
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Supercurrent-induced charge-spin conversion in spin-split superconductors

© 2018 American Physical Society

Published version

Aikebaier, Faluke; Silaev, Mikhail; Heikkilä, Tero

Aikebaier, F., Silaev, M., & Heikkilä, T. (2018). Supercurrent-induced charge-spin conversion in
spin-split superconductors. Physical Review B, 98(2), Article 024516.
https://doi.org/10.1103/physrevb.98.024516

2018



PHYSICAL REVIEW B 98, 024516 (2018)

Supercurrent-induced charge-spin conversion in spin-split superconductors
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We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin-splitting field in
the presence of coflowing supercurrent. In such a system, the nonequilibrium state is characterized by charge,
spin, energy, and spin-energy modes. Here we show that in the presence of both spin splitting and supercurrent,
all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, which in the
presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via
inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it
can be detected by studying different symmetry components of the nonlocal conductance signal.
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I. INTRODUCTION

The nonequilibrium states in superconductors can be classi-
fied in terms of energy and charge modes [1,2] as a direct result
of the particle-hole formalism in BCS theory. In magnetic
systems the relevant nonequilibrium modes are related to
the quasiparticle spin. In spin-split superconductors all these
modes need to be considered, and the quasiparticle diffusion
couples pairs of modes [3–5]. The earlier description of such
spin-resolved modes includes only the direct quasiparticle
transport, whereas the effect of supercurrent was not consid-
ered. However, a supercurrent flowing along a temperature
gradient is known to induce a charge imbalance [6–9]. Here
we combine these two effects and show how supercurrent
couples all nonequilibrium modes. We show how this leads to
a large coherently controllable charge-spin conversion induced
by supercurrent. In particular, we use the theoretical framework
[3] based on the quasiclassical Keldysh-Usadel formalism for
superconductors with a spin-splitting field h and consider the
presence of a constant phase gradient ∇ϕ in the superconduct-
ing order parameter. This leads to supercurrent and shows up in
the kinetic equations as spectral charge and spin supercurrents.
These coherent supercurrent terms couple spin and charge
transport, generating spin from charge injection. The effect
is long ranged compared to the spin-relaxation length in the
normal state and becomes very large at the critical temperature
and exchange field. It can be detected by studying the different
symmetry components of the nonlocal conductance.

The spin-charge conversion studied here occurs only under
nonequilibrium conditions and does not require spin-orbit
interaction. Therefore it is qualitatively different from the
direct [10–12] and inverse [13–16] equilibrium magneto-
electric effects proposed for noncentrosymmetric supercon-
ductors, Josephson junctions [17–19], and superconducting
hybrid systems [20] with spin-orbit coupling. Experimental
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verification of these spin-orbit-induced effects is limited to
recent observations of the anomalous Josephson effect through
a quantum dot [21] and Bi2Se3 interlayer [22,23]. To our
knowledge, the direct magnetoelectric effect, also known as
the Edelstein effect, in noncentrosymmetric superconductors
has not been observed to date. In normal conductors, such as
GaAs semiconductors, this effect is known as the inverse spin-
galvanic effect and has been detected using Faraday rotation
[24]. In contrast, the charge-spin conversion predicted in this
work can be measured by purely electrical probes. Moreover,
it is specific to superconducting metallic systems and does not
rely on the combination of inversion symmetry breaking and
spin-orbit coupling, which usually has a tiny effect in such
materials.

II. QUALITATIVE DESCRIPTION OF
THE CHARGE-SPIN CONVERSION

The supercurrent-generated coupling between different
nonequilibrium states can be understood with the schematic in
Fig. 1, showing the spin-split BCS spectrum Ep + σh ± pF vs

(where σ = ±1 for spin ↑ and ↓) for left- and right-moving
quasiparticles with respect to the condensate velocity vs . The
left- and right-moving states are defined according to their
velocities vg ≡ ∂Ep/∂ p ≷ 0. The balance between the two
can be broken either by position-dependent nonequilibrium
modes or by the presence of a supercurrent that induces an
energy difference (Doppler shift) ∼2pF vs between the states
with p ≈ ±pF , where pF is the Fermi momentum.

In the absence of spin splitting, h = 0, the combination of
these two effects allows for the creation of charge imbalance
proportional to vs∇T [6–9] where T is the temperature.
This mechanism is illustrated qualitatively in Fig. 1(a). Due
to the temperature gradient, left-moving quasiparticles [both
electrons (el) and holes (hl)] with velocities ve = vh = −vg =
−vF

√
E2

p − �2/Ep have an excess temperature TL compared
to that of the right-moving particles TR . From Fig. 1(a) one can
see that due to the Doppler shift there are more occupied states
in the electron branch. This results in the charge imbalance μ

controlled by the Doppler shift pF vs .
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FIG. 1. Schematic pictures illustrating the couplings between
different types of nonequilibrium states in a superconductor in the
presence of the phase gradient driving the condensate to the velocity
vs . (a) Generation of charge imbalance by the temperature gradient.
(b) Generation of spin accumulation by the charge imbalance gradient
∇μ under the restriction that energy current is absent Ie = 0. Shown
in the plots are the quasiparticle electronlike (el) and holelike (hl)
spectral branches in the superconductor in the presence of Doppler
shifted energy ±pF vs . The solid and open circles show the extra
occupied and empty states compared to the equilibrium distribution,
respectively, and the circles with crosses show the states which
become depopulated due to the Doppler shift.

Now, let us turn to the system in the presence of velocity
vs and Zeeman splitting h �= 0, shown in Fig. 1(b). Spin
splitting the spectrum provides the possibility for a popula-
tion difference between spin-↑ and -↓ branches. Therefore
the supercurrent can couple charge and spin (μz ∝ vs∇μ

or μ ∝ vs∇μz) as well as excess energy and spin energy
(Ts ∝ vs∇T or T ∝ vs∇Ts). Here μz is the spin accumulation,
and Ts is the spin energy accumulation [3]. Under general
nonequilibrium conditions all these couplings are present. To
separate the particular charge-spin conversion effect we must
impose certain constraints on the distribution function changes
due to the supercurrent-induced Doppler shift as in Fig. 1(b).
As shown below [Eq. (18)], these constraints determine the par-
ticular symmetry components of the nonlocal conductance as
functions of the injector voltage and polarization of the detector
electrode. For example, let us assume a charge imbalance
gradient ∇μ �= 0 resulting in a larger (smaller) number of left-
moving electrons (holes) in the absence of energy current Ie, so
that the energies of left-moving (right-moving) quasiparticles
are the same. In the absence of supercurrent these states
occupy spin-up and -down branches symmetrically, yielding
no spin accumulation. The Doppler shift results in qualitative
changes in quasiparticle distributions. From Fig. 1(b) one can
see that in order to have Ie = 0 without affecting the charge
imbalance, the extra energy gained by placing electrons on
the Doppler-shifted energy branch can be compensated only

by utilizing the Zeeman energy and shifting some occupied
states on the spin-down electron branch to the spin-up one
(dashed arrows in Fig. 1). Together with compensating the
energy difference between left- and right-moving states this
shift produces a net spin polarization.

III. KINETIC THEORY IN THE PRESENCE
OF SUPERCURRENT AND SPIN SPLITTING

Below, we quantify the physics described above using the
kinetic equations [3] based on the quasiclassical Keldysh-
Usadel formalism for superconductors with a spin-splitting
field h to study the spin accumulation generated by the
charge imbalance gradients. For concreteness, we consider
the structure shown in Fig. 3(a) below. A superconducting
wire with length L is placed between two superconducting
reservoirs. We assume the presence of a Zeeman splitting
along the wire due to either a magnetic proximity effect from
a ferromagnetic insulator or an in-plane magnetic field. A
current is injected in the wire from a normal-metal injector.
A ferromagnetic detector with normal-state conductance Gdet

and spin polarization Pdet is placed at distance Ldet from the
injector. Variants of this setup were realized, for example, in
Refs. [25–27]. Here we assume that, in addition, a homoge-
neous supercurrent Is flows along the wire. Either this current
can be driven externally, or it can be induced by a magnetic
field in a superconducting loop.

To study the properties of a mesoscopic superconductor
with Zeeman splitting, we start from the Usadel equation [28]
(h̄ = kB = 1)

D∇̂(ǧ∇̂ǧ) + [�̌ − �̌so − �̌sf − �̌orb,ǧ] = 0, (1)

where D is the diffusion constant, ǧ is the quasiclassical
Green’s function, and the covariant gradient operator is ∇̂ =
∇ − i A[τ3,·]. In the commutator �̌ = iετ3 − i(h · S)τ3 − �̌,
ε is the quasiparticle energy, h is the spin-splitting field,
S = (σ1,σ2,σ3), and the Pauli matrix τj (σj ) is in Nambu (spin)
space. The exact form of the spin-splitting field term, as well as
of the pair potential �̂, depends on the chosen Nambu spinor.
We choose it to be


 = (ψ↑(x), ψ↓(x), − ψ
†
↓(x), ψ

†
↑(x))T , (2)

where T denotes a transpose. The advantage of using this
spinor is that the Nambu structure has the same form for
each spin component. The superconducting pair potential �̌ =
�̂σ0 should be obtained self-consistently (see Appendix A
for details). We denote the Nambu-space matrix �̂(x) =
|�|eiϕ(x)τ3τ1, where x is the coordinate along the wire. Due
to supercurrent, the phase ϕ becomes position dependent.
We assume that the quasiparticle currents within the wire
are so small that we can disregard the ensuing position
dependence of |�|. The last three terms in the commutator are
�̌so = (8τso)−1(SǧS), �̌sf = (8τsf )−1(Sτ3ǧτ3 S), and �̌orb =
τ−1

orb τ3ǧτ3, representing spin and charge imbalance relaxation
due to the spin-orbit scattering, exchange interaction with mag-
netic impurities, and orbital magnetic depairing, respectively.
The corresponding relaxation rates are τ−1

so , τ−1
sf , and τ−1

orb .
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We use the real-time Keldysh formalism and describe the
quasiclassical Green’s function as

ǧ =
(

ĝR ĝK

0̂ ĝA

)
, (3)

where each component is a 4×4 matrix in the Nambu ⊗ spin
space, ĝR(A) is the retarded (advanced) Green’s function, and
ĝK is the Keldysh Green’s function describing the nonequi-
librium properties. This function can be parameterized in the
case of collinear magnetizations by ĝK = ĝRf̂ − f̂ ĝA, where
the distribution matrix f̂ = fL + fT τ3 + fT 3σ3 + fL3σ3τ3.

We consider Eq. (1) in the presence of the superconducting
current along the wire. Removing the phase of the order
parameter by gauge transformation allows us to write Eq. (1)
in the gauge-invariant form, replacing the vector potential by
the condensate momentum qs = ∇ϕ − 2A. The gradient term
in Eq. (1) can be written in the form

∇̂ · (ǧ∇̂ǧ) = ∇ · Î + i

2
[τ3,qs Î], (4)

Î = ǧ∇ǧ + iqs

2
(ǧτ3ǧ − iτ3), (5)

where Î is the matrix spectral current. We formulate the
Keldysh part of this equation in terms of spectral currents:
charge jc = Tr(τ3Î ), energy je = Tr(τ0Î ), spin js = Tr(σ3Î ),
and spin energy jse = Tr(σ3τ3Î ).

Kinetic equations derived from Eqs. (4) and (5) for these
currents can be written in a matrix form:

∇ ·

⎛
⎜⎜⎜⎝

je

js

jc

jse

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 ST 3 0 0

0 0 RT RL3

0 0 RL3 RT + SL3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fL

fT 3

fT

fL3

⎞
⎟⎟⎟⎠, (6)

where⎛
⎜⎜⎜⎝

je

js

jc

jse

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

DL∇ DT 3∇ jEqs jEsqs

DT 3∇ DL∇ jEsqs jEqs

jEqs jEsqs DT ∇ DL3∇
jEsqs jEqs DL3∇ DT ∇

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fL

fT 3

fT

fL3

⎞
⎟⎟⎟⎠.

(7)
The kinetic coefficients DL/T/T 3/L3, RT/L3, and ST 3/L3 are de-
fined in terms of the components of ĝR and ĝA (see Appendix B
and more details in Ref. [3]). The terms ST 3/L3 are proportional
to the total spin-relaxation rate in the normal state, τ−1

sn =
τ−1

so + τ−1
sf . The phase gradient provides two additional terms

in Eq. (7): spectral supercurrent jE [29] and spin supercurrent
jEs = D Tr[(ĝR∇ĝR − ĝA∇ĝA)σ3τ3]/(8qs). Further we use
the gauge with A = 0, so that qs = ∇ϕ.

In equilibrium fL = tanh(ε/2T ) ≡ n0, and other modes are
absent. Then the spectral current terms yield nonzero charge
supercurrent Is and spin-energy current Ise as

Is = Gξ0ξ0qs

∫ ∞

−∞
dεjE tanh

(
ε

2T

)
, (8)

Ise = Gξ0ξ0qs

∫ ∞

−∞
dεεjEs tanh

(
ε

2T

)
, (9)

where Gξ0 = e2DνF A/ξ0 is the normal-state conductance
of the wire of one superconducting coherence length

FIG. 2. Schematic picture illustrating the nonzero spin energy in
the ground state of a spin-singlet superconductor with spin splitting.
N↑,↓(ε) are the spin-up and -down densities of states as functions of
the energy ε. The relative Zeeman shift of the electronic bands is 2h.
The case of T = 0 is shown, so that all states below the Fermi level
εF are occupied.

ξ0 = √
D/�, with normal-state density of states νF and cross

section A. We assume that the phase gradient is small, so that
Is is much below the critical current of the wire.

The equilibrium spin-energy current, Eq. (9), arises due to
the modification of the superconducting ground state in the
presence of an exchange field. This is illustrated schematically
in Fig. 2, which shows the occupied energy states in spin-up and
spin-down subbands in a superconductor with a spin-splitting
field. Here one can see that there is a relative energy shift
between the spin-up and -down subbands. The overall energy
difference between these states yields the nonvanishing spin
energy density ε↑ − ε↓ = hN0, where N0 is the total electron
density. Since all these particles are in the condensed state, the
collective motion of the condensate results in the coherent spin-
energy flow Ise = vsN0h. However, such an equilibrium spin-
energy current is not directly observable and can be revealed
through its coupling to the superconducting current and charge
imbalance, as discussed below.

Out of equilibrium, the matrix in Eq. (7) couples the four
modes together. The diffusion coefficients DT 3/L3 �= 0 for
h �= 0 combine pairwise fT and fL3 (charge and spin energy)
modes as well as fL and fT 3 (energy and spin) modes [4,5]. An
additional coupling between fL and fT modes is introduced by
jE , mixing charge imbalance with energy. This coupling leads
to the supercurrent-induced charge imbalance in the presence
of a temperature gradient [7–9]. The presence of h and jE

combines these two effects together in Eq. (7) and allows for the
conversion between charge imbalance and spin accumulation.
In the next section we study the observable consequences of
this conversion.

IV. SPIN-CHARGE CONVERSION IN
A NONLOCAL SPIN VALVE

Kinetic theory developed in the previous section can be
applied to predict the experimentally measurable consequence
of the charge-spin conversion effect in the nonlocal spin-valve
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FIG. 3. (a) Schematic view of the setup. Here the spin-splitting
field is induced from either the ferromagnetic insulator or external
magnetic field B. (b)–(d) Spin accumulation as a function of pa-
rameters μz = μz(h,T ,τsn) at the detector position Ldet = L/8 in the
linear-response regime (small Vinj). (b) The dependence on the spin-
relaxation rate for kBT = 0.15�0 and h = 0.3�0. (c) Temperature
and (d) spin-splitting field dependence. The orbital depairing rate is
τ−1

orb = 0.176h2/�0. Here we normalize the induced spin signal by the
supercurrent amplitude Is .

setup shown in Fig. 3(a). It consists of a superconducting
wire with externally induced supercurrent, an injector electrode
attached at x = 0, and a ferromagnetic detector electrode at-
tached at some distance x = LD . The overall length of the wire
L is fixed by the boundary conditions which require all
nonequilibrium modes to vanish at x = ±L/2.

Consider a nonferromagnetic injector electrode attached at
x = 0. We describe the injection of matrix quasiparticle current
using the boundary conditions at the tunneling interface [30]
extended to the spin-dependent case [31]:⎛

⎜⎜⎜⎝
[jc]

[je]

[js]

[jse]

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

N+ PN− PN+ N−
PN− N+ N− PN+
PN+ N− N+ PN−
N− PN+ PN− N+

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

[fT ]

[fL]

[fT 3]

[fL3]

⎞
⎟⎟⎟⎠ .

(10)
Here the left-hand side of Eq. (10) contains the differences
between currents in the superconducting wire on the left and
on the right from the injector, [jk] = [jk(x = +0) − jk(x =
−0)]/κI , where k = T ,L,T 3,L3 and κI = Ginj/(GLL) is the
injector transparency defined by the ratio of the normal-state
conductance Ginj of the injector and the conductance GLL of
the wire per unit length.

The right-hand side of Eq. (10) contains the differences
of the distribution function components [f ]k = f

(S)
k − f

(N)
k

between the superconductor and normal-metal electrodes.
The response matrix is here described by the spin polariza-
tion P and the energy-symmetric and energy-antisymmetric
parts of the density of states, N+ = Tr Re(τ3ĝ

R) and N− =
Tr Re(σ3τ3ĝ

R). In our particular case the normal-metal injector
is characterized by the Fermi distribution function shifted
by the applied bias voltage Vinj. Therefore we have [fL] =

fL − n+, [fT ] = (fT − n−), [fT 3] = fT 3, and [fL3] = fL3,
where n± = [n0(ε + Vinj) ± n0(ε − Vinj)]/2.

The solutions of Eqs. (6) and (10) can be used to calculate
the tunneling current Idet measured by a spin-polarized detector
[4] with spin-filtering efficiency Pdet:

Idet = Gdet(μ + Pdetμz), (11)

μ = 1

2

∫ ∞

−∞
dε(N+fT + N−fL3), (12)

μz = 1

2

∫ ∞

−∞
dε[N+fT 3 + N−(fL − feq)]. (13)

The contributions from the different nonequilibrium modes
to μ and μz can be read off from the different symmetry
components of Idet with respect to the injection voltage Vinj

and the detector polarization Pdet. The non-spin-polarized
injector generates charge fT and energy fL modes [32], which
are odd and even in the injection voltage, respectively. In
spin-split superconductors the energy mode is coupled to the
spin accumulation, producing a long-range spin signal with the
symmetry [4] μz(Vinj) = μz(−Vinj). The supercurrent converts
part of the charge imbalance to long-range spin accumulation
with the opposite symmetry μz(Vinj) = −μz(−Vinj). Below we
concentrate on the details of this mechanism.

First, we solve the kinetic equations using a perturbation
expansion in the small parameter ξ0qs , where ξ0 = √

D/� is
the coherence length. For simplicity, we disregard inelastic
scattering that would add an energy-nonlocal term in Eq. (6)
and rather assume that fL = n0 at the ends of the wire. This
mimics the typical experimental situation where the wire ends
in wide electrodes, often at a distance that is small compared
to the inelastic scattering length. In this case the solution of fL

includes a linear component. The solution of fT 3, however, is
determined by the strength of spin relaxation. This calculation
is detailed in Appendix C.

When qs = 0, we find fT and fL3 modes generating the
charge imbalance μ. For qs �= 0 [see Eq. (7)] these solutions
provide sources for the fL and fT 3 modes generating the spin
accumulation μz in accordance with the qualitative mechanism
illustrated in Fig. 1(b). This generation takes place close to
the injectors before the charge imbalance relaxes due to the
presence of an exchange field and depairing [3,33] [blue lines
in Fig. 4(a)].

However, μz has a long-range part associated with the
contribution of fL, which consists of two qualitatively different
parts. First, even in the absence of the supercurrent, there exists
a long-range contribution related to the already known heating
effect [4] given by

f heat
L (x) = αheat(|x| − L), (14)

where αheat = N+n+/DL. Second, the long-range contribution
excited due to the supercurrent is given approximatively by

f
super
L = αsuper[sgn(x) − x/L]. (15)

The amplitude αsuper depends on the strength of relaxation
described by RT/L3 and ST 3/L3 in Eq. (6).

Note that the spatial structures of (14) and (15) are different
because f heat

L (x) is an even function and f
super
L (x) is an odd

function of x [see Fig. 4(a)]. In addition, the amplitude of
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FIG. 4. Spin accumulation and nonlocal conductance. (a) Position
dependence of heat-induced (red) and supercurrent-induced (blue)
charge and spin imbalances. Here the results are calculated for
T = 0.15�0, h = 0.3�0 at Vinj = 0.1�0. The solid curves are odd
in injection voltage, and dashed curves are even. (b) Injection voltage
dependence on spin accumulation for T = 0.25�0. (c) Nonlocal
conductance as a function of injection voltage in separate scales
for heat- and supercurrent-induced effects (with ξ0∂xϕ = 0.1) for
T = 0.02�0. (d) Heat-induced and total conductance as a function of
injection voltage for T = 0.25�0 (with ξ0∂xϕ = 0.5). The parameters
τ−1

so = 0.0475�0, τ−1
sf = 0.0025�0, h = 0.05�0, and L = 20ξ0 are

the same in (b)–(d).

the supercurrent-induced part is an odd function of the in-
jector voltage αsuper(Vinj) = −αsuper(−Vinj). Therefore it exists
already in the linear regime, whereas the heating (14) is a
nonlinear effect since αheat(Vinj) = αheat(−Vinj). Further, as one
can see from Eq. (14), the heating contribution grows linearly
with the wire length L, while the supercurrent-related part (15)
does not depend on the length L at distances |x| � L.

To gain further insight, we first study the spin accumu-
lation using a numerical solution of the kinetic equations.
In Figs. 3(b)–3(d), 4(a), and 4(b), we show the dependen-
cies of the spin accumulation on various parameters μz =
μz(h,T ,τsn,Vinj,x) obtained from the numerical solutions of
Eqs. (6) and (7). Note that from this plot it is clear that the
effect exists entirely due to the modification of the quasiparticle
spectrum by the spin splitting: As shown in Figs. 3(c) and 3(d),
the spin signal μz disappears both for h → 0 when there is no
spin splitting and for T → 0 when there are no quasiparticles.
At the same time, Fig. 3(b) shows that the effect survives
in the absence of spin-orbit or spin-flip scattering, i.e., for
τsn → ∞. Below we study in more detail the influence of spin
relaxation on the behavior of different contributions to the spin
accumulation.

A. Case without spin relaxation (ST3,L3 = 0)

The discussed mechanism of spin-charge conversion does
not require any nonconservation of spin. This is qualita-
tive distinction from previously discussed direct and inverse
Edelstein effects which rely on the spin-orbit interaction [10–
16]. In the absence of spin relaxation, fT 3 ∝ x is also a

long-range mode similar to the longitudinal one which in the
absence of inelastic scattering is long range [see Eqs. (14) and
(15)]. The combination of fT 3 and fL then yields (see details in
Appendix C)

μz = ξ0∂xϕ
Ginj

Gξ0

∫ ∞

0
dεn−(ε; Vinj)

∑
σ=↑,↓

σN2
σ jσ

s

4Dσ
LRσ

T

u0(x).

(16)

Here u0(x) = −u0(−x) is a function that decays linearly from
unity close to the injector (x = 0) to zero at the reservoirs, and
n− = [n0(ε + Vinj) − n0(ε − Vinj)]/2. Equation (16) describes
the region |x| > λcr, where λcr is the charge relaxation length.
Here N↑/↓ = N+ ± N− are spin-up and -down densities of
states, D

↑/↓
L = DL ± DT 3, R

↑/↓
T = RT ± RL3, and j

↑/↓
s =

jE ± jEs . Moreover, Ginj and Gξ0 are the normal-state conduc-
tances of the injector and of a wire with length ξ0, respectively.
The integrand in Eq. (16) is peaked at ε ≈ � ± h due to the
BCS divergence in Nσ , jσ

s , and Rσ
T . This divergence can be

cut off by the depairing parameter [34] �. Then taking ε =
� + h for spin-up σ =↑ and ε = � − h for spin-down σ =↓
we obtain, Nσ ≈ γ

−1/2
σ /

√
2, jσ

S ≈ γ −1
σ /2, and Rσ ≈ γ

−1/2
σ /2,

with γσ = �/(� + σh). Therefore the integrand scales as
(8γσ )−3/2, whereas the width of the peak is ∝ �. Overall,
this means a diverging integral scaling like ∼�−1/2. Similar
divergence was found in Ref. [6] for the supercurrent-induced
charge imbalance in the absence of spin splitting.

In practice, the relevant depairing mechanism in the pres-
ence of spin splitting and supercurrent is the orbital depairing
due to the combined effect of the supercurrent itself and of an
in-plane magnetic field B on the spectrum of the superconduc-
tor [35–37], with rate τ−1

orb = D�(∂xϕ)2/(2) + De2B2d2/6 for
a film with thickness d. It does not relax the spin but affects
the spectral properties of the superconductor by reshaping the
singularities in the spectral quantities [3]. We can hence use
τ−1

orb instead of � to cut the divergence and see that for very
large phase gradients, μz becomes independent of ∂xϕ.

According to Eq. (16) the difference in the quantity
N2

σ jσ
s /(Dσ

LRσ
T ) for spin-up and -down species describes the

charge-spin conversion. We find that the charge imbalance
in each spin subband is proportional to the energy integral
of N2

σ /Rσ
T . The charge in each subband is then converted

to spin at a rate ∝ jσ
s /Dσ

L. The temperature and exchange
field dependence of μz are given in Figs. 3(c) and 3(d),
respectively. We can see that the linear response μz → 0 as
T → 0, which reflects the freezing out of the quasiparticle
population [Fig. 3(c)]. However, this can be circumvented by
considering the response at Vinj ∼ �, as shown below. At the
superconducting critical temperature Tc, the ratio μz/Is di-
verges similarly to the supercurrent-induced charge imbalance
in the presence of a temperature gradient [7,8]. SinceTc is lower
for a higher exchange field, this divergence happens at a lower
temperature in a higher exchange field. For a fixed temperature,
the divergence of μz also happens at a critical exchange field
[Fig. 3(d)] where superconductivity is suppressed [38,39].

B. Effect of spin relaxation

Spin-flip and spin-orbit relaxation affect both spectral and
nonequilibrium properties of the superconductor. For the
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spectral properties, spin-flip relaxation breaks the time-
reversal symmetry and suppresses the superconducting pair
potential and critical temperature, while spin-orbit scattering
reduces the effect of the exchange field without suppressing
the pair potential [3]. Both spin-flip and spin-orbit scattering
also lead to the relaxation of fT 3 [ST 3/L3 terms in Eq. (6)]. For
strong spin relaxation, the contribution to μz thus results only
from fL and decays only via inelastic scattering. In this case
(see details in Appendix C)

μz = ξ0∂xϕ0
Ginj

Gξ0

∫ ∞

0
dεn−(ε; Vinj)

(N2
↑ − N2

↓)jE

4RT DL

u1(x).

(17)
Here the linear function u1(x) = −u1(−x) ≈ u0(x) for |x| >

λcr. However, the effects of spin-flip/spin-orbit scattering on
the spectral functions also affect the resulting μz. The effect
depends strongly on the type of scattering.

For pure spin-flip relaxation, contribution of fL increases
as a function of the spin-relaxation rate and diverges when the
strong relaxation completely kills superconductivity. This can
be seen in the relaxation rate dependence of μz in the linear-
response regime in Fig. 3(b). For pure spin-orbit relaxation,
the effect of the exchange field is suppressed, and thereby so
is the charge-spin conversion.

V. SPIN ACCUMULATION AND NONLOCAL
CONDUCTANCE

The charge-spin conversion can be detected by inspecting
the nonlocal conductance gnl = dIdet/dVinj in the presence of
the supercurrent Is driven across the wire. Without supercur-
rent, this quantity was measured in Refs. [25–27]. We show
an example of gnl in Figs. 4(c) and 4(d). We separate it into
different symmetry components vs Vinj and Pdet as

gnl = gee + geo + (goe + goo)Pdet, (18)

where gαe/o(Vinj) = ±gαe/o(−Vinj) and α = e/o describe the
symmetry vs Pdet. Since the derivative of the detector current
with respect to Vinj flips the parity of the terms, the conductance
due to the pure charge imbalance is even in both Vinj and Pdet

and hence is described by gee. The term goo = gheat is the long-
range spin accumulation due to the heat injection [4,5]. The
supercurrent induces the term geo that describes the conversion
of temperature gradients to charge [6–8], whereas goe = gsuper

results from the supercurrent-induced charge-spin conversion.
The symmetry of gsuper results from the fact that it is related
to spin imbalance (and therefore antisymmetric in Pdet) and
originates from induced charge imbalance. In normal-metal
spin injection experiments [40] only the term goe is nonzero,
but it requires nonzero spin polarization Pinj of the injector.
Here Pinj = 0.

The term gsuper should be compared to the contribution
determined by effective heating [4] (14),

gheat = Ginj

Gξ0

L

2ξ0
u3(x)

∫ ∞

0
dε

∂n+
∂Vinj

N2
↑ − N2

↓
DL

, (19)

where u3(x) = u3(−x) is a function that changes linearly
from unity at the injector to zero at the reservoirs and n+ =
(n0(ε + eV ) + n0(ε − eV ) − 2n0)/2. For T → 0, ∂n±/∂Vinj

approaches a δ function at ε = ±eV , and we can esti-

mate the integrals by the values of the kinetic coefficients
at those energies. For eV ≈ � ± h where the main signal
resides, gsuper ≈ 2ξ0gheat/L for ξ0∇ϕ ≈ τ−1

orb � + τ−1
sf + τ−1

so ,
i.e., when the supercurrent starts affecting the density of states.
At higher temperatures and lower voltages eV � kBT , where
quasiparticle effects are visible even at linear response, gsuper

can dominate over gheat.

VI. CONCLUSION

In conclusion, we have shown how the nonequilibrium
supercurrent in a spin-split superconductor can partially con-
vert charge imbalance to spin imbalance. The resulting spin
imbalance is long range, decaying only due to inelastic scat-
tering. Here we have concentrated on a setup with collinear
magnetizations. We expect that the generalization of our
theory to the case with inhomogeneous magnetization would
shed light on the possible coherently controllable nonequilib-
rium spin torques. We also expect to find analogous effects
in superconducting proximity structures in the presence of
spin splitting, i.e., combining the phenomena discussed in
Refs. [41,42].
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APPENDIX A: SELF-CONSISTENCY EQUATION FOR �

The pair potential � should be obtained self-consistently
from

� = λ

16

∫ �D

−�D

dε Tr[(τ1 − iτ2)ĝK (ε)], (A1)

where λ is the coupling constant and �D is the Debye cutoff en-
ergy. In the presence of both spin splitting and nonequilibrium
distribution functions, this goes to the form [3]

� = λ

2

∫ �D

−�D

dε
[
ImgR

01fL + ImgR
31fT 3

+ i
(
RegR

01fT + RegR
31fL3

)]
, (A2)

where gR
ij is the part of the retarded Green’s function pro-

portional to σiτj . The results obtained in the main text use
the self-consistent equilibrium gap but do not include the
nonequilibrium corrections. For the gap amplitude |�| this ap-
proximation is justified in the case of low injection conductance
Ginj. However, with such a choice the charge current is, strictly
speaking, not conserved in the presence of a constant phase
gradient. This is because the quasiparticle injection modifies
the phase of � [the last two terms in Eq. (A2)], and the
true phase gradient corresponding to a constant charge current
becomes position dependent. Such an effect is of a higher order
in the phase gradient and within a perturbation approach can
therefore be disregarded. We leave such higher-order effects
for further work.
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APPENDIX B: KINETIC COEFFICIENTS

The Green’s function in Eq. (2) satisfies the normal-
ization condition ǧ2 = 1, which allows us to parametrize
the Keldysh Green’s function as ǧK = ǧRf̌ − f̌ ǧA, where
the distribution matrix f̌ = fL + fT τ3 + fT 3σ3 + fL3σ3τ3.
We also can parametrize the retarded Green’s func-
tion as ǧR = g01τ1 + g02τ2 + g03τ3 + g31σ3τ1 + g32σ3τ2 +
g33σ3τ3, and ǧA = −τ3ǧ

R†τ3. Here gi are complex scalar
functions. From these, we identify N+ = Re(g03) and N− =
Re(g33).

The kinetic coefficients Di , Ri , and Si in Eqs. (3) and (4)
can be expressed in terms of the parameterized functions ǧR

and ǧA. Di are

DL = D

2
(1 − |g01|2 − |g02|2 + |g03|2 − |g31|2

− |g32|2 + |g33|2),

DT 3 = − D[Re(g01g
∗
31) + Re(g02g

∗
32) − Re(g03g

∗
33)],

DT = D

2
(1 + |g01|2 + |g02|2 + |g03|2 + |g31|2

+ |g32|2 + |g33|2),

DL3 = D[Re(g01g
∗
31) + Re(g02g

∗
32) + Re(g03g

∗
33)].

Ri are

RT = Re(g01)� cos ϕ − Re(g02)� sin ϕ,

RL3 = Re(g31)� cos ϕ − Re(g32)� sin ϕ.

Si are

SL3 = τ−1
sn {Re(g03)2 − Re(g33)2

+ β[Im(g01)2 − Im(g31)2 + Im(g02)2 − Im(g32)2]},
ST 3 = τ−1

sn {Re(g03)2 − Re(g33)2

+ β[Re(g31)2 − Re(g01)2 + Re(g32)2 − Re(g02)2]},
where τ−1

sn = τ−1
so + τ−1

sf and the parameter β = (τso −
τsf )/(τso + τsf ) describes the relative strength of the spin-
orbit and spin-flip scattering. For β > 0, spin-flip scattering
dominates the spin-orbit scattering and vice versa for β < 0.
These coefficients are independent of ϕ (the dependence of ϕ

in Ri terms is canceled by the corresponding terms in gi).
There are also two more coefficients in Eqs. (3) and (4),

spectral supercurrent and spectral spin supercurrent, which

depend on the phase gradient ∂xϕ:

jE∂xϕ = 1
8D Tr[(ǧR∂xǧ

R − ǧA∂xǧ
A)τ3],

jEs∂xϕ = 1
8D Tr[(ǧR∂xǧ

R − ǧA∂xǧ
A)σ3τ3].

These two terms are related to the nonzero charge supercurrrent
and spin-energy current. Here and below we assume that the
wire is in the x direction and all changes in the phase ϕ and
the distribution functions take place in that direction.

APPENDIX C: PERTURBATION THEORY SOLUTIONS OF
KINETIC EQUATIONS IN THE LINEAR ORDER BY ξ0∇ϕ

The general solution of the kinetic equations in Eq. (3) can
be written as

(fL,fT 3,fT ,fL3)T

= (C01 + C02x)vT
0 + C1e

kLxvT
1 + C2e

−kLxvT
2 + C3e

kT 1xvT
3

+C4e
−kT 1xvT

4 + C5e
kT 2xvT

5 + C6e
−kT 2xvT

6 , (C1)

where vT
0 = (1,0,0,0)T ; kL, kT 1, and kT 2 are the energy-

dependent inverse length scales; the other vT
i can be determined

numerically; and Ci can be determined from the boundary con-
ditions (10). For a small phase gradient, we can determine these
coefficients analytically. Below we concentrate in particular on
the solutions of the modes related to the supercurrent-induced
spin imbalance and treat the supercurrent as a perturbation
in the kinetic equations. At zeroth order Eq. (3) decouples
into two sets of kinetic equations. First, we concentrate on
the part that is odd in the injection voltage, describing charge
imbalance. In this case, for a vanishing supercurrent the
relevant distribution function components are fT and fL3. We
denote their values in the absence of supercurrent by f 0

T and
f 0

L3. On the other hand, the supercurrent couples them to the
other two functions fL and fT 3 and induces the change δfL and
δfT 3, which we calculate to linear order in the phase gradient.
For fT and fL3, we get the first set of kinetic equations,(

DT DL3

DL3 DT

)(
∂2
x f 0

T

∂2
x f 0

L3

)
=

(
RT RL3

RL3 RT + SL3

)(
f 0

T

f 0
L3

)
.

(C2)
In what follows, we choose �0 to be the reference energy scale,
and therefore the coherence length ξ0 = √

h̄D/�0 becomes
the reference length scale. That means, for example, that the
dimensionless quantities describing spin relaxation are of the
form τsf�0 and τso�0.

Using the boundary conditions (10), we obtain for κIL � 1(
f 0

T

f 0
L3

)
= κI ξ0n−(ε,Vinj)

∑
i=1,2

Aie
−kT ix/ξ0

(
kRi

−1

)
, 0 � x � L

2
, (C3)

where the inverse length scales

k2
T 1/2 =

DT (2RT − SL3) − 2DL3RL3±
√

4(DT RL3 − DL3RT )2 + 4DL3(−DT RL3 + DL3RT )SL3 + D2
T S2

L3

2
(
D2

T − D2
L3

) ,

and the coefficients

Ai =
[
N−

(
DL3 − DT kRi ′

) − N+
(
DT − DL3kRi ′

)]
4
(
D2

L3 − D2
T

)(
kRi − kRi ′

)
kT i

,
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kR1/2 =
DT SL3∓

√
4D2

L3RT (RT + SL3) − 4DL3DT RL3(2RT + SL3) + D2
T

(
4R2

L3 + S2
L3

)
2(DT RL3 − DL3RT )

.

For the perturbed terms of fL and fT 3, we get another set of kinetic equations,

(
DL DT 3

DT 3 DL

)(
∂2
x δfL

∂2
x δfT 3

)
+

(
jE∂xϕ jEs∂xϕ

jEs∂xϕ jE∂xϕ

)(
∂xf

0
T

∂xf
0
L3

)
=

(
0 0
0 ST 3

)(
∂2
x δfL

∂2
x δfT 3

)
. (C4)

Using the solution in Eq. (C3), we obtain(
δfL

δfT 3

)
= κI ξ

2
0 ∂xϕn−(ε,Vinj)

∑
i=1,2

[
αi

k2
L − k2

T i

(e−kT ix/ξ0 − e−kLx/ξ0 )

(−DT 3/DL

1

)

+ βi

k2
T i

(
2x

L
− 1 + e−kT ix/ξ0

)(
1
0

)]
, 0 � x � L

2
, (C5)

where the inverse length scale

k2
L = ST 3DL

D2
L − D2

T 3

and the coefficients

αi = [jEs(DT 3 + DLkRi) − jE(DL + DT 3kRi)][N−(DL3 − DT kRi ′) − N+(DT − DL3kRi ′)]

2
(
D2

T − D2
L3

)(
D2

L − D2
T 3

)
(kRi − kRi ′)

,

βi = (jEkRi − jEs)[N+(DT − DL3kRi ′) − N−(DL3 − DT kRi ′)]

2DL

(
D2

T − D2
L3

)
(kRi − kRi ′)

.

The spin accumulation generated from the supercurrent is

μz = 1

2

∫ ∞

0
dε(N+δfT 3 + N−δfL)

= 1

2
κI ξ

2
0 ∂xϕ

∫ ∞

0
dε n−(ε,Vinj)

∑
i=1,2

[(
N+ − N−

DT 3

DL

)
αi

k2
L − k2

T i

(e−kT ix/ξ0 − e−kLx/ξ0 )

+N−
βi

k2
T i

(
2x

L
− 1 + e−kT ix/ξ0

)]
, 0 � x � L

2
. (C6)

In the extreme limit of τ−1
sn → 0, this result can be reduced to a simpler form. In this case, ST 3 and SL3 terms in the kinetic equations

are zero; therefore the e−kLx/ξ0 term is replaced by a linear term with the same coefficients with δfL. For the linear-response regime
n−(ε,Vinj) = Vinj∂n0/∂ε, we get

μz = VinjκI ξ
2
0 ∂xϕ

∫ ∞

0
dε

∂n0

∂ε

[
N2

↑j
↑
s

4D
↑
LR

↑
T

(
2x

L
− 1 + e−

√
R

↑
T /D

↑
T x/ξ0

)

− N2
↓j

↓
s

4D
↓
LR

↓
T

(
2x

L
− 1 + e−

√
R

↓
T /D

↓
T x/ξ0

)]
, 0 � x � L

2
, (C7)

where the ↑ and ↓ quantities are the addition and subtraction of the singlet and triplet components of the spectral quantities,
j

↑/↓
s = jE ± jEs , N↑/↓ = N+ ± N−, D

↑/↓
L = DL ± DT 3, and R↑/↓ = RT ± RL3.

It is straightforward to see that μz = 0 for h = 0 since the
quantity N2js/(DLRT ) is equal for both spin species. For
nonzero h the difference in this quantity for different spin
species gives the spin accumulation. However, without relax-

ation, this quantity is proportional to 1/
√

�, which describes
the broadening of the spectral quantities.

In practice, the relevant broadening renormalizing μz comes
from the orbital effect due to either a magnetic field or
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FIG. 5. Spin accumulation with and without relaxation in the linear-response regime. (a) The dependence on orbital depairing rate in the
case without spin relaxation. Position dependence in the case of (b) pure spin-flip relaxation and (c) pure spin-orbit relaxation. An exchange
field h = 0.3�0 is the same for all panels, and a temperature T = 0.15�0 is used in (b) and (c). The red curves describe the charge imbalance.
The spin-relaxation length is defined as λsn = √

τsnD.

the phase gradient itself [35–37] or due to terms contribut-
ing to the spin relaxation [3]. The two first effects can be
described by an orbital relaxation rate τ−1

orb = (ξ0∂xϕ)2/2 +
(De2B2d2/6) [37], where B is the magnetic field and d is
the film thickness. In the presence of spin relaxation de-
scribed by the rate τ−1

sn , an estimate for the overall broad-
ening comes from � �→ τ−1

orb + τ−1
sn , but the exact amount

depends on the relaxation mechanism and the size of the
exchange field. As an example, we show the supercurrent-
induced μz vs τ−1

orb in Fig. 5(a). Since μz ∝ (ξ0∂xϕ)�−1/2,
for large phase gradients satisfying ξ0∂xϕ �

√
De2B2d2/6 +

τ−1
sn , the spin accumulation becomes independent of

∂xϕ.
However, spin relaxation also affects the decay of the

nonequilbrium components of the distribution function via the
relaxation terms ∼ST/L3. In another extreme limit τsn → ∞,
we can also have a simpler form of Eq. (C7). In this case

4DL3(DT RL3 − DL3RT )/D2
T � SL3, and

μz = VinjκI ξ
2
0 ∂xϕ

∫ ∞

0
dε

∂n0

∂ε

(N2
↑ − N2

↓)jE

4RT DL

×
(

2x

L
− 1 + 2e−kT 2x/ξ0 − e−kLx/ξ0

)
, 0 � x � L

2
.

(C8)

Here, except for the density of states, the triplet component of
other spectral quantities do not contribute to the spin accumula-
tion. The difference in the density of states for two spin species
behaves differently for spin-orbit and spin-flip relaxations.
Spin-orbit relaxation does not affect the pair potential but
tries to lift the effect of the spin-splitting field. Therefore μz

approaches zero for very strong relaxation [Fig. 5(c)]. In the
case of spin-flip relaxation, it suppresses the pair potential;
therefore spin accumulation diverges [Fig. 5(b)].
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