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Suomenkielinen tiivistelmä: Tutkielma esittää klusteripohjaisen sijaismallin diskreetin

päätöksentekoavaruuden dimension pienentämiseksi ja lineaaristen kokonaislukuopti-

mointitehtävien yksinkertaistamiseksi. Sijaismalli on suunnattu erityisesti datapohjais-

ten päätöksenteko-ongelmien interaktiiviseen ratkaisemiseen, sillä se yhdistää sijais-

mallin interaktiota helpottavan vaikutuksen ja interaktiivisen NIMBUS menetelmän

hyvän suorituskyvyn sijaismallin tuloavaruudessa. Kehitettyä sijaismallia ja metodia

myös sovellettiin monitavoitteiseen metsätalousongelmaan hyvin tuloksin.

Avainsanat: sijaismalli, metamalli, surrogaatti, klusterointi, klusteripohjainen, synkro-

ninen NIMBUS, monitavoiteoptimointi, monitavoitteinen päätöksenteko, interaktiivi-

nen päätöksenteko, optimointi
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1 Introduction

Industry, business and everyday life require decision-making. Depending on the

situation and the problem at hand, these decisions may be simple and go unnoticed,

or they may be very complex and even impossible to solve unambiguously. With

simple and unnoticeable problems we usually settle for “good enough” solutions, but

more complex the problem the better solutions we usually want. Sometimes we want

the decisions to be as good as possible i.e. optimal.

The process of systematically exploring alternative solutions and making the optimal

decisions is called optimization. Depending on if there are just one or multiple

conflicting and mathematically equally important objectives, these problems are called

single or multiobjective optimization.

In the single objective optimization there exists only one optimal value. The same

optimal value may be attained by multiple different ways, but essentially there is just

one unambiguous optimum. In single objective optimization problems the solving

then simply means finding that optimum and how it can be achieved.

In the case of multiple objectives, unambiguous optimum for all the objectives cannot

be found: There can be just a set of solutions, which all are such that one objective

cannot be improved without impairing the value of at least one of the other objective

functions. These are called Pareto optimal solutions. It is not possible to select the

most preferred Pareto optimal solution without some additional information about

the multiobjective problem. From the practical perspective, selecting only one of

those solutions is still usually desired. In the multiobjective optimization, solving then

means finding and somehow selecting the most preferred solution. This process may

or may not require finding all the Pareto optimal solutions.

The simplest and probably the most used method to solve multiobjective optimization

problems is the weighting method. In this method every objective is given a weighting

coefficient and the sum of these weighted objectives is optimized. However, Miettinen
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(1999) notes that these weights produce unpredictable results and the weighted sum

does not actually have any understandable meaning.

Fortunately a plethora of different and more sophisticated means for optimizing multi-

ple objectives have been developed. These methods differ significantly from one to

another, but instead of just assigning seemingly helpful weights for different objec-

tives, these methods involve a Decision Maker: a domain expert and person capable of

making the final choice between different objectives and solution alternatives.

Usually the nature of multiobjective problem is such that the relationships between

different objectives are not clearly observable; not even for an expert of the problem

domain. In this kind of situations the real features of the problem and different

solution alternatives can be discovered using interactive decision making methods. As

the name implies, these methods require active involvement of the decision maker

during the solving process. This can be a taxing task in some cases, but it also eases

the process of finding the most preferred solution.

In addition to just making a decision, the decision is wanted to be justified. This

justification has to be based on some arguments and assumptions and in order to find

these, relevant information is needed. Vanian (2016) describes how information as

such is not always a natural resource but it has to be refined and interpreted from the

data that can be collected and stored. Therefore the data is also called “the new oil”,

and from it new information can be extracted.

During the last decades, the amount of data collected in certain fields has already been

big, but limited resources have been a restriction for making most of it. Along with

the development of technology, information handling and computational methods,

the resources available have increased and the former restriction decreased or even

ceased to exist. This has then created new opportunities for data-driven decision

making and optimization, as stated by Press (2013) and Anderson (2008), among

others.

Although former restriction are gone, new ones have emerged. Maney (2014) has

brought out that even though the processing power has increased significantly during
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the last decades, the amount of data available and ready to be used has increased even

more. Because of this, the size of the problems that we are able and willing to solve

are mathematically of much larger scale than before. This has led to situations where

the problems as such are not very complex (e.g. only linear mixed integer problems)

but memory demands and processing power requirements to solve them are very high.

This can then either make the problems completely unsolvable or make solving them

excessively slow.

In this thesis, this challenge of solving mathematically large scale integer linear

problems is tackled by developing and using a mathematically cheaper surrogate

model. The developed surrogate model is based on clustering the variables in the

decision space and using only a representative subset of variables to approximate the

entire decision space.

In order to solve the surrogate based problem an interactive multiobjective optimiza-

tion method, namely the synchronous NIMBUS approach by Miettinen and Mäkelä

(2006) is used. This kind of approach is chosen because interactive methods have

come in handy for solving complex multiobjective problems and are more likely to

reveal possible modeling errors in the surrogate models than non-interactive mul-

tiobjective optimization methods, as Sindhya et al. (2014) state. Particularly the

synchronous NIMBUS method was chosen because the cluster based surrogate trans-

forms the result space of the multiobjective problem so that finding desired solutions

may become challenging. The NIMBUS methods is able to overcome this problem by

utilizing four different scalarizing functions, which increases greatly the probability of

finding at least one satisfactory solution from the result space.
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This thesis concerns solving data-driven multiobjective optimization problems using a

cluster based surrogate and interactive methods. Especially the focus on this study is

on the situations when the data to be used in the optimization is so large, that it is not

possible to do meaningful interactive decision making without using any surrogate.

This research problem and its sub-problems are formally defined:

" How to solve large data-driven multiobjective optimization problem

interactively using surrogate?”

1. How to form a cluster based surrogate from the data?

2. How to formulate a multiobjective optimization problem using cluster

based surrogates?

3. How to solve a multiobjective optimization problem using cluster based

surrogate and interactive methods?

The rest of this thesis is organized as follows: Multiobjective optimization, its basic

concepts and interactive methods are presented in Chapter 2. Chapter 3 explains data-

driven optimization including surrogate models. Chapter 4 documents the cluster

based multiobjective optimization approach and is the main contribution of this

thesis. Chapter 5 is a case study of the developed method presenting and solving

a Boreal Forest planning problem using interactive methods and a cluster based

surrogate. Discussion about the developed method can be found in Chapter 6. The

final conclusions including future research topics are presented in Chapter 7.
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2 Multiobjective Optimization

In this chapter in Section 2.1 the general formulation of multiobjective optimization

problem, its basic concepts and some approaches how to solve this kind of problems are

introduced. Section 2.2 then focuses on solving multiobjective problems interactively.

Finally Section 2.3 defines scalarizing functions, a common approach for solving

multiobjective optimization problems.

2.1 Basic concepts

Miettinen (1999) defines the general formulation of multiobjective optimization

problems (MOPs) as:

minimize { f1(x), ..., fk(x)}

subject to x ∈ S
(2.1)

with k(≥ 2) objective functions fi(x) : S −→ R. The set S is the set of feasible decisions

in the decision space Rn. This means all the decision variable vectors x = (x1, ...,xn)
T

that are within all the constraints of the given problem. The corresponding image of S

in objective space Rk is called feasible objective set and is denoted by Z. The elements

of Z are feasible objective vectors, z = (z1, ...,zk)
T ,where zi = fi(x) for all i = 1, ...,k. In

Figure 1 blue points illustrate these feasible solutions. In (2.1), and later on this

thesis, all the objective functions are assumed to be minimized, but if some objective

fi should be maximized instead, it would be equivalent with minimizing − fi.

A feasible solution x′ ∈ S and the corresponding fi(x′) ∈ Z are said to be weakly Pareto

optimal if there does not exist another feasible solution x ∈ S such that fi(x)< fi(x′)

for all i = 1, ...,k. In addition they are said to be Pareto optimal if there does not exist

another feasible solution x∈ S such that fi(x)≤ fi(x′) for all i= 1, ...,k and f j(x)< f j(x′)

for at least some j ∈ {1, ...,k}. From this follows that all the Pareto optimal solutions

are also weakly Pareto optimal, but not vice versa. In Figure 1 this is seen in points
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Figure 1: Ideal, nadir and utopia points of two-objective optimization problem, where both

objectives are to be minimized.

x1 and x2, which both are weakly Pareto optimal, but only x1 is also Pareto optimal

( f1(x1)< f1(x2), but f2(x1) = f2(x2).) The set of all strictly Pareto optimal solutions in

the objective space is called Pareto front or Pareto optimal set.

In order to solve multiobjective optimization problem, it is desired that the ranges

for all the objective functions in the objective space are known. The lower bound

z?i ∈ Z for individual objective function fi(x) is attained by minimizing the function

fi individually. When all these lower bounds are combined together to one vector

z? = {z?1, ...,z?k} the vector is called ideal objective vector. A vector z?? ∈ Z that is strictly

better than the ideal vector z? ∈ Z is called utopian vector. In practice the utopian

vector is calculated by setting z??i = z?i − ε for all i = 1, ...,k and for some positive small

scalar ε.
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The collection of the upper bounds of the objective functions in the objective space is

called nadir objective vector, znad. Miettinen, Ruiz, and Wierzbicki (2008) admit that in

practice there does not exist any comprehensive way to calculate exact nadir vectors

for nonlinear problems. Estimations for the vector can be made using a so-called

payoff table, but the accuracy of the resulting vector is not guaranteed. Ideal, nadir

and utopian vectors are also illustrated in Figure 1.

In multiobjective optimization, the problem is considered mathematically solved when

all the Pareto optimal solutions have been found. Miettinen (1999) also calls that

vector optimization. However, usually there are multiple (possibly infinitely many)

Pareto optimal solutions but from the practical perspective normally only one solution

can be chosen as the preferred one. This implies that some aspects beyond pure

mathematics have to be considered. In many cases these aspects mean domain

knowledge and human expertise. The person having these characteristics and being

in the position of being capable of making the final decision is called Decision Maker

(DM). Especially in the real life multiobjective optimization problems the role of DM

is essential.

As originally classified by Hwang and Masud (1979), there are four different classes

of optimization according to the role of the decision maker in the solution process:

1. DM giving no articulation of her/his preferences (no-preference methods)

2. DM giving a posteriori articulation of her/his preferences (a posteriori methods)

3. DM giving a priori articulation of her/his preferences (a priori methods)

4. DM giving progressive articulation of her/his preferences (interactive methods)

The first class – no-preference methods – means that decision maker does not give

any information about her/his preferences and the best solution is chosen without

her/his involvement. This kind of optimization approach is useful in situations when

there is no decision maker available, for example in real time optimal control of some

industrial process. When this approach is used with a decision maker, her/his role is

to simply accept or reject the result. If DM is available, other optimization approaches

are preferred, however.
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In the a posteriori methods, the decision maker gives no preference information

before the optimization. In the optimization phase, a representative set of Pareto

optimal solutions is calculated and presented to DM, who then chooses the most

preferred solution. This way DM is able to see all the options and compromises

between objectives and so is able to make a justified choice. However if the number

of possible solutions or objectives is large, it becomes challenging for DM to genuinely

perceive and comprehend all the possibilities and trade-offs between objectives.

On the contrary to the a posteriori method, in the a priori method the decision maker

gives her/his preferences before the optimization phase. In the optimization phase

it is then desired to generate Pareto optimal solutions corresponding to the given

preferences as well as possible. This way it is not needed to calculate all the Pareto

optimal solutions, but only the ones corresponding the preferences. This way the final

decision may also became easier to make. However, if DM has unrealistic expectations

about the results and it may be ambiguous which Pareto optimal solutions would

really be corresponding to her/his preferences.

In interactive methods the most preferred Pareto optimal solution is reached through

interaction with the decision maker. In such a method the solution is found iteratively:

After seeing the attainable bounds for all the objectives DM gives some initial prefer-

ences for the solution. Then after seeing the corresponding results DM indicates how

(s)he would like the solutions be changed i.e. gives new preferences. These steps are

repeated until DM is satisfied with the produced solution. The interactive methods

are described in Section 2.2 as they are used later on in this thesis.

One common way of communicating the preferences of the decision maker is to use

reference points. This means that the decision maker specifies some desirable values

for all the objectives and then a Pareto optimal solution corresponding to those values

is generated or discovered. More of the reference points is described in Section 2.2.1.
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2.2 Interactive Methods

According to Miettinen and Mäkelä (2006) the goal of interactive multiobjective

optimization methods is to find a single preferred solution from the set of all the

Pareto optimal solutions. Therefore the interactive methods are not aimed for solving

the problem mathematically i.e. finding all the Pareto optimal solutions of the problem.

As the name implies, the process of finding the single optimal solution requires the

decision maker being actively involved in the solution finding process. This kind

of decision making has proved to be cognitively and computationally effective as

Miettinen and Mäkelä (2006) state.

In addition to finding a desired solution, interactive multiobjective optimization is a

process during which the different stakeholders of the decision making learn more

about the problem itself. Even though DM would be an expert on the problem domain,

it may not be trivial for her/him to understand how the variables and objectives are

actually related to one another. Particularly this may be the case if the number of

variables or objectives is large. Wierzbicki (1997) has also observed that decision

making of experts is in many respects based on intuition, which also emphasizes the

importance of learning during the interactive optimization process. Even though the

intuition is already built along with gaining the expertise, it may still be supported by

additional learning during the process.

Though the mathematical formulations of the optimization problems are tested by

simulations etc. before the actual optimization, it is still possible that some weaknesses

or flaws of the problem formulations remain unnoticed. Sindhya et al. (2014) state

that in those kind of cases it is possible that the decision maker during the iterative

process notices that the problem is not behaving according to her/his expectations

and previous experiences. When further studied, errors in the mathematical model

may be revealed. This will then lead to correcting the mathematical formulation of

the problem and so ends up as a learning process for the analysts formulating the

problem also.
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As separated by Miettinen, Ruiz, and Wierzbicki (2008), the interactive multiobjective

optimization process usually includes two phases: the learning phase and the decision

making phase. In the learning phase the decision maker gets used to the decision

making process and learns more about the structure of the problem at hand. After

the learning, the final decision process takes place in the decision making phase.

Depending on the situation, these two phases may also be intertwined.

According to Miettinen, Hakanen, and Podkopaev (2016) the interactive multiobjective

optimization methods contain six general steps:

1. Initialize: The ideal and nadir values are calculated and presented to DM.

2. Generate a Pareto optimal solution to be a starting point: either a neutral

compromise solution or a solution provided by DM.

3. Ask preference information from DM: a reference point or how many new

solutions (s)he wants to be calculated, for example

4. Generate one or more Pareto optimal solutions according to the preferences of

DM.

5. If several solutions were generated ask DM to choose the best one.

6. If DM is satisfied with the solution or does not want to continue, then stop.

Otherwise, go to step 3

For stopping the interactive method there are three main reasons stated by Miettinen,

Hakanen, and Podkopaev (2016): DM finds a desirable solution and wants to stop,

DM gets tired and stops or some algorithmic stopping criterion is fulfilled. As one

can see, the interactive optimization process and its termination are not about the

mathematical convergence, but depend on the decision maker. Thus Miettinen,

Ruiz, and Wierzbicki (2008) define that the interactive methods are based on the

psychological convergence and not on the mathematical one.

In Miettinen, Hakanen, and Podkopaev (2016) there are listed five different ways to

relay preference information between DM and the optimization frameworks: reference

point approaches, classification based methods, comparison based methods, trade-off

based methods and navigation methods. From these five, reference point approaches

10



and classification based methods are presented in Section 2.2.1 and Section 2.2.2, for

they will be used as part of synchronous NIMBUS method later used in this thesis.

In addition to these, there exists also many more ways to express preference informa-

tion, but they are out of the scope of this study. For more information about these,

one may turn to Hwang and Masud (1979), Miettinen, Ruiz, and Wierzbicki (2008),

Miettinen (1999), and Miettinen, Hakanen, and Podkopaev (2016).

The following sections 2.2.1 Reference Point Methods and 2.2.2 Classification Based

Methods are based on definitions and observations by Miettinen, Ruiz, and Wierzbicki

(2008) if not otherwise denoted.

2.2.1 Reference Point Methods

In the reference point approaches the preferences of the decision maker are commu-

nicated using reference points. These reference points mean that DM defines some

specific values for all the different objectives in the form of a vector z̄ ∈ Rk. Then the

optimization system aims to generate Pareto optimal solution(s) corresponding to

these preferences as well as possible. After seeing the corresponding Pareto optimal

solutions DM is free to give any new reference point according to her/his liking. This

way DM is able to learn more about the objective space and to explore the Pareto

optimal solutions. As in all interactive methods, DM is free to stop or to continue

exploring new solutions as (s)he likes.

The fundamental assumption behind reference point methods is that the decision

maker has some internal preference structure in her/his mind, that cannot and should

not be defined explicitly by mathematical means. This means admitting that the

mathematical formulation of the problem is always in a way limited and therefore

DM should be encouraged to use her/his expertise freely. Wierzbicki (1997) also

defines that the fundamental goal of reference point approaches is to empower the

intuition of DM: reference point methods are just a tool for that and their purpose in

the decision making is to prefer intuition to the rational mathematical functions.
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So, instead of being fixed aspiration levels, the reference points given are considered

as a tool for learning. Miettinen, Hakanen, and Podkopaev (2016) elaborate how this

approach also enables DM to change her/his mind during the process and it does

not force her/him to understand all the dynamics of the multiobjective problem in

order to find meaningful solutions. Naturally, in the final decision making phase the

reference points must also be used for choosing the single preferred solution. The

concept behind the reference point approach is still more about the learning and

exploring than fixing the aspirations. This way the learning that occurs when using

the reference point approach aids the intuition the best.

In addition to these, one aim of the reference point approaches is to encourage the

preferences of the decision maker be non-linear, which are natural for human decision

makers. Using the reference points also gives to the decision maker a more holistic

way to express her/his preferences, when all the objectives are presented equally

important. This way DM can assess the situation more objectively and really utilize

her/his expertise more broadly.

Because in the reference point methods the decision maker is giving the values for

all the objectives completely according to her/his liking, a Pareto optimal solution

corresponding to these preferences has to be found. That is an application specific

task but usually some achievement scalarizing functions are used. These are to be

introduced in Section 2.3.

2.2.2 Classification Based Methods

In the classification based methods the decision maker explores only the set of Pareto

optimal solutions. Starting from some Pareto optimal solution DM classifies which

objectives (s)he wants to improve and which ones are allowed to impair. Then

according to these preferences another Pareto optimal solution is presented to her/him

and the process is repeated.

This way by implying how (s)he would like to change the current Pareto optimal

solution, DM is able to move about and explore the Pareto optimal set. It has been
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shown by Larichev (1992) (as presented in Miettinen, Ruiz, and Wierzbicki (2008))

that the classification is a cognitively valid way for a human decision maker to express

preference information. By moving only in the set of Pareto optimal solutions, all the

solutions that are presented to the decision maker are meaningful to her/him, and so

the interaction is more intuitive.

One implementation of the classification based approaches is the NIMBUS method, as

described by Miettinen and Mäkelä (1995, 2000, 2006). There are five different index

classes for the objective functions in this classification:

• I<, whose values should be improved from the current level as much as possible

• I≤, whose values should be improved till some aspiration level ẑi

• I=, whose values should stay the same as in the current level

• I≥, whose values can impair from the current level till some bound

• I�, whose values can change freely

According to the definition of Pareto optimality, this moving always requires trading

off the current level of some objective for improvement of some other objective. From

this follows that in the classification if some objective is classified to be improved, at

least one other has to be classified to impair i.e. I<∪ I≤ 6= /0 and I≥∪ I� 6= /0. Also all

the objective functions of the problem have to be classified.

The classification based methods are closely related to the reference point approaches.

For example, the classification of NIMBUS method can be transformed into a reference

point by setting: zi = z?i for i∈ I<, zi = ẑi for i∈ I≤, zi = zh
i for i∈ I=, zi = εi for i∈ I≥ and

zi = znad
i for i ∈ I�. Similarly, a reference point can be translated into a classification if

the current Pareto optimal solution is known.

The main difference between using a reference point or a classification based approach

is that in the former approach the reference point can be any point in the objective

space but any classification has to be feasible. In some classification based methods,

like in NIMBUS, the result of the optimization also has to be obeying the classification

constraints set by the different classes (objective functions set to be improved really

have to improve etc.). From this follows that sometimes it is not possible to generate
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any solution according to classification preferences of DM, whereas in reference point

based methods some solution is always generated.

2.3 Scalarizing Functions

According to Miettinen (1999) the scalarizing functions are important in the mul-

tiobjective optimization in order to transform multiobjective problems into single

objective ones. Traditionally this has been needed and desired because only single

objective optimization solvers have been available and scalarizing has been the only

way to solve problems with multiple objectives.

In reference point based multiobjective optimization the purpose of a scalarizing

function is to find a Pareto optimal solution corresponding to the given reference

point z ∈ Rk. Mathematically this means projecting z to the Pareto front when possible

and otherwise searching a Pareto optimal solution within minimal distance from the

general direction given by the projection. When using scalarizing functions with

reference points this is the very manner of transforming multiple objectives into only

single one. After transforming the problem into a form of having only one objective, it

can be solved using traditional single-objective optimization methods.

Miettinen and Mäkelä (2006) describe how usage of scalarizing functions is not

dependent on what kind of decision making method is used in the optimization: In the

no-preference method the “best solution” can be calculated by using some scalarizing.

In an a priori method, the solution corresponding to the preferences of the decision

maker has to be calculated using scalarizing. In an a posteriori method, all the Pareto

optimal solutions can be calculated using multiple reference points and scalarizing

functions. In interactive methods the solutions corresponding to the decision maker’s

preferences at each iteration can also be calculated using scalarizings.

Considering the scalarizing functions Miettinen and Mäkelä (2002) emphasize that

different scalarizing functions give different solutions with the same reference points.

Miettinen and Mäkelä (2006) also warn that by choosing one scalarizing the method

developer fixes the solution corresponding to the given references. As an example,
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differences of three different scalarizing functions in a two-objective problem are

presented in Figure 2.

Figure 2: The projecting directions of ASF, STOM and GUESS scalarizings.

In Figure 2 two reference points are marked with yellow crosses and corresponding

Pareto optimal solutions in blue. The black dotted lines mark the main search

directions of different scalarizing functions: STOM scalarizing uses reference point

and utopia point, GUESS scalarizing uses reference point and nadir point and ASF

function uses all of these points for deciding the directions. Depending on the

reference point and the Pareto front there may not be any difference between two

different scalarizing functions.

Because of the differences in the behavior of the scalarizing functions, multiple

different scalarizings can be used in an individual optimization process. For example

in the synchronous NIMBUS approach by Miettinen and Mäkelä (2006) four different

scalarizings are used. These scalarizing functions, Achievement Scalarizing Function

(ASF), with its variations Satisficing Trade-Off Method (STOM) and GUESS, and also

the NIMBUS scalarizing are presented in the following section.
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2.3.1 Achievement Scalarizing Functions

The achievement scalarizing functions are formed for each problem using all the

objectives of the multiobjective optimization problem and the preference information

given in the form of a reference point, as stated by Miettinen and Mäkelä (2006).

Originally the achievement scalarizing functions (ASF) have been introduced by

Wierzbicki (1982).

According to Wierzbicki (1982) the purpose of a system using ASF is to inform user

if her/his preferences are attainable or not and to generate Pareto optimal solutions.

If the preferences are unattainable, the system should give Pareto optimal solutions

closest to the given preferences. Where the preferences are over-attainable i.e. worse

than what is possible, the system should give Pareto optimal solutions that are better

than the preferences. If the given preferences are already just attainable, so Pareto

optimal, then the system should give the same solution.

When using ASFs in collaboration with reference points, Wierzbicki (1986) has proved

that these achievement functions have a property of full controllability. Miettinen,

Ruiz, and Wierzbicki (2008) explain that in practice this means that the decision

maker can find every existing Pareto optimal solution using different reference points.

Thus, reference points and scalarizing functions provide a meaningful tool for the

optimization.

Nowadays there exist many variants of ASF and in this thesis the basic formulation of

the problem is considered:

minimize max
[

fi(x)− z̄i

znad
i − z??i

]
+ρ

k

∑
i=1

fi(x)
znad

i − z??i

subject to x ∈ S

(2.2)

where z̄i ∈ Rk is the reference point given by the decision maker, ρ > 0 is a relatively

small scalar, called augmentation coefficient and the other variables are as defined

in Section 2.1. The additional term including ρ in the formulation is called the
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augmentation term, and it guarantees that the generated solution is indeed Pareto

optimal instead of being just weakly Pareto optimal, as Miettinen and Mäkelä (2006)

have proved.

The Satisficing Trade-off method by Nakayama and Sawaragi (1984) and the GUESS

method by Buchanan (1997) can be considered as variations of the original ASF

method. As can be seen from the following, their only differences to the basic ASF

formulation are in the denominators of the min-max terms and augmentation terms.

The formulation for the STOM is of form:

minimize max
[

fi(x)− z??i
z̄i− z??i

]
+ρ

k

∑
i=1

fi(x)
z̄i− z??i

subject to x ∈ S

(2.3)

where each element z̄i of the reference vector z̄ has to be strictly greater than the

corresponding element z??i of the utopian objective vector z??.

The GUESS method is formulated as:

minimize max
[

fi(x)− znad
i

znad
i − z̄i

]
+ρ

k

∑
i=1

fi(x)
znad

i − z̄i

subject to x ∈ S

(2.4)

where each element z̄i of the reference vector z̄ has to be strictly smaller than the

corresponding element znad
i of the nadir objective vector znad.
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2.3.2 NIMBUS

In addition to the classification presented in Section 2.2.2, the NIMBUS method also

includes its own scalarizing. There exists multiple NIMBUS variants, but the so-called

synchronous NIMBUS method by Miettinen and Mäkelä (2006) is presented here.

After the decision maker has classified the objectives according to her/his preferences,

a scalarizing of the following form is used:

minimize max
i∈I<
j∈I≤

[
fi(x)− z?i
znad

i − z??i
,

f j(x)− ẑ j

znad
j − z??j

]
+ρ

k

∑
i=1

fi(x)
znad

i − z??i

subject to fi(x)≤ fi(xh) for all i ∈ I<∪ I≤∪ I=,

fi(x)≤ εi for all i ∈ I≥,

x ∈ S,

(2.5)

where variables are as defined in (2.2) and the classes I<, I≤, I=, I≥ and I� as described

in Section 2.2.2.

In the synchronous NIMBUS method, there is possibility to generate up to four different

Pareto optimal solutions from the given classification. This is done by transforming

the classification into a reference point ẑ, and by using that point with the ASF, STOM

and GUESS scalarizings functions in addition to the NIMBUS scalarizing function.
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3 Data-driven Optimization

In many optimization problems the variables and functions for all the objectives are

well known from the previous research or it is possible to formulate them by studying

carefully the problem at hand. Good examples of these are Sindhya et al. (2017)

where previous research and Chugh, Sindhya, Miettinen, et al. (2017) where studying

the problem were used. For the analyst this kind of situations are ideal.

Today, in the era of big data, the problems that are encountered and desired to be

optimized are all the time more complex and unique. The problems may be so specific

that there does not exist any previous research and in many cases, the exact or even

approximate connections between variables and objectives are not easily discovered.

Luckily, there may be available some measurement or simulation data concerning the

problem. The modeling and optimization of a blast furnace by Chugh, Chakraborti,

et al. (2017) is a good example of this.

Contrary to solving the traditional purely mathematical optimization problems, solving

this kind of optimization problems that are based solely on data is called data-

driven optimization, as Wang, Jin, and Jansen (2016) define. They also elaborate

the definition by continuing that the data may be included in the mathematical

formulation of the problem as coefficients or there may not be any mathematical

formulation at all at the beginning.

3.1 Basics of data-driven optimization

According to Knowles and Nakayama (2008) the problem that emerges with real life

data-driven optimization problems is that they do not have any analytic form and it

is extremely challenging to describe them accurately using mathematical functions.

For that purpose, there still exist numerical methods that enable simulating complex

systems and phenomena. The simulations used in drug discovery (Grave, Ramon, and

Raedt: 2008) and aerodynamics testing (Giannakoglou: 2002) are good examples

of these. These numerical models do not give us the explicit mathematical models
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but only enable replicating the phenomenon in a controlled environment. From this

it follows that it is not possible to find the optimum directly and the only means are

iterative methods.

A commonly used approach for solving that kind of data-driven optimization problems

are Evolutionary Algorithms (EAs) (Deb: 2012). The strength of these EAs is that they

do not require the optimization to be at any analytic form. Instead of exploring or

exploiting mathematical properties of the problem, optimizing is based on finding the

optimum by generating and evaluating solutions iteratively.

Deb (2012) describes the evolutionary algorithms being based on nature-inspired ideas

of reproduction, mutation, recombination and selection of the most fit individuals. In

short, these algorithms have an initial population of randomly generated solutions

and fitness of each solution is measured by using some predefined fitness metric.

After evaluating all the solutions, the fittest ones are selected for mating. Mating

of solutions means recombining two or more solutions in order to generate new

solutions, using so called crossover and mutation operators. The aim of this procedure

is to transfer the best features of the existing solutions to the next generation and to

generate new hopefully better features for the offspring. The fitness values of the new

generation are then also measured and the best ones from the entire population are

selected to be the starting population for the next iteration. This way increasingly

better solutions are generated via multiple iterations and the process is repeated until

good enough solution is found or the pre-set limit for iterations is reached.

The problem with data-driven problems and using EAs is that the number of solution

evaluations required for finding the optimum is usually large. Whether using original

data or complex simulations about the original phenomena, the computational cost

may be high. This can cause the usage of EAs to become expensive and even unfeasible.

These difficulties of using the complex model can be overcome by simplifying the

complex model into so called meta-model or surrogate. This can be done by modeling

only the relevant parts of the original complex model and not all the underlying

processes and relationships. Knowles and Nakayama (2008) describe how these
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computationally cheaper models can be used in the optimization reducing significantly

the complexity of the task and thus enabling optimization of data-driven problems.

More of these surrogates is described in Section 3.2 and one such a model is presented

in Chapter 4 as the main contribution of this thesis.

Wang, Jin, and Jansen (2016) divide data-driven optimization into two categories:

to online and offline data-driven optimization. The online data-driven optimization

means that there is new data available during the optimization phase whereas in the

offline data-driven optimization no new data is available.

In the online data-driven optimization, the new data may be available either by

conducting new experiments, running simulations or by some other means. Wang, Jin,

and Jansen (2016) also divide the online data-driven optimization into two subclasses:

1) Online data-driven optimization with uncontrolled incremental data, and 2) Online

data-driven optimization with controlled incremental data. In the case of uncontrolled

incremental data, the data may come from some industrial process etc. where it is

not possible to control the new data or the controlling would alter the conditions of

the problem studied. One example of this is the optimal control of Hematite grinding

process by Dai, Chai, and Yang (2015). In the controlled online optimization, the data

can be completely controlled by the optimization process, so new data comes from

explicit function evaluations, simulations or, for example, from a chemical process as

in the Grave, Ramon, and Raedt (2008).

In the offline data-driven optimization, all the data is gathered before the optimization.

It can be that the data used in the optimization is collected from events that occur

only by accident, or some other way that cannot be controlled. For example, the

optimization of a Fused Magnesium furnace by Guo et al. (2016), uses previously

collected data to optimize future operations. In practice, these different classes of

data-driven optimization mean different strategies for managing the surrogates during

the optimization.
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More of these strategies and surrogates in general is described in Section 3.2 and the

general challenges related to the data-driven optimization and usage of surrogates

are discussed in Section 3.3.

3.2 Surrogates

The surrogates are computationally cheaper and simpler models that are used in

calculations instead of the original computationally expensive complex models. Their

purpose is to capture only those aspects of the original problem that are relevant for

solving the problem. Many times the word meta-model – model of the model – or

function approximation are used to describe this. However, because the purposes of

a computationally cheaper model can be many, the more general word surrogate is

preferred and used in this thesis.

As classified by Jin (2005), surrogates can be applied by three different ways in

optimization: as problem approximation, as functional approximation or as objective

approximation. The problem approximation means replacing the original problem

with some problem that is similar enough, but easier to solve. Examples of this are

using computational fluid dynamics (CFD) simulations instead of real wind tunnel

experiments. The functional approximation means using some explicit expression

instead of real evaluations of the original model, e.g. using a constructed mathematical

model instead of CFD evaluations. The objective approximation, or evolutionary

approximation, is usually specific for EAs, and it means approximating objective values

using one or more already known objective values, that are somehow close or related

to the new values. From these three the function approximation approach is the most

common.

Knowles and Nakayama (2008) mention two benefits of using a surrogate model.

Firstly, the number of full cost evaluations of the original model can be greatly reduced

while still having accurate surrogate model. This is essential when trying to solve an

optimization task using a surrogate model, for instance. The second advantage is that
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the surrogate model may present valuable information about the problem itself in a

simpler and possibly more understandable form.

The following Section 3.2.1 describes the steps for constructing surrogates, Sec-

tion 3.2.2 presents different types of surrogates and Section 3.2.3 shows some special

aspects when using surrogates for multiple objectives.

3.2.1 Constructing surrogates

The process of building a surrogate model can be described using the following steps

that are combined from Knowles and Nakayama (2008) and Forrester and Keane

(2009):

1. The variables to be used in the optimization are chosen, as determined by

preliminary experiments.

2. Surrogate model type(s) is selected.

3. Initial samples are selected from the original model/data.

4. From some or all the samples build/update surrogate model(s).

5. Using the surrogate model(s), choose a new sample of points and evaluate them

on the original model.

6. Until some stopping criterion, return to 4.

Each of these steps is explained more profoundly in the following.

1) The first step, selecting the right aspects of the problem for the model, is a cumber-

some problem itself. Since every new variable increases the computational cost, one

must choose a subset of variables that can be managed computationally while still

capturing all the necessary aspects of the original model. Forrester and Keane (2009)

instruct that the selected subset should particularly contain enough variables to define

the entire decision space.

In optimization, the selection of input and output variables is an essential part of

formulating the optimization problem itself. When using a surrogate model, it is

natural that the variables used for building the surrogate are the same variables that
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will be used in the optimization also. This problem formulation and variable selection

is an iterative process and closely related to the Design of Experiment (Anderson and

McLean: 1974). The process of designing and conducting experiments has been of

great interest for a long time and solutions for automating the process have been

proposed, for example, by King et al. (2004). More about variable selection can be

found in Guyon and Elisseeff (2003)

2) The selection of the surrogate type depends on the problem. The goal of building a

surrogate for optimization is to form a model that produces accurate predictions of

the original model, especially when close to optimum. Because all nor any surrogate

type is suitable for all kind of problems, it is important to choose a surrogate type

corresponding to the specific needs and features of the problem at hand.

The theoretical reasons for this are explained in the “No Free Lunch Theorems for

Optimization” by Wolpert and Macready (1997). The theorems state that when

averaged over all the possible optimization problems, all the optimization algorithms

perform the same. From this it follows that if some algorithm is performing better than

average on some optimization problems it has to be performing worse than average

on some other type of optimization problems. From the surrogate based optimization

perspective English (2000) has proven that learning is hard and optimization easy for

typical functions. Because of this surrogate type and optimization methods have to

carefully selected.

According to Knowles and Nakayama (2008) the main aspects in the selection of

the surrogate type are the dimension of the decision space and the type of variables.

The dimension of the decision space is important in the respect that some surrogate

models handle high dimensions better than the others, while some models that

perform well in high dimensions may fail to produce good results in low dimensions.

Good examples given by Zhou et al. (2005) are Gaussian processes and polynomial

regression models, from which the former performs well in high dimensions and the

latter with fewer dimensions. The types of the function variables, i.e. whether they are

discrete or continuous, also affect greatly the selection of the surrogate type. Knowles

and Nakayama (2008) note that even though most surrogate models and methods
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are developed for the continuous variables, some machine learning methods such as

classification and regression trees, genetic programming and Bayes’ regression may be

suitable for discrete decision spaces also.

The other features of the original model affecting the selection of the surrogate, as

listed by Forrester and Keane (2009), are mathematical size of the problem, expected

complexity, the cost of the evaluations of the model and also whether and how it

is possible to acquire new data during the optimization phase i.e. online or offline

optimization. In addition other information about the structure of the problem can be

exploited in the selection of the surrogate.

One possibility mentioned by Jin (2011) is to form multiple different surrogates for

one single problem. These surrogates may be of different fidelity or type and they

may be used for different phases of optimization or each surrogate is formed for

different part of the decision or product space. These so called surrogate ensembles can

also help in locating possible prediction errors: if different surrogates produce very

different results for some parts of the problem, there might be some errors involved

in the models. Different measures and criterion for the surrogates are presented, for

example, by Jin, Husken, and Sendhoff (2003) and Husken, Jin, and Sendhoff (2005).

3) After choosing the decision variables and the surrogate type(s), the next step is

initial sampling. When considering globally unknown decision spaces, it makes sense

to use uniform sampling across all the decision variable axes. For that purpose there

exists multiple different sampling techniques, such as the Latin hypercube sampling

by Morris and Mitchell (1995).

Forrester and Keane (2009) name the chosen surrogate type and the way new data

is acquired before the optimization as the main forces affecting the sampling. The

surrogate type may define or constrain how the initial sampling can be done, and this

naturally has to be addressed in sampling. The type of how new data acquired has

already dictated the selection of the surrogate type, but it also affects how the initial

sampling can be done, whatever the surrogate type is.
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In the offline data-driven optimization no fresh data is acquired and so the sampling

set is limited. Because all the data is available since the beginning of the building, it

has to be decided whether to use all the available data points to build the surrogate

or not. If the number of available data points is large, using all of them may be

computationally too expensive or result to so called overfitting, which means that

the surrogate is too detailed in order to simplify the problem. On the other hand,

in online data-driven optimization the sampling scheme is less limited, except the

constraints set by the problem domain or the problem formulation itself.

4) According to Knowles and Nakayama (2008) the surrogate model may be built or

updated using all or just some of the selected new points, depending about the sample

selection scheme. The actual way of building or updating the surrogate depends on

the surrogate management strategy and type of the surrogate chosen. This is not a

trivial issue and is not really discussed in the surrogate/meta-model literature, as

Chugh, Sindhya, Hakanen, et al. (2017) note.

5) After building the initial surrogate model, new sampling points may be selected

and applied to the surrogate iteratively until certain accuracy is reached. This can

also be done during the optimization and according to the needs of the optimization

process. The new samples can be chosen using only the current model, for example,

in finding the optimum of the approximate model, or decided based on previously

searched or considered points as is done in some EAs.

The choice of the new points is then dependent on the surrogate type and the surrogate

management strategy. Again, the same way as during the initial sampling, these both

are dependent on how new data is acquired during the optimization.

Knowles and Nakayama (2008) separate two possible criterion for selecting new

sampling points: predicted value or estimated informativeness of the points. Choosing

points based on their predicted values aims to choose points that are high-performing

by themselves, whereas choosing based on the estimated informativeness tries to learn

as much as possible about the features of the decision space. These two approaches
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are naturally contradicting with each other, so selecting new samples based on these

qualities is not trivial and some compromise between these has to be made.

6) Whether the surrogate is built entirely before optimization or updated during the

optimization, the process is iterative by nature. During the iterative building process

the surrogate model is improved on every iteration, but at some point this iterating

process has to be ended and the model approved to be ready. The ending can be

based on the desired accuracy of the built model, when good enough optimum for the

surrogate model is acquired etc.

Knowles and Nakayama (2008) note that building a surrogate resembles classical

regression models and machine learning. If one is going to make only one initial

sampling for building the surrogate, the sample has to be carefully planned and this

kind of surrogate building resembles a classical regression model building the most.

If the surrogate model is to be updated during the modeling or the optimization,

machine-learning methods are needed as the surrogate building must be combined

with those phases in a more sophisticated manner.

3.2.2 Types of surrogates

There are multiple different surrogate types developed for machine learning and

so used for optimization purposes. These include linear, nonlinear or polynomial

regression models (Zhou et al.: 2005), Response Surface Method (RSM) (Myers and

Montgomery: 1995), Radial Basis Function Networks (RBFN) (Broomhead and Lowe:

1988), Support Vector Machines (SVM) (Loshchilov, Schoenauer, and Sebag: 2010),

Kriking or Gaussian processes (Zhou et al.: 2005; Cheng et al.: 2015) and Artificial

Neural Networks (ANN) (Gaspar-Cunha and Vieira: 2005). More about different

surrogates and their usage in optimization can be found in Tabatabaei et al. (2015)

and Chugh, Sindhya, Hakanen, et al. (2017).

It is notable that a lot of work considering data-driven optimization and surrogates

is strongly related to evolutionary algorithms, as surveys by Jin (2011) and Chugh,

Sindhya, Hakanen, et al. (2017) reveal. The reason is that these algorithms are
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quite well suited for the problems whose mathematical properties are not well known

beforehand, as the most data-driven problems are. As EAs require a great number of

function evaluations to optimize the problem, computationally cheaper evaluation

methods, surrogates, are naturally of great interest. Wang, Jin, and Jansen (2016)

also note that the literature of the field is mostly focused on online data-driven

optimization with controlled incremental data.

Even though the surrogates are by far mostly used in evolutionary computations to

reduce the amount of expensive evaluations, they are still not the only applications

of such computationally cheaper models. While not replacing expensive evaluations

as with EAs, the surrogates can also be used in the traditional linear and non-linear

optimization in order to simplify large-scale mathematical programming problems.

3.2.3 Surrogates for multiple objectives

In the surrogate-based optimization the difference between multiobjective and single

objective optimization is mostly in the surrogates. When there are multiple objectives

Knowles and Nakayama (2008) suggest to build a surrogate for each objective function

separately and using the surrogate models in the optimization. However, according

to Chugh, Sindhya, Hakanen, et al. (2017), this far the most common approach for

surrogate based multiobjective optimization has been using just one surrogate for all

the objectives.

This kind of surrogate representing multiple or all the different objectives is called

mono surrogate. In practice this can mean forming a surrogate for scalarizing functions

as in ParEgo algorithm by Knowles (2006), surrogate presenting the entire Pareto front

of the problem as in PAINT method of Hartikainen, Miettinen, and Wiecek (2012) or

surrogate presenting just some parts of the front as in Pareto Navigator by Eskelinen

et al. (2010).

Survey by Chugh, Sindhya, Hakanen, et al. (2017) points out that it is possible to use

different surrogate models separately for all the objectives, for all the constraints or

for different scalarizing functions. As can be deduced, it is then also possible to form
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different combinations of these surrogate models i.e. surrogate for multiple but not

all of the objectives, surrogates combining constraints or objectives etc. Because of

this, the spectrum of different options is quite overwhelming, and unfortunately there

does not exist any general guidelines for choosing the most suitable approach.

3.3 Challenges in data-driven optimization

Many challenges faced in the data-driven optimization and in the usage of surrogate

models are already described in the previous sections, where they have been clearly

connected to the topics covered. This section presents more general challenges that

are not directly connected to any aspect presented before. The challenges described

in this section are computational cost, data quantity, data quality, heterogeneity of

data, prediction accuracy and constraint handling.

In the data-driven optimization there are multiple reasons for computational costs,

as listed by Wang, Jin, and Jansen (2016). The used model can be based on heavy

simulations or on computationally expensive functions, which make the sampling a

computationally heavy task. In addition, the monetary value of samplings can be high,

if they are such that real life experiments have to be arranged. The traditional car

crash tests or chemical drug testings are examples of this kind of costs. The costs can

also be related to gathering the data, which in the case of large and heterogeneous

data can be time and resource consuming.

A sometimes neglected cause of computational costs in the surrogate-assisted opti-

mization is training time requirements of the surrogate models as Chugh, Sindhya,

Hakanen, et al. (2017) point out: The purpose of surrogate models being the simplifi-

cation of the optimization, there is a risk that if the resource requirements for building

the surrogates are not addressed, they may suddenly impair all the optimization

benefits of the surrogate. Especially in the multiobjective optimization where one

may have multiple different surrogates, all with different training requirements, the

resource requirements can be surprising high, as Chugh, Sindhya, Hakanen, et al.

(2017) note.
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According to Wang, Jin, and Jansen (2016) the greatest difficulties concerning data

quantity emerge when there is too much or too little data. If there are significantly

great amounts of high dimensional data, the problem is how to choose relevant

features for the surrogate forming and which data points to choose for sampling. The

other side of that is the computational costs: the more features and data points are

included in the modeling, the higher is the computational cost, but more accurate the

surrogate model. Guo et al. (2016) also mentions that if the amount of data is small,

the forming of accurate surrogate becomes extremely challenging.

In the data-driven optimization the quality of the data directly affects the quality of

the surrogate. If the data used for building the surrogate is distorted or inaccurate, the

surrogate built from the data is that also. When using that kind of surrogate for opti-

mization, this naturally affects the optimization outcomes. The quality issues of data

include uncertainty, ill-distribution, imbalance (Wang and Yao: 2013), incompleteness

(Arbuckle: 1996) and contamination by noise (Wang et al.: 2016).

In the era of large scale and ubiquitously collected data, one great challenge remarked

by Wang, Jin, and Jansen (2016) is heterogeneity of data. The data can be in

many different formats and levels of reliability or accuracy. These aspects raise

many questions about how to handle all the different formats with relation to one

another, and all these questions have to be answered somehow. In the presence of

heterogeneous data, the importance of preprocessing cannot be overemphasized.

When constructing a surrogate there is always some error between the model and

the original data: otherwise the surrogate could not be any simpler than the original

model. This aspect of constructing a surrogate has to be taken into account and

controlled when needed. The existence of errors is inevitable, but in optimization

they can be tolerated as long as they don’t misguide the search as Jin, Husken, and

Sendhoff (2003) point out. Lim et al. (2010) also remarks that in some surrogates the

uncertainty of the surrogate can even be exploited. However, these issues have to be

addressed consciously.
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One often overlooked aspect of using surrogate models mentioned by Chugh, Sindhya,

Hakanen, et al. (2017) is handling constraints. As with the number of objectives, the

greatest problem in this is the fact that most surrogate based algorithms are simply

not developed to handle any constraints. When solving (multiobjective) optimization

problems having constraints they have to be addressed somehow.

This chapter has introduced foundations and issues of data-driven optimization and

surrogates in general. The following Chapter 4 explains how a cluster based surrogate

is constructed and the presented aspects are taken care of.
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4 Cluster Based Interactive Multiobjective

Optimization

Usually the surrogates are computational models such as polynomials or function

networks, as described in Section 3.2. However, this is not the only way of defining

a surrogate model. In addition to those models, a surrogate can be formed just by

choosing a part of the data for estimating all the values instead of using all the data

available. An example of that is presented by Wang, Jin, and Jansen (2016), who used

a dynamic clustering technique to select only a subset of representative individuals to

approximate the entire data set. This way the computational costs of the objective and

constraint evaluations were reduced significantly without degrading the performance

of solutions.

Based on the earlier presented remarks about possibilities for using surrogates also

with other approaches in addition to EAs, and on already attained promising results

of using clustering to reduce computational burden of optimization, this chapter

introduces a cluster based decision space surrogate for large scale Integer Linear

Problems (ILP). A cluster based surrogate is introduced in Section 4.1 and combining

it with optimization to solve ILP problems in Section 4.2. Case study where a cluster

based surrogate is used is described in Chapter 5. Discussion about the surrogate and

method presented in this chapter can be found in Chapter 6.

4.1 Clustering as surrogate

This section presents the core of a cluster based surrogate which is the main contri-

bution of this thesis. Clustering as general method is described in Section 4.1.1 as

preliminary information. After that, clustering in the decision space for forming a

cluster based surrogate is explained in Section 4.1.2.
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4.1.1 Clustering

Arabie, Hubert, and Soete (1996) characterize clustering as:

“Those methods concerned in some way with the identification of homoge-

neous groups of objects, based on whatever data are available.”

This definition of clustering is quite broad but also reflects the difficulty of giving

formal and accurate definition for clustering. Usually this definition is still extended

by stating that objects in the same group, i.e. cluster, are supposed to be more similar

to each other than to objects in different clusters, as Everitt, Landau, and Leese (1993)

state. The similarity or distance between objects is dependent on the data used and

what aspects are regarded important in the specific case.

The clustering itself can have hard or soft assigning, meaning that the objects belong

to one and only one cluster, or each object belongs to each cluster to a certain degree.

Depending on the application of the clustering, only either hard or soft clustering

is chosen. For the purposes of a cluster based surrogate only hard clusterings are

considered in this study later on.

Jain (2010) presents that clustering of data usually serves one or more of the follow-

ing purposes: exposing the underlying structure, finding the natural classification,

or compressing the data. Exposing the underlying structure of data is useful for

gaining insights of data, generating hypotheses, detecting anomalies etc. The natural

classification may enlighten similarities among individuals and their relations. The

compression works for organizing and summarizing the data by generalizing it. In a

cluster based surrogate the clustering is used mainly for compressing purposes.

For the actual clustering there exists plethora of different clustering algorithms in the

literature. Fahad et al. (2014) have separated different algorithms into partitional,

hierarchical, density-based, model-based and grid based algorithms. From these

five, partitional algorithms are probably the most common, and so some of their

characteristics are explained in the following.
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As described in Jain (2010), partition based clustering algorithms are given the

number of clusters beforehand and the algorithms find all the clusters from the data

simultaneously, without any hierarchical structure. Fahad et al. (2014) enlightens this

explaining how these algorithms divide data into a number of partitions, where each

partition represents a cluster.

Determining automatically the number of clusters K is one of the greatest problems

in clustering regardless of the class of algorithm. Especially in the partition based

clustering algorithms the number of clusters is of great interest, as it has to be decided

before the actual clustering. This problem is usually addressed by forming multiple

different clusterings with different number of clusters; from these the best number is

chosen afterwards based on a predefined criterion.

Figure 3: The concept of the L-method. Blue line marks the

evaluation values of clusterings. Red straight line marks the “knee”

at 150 clusters.

A criterion for decid-

ing the number of clus-

ters is for instance the

L-method by Salvador

and Chan (2004). This

method aims to find

the boundary between

straight lines that most

closely fit the curve of

measuring the validity

of a clustering. In prac-

tice this means finding

the number of clusters

after which the validity

of clustering does not

increase much with the

increase in the number

of clusters. This is bet-

ter illustrated in Figure 3.
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The most popular and one of the most simple partition based clustering algorithms is

K-means. The algorithm aims to form a partition in which the squared error between

the center of cluster and the points in clusters are minimized i.e. the distances between

cluster center and the data points within the cluster are desired to be as small as

possible. The steps in K-means algorithms according to Jain and Dubes (1988) are:

1. Select an initial partition with K clusters and calculate cluster centers; repeat

steps 2 and 3 until memberships of clusters do not change anymore

2. Generate a new partition by assigning each point to the nearest cluster center

3. Calculate new cluster centers

These steps are better illustrated in Figure 4.

Figure 4: The steps of K-means algorithm.

The algorithm is greedy by its nature, which means that it will always converge to local

minimum only. Because of this, the assigning of the first cluster centers and so the

initial partition may affect the final clustering greatly. One way to tackle this challenge

is running the algorithm many times with fixed K, but with different initializations.

Afterwards the best clustering is chosen according to the smallest squared error or

some other comparison metric, as e.g. Jain (2010) suggests.

When combining all the aforementioned challenges and features of clustering and

K-means together, there are three parameters to choose for the K-means clustering:
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similarity or distance metrics, number of clusters K and initial clustering. When

forming actual clustering all theses issues have to be addressed.

There are multiple different variations for K-means clustering using different assigning

metrics, median instead of mean or detecting differently shaped clusters. Also many

efficient implementations especially for large data sets have been introduced, like

Kanungo et al. (2002) and Cui et al. (2014)

Clustering, especially clustering of large and high dimensional data, is an art form by

itself and cannot be explained here with the detail it would otherwise deserve. For

more information about different algorithms and deeper understanding of clustering

itself one may turn to Jain (2010) and Fahad et al. (2014)

Although clustering is usually aimed for any data points regardless of their interpreta-

tion, there exists literature and methods considering clustering of variables only. For

example in Vigneau and Qannari (2003) and Vigneau et al. (2005) variables were

clustered according to their mutual correlations and latent variables. These clusterings

are however aimed for continuous variables so extending them to work with discrete

ones and for optimization is out of the scope of this work. The next section explains

how discrete variables are clustered in this study.

4.1.2 Clustering in decision space

Before constructing a cluster based surrogate, it is assumed that the data to be used

in the optimization is selected and preprocessed. It is also required that the variables

are discrete and are of similar type defined by some similarity measure, so that it is

possible to cluster them in a meaningful sense. In addition to those, it is assumed

that the number of variables is large, so that dimension reduction is desired for the

benefiting the computations.

These requirements restrict this cluster based surrogate only for problems where

the variables, i.e. data, is quite homogeneous. Large number of dimensions is not a

requirement, but if that is not the case, the cluster based surrogate may not actually

be needed.
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The actual forming of a surrogate starts by clustering all of the variables using some

hard clustering method, so that original n discrete variables are assigned to K ≤ n

clusters according to their values. Because of the manner of how the cluster based

surrogate is combined with the optimization later on, it is essential that all the

variables assigned to same cluster have the same number of discrete value alternatives.

This should be just a matter of preprocessing or doing an initial classification before

the actual clustering process. Combining the surrogate with the optimization and the

exact reason of doing this are enlightened later on.

More important than knowledge about the real life similarities of variables, which

many times is not available, is the knowledge about suitable similarity measure for the

clustering. Usually, and particularly in the case of hundreds or thousands of variables,

it is practically impossible to cluster the data manually. In those cases, it is especially

desirable to be able to do the clustering unsupervised but based on justified measures.

As always in clustering, the number of clusters K is important. However, because the

ultimate goal of clustering as surrogate is not exploring or modeling real classes in

the data, this aspect is not playing similar role than it would otherwise. As in this

the clustering is only used for compressing the data it is desired that the number of

clusters is rather too large than too small or even perfectly suitable for the data. The

idea behind is that every cluster acts as a local approximation for the original data

and so the more clusters there are the more accurate the entire approximation is.

The shapes of clusters are also one concern encountered in clustering. Because of the

same reasons affecting the number of clusters, the requirements for the optimal shape

of the clusters are not the same than in usual. When considering compression of data,

the most suitable shape for clusters is rounded. Especially when combined with large

number of clusters, the clusters as local approximations are the best if their shapes

are all similar and rounded.

The choice of the actual clustering algorithm depends about the type of data and

resources available. As the clustering is used only for compressing data via using

clusters as local approximations, partitional clustering algorithms that find locally
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optimal solutions should be good enough. Anyway, one major reason affecting the

choice of the algorithm are the resources available and required for each algorithm.

In the optimization where the clustering is used to ease the computational load, it

does not make sense to use clustering and surrogate whose forming requires more

time and computations than the actual optimization using data without clustering.

However, if the problem is e.g. such that the surrogate needs to be formed only once

and then optimized multiple times, then it can be acceptable to use significant amount

of resources for forming the surrogate also.

After the n variables have been assigned into K clusters, the most “representative”

variable xk is selected from each cluster k ∈ {1,2, ...,K} as a proxy variable. This

“representativity” depends on the similarity measure, shape of clusters and so on the

method of clustering used. The one variable to be selected may then be the actual

center of each cluster or the variable closest to the center of the cluster etc. If the

shape of cluster is rounded as is recommended, it is also recommended to choose the

variable in the center of the cluster.

In this point it becomes evident that all the variables in the same cluster have to have

the same number of discrete value alternatives. While only one discrete variable is

chosen among many others, its ability to represent all the others is greatly impaired

if it has either more or less values than the others. Later on when combining the

surrogate with optimization problem this aspect becomes even more essential.

The building of a cluster based surrogate is finalized with assigning each chosen

variable xk a weight wk according to the proportion of variables in the cluster k. For

example, if there are 158 variables in cluster k, the corresponding weight for the proxy

variable xk is wk =
158
n . These cluster representatives and their corresponding weights

are then used in optimization as will be described in Section 4.2.

From the previous description it can be seen that the amount of data, i.e. variables,

is not easily an issue for a cluster based surrogate. As the surrogate is mainly based

on clustering and there exists powerful clustering algorithms for even billions of data
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points in multiple dimensions, like the one presented by Cui et al. (2014), the inability

of forming clustering is not going to be problem in most of the cases.

In order the chosen clustering algorithm to work correctly it is desired that the quality

of data is good enough. If the data contains a lot of outliers or other undesired

anomalies, the clustering may not work as expected even though the number of

clusters would be large enough.

4.2 Combining Clustering to Integer Linear Problems

The basic Integer Linear Problem (ILP) formulation for discrete variables is of form:

maximize
n

∑
i=1

m

∑
j=1

ci jxi j

s.t.
m

∑
j=1

xi j = 1

xi j ∈ {0,1}

(4.1)

where i ∈ {1,2, ...,n} denotes index for decision variable and j ∈ {1,2, ...,m} index for

discrete value alternatives for each variable i. For variable i and value alternative j,

xi j has value 1, if value j is chosen for variable i and otherwise 0. With ci j we denote

the objective value of the i-th variable resulted from selecting the j-th discrete value

alternative. In the data-driven optimization, the values ci j are attained from the data.

For solving this kind of problems there exists many commercial and open source

optimization softwares, including IBM ILOG CPLEX1 and GLPK2 mathematical opti-

mization solvers.

This (4.1) is the one that needs to be modified in order to combine the cluster based

surrogate with optimization. In the modification it is desired to keep the format of

1. https://www.ibm.com/analytics/data-science/prescriptive-analytics/

cplex-optimizer
2. https://www.gnu.org/software/glpk/
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the problem as similar as possible and so to maintain it understandable for the same

optimization solvers also. Keeping the problem as similar as possible aids also the

human understandabality of the problem.

In (4.1) n denotes the dimension of the decision space, that is desired to be reduced

via the surrogate. As explained in Section 4.1.2, the cluster based surrogate selects

total of K ≤ n proxy variables, one from each cluster, to be used in the optimization

and so the modified ILP formulation using the surrogate is:

maximize n
K

∑
k=1

m

∑
j=1

dk jyk jwk

s.t.
m

∑
j=1

yk j = 1

yk j ∈ {0,1}

(4.2)

where k ∈ {1,2, ...,K}, k≤ n denotes index for proxy variable, j ∈ {1,2, ...,m} index for

discrete value alternatives for each proxy variable k and wk the weighting coefficient

for the proxy variable. Value dk j denotes the objective value of the proxy k when the

j-th discrete value alternative is chosen. For variable k and j, yk j has value 1 if j is

chosen as for proxy variable k, and otherwise 0.

As can be seen, if k = n, then wd = 1
n for all k ∈ {1,2, ...,K} and this formulation is

identical with the basic ILP formulation. For one part this feature also guarantees the

validity of this approach for combining the surrogate and optimization.

Because of the inevitable approximation errors in the cluster based surrogate, opti-

mization result based on the modified problem is not the same than that of the original

problem. The bigger the number of clusters in the surrogate, the more accurate is

the surrogate and so also the result of the surrogate based optimization. The exact

differences and errors depend mostly on the original variables and how their natural

features can be captured using this kind of surrogate.
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4.3 Interactive Multiobjective Optimization using Cluster Based

Surrogate

The following sections present how interactive multiobjective optimization is used in

collaboration with the described cluster based surrogate. Section 4.3.1 presents how

the surrogate is formed in the case of multiple objectives and Section 4.3.2 how the

surrogate based multiobjective problem is solved interactively.

4.3.1 Forming Multiobjective Cluster Based Surrogate

In multiobjective optimization, different objectives can be of different type and so ILP

based objective may be only one of them. Because of the dimension reduction in the

cluster based surrogate and its complex effects on different type of objective functions,

this section focuses on multiobjective optimization when all the objectives are similar

linear integer problems having initially all the same variables.

When all the objectives are of the same form presented in (4.1) and the variables are

the same for all the objectives, the surrogate for multiobjective case is constructed

the same way than described earlier: All the variables are clustered using the desired

metrics and each cluster is assigned the weight according to the proportion of variables.

The formed surrogate is then combined with the multiobjective ILP formulation the

same way than in the single objective case.

maximize

{
n

K
∑

k=1

m
∑
j=1

wkd1
k jyk j, . . . , n

K
∑

k=1

m
∑
j=1

wkdN
k jyk j

}
s.t.

m
∑
j=1

yk j = 1,

yk j ∈ {0,1},

(4.3)

where the superscripts 1, ..,N denote the number of objective function in the multiob-

jective problem.

As all the data is used for forming the surrogate and the proxy variables are the same

for all the objectives, this surrogate can be described as a mono surrogate. For the
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used multiobjective ILP formulation no other type of surrogate could not even be

applicable.

What is worth noticing is that different objectives may behave differently in the

clustering i.e. approximation errors for different objectives may be different. This

feature can already be seen while constructing the surrogate as the relative differences

between actual discrete values of the variables and values of their proxies may be

different. More than that, the differences become more apparent in the optimization

if the real objective values are known and it is possible to compare values attained

through the surrogate approach to the real objective values.

These relative errors may cause the surrogate based Pareto front to be shifted from the

location of the real Pareto front. In addition to that, the surrogate may also change the

shape of the front i.e. relationships between objectives. This is illustrated in Figure 5

using just two objectives.

Figure 5: The change in Pareto front when using surrogate in the case of two objectives. Both

objectives are to be minimized
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In Figure 5 the first objective f1 has its surrogate based nadir value greater than the

real one and the ideal value a bit greater. The other objective f2 has its nadir value

smaller than the real one, and the ideal value a bit greater also. As can be see, the

surrogate based Pareto front of this problem is not only shifted but also differently

shaped when compared to the real Pareto front. In this example, the surrogate front

is neither entirely above nor under the real front, but alternates on the both sides.

Because of that we can see that given yellow solutions s1 and s2 in the surrogate based

Pareto front are on different sides of the real Pareto front and so the corresponding

blue real Pareto optimal solutions z1 and z2 cannot be similarly predicted from the

surrogate based Pareto optimal solutions. This behavior cannot be easily verified, but

should be kept in mind when verifying the results attained through the surrogate.

4.3.2 Solving Multiobjective Problem Interactively

The interactive multiobjective optimization methods are developed for finding the

most preferred one from the Pareto optimal set. In this study the interactive method

of choice is the synchronous NIMBUS method by Miettinen and Mäkelä (2006), which

employs four different scalarizing functions. All of these are of non-linear form and

because traditional MILP solvers are only capable of solving linear problems, the

smooth formulations of these scalarizings, presented by Laukkanen et al. (2010), are

used. Coupling these formulations with (4.3) is straightforward.

In the synchronous NIMBUS method it is important to calculate the ideal and nadir

vectors, which was already discussed in Section 2.1. When using a cluster based

surrogate it is better to calculate these values by using the original variables and

problem instead of using the surrogate based values, if possible. Because clustering

causes averaging for the objectives, the ideal and nadir values attained form the

surrogate are not as far from each other as they really are. Even though the values of

the cluster based surrogate are used with the scalarizing functions it is still better to

use the original ideal and nadir values in order to attain more widespread solutions.
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The interactive process itself does not alter from its original form while using a cluster

based surrogate in optimizations: DM gives her/his preferences, explores different

Pareto optimal solutions and finally chooses the preferred Pareto optimal solution.

The main point in the usage of the surrogate is in reducing the computational burden

and so enabling more seamless and less delayed interaction during the process.

In the interactive process it is notable that the objective functions may be nonlinear

and non-continuous. This means that there may be some unattainable areas within the

ranges of objective, i.e. it may not be possible to find certain objective function values

at all. As the cluster based surrogate bundles together multiple variables this property

is possibly emphasized even more. This feature is also one reason why the synchronous

NIMBUS approach is chosen for solving multiobjective optimization problems when

a cluster based surrogate is used. As there may be “holes” in the Pareto front, some

single scalarizing function may not find any Pareto optimal solution corresponding to

the given reference point. However, because the synchronous NIMBUS is utilizing four

different scalarizing functions, it is much more likely to found at least some Pareto

optimal solution corresponding to the preferences.

Once the decision maker has found her/his preferred Pareto optimal solution s?

by using a cluster based surrogate and an interactive method, the solution can be

implemented as described in Section 4.2. After that there are two ways to continue

the process: either the surrogate based Pareto optimal solutions is projected to the

real Pareto front or the values of proxy variables in each cluster are mapped to all the

variables in the cluster. These are both explained better in the following.

If it is possible to optimize the original problem without the surrogate, the preferred

solution s? can be “projected” to the set of real Pareto optimal solutions by using a

scalarizing function and the original data without surrogate. If the selection of s? was

based only on relations of different objectives, the corresponding real Pareto optimal

solution z? can be calculated by using ASF and s? as a reference point. If the decision

involved some strict constraints for some objectives, NIMBUS classification can be

used.
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On the other hand, if it is not possible to optimize the original problem at all without

the surrogate, the values of proxy variable yk j can be mapped back to the original

variables so that for every variable i in the cluster k, the value xi j is assigned according

to the value of the proxy variable yk j i.e. all the variables in the same cluster are

chosen the same value alternative. Inputting these variable values to the original

problem produces a solution z?, that is more accurate and usually more close to the

real optimum.

Independent of which approach of these is chosen, the z? is presented to DM and

her/his satisfaction is ensured. If z? is not satisfactory certain phases since the

construction of surrogate to the final projecting may be repeated, depending on

the reason of DMs discontentedness. Consequently, interaction with DM has to be

maintained during the entire process and until the very end.
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5 Case study

In this chapter a data-driven multiobjective Forest management optimization prob-

lem is presented and solved by using a cluster based surrogate and the interactive

synchronous NIMBUS approach.

The chapter is organized as follows: Section 5.1 describes the data used in the problem

and how it has been used in earlier studies. The following Section 5.2 defines the

single-objective optimization problem formulations used for the final multiobjective

optimization problem and results of their optimization. The surrogate building process

is documented in Section 5.3 and the single objective optimization results attained by

using the surrogate are presented in Section 5.4. The final multiobjective optimization

problem using surrogates is presented in Section 5.5 and remarks about the interactive

solution process with the decision maker in Section 5.6. Section 5.7 describes some

observations, analyses and discussion about the executed case study.

5.1 Data of the problem

The data used as an example in this thesis comes from the studies of the Biology

Department of the University of Jyväskylä. It describes a total of 29 666 forest stands,

i.e. groups of trees that are more or less homogeneous, with total area of 68 700 ha.

The area of the forest stands is presented as a map picture in Figure 6. The forests

belong to typical Finnish production forest landscape and most of the stands have

been under active forest management for several decades. For more details about the

forest data, one may turn to Mönkkönen et al. (2014), Peura et al. (2016), Triviño

et al. (2015, 2017), and Pohjanmies et al. (2017).1

The decision making problem related to the data is about four different forestry

objectives and how they are affected by seven different forest management strategies.

From the practical perspective the problem is how each of the 29 666 forest stands

1. Data available: https://dvn.jyu.fi/dvn/dv/Boreal_forest
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Figure 6: Map presenting the physical area of the forest stands. Forest areas in blue.
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should be managed so that in the large scale all the forestry objectives related to

financial revenues and biodiversity values would be as desired. (Triviño et al.: 2017)

The data set is based on real values from Finnish Forestry Center and extensive

empirical simulation models of forest growth under different conditions. The actual

values in the data set are results of computational simulations simulating 50-year

growth of all the forest stands under different management regimes. For details and

exact sources it is recommended to turn to Mönkkönen et al. (2014).

This forest management problem has already been mathematically formulated and

solved by Triviño et al. (2017), so the single objective optimal values and some

Pareto optimal solutions and their alternative optimal management strategies are

already known. The purpose of using this data and problem in this is not to solve

an yet unsolvable problem but to demonstrate and verify the new cluster based

approach presented in Chapter 4. The objectives of the problem are described in

the following Section 5.1.1 including the already attained optimal results and the

different management strategies are shortly explained in Section 5.1.2. The actual

format of data and its features are presented in Section 5.1.3.

5.1.1 Objectives

The four forestry objectives of the management problem are 1) financial revenue of

extracted timber (Revenue), 2) amount of carbon stored into the forest stands (Carbon),

3) amount of deadwood in the forest stands (Deadwood), and 4) the suitability of

habitat for different species in the stands (HA). All these objects are to be maximized

and their potential maximum values can also be found in Triviño et al. (2017).

Timber revenue objective means the economic value of extracted timber, calculated

using eight timber assortments. The values are calculated as net present value (NPV),

and in the previous studies the maximum revenue of the entire area considered, i.e.

ideal value, has been 250 M Eur, on average 5800 Eur/ha. For more details how

revenue values have been estimated one may turn to Mönkkönen et al. (2014).
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Carbon storage values imply the average amount of carbon stored in living wood, dead

wood, extracted timber and the residuals left after harvesting. The potential maximum

capacity for deadwood has been calculated to be 4459 ∗ 103 MgC, 103 MgC/ha on

average. For more details see Triviño et al. (2015).

The amount of deadwood in the forest is an indicator of forest biodiversity. The values

presented in the data are average values of 50 year period. The potential maximum

capacity of deadwood calculated in the earlier studies is 218 150 m3, on average 5.1

m3/ha. More details can be found from Triviño et al. (2017).

Species habitat availability describes a combined habitat suitability index for six

different vertebrate species. The details and description how the suitability values are

calculated one may turn to Mönkkönen et al. (2014)). The maximum potential for

this index is 20 211 (no unit), which on average means 0.47/ha.

5.1.2 Management regimes

The seven different available forest management regimes are: the recommended

regime for Finnish private forestry (BAU), recommended regime with modified green

tree retention (GTR30), recommended regime with postponed final harvesting (two

different postponings, EXT10 & EXT30), recommended regime but without thinnings

(two different modifications, NTLR & NTSR) and a set aside option (SA), where the

forest is left without managing. All these are existing forest management strategies

already used for different purposes, for example, mitigating biodiversity losses in

otherwise commercially managed forests, as explained by Mönkkönen et al. (2014).

The management regimes are presented in Table 1.

In the forest management simulations EXT10, EXT30 and GTR30 regimes were not

allowed on forest stands that did not reach maturity during the 50 year simulation

period. No-thinning regimes, NTLR and NTSR, were not allowed on stands that

would not be thinned under the BAU regime either. Set aside (SA) regime was not

allowed on stands that did not have any operations in the BAU regime. In practice all
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Management regime Acronym Description

Business as usual BAU Recommended management: rotation length

80 years; site preparation, planting or seeding

trees, 1-3 thinnings, final harvest with green

tree retention level 5 trees/ha

Set aside SA No management

Extended rotation (10 yrs) EXT10 BAU with postponed final harvesting by 10 yrs;

rotation length 90 years

Extended rotation (30 yrs) EXT30 BAU with postponed final harvesting by >30 yrs;

rotation length 115 years

Green tree retention GTR30 BAU with 30 green trees retained/ha at final

harvest; rotation length 80 years

No thinnings

(final harvest threshold

values as in BAU

NTLR Otherwise BAU regime but no thinnings applied;

therefore forests grow more slowly and final

harvest is delayed; rotation length 86 years

No thinnings

(minimum final harvest

threshold values)

NTSR Otherwise BAU regime but no thinnings;

final harvest criteria adjusted so that rotations

do not prolong; rotation length 77 years

Table 1: The seven different forest management regimes, adapted from Mönkkönen et al.

(2014)

50



these constraints meant cases when managing the forest stand according to these not

allowed regimes would not differ at all when compared to BAU regime.

5.1.3 Data format

The Boreal forest data is available as four matrices, named “Timber revenues”, “Carbon

storage”, “Deadwood volume” and “Combined HA”. Each of these presents values of one

objective function. In each matrix, i-th row presents a single forest stand, and j-th

column a management regime. This way each cell ci j presents the objective function

value of the forest stand i if management regime j is chosen for that stand. The data

in all the matrices is homogeneous, the only difference being the numerical values

and their magnitudes in different objectives.

As explained in Section 5.1.2 there were cases where some management regimes were

not allowed for some stands. In matrices these cases are marked as Nan-values. It is

also notable, that these Nan-values are always in the same stands i and management

regimes j in all four matrices, so that the data can be said to be of good quality. In total

56.6% of lines contained Nan-values and 22.3% of all the values were Nan-values.

In total the data makes 29 666 variables – each forest stand being one variable. All of

them have a maximum of 7 discrete values, i.e. management regime options, for four

different objectives. Mathematically this means that the dimension of the decision

space is 29 666 and of the product space 4. This size of the decision space is also

the main cause of the computational cost in this problem. These characteristics,

homogeneous large data and discrete variables, make this problem an appealing case

study for the suggested cluster based surrogate.
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5.2 Optimizing Single Objective

The objectives for the aforementioned Boreal forest management problem are:

maximize Timber Revenue,

maximize Carbon Storage,

maximize Deadwood value,

maximize Habitat Availability index.

All of these objectives are to be maximized and they can be formulated as:

maximize
n

∑
i=1

m

∑
j=1

ci jxi j

s.t.
n

∑
i=1

xi j = 1

xi j ∈ {0,1}

(5.1)

where i ∈ {1,2, ...,n} denotes a forest stand (number of stands n = 29 666), and

j ∈ {1,2, ...,m} denotes a management regime with seven alternatives (m = 7). For

each stand i and management regime j, xi j has value 1, if regime j is applied to stand

i and otherwise 0. The basic formulation for all the single objective problems being

the same, the differences between the problems are in the ci j values.

All of these single objective optimization problems were first solved using all available

data i.e. without surrogate. The solving was executed with Pyomo-optimization

framework by Hart, Watson, and Woodruff (2011) and Hart et al. (2017), and by

using Jupyter Notebooks 2 and CPLEX optimization solver 3. Solving was done on

four core Intel i7 CPU with 8 GB of RAM. The computer was running Ubuntu 16.04

LTS. 4

2. https://jupyter.org/
3. https://www.ibm.com/analytics/data-science/prescriptive-analytics/

cplex-optimizer
4. Codes available in https://github.com/josejuhani/gradu-code
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The single objective optimizations of Timber revenue, Carbon storage, Deadwood

Volume and Combined HA took 2 min 52 sec, 2 min 25 sec, 2 min 22 sec and 2 min

14 sec of wall time, respectively. The results of these optimizations and comparison

with the values presented in Triviño et al. (2017) are presented in Table 2

Objective Unit Value in article Value attained

Timber Revenue M Eur 250 250

Carbon Storage MgC 4459×103 4449×103

Deadwood Volume m3 218 150 218 153

Habitat Availability index (No unit) 20 211 20 225

Table 2: Values of single objective optimizations and values presented in Triviño et al. (2017)

As can be seen from Table 2, there are some minor differences between values

presented in Triviño et al. (2017) and values attained by optimizing the same data.

The differences are still relatively so small that we can assume them to be caused only

by numerical approximation errors or being typos.

The real life interpretation of these results i.e. how different management regimes are

chosen for each optimal result, are presented in Table 3.

Objective BAU SA EXT10 EXT30 GTR30 NTSR NTLR

Timber Revenue 12 501 29 2 919 97 2 192 9 220 2 708

Carbon Storage 2 541 22 101 174 168 77 32 4 573

Deadwood Volume 801 21 223 117 60 1 921 686 4 858

Habitat Availability 758 19 770 200 159 1 198 1 408 6 173

Table 3: Number of chosen management regimes for each single objective optimal solutions

From Table 3 it can be clearly seen that Business As Usual, the recommended forest

management regime, is the best for maximizing financial revenue acquired from the

forest. The other extreme is Set Aside option, which is useful in maximizing all the

other objectives. Five other management regimes lie somewhere between these two.
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These differences also imply how Timber revenue objective may pose the greatest

trade-offs with the other objectives in the multiobjective optimization. It could be

then assumed that when optimizing all these objectives simultaneously, there would

be less BAU or SA managements and more of the alternative less extreme managing

options chosen. In addition many different alternative combinations of managements

could be considered for attaining the same desired result.

5.3 Building a Cluster Based Surrogate

The data at hand is small enough so that it actually could be possible to solve all

the scalarizing problems of the Synchronous NIMBUS method within the resources

of the given machinery: solving all the four scalarizing problems takes about 10

minutes. The usage of a surrogate is then not a necessity for this problem, but it

can be used in order to reduce the computational burden of solving. Especially in

an interactive process this also shortens the calculation and waiting times during

the iterative decision making process and thus makes the interaction more seamless.

However, if the data was significantly larger, the benefits of using this cluster based

surrogate approach would become much greater.

5.3.1 Preprocessing the data

Before building the cluster based surrogate it was required to pre-process the data.

In the data matrices there were many Nan-values representing cases where certain

management regimes were not available for some forest stand. As described in

Section 5.1.2, the reason for the management regimes being not available was that in

reality their results did not differ from the BAU regime in reality. From these followed

that it was safe to use the corresponding BAU values of each forest stand to replace its

Nan-values.

The values for different objective functions were also on very different scales. The val-

ues of Timber Revenue objective ranged from -4231.84 to 175966.0 and of Combined

Habitat from 0.0 to 11.3966. The ranges of the other two objectives lied somewhere
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in between. Because of these differences, the values needed to be normalized for the

clustering. All the cells in each matrix were scaled between 0 and 1 i.e. the greatest

value in matrix was assigned to be 1, the smallest 0 and all the other values scaled to

be relative to these.

5.3.2 Choosing the similarity metric

In this Boreal Forest data each variable i had 7 different values ci j for each of the four

objectives. In total there were then 28 numerical values for each variable, that could

be used for clustering the variables. The clustering was then supposed to be done for

29 666 variables in a space which dimension was 28.

As the goal of clustering was to group similar type of variables to same cluster, the

similarity had to be defined: Each variable being a forest stand, we could define

two of them being similar when they produce similar kind of results with the same

management regimes. However, because the forest stands are all of different sizes,

the similarity of results was better to be measured by using the relations between

different management regimens. If that was measured using the absolute similarity

of values, there may not be any two forest stands resembling on another enough.

The relation-based similarity of variables was then captured the best by using cosine

distance as similarity metric. The cosine distance metric caused the clusters to be of

elongated shape, as can be seen in Figure 7.

5.3.3 Choosing the clustering method

In addition to being able to choose the similarity metric, we did not know what kind

of clustering method would be naturally the most suitable for the data. Still, as the

purpose of clustering in this was just producing a good enough surrogate model, the

simple and traditional K-means algorithm was chosen.

An algorithm almost equal to K-means would have been K-medoids by Kaufmann and

Rousseeuw (1987). While being similarly iterative than K-means, the centers for the

clusters are assigned differently in K-medoids algorithm. When in K-means the centers
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Figure 7: Cosine distance θ between points y1 and y2 in two dimensions. The shape of cluster

caused by the cosine metric marked on red.

of clusters are just abstract points in the exact center of the cluster , in the K-medoids

each center has to be an existing data point. This naturally affects also how the other

points are assigned to clusters in each iteration.

Usually K-medoids is used instead of K-means for discrete data, as abstract center

points would not make any sense with discrete data. However, because cosine distance

was decided to be used as a similarity metric in the clustering, the centers generated

by K-medoids would not represent each cluster in the way it would be desired. As

the cosine metric assigns data points into clusters according to the “angle” between

the points, the K-medoids center of each cluster would not be presenting the average

sized data point, as is needed for the optimization phase. This problem is further

elaborated in Figure 8.

Because of this it was decided to use K-means algorithm instead of K-medoids, and

selecting the variable closest to the euclidean average of the cluster as the most

representative one. This is also shown in Figure 8.
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Figure 8: An imaginary cluster marked with red dotted ellipse. If the cluster had been formed

using cosine distance and K-medoids algorithm the center would be the point marked with red

diamond. The euclidean center of the cluster is marked with blue cross and the point closest

to it with blue. In this case the center point of K-medoids does not represent the entire cluster

as desired.

The K-means algorithm requires the initial cluster centers to be used as starting points

for the formed clusters. As described in Section 4.1.1 these initial centers affect greatly

the clustering results. From the surrogate forming point of view, these initial cluster

centers may also be seen as the initial sampling: the third step in the surrogate forming

process (Section 3.2.1). In this study this selection of the initial cluster centers was

chosen to be done by taking random samples from the data.

5.3.4 Choosing the number of clusters

For K-means algorithm the number of clusters is needed to be decided beforehand.

In this case we could not guess what that number really should be due to the lack of

domain knowledge. In Section 4.1.2, it was stated that the more clusters there are the
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closer the optimization result are to the real optimum. In this case it was possible to

generate the number of different clusterings and compare them empirically. K-means

algorithm being sensitive for the initial clustering of the data, all the clusterings with

different number of clusters were repeated ten times with different random initial

cluster centers.

Because training a clusterings model to a data set is also a computationally expensive

task, it was not sensible to form clusterings for all possible numbers of clusters.

It was decided to consider only clusterings for which the forming and solving the

scalarizing problems would not take longer than what it would take to solve single

interactive iteration without surrogate. As one iteration took about 10 minutes, the

upper limit was set empirically to 8300 clusters, for which the time requirement was

approximately the given 10 minutes, and the lower limit to 50, for which it took about

2 seconds. The clusterings were then formed with the number of clusters ranging

from 50 to 8300, with interval of 50 clusters.

These clusterings were compared by using the sum of intra cluster cosine distances as

an evaluation metric. This metric aims to evaluate the validity of the clustering by

showing how similar the objects within the same cluster are. The evaluation results

are shown in Figure 9.

As can be seen from Figure 9, the sums of intra cluster distances decreased exponen-

tially with the increase in the number of clusters. This decrease in distances meant

that when there was more clusters, the features within clusters were more close to

each other i.e. more similar.

In the graph there is no clear “knee points” visible, that would imply remarkable

change in the validity of clustering. This also meant that the above-mentioned L-

method by Salvador and Chan (2004) was not a valid approach for this. Because of

this, the only remark we were able to make from the graph was that the more clusters

we had the more valid the clustering was. The proper number of clusters, either for

traditional clustering or for cluster based surrogate, could not then be decided based

on this metric.
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Figure 9: Relationship between the numbers of clusters and average sum of intra cluster

distances. Calculated with interval of 200 clusters.

However, the performance of a cluster based surrogate is not necessarily dependent

on the quality of the clustering used. In some cases these two may even be in

contradiction. The performance of the cluster based surrogate and the effect of the

number of clusters could then be measured not by using only clustering indices but by

measuring its ability to approximate the data. In all its simplicity, this meant solving

the actual optimization problems using the cluster based surrogates. As described

earlier in Section 4.1.2, one proxy variable from each cluster was selected to be used

in the optimization. In this case the variable closest to the euclidean center of cluster

was selected.

The single objective optimizations of all the objectives were done using the same

clusterings constructed, presented and evaluated in the previous chapter. As the time

required for each optimization run increased greatly with the number of clusters used

for the surrogate, the optimizations were executed only for up to 1500 clusters, as the
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variations in the results stabilized approximately before that point. These results are

presented in Figure 10.

Figure 10: Optimization results for four objectives when using values from the surrogate.

Maximum (green), mean (yellow) and minimum (red) values of ten different clusterings

with same number of clusters. Blue lines marks the real optimal values for each objective.

Calculated with interval of 50 clusters. Scales focused near the optimum of each objective

As can be seen in Figure 10, the optimization results in general improved with the

increase in the number of clusters. For the Deadwood Volume objective there are a

bit greater variations in the optimization results, but still they were not remarkably

worse than the others.

The optimization results were behaving as expected and presented in Section 4.1.2,

i.e. the results improved along with the increase in the number of clusters. This also
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mean that we were free to choose any clustering we regarded to be accurate enough,

or one that would keep the time of an interactive iteration under certain time limit.

In this case, we wanted to choose a clustering that kept the interactive iteration delay

times under ten seconds as Miller (1968) suggests for this kind of man-computer

interaction. When empirically tested, the number of clusters filling that requirement

was 600 clusters: For 600 clusters it took about 2.5 seconds to solve each of the four

scalarizing functions, and about ten seconds in total. The time required for forming

the surrogate with 600 clusters was about 25 seconds.

As there were ten differently initialized clusterings for each number of clusters, the

ten different clusterings with 600 clusters had to be compared to one another in order

to choose the actual one to be used. As the different objectives had relatively different

optimization results with different clustering initializations, all of them had to be

regarded somehow in choosing the right clustering. As the only way to measure the

goodness of a single objective optimization result was its relation to the real optimum,

this same measure was chosen for measuring the clusterings also. Thus the sum

of relative differences of cluster based optimization results to the real optima was

selected as the measure of goodness, as proposed in Jin, Husken, and Sendhoff (2003).

For each clustering its goodness measure was calculated by:

4

∑
i=1

zi− z??i
z??i

(5.2)

where i means the index of the objective and zi the optimal value of the objective i

attained by surrogate based optimization. The comparisons of different objectives

based on this metric are presented in Figure 11

From Figure 11 it was seen, that the clustering with random initialization number six

was the best one according to the measure used. This clustering was selected to be

used in the interactive optimizations. The single objective properties of this clustering

are presented in the following Section 5.4.
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Figure 11: Upper picture: The relative differences of all the objectives and different cluster

initializations having 600 clusters. Lower picture: The sums of relative differences for all the

four objectives. 62



5.4 Optimizing Single Objective using Surrogates

For the chosen clustering, that consisted of 600 clusters, the ideal and nadir values

according to the proxy variables are compared to the real ideal and nadir values in

Figure 12. The results are presented in parallel coordinates, so that all the objectives

are scaled between 0 to 1, where 0:s are the real nadirs of the objectives and 1:s the

real ideals.

Figure 12: The ideal and nadir values of cluster based surrogate with 600 cluster. The

surrogate based results are in red and the real ideal and nadir values in green.

The surrogate based ideal values for Timber revenue, Carbon storage, Deadwood

volume and Habitat suitability were 249 596 432, 4 427 946, 212 327, 19 945, and

measured by the relative difference to the real ideal values these are -0.1%, -0.5%,

-2.7% and -1.3%. The nadirs of the corresponding objectives were 39 679 664, 2 808
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943, 79 554 and 11 915, and the differences to real nadirs 3.5%, -0.5%, -0.3% and

-0.4%. These can be seen as measures for the approximation errors inevitably related

to the use of surrogates and in this case these errors were not significantly large.

Figure 12 presents clearly how objectives behave differently after the clustering. The

differences in ideal values are not very large for any of the objectives, the Deadwood

Volume being the greatest anomaly. The same notion can be said from the nadirs also,

but because the calculations of nadirs are based on payoff tables, and may not be very

accurate even with the original data, comparisons between them has to be taken only

as rough approximations.

The cluster based surrogate bundles together multiple variables, in this case multiple

forest stands. After the optimization the results can be interpreted so that for each

cluster the same forest management regime is implemented for every forest stand

in the cluster. The only exceptions are forest stands in the cluster for which it is not

possible to use the chosen management regime. In those cases the “Business As Usual”

regime can be chosen as it certainly is available for every forest stand. These results

of the surrogate based single objective optimizations and comparisons to original

optimal solutions are presented in Table 4.

Objective

Timber Revenue Carbon storage Deadwood Volume Habitat suitability

BAU 13 933 | +1 432 2 147 | -394 555 | -246 715 | -43

SA 17 | -12 21 739 | -362 21 512 | +289 19 225 | -545

EXT10 2 177 | -742 0 | -174 0 | -117 22 | -178

EXT30 11 | -86 2 372 | +2 204 2 283 | +2 223 2 258 | +2 099

GTR30 1 135 | -1 057 0 | -77 1 410 | -511 1 087 | -111

NTSR 10 082 | +862 0 | -32 298 | -388 1 297 | -111

NTLR 2 311 | -397 3 408 | -1 165 3 608 | -1 250 5 061 | -1 112

Table 4: Number of chosen management regimes for each single objective optimal solution

when using cluster based surrogate and difference to the real optimal solutions presented in

Table 3
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From Table 4 it can be seen that the surrogate seems to lead emphasizing EXT30

management regime. The exception to that is optimizing Timber Revenue, in which

case the BAU regime is chosen even more frequently than originally. As already

suggested in Section 5.4, the EXT30 regime, that is a compromise between BAU and

SA regimes, became chosen more often than the extreme regimes.

5.5 Interactive Multiobjective Optimization using Surrogates

5.5.1 Implementation

The implementation of any cluster based surrogate and the interactive optimization

method are dependent of the actual case at hand. In Section 5.3 the required similarity

metrics and optimization algorithms were justified, and the actual implementation of

these is described in this section.

The clustering of the data was implemented and verified using Python libraries and

Jupyter Notebooks. For solving the multiobjective problem IND-NIMBUS by Ojalehto,

Miettinen, and Laukkanen (2014), an implementation of the synchronous NIMBUS

method, was used. The single objective sub-problems were modeled using PYOMO

(Hart, Watson, and Woodruff: 2011; Hart et al.: 2017) and solved using CPLEX

optimizer. 5

From the implementation point of view, the most essential part in the synchronous

NIMBUS approach are the four scalarizing functions: ASF, STOM, GUESS and NIMBUS.

They and their exact mathematical formulations have already been presented in

Section 2.3, and implementing them with Pyomo framework was quite straightforward.

The only challenge with the formulations was that the framework is only capable

of handling linear problems, so for instance the maximum function could not be

5. Codes available in https://github.com/josejuhani/gradu-code
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used. Because of this the original formulation (2.2) had to be replaced with a smooth

formulation by Laukkanen et al. (2010), introducing an additional variable y:

minimize y+ρ

k

∑
i=1

fi(x)
znad

i − z??i

s.t x ∈ S

y≥ fi(x)− z̄i

znad
i − z??i

i = 1..k

(5.3)

Where the variables are as in (2.2). As can be seen, the smooth formulation transforms

the maximum function into a set of new constraints. In this case that meant generating

four new constraints, one for each objective function. In the original article presenting

the smooth formulation of the scalarizing functions, the augmentation term was

missing, but is presented here as it was used in this implementation.

From the four scalarizing functions of the synchronous NIMBUS, the GUESS scalarizing

function needed to be modified when it was used with classification based reference

point. As Miettinen and Mäkelä (2006) describe, for I� objectives the denominator

must be replaced with znad
i − z??i . Also the min-max term considers only the objectives

other than possible free class I�. The modified GUESS function is then of form:

minimize max
i/∈I�

[
fi(x)− znad

i

znad
i − z̄i

]
+ρ

k

∑
i=1

fi(x)
znad

i − z̄i

subject to x ∈ S

(5.4)

The surrogate based ideal and nadir values were presented already in Section 5.4

and while the differences between the real and surrogate based ranges were not

significantly large, there still came up some differences in the scalarizing results in

empirical tests. Because of this the real ideal and nadir values of the problem were

chosen to be used in the implementation, as was recommended in Section 4.3.2.

The graphical user interface of IND-NIMBUS is presented in Figure 13. The current

Pareto optimal solution is on the left presented as a bar chart, where each bar presents
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a single objective function and its end points the nadir and ideal values. In this

case, the objectives are to be maximized and so the bars are aligned to right and

the shorter the colored bar the better the values. The decision maker can indicate

her/his preferences by clicking the bars. Clicking the non-colored part implies that

the chosen objective is allowed to impair. Respectively, clicking colored part means

that the objective is desired to improve. On the right all the calculated Pareto optimal

solutions are presented in the upper and the most interesting ones in the lower panel.

Figure 13: A screenshot of the graphical user interface of the IND-NIMBUS showing interaction

with the decision maker.

5.5.2 Relationships of the objectives

In this Boreal Forest optimization case, the shifting of Pareto front that was presented

in Section 4.3.1 and in Figure 5 is possible for instance between Deadwood Volume as

f1 and Timber Revenue as f2 objectives, as their ideal and nadir values are related the

same way as presented there. One way to verify this kind of behavior is calculating

results for all four different scalarizing of the synchronous NIMBUS using different

reference points. The results of the scalarizings when one objective at a time was

classified to be improved and the others were classified to be free are presented in

Table 5.
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Bounds of the surrogate

Revenue Carbon Deadwood Habitat

Ideal 249 596 433 4 427 946 212 328 19 946

Nadir 39 679 664 2 808 943 79 554 11 915

Objective to optimize

Timber Revenue

Revenue Carbon Deadwood Habitat

ASF 249 578 305 2 828 548 79 973 11 974

STOM 249 596 433 2 808 943 79 554 11 915

GUESS 249 415 335 2 784 933 72 219 11 182

NIMBUS 249 596 433 2 808 943 79 554 11 915

Carbon Storage

Revenue Carbon Deadwood Habitat

ASF 28 036 750 4 427 788 200 868 18 108

STOM 8 129 204 4 427 946 202 350 18 221

GUESS 8 152 708 4 427 918 201 158 18 215

NIMBUS 88 837 788 4 427 788 202 044 18 124

Deadwood Volume

Revenue Carbon Deadwood Habitat

ASF 30 184 020 4 214 348 212 317 18 915

STOM 31 658 632 4 207 590 212 328 19 036

GUESS 30 073 050 4 214 416 212 317 18 911

NIMBUS 113 414 218 4 191 144 212 317 19 011

Habitat Suitability

Revenue Carbon Deadwood Habitat

ASF 69 059 478 3 921 094 204 333 19 945

STOM 67 378 315 3 931 616 206 008 19 946

GUESS 68 882 190 3 921 091 204 333 19 945

NIMBUS 144 157 068 3 913 622 205 682 19 945

Table 5: Results of different scalarizing functions when the reference point set to ideal value

of one objective and the other objectives are free. The object wise best values are highlighted

with red and the worst ones with blue.
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From Table 5 it can be seen that it is possible to attain all the ideal values of the single

objective problems and nadir values even smaller that were estimated before. As the

nadir values are based only on pay-off table estimations we can safely assume that

the scalarizing functions are working properly and that it is possible to attain results

from any part of the Pareto front. It can also be noticed that the smallest values of

all the other objectives are attained while optimizing the Timber Revenue. On the

other hand, the values of Timber Revenue are significantly smaller when optimizing

any other objective. This indicates that the Revenue objective has the greatest conflict

with the other three objectives.

However, Table 5 does not reveal anything about the behavior of the surrogate based

Pareto front; All the objectives are behaving as expected and there are no indications

about possible “twists” in the front. In order to explore the behavior of the surrogate

based Pareto front, some surrogate based Pareto optimal solutions were used as

reference points to ASF in the original data and problem. Since any results from

Table 5 would have been used, the NIMBUS results of the table were chosen for this

purpose. These points and the corresponding results in the original product space are

presented in Table 6. For comparison purposes there are also presented the results

of the surrogate based optimization if decision values yk j of the proxy variables are

mapped to all the variables in each cluster k, as described in Section 4.3.2.
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Objective to optimize

Timber Revenue

Revenue Carbon Deadwood Habitat

Surrogate front 249 578 348 2 823 113 81 765 12 043

Mapped front 245 986 463 2 838 939 85 283 11 996

Real front 249 956 786 2 825 912 82 020 12 057

Carbon Storage

Revenue Carbon Deadwood Habitat

Surrogate front 87 386 441 4 427 793 202 829 18 178

Mapped front 87 704 387 4 399 341 204 091 18 104

Real front 89 982 468 4 446 963 204 467 18 276

Deadwood Volume

Revenue Carbon Deadwood Habitat

Surrogate front 113 414 218 4 191 144 212 317 19 011

Mapped front 112 105 435 4 185 685 213 158 18 956

Real front 121 167 672 4 248 398 217 199 19 303

Habitat Suitability

Revenue Carbon Deadwood Habitat

Surrogate front 144 157 068 3 913 622 205 682 19 945

Mapped front 141 649 379 3 942 044 208 390 19 811

Real front 150 256 353 3 958 661 209 523 20 175

Table 6: Surrogate-based and mapping-based extreme solutions and corresponding really

Pareto optimal solutions. Objective wise greatest values in red and smallest in blue.

From Table 6 it can be seen that the all the Pareto optimal values of the surrogate are

less than those of the original Pareto front. This leads to assume that the surrogate

based Pareto front is located below the original front i.e. the entire surrogate front

is just shifted “down” from the position of the original Pareto front. Naturally there

still may be some areas where the front is twisted as in Figure 5, but this would have
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required exploring the entire Pareto front extensively and that could not be afforded

in this study.

The presented mapping based results are neither systematically greater nor less than

the surrogate based solutions. As the cluster based surrogate is based on averaging

values of multiple variables this is not a surprise. In general these different solutions

are resembling one another quite a lot and so they also could be used as implementable

preferred solutions, as suggested in Section 4.3.2.

When the surrogate based solutions could be too high i.e. better than the real Pareto

optimal solutions, the mapping based results could never be. This is because the

mapping is using all the real variables, and so it is simply not possible to reach

unattainable solutions. However, in the Timber Revenue solution of Table 6 the

mapping based solution has some greater values than the original Pareto optimal

solution and so they are non-dominating. This indicates that the solution attained

using the mapping may also be actually Pareto optimal, but on different part of the

Pareto front.

5.6 Solving with the Decision Maker

The interactive solving process of the multiobjective problem was done using the

parameters and software implementation described in the previous sections. The

decision maker of the process was a person that had real experience from researching

and implementing forest management regimes. From the wish of the decision maker,

all the objective values during the process were scaled to indicate values per hectare.

As the total area of the forest stands was 68 700 hectares, all the objective values

were divided by that number.

To start the solution process the decision maker was shown a neutral compromise

solution with values [2710.0, 58.3, 2.76, 0.26] i.e. a solution where all the objectives

were balanced. That solution was obtained by using the midpoints between ideal and

nadir values as a reference point.
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Iter Issue Timber Carbon Deadwood Habitat

revenue eur Storage mgC volume m3 suitability

Ideal 3640.0 64.8 3.18 0.29

Nadir 450.0 41.2 1.16 0.17

1 Init. Sol. 2710.0 58.3 2.76 0.26

2 Cur. Sol. 2710.0 58.3 2.76 0.26

Classif I≥=2070.0 I≤=59.2 I≥=2.19 I≤=0.28

2070.0 60.4 3.02 0.28

2180.0 60.0 2.92 0.28

2250.0 59.9 2.92 0.28

2150.0 60.1 2.91 0.28

3 Cur. Sol. 2070.0 60.4 3.02 0.28

Classif I≤=2500.0 I≥=59.9 I≥=2.19 I≥=0.28

2280.0 59.9 2.99 0.28

2420.0 59.3 2.83 0.27

4 Cur. Sol. 2420.0 59.3 2.83 0.27

Classif I≥=2400.0 I≤=59.5 I≥=2.81 I≤=0.28

2380.0 59.4 2.87 0.28

5 Cur. Sol. 2380.0 59.4 2.87 0.28

Classif I< I� I� I�

3630.0 41.2 1.16 0.17

3630.0 41.8 1.53 0.19

Final Sol. 2380.0 59.4 2.87 0.28

Table 7: The interactive solution process with the decision maker illustrated. Values presented

with the accuracy of three significant figures.
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Starting from that [2710.0, 58.3, 2.76, 0.26] solution DM wanted to see in the

second iteration how the solutions would change if Timber Revenue and Deadwood

Volume were allowed to impair until 2070.0 and 2.19, and the Carbon Storage and

Habitat Suitability were desired to be improved until 59.2 and 0.28. Based on those

preferences four new alternative solutions were produced as shown in Table 7.

From the generated four solutions the decision maker chose the second one [2070.0,

60.4, 3.02, 0.28] for further examination. Using this as the current solution for the

third iteration he wanted to increase Timber Revenue to 2500.0. For all the other

objectives the preference levels were kept the same than on the previous iteration. This

time DM wanted to see only two new solutions, so only ASF and NIMBUS scalarizings

were selected for this iteration.

The third iteration produced two new solution alternatives, as was desired. From

these two DM was a bit more satisfied with the latter solution [2420.0 59.3 2.83 0.27],

because it generated more Timber Revenue than the former one. DM also stated that

he is not really interested about Deadwood Volume and Habitat Suitability values,

because differences in their objective values were quite small in this case. For the

fourth iteration the decision maker wanted to attain one more solution that would be

a compromise between those two. Starting from the latter solution [2420.0 59.3 2.83

0.27] he set all the references to be somewhere between the two solution alternatives

generated during the previous iteration: Timber Revenue was set to impair until

2400.0 and Deadwood Volume until 2.81. Carbon storage was set to be improved

until 59.5 and Habitat Suitability until 0.28.

With the generated solution [2380.0 59.4 2.87 0.28], DM was satisfied. To his mind,

Timber Revenue was nicely above the average, Carbon Storage was quite high and

the ecological aspects were good enough. At this point the decision maker chose this

solution to be the best one.

Finally, the decision maker wanted to see what happens if only Timber Revenue is

maximized and the other objectives are allowed to change freely. For this purpose

only ASF and NIMBUS scalarizing were selected. As expected, the Revenue values
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almost attained their ideal value and the others impaired all the way to their nadir

values. It was also noticed that while the two scalarizings produced almost similar

outcomes there were some minor differences in Timber Revenue that caused clear

differences in other objectives. The actual Timber Revenue values of the two final

solutions were 3632.9 and 3626.4, and because the values in Table 7 are presented

with accuracy of three significant figures the differences cannot be seen in it.

After the interactive solution process the chosen preferred solution [2380.0, 59.4,

2.87, 0.28] was projected to the real Pareto front, as described in Section 4.3.2. The

projection was done using ASF scalarizing function and it took 12 minutes to solve.

The attained real Pareto optimal solution was [2410.98, 59.58, 2.92, 0.28], so every

objective became improved when compared to the surrogate based solution. The

relative differences between these two solutions to the real solutions were -1.3%,

-0.3%, -1.7% and 0.0%. The decision maker was satisfied with these results also, as all

the changes from the surrogate to the real results were positive and relatively small.

The decision maker of the interactive process was satisfied with the smoothness of

the interactive process and how there were only short waiting times, especially if

compared to solving without the surrogate. He was also happy with the results of the

process, both the surrogate based results and the final really Pareto optimal ones and

how the relative errors were only minor.
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5.7 Analysis of the Case Study

The presented Boreal Forest case study included a data set which was well suited for

the cluster based surrogate approach. The characteristics of the data – discreteness,

large number of similar variables and an integer linear programming problem –

proved that with these requirements this approach is able to provide meaningful

multiobjective optimization results. In short, the cluster based surrogate approach

was proved to be functional.

As the original results of the Boreal Forest problem were already known, it was

possible to compare the results attained through the cluster based surrogate to the

original results. This enabled us to prove some hypotheses presented in Chapter 4,

such as that the accuracy of the surrogate increases with the increase in the number of

clusters. We were also able to verify that the finally chosen clustering with 600 clusters

caused the four single objective optimization results to differentiate from the real

results only by -0.1%, -0.5%, -2.7% and -1.3%. After the final interactive optimization

process and projecting its results to the original Pareto front the differences were

-1.3%, -0.3%, -1.7% and 0.0% for that point. Any of these differences was not very

large and if larger number of clusters had been chosen, the differences would have

been even smaller but the interactive iteration times longer.

Based on the executed case study, the cluster based surrogate approach is especially

suitable for forest management problems of the given type. As there is a great

amount of forests and also forest management planning in Finland, the developed

surrogate and method may prove useful in practice, even though its applicability

would otherwise be quite narrow.

5.7.1 Extensions to the Boreal Forest problem

As already noticed in Section 5.2 the Business As Usual and Set Aside managing

options are quite opposite to one another, and the other five regimes produce results

somewhere between these two. Based on this, it would be interesting to study

what kind of trade-offs would be required for creating different combinations of
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management regimes for almost similar optimization results. Such comparisons

would reveal even more desirable management options than what is attainable with

only direct optimization procedure.

At its current set-up the Boreal Forest problem considers an area of the size of about

one municipality. Thus the size of the problem could be easily extended by taking into

account larger forest areas. This would also be a desirable research question for the

future, since the advantages of cluster based surrogate are exposed the best when the

sizes of problems are larger. Solving a similar but larger problem could also reveal

possible issues related to the usage of cluster based surrogate.

From the practical point of view the Boreal Forest problem could also be extended

with a few more objectives. For instance, forest owners could be interested about

having all of their forest stands handled using the same management regime or have

certain proportion of forest stands handled using certain management regime. The

total number of different management regimes could also be set as an objective.

In the clustering phase of the Boreal Forest data, the spatial distances between different

forest stands could be taken to account. This way it would be possible to handle

stands close to one another with the same management regime. From the practical

perspective this would simplify actual forest management and monitoring.
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6 Discussion

In this chapter different aspects of the cluster based surrogate are discussed. The

cluster based surrogate presented in this thesis can be compared both to dimension

reduction techniques and to other surrogate models. In both comparisons, the most

important aspect to consider is the discreteness of the decision space, which is the main

strength of the cluster based surrogate. These comparisons to dimension reduction

are presented in Section 6.1 and to traditional surrogate models in Section 6.2. After

these, the possibility of using different weighting methods is discussed in Section 6.3

and using other types of clusterings in Section 6.4. Guidelines for choosing the number

of clusters are discussed in Section 6.5. Differences between using real ideal and

nadir values or surrogate based ones are enlightened in Section 6.6. The means

for estimating approximation errors in different objectives are briefly presented in

Section 6.7. As the presented cluster based surrogate was studied only with the

linear integer problem extending it to linear mixed integer problems is discussed in

Section 6.8.

6.1 Comparison to dimension reduction

Traditional statistical dimension reduction techniques have primarily been developed

for measurement and real valued data and not for discrete decision spaces. Earlier,

techniques like Principal component analysis (PCA) have been used in optimization

for reducing the number of objectives, for example by Pozo et al. (2012), but not in

the decision space. There also exist PCA for discrete data by Buntine and Jakulin

(2004), but combining this kind of techniques with optimization and in decision space

has not been tried, or to our knowledge not even discussed earlier. Otherwise, much

more sophisticated techniques for reducing discrete spaces do exist , but for combining

discrete dimension reduction with optimization this study proposes a simple solution.

In addition to knowing the objective function values of the optimal solution it is of

great importance to know every decision value of the solution. If using some PCA
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type of dimension reduction that “mixes” together multiple variables without clear

borders, mapping the optimal decision variables of the reduced space back to the

original decision variables may be challenging. The PCA like dimension reduction may

produce optimization results that have good and accurate objective values, but using

them in order to know the values for each decision variable may produce challenges.

As a competitor to other dimension reduction techniques clustering is quite a simple

and intuitively more understandable option. As one variable is representing many

variables of similar type, the reduction of dimension is in a way more controlled. This

is the case especially if the clustering or parts of it are done manually or otherwise ex-

ploiting domain knowledge by some clearly understandable mean. This controllability

also leads to more interpretable optimization results.

When compared to other dimension reduction approaches, the cluster based method

enables one to use existing variables for presenting subset of original variables.

These variables are then more easily coupled with optimization problem formulation,

because no new and completely different type of variables are presented.

6.2 Comparison to surrogates

As can be seen from the classification by Jin (2005) (introduced in Section 3.2), the

surrogates are usually built for problems or functions in the product space. The cluster

based surrogate is however built in the decision space instead. Because the purpose

of the cluster based surrogate is also to model the original problem and to reduce

the computational load, this approach should be classified as a surrogate also. The

list presented by Jin (2005) is not then a comprehensive one. This classification

having three product space surrogate types – problem approximations, functional

approximations and objective approximations – should be extended with variable

approximations.

If the original three-class classification of the surrogates is still to be used, the cluster

based surrogate could be seen as a function approximation or an objective approxima-

tion: On the one hand the clustering, and so the surrogate, is formed in the decision
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space to reduce the number of variables, and in the mathematical programming this

then also requires and leads to modifying of the objective functions, as presented in

Section 4.2. On the other hand, in a cluster based surrogate one variable is used for

approximating other variables that are closely related to it, which is similar to how

objective approximation works.

An advantage of the cluster based surrogate when compared to many other surrogate

models is that it does not really require variable selection. As the cluster based

surrogate uses all the existing variables for clustering and then automatically selects

the most representative ones, manual choosing is not needed at all. Especially in

the cases involving a large number of variables this feature of the surrogate becomes

useful.

Unfortunately, the cluster based surrogate is not updatable during the optimization

phase and is aimed only for linear (mixed) integer optimization problems. At the

moment there is also no way to handle additional constraints in the optimization.

Handling the constraints with the surrogate should also be studied in the future.

6.3 Possibilities of using different weighting method

In the presented cluster based surrogate method each proxy variable is assigned a

weighting coefficient according to the proportion of variables it is presenting. This

choice is based on assumption that the relative importance of each proxy variable is

equal with the proportion of the variables it is representing in the modified multiob-

jective formulation (4.2). When the clusters are approximately equal in their shape

and size this assumption should be valid.

However, different similarity metrics, clustering algorithms and numbers of clusters

may produce clusters of very different shapes and sizes. With certain data sets this

may be inevitable independently of the parameters used, or the clustering may be

given ready so that there is not any possibility for impacting its characteristics. In

these cases choosing the proxy variable may be challenging, but more than that the
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relative importance of proxy variables may not correspond to the proportion of the

variables they are representing.

Because of this, a more sophisticated approach for defining the significance and repre-

sentativity of each proxy could be considered. The possible alternative approaches

could consider the relative hypervolume of each cluster, the variance of variable

values in each cluster or some metrics for assessing the impact of different shapes, for

instance. A different weighting approach would also require different approach for

mapping the proxy decision variables to the original decision variables. Exploring and

comparing different weighting methods and mapping approaches could be a good

research question in the future.

6.4 Possibilities of using alternative clustering approaches

Because of the way each proxy variable and its weighting coefficient are representing

clusters, the shapes of clusters may have great impact on the accuracy of the cluster

based surrogate. This issue is the main reason why a valid clustering by the machine

learning point of view may not be the best possible one for a cluster based surrogate.

The main application of clustering being machine learning and classifications that

are meaningful in the information extraction, it would be worth considering how the

cluster based surrogate could be modified to be more applicable with this kind of

needs also. If these issues could be handled, also more “realistic” clusterings could be

used for forming the cluster based surrogate for optimization.

One possible approach for solving the problem of different clusterings needed for

different purposes would be multiobjective clustering by Handl and Knowles (2007).

As clustering itself is a cumbersome task with simultaneous goals of maximizing

the similarity of objects within clusters and minimizing it between different clusters,

multiobjective clustering could serve the traditional clustering task even without the

surrogate building aspect. The objectives of cluster based surrogate being somewhat

similar with the traditional clustering but having some specified needs in addition,

multiobjective clustering could offer a tool for finding satisfying compromise for both
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modeling the classes of the phenomenon and giving accurate enough surrogate for

optimization. The applicability of the multiobjective clustering for the surrogate

building purposes could be studied in the future also.

6.5 Possibilities for choosing the number of clusters

One of the main issues of the cluster based surrogate – and clustering in general – is

the number of clusters. As was seen in Section 5.3.4 the single objective optimization

results using the surrogate were quite good even with a small number of clusters and

the results improved linearly with the increase in the number of clusters. In this case,

the real optimal values were known and it was easy to compare different clusterings.

The cluster based surrogate uses the average values of multiple variables to approxi-

mate all those variables so it can be assumed that the optimization results attained

via surrogates are more close to average results than to the optimal ones. This means

that when maximizing using the surrogate the values are probably less than the real

maximum (and greater if minimizing). Based on this hypothesis one could always

choose the clustering which gives the maximal optimization results (or minimal if

minimizing). If the results only get better with the increase in the number of clusters

without starting to degrade after some point, the number of clusters could probably

be chosen based solely on the time requirements of the optimization and forming the

clustering.

Even though the surrogate based optimization results usually are more average than

the real ones, there still exists possibility that the optimization results attained via the

surrogate are better than what really is possible to attain. In the cases when single

objective optimizations using the original variables are not possible due to the size of

the data, this cannot be verified and choosing the number of clusters based on the

best attained value causes bias. In those cases it is still possible to use the original

variables so that the decision values of the proxy variables are mapped into the original

variables and so “new” optimal objective function values are produced. Because these

values are based on the original values and original problem formulation, they can
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never exceed the real ideal values, and can be used for verifying the optimization

results of the cluster based surrogate. However, some other more accurate verification

methods and metrics should be found or developed in the future.

In addition to these, previously mentioned multiobjective clustering of Handl and

Knowles (2007) could be utilized for choosing the proper number of clusters also.

If the applicability of multiobjective clustering for cluster based surrogate is studied

later on, this aspect should also be included into the observations.

6.6 Effects of using different Ideal and Nadir values

In ILP optimization using cluster based surrogate all the values and reference points

appear to the optimization algorithm through the values of the surrogate. This means

that also the scalarizings of the synchronous NIMBUS method, for instance, are

executed in the reduced decision space. Because of this, it would seem justified and

harmless to use the ideal and nadir values attained from the surrogate model also.

There are some issues with that approach, however.

The surrogates being only approximations of the original variables or data it is very

likely that the ideal and nadir values attained using the surrogate are not the same

than the original ones, but more averaged as explained in previous Section 6.5. As

can be seen in Figure 2 the ideal and nadir vectors are used as projecting directions

for different scalarizing functions. If these points are not on their correct places the

scalarizing results of the given reference point become twisted. At worst, this makes

some areas of Pareto front unobtainable via scalarizings.

Based on empirical tests, using the surrogate based ideal and nadir values produce

more average results than if using original ideal and nadir values. Fortunately,

interactive multiobjective optimization and using the scalarizing functions is an

iterative process, during which the decision space is explored and inspected. Because

quite seldom in the multiobjective optimization the decision maker ends up selecting

a solution very close to ideal or nadir value of one objective, the inability to reach

these points is possibly not crucial. It is still important to note this during the process.
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6.7 Approximation errors in multiobjective optimization

In cases when the real ideal values of objectives are known without the surrogate i.e.

surrogate is only used for lightening the optimization process, the differences of the

surrogate based ideals and real ones could be used for estimating the modeling errors

involved in the surrogate. That approach was tried in Section 5.5.2, but in that case it

was not possible to discover any differences or errors. There might be some potential

in that kind of approach and this should be studied more thoroughly in the future.

Naturally, if the original single objective optimal values are not known, this approach

cannot be employed at all. For these cases, some measurement methods and metrics

should be researched. This is also closely related to questions proposed in Section 6.5.

6.8 Extending Cluster Based Surrogate to Mixed Integers

In the presented cluster based surrogate approach and in the Boreal Forest case study

the variables were only integer valued. This makes the problem only a integer linear

programming problem. As the mixed integer linear problems (MILP) are quite a lot

like the integer linear problems (ILP) it would be possible to extend the presented

approach to include mixed integers also with quite a little effort.

One possible addition to the method if used with mixed integer variables would be

changing the selection of proxy variable from clusters. Because of the discreteness of

all the variables, the variable closest to the abstract center of the cluster was chosen.

If there still was some continuous variables it could be considered to cluster them

separately and use their real cluster centers as the proxy variables. With real valued

variables this still may not be trivial or unambiguous. Easier approach would be

leaving the real valued variables completely out from the surrogate forming and only

form cluster based surrogate from the discrete ones.

In addition, some guidelines and specific instructions for using cluster based surrogate

with MILP problems should be developed and tested in the future.
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7 Conclusions

The amount of data has increased significantly during the last years, and it is also

desired to be used for making decision. Even though available processing power

has also increased, that growth has not been large enough and new approaches for

handling large data-driven optimization problems are required. Especially when cog-

nitively effective interactive decision making methods are used, some ways to reduce

the computation times of iterations are needed. For this purpose, a computationally

cheaper cluster based surrogate model was developed and tested in this thesis.

The developed cluster based surrogate was proved effective for compressing discrete

decision space and for reducing computational load of large scale integer linear

problems. In addition, the inevitable approximation errors involved in the cluster

based surrogate model were moderate. When the cluster based surrogate was used in

collaboration with an interactive multiobjective optimization method, the delay times

were greatly shortened and the decision maker was satisfied with much smoother

decision making process.

Different aspects, strengths and weaknesses of the developed surrogate were discussed

in Chapter 6 along with many new research ideas. These suggested research topics

were:

• How to better handle constraints with the clusters based surrogate?

• What other weighting methods could be used with the cluster based surrogate?

• If and how multiobjective clustering could be used for forming cluster based

surrogate?

• How to verify the accuracy of the surrogate if the original single objective

optimization results are not available?

• How to approximate the modeling differences between different objectives

before the multiobjective optimization? Is it possible to adjust the surrogate

accordingly based on these differences?
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• How to extend the cluster based surrogate for different kind of mixed integer

linear problems?

The major drawback of the cluster based surrogate method is its narrow applicability.

The requirement for a large discrete decision space with similar kind of decision

variables greatly cuts down the number of applicable problems. Even if this require-

ment is fulfilled, clustering the data may not produce desirable results and the cluster

based surrogate approach may fail to provide accurate outcomes. Because of this, the

developed surrogate and method should be tested for larger and completely different

problems also.

As a whole, this study proves that reducing the computational requirements of multi-

objective integer linear optimization problems is possible by using relatively simple

clustering approach. The presented method is far from being generally applicable for

even all the linear integer problems, but especially for forest management problems it

has proved to be effective.
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