the polynomial approximations to our functions
across the cubes in Vi for each i > 0. Some of the sets V ′i however may be ‘pockets’ composed
of large cubes bounded by neighbourhoods of the cubes in Pm. We need to relabel the sets
V ′i in order to exclude such ‘thick’ components and consider them as part of the core instead.

Lemma 4.2. We have a decomposition

Ω\
⋃

Q∈Pm
(c0Q)c =

lm⋃

i=0

Ui ∪
⋃

i≥1

Vi,

where the sets V ′i have been relabeled as Ui or Vi so that the following hold.

(i) There are finitely many V ′i , denoted and enumerated as
{U0 = V ′0 , . . . , Ulm} having the property that for any Whitney cube Q such that Q∩Uj 6=
∅ for j = 1, 2, . . . , lm it holds that l(Q) ≥ 2−(m−2). We write Ui := {Q ∈ Pm :

U i ∩ (c0Q)c 6= ∅} for the collection of boundary cubes whose neighbourhoods bound Ui
for i = 0, . . . , lm.

(ii) The components V ′i /∈ {U0, . . . , Ulm} are relabeled as {Vi}i. For each i, set Vi := {Q ∈
Pm : V i ∩ (c0Q)c 6= ∅} as the boundary cubes whose neighbourhoods bound the set Vi.
We have that #Vi ≤M , where M = M(c0, n).

Proof. We begin with the component V ′0 , containing the point x0. Suppose that there exists

a point z0 ∈ Q ⊂ V ′0 such that l(Q) < 2−(m−2). Then there exists Q0 ∈ P(1)
m for which

Γz0 ∩Q0 6= ∅. By the ball separation property, either x0 and z0 lie in different components of

Ω \ (c0Q0)c or z0 ∈ (c0Q0)c. Suppose first that Q0 ∈ Pm. This gives a contradiction to our

assumption that z0 and x0 lie in the same component of Ω \ ⋃
Q∈Pm

(c0Q)c. If Q0 /∈ Pm then

there exists Q0
0 ∈ Pm such that Q0

0|Q0. Since by the ball separtion property either (c0Q0)c
separates x0 and z0 or z0 ∈ (c0Q0)c and since z0 /∈ (c0Q0

0)c, we have that z0 and x0 are in

different components of Ω \ ⋃
Q∈Pm

(c0Q)c which is the same contradiction again. Therefore,

there is no point z0 ∈ V ′0 as above. From this we conclude that for every Q ∈ W such that

Q ∩ V ′0 6= ∅ we have l(Q) ≥ 2−(m−2). We set U0 = V ′0 and U0 = V ′0.
We continue by induction. Suppose the sets V ′j , where 0 ≤ j ≤ i− 1, have been relabelled.

Consider now the component V ′i of Ω \ ⋃
Q∈Pm

(c0Q)c. We have the following cases.

Case 1:

Suppose first that there exists zi ∈ V ′i and Qi ∈ P(1)
m such that Γzi ∩Qi 6= ∅. It follows from



12 D. NANDI

the ball separation property that x0 and zi are not in the same component of Ω\ (c0Qi)c. We
consider the following subcases.

Case 1.1 (c0Qi)c ∩ V ′i = ∅.
Given Q ∈ V ′i, such that (c0Qi)c ∩ (c0Q)c 6= ∅, we have that x0 and (c0Q)c are in separate

components of Ω \ (c0Qi)c. By the definition of Pm it is impossible that Qi|Q. We conclude

that (c0Qi)c ∩BQ 6= ∅.
Case 1.2: (c0Qi)c ∩ V ′i 6= ∅.

In this case Qi /∈ Pm. So let Qii ∈ Pm be such that Qii|Qi. Then we are back to the previous

case. We conclude again that if Q ∈ V ′i, then (c0Qii)c ∩BQ 6= ∅.
Since the cubes in V ′i have comparable sizes, are disjoint and by the above reasoning are

contained in a set of measure bounded from above by a constant times the measure of the
smallest cube, we get #V ′i ≤ M , where M = M(co, n). We set Vji+1 = V ′i and Vji+1 = V ′i
where ji is the smallest index such that Vji has been already defined, (if no such ji exists,
take ji = 0).
Case 2:
Suppose next that it is not possible to find a point zi as above. Then we have that for any
Whitney cube Q such that Q ∩ Vi 6= ∅, l(Q) ≥ 2−(m−2), since if 2−(m−2) > l(Q) then we get
a contradiction with the assumption that there is no point zi as above. In this case we set
Uji+1 := V ′i and Uji+1 := V ′i, where ji is the largest index for which Uji has already been
defined.

This concludes the relabelling. �

The sets (c0Q)c for Q ∈ Pm, V i and U j provide a decomposition of Ω. Before we may
proceed however, we are faced with the issue that uniformly enlarged neighbourhoods of
the tentacles {Vi}i might not have bounded overlap which we require if we have them as
sets being used to define a partition of unity. Therefore, in what follows we make some
modifications to the decomposition of Ω in order to take care of this problem. Namely, we
group together some of the sets Vi and the neighbourhoods BQ of the cubes that block them.
This provides a decomposition where suitably uniformly enlarged neighbourhoods of the sets
in the decomposition have bounded overlap. We need a lemma first.

Write V(m) for the union
⋃
i≥1
Vi (see part (ii) of the definition of the relabeled sets in Lemma

4.2). Fix an enumeration {Q1, . . . , Qjm} of Pm.

Lemma 4.3. For each Qj ∈ Pm, there exists a collection {Vj1 , . . . ,Vjl} so that Qj ∈ Vjs for
1 ≤ s ≤ l, which is maximal in the sense that Vjs 6⊂ ∪i 6=sVji for 1 ≤ s ≤ l and Qj ∈ Vk implies
Vk ⊂

⋃
1≤i≤s Vji. Moreover, l is bounded above by a constant depending only on c0 and n.

Proof. If Qj /∈ V(m), then set l = 0. If Qj ∈
⋂

1≤s≤l
Vjs , where {Vjs}1≤s≤l is a maximal distinct

such collection, then for each Q ∈ ⋃
1≤s≤l

Vjs , Q ⊂ (CQj)c, where C = C(co, n), by part (ii) of

our decomposition in Lemma 4.2. Thus, there are an absolutely bounded number of cubes in
∪

1≤s≤l
Vjs . So we get an upper bound for l in terms of c0 and n. To see the existence of such

a maximal collection one observes that there are finitely many distinct collections Vi. �
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x0

B1

BU1

Figure 1. Illustrating the sets Bi.

For each Qi ∈ Pm, set

Q̃i =
⋃

1≤j≤l
Vij ,

where {Vij}j is a chosen collection for Qi, maximal in the sense of the Lemma 4.3. Note

that the definition of Q̃i does not depend on the maximal collection Vi1 , . . . ,Vil used. Choose

a maximal subcollection {Qi}i from {Q̃i}i such that collections in {Qi}i are distinct in the
sense that ⋃

Q∈Qi
Q 6⊂

⋃

i 6=s

⋃

Q∈Qs
Q

and satisfy ⋃

i

Qi =
⋃

i

Q̃i = V(m).

Denote this collection by Q(m) := {Qi}i.
Note that given Vi, there exists ji ∈ N such that Vi and x0 are in separate components of

Ω \ ⋃
Q∈Qji

(c0Q)c (since Vi is contained in one of these collections). There may be more than

one Qji satisfying the above condition, so we assign to Vi the smallest possible index ji so
that Qji works.

Therefore, we may classify the collection of components {Vi}i based on who blocks them

as follows. Recall that BQ = (11
10c0Q)c. For each Qi ∈ Q(m), let Bi be the collection {Vij}j of

components that have been assigned as above to Qi. Set

Bi :=
⋃

Vij∈Bi
V ij ∪

⋃

Q∈Qi
BQ.
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The sets Bi may be now interpreted as the tentacles mentioned at the beginning of this section
(see Figure 1). Fix a cube Qi ∈ Qi, which we will below refer to as the ‘assigned’ cube of Qi
(and Bi). We write B(m) for the collection {Bi}i.

Set U (m) = Pm \
⋃{Qi ∈ Q(m)} as the collection of cubes whose neighbourhoods are not

needed for separating the components Vi. Next, we describe the decomposition of Ω which
we use for our partition of unity. The sets are

(i) BUi := B(Ui, 2
−m/100), 0 ≤ i ≤ lm,

(ii) Bi, where Qi ∈ Q(m) and

(iii) BQ, where Q ∈ U (m).

Then we have the following estimate.

Lemma 4.4. It holds that

1 ≤
∑

Q∈U(m)

χBQ(x) +
∑

0≤i≤lm

χBUi (x) +
∑

Qi∈Q(m)

χBi(x) ≤ c′(c0, n), (6)

for x ∈ Ω.

Proof. The lower bound follows since Ω =
⋃

0≤i≤lm
BUi ∪

⋃
Qi∈Qi

Bi ∪
⋃

Q∈U(m)

BQ. For the upper

bound, it is clear that

lm∑

i=0

χBUi ≤ c
′(n) and

∑

Q∈U(m)

χBQ ≤ c′(c0, n).

Let x ∈ Ω. Suppose x ∈ Bii ∩ . . . ∩ Bil , where {Bij}lj=1 is the collection of all such sets Bi.

We want an upper bound for l. Then, since {Vj}j are pairwise disjoint, for any Q ∈ ∪
i1≤s≤il

Qs
we have by Lemma 4.3 and the construction of the collections Vj that

dist(x,Q) ≤ C2−m,

where C = C(c0). This gives an upper bound in terms of c0 and n for the number of cubes
# ∪

i1≤s≤il
Qs. So, we get an upper bound A for l, such that A = A(c0, n). �

Define

Ωm =

lm⋃

j=0

Uj .

We note the following.

(∗) We have that Ω
(1)
M ⊂ Ωm for M(m, c0) chosen small enough; precisely we require

that, 2−M > 10 c0 2−m. This follows from our definitions. We therefore have that
|Ωm| → |Ω| as m→∞.

We will need the following definitions for the ensuing lemmas.

Definition 4.5 (Trail and cover of Q). Given Q ∈ W, define the trail of Q, denoted T (Q)
to be the set of all points y ∈ Ω such that Γy(x0, y) ∩Q 6= ∅. In particular Q ⊂ T (Q).

Next, given Q ∈ Pm define the cover of Q, denoted by A(Q) to be the collection of those

Whitney cubes Q′ ∈ W(1)
m such that there exists z ∈ BQ for which either

(a) z ∈ Q′, or

(b) z ∈ T (Q′), Q′ ∈ P(1)
m and Γz ∩Q′ 6= ∅ for a radial geodesic Γz.
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The following lemmas are just direct consequences of our geometric assumptions on Ω and
the definition of our decomposition.

Lemma 4.6. Given Q ∈ Pm, we have that BQ ⊂ ∪{T (Q′) : Q′ ∈ A(Q)} and #A(Q) ≤
c(c0, n).

Proof. Let z ∈ BQ. We have two cases. Let us first assume that z ∈ T (Q′), where Q′ ∈ P(1)
m

satisfies Γz ∩ Q′ 6= ∅. Then by the ball separation applied to the curve Γz, we have that if
(c0Q)c ∩ (c0Q′)c 6= ∅, then x0 and (c0Q)c are in different components of Ω \ (c0Q′)c. Since

Q′|Q is false, we must have (c0Q′)c ∩BQ 6= ∅.
Next note that if z is not of above type, then z ∈ Ω

(1)
m and thus case (a) in the definition

of A(·) must hold. Thus BQ ⊂ ∪{T (Q′) : Q′ ∈ A(Q)}.
Again, since (c0Q′)c ∩ BQ 6= ∅ for Q′ ∈ A(Q), by volume comparison we get the required

bound on the cardinality of A(Q). Indeed, the members of A(Q) are comparably large with
respect to Q and are all contained in the set 100c0Q. �

So far we have only used the ball separation condition. The next lemma specifies the
role of the Gehring-Hayman conditions. Denote by distk(A,B) the distance measured in the
quasihyperbolic metric between sets A,B ⊂ Ω.

Lemma 4.7. Given c ≥ 1, there exists R = R(c0, c, n) such that, if Ω is (c0, c, R
′)-radially

hyperbolic for R′ ≥ R, then given Q ∈ Pm, and Q1 and Q2 in A(Q) such that T (Q1)∩T (Q2) 6=
∅, we have that distk(Q1, Q2) ≤M , where M = M(c0, c, n).

The proof of Lemma 4.7 is rather technical and we postpone it to Section 5.

Remark 4.8. We note that if a global diameter Gehring-Hayman property or a suitable local
quantitative version of it holds then the proof is simpler. In fact Lemma 4.9 below then
follows directly from hypothesis without Lemma 4.7 being necessary. Indeed, if Q1, Q2 ∈ Pm,
then pairs of points from Q1 and Q2 can be joined by a curve which is uniformly away from

the boundary, namely contained in Ω
(1)
m ; and pairs of such points are comparably distant from

the boundary. Lemma 4.9 then follows from Lemma 3.10.

Lemma 4.9. With the above definitions the following hold:

(i) For any Q and Q′ in Pm such that BQ ∩ BQ′ 6= ∅, we have that distk(Q,Q
′) ≤

c′(c0, c, n).
(ii) For any Q ∈ Pm and Q′ ∈ A(Q) such that BQ ∩Q′ 6= ∅, we have that distk(Q,Q

′) ≤
c′(c0, c, n).

Proof. By Lemma 4.6, we have that #(A(Q) ∪ A(Q′)) is finite and bounded above by c′ =
c′(c0, n). Also note that BQ ∪ BQ′ is connected and T (Q′′) is relatively closed (by Arzela-
Ascoli) and connected in Ω for each Q′′ ∈ A(Q) ∪ A(Q′). Moreover, {T (Q′′) : Q′′ ∈ A(Q) ∪
A(Q′)} covers BQ ∪ BQ′ efficiently (that is, each T (Q′′) necessarily intersects BQ ∪ BQ′).
Thus we may find an enumeration of A(Q)∪A(Q′) say Q1, . . . , Qs; s ≤ c′ such that T (Qi)∩
T (Qi+1) 6= ∅ for 1 ≤ i < s. Part (i) of the Lemma then follows from Lemma 4.7.

Part (ii) follows arguing similarly as in part (i), since in this case also Q and Q′ can again
be connected by a chain of trails of cubes in A(Q) as before, consecutive members of which
have intersecting trails when enumerated suitably, so that Lemma 4.7 applies. �
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Recall that we fixed a cube Qi ∈ Qi, called the assigned cube ofQi and Bi, whenQi ∈ Q(m).
When defining the approximating function, the values of u in Qi will be used to assign values
to the larger set Bi.

Lemma 4.10. If Q ∈ Qi, for Qi ∈ Q(m), then distk(Q,Qi) ≤ c′, where c′ = c′(c0, c, n).

Proof. Note that ∪
Q∈Vs

(c0Q)c are connected and #Vs are uniformly bounded for the sets Vs

(recall from property (iii) of the relabeled sets in the decomposition). Thus, ∪
Q∈Qi

BQ is

connected, since {Vs}s are disjoint. Then the claim follows by induction and proof of Lemma
4.9 after noting that by Lemma 4.3, #Qi is bounded by a constant. �

For each Q,Q′ ∈ W(1)
m such that distk(Q,Q

′) ≤ c, fix a chain of Whitney cubes {Q =
Q1, . . . , Qs = Q′} with s ≤ c′ = c′(c) forming a continuum joining Q and Q′ and enumerated
such that consecutive cubes intersect in faces. Denote by F(Q,Q′) this chain. The selection

may be done so that F(Q,Q′) = F(Q′, Q) for any pair of cubes Q,Q′ ∈ W(1)
m . We will need

the following lemma in the estimates below.

Given Q′′ ∈ W(1)
m , denote by F(Q′′) the set of pairs (Q,Q′) where Q′′ ∈ F(Q,Q′) and one

of the following holds:

(i) Q ∈ Pm and Q′ ∈ A(Q) such that Q′ ∩BQ 6= ∅ or
(ii) Q,Q′ ∈ Pm such that BQ ∩BQ′ 6= ∅ or

(iii) Q = Qi ∈ Qi and Q′ = Qj ∈ Qj , where Qi and Qj are the assigned cubes of the
tentacles Bi and Bj respectively such that Bi ∩Bj 6= ∅ or

(iv) Q ∈ Pm and Q′ = Qi ∈ Qi, where Qi is the assigned cube of the tentacle Bi such
that BQ ∩Bi 6= ∅.

Then we have the following.

Lemma 4.11. Given Q′′ ∈ W(1)
m , #F(Q′′) ≤ c′(c0, c, n).

Proof. By Lemmas 4.9 and 4.10 we have that for any (Q,Q′) ∈ F(Q′′)

distk(Q,Q
′′) ∨ distk(Q

′, Q′′) ≤ c′(c0, c, n).

Then the claim follows by volume comparison. �

4.2. Proof of Theorem 4.1. We begin by defining a partition of unity. Recall the decompo-
sition of Ω obtained in the previous section (Figure 1). Given Q ∈ U (m), let ψ̂Q be a smooth
function such that

ψ̂Q|(c0Q)c ≡ 1, spt(ψ̂Q) ⊂ 11

10
c0Q

and |∇αψ̂Q(x)| ≤ C(α)2m|α| for all x ∈ Ω and 0 ≤ |α| ≤ k.

For Qi ∈ Q(m), let and let ϕ̂i be a smooth function such that

ϕ̂i| ⋃
Vj∈Bi

V j ∪
⋃

Q∈Qi
(c0Q)c

≡ 1, spt(ϕ̂i) ⊂
⋃

Vj∈Bi
B(Vj , 2

−m/100) ∪
⋃

Q∈Qi
(
11

10
c0Q)

and |∇αϕ̂i(x)| ≤ C(α)2m|α| for all x ∈ Ω and 0 ≤ |α| ≤ k.

For Ui, 0 ≤ i ≤ lm, let ξ̂i be a smooth function such that

ξ̂i|Ui ≡ 1, spt(ξ̂i) ⊂ BUi
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and |∇αξ̂i| ≤ C(α)2m|α| for all x ∈ Ω and 0 ≤ |α| ≤ k. The functions above are obtained by
standard mollification of suitable indicator functions related to the sets involved.

We define the partition of unity by setting

ϕi(x) =
ϕ̂i(x)

∑
Q∈U(m)

ψ̂Q(x) +
∑lm

i=0 ξ̂i(x) +
∑

Qi∈Q(m)

ϕ̂i(x)

and similarly defining ψQ and ξi by dividing by the sum as above. As a consequence of (6)
we have

(i)
∑

Q∈U(m)

ψQ(x) +
∑lm

i=0 ξi(x) +
∑

Qi∈Q(m)

ϕi(x) = 1, for all x ∈ Ω.

(ii) 0 ≤ ψQ, ϕi, ξi ≤ 1.

(iii) max{‖∇αψQ‖L∞(Ω), ‖∇αϕi‖L∞(Ω), ‖∇αξi‖L∞(Ω)} ≤ C(α)2m|α|, whenever 0 ≤ |α| ≤ k.

(iv) spt(ψQ) ⊂ 11
10c0Q for Q ∈ U (m),

spt(ϕi) ⊂
⋃

Vj∈Bi
B(Vj , 2

−m/100) ∪ ⋃
Q∈Qi

(11
10c0Q) for Qi ∈ Q(m) and

spt(ξi) ⊂ BUi for i = 1, . . . , lm.

Proof of Theorem 4.1. By the density of smooth functions in Lk,p(Ω) (see Maz’ya’s book [18]
for example), we may assume without loss of generality that u ∈ C∞(Ω). Recall the definition
of approximating polynomials from Section 3.3. For any Whitney cube Q we write PQ for

the approximating polynomial of u in Q. For Qi ∈ Q(m), recall Qi ∈ Qi as the assigned cube
for Qi (appearing also in Lemma 4.10). We write Pi for the polynomial PQi . We define an
approximating function by setting

um(x) :=
∑

Q∈U(m)

ψQ(x)PQ(x) +
∑

Qi∈Q(m)

ϕi(x)Pi(x) +

lm∑

i=0

ξi(x)u(x),

for m ∈ N and for all x ∈ Ω. We note that um ∈ W k,∞(Ω) ∩ C∞(Ω). By (6) and property
(iv) of the partition of unity it suffices to show that m ∈ N can be chosen large enough so
that

‖um‖Lk,p(
⋃

Q∈U(m)

BQ ∪
⋃

Qi∈Q(m)

Bi) ≤
∑

Q∈U(m)

‖um‖Lk,p(BQ) +
∑

Qi∈Q(m)

‖um‖Lk,p(Bi) . ε.

Fix a multi-index α such that |α| = k. We note that

∇α−β(
∑

Q∈U(m)

ψQ +
∑

Qi∈Q(m)

ϕi +

lm∑

i=0

ξi) = 0 for β < α and ∇αPQ = 0,
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where β ≤ α means 0 ≤ βi ≤ αi for all 0 ≤ i ≤ n where α = (αi)i, β = (βi)i. Let Q ∈ U (m).
Then we have

∇αum(x) =
∑

β≤α
(
∑

Q′∈U(m)

∇βPQ′(x)∇α−βψQ′(x)

+
∑

Qi∈Q(m)

∇βPi(x)∇α−βϕi(x) +

lm∑

i=0

∇βu(x)∇α−βξi(x) )

=
∑

β<α

(
∑

Q′∈U(m)

∇β(PQ′(x)− PQ(x))∇α−βψQ′(x)

+
∑

Qi∈Q(m)

∇β(Pi(x)− PQ(x))∇α−βϕi(x) +

lm∑

i=0

∇β(u(x)− PQ(x))∇α−βξi(x) )

+∇αu(x)

lm∑

i=0

ξi(x).

(7)

Using (7) and property (iii) of the partition of unity, for Q ∈ U (m) we get

‖∇αum‖Lp(BQ) ≤
∑

β<α

2m(k−|β|)
lm∑

i=0

‖∇β(u− PQ)‖Lp(BQ∩BUi )

+
∑

β<α

2m(k−|β|) ∑

Q′∈U(m)

BQ∩BQ′ 6=∅

‖∇β(PQ′ − PQ)‖Lp(BQ∩BQ′ )

+
∑

β<α

2m(k−|β|) ∑

Qi∈Q(m)

Bi∩BQ′ 6=∅

‖∇β(Pi − PQ)‖Lp(BQ∩Bi) + ‖(
lm∑

i=0

ξi)∇αu‖Lp(BQ)

=: A1 +A2 +A3 +A4,

(8)

where we write Ai for the summands in their order of appearance.
We estimate them separately. First of all,

A1 .
∑

β<α

2m(k−|β|) ∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βu − ∇βPQ‖Lp(Q′)

.
∑

β<α

2m(k−|β|) ∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βu − ∇βPQ′‖Lp(Q′)

+
∑

β<α

2m(k−|β|) ∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βPQ′ − ∇βPQ‖Lp(Q′)

.
∑

Q′∈A(Q)
Q′∩BQ 6=∅

∑

Q′′∈F(Q,Q′)

‖∇ku‖Lp(Q′′),

(9)
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where in the first inequality we observed that {Q′ ∈ A(Q) | Q′ ∩ BQ 6= ∅} covers BQ ∩⋃lm
i=0 spt(ξi). The second inequality is triangle inequality whereas in the last inequality we

use the Poincaré inequality and Lemma 3.15 respectively.
We estimate

A2 =
∑

β<α

2m(k−β|) ∑

Q′∈U(m)

BQ∩BQ′ 6=∅

‖∇βPQ′ − ∇βPQ‖Lp(BQ∩BQ′ )

.
∑

β<α

2m(k−|β|) ∑

Q′∈U(m)

BQ∩BQ′ 6=∅

‖∇βPQ′ − ∇βPQ‖Lp(Q)

.
∑

Q′∈U(m)

BQ∩BQ′ 6=∅

∑

Q′′∈F(Q,Q′)

‖∇ku‖Lp(Q′′),

(10)

where in the first inequality we applied Lemma 3.14 and for the second inequality we used
Lemma 3.15. Similarly,

A3 .
∑

β<α

2m(k−β|) ∑

Qi∈Q(m)

BQ∩Bi 6=∅

‖∇βPi − ∇βPQ‖Lp(BQ∩Bi)

.
∑

β<α

2m(k−|β|) ∑

Qi∈Q(m)

BQ∩Bi 6=∅

‖∇βPi − ∇βPQ‖Lp(Q)

.
∑

Qi∈Q(m)

BQ∩Bi 6=∅

∑

Q′∈F(Q,Qi)

‖∇ku‖Lp(Q′).

(11)

Finally,

A4 ≤
∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇ku‖Lp(Q′).
(12)

Similarly we estimate ‖∇αum‖Lp(Bi) for Qi ∈ Q(m) as follows;

‖∇αum‖Lp(Bi) ≤
∑

β<α

2m(k−|β|)
lm∑

j=0

‖∇β(u− Pi)‖Lp(Bi∩BUj )

+
∑

β<α

2m(k−|β|) ∑

Q∈U(m)

Bi∩BQ 6=∅

‖∇β(PQ − Pi)‖Lp(Bi∩BQ)

+
∑

β<α

2m(k−|β|) ∑

Qj∈Q(m)

Bi∩Bj 6=∅

‖∇β(Pj − Pi)‖Lp(Bj∩Bi) + ‖(
lm∑

j=0

ξj)∇αu‖Lp(Bi)

=: A′1 +A′2 +A′3 +A′4.

(13)
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Now,

A′1 .
∑

β<α

2m(k−|β|) ∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βu − ∇βPi‖Lp(Q′)

.
∑

β<α

2m(k−|β|) ∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βu − ∇βPQ′‖Lp(Q′)

+
∑

β<α

2m(k−|β|) ∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇βPQ′ − ∇βPi‖Lp(Q′)

.
∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

∑

Q′′∈F(Qi,Q′)

‖∇ku‖Lp(Q′′).

(14)

Secondly,

A′2 .
∑

β<α

2m(k−|β|) ∑

Q∈U(m)

BQ∩BQ′ 6=∅

‖∇βPQ − ∇βPi‖Lp(BQ∩Bi)

.
∑

β<α

2m(k−|β|) ∑

Q∈U(m)

BQ∩Bi 6=∅

‖∇βPQ − ∇βPi‖Lp(Qi)

.
∑

Q∈U(m)

BQ∩Bi 6=∅

∑

Q′∈F(Q,Qi)

‖∇ku‖Lp(Q′).

(15)

Thirdly,

A′3 .
∑

β<α

2m(k−|β|) ∑

Qj∈Q(m)

Bj∩Bi 6=∅

‖∇βPj − ∇βPi‖Lp(Bj∩Bi)

.
∑

β<α

2m(k−|β|) ∑

Qj∈Q(m)

Bj∩Bi 6=∅

‖∇βPj − ∇βPi‖Lp(Qi)

.
∑

Qj∈Q(m)

Bj∩Bi 6=∅

∑

Q∈F(Qj ,Qi)

‖∇ku‖Lp(Q)

(16)

and finally,

A′4 ≤
∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

‖∇ku‖Lp(Q′).
(17)
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Combining (9), (10), (11), (12), (14), (15), (16) and (17) we get

‖um‖Lk,p(
⋃

Q∈U(m)

BQ ∪
⋃

Qi∈Q(m)

Bi) .
∑

Q∈Pm

∑

Q′∈A(Q)
Q′∩BQ 6=∅

∑

Q′′∈F(Q,Q′)

‖∇ku‖Lp(Q′′)

+
∑

Q∈U(m)

∑

Q′∈U(m)

BQ∩BQ′ 6=∅

∑

Q′′∈F(Q,Q′)

‖∇ku‖Lp(Q′′)

+
∑

Qi∈Q(m)

∑

Q∈Qi

∑

Q′∈A(Q)
Q′∩BQ 6=∅

∑

Q′′∈F(Qi,Q′)

‖∇ku‖Lp(Q′′)

+
∑

Qi∈Q(m)

∑

Q∈U(m)

BQ∩Bi 6=∅

∑

Q′∈F(Q,Qi)

‖∇ku‖Lp(Q′)

+
∑

Qi∈Q(m)

∑

Qj∈Q(m)

Bj∩Bi 6=∅

∑

Q∈F(Qj ,Qi)

‖∇ku‖Lp(Q).

(18)

Therefore, for |α| = k

‖um‖Lk,p(
⋃

Q∈U(m)

BQ ∪
⋃

Qi∈Q(m)

Bi) . ‖∇ku‖Lp(Ω\Ω(1)
αm)

, (19)

where 0 < α = α(c0, c, n) < 1; the inequality in (19) follows from interchanging the order of
summation in (18) using Lemma 4.11. Hence by choosing m large enough, we get the required
error bound. �

5. Gromov Hyperbolic and related domains

In this section we show that the hypotheses of Theorem 4.1 are satisfied by Gromov hy-
perbolic domains in Rn. For this we use the uniformization of Gromov hyperbolic domains
by a conformal deformation of the quasihyperbolic metric. This idea was developed in [4]
(see also [16]), where it was proved among other things that the domain equipped with the
deformed metric is a uniform space. It was also shown that the resulting metric space is
Loewner (see Definition 5.4 below) when equipped with a suitable measure, compatible with
the metric deformation. We use this information to prove a diameter version of the length
Gehring-Hayman Theorem (Theorem 5.6) which, in turn implies the hypothesis of Theorem
4.1. In the following we discuss the main concepts needed for our purpose.

Given a domain Ω ⊂ Rn, consider the metric space (Ω, k) and conformal deformations of
Ω by densities, denoted ρε, for ε > 0 and defined as (see page 28 in [4])

ρε(x) := exp{−εk(x, x0)},

for all x ∈ Ω, where x0 ∈ Ω is a fixed basepoint. The metric dε induced by ρε is defined by

dε(x, y) := inf

∫

γ
ρεdsk,
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where the infimum is taken over all curves joining x and y in the domain Ω. Here the measure
dsk is induced by the quasihyperbolic metric k, that is we have

∫

γ
ρεdsk =

∫

γ

ρε(γ(t))

dΩ(γ(t))
dt

where γ is parametrized by arc-length in the domain Ω in the usual sense.

Theorem 5.1 (Proposition 4.5, [4]). The conformal deformations (Ω, dε) of a δ-hyperbolic
domain Ω ⊂ Rn are bounded A(δ)-uniform spaces for 0 < ε < ε0(δ).

For our purpose we fix ε = ε0(δ)/2 and take x0 as defined in Section 4 to be the fixed base
point for the conformal deformation metric ρε and denote ρε by ρ below. We also denote the
metric dε as dρ for our chice of ε.

Theorem 5.1 says that for any domain Ω which is Gromov hyperbolic with the quasihyper-
bolic metric (induced by the density 1/dΩ(·)), one can find a metric dε induced by multiplying
the density 1/dΩ(·) with a suitable weight, with which the domain Ω is a bounded and uni-
form metric space. Hence Ω equipped with the deformed metric dρ is also quasihyperbolic
with the metric kρ, induced by the density 1/dρ(·), where

dρ(x) = inf dρ(x, y),

and the infimum is taken over all points in the topological boundary, denoted ∂ρΩ, of the
metric space (Ω, dρ); see for example Theorem 3.6 in [4]. The boundary ∂ρΩ with the metric
dρ extended to the boundary is shown to be quasisymmetrically equivalent to the Gromov
boundary (equipped with its quasisymmetric gauge) of (Ω, k) in Proposition 4.13 of [4]. The
boundary is thus stretched out by the deformation to make the interior uniform. We state
next as a lemma, a fact which follows from Proposition 4.37 and Lemma 7.8 in [4].

Lemma 5.2. The metric spaces (Ω, kρ) and (Ω, k) are C(δ)-bilipschitz equivalent.

Definition 5.3 (Conformal modulus). Let Q > 1. Let X be a rectifiably connected metric
space. Let µ be a Borel measure in X. The Q-modulus of a family G of curves in X is

modQ(G) = inf

∫

X
fQdµ,

where the infimum is taken over all Borel functions f : X → [0,∞] such that
∫

γ
fds ≥ 1

for all γ ∈ G.

Definition 5.4 (Loewner Spaces). Let Q > 1. Let X be a rectifiably connected metric space.
Let µ be a Borel measure in X. Then X is Loewner space if the function

ϕ(t) = inf{modQ(E,F ;X) : ∆(E,F ) ≤ t}
is positive for each t > 0, where E and F are any non-degenerate disjoint continua in X with

∆(E,F ) =
dist(E,F )

diam E ∧ diam F

and (E,F ;U) is the family of all curves in U joining the sets E,F ⊂ U.
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The crucial fact from [4] for us is that the resulting uniform space (Ω, dρ, µρ) obtained
through the deformation is n-Loewner. This is Proposition 7.14 in [4]. Here dµρ = ρndx. We
note that conformal modulus is preserved in the deformed space.

Lemma 5.5. Let Ω ⊂ Rn be a δ-hyperbolic domain, δ > 0. Then there exists M = M(n, δ)
such that for any pair of points x, y ∈ Ω we have that

diamk(Γi) ≤ log 2

where Γi are the connected components of Γ\B(x,MδΩ(x, y)) and Γ is a quasihyperbolic geo-
desic from x to y in Ω.

Proof. Let (Ω,dρ, µρ) be the A-uniform metric measure space obtained by conformal defor-
mation (recall ε = ε(δ)/2 was fixed), where A = A(δ) as in Theorem 5.1. Let C ′ > 1 and
consider the annulus

AC′ := B(x, 2C ′δΩ(x, y))\B(x, 2δΩ(x, y)).

Let C be the supremum of all numbers C ′ such that there exists a connected subcurve Γ0 ∈
[x, y]\B(x, 2C ′δΩ(x, y)) such that

diamk(Γ0) > log 2.

If −∞ ≤ C < 2, then we again have the claim with M = 6, so let us assume that C ≥ 3 and
fix Γ0 be as above.

Let λ be a curve connecting x and y which lies inside the ball B(x, 2δΩ(x, y)). We have
the following modulus estimate (see for example Väisälä [22]).

mod(λ,Γ0,Ω) ≤ mod(B(x, 2CδΩ(x, y))\B(x, 2δΩ(x, y)),Rn) ≤ 1

(logC)n−1
. (20)

Next we find a lower bound for modρ(λ,Γ0,Ω), where modρ denotes the conformal modulus
of paths computed in (Ω, dρ, µρ). We have by Lemma 5.2 that

diamkρ(Γ0) ≥ log 2

C(δ)
(21)

where C(δ) is the constant from Lemma 5.2. Let x0 and y0 be points in Γ0 such that
kρ(x0, y0) = kρ(Γ0). Since Γ is A-uniform we have

diamdρ(Γ0) ≥ dρ(x0, y0) ≥ (2
1

4A2 − 1)dρ(x0) (22)

and

distρ(Γ0, λ) ≤ Adρ(x0). (23)

We again have by uniformity that

Adiamdρ(λ) ≥ lρ(Γ) ≥ dρ(x0, y0). (24)

Thus we obtain from the Loewner property a lower bound as required which depends only on
δ. This gives an upper bound for C in terms of δ. The theorem follows with M = 2C+ 1. �

Theorem 5.6. Let Ω ⊂ Rn be a δ-Gromov hyperbolic domain. Then there exists a constant
M = M(δ, n) such that for any pair of points x, y ∈ Ω we have

diam(Γ) ≤MδΩ(x, y) (25)

for any quasihyperbolic geodesic Γ joining x and y in Ω.
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Proof. Choose M as in Lemma 5.5. Choose a component Γ0 of Γ that lies outside the ball
B(x,MδΩ(x, y)). If no such component exists then the claim in the theorem follows. Let
w0 ∈ Γ0 be the midpoint of Γ0 in the metric k. For Γ0 we have that

diamk(Γ0) ≤ log 2 (26)

from which it follows that
Γ0 ⊂ B(w0, dΩ(w0)/2).

If x0 ∈ Γ0 is the point where Γ0 leaves B(x,MδΩ(x, y)), then

dΩ(w0) ≤ 2dΩ(x0) ≤ 2(MδΩ(x, y) + dΩ(x)) ≤ (2M + 4)δΩ(x, y). (27)

Next, let λ be a curve in B(x, 2δΩ(x, y))∩Ω joining x and y. We have by the ball separation
property that

dist(w0, λ) ≤ c0dΩ(w0) ≤ c0(2M + 4)δΩ(x, y). (28)

The same holds for any other component that falls under this case.
Thus Γ ⊂ B(x, 3Mc0 δΩ(x, y)).

�
Proof of Theorem 1.1. In this case Ω is (c0, c,∞)-radially hyperbolic for some c0 = c0(δ) and
c = c(δ) by Theorem 3.6 and Theorem 5.6. The claim follows by Theorem 4.1. �
Proof of Corollary 1.2. Using the C0-boundary assumption we may find a sequence of Lips-
chitz domains {Ωk}k∈N such that Ω ⊂ Ωk+1 b Ωk, for each k ∈ N (see for example Corollary
1.2 of [14] or Corollary 1.3 of [19]). The proof then proceeds as the proof of Corollary 1.3 of
[19].

�
It remains now to prove Lemma 4.7.

Proof of Lemma 4.7. Fix x1 ∈ Q1 and x2 ∈ Q2 such that (Γx1 ∩ Γx2) \ {x0} 6= ∅, and fix
x ∈ Γx1 ∩ Γx2 . We have by Lemma 4.6 and definitions that

δΩ(x1, x2) .c0,n dΩ(x1) ' dΩ(x2),

and therefore R = R(c0, n) may be chosen based on the previous inequality, such that if Ω is
(c,R)-radially hyperbolic with only diameter Gehring-Hayman in requirement (ii), then by
Lemma 3.10, the conclusion of Lemma 4.7 follows. We still need to show the existence of R
such that also allowing the (c,R)-length Gehring-Hayman condition provides the claim (cf.
Remark 3.13). Towards this end we need to show that

λΩ(x1, x2) .c0,c,n dΩ(x1) ' dΩ(x2),

when x1 ∈ Q1 and x2 ∈ Q2 such that (Γx1 ∩ Γx2) \ {x0} 6= ∅. This will be achieved through
the lemmas below. For convenience of notation we write Γ1 for Γx1 and Γ2 for Γx2 .

Lemma 5.7. If z ∈ Γi(x0, xi) for i = 1 or i = 2, then

5(c0 + 1)dΩ(z) ≥ dΩ(xi). (29)

Proof. This is a consequence of the separation property. We consider competing curves,

denoted λi for i = 1, 2 which join xi to x0 in Ω
(1)
m . These curves exist because Ω

(1)
m was

defined to be connected. Suppose z ∈ Γ1(x0, x1). Then, by the ball separation property of
Γ1, there exists a point x′ in λ1 such that

λΩ(z, x′) ≤ c0dΩ(z).
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Figure 2. Illustrating the
curves Γ1, Γ2, Γx1y2 and
Γx2y1 .

x

y1

x1

x0

x2

y2z

zε
z′

Figure 3. Illustrating the
competing curves γε1 and
Γx1y2 .

On the other hand, since x′ ∈ Ω
(1)
m , we also have dΩ(x′) ≥ 1

5dΩ(x2) and the claim follows. �
Next, fix y1 ∈ Γ1 and y2 ∈ Γ2 such that

λΩ(x1, y2) = inf
y∈Γ2

λΩ(x1, y) ≤ c0dΩ(x1) (30)

and
λΩ(x2, y1) = inf

y∈Γ1

λΩ(y, x2) ≤ c0dΩ(x2), (31)

where the upper bounds are due to the ball separation property, since Γ1 and Γ2 are competing
quasihyperbolic geodesics (see Figure 2).

We note that by the triangle inequality

dΩ(y1) ≤ (c0 + 1)dΩ(x2) ' dΩ(x1) (32)

and
dΩ(y2) ≤ (c0 + 1)dΩ(x1) ' dΩ(x2). (33)

Lemma 5.8. If yi ∈ Γi(x0, xi) for i = 1 or i = 2, then the claim of Lemma 4.7 is true.

Proof. To this end, suppose y2 ∈ Γ2(x0, x2). Since we have that δΩ(x1, x2) . dΩ(x1), it
follows by the triangle inequality and (30) that

δΩ(x2, y2) . dΩ(x1) . dΩ(x2). (34)

From the previous claim we also have

dΩ(x2) ≤ 5(c0 + 1)dΩ(y2). (35)

Thus, by (33), (35) and since x2, y2 ∈ Γ2, there exists R1 = R1(c0) such that if Ω is (c,R)-
radially hyperbolic for R ≥ R1, then by Lemma 3.10, we get

kΩ(y2, x2) ≤ c′(c0, c, n),

which implies λΩ(y2, x2) . dΩ(x2), by (2). This, together with (30) gives

λΩ(x1, x2) .c0,c,n dΩ(x1) ' dΩ(x2).

Thus, since Γ1 ∩ Γ2 6= ∅, there exists R2 = R2(c0, c, n) such that if Ω is (c,R)-radially
hyperbolic for R ≥ max

1≤i≤2
Ri, then Lemma 4.7 follows by arguments in Lemma 3.10. Indeed,
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we only need to observe that there is a curve competing with Γx1x2 and joining x1 and x2 in

Ω
(1)
m .

�
Therefore we may assume yi ∈ Γi(xi, x) for i = 1, 2. Fix Γx1y2 , a quasihyperbolic geodesic

joining x1 to y2 in Ω and and Γx2y1 , a quasihyperbolic geodesic joining x2 to y1 in Ω.

Lemma 5.9. If z ∈ Γx1y2 then

100(c0 + 1)3dΩ(z) ≥ dΩ(y2). (36)

Proof. Fix z ∈ Γx1y2 . Let µ1 denote the competing curve Γ̃1(x1, x0) ∗ Γ2(x0, y2) joining x1 to

y2 (where Γ̃ denotes the reversed curve of Γ). Choose a point z′ ∈ µ1 such that

λΩ(z, z′) ≤ c0dΩ(z), (37)

which we get from ball separation. If z′ /∈ Γ2(x2, y2), then by (29) and (33), we have that

100(c0 + 1)2dΩ(z′) ≥ dΩ(x1)(c0 + 1) ≥ dΩ(y2) (38)

and by the triangle inequality with equation (37) that

dΩ(z)(c0 + 1) ≥ dΩ(z′). (39)

The claim follows by combining (38) and (39).
So we assume next that z′ ∈ Γ2(x2, y2) (see Figure 3). We use now the fact that y2 is taken

to be at minimal intrinsic distance from x1; see equation (33). Let γε1 be a curve joining x1

and y2 such that
λΩ(x1, y2) ≥ l(γε1)− ε (40)

Choose a point zε ∈ γε1 such that

λΩ(z, zε) ≤ c0dΩ(z), (41)

obtained by applying ball separation to the geodesic Γx1y2 with respect to the competing
curve γε1. From equations (37) and (41) we have

λΩ(zε, z
′) ≤ 2c0dΩ(z) (42)

From equations (40) and the choice of y2 we have

λΩ(x1, zε) + λΩ(zε, y2) ≤ l(γε1)

≤ λΩ(x1, y2) + ε

≤ λΩ(x1, z
′) + ε

≤ λΩ(x1, zε) + λΩ(zε, z
′) + ε

(43)

and therefore by equations (41),(42) and (43) and passing to the limit we get

dΩ(y2) ≤ d(z, y2) + dΩ(z)

≤ lim
ε→0

( d(z, zε) + d(zε, y2) + dΩ(z) )

≤ (3c0 + 1)dΩ(z)

(44)

which was the claim. �
Similarly for points z ∈ Γx2y1 , we get

dΩ(y1) ≤ 100(c0 + 1)3dΩ(z). (45)
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Lemma 5.10. For i = 1, 2, we have

dΩ(yi) ≤ 100(c0 + 1)4dΩ(z) (46)

for any z ∈ Γi(xi, yi).

Proof. This follows by comparison with the competing curves Γ̃2(x0, x2) ∗ Γ1(x0, x1) ∗ Γx1y2

and Γ̃1(x0, x1) ∗ Γ1(x0, x2) ∗ Γx2y1 respectively for the geodesics Γ2(x2, y2) and Γ1(x1, y1) and
using the ball separation property. �

Next, we assume without loss of generality that

kΩ(Γ1(y1, x)) ≤ kΩ(Γ2(y2, x)), (47)

and complete the proof of Lemma 4.7 by considering the following two possible cases.

Case 1: Assume first that dΩ(yi) ≥ dΩ(xi)
10(c0+10)2 for either i = 1 or i = 2; say

dΩ(y1) ≥ dΩ(x1)

10(c0 + 10)2
(48)

In this case we have

δΩ(x1, y1) ≤ δΩ(x1, x2) + δΩ(y1, x2) . dΩ(y1) ' dΩ(x1),

where the second equivalence comes from our assumption and (31). Thus there exists R3 =
R3(c0, c) such that if Ω is (c,R)-radially hyperbolic for R ≥ max

1≤i≤3
Ri, then by Lemma 3.10

(which we may apply by Lemma 5.10), we have kΩ(xi, yi) ≤ c′(c0, c, n) and

l(Γ1(x1, y1)) . dΩ(x1). (49)

Now by (49) we get

λΩ(x1, x2) ≤ l(Γ1(x1, y1)) + λΩ(y1, x2) . dΩ(x1).

Thus there exists R4 = R4(c0, c, n) such that if Ω is (c,R)-radially hyperbolic for R ≥ max
1≤i≤4

Ri,

we have l(Γx1x2) . dΩ(x1), where Γx1x2 is any quasihyperbolic geodesic joining x1 and x2. It
then follows by arguments similar to those in Lemma 3.10, that kΩ(x1, x2) ≤ c′(c0, c, n) which
is the claim.

Case 2: Next we consider the case

dΩ(yi) <
dΩ(xi)

10(c0 + 10)2
(50)

for i = 1, 2. By the ball separation property of Γ1, there exists a point z2 ∈ Γ2 (see Figure 4)
such that

λΩ(y1, z2) ≤ c0dΩ(y1). (51)

Due to our assumption that dΩ(y1) is small enough compared to dΩ(x1), Lemma 5.7 tells that
z2 /∈ Γ2(x0, x2). Indeed, note that

dΩ(x2) ≤ 5(c0 + 1)dΩ(z2) ≤ 5(c0 + 1)2dΩ(y2)

contradicts (50).
We next assume that that z2 ∈ Γ2(y2, x). Then by (31),(50) and (51) we have that

λΩ(x2, y2) ≤ λΩ(x2, z2) ≤ λΩ(x2, y1) + λΩ(y1, z2) . dΩ(x2). (52)

We have by (31) and (52)

λΩ(x1, x2) ≤ λΩ(x1, y2) + λΩ(y2, x2) . dΩ(x2). (53)
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Figure 4. Illustrating the three possibilities for the position of z2.

Thus there exists R5 = R5(c0, c, n) such that if Ω is (c,R)-radially hyperbolic for R ≥ max
1≤i≤5

Ri

then kΩ(x1, x2) ≤ c′(c0, c, n) and the claim of the lemma is true in this case.
Next, note that if

dΩ(y1) ≤ dΩ(y2)

200(c0 + 1)5

and z2 ∈ Γ2(x0, y2), then we get a contradiction between the consequences of ball separation
for Γ1; (51), that

dΩ(y1)(c0 + 1) ≥ dΩ(y1) + λΩ(y1, z2) ≥ dΩ(z2), (54)

and that of Lemma 5.10. This forces z2 ∈ Γ2(y2, x), which has been considered previously.
We interchange the roles of the pairs (y1,Γ1) and (y2,Γ2) in above argument to observe

that the only remaining case is when dΩ(y1) 'c0 dΩ(y2).
Thus we only need to check the claim in the case when z2 ∈ Γ2(x2, y2) and dΩ(y1) 'c0

dΩ(y2). Let Γy1z2 be a fixed geodesic joining y1 and z2. Then, by (54),

100(c0 + 1)4dΩ(z2) ≥ dΩ(y2) ' dΩ(y1),

(coming from Lemma 5.10) and since y1 and z2 lie on intersecting radial geodesics, there
exists R6 = R6(c0) such that ifΩ is (c,R)-radially hyperbolic for R ≥ max

1≤i≤6
Ri we get

l(Γy1z2) . dΩ(y1), (55)

and arguments similar to the ones in Lemma 5.9 provide

dΩ(y1) . dΩ(w) (56)

for all w ∈ Γy1z2 . Then by a covering argument considering equations (55) and (56) we get

kΩ(y1, z2) ≤ c′(c0, c, n). Comparing now the quasihyperbolic lengths of the curves Γ̃y1z2 ∗
Γ1(y1, x) and Γ2(z2, x) and recalling assumption (47), we get kΩ(z2, y2) ≤ c′(c0, c, n) and thus

λΩ(z2, y2) . dΩ(y2) (57)

by (2). Therefore by (30), (31), (51) and (57) we get

λΩ(x1, x2) ≤ λΩ(x1, y2) + λΩ(y2, x2)

≤ λΩ(x1, y2) + λΩ(y2, z2) + λΩ(z2, y1) + λΩ(y1, x2)

. dΩ(x1)

(58)
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Hence there exists R7 = R7(c0, c, n) such that if Ω is (c,R)-radially hyperbolic for R ≥
max
1≤i≤7

Ri, then by arguments in Lemma 3.10, we get the desired claim, namely kΩ(x1, x2) ≤
c′(c0, c, n). This completes the proof of Lemma 4.7. �
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