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Modelling the evolution of periodicity in the
periodical cicadas

Jaakko Toivonen and Lutz Fromhage

Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland

ABSTRACT

Background: Periodical cicadas (Magicicada spp.) have a life cycle that ends with the
entire underground nymph population exhibiting a synchronized mass emergence to mate
above ground. Previous studies have hypothesized that the periodical cicadas evolved from
non-periodical cicadas by switching from a life-cycle length determined by body size to one
determined by age.

Questions: When can a mutation coding for fixed life-cycle length invade a resident popula-
tion in which life-cycle length is variable? What determines the length of the fixed cycle?

Methods: Numerical analysis of a mathematical model and simulations of an individual-
based model.

Results: If there is a sufficiently strong predation intensity affecting the pool of individuals
emerging to reproduce, a non-periodical population may become proto-periodical such that
reproductive success varies yearly. Then, an emergence strategy with a fixed life-cycle length
targeting years of high emergence density can invade.

Keywords: Allee effect, individual-based simulation, numerical analysis, periodical cicadas,
semelparity, structured population model.

INTRODUCTION

The periodical cicadas (Magicicada spp.) are famous for their long, prime-numbered life
cycles of 13 and 17 years. Periodical cicadas live almost all of their life underground as
nymphs before they exhibit a tremendous synchronized mass emergence above ground to
mate, reproduce, and then die. There exists a large body of work on the biology, ecology,
and evolution of the periodical cicadas (Alexander and Moore, 1962; Dybas and Davis, 1962; Dybas and Lloyd,

1962, 1974; Lloyd and Dybas, 1966a, 1966b; White and Lloyd, 1975; White et al., 1979; Karban, 1982, 1984; Martin and

Simon, 1990; Heliövaara et al., 1994; Marshall and Cooley, 2000; Sota et al., 2013), with an excellent review given
by Williams and Simon (1995).

It has been suggested that the periodical cicadas evolved from non-periodical cicadas
(Martin and Simon, 1990) by switching from a size-based to an age-based emergence strategy
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(Yoshimura, 1997; Ito et al., 2015). With size-based emergence, individuals emerge from the ground
when they have reached a threshold body size. Since individual growth rates vary, the
population then is necessarily non-periodical, as individuals reach the threshold body size at
different times. In the case of age-based emergence, individuals wait until they reach a
certain age and then emerge irrespective of size. In this paper, we model the cicada life cycle
and examine under what circumstances a switch from size-based to age-based emergence
may occur.

Generally, a population is called periodical ‘if the life cycle has a fixed length of k years
(k > 1) and if the adults do not appear every year but only every kth year’ (Bulmer, 1977). A
number of studies (Hoppensteadt and Keller, 1976; Bulmer, 1977; Behncke, 2000; Davydova et al., 2003, 2005;

Diekmann et al., 2005; Kon and Iwasa, 2007) have shown that if a population consists of k different age
classes, ecological interactions can result in the extinction of all but one age class, thus
making the population periodical. However, typically it is assumed that life-cycle length is
already fixed so that each individual emerges exactly after k years. In this paper, we demon-
strate how a population where individuals have random life-cycle lengths (size-based
emergence strategy) can evolve into a periodical population where all individuals have the
same fixed cycle (age-based emergence) and all emerge synchronously. First, we derive and
numerically analyse a mathematical population model that highlights the basic ecological
mechanisms promoting invasion of an age-based strategy in a resident population with the
size-based strategy. This model makes a number of simplifying assumptions – for example,
it assumes clonal reproduction, a simplified age structure, a particular limit case of size-
dependent fecundity, and density-independent predation. Despite the simplifications, the
model allows us to study when a size-based population can become proto-periodical and
then be invaded by mutant age-based emergence strategies with different cycle lengths.

In the second part of the paper, we build a more realistic individual-based model (IBM)
that relaxes all of the simplifications of the mathematical model. We run simulations of
the IBM to verify and expand the results obtained from the analysis of the simplified
mathematical model. Although our IBM is similar to the model of Ito et al. (2015), there are
two key differences: we allow both short (1–9 years) and long (10–20 years) cycle lengths for
age-based emergence, and we let the size threshold for size-based emergence evolve (instead
of choosing an arbitrary fixed value). Our approach has the advantage of removing a
confounding mechanism that could otherwise affect the results. Namely, if a size-based
emergence strategy is based on an arbitrarily chosen size threshold, then this threshold is
unlikely to be optimal with regard to the trade-off between nymph survival and fecundity,
where the former decreases and the latter increases the longer an individual remains in the
ground. Then, an arbitrarily chosen size threshold is generally evolutionarily unstable and
potentially allows age-based emergence strategies to invade for reasons that have nothing to
do with synchrony of emergence.

MATHEMATICAL MODEL

Here we assume that individuals live underground for a year while competing for resources,
resulting in mortality due to interference competition. At the end of the year, individuals
may emerge from the ground depending on their emergence strategy to produce new off-
spring. The emergence strategy is given by η = (η1, η2), where η1 is the proportion of the first
year age class to emerge and η2 is the proportion of the second year class to emerge.
Individuals who do not emerge remain in the ground for another year and may emerge at
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the end of the following year. Here we assume that every individual emerges at least by the
end of their third year.

Every year, the emerging adult population suffers mortality due to predation. Adults that
avoid predation produce offspring that are deposited in the ground. After producing new
offspring, the adults die. If all individuals who emerge are predated, no new offspring are
produced.

The above considerations lead us to the following discrete-time model:

n1(t + 1) = β� ·max{0, (η1n1(t) + η2n2(t) + n3(t)) Γ(n̄(t)) − γ} (1)

n2(t + 1) = (1 − η1)n1(t) Γ(n̄(t)) (2)

n3(t + 1) = (1 − η2)n2(t) Γ(n̄(t)), (3)

where n1, n2, and n3 are the population densities of individuals in their first, second, and
third year in the ground, respectively, and the factor β� is the fecundity of an individual with
strategy η. The term

Γ(n̄(t)) := 
1

1 + α(n1(t) + n2(t) + n3(t))
(4)

is the probability of surviving competition in the ground (Beverton and Holt, 1957) and n̄ = (n1, n2, n3) 
is a vector of population densities of all the age classes. Survival probability Γ is the same for 
each individual irrespective of age. The term γ is the reduction in adult population density 
due to predation. This is an extremely simple model of predation, which assumes that 
predation is independent of cicada density and the predator population density is constant 
from year to year. However, it is not a completely unreasonable assumption considering 
the conspicuousness of the Magicicada emergence and their complete lack of predator 
avoidance [Lloyd and Dybas (1966b) even describe the Magicicada as ‘predator fool-hardy’]. 
The discrete-time models of predation and survival above can be derived from 
continuous time processes and we include a simple derivation of both in the Appendix 
[for further discussion on derivations of discrete-time dynamics from continuous time 
processes, see, for example, Geritz and Kisdi (2004) and Eskola and Geritz (2007)].

Finally, we note that it is possible to simplify the model (1–3) slightly by scaling the factor
α out. Choosing ñ1 := αn1, ñ2 := αn2, and γ̃ := αγ (and then dropping the tilde-signs) gives
the model (1–3) with α = 1. This is the model (for a single phenotype) that we use in the
following.

Invasion fitness

When the population consists of k phenotypes, the probability to survive competition in the
ground in a given year t is

Γk(n̄1, . . . , n̄k) =
1

1 + ��k
j = 1 nj,1 + nj,2 + nj,3

, (5)

where n̄i is the vector containing the densities of all age classes ni,1, ni,2, and ni,3 of phenotype
i. The density of phenotype-i individuals that emerge in a given year is

Ei(n̄1, . . . , n̄k) = Γk(n̄1, . . . , n̄k) (ηi,1 ni,1 + ηi,2ni,2 + ni,3), (6)
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where ηi,1 and ηi,2 are the probabilities of emergence from the first and second age classes,
respectively, for phenotype i. The density of all individuals that emerge is

Eall(n̄1, . . . , n̄k) = Γk(n̄1, . . . , n̄k) ��
k

j = 1

ηj,1 nj,1 + ηj,2nj,2 + nj,3�. (7)

Then, the model (1–3) generalizes for k phenotypes to

ni,1 (t + 1) = βi ·max �0, Ei(n̄1(t), . . . , n̄k(t)) − 
Ei(n̄1(t), . . . , n̄k(t))

Eall(n̄1(t), . . . , n̄k(t))
γ� (8)

ni,2(t + 1) = Γk(n̄1(t), . . . , n̄k(t)) ((1 − ηi,1)ni,1(t)) (9)

ni,3(t + 1) = Γk(n̄1(t), . . . , n̄k(t)) ((1 − ηi,2)ni,2(t)), (10)

where βi is the fecundity of phenotype i. The predation experienced by the emerging
individuals of phenotype i is assumed to be proportional to the fraction of individuals of
phenotype i in the whole of the emerging population, which is reflected by the term
Ei(n̄1, . . . , n̄k)/Eall(n̄1, . . . , n̄k).

We rewrite the model for phenotype i shorthand as

n̄i(t + 1) = fi (n̄1(t), . . . , n̄k(t)), (11)

where fi = ( fi,1, fi,2, fi,3)
⊥

 and fi,1, fi,2 and fi,3 are given by the right-hand side of (8)–(10),
respectively. Note that fi,1 is continuously differentiable if

� Ei(n̄1(t), . . . , n̄k(t)) − 
Ei(n̄1(t), . . . , n̄k(t))

Eall(n̄1(t), . . . , n̄k(t))
γ � > δ (12)

for some δ > 0. With this restriction, the Jacobian of fi is well-defined.
Let n̄ denote the density of a resident population, m̄̄ the density of a mutant population,

and fm the mutant population dynamical equations. If the resident population is at an
equilibrium, then the invasion fitness of a rare mutant is given by the leading eigenvalue of
the Jacobian J( fm(n̄, m̄̄))| n̄ = n̂,m̄ = 0, where n̂ is the resident equilibrium (Metz et al., 1992). The
mutant invades if and only if the leading eigenvalue of the Jacobian is larger than one. If
the resident is on a periodic 2-cycle, then invasion fitness can be determined from the
stability of the fixed point f 2

m (n̂, 0), where the mapping fm has been taken twice and n̂ is
one of the points of the 2-cycle (Alligood et al., 1997). Then, invasion fitness is given by the
Jacobian J( f 2

m(n̄, m̄̄))| n̄ = n̂,m̄ = 0. Similarly, if the resident is on a periodic 3-cycle, the invasion
fitness is given by the leading eigenvalue of the Jacobian J( f 3

m(n̄, m̄̄))| n̄ = n̂,m̄ = 0.

Size- and age-based emergence strategies

Consistent with the hypothesis that age-based emergence evolved from an ancestral popula-
tion with the size-based emergence trait, we assume that the resident population follows a
size-based emergence strategy. We assume that there exists some threshold body size so that
any individual with the size-based trait who grows above that threshold size emerges at
the first opportunity. A size-based emergence strategy is characterized by η = (η̂1, η̂2), where
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η̂1 and η̂2 are the proportions of the first and second year age classes, respectively, that reach
the threshold body size. In order to study the invasion of a rare, periodic mutant with an
age-based emergence trait, we define two possible mutant strategies. First, a mutant with a
fixed 2-year cycle that is characterized by the strategy η = (0, 1): the mutant individuals
remain in the ground for exactly 2 years before emerging irrespective of body size. Second, a
mutant with a fixed 3-year cycle that is characterized by the strategy η = (0, 0): the mutant
individuals remain in the ground for exactly 3 years before emerging irrespective of
body size.

We assume that fecundity is some increasing function of body size with maximum
fecundity attained at the threshold for size-based emergence. Therefore, the fecundity of an
individual with the size-based emergence trait is β(�̃1,�̃2) = βmax, where βmax is the maximum
fecundity. The fecundity of an individual with the age-based emergence trait and a 3-
periodic cycle is also β(0,0) = βmax, since all 3-year-old nymphs are assumed to have reached
the threshold body size. An individual with the age-based emergence trait and a 2-periodic
cycle typically should have an average fecundity that is less than βmax. This is because
typically not all individuals reach the threshold body size by the end of 2 years. Here, we
assume a limit case such that only individuals who have reached the threshold body size
actually reproduce, i.e. we assume that β(0,1) = (η̂1 + (1 − η̂1)η̂2)βmax. This ensures that the age-
based emergence trait does not have any intrinsic advantage over the size-based trait due to
some age-based individuals reproducing earlier than their size-based counterparts would
have. Then, if we nevertheless discover that an age-based trait can evolve, it is a very robust
result, which underestimates the propensity of periodic emergence to evolve rather than
overestimating it.

Results

We numerically iterated the model (1–3) for 100,000 rounds to determine the resident
population attractor while assuming that the resident population follows the size-based
emergence strategy. We repeated the process for different values of predation γ and the
growth parameter η̂2 while keeping η̂1 fixed to produce a bifurcation plot of resident
attractors (Fig. 1a). We numerically calculated the Lyapunov exponent of each attractor to
determine whether the attractor is an equilibrium, a cycle, an invariant loop, or a strange
attractor (Caswell, 2001).

From Fig. 1a we see that if predation γ is low, the resident population always settles to
an equilibrium. However, for higher values of γ, the resident population attractor becomes
a 2-cycle or a 3-cycle, if η̂2 is sufficiently high or low, respectively. For intermediate values
of η̂2, we do not observe cycles. Naturally, the population is not viable, if predation γ is too
high.

In the case shown in Fig. 1a, we assume a low value for η̂1. Then, if η̂2 has a high value,
most individuals emerge at the age of 2 years. Conversely, if η̂2 is low, most individuals
emerge at the age of 3 years (Fig. 1c). When the population becomes a 2- or 3-cycle,
predation suppresses other year classes except for one: since the resident population follows
the size-based emergence strategy, some individuals will always emerge each year, but now
within a given cycle there is only one year when the emerging population is large enough not
to be entirely predated. If η̂2 has an intermediate value, any given individual has a reason-
ably high probability of emerging either at age 2 or age 3. Then, the emergence of a single
cohort of newborns is spread across 2 years instead of most of the cohort emerging at the
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same time. Thus, the population goes extinct without becoming cyclic, if predation
increases sufficiently.

We performed local stability analysis to get more insight into the bifurcations away
from equilibriums, i.e. for each equilibrium n̂, we calculated the leading eigenvalue of the
Jacobian J( fres(n̄))| n̄ = n̂, where fres(n̄) gives the resident population dynamics. We see that
when η̂2 is sufficiently high, the transition from an equilibrium to a 2-cycle happens via a flip
bifurcation: the equilibrium loses its stability with the leading eigenvalue exiting the unit
ball via point (−1, 0). This bifurcation is known to produce a stable 2-cycle (Caswell, 2001).

When η̂2 is sufficiently low, the transition from an equilibrium to a 3-cycle is interesting.
First, the equilibrium loses stability through a Hopf bifurcation (a complex conjugate pair
of leading eigenvalues leaves the unit ball) that creates an invariant loop (Caswell, 2001).
However, a sufficient increase in γ then typically causes the dynamics to settle on a stable
3-cycle. Note that in Fig. 1a the black area contains invariant loops and also some long but
fixed cycles.

We calculated the invasion fitness for the two periodical mutants for each combination
of γ and η̂2 for which the resident was at an equilibrium, a 2-cycle or a 3-cycle. We found
that the mutants were never able to invade an equilibrium. When the resident is at an

Fig. 1. Numerical analysis of the model (1–3) with η̂1 = 0.1 and βmax = 10. (a) Bifurcation plot of
population dynamical attractors for the resident population. (b) Viabilities of size-based and age-
based emergence strategies. The viability region of the size-based emergence strategy is given by the
dark grey region. Age-based strategies can exist both in the dark grey and light grey regions. No
strategy is viable in the white region. (c) Probability distributions of the age at which an individual
reaches the threshold body size for different values of η̂2 (indicated above each plot).
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equilibrium, the size of the emerging population each year is constant and therefore there is
no benefit in delaying emergence for the 3-cycle mutant. Similarly, for the 2-cycle mutant
there is no benefit of delaying emergence for those who reach the threshold body size in the
first year. Additionally, we assumed that 2-cycle individuals that did not reach the threshold
body size by the end of the second year do not reproduce (but their size-based counterparts
would have done so after the third year). However, we found that the 2-cycle mutant was
able to invade precisely when the resident was on a 2-cycle and the 3-cycle mutant was able
to invade precisely when the resident was on a 3-cycle. When emergence of the resident
population is successful in some years only, a mutant strategy that waits to emerge precisely
in those years is naturally beneficial: an individual emerging in the wrong year cannot repro-
duce, whereas an individual who waits for the correct year endures nymphal competition for
an extended period, but still has a positive probability of successful reproduction.

We also iterated the model assuming that the resident population follows an age-based
emergence strategy and found that these populations can persist under higher levels of
predation than populations with the size-based emergence strategy (Fig. 1b).

INDIVIDUAL-BASED MODEL

Here we construct an individual-based model (IBM) to study the evolution of periodicity in
the Magicicada. In contrast to the mathematical model studied in the previous section, here
we incorporate sexual reproduction, explicit genetics, density-dependent predation, and an
explicit model for individual growth resulting in variable (and possibly long) life-cycle
lengths. In the following we describe the model in detail. A summary of the general flow of
the IBM is given in Fig. 2.

A nymph living in the ground undergoes density-dependent competition. The probability 
to survive a given year is 1/(1 + αn0), where α is a coefficient that measures the intensity 
of competition, and n0 is the size of the population (total number of individuals) at the 
beginning of the year (see Appendix for a derivation). Based on the general survival 
probability, a biased coin-flip is performed for each member of the nymph population to 
determine whether the individual survives competition or not. Death due to density-
independent effects is assumed to be negligible. All surviving nymphs grow by a positive 
increment, which is drawn independently for each individual from a log-normal distribution

Fig. 2. The IBM goes through five main steps during each iteration of the program corresponding
to one year in the cicada life-cycle. (1) Density-dependent competition among nymphs reduces
population size. (2) All surviving nymphs grow in size. (3) Each nymph that meets its condition
for emergence (threshold size or age) moves from the nymph population to the adult population.
(4) Density-dependent mortality for the adult population due to predation. (5) Each individual
remaining as part of the adult population reproduces. The offspring are added to the nymph
population. All adults are removed from the population after reproduction.
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X = exp(�(µ, σ
2)), where �(µ, σ

2) is the normal distribution with mean µ and standard
deviation σ. The log-normal distribution was chosen as it is common in natural processes
(Koch, 1966; Grönholm and Annila, 2007) and has the property of producing only positive
values. A log-normal distribution of yearly growth values would follow, e.g. if each year
individuals go through a period of exponential growth and the individual rates of growth
vary yearly depending on a normally distributed amount of resources.

We assume that nymphs with the size-based emergence trait remain in the ground and
feed until they reach a threshold body size, and only then do they emerge. In contrast,
nymphs with the age-based emergence trait will wait and feed in the ground until a certain
number of years has passed after which they emerge irrespective of their body size. In other
words, if an age-based nymph reaches the threshold body size before the year in which
it is supposed to emerge, it will remain in the ground and wait until the correct year to
emerge.

The emerging population of adult cicadas suffers mortality due to predation. We assume 
that the probability of death by predation for a given individual is dependent on the size of 
the emerging population. Specifically, we assume that predation follows a Holling type 
II functional response (Holling, 1959) that models predator satiation (see Appendix for 
more details). Based on the general survival probability, a biased coin-flip is performed 
for each member of the adult population to determine whether the individual survives 
predation or not. We assume that the effect of feeding on the cicadas is negligible on the 
production of predator offspring and that the density of the predator population p 
remains constant throughout a given simulation.

Each adult that survives predation produces offspring. We model sexual reproduction but
only keep track of female individuals and assume that enough males exist for reproduction
with male genotype ratios identical to the female population. We assume a one-locus,
two-allele genetic system where one allele codes for size-based emergence and the other for
age-based emergence. We look at both cases of dominance, where either the allele coding
for size-based emergence or that for age-based emergence is dominant. If an individual has
two alleles coding for age-based emergence but with different cycle lengths, we assume that
the shorter cycle dominates. Each new offspring receives one randomly chosen allele from
both parents. We assume a fixed mutation probability for both alleles. If an allele coding for
age-based emergence mutates, it becomes an allele coding for size-based emergence. If an
allele coding for size-based emergence mutates, it becomes an allele coding for age-based
emergence for which the life-cycle length is a random integer between 1 and 20. The off-
spring are deposited back into the ground, where they enter the juvenile (nymph) popula-
tion. After reproduction, all the adults die. Then, the yearly cycle is repeated from the
beginning.

For the simulations we assumed that fecundity increases linearly with respect to size so
that the expected number of offspring was equal to the individual’s size, e.g. an adult with
size 2.5 would have two offspring and have a 50% chance of having a third offspring.
Generally, if fecundity is an increasing function of body size, then there is a trade-off
between fecundity and probability to survive until emergence, i.e. the longer an individual
waits in the ground growing, the more her fecundity increases while the probability to
survive until emergence decreases (due to intraspecific competition). Then, if we were to
choose an arbitrary size threshold value for the size-based emergence strategy, age-based
emergence might prevail simply because it allowed individuals to better optimize their
emergence with regard to the fecundity–survival trade-off. However, this is not what we are
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interested in here. Since our hypothesis here is that size-based emergence was an ancestral
trait from which age-based emergence evolved, it is likely that size-based emergence
would have had ample time to evolve into an evolutionarily stable threshold size before
the introduction of age-based emergence (optimizing the size threshold with regard to
the fecundity–survival trade-off). Therefore, we let the size-based emergence strategy
first evolve such that we can determine an evolutionarily stable size threshold value.
Then, we investigate whether a population with the size-based emergence trait and an
evolutionarily stable size threshold value can be invaded by a mutation coding for age-based
emergence.

We used a computer cluster provided by the University of Jyväskylä to run all of the
simulations. We used Matlab (R2015b release) for writing and running the code for
the IBM.

Results

We investigated how different levels of predation and different nymph growth rates (and
thus different life-cycle lengths) affect the evolution of periodicity. More specifically,
between different simulation runs we varied predator density p and the growth parameters
µ and σ (mean and standard deviation, respectively, of the normal distribution underlying
the log-normal distribution of individual yearly growth rates) as defined above. First, we
determined the evolutionarily stable threshold size for size-dependent emergence. We ran
five independent simulations for each combination of p and µ (with σ fixed) and instead of
letting mutations change a size-based trait into age-based emergence, mutations affected the
size threshold value of newborns. We started each simulation with a polymorphic initial
population that had a uniform distribution of a range of threshold values represented in the
population. The simulations typically converged so that at the end of each simulation all
individuals had similar size threshold values. Then, we calculated the average end value for
the size threshold for each parameter combination. We observe that generally increasing
predator density p causes the evolutionarily stable size threshold value to increase. Similarly,
smaller growth rates and thus longer life cycles resulted in a larger evolutionarily stable
body size threshold value.

Next, we investigated whether age-based emergence could invade a resident population
with the size-based emergence trait. We performed ten simulation runs for each combin-
ation of predator density p and the nymph growth parameter µ. We began each simulation
run with an initial population that consisted of homozygote individuals with the size-based
emergence trait with the specific size thresholds obtained as described above. The initial
population was given an even distribution of all age classes {0, . . . , k}, where k was one less
than the average age of emergence. An individual of a particular age class was given a
starting body size equal to the expected body size at that age. Since our hypothesis here is
that age-based emergence evolved from an ancestral population with the size-based emer-
gence trait, we assume that the initial population has reached a population dynamical
attractor before the age-based emergence trait is introduced. Therefore, we first ran each
simulation for 2000 rounds with the mutation probability set to zero (so that the resident
population had time to settle to a population dynamical attractor before mutations could
occur). After 2000 rounds, we set the mutation probability to a fixed positive value and then
the simulation was continued for another 98,000 rounds. We also started each simulation
with predator density p set to zero and then progressively increased that density so that after
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1000 rounds it had reached the desired level (this allowed the resident population to settle
smoothly into a population dynamical attractor).

The simulation results are shown in Fig. 3. Generally, we observe that if there is no
predation, the age-based emergence trait cannot invade a resident population with size-
based emergence. However, if predator density is increased sufficiently, then invasion
becomes possible. If predator density is increased too much, the resident population with a
size-based emergence trait becomes non-viable. With slow growth rates population density
decreases, because longer life cycles require individuals to endure intraspecific competition
for longer periods (but this might change, for example, if fecundity was a non-linear
function of size). Then, also reducing growth rates can make the invasion of age-based
emergence possible. However, if growth rates are too small, then again the resident popula-
tion with a size-based emergence trait becomes non-viable. We performed test simulations
starting with an age-based resident population and found that generally populations with
the age-based emergence trait were able to survive under higher levels of predation than
their size-based counterparts.

We make the following observations about the dynamics of the resident size-based
emergence population before mutations for the age-based emergence are allowed. We
observe that if there is no predation, then the density of emerging adults is roughly constant
each year with some natural variation due to the growth process being stochastic (Fig. 4a).
If predator density is increased sufficiently, typically this causes the resident size-based
emergence population to become proto-periodical, i.e. the density of the emerging adult
population begins to oscillate from year to year in a distinguishable but not yet perfect
pattern (Fig. 4b). To measure the level of proto-periodicity in the resident population, we
measured the autocorrelation of the adult emergence density for the final 200 rounds
before mutations were allowed to occur, i.e. the measurement was done after the resident
population had reached a population dynamical attractor. To measure the autocorrelation,
we used the autocorr function provided by Matlab. Figure 3c shows the average value of the
highest correlation frequency for each µ, p combination.

Fig. 3. Results of the IBM simulations. Parameter values used for the simulations: σ = 0.3, α = 0.0001,
a = 1, h = 1. Initial population size was set to 2000 and the mutation probability (per allele) was 0.001.
(a, b) Average proportion of the population with an age-based emergence trait at the end of the
simulations is shown for each combination of p (predator density) and µ (mean). Low mean values
indicate slow average growth whereas high values indicate fast growth. Black indicates that all
simulations ended with the entire population having evolved to have age-based emergence. Light grey
indicates that all simulations ended with the entire population having the size-based emergence trait.
The white region indicates where the initial, size-based population is not viable. Panel (a) shows
simulation results for the case when age-based emergence is assumed to be a recessive trait while panel
(b) shows results for the case when it is assumed to be a dominant trait. (c) Correlation value of the
highest autocorrelation frequency of the resident population emergence size measured for the
final 200 simulation rounds before mutations were allowed to occur. Black regions indicate that
the resident population has become highly proto-periodical, while the light grey regions indicate
that the resident population is at a (stochastic) equilibrium. (d) Average cycle length (number of years)
of the age-based trait in cases when the population evolved to have age-based emergence. Crosses
indicate results for the case when age-based emergence is recessive; open circles indicate the case when
age-based emergence is dominant. The solid line shows a quadratic curve fitted to the data of the
recessive case and the dashed line shows a quadratic curve fitted to the data of the dominant case.
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We observe that when the age-based emergence allele is recessive, invasion occurs only
when the resident population already exhibits strong proto-periodicity (see Figs. 3a and 3c).
However, when the age-based emergence allele is dominant, then invasion becomes much
more common (Fig. 3b). Once the invasion of age-based emergence is complete, size-based
emergence cannot invade back: individuals that do not emerge in synchrony with the rest of
the population perish due to predation before having an opportunity to reproduce. We also
observe that when the age-based emergence trait invades, its cycle length is naturally
dependent on the nymph growth rates: when growth is slower and thus life cycles are longer,
the resident proto-periodical cycles become longer and therefore also the invading age-
based trait has a corresponding, longer cycle length (Fig. 3d).

Finally, we also tested the effect of varying the growth parameter σ on the evolution of
periodicity. Here, we use a fixed value for the growth parameter µ and vary both σ and
predator density p. As before, we first determined the evolutionarily stable threshold body
size for each parameter combination and then ran simulations to determine whether an age-
based trait would be able to invade a size-based resident population. The results are shown
in Fig. 5a. We see that increasing σ reduces the ability of age-based traits to invade. Similar
to the mathematical population model studied above, where periodicity did not evolve for
intermediate values of η̂2, we believe the reason for this is that higher values of σ result in
greater variance in the probability distribution of emergence ages for the size-based trait
(Figs. 5c–e). Then, the size-based resident population simply cannot become (strongly)
proto-periodical (Fig. 5b) as the emergence of the newborns of any given year is spread out
over several years and no set of newborns is able sufficiently to remain as a single cohort.
Thus, invasion of the age-based trait is not possible for sufficiently large σ.

DISCUSSION

In this paper, we show how the periodical cicadas (Magicicada spp.) may have evolved from
non-periodical cicadas by switching from size-based emergence to age-based emergence. To
do this, we develop two models of the cicada life cycle that complement each other: one a

Fig. 4. Examples of resident population emergence densities over time with different levels of
predation. Parameter values used for the simulations: µ = − 0.6, σ = 0.3, α = 0.0001, a = 1, h = 1. (a) No
predation (p = 0). Emergence density is roughly constant each year with some natural variation.
(b) Relatively high predator density (p = 80). Emergence densities fluctuate periodically.
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simplified mathematical population model and the other a more realistic individual-based
model (IBM). Our analysis of the mathematical model allows us to demonstrate that
sufficiently high levels of predation relative to cicada population size can trigger a switch
from size-based to age-based emergence. Simulations of the IBM concur with this finding
and provide further evidence for the robustness of the result.

With both models, we start with an initial population where individuals emerge when
they reach some predefined body size threshold (size-based emergence). We assume in both
models that the yearly growth of individual nymphs in the ground is a stochastic process
with some variance. Due to this variance in growth rates, individuals reach the threshold
body size and emerge at different times, and thus the resident population is generally non-
periodical. However, if predation increases sufficiently relative to the size of the emerging
adult population, then the whole population can become proto-periodical, i.e. population
density oscillates with reproduction repeatedly being reduced or completely suppressed in

Fig. 5. Results of the IBM simulations. Parameter values used for the simulations: µ = −1.0, α =
0.0001, a = 1, h = 1. (a) Average proportion of the population with an age-based emergence trait at the
end of the simulations shown for each combination of p (predator density) and σ (standard deviation).
Age-based emergence is here assumed to be a recessive trait. In the figure, black indicates that all
simulations ended with the entire population having evolved to have age-based emergence. Light grey
indicates that all simulations ended with the entire population having the size-based emergence trait.
The white region indicates where the initial, size-based population is not viable. (b) Correlation value
of the highest autocorrelation frequency of the resident population emergence size measured for the
final 200 simulation rounds before mutations were allowed to occur. Black regions indicate that
the resident population has become highly proto-periodical, while the light grey regions indicate
that the resident population is at a (stochastic) equilibrium. (c–e) Probability distributions of the age
at which an individual reaches the threshold body size for different values of σ: (c) σ = 0.2, (d) σ = 0.4,
(e) σ = 0.6.
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some years. In these circumstances, a mutation coding for periodic emergence (age-based
emergence) in years of high emergence density can invade. Although here we explicitly
model predation, other mechanisms that create an Allee effect on the emerging adult cicada
population, such as density-dependent fecundity or mating success (Karban, 1981), could also
be responsible for inducing proto-periodicity.

We find that increasing predator density relative to the size of the cicada population
can lead to the evolution of periodicity through a switch from size-based to age-based
emergence. Generally, this switch is possible near the boundary of extinction (Ito et al., 2015);
that is, a switch to age-based emergence occurs when predator density is sufficiently high
that the size-based population would not be able to exist if predator density increased (or
cicada population size decreased) much further. In contrast, the age-based population
typically can be sustained under higher levels of predation because it exhibits larger popula-
tion sizes on emergence. However, it is important to understand that proto-periodicity of
the resident size-based population is a necessary condition for a successful invasion of the
age-based trait (but see also the next paragraph). If there is too much variance on average
growth rates and the emergence ages are too widely spread over several years, it may not be
possible for the size-based population to become proto-periodical even under increasing
predation pressure and the population may become extinct without any possibility to evolve
periodical emergence.

Contrary to Ito et al. (2015), we find that assumptions on the underlying genetics determin-
ing the trigger for adult emergence make a difference for when the evolution of periodicity is
possible. If age-based emergence is triggered by a recessive allele, then generally it can only
invade a size-based resident population, when the resident population has already become
strongly proto-periodical. However, if the age-based emergence allele is dominant, then it
can invade under a wider variety of circumstances. In particular, the resident size-based
population does not necessarily have to be strongly proto-periodical. However, generally
the age-based emergence trait cannot invade if there is no or very little predation relative
to the size of the cicada population.

We assume that fecundity is an increasing function of body size. Then, each year there are
conflicting pressures on whether an individual should emerge: staying in the ground to grow
increases fecundity further, but it also reduces the probability of survival until reproduction
due to intraspecific competition. In other words, typically the expected value (expected
number of offspring produced) of staying in the ground is initially positive, but the bigger
an individual becomes, the more she stands to lose by risking staying an extra year in the
ground. Then, generally there exists an optimal threshold size for emergence so that up
until that size an individual has a positive expected value to stay in the ground growing
and beyond that size the expectation becomes negative (so that one should emerge). If the
body size threshold for the resident size-based emergence population is not optimal, then
age-based emergence could invade simply due to there being a better balance between
fecundity and mortality. Moreover, the body size threshold must be under selection
itself: any mutant individual with a size threshold closer to the optimum relative to the
resident population threshold would be positively selected. Since the size-based emergence
trait is assumed to be the ancestral trait that existed before age-based emergence, it would
likely have had ample time to evolve into an evolutionarily stable threshold size. This is
an aspect that was not considered in the paper by Ito et al. (2015), in which they assume an
arbitrary size threshold for maturity, but then allow age-based individuals to produce
offspring in proportion to their body size even if they have not reached the threshold body
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size. Then, the arbitrary choice of the threshold body size is typically not the optimal
threshold with regard to the survival–fecundity trade-off and it is generally evolutionarily
unstable.

Based on previous concerns, it is not clear whether in the model of Ito et al. (2015) age-
based emergence evolves because of periodicity per se or because it allows for a better
fecundity–survival trade-off. In particular, Ito et al. find that periodicity can evolve even
when there is no Allee effect affecting the emerging adult cicada population (see, for example,

Figure S4 of Ito et al., 2015), which is not possible in our model. Furthermore, we suspect that
Ito et al. only find periodicity evolving in cold environments (when nymphal growth is
slow) because they only consider periodic cycle lengths of at least 10 years. We find that
periodicity can evolve in all environments and the cycle length of the invading periodical
population depends on the environment: short cycles are possible in warm climates (when
nymphal growth is fast) and long cycles are possible in cold environments (when nymphal
growth is slow).

In order to study the benefits of periodicity itself, we have set up our models so that
age-based emergence is never intrinsically favoured. This is done in two ways: for the
mathematical model we assume that reproduction is possible only for individuals that have
reached the threshold body size required for size-based emergence, and for the IBM we first
establish what the optimal body size threshold is for each environment before we run
simulations that allow mutations for age-based emergence. This allows us to demonstrate
that age-based emergence is selected for in environments where the resident population
following size-based emergence becomes proto-periodical. Furthermore, it is worth noting
that because of our model setup, we are more likely to underestimate the evolutionary
potential of periodicity than to overestimate it.

A periodical population following the age-based emergence strategy is robust in the sense
that a size-based emergence strategy cannot invade if the level of predation remains
sufficiently high (and this level may be lower than what was needed for periodicity to evolve
originally): any individual not in synchrony with the main population will be eliminated due
to predation when it emerges. For the same reason, periodically emerging mutants with a
wrong cycle length would not be able to invade. We also find that periodical populations
can persist under higher levels of predation pressure than non-periodical populations
because periodical populations typically exhibit larger emergence sizes. However, if preda-
tion intensity was to decrease sufficiently, then it could become possible for the size-based
emergence strategy to invade.

In this paper, we do not consider why the Magicicada life cycles are precisely the prime
numbered 13 and 17 years. However, understanding how periodicity may evolve is a first
step towards understanding why precisely those periods evolved in the Magicicada. We
show that non-periodical cicadas can evolve into periodical cicadas with any cycle length,
and the precise length is mostly determined by average nymph growth rates. In our model,
cicada population densities are higher in warm climates (when nymphal growth is fast) and
lower in cold climates. Also, the level of predation required to initiate the evolution of
periodicity is high in warm climates and it becomes progressively smaller in colder climates.
This is a potential explanation for the long periodic cycles of the Magicicada (and why
contemporary short-lived annual cicadas remain non-periodical), i.e. the long periods
developed in a cold climate and the reduced population densities made cicadas more
vulnerable to predation. This resulted in proto-periodicity of the ancestral size-based cicada
population and allowed for the invasion of age-based emergence. Our results are consistent
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with the hypothesis that periodicity in the Magicicada developed during the Pleistocene
glacial period (Cox and Carlton, 1988; Yoshimura, 1997).

Some authors have suggested that periodicity in the Magicicada evolved independently in
several different populations and the populations with prime numbered cycles were selected
for due to hybridization (Cox and Carlton, 1988, 2003; Yoshimura et al., 2009): hybrid offspring of two
different cycles would be lost due to their emergence not being in synchrony with either
parent cycle and prime-numbered cycles co-emerge less often with other cycles. While we
believe that hybridization could be an important factor selecting for prime-numbered cycles,
we do not think that the issue has been fully resolved. For example, if there are two periodic
populations with even cycle lengths such that one emerges in even years and the other in
odd years, then the two populations never co-emerge (Lehmann-Ziebarth et al., 2005)! Some type of
environmental stochasticity causing occasional temporal shifts in emergence could possibly
resolve the issue, and we encourage further research into the matter.
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APPENDIX

Nymph mortality due to competition

In both the ‘Mathematical model’ and ‘Individual-based model’ sections of this paper,
we assume that yearly mortality of nymphs in the ground follows a simple model of
continuous-time interference competition

dn

dt
= −αn2. (A1)

Assuming n(t) > 0 for all t, the solution to (A1) is

n(t) =
n0

1 + αtn0

, (A2)

where n(0) = n0 is the density of the nymph population at the beginning of the year. Then,
the fraction of individuals surviving after one (arbitrary) unit of time is

n(1)

n(0)
=

1

1 + αn0

, (A3)

which is the form of Γ used in (4) and which gives the yearly survival probability for each
individual in the IBM.

Density-independent predation

In the ‘Mathematical model’ section, we assume that mortality due to predation is
independent of cicada density and the change in cicada density over time is given by

dn

dt
= −ap, (A4)

where a is the attack rate of the predator and p is predator density, which is assumed to be
constant. The solution to (A4) is

n(t) = n0 − apt, (A5)

where n(0) = n0 is the initial density of the nymph population above ground immediately
after emergence. Then, the density of surviving individuals after one (arbitrary) unit of time
is

n(1) = max{0, n0 − ap}, (A6)

which is the form for the density of reproducing individuals used in (1) with (η1n1 +
η2n2 + n3) Γ(n̄) = n0 and γ = ap.
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Density-dependent predation

In the ‘Individual-based model’ section, we assume that the density of emerging adult
cicadas is reduced according to the following equation:

dn(t)

dt
= −

a n(t) p

1 + a h n(t)
, (A7)

where n is the cicada population density, a is the attack rate of the predators, h is the
handling time (time spent processing a captured cicada), and p is the predator population
density. To calculate the probability of survival for each individual cicada, we take equation
(A7) with initial condition n(0) equal to the emerging cicada population size and then
numerically solve the dynamics for one (arbitrary) unit of time. Then, we take the fraction
of surviving cicadas n(1) over the original emergence size as the probability of survival for
any given individual, i.e. the probability of a given adult cicada to survive predation is
n(1)/n(0). Effectively, this process introduces an Allee effect on the emerging adult cicada
population, whereby small (relative to predator density) emerging populations are likely to
be wiped out by predation before they have the opportunity to mate.
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