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1  | INTRODUC TION

Parasitism is a potent source of selection in natural host populations 
and has recently been suggested to play a role in processes such 
as maintenance of sexual reproduction (Jokela, Dybdahl, & Lively, 
2009; King, Delph, Jokela, & Lively, 2009) and divergence of host 
populations (Eizaguirre, Lenz, Kalbe, & Milinski, 2012; Karvonen & 
Seehausen, 2012). Indeed, several parasite taxa impair host condition 
through depletion of resources, tissue damage, and manipulation of 

host behavior (Barber, Hoare, & Krause, 2000; Barber & Svensson, 
2003; Hafer & Milinski, 2016; Jokela, Taskinen, Mutikainen, & Kopp, 
2005; Karvonen, Seppälä, & Valtonen 2004a; Moore, 2002; Seppälä, 
Liljeroos, Karvonen, & Jokela, 2008) and thus have severe implica-
tions for host fitness. The risk of parasitism is often structured both 
spatially and temporally because of spatial aggregation of infected 
individuals and parasite intermediate hosts (Byers, Blakeslee, Linder, 
Cooper, & Maguire, 2008; Faltýnková, Valtonen, & Karvonen, 2008; 
Jokela & Lively, 1995; Karvonen, Cheng, & Valtonen, 2005), and 
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Abstract
Parasitism is considered a major selective force in natural host populations. Infections 
can decrease host condition and vigour, and potentially influence, for example, host 
population dynamics and behavior such as mate choice. We studied parasite infec-
tions of two common marine fish species, the sand goby (Pomatoschistus minutus) and 
the common goby (Pomatoschistus microps), in the brackish water Northern Baltic 
Sea. We were particularly interested in the occurrence of parasite taxa located in 
central sensory organs, such as eyes, potentially affecting fish behavior and mate 
choice. We found that both fish species harbored parasite communities dominated 
by taxa transmitted to fish through aquatic invertebrates. Infections also showed 
significant spatiotemporal variation. Trematodes in the eyes were very few in some 
locations, but infection levels were higher among females than males, suggesting dif-
ferences in exposure or resistance between the sexes. To test between these hy-
potheses, we experimentally exposed male and female sand gobies to infection with 
the eye fluke Diplostomum pseudospathaceum. These trials showed that the fish be-
came readily infected and females had higher parasite numbers, supporting higher 
susceptibility of females. Eye fluke infections also caused high cataract intensities 
among the fish in the wild. Our results demonstrate the potential of these parasites 
to influence host condition and visual abilities, which may have significant implica-
tions for survival and mate choice in goby populations.
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seasonal changes in release of parasite infective stages (Karvonen, 
Seppälä, & Valtonen 2004b; Taskinen, Valtonen, & Mäkelä, 1994). 
Consequently, the impact of parasites can also vary among host 
populations and, if persistent, such differences can potentially cre-
ate different selection pressures for host individuals living in these 
populations (Karvonen & Seehausen, 2012).

Several host species of parasites express secondary sexual 
characteristics through which they can advertise their vigour, as 
well as resistance to parasites (Hamilton & Zuk, 1982). Often these 
signals are visually perceived ornaments such as long tails or bright 
coloration, and commonly displayed by males. For example, the 
connection between the expression of sexual ornaments and para-
sitism has been demonstrated in many species of birds (Hõrak, Ots, 
Vellau, Spottiswoode, & Pape Møller, 2001; McGraw & Hill, 2000; 
Thompson, Hillgarth, Leu, & McClure, 1997) and fish (Barber, Arnott, 
Braithwaite, Andrew, & Huntingford, 2001; Houde & Torio, 1992; 
Maan, van der Spoel, Jimenez, van Alphen, & Seehausen, 2006). 
Overall, current evidence strongly suggests that male sexual orna-
ments could signal resistance to parasitism. However, reduction in 
host vision could impair the ability of individuals to perceive sexual 
signals. For example, it has been shown in cichlid fishes that visually 
perceived sexual signals advertised through male coloration can be 
blurred because of increased water turbidity, resulting in hybrid-
ization of species following the relaxation of color- based sexual se-
lection (Seehausen, van Alphen, & Witte, 1997). Similarly, parasites 
found in the key sensory organs, such as the eyes, could impair host 
vision and the ability to perceive visual cues from potential mates 
(Karvonen & Seehausen, 2012). In species where sexual selection 
is based on males displaying secondary sexual characteristics, the 
ability of females to judge male quality when infected with such 
parasites could be compromised. However, while mating decisions 
are known to be influenced by general condition (Cotton, Small, 
& Pomiankowski, 2006) and also parasite infections (Lopez, 1999; 
Mazzi, 2004; Pfennig & Tinsley, 2002; Poulin & Vickery, 1996) of the 
choosier sex, the potential of parasites directly interfering with sex-
ual selection operating through visual signals perceived by females 
has remained virtually unexplored. Here, we explore parasitism and 
particularly the infections in the eyes of gobiid fishes where females 
actively choose males based on secondary sexual characteristics.

Gobies (Gobiidae) are abundant fish species living in marine and 
brackish water habitats around the world. Five species of gobies in-
habit the Baltic Sea, two of which, the sand goby (Pomatoschistus 
minutus, Pallas 1770) and the common goby (Pomatoschistus microps, 
Krøyer 1838), are the most common. During the reproductive pe-
riod in early summer, males build nests where they attract females to 
spawn using secondary sexual traits. In the sand goby, for instance, 
these include a bright blue spot on the first dorsal fin and the size of 
the fin itself, as well as specific courtship behavior (Forsgren, 1992; 
Lindström, St. Mary, & Pampoulie, 2006). Also, the size of the nest 
is one of the key determinants of reproductive success of a male 
because the most fecund females cannot lay all their eggs in small 
nests (Lindström, 1992). All these characteristics of male quality are 
perceived visually by females.

Previous studies have shown that gobies also harbor a diverse 
parasite fauna. For example, Baltic gobies can host four to 22 spe-
cies of parasites depending on the host species and sampling time 
(Zander, 2003). Further, Zander (2005) reported that the parasite 
communities were often most diverse in autumn with very few spe-
cies present in the spring. Studies have also reported higher parasite 
infection among wild- caught female sand gobies compared to males 
(Van Damme & Ollevier, 1994), suggesting higher exposure and/or 
susceptibility of females. Finally, behavioral trials have shown that 
infection of male sand gobies with macroparasites in the body cavity 
and on the fins and skin did not affect male dominance or female 
mate choice (Barber, 2002). However, Barber (2002) also found that 
infection intensity of Gyrodactylus monogeneans had a negative ef-
fect on the development of the dorsal fin size, a potential secondary 
sexual trait of the sand goby.

We explored parasite infections of the sand goby and the com-
mon goby in the Baltic Sea by conducting a replicated sampling cam-
paign of male and female fish to capture spatiotemporal variation 
and possible gender differences in parasitism. We were particularly 
interested in variation in infection of parasites inhabiting sensory 
organs of fish that could show the potential of parasite- induced 
changes in conditions of sexual selection and mate choice among 
the sampling locations. Similarly, infections could influence over-
winter survival of the fish and result in lower infection levels in the 
early summer. Furthermore, to explain patterns of infection of the 
parasites in the wild, we exposed male and female sand gobies to 
controlled experimental infection from trematode eye flukes in the 
laboratory. Differences in the abundance of these parasites between 
male and female fish under similar level of exposure would be consis-
tent with the idea of differences in susceptibility between the sexes.

2  | MATERIAL S AND METHODS

2.1 | Sampling of gobies

Sand gobies and common gobies were sampled from three loca-
tions in the proximity of the Tvärminne Zoological station, southern 
Finland. The first location was next to the station (referred here to as 
“Station”; 59°50′41″N, 23°14′58″E), the second ca. 500 m from the 
Station (Långholmen; 59°50′48″N, 23°15′12″E), and the third far-
ther out to the sea ca. 4 km from the Station (Vargskär; 59°49′24″N, 
23°08′38″E). All locations had a bottom substrate of sand or soft 
mud with little or no vegetation. Sampling was conducted three 
times, June 2014, June 2015, and October 2015, to capture both 
spatial and temporal variation in infections. At each location, gobies 
were caught from a depth of 0.5–1 m using a seine net. However, 
sampling campaigns at some of the locations were unsuccessful at 
times (Table 1) due to complete absence of fish. Fish were brought 
alive to the laboratory, euthanized, sexed, measured for length 
(mm), and inspected fresh for infections on fins (right pectoral fin), 
gills, eyes, and internal organs under a microscope. Parasites were 
identified at genus or species level when possible. Prevalence (pro-
portion of fish infected, %) and mean abundance (mean parasite 
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number per fish) were calculated for each parasite taxa. In addition, 
fish eye lenses were studied before dissection for coverage of cata-
racts caused by Diplostomum spp. eye flukes using slit- lamp (Kowa 
SL- 15) microscopy (Karvonen et al., 2004a). Cataracts were scored 
as 10%, 20%,…,100% coverage of the lens area, which correlates 
with the deleterious effects of the parasites on fish (Karvonen & 
Seppälä, 2008; Seppälä, Karvonen, & Valtonen, 2005) and thus pro-
vides an indirect measure of parasite- induced effects on the host. 
Differences in total parasite abundance between the locations and 
sampling times were analyzed using GLMs with negative binomial 
distribution and log link function. Abundances of the parasite taxa 
Trichodina sp. and Gyrodactylus sp. (see Results) were excluded from 
the analyses as they were studied only from one pectoral fin.

2.2 | Experimental exposure

Experimental exposure of sand gobies (Figure 1) was conducted in 
three containers each with 6 l of water (16°C) taken from the Baltic 
Sea, continuous aeration, and 10 fish (five females and five males) 
captured 1 week earlier from the Vargskär sampling location, total-
ing 30 fish (mean length: 48.0 ± 2.0 mm [females], 53.5 ± 1.9 mm 
[males]). Before the experiment, the fish had been housed in rep-
licated large stock aquaria supplied with a continuous flow of fresh 
seawater and fed with live mysiid shrimp and frozen Chironomidae 
larvae ad libitum. In addition to the three exposure containers, one 
container with 10 fish and an even sex ratio served as the unexposed 
control. This was used to record possible infections resulting from 
parasite infective stages present in the water, if any, and those that 
had taken place recently in the wild before the fish were caught, 
which could not be separated from those resulting from the experi-
mental exposure (see below). Each of the three infection containers 
then received a total dose of 750 D. pseudospathaceum cercariae (75 
cercariae per fish) that had been released by five infected Lymnaea 
stagnalis snails collected from Lake Vuojärvi, Central Finland. Note 
that there is no detectable population genetic structure in these 
parasites across Finland (Louhi, Karvonen, Rellstab, & Jokela, 2010), 
which is why parasite origin was unlikely to affect the results. The 

snails were allowed to produce cercariae for 2 hr in 2 dl of water 
(20°C). Suspensions of the snails were then combined, and the cer-
carial density was estimated by taking ten 1 ml samples. Water in 
the containers was regularly mixed during the first hour of expo-
sure to ensure equal exposure of all individuals to the parasite. The 
fish were maintained in these conditions for 18 hr, which is suffi-
cient time for the parasites to reach the eye lenses in a small fish 
(Louhi, Sundberg, Jokela, & Karvonen, 2015). There was no mortality 
of fish during or after the exposure. All fish were then euthanized 
and studied for the number of parasites in the eye lenses. Older 
infections originating from the wild and those originating from the 
experimental exposure could be distinguished based on the size of 
the parasite metacercariae. All experimental procedures were in ac-
cordance with the ethical standards of the Finnish Regional State 
Administrative Agency and conducted under license (License code: 
ESAVI/4706/04.10.07/2015). Data were analyzed using ANCOVA 
with fish sex as a fixed factor and container as a random factor to 
account for dependency among fish exposed in the same container. 
Fish length was used as a covariate. All analyses were conducted 
using SPSS 24 statistical package.

3  | RESULTS

In total, 12 parasite taxa were detected among the 200 sand gobies 
and 168 common gobies examined, including five trematodes, two 
nematodes, two acanthocephalans, one cestode, one monogenean, 
and one protozoan (Table 1, Table 2). All parasite taxa were observed 
in both fish species, except for the acanthocephalan Echinorhynchus 
gadii, which was observed only in the sand goby. The mean number 
of parasite taxa per fish was significantly higher in the sand goby 
(2.23 ± 0.1, all numbers indicate mean ± SE, range 0–7) than in the 
common goby (1.78 ± 0.1, range 0–4) (t test: t354 = 3.76, p < .001; 
locations and sampling times combined). In both fish species, the 
protozoan Trichodina sp. was the most prevalent and abundant para-
site taxa with prevalence ranging between 16.7% and 96.7% in the 
sand goby and 0%–100% in the common goby, depending on the 
location and sampling time (Table 1, Table 2). Among the macropara-
sites, trematodes Cryptocotyle sp., Apatemon sp., and Diplostomum 
spp. were most commonly observed. Mean total parasite abun-
dance was significantly higher in the common goby compared to 
the sand goby (GLM: Wald = 11.76, p < .001; sampling locations 
combined) while this depended on the sampling time (Wald = 30.65, 
p < .001 (sampling time); Wald = 32.86, p < .001 (species × sampling 
time); Figure 2). There were also significant differences in parasite  
abundance among the locations so that Långholmen and Vargskär 
locations had the highest parasite abundances (GLM: Wald = 14.25, 
p = .001; sampling times combined) while this again depended on 
the fish species (Wald = 28.01, p < .001 (species); Wald = 32.63, 
p < .001 (species × sampling location); Figure 2).

Total parasite abundance was not different between males and fe-
males in either fish species (Wald = 1.05, p = .305 (sex); Wald = 1.98, 
p = .159 (species × sex); immature fish excluded, sampling locations 

F IGURE  1 Female sand gobies (Pomatoschistus minutus). 
Photograph by Kai Lindström
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and sampling times combined). However, a more detailed analysis 
of the infections of Diplostomum eye fluke in Vargskär showed that 
females harbored significantly higher abundances of these parasites 
compared to males (GLM: Wald = 4.94, p = .026 (sex); Wald = 30.64, 
p < .001 (sampling time); Figure 3a). Infections of eye flukes also 
caused significant cataract coverage in the eye lenses of sand go-
bies. Cataract coverage increased with parasite abundance so that 
the coverage rapidly approached 100% when there was more than 
one parasite per lens. The relationship was captured by a steep as-
ymptotic curve (Figure 4). However, there was no difference in cat-
aracts caused by a given parasite abundance between the male and 
female sand gobies (t test on residual cataract coverage from the 
nonlinear regression: t36 = 0.228, p = .821). While this suggests sim-
ilar susceptibility to parasite- inflicted damage between the sexes, 
eyes of female sand gobies in Vargskär nevertheless showed higher 
average cataracts than males because of their higher parasite abun-
dances (t test: t82 = 2.082, p = .040). No cataracts were observed in 
uninfected eye lenses.

Experimental exposure of sand gobies from Vargskär to D. pseu-
dospathaceum infection indicated that all fish became readily infected 
with the parasite. The mean parasite abundance per fish increased 
with body size (ANCOVA: F1,23 = 15.60, p < .001) and ranged from 
43.0 ± 6.0 to 52.6 ± 5.8 depending on the container (F2,2.1 = 4.06, 

F IGURE  2 Estimated mean total parasite abundance (±SE) in 
sand gobies and common gobies captured at three sampling times 
(a, sampling locations combined) and from three sampling locations 
(b, sampling times combined) in the Northern Baltic Sea. Estimates 
are from GLM models. Numbers of fish studied are indicated in 
Table 1
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p = .193 (container); Figure 3b). Similarly to the field data (see above), 
there was a significant difference in parasite abundance between 
the sexes so that females were more heavily infected (F1,3.0 = 10.56, 
p = .047 (sex); F2,23 = 0.58, p = .568 (sex × container); Figure 3b). This 
suggests higher susceptibility of females to infection. New or recent 
infections were not detected among the 10 unexposed control fish 
indicating that there was no natural exposure from the water during 
the experiment and that the fish had not been recently infected in 
the wild. Four of the 30 exposed fish and one of the 10 control fish 
harbored fully developed Diplostomum metacercariae, likely as a re-
sult of infection in the wild in the previous summer.

4  | DISCUSSION

Spatial and temporal variation in parasitism can have significant 
implications for host populations by underlying variability in influ-
ence of parasites on the condition and reproduction of individuals 
(Lefevre et al., 2009; Tompkins, Dunn, Smith, & Telfer, 2011; Wood 
et al., 2007). This is particularly clear with infections that can cause 
detrimental effects on the hosts, such as those located in the central 
sensory organs. Moreover, hosts species in which such effects can 
come about already at low parasite numbers may suffer the most 
notable consequences. We examined parasite infections of two spe-
cies of gobiid fishes in the Northern Baltic Sea. We scored the entire 
macroparasite community in these fishes and specifically targeted 
eye flukes of the genus Diplostomum that are known to cause loss 
of vision in several fish species, with the effects likely being most 
prominent in smaller fish species with the smallest eye lenses. We 
found significant spatiotemporal variation in infections as well as dif-
ferences between the fish species so that the common gobies were 
more heavily infected in most cases. While there was no effect of 
host sex on the infections overall, female sand gobies were more 
heavily infected with eye flukes at the sampling location with the 
highest infection. An experimental exposure of the fish indicated 
that the difference between the sexes was at least partly explained 
by the higher susceptibility of females to infection.

Spatiotemporal variation in parasitism is a common feature of 
most host–parasite interactions, including parasitic infections of 
fish in freshwater (Marcogliese, Gendron, Plante, Fournier, & Cyr, 
2006; de Roij & MacColl, 2012) and in sea (Grutter, 1998; Sikkel, 
Nemeth, McCammon, & Williams, 2009). We found that parasite 
infections of the two goby species followed similar patterns. First, 
infection abundances were clearly different between the locations, 
particularly in the common goby, and mainly driven by the trema-
tode Cryptocotyle sp. This could reflect, for example, spatial variation 
in infection prevalence in the first intermediate snail hosts of the 
parasite, which is commonly observed also in other trematode sys-
tems (Faltýnková et al., 2008; Jokela & Lively, 1995). Second, with 
few exceptions, directly transmitted parasites (Trichodina sp. and 
Gyrodactylus sp.) were clearly more prevalent in the early summer 
compared to autumn, reflecting the temperature- driven replication 
of these parasites (Bagge & Valtonen, 1999; Halmetoja, Valtonen, 

& Taskinen, 1992; Koskivaara, Valtonen, & Prost, 1991; Rintamäki- 
Kinnunen & Valtonen, 1997). Third, trophically transmitted parasites 
(cestodes, nematodes, and acanthocephalans) showed sporadic oc-
currence at low numbers, suggesting that the gobies unlikely are the 
primary fish hosts for these parasites in this system. Fourth, many of 
the larval trematodes, particularly in sand gobies from the Vargskär 
location with the highest infection, tended to be more abundant 
in autumn compared to early summer (Table 1). This well reflects 
the typical accumulation of trematodes in their intermediate hosts 
during summer months (Faltýnková, Karvonen, & Valtonen, 2011; 
Karvonen, Hudson, Seppälä, & Valtonen, 2004; Karvonen et al., 
2004a,b). The lower abundance in the early summer is also consis-
tent with the idea that the most heavily infected individuals may 
be lost from the population during winter, while our data were too 
few to test this properly. For example, Diplostomum infections and 
cataracts comparable to this study in the eye lenses are known to 
cause serious fitness consequences in fish (Crowden & Broom, 1980; 
Karvonen & Seppälä, 2008; Seppälä et al., 2005), supporting a possi-
bility of parasite- driven population effects (Marcogliese, Compagna, 
Bergeron, & McLaughlin, 2001). Overall, broad lines of the spatial 
and temporal variation of parasitism in this system are in accordance 
with earlier findings of parasite infections in gobies in the Baltic Sea 
(Zander, 2003, 2005; Zander & Kesting, 1998; Zander, Strohbach, & 
Groenewold, 1993).

We also found a distinct difference between male and female 
sand gobies in the abundance of eye fluke infection so that females 
were more heavily infected both in the field and in the experimen-
tal exposure. This is in contrast with the general pattern of higher 
infestation in males across a range of host–parasite systems (Klein, 
2004; Poulin, 1996), although few studies have reported higher par-
asite infections also in females, for example, in guppies (Richards, 
van Oosterhout, & Cable, 2010; Stephenson, van Oosterhout, 
Mohammed, & Cable, 2015; Tadiri, Scott, & Fussmann, 2016), gobies 
(Van Damme & Ollevier, 1994) and coral reef fish (Sikkel, Fuller, & 
Hunte, 2000). One reason for the sex difference in this system could 
be that males and females in the field are differently exposed to the 
parasite cercariae. Our sampling time in early summer coincided 
with the breeding season of gobies (Hesthagen, 1977; Lindström, 
1998; Nyman, 1953) when males are defending nests and eggs, and 
remain mostly stationary. On the other hand, females are actively 
swimming around in search of spawning and feeding opportunities, 
which could increase their exposure to the parasite cercariae (see 
also Sikkel et al. (2000)). However, our exposure experiment showed 
that the sex difference in infections is not merely due to behavioral 
differences, but that females are also more susceptible to infection 
than males. This is interesting as it contradicts with the general trend 
of males being more susceptible to parasite infections because of 
sex hormones that can suppress immune function (Klein, 2004). 
The reason why such a sex- specific infection pattern was observed 
only in Vargskär is currently unclear, but may be related to differ-
ences between the habitat types. For example, the sampling sites 
Station and Långholmen are more sheltered compared to the more 
exposed Vargskär, although this would suggest lower rather than 
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higher infection in the latter. On the other hand, the population size 
of seagulls, terns, and merganserids, the definitive hosts for many 
trematodes including Diplostomum, may be larger at Vargskär than 
the other sites (Lindström & Ranta, 1992). This could enhance para-
site life cycles locally (Marcogliese et al., 2001). However, details of 
the differences in infection processes need further work.

Our data also show that just one to two worms infecting an eye 
lens of small fish, such as gobies, can severely harm the lens (i.e., 
cataracts covering the majority of lens were formed at very low in-
fection). This is because the size of the parasite metacercariae (and 
the damage they inflict per lens volume) likely remain relatively con-
stant regardless of the lens size, but the size of the eye lens increases 
with fish size. Thus, in larger fish species, cataract coverage typically 
increases linearly with the parasite abundance and tens of parasites 
per lens may be required for high cataract intensities (Karvonen & 
Seppälä, 2008; Karvonen et al., 2004a), whereas even a low- level in-
fection is likely to severely impair the vision of a small fish (see also 
Owen, Barber, and Hart (1993)). During mating, female sand gobies 
visit several males (Forsgren, 1997; Lindström & Lehtonen, 2013) 
and base their mate choice on a range of visual cues (Forsgren, 1992; 
Lindström et al., 2006). As a consequence, attractive males reach high 
mating success compared to less attractive ones (Lindström & Seppä, 
1996) and this nonrandom distribution of mating success results in 
sexual selection (Andersson, 1994; Emlen & Oring, 1977). This pro-
cess, however, can be potentially affected by impaired visual ability of 
females. For example, decreased water clarity interferes with visual 
abilities of females and this has been invoked as an explanation for 
weakened sexual selection in turbid waters (Järvenpää & Lindström, 
2004; Seehausen et al., 1997). Similarly, if the visual ability of females 
was hampered by Diplostomum, this could affect the way females can 
judge males and express their mating preferences, as they would not 
be able to detect male mating signals. Consequently, mating systems 
in areas of high infection risk for females could become more random 
and result in weakened sexual selection. Such a process could easily 
create spatial variation in the intensity of sexual selection and may 
contribute to preserving genetic variation in male secondary sexual 
traits. However, female preferences are also based on the quality of 
male parental care (Lindström et al., 2006; Pampoulie, Lindström, & 
St. Mary, 2004). Thus, it is possible that females in areas of high in-
fection, on average, select males exhibiting lower quality care, which 
then results in lower offspring production. While our data are sug-
gestive of the potential for such parasite- induced changes in mate 
choice, these questions need to be tackled experimentally.

To conclude, spatiotemporal variation in parasitism among pop-
ulations, as well as that between sexes, can determine to what ex-
tent host populations suffer fitness consequences of infections in 
terms of decreased survival and reproductive success. Several ear-
lier studies have suggested that sexual characteristics used in mate 
choice can advertise resistance of an individual toward parasite 
infections. However, the alternative that parasite infections could 
influence this process by impairing the visual ability of one sex to 
perceive such characteristics is virtually unexplored. Our data show 
the potential for such changes in mate choice in small- sized fish such 

as gobies, where visual abilities of females perceiving signals from 
males could deteriorate at very low infection intensities. However, 
we also suggest that such effects are likely to be different among 
host populations experiencing different levels of parasitism. Overall, 
relationships between spatiotemporal variation in infections, 
gender- biased parasitism and mate choice form an interesting field 
for further experimental research.
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