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The long-standing problem of neutron–proton pairing correlations is re-
visited by employing the Hartree–Fock–Bogoliubov formalism with neutron–
proton mixing in both the particle–hole and particle–particle channels. We
compare numerical calculations performed within this method with an ex-
act pairing model based on the SO(8) algebra. The neutron–proton mixing
is included in our calculations by performing rotations in the isospin space
using the isocranking technique.
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1. Introduction

In an analogous way to electrons in superconducting metals, nucleons
in nuclei also form Cooper pairs, and thus pairing is a significant feature
of nuclear structure [1]. Given the two different fermions, neutrons and
protons, that build up the nucleus, three different pairing couplings can
be constructed: proton–proton (pp), neutron–neutron (nn), and neutron–
proton (np). Typically, only pairing correlations among like-particles are
considered.

However, in the region of the nuclear landscape where the numbers of
protons and neutrons are similar, the np pairing is expected to play an
important role because of the similarity between the proton and the neutron
∗ Presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland,
September 3–9, 2017.
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wave-functions at the Fermi surfaces of both species, cf. [2, 3]. A suitable
mean-field description of pairing correlations is given by the Hartree–Fock–
Bogoliubov (HFB) method, where the particle–hole and particle–particle
channels are treated on the same footing [4].

Because of the affinity of the orbitals that protons and neutrons occupy
at the Fermi surface, their wave-functions overlap and a consistent mean-
field theory needs to include the np mixing in both the particle–hole [5, 6]
and particle–particle channels. Consequently, single-particle states become
those of a nucleon in a superposition of neutron and proton parts. The np
mixing is included in our calculations using the cranking model in isospin
space (isocranking), through which we can have a complete control over the
isospin degree of freedom.

The article is organized as follows: in Section 2 we present the theoretical
background of an exact algebraic model for the pairing correlations, HFB
formalism, and isocranking technique. In Section 3 we present results and
we give our conclusions in Section 4.

2. Formalism

In a generalization of nucleon pairing, four different kinds of couplings
can be generated: isovector (T = 1) pairing, with nn, pp, and np pairs;
and isoscalar (T = 0) pairing, with np pairs only. A simple and exactly
solvable model based upon the SO(8) algebra [7, 8] considers both isovector
and isoscalar pairing and can give important insights about the behaviour
of both channels. The SO(8) pairing Hamiltonian is here solved numerically
using the HFB formalism, which we modify to include the np mixing using
the isocranking model.

2.1. SO(8) algebraic model

We consider nucleons moving in a single l-shell, with spatial degeneracy
2l + 1. Therefore, the total degeneracy, taking into account the spin and
isospin degrees of freedom, equals Ω = 4(2l + 1). The model Hamiltonian,
in the LST coupling scheme, reads

H = −g(1− x)
∑

ν=−1,0,1
P †νPν − g(1 + x)

∑
µ=−1,0,1

D†µDµ , (1)

where pair-creation operators read

P †ν =

√
2l + 1

2

(
a†
l 1
2

1
2

a†
l 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=ν

, (2)
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D†µ =

√
2l + 1

2

(
a†
l 1
2

1
2

a†
l 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=µ,Tz=0

, (3)

and a†
l 1
2

1
2

is the creation operator of a particle with angular momentum l,

spin 1
2 and isospin 1

2 . P
† (D†) creates a pair of particles coupled to total

angular momentum L = 0, total spin S = 0 (S = 1) and total isospin T = 1
(T = 0).

The interaction strength is represented by a constant g, and x is a mixing
parameter that tunes the competition between the isoscalar and isovector
channels. By means of the group-theory methods, analytic formulas for the
energies can be written for the specific cases of x = ±1, 0 [7, 8]. The energies
as a function of x and for several values of the total spin and isospin of the
system can be obtained by means of diagonalizing the Hamiltonian matrix
in Eq. (1) (see [9] for details).

2.2. HFB formalism with neutron–proton mixing

The HFB formalism [3] relies upon the Bogoliubov transformation from
a single-particle basis to a quasiparticle basis defined as

β†k =
∑
i

vkiai + ukia
†
i . (4)

For the description of the particle–hole and particle–particle channels we
need, in consequence, two densities called the normal density ρ and pairing
tensor κ. The HFB equations are set as a diagonalization problem with(

h ∆
−∆∗ −h∗

)(
U
V

)
= Ei

(
U
V

)
, (5)

where h = ε+ Γ , and

Γii′ =
∑
qq′

viq′i′qρqq′ and ∆ii′ =
1
2

∑
qq′

vii′qq′κqq′ (6)

are the ph and pp mean fields, respectively, whereas v are antisymmetrized
matrix elements of the interaction. Matrix ε represents the one-body part of
the Hamiltonian, and thus for the pairing Hamiltonian (1) it is equal to zero.
Vectors (U, V ) contain coefficients vki and uki and completely determine
transformation (4) and, consequently, the HFB wavefunction.

To control average values of the particle number N̂ and isospin compo-
nents, T̂x, T̂y, and T̂z, we need to solve the HFB equations (5) by iterative
diagonalization using the Routhian h′

h′ = h− λN̂ − λxT̂x − λyT̂y − λzT̂z , (7)
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instead of the mean-field h, where λs are the set of Lagrange parameters that
fix the corresponding expectation values. This constrained minimization is
performed using the Augmented Lagrangian Method [10]. Since for vectors
(U, V ) we do not assume any particular phase convention, we perform all
calculations within complex arithmetics.

2.3. Cranking in isospin space

The isospin symmetry is controlled in Eq. (7) by means of the Lagrange
parameters λx, λy, and λz, which are analogous to those used in the crank-
ing model for the description of rotating nuclei [11], that is, we identify the
Lagrange parameters with isocranking frequencies. We use the parametriza-
tion (λx, λy, λz) = (λ0 sin(θ), 0, λ0 cos(θ)), whereupon we perform isorota-
tions around axis tilted by angle θ in the isospace. By changing θ from
0 to π, we are able to study the entire multiplet of isobaric analog states
[5, 11]. Radius λ0 = λz

∣∣
θ=0

is determined by adjusting average proton and
neutron numbers of the so-called z-isoaligned states [5], namely, those with
Tz = ±T . Rotations in the isospace are only performed in the T̂z–T̂x plane,
because those involving non-vanishing values of T̂y are redundant, and would
lead to time-reversal symmetry breaking [5].

3. Results

For values of x in the range of [−1, 1], we performed ground-state HFB
calculations and compared them to: (i) exact solutions of the model and
(ii) solutions based on the generalized BCS approach [8]. In Fig. 1, we see
that the HFB and BCS formalisms correctly reproduce trends of the exact

Fig. 1. Total energies (in arbitrary units) as functions of the mixing parameter x,
obtained from the HFB (squares), generalized BCS (circles), and exact solutions
(diamonds) with l = 15, N = 64, and 〈T̂z〉 = 〈T̂x〉 = 0, corresponding to λ0 = 0.
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results, with the HFB results being closer to the exact ones. This is so,
because the generalized BCS approach neglects the ph mean field Γ (6). For
the 〈T̂z〉 = 0 case shown in Fig. 1, the energy is symmetrical under the change
of x −→ −x, which implies a similar behaviour of the isoscalar and isovector
channels. For 〈T̂z〉 > 0, we obtain an increase of energy with increasing x,
because the isovector pairing correlations then start dominating [8].

When performing isocranking, the energies and average values of the
isospin squared do not depend on the isocranking angle θ, because Hamil-
tonian (1) does not involve any isospin-breaking terms. In Fig. 2, we show
results for the first and third components of the isospin, 〈T̂x〉 and 〈T̂z〉,
obtained for the z-isoaligned state of 〈T̂z〉

∣∣
θ=0

= 14. We see that isovec-

tors 〈 ~̂T 〉 and 〈~̂λ〉 are then parallel to one another, as it is concluded in [5].
The np mixing is effectively included for all values of the isocranking angle
0 < θ < π. For θ = 0 or π we obtain purely neutron or proton states,
respectively, and for θ = π

2 , the neutrons and protons become fully mixed,
see an explicit discussion in Ref. [12].
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Fig. 2. First and third components of the isospin as functions of θ, obtained for
l = 10, N = 36, and x = 0, for an isoaligned state with 〈T̂z〉

∣∣
θ=0

= 14.

4. Conclusions and perspectives

To treat the neutron–proton pairing correlations in nuclei, we construc-
ted a self-consistent method based on the Hartree–Fock–Bogoliubov formal-
ism including neutron–proton mixing at the mean-field level. We tested this
method against results of an exactly solvable model based on the SO(8) al-
gebra, and we confirmed the predicted trends. The neutron–proton mixing
was included by means of the cranking in the isospin space. Our approach
will become a baseline for studies involving restoration of broken symmetries
and/or generator-coordinate mixing of isocranked solutions. In this way, we
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will analyse beyond-mean-field effects absent in the pure HFB calculations.
The final goal will be to port the obtained methodology to the cases of
atomic nuclei described within realistic energy density functionals.

This work was supported in part by a Consolidated Grant from the UK
Science and Technology Facilities Council (STFC) and by the Academy of
Finland and University of Jyväskylä within the FIDIPRO program.
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