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ABSTRACT 

Keto, Mauno 
Optimal sample allocation conditioned on a small area model, estimator, and 
auxiliary data 
Jyväskylä: University of Jyväskylä, 2018, 34 p. (+ included articles) 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 279) 
ISBN 978-951-39-7416-9 (nid.) 
ISBN 978-951-39-7417-6 (PDF) 
Finnish summary 
Diss. 

We have studied optimal sample allocation, associated with small area estima-
tion, when the objective is to obtain as accurate estimates as possible, for the 
population and for the subpopulations, called as areas here. It is a question of a 
two-level optimization problem. The basic premise is composed of planned are-
as, stratified sampling, and small overall sample size predetermined by restrict-
ed time and budget resources. Low sample sizes are common in market surveys. 

During this thesis, we have developed new allocation methods, based on a 
small area model, estimator, and auxiliary data. The final method, the three-
term Pareto allocation, is based on the three terms of the mean-squared error 
estimator for the area total empirical best linear unbiased predictor estimator, 
and on the Pareto optimization technique. The performance of the final method 
has improved, compared with our other model-based allocations. 

We compare the performances of our allocations with the reference alloca-
tions, selected from the literature, through design-based sample simulations 
using real data. The selection criterion is the diversity in optimality associated 
with the allocations. From the point of view of the performance, the most com-
peting allocations are the nonlinear programming and the Costa allocations. 

Model-based estimation produces more accurate estimates than design-
based estimation under the research population structure. Our allocation leads 
to estimates with the best accuracies and moderately small biases. 

The results support the conditioning of the sample allocation on the model 
and on the estimator. It is also important to consider the balance between the 
area level and the population level estimation, and between the accuracy and 
the bias of the estimates. 

Keywords: small sample size, area characteristics, register data, trade-off, multi-
objective optimization 
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1 INTRODUCTION 

It is a common trend in sample-based surveys, that different parameters of the 
variables of interest are estimated both at the population and at the subpopula-
tion (area) level. In descriptive sample surveys, an important phenomenon can 
be the target of estimation. For example, national investments on the research 
and development and on the innovations, and the industry-specific investments 
are estimated. 

We have studied optimal sample allocation, associated with small area es-
timation, when the objective is to obtain as accurate estimates as possible, for 
the population and for the areas. This is a two-level optimization problem. The 
available financing and time resources are the main determinant of the overall 
sample size, which restricts the quality of the estimates. The basic premise in 
this thesis is composed of small overall sample size, stratified sampling, and 
planned areas, which coincide with the strata. 

We estimate the area and the population totals of the variable of interest. 
Throughout this thesis, we use the model-based empirical best linear unbiased 
predictor (EBLUP) estimator, based on the unit-level linear mixed model, to 
obtain the estimates. We also use the design-based estimation in PIII-PIV. 

During recent decades, various design- or model-based small area estima-
tors, including also composite estimators, have been constructed (Pfeffermann 
2013), but the development of sample allocations for small area estimation has 
not been as intensive. The contributions of Singh, Gambino, and Mantel (1994), 
and Marker (2001) are important in the discussion about sampling strategies. 
One obstacle to the development may be the complexity of the models and the 
estimators (Longford 2006). Examples of optimal allocation based on a compo-
site estimator are given by Longford (2006) and Molefe and Clark (2015). Khan, 
Maiti and Ahsan (2010) have developed an optimal sample allocation based on 
multivariate ratio and regression methods of estimation. The latest develop-
ments include multi-objective Pareto optimization (Friedrich, Münnich, and 
Rupp 2018). 

Important strategical choices are part of the sampling design. One choice 
concerns the balance between the population-level and the area-level estimation. 
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Another choice is associated with the accuracy and the bias. The mean-squared 
error (MSE), which measures the accuracy of an estimator or estimate, is com-
posed of the variance and squared bias. Design-based estimators are generally 
design unbiased, but can have large variances, especially for areas with low 
sample sizes. Model-based estimators have typically lower variances, but may 
have a high design bias, indicating possible model misspecification. The rea-
sonable trade-off between the variance and the bias should be considered when 
the model and the estimator are selected (Burgard et al. 2014). 

The area-specific sample sizes for an allocation typically result from the 
solution of an optimization problem, which is related to measures of uncertain-
ty like mean-squared error, variance, or coefficient of variation (CV). From this 
point of view, it is logical to conclude that the allocation solution must be condi-
tioned on the underlying model and the computing technique. Sometimes a 
closed analytical solution exists, but in general, numerical methods must be 
employed, like multi-objective optimization for solving problems containing 
multiple conflicting objective functions. 

Figure 1 illustrates the stages of a small area survey process and the key 
elements related to sample allocation in this thesis. 
 

 

FIGURE 1 Elements of the small area survey process related to sample allocation 

We have gradually developed an allocation, based on a model, estimator, 
auxiliary information, and multi-objective optimization. The development pro-
cess ends to the allocation, where the key elements are the three terms of the 
MSE estimator for the area total empirical best linear unbiased predictor 
(EBLUP) estimator, and the Pareto optimization technique. The idea is to obtain 
maximal accuracy for the area and for the population estimates simultaneously. 

This thesis is a collection of articles published in a conference monograph 
and scientific journals. In every publication, we introduce a model-based alloca-
tion and compare its performance with reference allocations, through design-
based simulation experiments using real data. The selection of the reference 
allocations is based on the diversity in optimality. We evaluate the performanc-

Stage 2 Stage 3Stage 1

Planned 
areas 1 - D

Variable of 
interest
Estimated 
area 
parameter

Auxiliary 
variables 

Past data 
(proxy data)

Time

Population 
of interest

Model
Estimator
of parameter
Estimator of 
mean-squared 
error (MSE)

Collection
of sample
Measure-
ments

Production
of estimates
Quality 
assessment

Optimization 
criteriaOther 

populations 
related to 
population 
of interest

Sample 
allocation



11 
 
es of the allocations in terms of sample-based quality measures for accuracy and 
bias. 

Articles PI-PII use distinct real register data sets. In PIII and PIV, two peri-
odically collected real register data sets are used, the former one for computing 
the sample sizes for the allocations and the latter one for simulation experi-
ments. 

In PI, we compare the performance of an experimental allocation with 
three reference allocations. The main objective is to find a direction for develop-
ing a model-based allocation method for stratified sampling. We examine the 
relationship between area-specific sample sizes and the performance of the ex-
perimental allocation, including zero sample sizes for many areas. 

In PII, we derive analytically the g1 allocation, based on the unit-level lin-
ear mixed model and the main term of the mean-squared error estimator for the 
area total estimator. The six reference allocations use another area model and 
estimator, area-specific parameter information, or only number-based infor-
mation. We examine, how the quality of the area estimates is related to the 
characteristics of areas and the sample sizes. We show that the area estimates 
can be moderately accurate, despite small area sample sizes. 

In PIII, we use calibrated area sizes for the g1 allocation developed in PII, 
to improve the quality of the area estimates. Five reference allocations are the 
same as in PII, but we have changed the allocation-specific details. A new fea-
ture is the application of the design-based Horvitz-Thompson and the model-
assisted regression estimation to four model-free reference allocations. 

We present the model-based three-term Pareto method allocation in PIV. 
The assortment of five reference allocations contains a composite allocation and 
a modification of another allocation. To diversify the comparison of the alloca-
tions, we apply three types of estimation methods to four model-free allocations. 
We also consider the trade-off between the quality of the area estimates and of 
the population estimates, and the trade-off between accuracy and bias. 

The rest of this thesis is organized as follows. In Chapter 2, we introduce 
the theoretical framework and the basic terminology of the small area estima-
tors used in this thesis. Chapter 3 contains our model-based allocations, the ref-
erence allocations, and the quality measures for evaluating the allocations. In 
Chapter 4, we introduce our real register data sets, present the research contri-
bution of articles PI-PIV, and compare our model-based allocations under the 
latest register data structure. We present the author´s contribution in Chapter 5. 
We finally conclude and discuss the directions for future research in Chapter 6. 



 

2 THEORETICAL FRAMEWORK AND BASIC TER-
MINOLOGY OF SMALL AREA ESTIMATORS 

This chapter provides the relevant theory, terminology, and notations, associa-
ted with the small area estimators used in this thesis. 

2.1 Planned areas and small area 

The target population in a survey or research containing measurable statistical 
units is partitioned into non-overlapping subpopulations, called as areas or 
domains. The areas are for example geographical areas, socio-demographic 
groups, industries of enterprises, or customer groups.  

The number of statistical units in a single area is one measure of its size. 
From the point of view of estimation, an area is small, if the area-specific sam-
ple size is not large enough to support direct area estimates (computed of the 
area-specific sample data) with adequate precision (Rao and Molina 2015). 

This thesis uses planned areas with known sizes and stratified simple ran-
dom sampling (SRSWOR), where the strata coincide with the areas. Planned 
areas form a basis for the elaboration of the sampling design. Unplanned areas 
may occur for example in online surveys. 

2.2 Variable of interest and auxiliary data 

Sample-based surveys are typically carried out to provide area- and population-
level estimates for different parameters of the variables of interest, like means, 
totals, quantiles, or proportions. This thesis focuses on estimating only one var-
iable of interest. Lehtonen et al. (2006), Pfeffermann and Sverchkov (2007), and 
Burgard, Münnich, and Zimmermann (2014) are examples of the studies deal-
ing with one variable of interest. Large-scale surveys include many variables of 
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interest, and different partitions of the population are possible. The study of 
Falorsi and Righi (2008) is an example of this case. They have developed a sam-
pling strategy for multivariate and multidomain estimation, when the overall 
sample size is small. 

The least amount of information for producing the estimates for the varia-
ble of interest y is composed of the sampled y-values. The only alternative is to 
apply direct design-based estimation, without auxiliary variables. The available 
past data of y may be applicable to the sampling design. 

The design-based model-assisted or the model-based estimators can be 
used if unit-level or aggregate-level population data of the auxiliary variables 
(covariates) are available. The sampling design may benefit from the covariates 
if they correlate with the variable of interest. Past data may also be useful for 
the sampling design and for the estimation of the model parameters. 

We use one auxiliary variable in PI-PII for estimation and use the auxiliary 
variable also for the sampling design in PII. In PIII-PIV, the two periodically 
collected register data sets contain the same variable of interest and the same 
two auxiliary variables. The former data set, called “proxy data”, provides in-
formation for the sample allocation, and the variable of interest in this data set 
is called “proxy-y, denoted by y*. 

2.3 Definitions and notations 

The following notations are used when defining relevant concepts and expres-
sions associated with small area estimation. 
 
1) The population U of N basic units is composed of D mutually exclusive and 

independent areas 1,..., DU U , with 1,.., dN N  units, and 1
D

dd N N . 
2) The estimated area parameters of the variable of interest y are the totals 

d

d dk
k U

Y y  or means /d d dY Y N , where dky  is the value for unit k in area d. 

3) The estimated population parameters of y are the total 1
D

ddY Y  or the 

mean /Y Y N . 
4) In stratified sampling, an independent subsample ds  with fixed size dn  is 

selected from dU . The overall sample s is allocated to the areas so that it is 

the union of the subsamples ds , and the overall sample size 
1

D
ddn n . 

5) The area sample statistics of y are totals 
d

dk
k s

y  or means /
d

d dk d
k s

y y n . 
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6) The population data of auxiliary variables ix (i=1,…, p) includes unit values

idkx , the area totals 
d

id idk
k U

X x , or area means /id id dX X N . For the sam-

pled units, the area totals are 
d

idk
k s

x  and area means are /
d

id idk d
k s

x x n . 

2.4 Small area estimators 

The small area estimators are traditionally classified into direct and indirect es-
timators, or into design-based and model-based estimators. 

An estimator is direct if it uses values of the variable of interest y only 
from the time period of interest and only from units in the domain of interest 
(Federal Committee on Statistical Methodology 1993). A direct estimator may 
also use the area-specific auxiliary information related to y (Rao and Molina 
2015). An indirect estimator uses y-values from a domain other than the domain 
of interest, from a time period other than the period of interest, or from other 
domains and other time periods simultaneously (Rao and Molina 2015). 

Design-based estimators use survey weights and are based on traditional 
sampling theory. A random sample s of size n is selected from the population U 
with probability p(s) which is defined according to the sampling design. The 
unit-specific inclusion probabilities dk for units dk s  are used when compu-
ting the estimates for the area d. The associated inferences are based on the 
probability distribution induced by the sampling design. 

A typical design-based direct estimator is given by 

ˆ
d

d dk dk
k s

Y w y , (1) 

where dkw is the design weight for unit k in area d. The choice 1
dk dkw  leads to 

the well-known Horvitz-Thompson estimator 

,
ˆ /

d

d HT dk dk
k s

Y y . (2) 

The estimator (1) is design unbiased, but small sample sizes may lead to inaccu-
rate area estimates. The inclusion probability /dk d dn N  in stratified SRSWOR 
sampling, and the estimator (2) reduces to 

,d̂ HT d dY N y , (3) 

which is also a post-stratified estimator in case of unplanned areas. The design 
variance of estimator (3) is 

2 2 2 2
, ,V( ) (1 / ) / (1/ 1/ )d d d d d y d d d d d y dN y N n N S n N n N S , (4)
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where  is the population variance of y in area d. The unbiased estimator of 

the variance (4) can be computed with the condition that the sample size dn  ≥ 2. 

Direct model-assisted estimators are based on models fitted separately for 
each area. An example is a regression model between y and p auxiliary variables 

dk dk d dky ex β ,     (5) 

where 1(1, ,..., )dk dk dkpx xx  is the vector of auxiliary data for unit k in area d and 

0 1( , ,..., )d d d pdβ  is the vector of area-specific regression coefficients, and 

dke  is the error term. A direct area estimator can incorporate auxiliary data from 
outside the area of interest (Lehtonen and Veijanen 2009). 

Indirect estimators, based on an implicit linking model, include a synthetic 
(Gonzales 1973) and a composite estimator.  The model in this context is more a 
uniting factor between the areas than an actual model. The linear combination 
of a direct and synthetic estimator represents a composite estimator. One of the 
reference allocations is based on a composite estimator 

(syn)
ˆ(1 )C

d d dr d dy y Y% ,    (6) 

where (syn)
ˆ ˆ
d dY βX  is a synthetic estimator and ˆ ( )dr d d dy y β x X  is a direct 

estimator (Molefe and Clark 2015). The vector β̂  contains the estimated regres-
sion coefficients, dX  is the vector of the area-specific population means of aux-
iliary variables x, and dy  and dx  are the sample means of y and x in area d. The 
coefficients d  are set with the intent to minimize the design mean-squared er-
ror (MSE) of the estimator (6). 

Small area models are explicit linking models containing random area-
specific effects accounting for the between-area variation, instead of auxiliary 
variables (Rao and Molina 2015). These models are area- or unit-level models. 
Indirect estimators based on small area models are called model-based estima-
tors. 

In this thesis, the model-based area total estimates are produced by using 
the estimator based on the unit-level linear mixed model, known also as the 
nested error regression model (Battese, Harter, and Fuller 1988) 

; 1,..., ; 1,...,dk dk d dk dy v e k N d Dx β ,   (7) 

where 1(1, ,..., )dk dk dkpx xx  is is the vector of auxiliary data for unit k in area d, 
the vector 0 1( , ,..., )pβ  contains the fixed regression parameters, and the 

area-specific effects dv  distributed as 2(0, )vN  are independent of the random 
errors dke  distributed as 2(0, )eN . 

2
,dyS
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The variance of y 2 2V( )dk v ey  is decomposed into the variation between 
and within the areas. The common intra-area correlation (Meza and Lahiri 2005) 

2 2 2/ ( )v v e (8) 

measures the relative between-area variation of y. The model parameters and 
area effects are estimated from the sample data. The estimate β̂  is a generalized 
least-squares (GLS) estimate of β . The variance parameters are estimated by 
restricted maximum likelihood (REML). 

The EBLUP estimator for the area total dY of the variable of interest y is the 
sum of sampled y-values and the sum of predicted y-values for non-sampled 
units from area d and is given by 

,
ˆˆ ˆ ˆ( )

d d d d

d Eblup dk dk dk dk d d d
k s k s k s k s

Y y y y N n vx β , (9) 

where β̂  and ˆdv  are estimates of β  and dv . The design mean-squared error for 
the estimator (9) contains the variance and squared bias and is given by 

2 2
,Eblup ,Eblup ,Eblup ,Eblup

ˆ ˆ ˆ ˆMSE( ) E( ) V( ) (E( ) )d d d d d dY Y Y Y Y Y . (10) 

The Prasad-Rao prediction estimator of (10) for finite populations (Rao and Mo-
lina 2015) is 

2 2 2 2 2 2 2 2
,Eblup 1 2 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmse( ) ( , ) ( , ) 2 ( , ) ( , )d d v e d v e d v e d v eY g g g g , (11) 

where the terms 1dg , 2dg , 3dg , and 4dg are functions of the variance parameter
estimates 2ˆv and 2ˆe . The main term 1dg contributes generally 85–90% of the 
estimated MSE (Nissinen 2009). 

A detailed account of the model (7) and the estimators (9) and (11) is given 
in PIV. The terms 1dg , 3dg , and 4dg  are significant in this thesis. Our model-
based allocations are based on either the first term or all three terms. 

A design-based indirect generalized regression estimator (GREG) of the 
area total dY , assisted by a model fitted to the whole sample, is given by 

,
ˆ ˆ ˆ( )

d d

d GREG dk dk dk dk
k U k s

Y y w y y , (12) 

where 1
dk dkw  and ˆdky  is the fitted value of y for unit k in area d. The unit-level 

linear mixed model (7) is the assisting model in this thesis. The first term of (12) 
is the predicted value for the area total dY . The second term is a bias correction
term protecting against model misspecification (Lehtonen and Veijanen 2009). 
Design-based GREG estimators are typically design-unbiased, but their vari-
ances may be large especially for small areas. 



 

3 SAMPLE ALLOCATIONS FOR PLANNED AREAS 
AND THE PERFORMANCES OF ALLOCATIONS 

This chapter presents the allocations used in this thesis and the quality 
measures for evaluating the allocations. Most of the allocations result from the 
optimization of an analytical quantity, subject to pre-set constraints. Burgard, 
Münnich, and Zimmermann (2014) call this quantity as an explicit loss function. 

3.1 Own contributions 

The experimental allocation in PI is not based on an analytical solution. In the 
first phase, SRSWOR samples are simulated from the real data and the sample-
specific area total EBLUP estimates are produced. Next, the sample-specific 
means of the mean-square errors and of four quality measures are computed. 
The sample size distributions of the samples with 20 lowest means, for each 
measure separately, are examined and the area-specific sample sizes are deter-
mined. The target is to find an “ideal” area sample size combination. 

The model-based g1 allocation uses only the first term 1dg of the MSE es-
timator (11). The g1 allocation minimizes the sum of the 1dg terms over the areas 

2 2 2 2 1
11 1( ) ( , ) ( )( / 1/ )D D
d v e d d d e vd dF g N n nn , (13) 

subject to 1
D

ddn n . The analytical solution yields the sample sizes 

1 ( )(1/ 1)
(1/ 1)

g d d
d

N n N N D nn
N D

, (14) 

where ρ is the common intra-area correlation (8). It is replaced by the adjusted 
homogeneity coefficient obtained from y*. A detailed account on this allocation 
is presented in PII. The formula (14) is an increasing function of dN . 
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The g1 allocation does not include a term for the within-area variation. In 
PIII, we replace the actual sizes dN  in (14) by the calibrated area sizes. The mul-
tiplication of the average area size /N D  by the relative area-specific standard 
deviations yields the calibrated sizes. 

The three-term Pareto method allocation in PIV uses three terms 1dg , 3dg , 
and 4dg of the MSE estimator (11), which reduces to the approximation  

2 2 2 2 2 2
,Eblup 1 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆamse( ) ( , ) 2 ( , ) ( , )d d v e d v e d v eY g g g . (15) 

The sum of the area-specific approximations (15), 

Eblup ,Eblup1
ˆ ˆamse( ) amse( )D

ddY Y , (16) 

is an approximate MSE estimator of the total estimator Eblup ,Eblup1
ˆ ˆD

ddY Y for the 
population. The approximate design coefficients of variations for the model-
based area and population total estimators are defined as 

1/2
,Eblup ,Eblup

ˆ ˆACV( ) amse( ) /d d dY Y Y , 
1/2

Eblup Eblup
ˆ ˆACV( ) amse( ) /Y Y Y . (17) 

The objective is to provide maximal optimal accuracy for the areas and for the 
population. It is not possible to increase the area-level accuracy, without de-
creasing the population accuracy, and conversely. The criterion to be minimized 
using multi-objective optimization contains the coefficients of variation (17). 
The variance components and the asymptotic variances in (15) are obtained 
through sample simulations using the proxy register data. The y-totals in (17) 
are obtained from y*. A detailed account of the allocation is given in PIV. 

3.2 Reference methods 

The model-assisted allocation (Molefe and Clark 2015), is based on a composite 
estimator (6) for a small area mean. An assisting area model between y and aux-
iliary variables x is assumed. After simplifying assumptions, Molefe and Clark 
(2015) have solved the optimal weight d in the estimator and obtained the ap-
proximate optimum anticipated mean-squared error for the estimator. 

The criterion F is the linear combination of the anticipated MSE´s of the 
small area mean and of the overall mean estimators, and is given by 

2 1 2 2 1
1 1(1 )(1 ( 1) ) (1 )D Dq q

d d d d d dd dF N n GN P n , (18) 

where /d dP N N , 2
d is the variance of y in area d, and  is the common intra-

class correlation of y between the areas. 

Optimal area sample sizes are obtained by minimizing (18) subject to 

1
D

ddn n . The quantities q
dN reflect the priority for area-level estimation,
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with 0 2q  and ( )
1

Dq q
ddN N . If the priority for the population-level esti-

mation G > 0, the criterion F in (18) must be solved by using nonlinear optimi-
zation. If G = 0, the minimization of the criterion (18) has a unique solution 

/2 /2

/2 1 /2
1 1

1 1
q q

MC d d d d
d D Dq q

d d d dd d

n N Nn
N D N

. (19) 

The intra-class correlation  is replaced by the adjusted homogeneity coeffi-
cient of the proxy variable y*, and the standard deviations d are replaced by 
the standard deviations of y*. If also q = 0, the allocation (19) depends only on  
and on the standard deviations d and is close to the calibrated g1 allocation. 

Most of the reference allocations are not related to any specific model. 
They use either number-based population information or the area-specific pa-
rameters of the variable of interest y, which is replaced by the proxy variable y*. 

The Neyman allocation (Tschuprow 1923) minimizes the design variance 
of the population total estimator, in practice the sum of the area-specific design 
variances (4), subject to 1

D
dd n n . The sample sizes are computed as 

,

,1

d d yNEY
d D

d d yd

N S
n n

N S
, (20) 

where  is the standard deviation of y in area d. The allocation (20) performs 
generally well at the population level, but it may lead to inaccurate estimates 
for small areas. The box-constraint allocation technique (Gabler, Ganninger and 
Münnich 2012), used in PIV, avoids sample sizes dn < 2, which prevent the un-
biased variance estimation. When the lower sample size limits are increased, the 
population-level accuracy decreases and the area-level accuracy improves. 

The nonlinear programming (NLP) allocation (Choudry, Rao, and Hidi-
roglou 2012) minimizes the overall sample size n, subject to fixed limits for the 
design coefficients of variation of the area and the population sample means dy
and y , but the method works also for the total estimators. Due to the conflict-
ing accuracies between the area and the population estimates, different combi-
nations of the limits may lead to the same value of n, but the area-specific sam-
ple sizes are not necessarily the same each time. We apply this method con-
versely, by adjusting the limits until the fixed size n is reached. 

Bankier (1988) introduced a “power allocation” 

1

( )
( )

q
BAN d d
d D q

d dd

CV y Xn n
CV y X

, (21) 

where CV( )dy  is the coefficient of variation of y in area d, q
dX is some measure 

of size or importance of area d, and q is an adjustable power. Allocation (21) 
minimizes the function 2

1( ( ) )D q
d ddF CV y X , subject to 1

D
dd n n . 

Compared with one another, the equal and the proportional allocations 

ydS ,
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,      (22) 

perform generally conversely. The equal allocation may lead to inaccurate pop-
ulation estimates, if the population includes large areas. As for the proportional 
allocation, especially the smallest areas may have inaccurate estimates. 

Costa, Satorra, and Ventura (2004) proposed a convex combination 

(1 )COS d
d

N nn k n k
N D

,    (23) 

where . In PIV, the value of k minimizes the difference of the maximal 
and the minimal design coefficients of variation of the area total estimator (3), 
subject to 1

D
dd n n . The solution requires multi-objective optimization. 

3.3 Quality measures for evaluating the allocations 

The performances of the allocations, combined with estimators, are evaluated in 
terms of relative root mean square error (RRMSE) for accuracy and absolute 
relative bias (ARB). They are sample-based approximations and are defined as 

2 1/2
1

ˆRRMSE 100(1/ ( ) ) /r
d di d dir Y Y Y , 

1
ˆARB 100 1/ ( / 1)r

d di dir Y Y ,    (24) 

where d̂iY  is the design- or model-based estimate for the area total dY  in the 
simulated sample i (from 1 to r).  Their means over D areas are: 

MRRMSE = 11/ RRMSED
ddD , 

MARB = 11/ ARBD
ddD .    (25) 

The sum 1
ˆ ˆD
i didY Y  is the estimate for the population total in sample i. 

The relative root mean square error for the population total is 

RRMSE(pop) = 2 1/2
1

ˆ100(1/ ( ) ) /r
i i

r Y Y Y ,   (26) 

where Y  is the true value of the population total. The absolute relative bias is 

ARB(pop) = 1
ˆ100 1/ ( / 1)r
iir Y Y .   (27) 

In PI, we use two other measures (Rao 2003) for the comparisons. They are 
absolute relative error (ARE) and average relative efficiency (EFF). The mean 
absolute relative error over the areas and the overall efficiency are computed as 

10 k
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MARE = 1 1
ˆ1/ 100(1/ /D r
di dd i d

D r Y Y Y

MEFF = 1/2100(MMSE( ) / MMSE( ))pst est , (28) 

where 
MMSE(est) = 2

1 1 ,
ˆ1/ 1/ ( )D r

dd i di est
D r Y Y (29) 

is computed of r simulated estimates d̂iY (i = 1,…, r) for each area-specific esti-

mator . In case of post-stratified estimator (3), MMSE(pst) is obtained from 

(29) by using ,d̂ pstY  instead of ,d̂ estY . The quantity MEFF is the relative efficiency 
of an estimator, compared with the post-stratified estimator. The higher MEFF, 
the more efficient estimator. 

estdY ,
ˆ



4 RESEARCH CONTRIBUTION 

In this chapter, we first describe our register data sets and then compare each of 
our model-based allocations with the reference allocations. Finally, we compare 
our model-based allocations under the population structure used in PIII-PIV. 

4.1 Real register data sets for simulation experiments and for 
sample allocations 

The first register data set, used in PI, is collected in 2007 and consists of 400 
Finnish municipalities (units here) in 19 provinces (areas here). The area-
specific number of units varies from 9 to 53. The variable of interest y is the 
number of unemployed people, and the auxiliary variable x is the number of 
private houses. The within-area variation of the variables is considerable, but 
they have a small between-area variation, under 10% of the total variation. The 
area-specific correlations between the variables are highly positive. 

The second research data set, used in PII, is obtained in spring 2011 from a 
national Finnish register of block apartments for sale. The 9,815 units in the data 
set are apartments with completed construction in 14 Finnish districts, serving 
as areas here. The data set covers approximately 50% of all apartments in the 
register. The number of area-specific units varies from 112 to 1,333. The variable 
of interest y is the price (in 1,000 €) and the auxiliary variable x is the size (in m2). 
The area-specific characteristics of the variables vary considerably. The be-
tween-area variations of the variables are moderately large. Most area-specific 
correlations between the variables are highly positive. 

We use the same, two research data sets in PIII and in PIV. The units are 
block apartments, with completed construction, for sale. The apartments have 
been extracted in April 2015 and in October 2015 from a national register main-
tained by the same company as in PII. The sizes of the data sets in units are 
22,230 and 21,025. Both data sets cover 18 Finnish provinces (areas here) and 
include the same variables. The variable of interest y is the price (in 1,000 €) and 
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the auxiliary variables are size in m2 ( 1x ) and age in years ( 2x ). The within-area 
variations of y and 2x  are considerably large in both data sets. The between-area 
variation is quite high for y, but small for the auxiliary variables. The correlation 
between y and 1x  is positive and negative between y and 2x . In PIV, we justify 
the suitability of the former data set (proxy data) for providing data for the allo-
cations. 

4.2 Experimental allocation and three reference allocations 

For the experimental allocation (Subsection 3.1), seven areas became zeros, and 
the sample sizes for the other areas varied from 3 to 7. 

The equal, proportional, and simple random sampling (no fixed sample 
sizes) allocations were references. We simulated 1,500 design-based random 
samples for each allocation and computed the sample-specific EBLUP area total 
estimates. We also computed the post-stratified (PST) area estimates from the 
samples obtained by using the SRSWOR allocation. We used the means over the 
areas for absolute relative error (ARE), absolute relative bias (ARB) and abso-
lute relative efficiency (EFF) to evaluate the allocations.  

The experimental allocation performs best, despite the sample size zero for 
seven areas. There is a restriction, that the area-specific quality measures are not 
shown in PI. The re-examination of the simulation experiments reveals that the 
qualities of the area estimates do not generally depend on the sample sizes, but 
they are related to the similarity between the area-specific and population char-
acteristics. The satisfactory estimates for some areas with zero sample sizes 
suggest that also the model and the estimator are important to incorporate in 
the allocation solution. 

4.3 Analytical g1 allocation and six reference allocations 

In PII, we have developed an allocation based on the first term 1dg of the mean-
squared error estimator (11). The adjusted homogeneity coefficient , obtained 
of the auxiliary variable x, replaces the unknown intra-area correlation (8) in 
formula (14) to compute the sample sizes. 

We use six reference allocations. Two of them are equal and proportional 
allocations. The Neyman, Bankier, and nonlinear programming (NLP) alloca-
tions use the area-specific parameter information of the auxiliary variable x. The 
Molefe and Clark allocation also uses parameter information and the homoge-
neity coefficient of x. We obtain two sample size combinations for this alloca-
tion, because of two priorities for the population-level estimation. 
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The overall sample size is 112 (relative size 1.1%). Two areas for the g1 al-
location have sample size zero. When the population priority is ignored for the 
Molefe and Clark allocation (G=0), the sample sizes are only slightly related to 
the sizes of the areas. The Neyman allocation is concordant with the sizes of the 
areas, unlike the Bankier and the NLP allocations. 

We evaluate the performances of the allocations both at the area and at the 
population levels in terms of the relative root mean square error (RRMSE) for 
the accuracy and the absolute relative bias (ARB). The variation in the biases is 
larger than in the accuracies. The RRMSE means over the areas vary to some 
extent, but the population accuracies vary only little.  Considerable differences 
between the bias means over the areas and between the population biases ap-
pear. 

Considering the accuracies and the biases, the g1 allocation performs the 
best under the structure characteristic to the register data set. The Molefe and 
Clark and the parameter-based allocations do not perform well. The results 
demonstrate that the model-based estimates can be quite accurate, despite the 
small or even zero sample sizes, and that the quality of the area estimates is re-
lated to the area characteristics. The fact that the g1 allocation does not incorpo-
rate the within-area variation, may cause problems under the population struc-
ture with small between-area variation and diverging area characteristics. 

4.4 Calibrated g1 allocation and five reference allocations 

In PIII, the overall sample size is 216 (1.0% of N = 21,025). A typical feature for 
the two research data sets is the dominating area, the province of Uusimaa, 
with the relative size over 32% and the highest price level among the areas. 

The sample sizes of the calibrated g1 allocation (Subsection 3.1) differ con-
siderably from the computational sample sizes of the g1 allocation (not com-
pared). The five reference allocations are the equal, proportional, NLP, and 
Neyman allocations, and the Molefe and Clark allocation. The population-level 
estimation has no priority for the Molefe and Clark allocation, to avoid large 
sample size for the largest area. For the Neyman allocation, we raised the com-
putational sample sizes of two areas from 1 to 2, to enable the unbiased vari-
ance estimation, and applied the formula (20) to the other areas. The NLP allo-
cation has a loose relationship with the sizes of the areas. 

To compare three types of estimators, we applied the model-based EBLUP 
estimation to the calibrated g1 and to the Molefe and Clark allocations, and the 
design-based Horvitz-Thompson and the model-assisted regression estimation 
to the other allocations. The assisting model is the unit-level model (7). 

The calibrated g1 and the Molefe and Clark allocations perform best in ac-
curacy. The model-assisted regression estimates are more accurate than the 
Horvitz-Thompson estimates for the equal and for the NLP allocations, contrary 
to the proportional and the Neyman allocations. The design-based estimates are 



25 

almost unbiased, as expected. Some considerable biases for the calibrated g1 
and for the Molefe and Clark allocations appear. Considering the integration of 
accuracy and bias, the equal and the NLP allocations under the model-assisted 
regression estimation perform best. 

None of the studied allocations has the uniquely best performance. De-
spite the partly contradictory performances, the results support the incorpora-
tion of the model and the estimator in the allocation. The calibrated g1 alloca-
tion takes the within-area variation into account, but for further development, 
more than one term of the MSE estimator (11) must be incorporated in the mod-
el-based allocation. To reach accurate area and population estimates, it is neces-
sary to apply the multi-objective optimization technique. The new allocation 
must also be tested under various population structures. 

4.5 Three-term Pareto allocation and five reference allocations 

In PIV, we use the same register data sets for the same purposes as in PIII. We 
have developed the three-term Pareto method allocation, where the sample siz-
es result from the Pareto optimal solution (Subsection 3.1). 

Two of the four model-free reference allocations are the equal and the 
NLP allocations. We have modified the Neyman allocation by using the box-
constraint technique (Subsection 3.1), which guarantees the minimal sample 
size 2 for every area. The value of the constant k for the Costa allocation (23) 
indicates that the equal allocation has more weight than the proportional alloca-
tion. 

The sample sizes of the three-term Pareto allocation are not related to the 
sizes of the areas. The Molefe and Clark and the NLP allocations have the same 
sample sizes as in PIII. The box-constraint allocation is close to the computa-
tional Neyman allocation. The Costa allocation is concordant with the sizes of 
the areas, but is far from the proportional allocation. 

To diversify the comparison, we applied the model-based EBLUP estima-
tion also for the model-free allocations, in addition to the design-based estima-
tion. We evaluated 14 different allocation and estimation method combinations. 

The model-based EBLUP estimates are more accurate than the design-
based estimates. The three-term Pareto method performs the best in accuracy. 
The Molefe and Clark allocation performs almost as well. The model-assisted 
regression estimates are more accurate than the Horvitz-Thompson estimates 
only for the NLP and for the Costa allocations. 

The design-based estimates are almost unbiased. Severely biased model-
based estimates occur for each allocation, except for the three-term Pareto allo-
cation with the area-specific biases under 10%. The aggregate biases obtained 
from the model-based estimates are the smallest for the three-term Pareto and 
for the Costa allocations. The integrated values of accuracy and bias indicate 
better performances for the Costa, the NLP, and the equal allocations under the 
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regression estimation than for the three-term Pareto allocation, but this is not 
supported by the inaccurate area estimates for the model-free allocations. 

The results confirm that our model-based allocation performs better, when 
the mean-squared error estimator (11) is more completely incorporated in the 
allocation. However, it must be tested under different population structures, 
and the biases also need attention. Biased estimates appear also for this alloca-
tion, possibly due to model misspecification. We have tested the validity in PIV. 

4.6 Comparison of the model-based allocations under the latest 
population structure 

We compare the performances of the model-based allocations, developed in PI-
PIV, under the register data sets used in PIII-PIV. We obtained the experimental 
allocation in the same way as in PI. Table 1 shows the area-specific sample sizes 
for the four allocations and for the proportional allocation, which is a reference. 

TABLE 1  Area-specific sample sizes for model-based allocations and for proportional 
allocation 

Area (province) Size in Propor- Experi- Analy- Calib- Three-term 
  units tional mental tical g1 rated g1 Pareto method 
Uusimaa 6,813 69 70 90 43 36 
Pirkanmaa 2,003 20 21 23 12 13 
Varsinais-Suomi 1,543 16 16 17 18 11 
Päijät-Häme 1,166 12 11 12 14 9 
Central Finland 1,141 12 12 12 9 11 
North Ostrobothnia 1,131 12 13 11 11 9 
Satakunta 1,017 10 9 10 11 12 
Kymenlaakso 929 10 8 9 8 14 
Pohjois-Savo 923 9 10 8 12 10 
Kanta-Häme 885 9 8 8 9 11 
Etelä-Savo 751 8 8 6 9 10 
South Karelia 553 6 4 3 10 11 
North Karelia 549 6 7 3 12 6 
Lapland 544 6 7 3 10 11 
Ostrobothnia 421 4 6 1 8 9 
South Ostrobothnia 311 3 4 0 8 9 
Kainuu 185 2 2 0 5 15 
Central Ostrobothnia 160 2 0 0 7 9 
Total 21,025 216 216 216 216 216 
 

The largest area (Uusimaa) has very high sample sizes for three allocations. 
The experimental allocation is very close to the proportional allocation. In the 
g1 allocation, three smallest areas have the sample size zero. The structures of 
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the calibrated g1 and of the three-term Pareto allocations are quite similar, but 
considerable differences between the sample sizes occur for some areas. 

Figure 2 shows the allocation-specific means over the areas and the popu-
lation values for relative root mean square error and for absolute relative bias. 

FIGURE 2 Means over the areas and population values for relative root mean square er-
rors and for absolute relative biases, by allocation 

The calibrated g1 and the three-term Pareto allocations have little higher popu-
lation values for both measures, but considerably smaller means over the areas 
than the three other allocations. These two allocations are also good trade-offs 
between the area and the population level, with respect of the quality of the es-
timates. Considering the accuracies and the biases simultaneously, the   three-
term Pareto allocation performs the best.  Figure 2 also demonstrates the im-
provement in the model-based allocations which were developed in PI-PIV. 

Figure 3 shows the area-specific distributions of the quality measures for 
each allocation. The randomness in the areas estimates is in the best control for 
the three-term Pareto allocation. This allocation has tighter distributions and 
has no outliers, compared with the other allocations. It is the only allocation 
with the area-specific relative root mean square errors under 20% and absolute 
relative biases less than 10%. Two small areas with sample size zero are outliers, 
and one of these areas is an outlier for three allocations, despite the positive 
sample size. The third small area with zero sample size is not an outlier. The 
outlier areas have diverging characteristics, compared with the population, un-
like the third small area. 
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FIGURE 3 Area-specific distributions of relative root mean square errors and of absolute 
relative biases, by allocation. The outlier areas contain their sizes in units 

The results of this subsection demonstrate that the performance of our model-
based allocation has improved during the development process. The multi-
objective optimization is one of the key factors in the improvement. 
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6 DISCUSSION 

A well-performing allocation is very case-specific and depends on many fea-
tures of a survey. The overall sample size is fixed and small in relation to the 
size of the population. The problem is to resolve, what kind of area sample size 
combination leads to maximal quality for the area and for the population esti-
mates, subject to boundary conditions. 

We have shown that the three-term Pareto allocation, which incorporates 
the model and the estimator more completely, performs better than our other 
model-based allocations. The g1 allocation is closely related to the between-area 
variation and performs generally well at the population level, but it may lead to 
inaccurate estimates for small areas, when the between-area variation is small. 
The calibrated g1 allocation incorporates the within-area variations, but it is 
possible that the estimates of the areas with small variation are inaccurate. 

The three-term Pareto allocation performs the best in accuracy, compared 
with the competing alternatives the Costa, and the nonlinear programming 
(NLP) allocations. The Pareto estimates are not considerably biased. The three-
term Pareto and the Costa allocations are based on multi-objective optimization 
and use a fixed overall sample size, but the NLP allocation requires the adjusted 
limits for the accuracies of the area and of the population estimates, until the 
fixed overall sample size is reached. 

The model-assisted Molefe and Clark allocation does not perform well. 
The fact that it is based on a composite estimator and on a different area model, 
may affect the performance to some extent. Furthermore, different choices of 
the adjustable priorities for the area- and for the population-level estimation 
may lead to diverging area-specific sample sizes. 

The weaknesses of the equal, proportional, and the Neyman allocations 
have been demonstrated. They are not serious alternatives. The box-constraint 
allocation is an alternative to the Neyman allocation. However, the adjustment 
of the lower and upper sample size limits, with the intention of reaching satis-
factory area and population estimates, may be laborious. 

A condition for the application of the three-term Pareto allocation is the 
availability of past register data. In the absence of past data, another allocation 
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must be employed. If at least one auxiliary variable correlates highly with the 
variable of interest, it provides data for the allocation. The g1 and the calibrated 
g1 allocations are two alternatives in this situation. 

The results support the incorporation of the model and the estimator in 
the allocation. Model-based estimates with satisfactory quality can be obtained, 
despite the small overall sample size. This is important also from the economi-
cal point of view. Tight resources are common for example in business surveys. 

The multi-objective optimization is a feasible method for solving a prob-
lem which includes conflicting estimation objectives. Through this method, it is 
also possible to get a conception of the different weighting options, which can 
be set on the objectives. The three-term Pareto allocation is a trade-off between 
the qualities of the area- and the population-level estimates, but it is also a 
trade-off between the accuracy and the bias. These trade-offs have been dis-
cussed in the literature, but it seems difficult to find generally accepted balances 
regarding these trade-offs. 

In our articles, we have not considered the possibility of nonresponse or 
missing survey data. If at least one of them occurs, this may cause serious prob-
lems in the estimation phase, especially when the overall sample size is small. 
Two common techniques for dealing with nonresponse are weighting adjust-
ment (Särndal, Swensson, and Wretman 1992) and imputation (Rubin 1987). In 
this survey framework, it is also possible to produce values substituting for the 
missing y-values by using the model-based estimator and auxiliary data, includ-
ing proxy data. The last method is a serious alternative under the assumption 
that the underlying model is valid. 

We obtained these results under very demanding circumstances, where 
there is a large variety in the sizes of the areas and in the within-area character-
istics. If the sizes of the areas are closer to each other, the performance of the 
equal allocation very likely improves. This single example demonstrates that 
the three-term Pareto allocation must be tested under diverse population struc-
tures, and the testing also should include the validity check of the used model. 
Furthermore, it would be interesting to combine a robust estimation technique 
and the three-term Pareto method for reducing the biases in the area estimates. 
This may lead to more complex multi-objective optimization. 
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YHTEENVETO (FINNISH SUMMARY) 

Pienaluemalliin, estimaattoriin sekä apumuuttujatietoon ehdollistettu opti-
maalinen otoskiintiöinti 

Tässä väitöskirjassa on tutkittu pienalue-estimointiin liittyvää optimaalista 
otoskiintiöintiä, kun tavoitteena on saada tulosmuuttujan kokonaismäärälle 
mahdollisimman tarkat ennusteet sekä perusjoukon että perusjoukon osajouk-
kojen (alueiden) tasolla. Ongelma on ratkaistava monitavoiteoptimoinnin avul-
la. Peruslähtökohta on ennalta suunnitellut ja toisensa poissulkevat alueet, osi-
tettu otanta, jossa alueet ovat ositteita, sekä rajallisista aika- ja budjettiresurs-
seista aiheutuva kiinteä ja pieni kokonaisotoskoko, joka on yleistä markkinatut-
kimuksissa. Jonkin perinteisen otoskiintiöintimenetelmän soveltaminen saattaa 
tuottaa joillekin alueille niin matalan otoskoon (jopa nolla), ettei suoraa asetel-
maperusteista estimointia voida soveltaa. Tässä väitöskirjassa otoskiintiöinti 
perustuu valittuun malliperusteiseen estimaattoriin ja apumuuttujatietoon. 

Väitöskirjassa on kehitetty uusia malliperusteisia otoskiintiöintejä, jotka 
perustuvat yksikkötason lineaariseen sekamalliin, malliin pohjautuvaan esti-
maattoriin sekä rekisteripohjaisen apumuuttujatiedon käyttöön. Viimeisin kiin-
tiöinti perustuu tulosmuuttujan kokonaismäärän yleisesti käytetyn EBLUP-
estimaattorin (empiirisesti paras lineaarinen harhaton ennustin) keskineliövir-
heen (MSE) estimaattorin kolmeen termiin sekä Pareto-optimointitekniikkaan.  

Väitöskirjan jokaisessa artikkelissa esitellään uusi kiintiöinti, jonka suori-
tuskykyä verrataan kirjallisuudesta poimittuihin kiintiöinteihin reaalidataa 
käyttävien asetelmaperusteisten otossimulointien avulla. Suorituskykyä mita-
taan otoksista laskettujen tarkkuutta ja harhaa ilmaisevien laatumittarien avulla. 
Vertailukiintiöintien valintaperusteena on niiden optimointikriteerien erilai-
suus. Artikkeleissa PIII ja PIV on käytetty myös asetelmaperusteista suoraa es-
timointia ja malliavusteista estimointia vertailun monipuolistamiseksi. 

Malliperusteinen estimointi tuottaa tarkemmat alue-ennusteet kuin ase-
telmaperusteinen estimointi. Malliperusteisten alue-estimaattien laatu on selke-
ästi yhteydessä alueiden ominaisuuksiin. Viimeksi kehitetty malliperusteinen, 
Pareto-optimointia käyttävä kiintiöinti, johtaa tarkimpiin alue-estimaatteihin, 
joiden harha on kohtalaisen vähäinen. Kilpailukykyisimmät vaihtoehdot ovat 
Costa-kiintiöinti sekä epälineaariseen ohjelmointiin perustuva NLP-kiintiöinti. 
Harkinnanvaraiset perusjoukon sekä aluetason estimoinnin painotukset rajoit-
tavat joidenkin vertailukiintiöintien käyttökelpoisuutta. 

Tulokset tukevat otoskiintiöinnin ehdollistamista käytettyyn aluemalliin 
sekä siihen perustuvaan estimaattoriin. Uusinta malliperusteista kiintiöintiä on 
kuitenkin testattava aluerakenteeltaan erilaisissa perusjoukoissa. Kiintiöinnin 
suunnittelun yhteydessä on tärkeää pohtia järkevää tasapainoa toisaalta alueta-
son ja perusjoukon tason estimoinnin välillä ja toisaalta tarkkuuden ja harhan 
välillä. Myös valitun mallin sopivuus tutkittavan ilmiön kuvaamiseen on tarkis-
tettava. Olisi myös mielenkiintoista selvittää, voitaisiinko otoskiintiöinti ja ro-
busti estimointi yhdistää tarkkuuden parantamiseksi ja harhan pienentämiseksi. 
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On sample allocation for effective EBLUP 
estimation of small area totals 

– “Experimental Allocation”

ABSTRACT 

The demand of regional or small area statistics produced from large-scale 
surveys such as Finnish unemployment survey has raised needs for developing the 
tools of optimal sample allocation on area level. However, most commonly used 
allocation methods aim at producing efficient direct areal estimates. What typically 
happens is that several areas receive little or none observations, and therefore one has 
to resort to indirect estimation methods. Best-known of these methods and perhaps 
most widely used are nested-error regression type model-based estimators. For this 
reason should areal sample allocation be implemented in such a way that it would lead 
to efficient estimation in the case of an indirect estimator. In this research an attempt 
was made to solve this problem by developing an experimental allocation method 
through simulations. The functioning of this new method has been tested by 
comparing it to equal and proportional allocation. Different allocation criteria such as 
values of average absolute relative bias and efficiency are examined through 
simulation studies with Finnish unemployment data.  

Introduction 

We plan sampling designs generally for efficient estimation on the 
population level. However, the same demand of efficiency prevails if one 
wants to calculate regional or small area statistics from large-scale survey data 
but now on the level of some subpopulation. Generally, as for basic sampling 
design, stratified random sampling has been chosen. Strata coincide with areas 
and the problem is how to allocate stratum-wise fixed sample size n.

Optimal allocation has inspired for different solutions during the last 
decades. Main line has prevailed to find areal allocation giving possibility to 
calculate direct or model-assisted direct estimators for each area. Some 

1 Mikkeli University of Applied Sciences, University of Jyväskylä, Finland.
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examples from earlier efforts are reported in Rao [2003]. Recently published 
interesting proposition come from Longford [2006], who includes inferential 
priority index Pd for each area and tries then to find optimality. Another 
solution comes from Falorsi and Righi [2008]. They assume that direct 
estimators should be model-assisted and their optimal allocation procedure 
accounts for this possibility with other prior information used in planning 
sample design.  

The next two sections describe simulation experiments where we have 
searched an areal allocation scheme conditional to auxiliary information which 
includes both auxiliary variables and model for indirect estimation of fixed 
areal totals. Indirect or model-based estimation has been chosen because in 
small area calculations domains with few or none observations are general. 
This fact has been profoundly investigated recently by Lehtonen et. al. [2003]. 
As a model, EBLUP has been chosen because there is a lot of evidence that 
this model works well in many small area estimation situations. 

1. Experimental allocation

Our study data has been obtained from the Finnish unemployment
survey in 2007 described in Nissinen [2009]. The population consists of all
400 (=N) local municipalities (population elements) in 19 different provinces
(areas). We had originally all 20 provinces of Finland and 416 municipalities
in the population, but we dropped one province out, Åland, because it is totally
different from the others having own administrative autonomy. After that, the
data include 19 areas and 400 municipalities.

The number of municipalities on areal level varied from 9 to 53, and
average area size was 21. We used the number of unemployed people as the
study or outcome variable (y) and the number of private houses in provinces as
the auxiliary variable (x). The overall correlation of these variables was
moderate, 0.68. The area total for variable (y) varied from 2540 to 43639 
and the corresponding total for variable (x) varied from 9708 to 48720. CV 
value for variable (y) ranged between 1.13 and 3.80 and for auxiliary
variable (x) between 0.48 and 1.18. The overall mean of the number of
unemployed people (y) was 541 and for private houses (x) 1290. The
differences between areas (provinces) were significant.

In our research we have used model-based or indirect estimation with
one outcome variable and one auxiliary variable. Area effect is also included.
The model is a nested-error regression, basic unit level model



On sample allocation for effective EBLUP estimation… 

29 

,   (1) 

which is a special case of well-known general mixed linear model 

y = X  + Zv + e,    (2) 

where y is n 1 vector of sample observations, X and Z are known n p and n h
matrices of full rank, and v and e are independently distributed with means 0
and covariance matrices G and R depending on some variance parameters  = 

),...,( 1 q . Furthermore, Var(y) = V = R + ZGZ´ is the variance-covariance 

matrix of y.
In model (1) dky is the kth value in area d for outcome variable (y), dkx is

the vector of auxiliary variables (x) in area d, dv is the random effect of area d
(d = 1,…, D) in the model and is estimated from the observations, and dke is
a random error. Random effects dv and random errors dke are assumed to be 

independent of each other and (not necessarily) distributed as ),0( 2
vN  and 

),0( 2
eN . Furthermore, regression coefficients  are estimated from the 

observations. 

Following matrix forms are used in estimation calculations: 

1. Data matrix y for outcome variable (y).
2. Data matrix x for auxiliary variable (x) (so-called random-intercept form

with ones in the first column).
3. Variance-covariance matrix Vn n of outcome variable (y).

Variances 2
v  and 2

e  can be estimated in many ways: ML or REML 
method or “Fitting-of-constants” attributed to Henderson as explained in Rao 
[2003]. Variance 2

v can be negative in which case it is set to zero. 
In our research we have used the EBLUP (Empirical Best Linear 

Unbiased Predictor) estimator for area totals. First the BLUP (Best Linear 
Unbiased Predictor) estimator of area total dY is simply the sum of sample 
observations and predicted values of non-sampled observations of variable (y) 
as given in Rao [2003]: 

ddd
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dk
sk

dk
sk

dk
sk

dk
H

BLUPd vnNyyyY
dddd

~)(ˆ~ˆ
, x .       (3) 
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In expression (3) ds denotes the sample from area d, and ds denotes the 

non-sampled observations from area d.  Furthermore, ˆ is the BLUE (Best 
Linear Unbiased Estimator) of and dv~ is the BLUP of area effect dv .
Expression (3) contains also the sum of values of auxiliary variable (x) for 
non-sampled observations, but individual values are not needed. Finally, when 
variance components 2

v  and 2
e are substituted by their estimates, we get the 

EBLUP estimator of area total defined in (3). 
The estimates of regression coefficients and area effects v are obtained 

as follows: 

yVXX)V(X 1'11'ˆ    and   )ˆ~ X(yVZGv 1 .  (4) 

The MSE of estimator H
dŶ is the sum of its variance and squared bias:

.    (5) 

An estimator of MSE approximation in the case of finite populations is 
given in Rao [2003]: 

)ˆ,ˆ(g2)ˆ,ˆ(g)ˆ,ˆ(g)nN()Ŷ(mse
2
e

2
e

2
vd3

2
e

2
vd2

2
e

2
vd1

2
dd

H
d   (6) 

where the g1d g 3d have quite complex expressions.

The first step in our experiments was to draw 1500 SRS samples from
the population and fit them into model (1). Each sample included 57 sampling
units (3 19 = 57). From these samples we computed EBLUP estimates for (y)
totals, MSE´s and its components plus other necessary statistics for each area
by using SAS PROC SURVEYSELECT with seed number and PROC MIXED
procedures plus by SPSS. Small area estimation include special quality
measures as statistics measuring accuracy and bias of samples like Absolute
Relative Error (ARE), Average Squared Error (ASE) and Absolute Relative
Bias (ARB) were computed with SPSS software. They are defined as follows
[Rao 2003]:

ARE in one sample   = d

D

d
dd Y/YŶ

D 1

1 ,     (7) 
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d
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dd
H

d
H

d YYYVarYYEYMSE

,ˆ



On sample allocation for effective EBLUP estimation… 

31 

ASE in one sample   = 
D

d
dd YY

D 1

2)ˆ(1 ,  (8) 

ARB in one sample   = D

d
ddd YYY

D 1
/)ˆ(1 ,    (9) 

CV in one sample   = )ˆ/)ˆ(1
1

d

D

d
d YYMSE

D
.    (10) 

Figure 1. Distribution of areal sample sizes in 20 “best” samples for MSE means 

We computed the means of  MSE, CV, ARE, ASE and ARB for each 
sample and arranged the samples in ascending order according to each statistic 
mean, and so we got 5 different orders for the samples. Finally, we picked 20 
“best” samples from each order (lowest means). When we examined the 
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distribution of areal sample sizes for MSE, CV, ARE and ASE (see Figure 1 for 
MSE) we could notice that the sample size distributions are quite similar with 
each other, which suggests that very much the same areas (7) had zero or very 
little observations, whereas some other areas had very many observations 
(as much as 10). This finding encouraged us to carry out an experimental 
sampling allocation in which 57 units in each sample were concentrated on 
only 12 areas.

In order to be able to compare the efficiency of the radical allocation 
scheme mentioned earlier (7 zero-areas) with other alternatives, we have used 
SRS and  two other allocation schemes (on the basis of “gut-feeling”) which 
are proportional stratified sampling and equal allocation. The next chapter 
introduces the results of our experiments. 

Table 1 
Areal sample sizes in different allocation schemes 

Sample sizes in allocations 

Province Size of 
area

Not allocated Proportional Equal Experi-
mental 

Uusimaa 24 . 4 3 4

Varsinais-Suomi 53 . 7 3 7

Itä-Uusimaa 10 . 1 3 0

Satakunta 25 S 4 3 5

Kanta-Häme 16 R 2 3 0

Pirkanmaa 28 S 4 3 5

Päijät-Häme 12 . 2 3 0

Kymenlaakso 12 s 2 3 0

Etelä-Karjala 12 a 2 3 0

Etelä-Savo 18 m 3 3 3

Pohjois-Savo 23 p 3 3 4

Pohjois-Karjala 16 l 2 3 3

Keski-Suomi 28 e 4 3 5

Etelä-Pohjanmaa 26 s 4 3 6

Pohjanmaa 17 . 2 3 4

Keski-Pohjanmaa 12 . 2 3 0

Pohjois-Pohjanmaa 38 . 5 3 6

Kainuu 9 . 1 3 0
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Lappi 21 . 3 3 5

TOTAL: 400 57 57 57 57

The real sample size in our experiment was selected according to 
following principles: 

.1)25.0(cdfif)75.0(cdf

1)25.0(cdfif0n
11

1
d   (11) 

Notation “cdf” means cumulative distribution function of areal sample 
size. We call this kind of allocation as “experimental allocation” and its 
peculiar property is that a lot of areas have no observations as seen in Table 1. 
Some specifications were made according to other quality measures. 

2. Simulation studies

Because analytical solutions for optimizations in nested-error regression
model (1) are not possible in general, we have used various simulations to 
investigate the effect of different areal sample allocations on MSE and quality 
measures like ARE, ARB, ASE and EFF (Average Relative Efficiency) 
introduced for example by Rao [2003]. The following table shows the sample 
sizes of 19 areas in the four selected allocation schemes. In the simulation 
of samples we followed the principles used by Falorsi and Righi [2008], 
Longford [2007] and Nissinen [2009]. 

The sampling procedures (SRS and stratified sampling) as well as 
calculation of different EBLUP estimates and other statistics were 
implemented by SAS software (PROC SURVEYSELECT with seed number, 
PROC MIXED ) and SPSS. The number of random samples was 1500 in every 
allocation scheme.  

For each allocation scheme MSE´s, CV´s and quality measures (ARE, 
ASE, ARB AND EFF) were calculated and their distributions were examined. 
The distributions of ARE values (95% of all) for each allocation scheme are 
introduced in the next Figure (in boxplot form): 
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Figure 2. Distributions of 95% of ARE values of samples 

As this Figure shows, ARE values in our experimental allocation scheme 
behave in a more controlled way (range and location) compared with the other 
schemes. Distributions of MSE, CV, ASE and ARB show very much similar 
properties for our “own” scheme. 

We computed also the following quality measures for every allocation 
scheme (all samples in the scheme), and they can be used in assessing the 
accuracy and bias of an estimator of area total proposed in Rao [2003]: Overall 
ARE (absolute relative error), overall ARB (average absolute relative bias) and 
overall EFF (average relative efficiency) which compares EBLUP estimation 
to poststratification estimation. The formulas are: 
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In expression (14)  
D

d

n

i
dEBLUPdi YY

nD
estMSE

1 1

2
, )ˆ(11)(  (15) 

and )(PSTMSE  is obtained by changing EBLUP estimator EblupdiY ,
ˆ  to PSTdiY ,

ˆ ,

where the latter is the value of the post-stratified estimator of  the total of area 
d in ith simulated sample. The following table shows the values for these 
quality measures for each allocation scheme: 

Table 2 
Overall ARE, EFF and ARB (%) for different allocations 

Allocation scheme ARE EFF ARB

Experimental 34.6% 246.7% 25.8%

Equal 35.1% 242.5% 26.3%

Proportional 39.3% 236.5% 28.6%

Not allocated (SRS) . %  . %  . %

Poststratification 74.9% 100.0% 11.8%

Also these results confirm our conception of the usefulness of our 
allocation scheme. According to the quality measures experimental allocation 
seems to be the best.  

Conclusions 

First we have to notice that results of our analysis are based on 
simulations, whereupon the random-function generator used in this process 
may affect the results. Simulation experiments were our choice for the simple 
reason that our model, indirect nested-error regression model, is made up of so 
many variation components that it is difficult, if not impossible, to construct an 
analytical expression which is valid for optimization of sample sizes. 
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Another restriction in exploiting the results of our experiments is that 
they are based on computations made  under indirect small-area estimation and 
EBLUP model. 

The concept of optimization in small-area estimation includes several 
estimated statistics or quality measures (MSE, ARE, ARB etc.), but we treated 
each of them as equal. Do we have to give more weight to one quality measure 
and less weight to some other? 

In spite of these limited possibilities it seems that experimental 
allocation as a whole leads to better result measured with the quality measures 
of small-area estimation compared with other reference allocations which were 
equal allocation and proportional allocation. However, this method must be 
tested in the environments of larger data and for example areal allocations 
applied in official statistics could be used as reference allocations. 

 
Literature 

Brackstone G.J. (2002): Strategies and Approaches for Small Area Statistics. 
“Survey Methodology”, No. 28, pp. 117-123.

Falorsi P.D., Righi P. (2008): A Balanced Sampling Approach for Multiway 
Stratification for Small Area Estimation. “Survey Methodology”,              
No. 34, pp. 223-234. 

Lehtonen R., Särndal C.E., Veijanen A. (2003): The Effect of Model               
Choice in Estimation for Domains, Including Small Domains. “Survey 
Methodology”, No. 29, pp. 33-44. 

Longford N.T. (2006): Sample Size Calculation for Small-Area Estimation.
“Survey Methodology”, No. 32, pp. 87-96. 

Nissinen K. (2009): Small Area Estimation With Linear Mixed Models From 
Unit-Level Panel and Rotating Panel Data. University of Jyväskylä 
Departement of Mathematics and Statistics, Report 117. 

Rao J.N.K. (2003): Small Area Estimation. John Wiley & Sons, New York. 



II

SAMPLE ALLOCATION FOR EFFICIENT MODEL-BASED SMALL 
AREA ESTIMATION 

by 

Mauno Keto and Erkki Pahkinen, 2017 

Survey Methodology Journal, vol. 43(1), pp. 93-106 

Reproduced with kind permission by Statistics Canada. 



Survey Methodology, June 2017 93
Vol. 43, No. 1, pp. 93-106 
Statistics Canada, Catalogue No. 12-001-X 

1. Mauno Keto, University of Jyväskylä. E-mail: mauno.j.keto@student.jyu.fi; Erkki Pahkinen, Department of Mathematics and Statistics of 
University of Jyväskylä. E-mail: pahkinen@maths.jyu.fi. 

Sample allocation for efficient model-based small area 
estimation 

Mauno Keto and Erkki Pahkinen1 

Abstract

We present research results on sample allocations for efficient model-based small area estimation in cases where 
the areas of interest coincide with the strata. Although model-assisted and model-based estimation methods are 
common in the production of small area statistics, utilization of the underlying model and estimation method are 
rarely included in the sample area allocation scheme. Therefore, we have developed a new model-based 
allocation named g1-allocation. For comparison, one recently developed model-assisted allocation is presented. 
These two allocations are based on an adjusted measure of homogeneity which is computed using an auxiliary 
variable and is an approximation of the intra-class correlation within areas. Five model-free area allocation 
solutions presented in the past are selected from the literature as reference allocations. Equal and proportional 
allocations need the number of areas and area-specific numbers of basic statistical units. The Neyman, Bankier 
and NLP (Non-Linear Programming) allocation need values for the study variable concerning area level 
parameters such as standard deviation, coefficient of variation or totals. In general, allocation methods can be 
classified according to the optimization criteria and use of auxiliary data. Statistical properties of the various 
methods are assessed through sample simulation experiments using real population register data. It can be 
concluded from simulation results that inclusion of the model and estimation method into the allocation method 
improves estimation results. 

Key Words: Optimal area sample size; Criteria; Auxiliary information; Measure of homogeneity. 

1  Introduction 
In this paper we present a new model-based allocation method in stratified sampling where the areas of 

interest coincide with the strata. Our study is focused on the components of an efficient area allocation. A 
clear starting point for the allocation process is reached if the areas of interest are defined as early as in the 
design phase of the research and if it is also known how large a sample is allowed in consideration of the 
disposable resources (time, budget etc.). The choice of the allocation method depends on various factors 
such as the selected model, estimation method, available pre-information of the population and the 
optimization criteria set only on area or population level, or on both levels simultaneously. 

We have selected six existing allocation methods and developed a new one which we call a model-based 
allocation. The general properties of these methods are examined in Section 2 and Section 3. Five of these 
allocations can be regarded as model-free. Two of them use only number-based information, such as the 
number of areas and the number of basic units in each area. Three other allocations need, in addition to 
number-based information, area level parameter information, such as area totals, standard deviation or 
coefficient of variation (CV). Because this information about the study variable is not available, a common 
solution is to replace it with a proper proxy variable. The last of the reference allocations, introduced by 
Molefe and Clark (MC) (2015), is a model-assisted allocation which is based on a composite estimator and 
a two-level model. We have named it MC-allocation. 

The optimization criteria of the five model-free allocations differ from one another. Allocations based 
only on area-specific numbers can be computed easily, but their choice is reasonable under limited 
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circumstances. In each of the parameter-based allocations the optimization criterion is different. It can be 
set on the level of the population parameter estimate (Neyman allocation) or on area level estimates in 
average (Bankier allocation). The third allocation solution, which deviates from the two former ones, is the 
NLP allocation, in which the tolerances of estimates are set on both population and area level. 

This article starts from the assumption that if model-assisted or model-based estimation is used in a 
survey the model and estimation method must be taken into account when the allocation of the sample into 
areas is designed. This was used as a starting point when the new model-based 1g allocation, presented in 
Section 2, was derived. Also, one of the reference allocations, model-assisted allocation, is based on a given 
model. 

The comparison of performances of different allocation methods in real situations has been implemented 
by using simulation experiments and is presented in Section 4. An official Finnish register of block 
apartments for sale serves as the population. The structure of the register is introduced in Section 4.1. An 
auxiliary variable has been used in place of the study variable when computing the area sample sizes for 
each allocation except equal and proportional allocation. The comparison demonstrates clearly that these 
allocations lead to different sample distributions. The same kind of variety also concerns their performances. 
We have applied model-based EBLUP (Empirical Best Linear Unbiased Predictor) estimation on the 
allocations when estimating the area totals of the study variable. For measuring and comparing the 
performances of allocations, a relative root mean square error RRMSE% and absolute relative bias ARB% 
were used. 

In Section 5 empirical simulation results are discussed as concluding remarks. They support the 
allocation solution in which not only auxiliary information, but also the model and estimation method should 
be determined as early as in the design phase of a survey. A good example is the 1g allocation presented 
in Section 2.2. The most accurate area estimates of area totals were obtained by using this method. 

2  Allocations which utilize the model 
 
2.1  Choosing the model 

Pfeffermann (2013) presents a wide variety of models and methods for small area estimation. Our model 
is one of this assortment, a unit-level mixed model 

 ; 1, , ; 1, , ,xdk dk d dk dy v e k N d D  (2.1) 

where ’sdv  are random area effects with mean zero and variance 2
v  and ’sdke  are random effects with 

mean zero and variance 2 .e  Furthermore, dk dkE y x  and 2 2
dk v eV y  (total variance). Matrix 

V  is the variance-covariance matrix of the study variable .y  This model can be used when unit-level values 
are available for the auxiliary variables .x  We use one auxiliary variable in our study. 

Two important measures are needed in developing one of these types of allocations. The first one is a 
common intra-area correlation  and the second one is the ratio  between variance components. They are 
defined as follows: 
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2 2 2
v v e  and 2 2 1 1.e v  (2.2) 

Before estimating area parameters, the variance components, regression coefficients and area effects must 
be estimated from the sample data. The BLUE estimator (Best Linear Unbiased Estimator) of ,  noted ,
is obtained according to the theory of the general linear model, and it is replaced with its EBLUP estimate ˆ.

The EBLUP estimate (predicted value) for the area total dY  of the study variable is the sum of the 
observed y values and predicted y values for units outside the sample: 

                                      ,Eblup
ˆˆ ˆ ˆ .x

d d d d

d dk dk dk dk d d d
k s k s k s k s

Y y y y N n v  (2.3) 

We use the Prasad-Rao approximation (See Rao 2003) of MSE (Mean Squared Error) for finite populations: 

                            2 2 2 2 2 2 2 2
Eblup 1 2 3 4

ˆmse , , 2 , , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd, d v e d v e d v e d v eY g g g g  (2.4) 

where the four components 1 ,dg 2 ,dg 3dg  and 4 dg  are defined as follows:  

                            

22 2 * 2
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2 2 * 2
4

ˆ, 1 ,ˆ ˆ ˆ

ˆ ˆ, ,ˆ ˆ

,ˆ ˆ ˆ ˆ ˆ ˆ

2 Cov , ,ˆ ˆ ˆ ˆ ˆ ˆ

,ˆ ˆ ˆ

d v e d d d v

d v e d d d d d d d d

d v e d d d v e d e v

v e e v e v

d v e d d e

g N n

g N n

g N n n n V

V

g N n .

1x x X V X x x

(2.5)

The area sample sizes *
dn  depend on the sample and are not fixed. The component 1dg  contains the area-

specific ratio 2 2 2 *ˆ .ˆ ˆ ˆd v v e dn  According to Nissinen (2009, page 53), the 1dg  component (later 
simply 1)g  contributes generally over 90% of the estimated MSE. This component represents uncertainty 
as regards the variation between the areas. Of course this variation must be strong enough so that such a 
high proportion for 1g  exists. 

Unfortunately, the idea of an analytical solution, which means minimizing the sum of MSE’s over areas 
subject to 

1
,D

dd
n n  is difficult and laborious to accomplish because components of the MSE 

approximation (2.5) include sample information which is unknown, and some components contain complex 
matrix and variance-covariance operations. We have examined this allocation problem for the first time in 
an experimental study (Keto and Pahkinen 2009). Now we have developed an allocation based only on the 
component 1g  and auxiliary variable .x  The reasoning for this solution is that because x  and y  are 
correlated, the between-area variation in x  is transferred to .y
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2.2  Model-based 1g allocation 

The 1g allocation utilizes the auxiliary variable x  and the adjusted homogeneity coefficient (Keto and 
Pahkinen 2014). This coefficient is an approximation of an intra-class correlation (ICC) known of cluster 
sampling. We regard one area as one cluster. First, simple ANOVA between areas is carried out, and then 
the adjusted homogeneity measure of variation between the areas can be computed:  

                                                           2 2 21 1 MSW ,ax xR R x S  (2.6) 

where 2R x  is the coefficient of determination from regression analysis, MSW (Mean Square within) is 
the mean SS (Sum of Squares) of areas and 2

xS  is the variance of the auxiliary variable .x

Because MSE of the area total is complex, we use only the component 1,g  which appears in (2.4) and 
(2.5), for the reason we have given in Section 2.1. We search for the minimum for the sum of 1’sg  over 
areas: 

                                               2 12 2 2 2
1

1 1

, 1
D D

d v e d d d e v
d d

g N n n  (2.7) 

subject to 
1

.D
dd

n n

We use Lagrange’s multiplier method to find the solution. Therefore, we define the function F  of sample 
sizes 1 2, , , Dn n nn  and :

                            2 12 2 2 2
1

1 1 1

, , 1 .n
D D D

d v e d d d e v d
d d d

F g N n n n n  (2.8) 

We set the derivative of F  with respect to the area sample size dn  to zero and solve for .dn  The expression 
for area sample size 1g

dn  is as follows: 

                                   1 1 1
,

1 1
g d d d
d

N n D N n N N D n
n

N D N D
 (2.9) 

where the ratio  and the intra-area correlation  are defined in (2.2). The only unknown member in (2.9) 
is the intra-area correlation .  Therefore we substitute the known homogeneity measure (2.6) of the 
auxiliary variable x  for .  Thus the final expression for computing area sample sizes is 

                                                      
2

1
2

1 1
.

1 1
g d d ax
d

ax

N n N N D n R
n

N D R
 (2.10) 

It is easy to prove that 1
1

.D g
dd

n n  The computed sample sizes are rounded to the nearest integer. 
Sometimes compromises must be made. It can be concluded by the examination of (2.10) that the sample 
size increases when the size of area dN  increases, but not proportionally. Under certain circumstances, such 
as low homogeneity coefficient, low overall sample size n  or small size of area, dN  can lead to negative 
area sample size 1.g

dn  In this situation the negative value is changed to zero. A special case occurs if the 
total variation is only between areas causing value one to the measure of homogeneity (2.6), and (2.10) is 
reduced to proportional allocation. 
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2.3  Model-assisted MC-allocation 
Molefe and Clark (2015) have used the following composite estimator for estimating the mean of the 

study variable y  for area :d

ˆ1 .XC
d d dr d dy y  (2.11) 

This estimator is a combination of two estimators: the synthetic estimator syn
ˆ ˆ ,ddY X  where ˆ  is the 

estimated regression coefficient and dX  is the area population means of auxiliary variables ,x  and a direct 
estimator ˆ ,dr d d dy y x X  where dy  and dx  are the area d  sample means of y  and .x  We use 
one auxiliary variable in our study. The coefficients d  are set with the intent to minimize the MSE of the 
estimator (2.11). The approximated design-based MSE of the estimator under certain conditions and 
assumptions is given by the expression 

2 2 2
synMSE ; 1 ,C

p d d d d ddy Y v B  (2.12) 

where syndv  is the sampling variance of the synthetic estimator syn
ˆ
dY  and d U d dB YX  is the bias 

when syn
ˆ
dY  is used to estimate ,dY  with U  denoting the approximate design-based expectation of ˆ.

The population contains N  units and D  strata defined by areas, and stratified sampling is used. A 
random sample SRSWOR (Simple Random Sampling without Replacement) of dn  units is selected from 
stratum 1, ,d d D  containing dN  units. The relative size of area d  is .d dP N N

A two-level linear model  conditional on the values of x  is assumed, with uncorrelated stratum random 
effects du  and random effects :i

2

2

0
,

xi i d i

d i

d ud

i ed

y u

E u E

V u

V

 (2.13) 

where i  refers to all units in stratum .d  This model implies that 2 2
i ud edV y  for all population units 

and cov ,i jy y  equals 2
d d  for units i j  in the same stratum and zero for units from different strata, 

where 2 2 2 .d ud ud ed  A simplifying assumption that d  are equal for all strata is defined. 

After making some other simplifying assumptions and solving the optimal weight d  in (2.12), the final 
approximate optimum anticipated MSE or approximate model assisted mean squared error is obtained of 
(2.12):

                            12
optAMSE MSE ; 1 1 1 .C

d p d d d ddE y Y n  (2.14) 

Next the criterion F  using anticipated MSE’s of the small area mean and overall mean estimators for model-
assisted allocation is defined and developed into the final approximative form: 

                                     1

12 2 2 1

1 1

ˆAMSE var

1 1 1 1 .

D
q q
d d p r

d
D D

q q
d d d d d d

d d

F N GN E Y

N n GN P n (2.15)
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Optimal sample sizes for the areas are obtained by minimizing (2.15) subject to .dd
n n  Expression 

(2.15) follows the idea of Longford (2006). The weight q
dN  reflects the inferential priority (importance) for 

area ,d  with 0 2,q  and 
1

.D qq
dd

N N  The quantity G  is a relative priority coefficient on the 
population level. Ignoring the goal of estimating the population mean corresponds to 0,G  and the 
attention is then only focused on area level estimation. On the other hand, the larger the value of ,G  the 
more the second component in (2.15) dominates and the more the area level estimation is ignored. 

We assume first that the population estimation has no priority 0G  and the unit survey cost are fixed. 
In this case minimization of (2.15) with respect of dn  has a unique solution 

2 2

,opt 2 1 2
1 1

1
1 .

q q
d d d d

d D Dq q
d d d dd d

n N N
n

N D N
 (2.16) 

The formula (2.16) contains two unknown parameters, the intra-class correlation  and the area-specific 
variance 2 .d  We replace  with an adjusted homogeneity coefficient of the auxiliary variable .x  This 
coefficient is an approximation of the ICC (Intra-Class Correlation) (Section 2.2). Parameter 2

d  is replaced 
with the variance of x  in area .d  The reason for both replacements is that y  is correlated with .x  If also 
the population estimation has a priority 0G  then (2.16) does not apply and F  must be minimized 
numerically by using, for example, the NLP method, as we have done (Excel Solver, NLP option).  

Table 2.1 
Summary of model-based and model-assisted allocations 

Method Computing sample size dn  for area d   Optimality level 

Model-based 1g
2

1
2

1 1
,

1 1d

d d axg

ax

N n N N D n R
n

N D R

where 2
axR  is the adjusted homogeneity measure of auxiliary variable .x

 Area 

Model-assisted MCG0  

MCG50 

2 2

,opt
2 1 2

1 1

1
1

q q
d d d d

d D Dq q
d d d dd d

n N N
n

N D N

Minimization of 
12 2 2 1

1 1
1 1 1 1D Dq q

d d d d d dd d
F N n GN P n

with respect of .dn  Parameter  is replaced with 2
axR  and 2

d  with 2 .dS x

 Jointly area 
 and population 

 
3  Some model-free area allocations 

The aim of this section is to list the five previously presented allocation methods in order to use them 
later as references. Depending on which kind of auxiliary information each one uses, they are divided into 
two groups: number-based and parameter-based allocations. 
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3.1  Number-based allocations  
Two basic allocation solutions commonly used go under the names equal allocation and proportional 

allocation. Neither of these allocations contains any specific criterion on the area or population level. Their 
implementation requires only information on the number of strata D  and the numbers of units dN  in each 
stratum.  

In the equal area allocation the sample size dn  is simply a quotient 
Equ .dn n D  (3.1) 

It is recommended to choose the total sample size n  so that the quotient is a whole number. This allocation 
method does not take differences between the areas into account in any way, which results in inaccurate 
area estimates. A natural lower limit of the sample size is min 2 .n D

Proportional allocation is a frequently used basic method. Area sample sizes are solved from 
Pro .d dn n N N  (3.2) 

If the sizes of the areas vary strongly, it can lead to situations where the allocated sample size Pro 2dn for 
one or more areas. This is an obstacle in calculating direct design-based estimates of standard errors. One 
solution is to apply the combined allocation proposed by Costa, Satorra and Ventura (2004). The idea is a 
weighted solution between the equal and proportional allocation depending on the situation. The combined 
area sample size is 

EquCom Pro 1
d d dn kn k n  (3.3) 

for a specified constant 0 1 .k k  A minor problem is present if for some areas .dn D N  A modified 
solution exists for this case. 

3.2  Parameter-based allocations 
These allocations use area-level information of the study variable y  and in some cases of the auxiliary 

variable x  correlated with .y  The values of x  are available for all population units. In practice the unknown 
y  is replaced with a proper proxy variable *y  such as a study variable obtained from an earlier research of 

the same subject, or the values of *y  are generated with a suitable model developed of a small pre-sample. 
Also x  can be substituted for .y  Allocation criteria can be set on population level, only on area level or on 
combined population and area level. 

The Neyman allocation aims at reaching an optimal accuracy concerning population parameters SD dy
(Tschuprow 1923). The standard deviation of the study variable y  or some proxy variable and the number 
of units in each area must be known. Allocation favors large areas with strong variation. 

The Bankier or power allocation (1988) is based on a criterion set on the area level. Area CV values of 
y  are weighted by area total transformations q

dX  which contain a tuning constant .q  In practice *y  or x
must be used in place of .y  Allocation favors mainly large areas with high CV.  

Choudhry, Rao and Hidiroglou (2012) present the NLP allocation method for direct estimation. This 
method uses non-linear programming to find a solution. Criteria for the allocation are defined by setting 
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upper limits for CV values of the study variable y  in each area and in the population. In practice *y  or x
replaces .y  The program searches the minimum sample size dd

n n  satisfying these conditions. The 
SAS (Statistical Analysis System) procedure NLP with Newton-Raphson option was used to find the 
solution. The allocation favors areas with high CV regardless of the area size .dN

A summary of the model-free allocations and the formulas for calculating area sample sizes are presented 
in Table 3.1. 

Table 3.1 
Summary of number-based and parameter-based allocations 

Allocation  Computing area sample size dn  Optimality level 

Equal Equ
d

n n D Area 

Proportional Pro
d dn n N N Population 

Neyman Ney
1

,
d

D
d d d dd

n n N S N S  where dS  is the standard deviation of y

(in practise *y  or )x  in area .d

Population 

Bankier Ban
1

CV CV ,Dq q
d d d dd d

n n X y X y  where dX  is the area total of 

,x CVd d dy S Y  and q  is a tuning constant. In practise *y  or x

replace .y

Area 

NLP NLP
1

min D
st dd

n n  satisfying tolerances 0CV CVd dy  and 

0CV CV .sty  In practise *y  or x  replace .y

Jointly population and area 

 
Some other parameter-based allocation methods are mentioned briefly. For example Longford (2006) 

introduced inferential priorities dP  for the strata d  and G  for the population and used those constraints for 
allocation. Another solution is presented by Falorsi and Righi (2008). This solution does not contain a direct 
imposition of quotas, but tries to solve the comprehensive collection of data by using a multi-stage sampling 
design, so that the area estimation can be implemented effectively. 

 
4  Comparison of performances of allocations  

In this section we study the performances of the allocation methods introduced in Sections 2 and 3. The 
estimated parameters are area and population totals of the study variable .y  The overall sample size 

112.n  Section 4.1 includes the description of the research data. Simulation experiments and comparisons 
of allocations are presented in Section 4.3. 
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4.1  Empirical data 
Our research data is obtained from a national Finnish register of block apartments for sale. This register 

is maintained by a private company, Alma Mediapartners Ltd, whose customers are real estate agencies. 
They save all the necessary information of the apartments into this register as soon as they receive an 
assignment from the owners. The population we have used consists of 9,815 block apartments (these serve 
as sampling units) for sale selected from the register. They represent 14 Finnish districts, mainly towns, in 
spring 2011. The sizes of the smallest and largest area were 112 and 1,333, respectively. The study variable 

y  measures the apartment price (1,000 €) and the auxiliary variable x  measures the size (m2). Area 
sizes ,dN  population summary statistics (totals, means, standard deviations and CVs) for y  and ,x  as 
well as correlations between x  and ,y  are given in Table 4.1. The characteristics of the areas have a wide 
range. The most diverging area is Helsinki. 

 
Table 4.1 
Population summary statistics 

Area Study variable y  Auxiliary variable x  Correlation 

Label dN  dY  dY dS y CVd y dX  dX dS x CVd x yxr  

Porvoo town 112 25,409 226.86 207.82 0.916 8,940 79.82 50.67 0.635 0.877 
Pirkkala district 148 30,323 204.88 87.82 0.429 11,149 75.33 23.78 0.316 0.823 
South Savo county 493 64,863 131.57 72.90 0.554 32,644 66.22 20.25 0.306 0.437 
Jyväskylä town 494 89,941 182.07 69.65 0.383 40,000 80.97 17.62 0.218 0.509 
Lappi county 555 62,143 111.97 50.15 0.448 30,805 55.50 16.22 0.292 0.207 
South-East Finland 585 98,504 168.38 106.78 0.634 47,750 81.62 21.68 0.266 0.601 
Helsinki (capital) 621 437,902 705.16 562.38 0.798 76,931 123.88 57.98 0.468 0.753 
West coast district 655 108,339 165.40 75.85 0.459 50,903 77.71 36.39 0.468 0.439 
Trackside district 818 148,845 181.96 65.08 0.358 59,220 72.40 23.84 0.321 0.517 
Kuopio district 871 126,867 145.66 75.79 0.520 64,103 73.60 23.27 0.324 0.580 
Turku district 958 166,613 173.92 131.62 0.757 79,970 83.48 25.71 0.308 0.635 
Oulu district 1,072 133,591 124.62 50.19 0.403 59,210 55.23 16.92 0.306 0.392 
Metropol area 1,100 263,293 239.36 117.84 0.492 80,034 72.76 26.37 0.362 0.754 
Lahti-Tampere distr. 1,333 262,400 196.85 110.76 0.563 105,804 79.37 25.54 0.322 0.602 
Population 9,815 2,019,031 205.71 215.52 1.048 747,462 76.16 31.76 0.417 0.674 

 
The adjusted measure of homogeneity of the auxiliary variable x  is 2 0.231axR  indicating quite strong 

variability between the areas. 

4.2  Allocations 

In general, the overall sample size depends on the available time and financial resources in the research 
project. This aspect has not been taken into account now, because it is a question of an experimental study. 
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The value of the sampling ratio was determined as % 100 112 9,815 1.14%.f  Method-specific 
allocations were produced according to the formulas presented in Table 2.1 and Table 3.1. Some details 
have been taken into account. In the Bankier allocation the value of a tuning constant q  is 0.5. In the NLP 
allocation the selected CV limits 0.1258 (12.58%) for areas and the CV limit 0.0375 (3.75%) for the 
population lead to the overall sample size 112. We use the Excel Solver procedure with non-linear option 
for solving the NLP allocation problem. We use a modified proportional allocation to obtain an area sample 
size which is at least two. First we allocated one unit for every area and then allocated the rest 98 units by 
using proportionality. We have substituted x  for y  in every parameter-based allocation. In the model-
assisted allocations the value of q  was set to 1, and the quantity G  was set to zero and 50. The final sample 
sizes in each allocation are presented in Table 4.2. The variation of sample sizes on area level is very strong 
between the allocations. 

Table 4.2 
Area sample sizes by allocation 

Area Model-
based 

Composite estim. 
Model-assisted 

Number-based
allocations 

Parameter-based  
allocations 

Label dN  *1g *MCG0 *MCG50 EQU PRO Ney _ X  Ban _ X  NLP _ X  

Porvoo town 112 0 6 3 8 2 2 6 20
Pirkkala district 148 0 2 2 8 2 2 4 6
South Savo county 493 5 4 4 8 6 4 6 6
Jyväskylä town 494 5 3 4 8 6 4 5 3
Lappi county 555 6 3 4 8 6 4 5 5
South-East Finland 585 6 6 5 8 7 6 6 4
Helsinki (capital) 621 7 21 16 8 7 16 14 14
West coast district 655 7 12 11 8 8 10 11 14
Trackside district 818 10 8 8 8 9 9 8 7
Kuopio district 871 11 8 9 8 10 9 8 6
Turku district 958 12 10 11 8 11 11 9 6
Oulu district 1,072 13 6 8 8 12 8 8 6
Metropol area 1,100 13 11 12 8 12 13 11 8
Lahti-Tampere district 1,333 17 12 15 8 14 14 11 7
Total 9,815 112 112 112 112 112 112 112 112
* based on the adjusted coefficient of homogeneity (value 0.231) computed of .x

4.3  Comparison of performances of allocations 
In this section we present the results based on design-based simulation experiments. For each allocation, 

1,500 independent stratified SRSWOR samples were simulated with the SAS program and necessary 
calculations from the simulated samples were implemented with SPSS (Statistical Package for the Social 
Sciences) program. We have applied model-based EBLUP estimation on the samples for each allocation. 
For comparison of the allocations, we have computed two quality measures: RRMSE %d  and ARB %d

for each allocation. 

Assume that r  simulated samples are drawn in each allocation, and let ,EBLUPd̂iY be the EBLUP estimate 
of the area total dY  in the thi  sample 1, , .i r  Then RRMSE %d  and ARB %d  are defined as 



Survey Methodology, June 2017 103

Statistics Canada, Catalogue No. 12-001-X 

                                     

2

,EBLUP1

,EBLUP1

ˆRRMSE % 100 1 ,

ˆARB % 100 1 1 ,

r
d di d di

r
d di di

r Y Y Y

D Y Y

and their means over areas are computed as follows:  

1 1
MRRMSE% 1 RRMSE % and MARB% 1 ARB %.D D

d dd d
D D

The estimate for the population total in the thi  simulated sample 1, ,i r  is the sum of the estimates of 
the area totals: , EBLUP , EBLUP1

ˆ ˆ .D
i did

Y Y  RRMSE% for the population total is computed as 

                                    2

pop ,EBLUP1
ˆRRMSE % 100 1 ,r
ii

r Y Y Y

where Y  is the true value of the population total, for which ARB% is computed as 

                                         pop ,EBLUP1
ˆARB % 100 1 1 .r
ii

r Y Y

Tables 4.3 and 4.4 contain RRMSE% and ARB% values for areas, their means over areas and population 
RRMSE%s and ARB%s in each allocation. The evaluation of the results was based on two arguments. One was 
the mean value of the quality measure on the area level and the other was the value of the quality measure on the 
population level. 

Table 4.3 
Area and population RRMSE%s by allocation 

Area dN 1g MCG0 MCG50 EQU PRO Ney _ X  Ban _ X  NLP _ X  

Porvoo town 112 8.08 14.63 15.93 13.41 19.79 16.49 14.78 10.10 
Pirkkala district 148 6.60 9.72 10.77 8.35 12.04 10.60 9.76 8.97 
South Savo county 493 22.29 22.77 23.20 18.63 20.70 23.20 20.16 20.88 
Jyväskylä town 494 15.36 24.55 20.70 13.61 14.43 20.83 18.33 21.98 
Lappi county 555 21.72 28.19 26.19 19.91 21.34 25.45 23.97 22.59 
South-East Finland 585 20.76 27.25 25.93 19.68 19.64 24.37 24.31 27.81 
Helsinki (capital) 621 22.72 12.68 14.97 21.92 23.15 14.35 16.02 16.43 
West coast district 655 21.15 22.43 21.57 20.35 19.92 21.75 20.67 18.91 
Trackside district 818 11.93 12.86 13.63 12.31 11.38 13.73 12.76 13.47 
Kuopio district 871 16.22 23.22 20.70 19.21 16.37 20.84 20.82 23.49 
Turku district 958 17.56 24.75 21.66 20.94 17.74 21.57 22.70 26.44 
Oulu district 1,072 14.39 25.40 21.14 16.96 14.34 21.22 19.00 19.81 
Metropol area 1,100 9.59 11.31 10.86 12.14 9.78 10.16 10.78 11.55 
Lahti-Tampere distr. 1,333 10.54 13.43 11.66 13.35 10.64 12.76 12.87 14.98 
Mean over areas (%) 15.65 19.51 18.59 16.48 16.52 18.38 17.64 18.39 
Population value (%) 6.15 6.53 5.88 6.13 5.97 6.07 5.89 6.62 

The lowest RRMSE% mean over the areas (15.65%) was obtained in the 1g allocation developed in 
this study. Helsinki was an exception on area level because its RRMSE% value was clearly higher compared 
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with model-assisted and parameter-based allocations. Also equal and proportional allocations performed 
well on area level, with means 16.48% and 16.52%. The highest means were obtained in the model-assisted 
MC-allocations. On the population level, the lowest value for the quality measure was obtained in the model-
assisted MCG50-allocation (5.88%) and the second lowest value in the Bankier allocation (5.89%), but in 
general, differences between the allocations on this level were small. 

Table 4.4 
Area and population ARB%s by allocation 

Area dN 1g MCG0 MCG50 EQU PRO Ney _ X  Ban _ X  NLP _ X

Porvoo town 112 2.28 2.20 0.97 0.04 1.26 1.28 0.98 0.79 
Pirkkala district 148 0.17 2.10 1.08 0.19 0.79 0.85 0.86 1.15 
South Savo county 493 8.08 11.81 10.87 6.76 7.29 11.47 9.09 9.81 
Jyväskylä town 494 6.09 19.78 15.36 6.10 5.82 14.33 12.16 16.31 
Lappi county 555 2.08 5.27 3.14 1.45 2.70 2.44 1.22 1.44 
South-East Finland 585 9.05 20.62 18.28 9.53 8.11 15.69 15.96 20.41 
Helsinki (capital) 621 9.71 6.38 7.93 10.95 11.59 7.43 8.80 9.45 
West coast district 655 7.83 12.34 11.60 9.07 8.16 12.69 10.52 10.87 
Trackside district 818 1.21 3.11 1.78 1.76 0.96 2.61 2.10 2.94 
Kuopio district 871 6.00 14.90 10.68 9.37 6.53 11.33 11.77 15.56 
Turku district 958 5.26 16.46 12.59 8.48 5.78 11.54 13.27 16.91 
Oulu district 1,072 0.81 10.17 6.08 1.88 1.84 6.47 4.71 4.00 
Metropol area 1,100 3.06 5.84 5.11 5.29 3.37 4.39 5.12 5.76 
Lahti-Tampere distr. 1,333 1.86 6.14 3.97 3.62 1.79 4.65 4.37 6.10 
Mean over areas (%) 4.53 9.79 7.82 5.32 4.71 7.66 7.21 9.15 
Population value (%) 0.01 3.33 2.05 0.18 0.50 2.26 1.83 3.01 

The 1g allocation was the only allocation with absolute relative bias less than 10% on each area, and 
it had a practically zero bias on the population level. Also the equal and proportional allocations had low 
biases on both levels, but the model-assisted and parameter-based allocations had a clearly poorer 
performance. An interesting detail in the 1g allocation is that the accuracy of area estimates is fairly good 
and the relative bias is low also for the case of two areas with zero sample size. A common characteristic 
for these areas is that the means of variables y  and x  are close to corresponding population means. In any 
case, it is essential that the model-based estimation can produce reliable estimates for areas, which are not 
represented in the random sample. 

5  Concluding remarks 
This research was focused on seven different allocation solutions which were categorized into three 

groups according to the auxiliary data needed in their implementation. The least amount of auxiliary 
information is needed in equal and proportional allocation which are based on the number of areas and the 
number of statistical units in each area. The Neyman, Bankier and NLP allocations are based on pre-set 
optimization criteria, and application of these methods presumes area-specific parameter information such 
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as the standard deviation or CV of the study variable, and in the Bankier allocation the area totals of at least 
one auxiliary variable must be known. Because the study variable is unknown, it must be replaced with a 
suitable proxy or auxiliary variable to enable the use of these three methods. A common feature of the 
number-based and parameter-based allocations is that they are not based on any model, whereas the other 
three allocations utilize the underlying model, in addition to number-based information.  

On the basis of the empirical results, the performance of the model-based 1g allocation can be regarded 
as the best compared with the other allocations tested in this research. Also equal and proportional 
allocations reached good results, but the model-assisted allocations and the parameter-based allocations had 
clearly weaker performances. The last three allocations are developed originally for direct design-based 
estimation, and their results can be understood from that point of view. Compared with 1g allocation, the 
MC-allocations are based on a different model and this fact seems to affect their results. 

One of the characteristics of the 1g allocation is that when the sampling design is constructed, also the 
model and estimation method are fixed, meaning that they are regarded as given preliminary information. 
This allocation, which is based on a unit-level linear mixed model and EBLUP estimation method, needs 
only the homogeneity coefficient between areas which is computed by using the values of the auxiliary 
variable. In this respect, the 1g allocation differs from the other allocations used in the comparison. Also 
the starting point for choosing the final estimation method is different, because this allocation is focused on 
model-based estimation, not on direct design-based estimation using sampling weights. The choice of the 
model-based estimation is justified also for the reason that it is commonly used in small area estimation. On 
the other hand, the 1g allocation enables the use of small sample sizes, because information can be 
borrowed between areas when the model is applied. This can be significant in quick surveys or studies 
carried out by market research organizations, when a single measurement is expensive. However, it is 
important to examine the characteristics of the areas and especially the small areas, before the final sample 
sizes are determined. 

As a recommendation, it would be justified to start a wider research to find out what advantages and 
disadvantages are encountered if the applicable computing technique for producing area statistics is decided 
as early as in the design of the research plan. 
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On overall sampling plan for small area estimation 

Mauno Ketoa,* and Erkki Pahkinenb 

 

Abstract 

The time and budget restrictions in survey sampling can impose limits on the area sample sizes. 

This may reduce the possibility to obtain area-specific and population parameters estimates 

with adequate precision. Market research companies and institutes for producing official 

statistics face frequently this problem. Various models and methods for small area estimation 

(SAE) have been developed to solve this problem. The sample allocation must support the 

selected model and method to ensure efficient estimation and must be implemented in the 

design phase of the survey. The proposed allocation is developed by incorporating auxiliary 

information, a model, and an estimation method. The estimated parameters are area and 

population totals. The performance of this allocation is assessed through design-based 

simulation experiments using real, regularly collected register data. Five other allocations 

selected from the literature serve as references. Model-based estimation is applied to two 

allocations and design-based Horvitz-Thompson and model-assisted GREG estimation to four 

model-free allocations. Four allocations are based on past register data. The allocation with 

uniquely best performance among all alternatives was not found, but the simulation study 

supports the comprehensive survey plan where the sampling design is conditioned on the 

available auxiliary information, selected model, and method. 

Key words: Low sample size, auxiliary information, model selection, sample allocation, 

EBLUP estimation. 
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1. Introduction 

Many sample-based surveys in a business or an administrative environment aim at obtaining 

parameters estimates for the variables of interest, not only on the population level, but also on 

the subpopulation or area level. A fundamental survey plan contains the phases which are 

implemented in a specified order. The sampling design phase contains a plan for the collection 

of the sample data from the target population. The estimation phase uses the sample data and 

auxiliary information available often on unit level. The sampling design is a critical phase in 

the sense that one of its sub-steps, the sample allocation, may have a strong influence on the 

estimation results. For this reason, the sample allocation is not an independent part of the 

survey. It must be conditioned on the used model, estimation method and auxiliary information 

as well as the priorities set on the area and population level estimation. The variation of the 

variables of interest between and within the areas must also be considered. 

The time and budget restrictions in survey sampling can impose limits on the area sample 

sizes. This may reduce the possibility to obtain area-specific and population parameters 

estimates with adequate precision. Market research companies and institutes for producing 

official statistics face frequently this problem. Various models and methods for small area 

estimation (SAE) have been developed to solve this problem. As Rao and Molina [1] present 

comprehensively, the assortment of different alternatives is wide. They point out the use of 

empirical best linear unbiased estimation methods (EBLUP). This is the main reason for 

applying EBLUP to the selected model.  Burgard et al. [2] have studied the performances of 

different small area point and accuracy estimates for business data. The above sources show 

that the optimal solutions concerning sampling design and the choice of the model, estimator 

and estimation method are under intensive study. 

We propose a model-based CAL-g1 allocation for stratified sampling where the areas of 

interest coincide with the strata and where the overall sample size is restricted. The estimated 

parameters are area and population totals of the study variable y. This allocation aims at 

obtaining area and population estimates with sufficient accuracy. It is based on analytical 

optimization and the calibration of area sizes, and uses the selected model, estimation method, 

and the auxiliary population information, from which the variation between and within the areas 

can be resolved. The underlying model and the derivation of this allocation are introduced in 

Sections 2.1 and 2.2. 

The performance of the proposed allocation method in a real situation is evaluated by using 

design-based simulation experiments. An official Finnish register of block apartments for sale 

in 18 Finnish provinces serves as the sampling population. Five other allocations selected from 

then literature serve as references. One of them, the MC-q025 allocation introduced by Molefe 

and Clark [3], is based on a two-level area model and composite estimator, and uses the same 

population information as CAL-g1 allocation. It is introduced in Section 2.3. Four other 

allocations are model-free and have originally been developed for design-based estimation. 

They are introduced in Section 3. Two of them need only number-based area information for 

computing the area sample sizes. The other two methods use, in addition to number-based 

information, area level parameter information of the study variable.  

The choice of the reference allocations is based on the diversity in the optimization criteria. 

Among the model-free allocations, the optimality level is not defined, it is set on the area level, 

population level or on both levels simultaneously. The priorities for the area and population 

level estimation can be adjusted in MC-q025 allocation. 

Because the parameter information as well as the between-area and within-area variation 

concerning the study variable y are not available, it is replaced with a proxy study variable y* 

obtained from the past apartment register data. Variable y* is used when computing the area 

sample sizes for each allocation except for equal and proportional allocations. Section 4.1 
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contains the characteristics of the sampling population and the proxy population used in the 

allocation phase. The populations include also two auxiliary variables. The allocation-specific 

area sample sizes and the calculation details are presented in Section 4.2. 

Different estimation methods are used for producing the estimates for the area and 

population totals. Model-based EBLUP estimation is applied to the simulated samples drawn 

according to model-based allocations. Design-based Horvitz-Thompson and model-assisted 

GREG estimation are applied to the samples drawn according to model-free allocations. The 

assisting model is the one used in EBLUP estimation. The idea in applying two methods to the 

same samples is to resolve how the accuracy of the estimates develops when the assisting model 

is included in estimation. The use of a low overall sample size (n) makes it easier to see how 

design-based and model-based estimations perform in this survey framework.  

For measuring and comparing the performances of the different allocation and estimation 

method combinations, two quality measures are computed from the simulated samples. The 

relative root mean square error (RRMSE%) is a numerical approximation for the accuracy of 

the area-specific and population estimates, and absolute relative bias (ARB%) is a numerical 

approximation for the bias of the estimates. The biases of the model-based estimates can be 

high for some areas, indicating the model misspecification, but the design-based estimates are 

generally almost unbiased. The primary quality measure is RRMSE%. Section 4.3 contains the 

empirical simulation results. They support the strategy where the allocation is conditioned on 

auxiliary information, the model and estimation method, and they should be determined as early 

as in the design phase of a survey. 

 

2. Allocations using the model 

2.1. The model and estimation method for estimating area totals 

The model for estimating the area totals of the study variable y is a unit-level linear mixed 

model, also called a nested error linear regression model 

DdNkevy ddkddkdk ,...,1;,...,1;  βx ,   (1) 

where dN is the size of area d and D is the number of the areas. The area effects dv  are assumed 

to be iid random variables with mean zero and variance 2

v , and dke ´s are iid random variables 

with mean zero and variance 2

e  and they are independent of dv ´s. Furthermore, βxdkdkyE )(  

and 22)( evdk σσyV   (total variance). Matrix V is the variance-covariance matrix of the study 

variable y with a block-diagonal covariance structure. This model can be used when unit-level 

values are available for the auxiliary variables x. 

A common intra-area correlation   (IAC), see Meza and Lahiri [4], measures the relative 

variation of y between the areas and is computed of the variance components as 

)/( 222

evv σσσ  .     (2) 

The variance components, regression coefficients and area effects must be estimated from the 

sample data before estimating the area parameters. The BLUE estimator (Best Linear Unbiased 

Estimator) of β , noted β
~

, is obtained in accordance with the general linear model theory. It 

is replaced with its EBLUP (Empirical Best Linear Unbiased Predictor) sample estimate β̂ . 
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The EBLUP estimate (predicted value) for the area total 
dY  of the study variable is the sum 

of the observed y-values and predicted y-values for units outside the sample: 

.ˆ)(ˆˆˆ
, ddd

sk
dk

sk
dk

sk
dk

sk
dkEBLUPd vnNyyyY

dddd

 


βx    (3) 

The design MSE (mean squared error) for the estimator Eq. (3) is the sum of its variance and 

squared bias and is defined as 

2

,,

2

,, ))ˆ(E()ˆV()ˆE()ˆMSE( dEBLUPdEBLUPddEBLUPdEBLUPd YYYYYY   (4) 

The second-order Prasad-Rao approximation (see Rao and Molina [1]; pp 180-181) to MSE 

Eq. (4) for finite populations is 

,ˆˆˆˆ2ˆˆˆˆ)ˆ( mse 22

4

22

3

22

2

22

1 )σ,σ(g)σ,σ(g)σ,σ(g)σ,σ(gY evdevdevdevdd,EBLUP    (5) 

where the four terms dg1 , dg2 , dg3 , and dg4  are defined as  

2222

1
ˆˆ1ˆˆ

vdddevd σ)γ()n(N)σ,σ(g  , 

,)ˆ()) (́ˆ()(ˆˆ 1222

2 d

*

d

1

d

*

d xxXX´Vxx ddddevd nN)σ,σ(g     

,ˆˆˆˆ2ˆˆ

ˆˆ)(ˆˆ)(ˆˆ
222224

2431*222*222

3

)]σ,σCov(σσ)σV(σ

)σV(σ[)nσσ(n)n(N)σ,σ(g

veveev

vedevdddevd



 

 

.σ)n(N)σ,σ(g eddevd

222

4
ˆˆˆ       (6) 

The area sample sizes 
dn  depend on the sample and are not fixed. The main term dg1  contains 

the area-specific ratio )/ˆˆ/(ˆˆ 222

devvd nσσσγ  . Nissinen [7, p. 53] points out that this component 

contributes generally over 90 % of the estimated MSE. We have reached similar proportions 

for dg1  in our simulation experiments for every allocation. The high proportion of dg1  suggests 

that the variation of the area estimates is strongly related to the variation between the areas. 

 

2.2. Model-based calibrated CAL-g1 allocation 

    One criterion for obtaining the area sample sizes in the model-based framework is to 

minimize the mean of MSEd´s over areas subject to  


D

d dnn
1

, but an analytical solution is 

difficult owing to the complexity of the MSE approximation Eq. (5). Keto and Pahkinen [8] 

have examined this allocation problem for the first time in an experimental study and have 

developed later an allocation (basic g1 allocation) based only on the term dg1 . The reasoning 

behind this solution is the high proportion of dg1  in the MSE approximation. We describe first 

the basic g1 allocation and then extend it to the proposed CAL-g1 allocation. 

The basic g1 allocation is based on the minimization of the sum of dg1 ´s over the areas: 

 






D

d veddd

D

d evd )/σ/σ(n)n(N),σ(σg
1

1222

1

22

1 1    (7) 

subject to  


D

d dnn
1

. 
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The solution is obtained using Lagrange´s multiplier method. The function F of sample sizes 

),...,,( 21 Dnnnn  and   is 

 






D

d d

D

d veddd

D

d evd nn)/σ/σ(n)n(N),σ(σgF
11

1222

1

22

1 )(1),( n . (8) 

An analytical solution for the area sample size 1g

dn  is 

)1/1(

)1/1)((1










DN

nDNNnN
n ddg

d ,    (9) 

where the intra-area correlation   in Eq. (2) measuring the relative between-area variation is 

unknown. It is replaced with an adjusted homogeneity measure of variation, which is the 

approximation of an intra-class correlation (ICC) known of cluster sampling. One area serves 

as one cluster here. Because y is unknown, it is replaced with the proxy variable y*. They are 

related to one another, because they measure the same numerical quantity on consecutive points 

of time. 

The homogeneity coefficient is obtained using one-way ANOVA applied to y* between the 

areas, and then the adjusted homogeneity measure between the areas is computed as 

22

, ** /MSW1
yya

SR  ,     (10) 

where MSW is the mean SS of areas and 
2

*y
S  is the variance of y*. 

Replacing   in Eq. (9) with the known homogeneity measure Eq. (10), the final expression for 

computing the area sample sizes is obtained as 

)/RD(N

)/Rn)(DN(NnN
n

ya

yaddg

d
11

11

2

,

2

,1

*

*




 .    (11) 

The expression in Eq. (11) is an increasing function of the area size dN . In principal, the 

computed sample sizes are rounded to the nearest integer. Under certain circumstances, such as 

low homogeneity coefficient, small overall sample size n or area size dN , Eq. (11) may yield 

negative area sample sizes, which are changed to zero. An extreme case is that all variation is 

between the areas (  = 1), and Eq. (11) turns to proportional allocation. In case of equal area 

sizes dN , the solution is equal allocation. 

The derived g1 allocation is efficient on the population level, but it can lead to inaccurate 

estimates for the areas with very small size, because they have a low sample size. This allocation 

does not take the within-area variation into account. This variation is included in the modified 

g1 allocation (CAL-g1) using calibration. The steps for the calibration are: 

a) The average  d d DySDyASD /)()( **  of the area standard deviations of y* is computed. 

b) Each true area size 
dN  is replaced with the constant area size DNNd /ˆ  . 

c) The calibrated area sizes are computed as 
dddg NyASDySDN ˆ))(/)((

~ **

,1  . 

d) Inserting the calibrated area sizes 
dgN ,1

~
 into Eq. (11) in place of 

dN , the sample sizes for the 

CAL-g1 allocation are obtained as 

)/RD(N

)/Rn)(DN(NnN
n

ya

yadgdggL

d
11

11
~~

2

,

2

,,1,11CA

*

*




 .   (12) 
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This calibration ignores the true area sizes. The higher the variation in area d, the larger is 
1CAL g

dn 
, and vice versa. Following the idea of Longford [12], the calibrated weight  dgN ,1

~
 

reflects the inferential priority (importance) for area d.  

2.3. Model-assisted MC allocation 

Molefe and Clark [3] have used the following composite estimator for estimating the mean 

of the study variable y for area d: 

dddrd

C

d yy Xβ ˆ)1(~  .     (13) 

This estimator is a combination of two estimators: the synthetic estimator 
dsyndY Xβ ˆˆ

)(
, where 

β̂  is the estimated regression coefficient and 
dX  is the area population means of auxiliary 

variables x, and a direct estimator )(ˆ
ddddr yy Xxβ  , where 

dy  and 
dx  are the area d 

sample means of y and x. The coefficients 
d  are set with the intent to minimize the mean 

squared error (MSE) of the estimator (13). The approximated design-based MSE of the 

estimator under certain conditions and assumptions is given as 

22

)(

2)1();~( ddsynddd

C

dp BvYyMSE   ,    (14) 

where )(syndv  is the sampling variance of the synthetic estimator 
)(

ˆ
syndY  and 

ddd YB  XβU
 is the 

bias when 
)(

ˆ
syndY  is used to estimate dY , with 

Uβ denoting the approximate design-based 

expectation of β̂ . 

A random sample (SRSWOR) of 
dn  units is selected from stratum d (d = 1,…, D) containing 

dN  units. The relative size of area d is ./ NNP dd   

A two-level linear model ξ conditional on the values of x is assumed, with uncorrelated 

stratum random effects du  and unit residuals i : 





















2

2

)(

)(

0)()(

edi

udd

id

idi

V

uV

EuE

uy















ixβ

,     (15) 

where i refers to all units in stratum d. This model implies that 22)( edudiyV    for all 

population units and ),(cov ji yy  equals 2

dd   for units i ≠ j in the same stratum and zero for 

units from different strata, where )/( 222

edududd   . For simplicity, it is assumed that  d
 

are equal for all strata. 

After some other simplifying assumptions and solving the optimal weight 
d  in Eq. (14), the 

final approximate optimum anticipated MSE is obtained of Eq. (13) as 

    12

)( )1(1)1(;~(MSEAMSE


  dddoptd

C

dpd nYyE .  (16) 
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The criterion F using anticipated MSE´s of the small area mean and overall mean estimators 

for model-assisted allocation has the final approximative form 

 rp

q

d

D

d

q

d YEGNNF ˆvarAMSE )(

1 
  

   










D

d ddd

qD

d dd

q

d nPGNnσN
1

122)(
1

1

2 )1()1(1)1(  .  (17) 

Optimal sample sizes for the areas are obtained minimizing Eq. (17) subject to  
d d nn , 

following the idea of Longford [12]. The weight 
q

dN  reflects the inferential priority for area d, 

with q as an adjustable constant ( 20  q ), and   
D

d

q

d

q NN
1

)(
. The quantity G is a relative 

priority on the population level. If G is set to zero, the attention is focused only on the area level 

estimation, and the increment in G diminishes the importance of area level estimation. 

If also the population estimation has a priority (G > 0), F must be minimized numerically by 

using, for example, the NLP method. If G = 0 and the unit survey cost are fixed, the 

minimization of Eq. (17) with respect of  
dn  has a unique solution 



















 





1
1

1

21
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D

d

q

dd

q

dd

D

d

q

dd

q

ddMC

d

ND

N

N

Nn
n












.   (18) 

Equations (17)–(18) contain two unknown parameters, the intra-class correlation   and the 

area-specific variance 2

d . Parameter   is replaced with an adjusted homogeneity coefficient 

of the proxy variable y* (Section 2.2), and 2

d  is replaced with the variance of y* in area d. The 

relationship between y and y* justifies both replacements. 

Table 1. Summary of model-based and model-assisted allocations. 

 

3. Model-free reference area allocations 

Four allocation methods developed originally for the design-based estimation are introduced 

shortly in this section. They are model-free in the sense that they can be used also in other model 

and estimation method frameworks. Depending on which kind of auxiliary information each 

one uses, they are divided into two groups: number-based and parameter-based allocations. 

3.1. Number-based allocations  

Two basic commonly used allocations go under the names equal  allocation and proportional 

allocation, see Cochran [5]. They don´t contain any specific criterion on the area or population 

level. Their implementation requires only information on the number of strata D and the 

numbers of units 
dN  in each stratum.  

In the equal allocation (EQU), the area sample size dn  is simply 

DnnEQU

d / .     (19) 

It is recommended to choose the total sample size n so that the quotient is an integer. This 

allocation method does not take the internal characteristics of the areas into account in any way. 

As Choudry et al. [11] state, it can be efficient on area level, but can lead to inaccurate estimates 
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for very large areas, and thus for the whole population. A natural lower limit of the sample size 

is min n = 2D. 

Proportional allocation (PRO) is a frequently used basic method. The area sample size dn  

is proportional to the area size dN  and is computed as 

nNNn d

PRO

d )/( .     (20) 

If a stronger variation can be anticipated in large areas compared with small areas, this 

allocation can be a reasonable choice, but on the other hand, strong differences between the 

area sizes can lead to situations where 2PRO

dn  for the smallest areas.  This is an obstacle in 

calculating reliable direct design-based area estimates as well as their unbiased variances. The 

population estimates are generally accurate, because large areas have high sample sizes, but the 

small area estimates are probably less accurate. Costa et al. [6] have proposed a convex 

combination 

DnknNNknknkn d

EQU

d

PRO

d

COS

d
/)1()/()1(                                             (21) 

between equal and proportional allocation for a specified constant k )10(  k to avoid very 

small sample sizes, but it can be difficult to justify the optimal value for k. 

3.2. Parameter-based allocations 

Parameter-based allocations use area-level information of the study variable y. In practice 

the unknown y is replaced with a proxy variable y* such as a study variable measuring the same 

characteristics and is obtained from the past data. If the past data is not available, an auxiliary 

variable x correlated with y can be used as a proxy variable. The allocation criteria can be set 

on population level, only on area level or on combined population and area level. 

The Neyman allocation (NEY) aims at reaching an optimal accuracy on the population level 

and uses area parameters 
dyS )( , see Tschuprow [9] and Cochran [5]. The standard deviation 

of the study variable y and the number of units in each area must be known. This allocation 

favors large areas with strong variation and can lead to area sample sizes 
dn < 2 preventing the 

unbiased estimation of the variances. An alternative to avoid this problem by using the box-

constraint optimal allocation has been proposed by Gabler et al. [10]. 

Choudry et al. [11] present the NLP (non-linear programming) allocation for direct 

estimation. Criteria for the allocation are defined by setting first upper limits for CV´s of the 

area sample means dy  and population sample mean sty . The CV´s are computed as 

ddd Yyy /)(V)(CV   and Yyy stst /)(V)(CV  .   (22) 

The program searches the minimum sample size  d dnn subject to pre-set tolerances for 

the CV´s in Eq. (22). The constraints are defined so that the function to be minimized becomes 

separable and convex. The SAS procedure NLP with Newton-Raphson option was used to find 

the solution. The allocation favors areas with high CV regardless of the area size 
dN . 

A summary of the model-free allocations and the formulas for calculating area sample sizes 

are presented in Table 2. 

Table 2. Summary of number-based and parameter-based allocations. 

Some other parameter-based allocation methods are mentioned briefly. Longford [12] 

introduces the inferential priorities dP  for the strata d and G for the population and uses those 

constraints for deriving sample size allocation schemes for three types of estimators. Falorsi 
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and Righi [13] propose an overall sampling strategy that guarantees a pre-defined precision for 

the domain estimators when the overall sample size is bounded. The strategy aims at controlling 

the area sample sizes by using a multi-stage sampling design based on a balanced sampling 

selection technique and a GREG-type estimation. 

 

3.3. Estimation methods for model-free allocations 

The finite population denoted  NkU ,...,,...,2,1  is composed of D non-overlapping 

domains or areas Dd UUU ,...,,...,1 , with dN  units in each, and  
d d NN . A probability 

sample s is drawn from U, and ds  is the sample drawn from area d. The inclusion probability 

of unit k is denoted k , and the sampling weight for unit k is kkw /1 . 

Two design-based estimation methods are applied to model-free allocations. The Horvitz-

Thompson estimator for the area total 
dU kd yY is  

  
dd sk kksk kkTHd yywY /ˆ

, .    (23) 

The model-assisted GREG (Generalized Regression) estimator for area total dY  

 value)predicted  theis ˆ( /)ˆ(ˆˆ
, kkksk kUk kGREGd yyyyY

dd

 
 , (24) 

is based on a model, and here it is the linear mixed model Eq. (1). See Lehtonen et al. [14] for 

details. The first part of Eq. (24) is the predicted value for dY  when the model is applied. The 

predicted value for every kU can be computed, because the unit-level values of the auxiliary 

variables x are known according to the model. The second term protects against model 

misspecification (Lehtonen et al. [14]). 

 

4. Empirical results  

 This section contains the descriptions of the research data populations, the allocations and 

the clarifying details in computing the sample sizes, as well as the performances of the 

allocations based on sample simulation experiments. The estimated parameters are area and 

population totals of the study variable y, and the overall sample size n is fixed. 

4.1. Periodically collected business register 

A national Finnish register of block apartments for sale is the source of the research data. 

This register is maintained by a private company, Alma Mediapartners Ltd, whose customers 

are real estate agencies. They save all the necessary information of the apartments into this 

register as soon as they receive an assignment from the owners. The population for sample 

simulations consists of 21,025 block apartments (serve as sampling units) for sale selected from 

the register. They cover 18 Finnish provinces, which serve as areas, in October 2015. The 

smallest area contains 160 units and the largest area contains 6,813 units. The study variable 

(y) measures the apartment price (1,000 €) and the auxiliary variables ( 1x  and 2x ) measure the 

size (m2) and age (years) of the apartments. 

All the allocations except EQU and PRO allocations are based on the proxy variable y*, 

which is the price variable of the proxy data register in April 2015. This register contains 22,230 

apartments for sale in 18 provinces, and the variables are the same as in the sampling 

population. The reasoning behind the use of the proxy data for the allocations is that the 
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structure of this phenomenon under study has remained practically unchanged from April to 

October in 2015. The adjusted measure of homogeneity of the y* is 
2

, *ya
R = 0.1697 indicating a 

moderate variability between the areas. 

Table 5 in the Appendix contains area sizes (
dN ), population summary statistics (totals, 

means, standard deviations and CV´s) for y and the proxy variable y*. The corresponding 

population statistics except totals for x-variables, as well as correlations between y- and x-

variables, are given in the Appendix Table 6. The characteristics of the areas have a wide range 

concerning the variables price and age. There is not a very significant variation in the sizes of 

apartments between the areas, as can be expected. The province of Uusimaa (around capital 

Helsinki) is a dominating area, because its size is clearly the largest (32.4 % of the population 

size) and the general price level is by far the highest among the provinces. The study variable 

y has a strong positive correlation with 1x (size) except for one small area and a negative 

correlation with 2x  (age) in all areas except for the largest area (Uusimaa). The area-specific 

correlations between auxiliary variables are low. 

4.2. Allocations 

In general, the overall sample size depends on the available time and financial resources in 

the research project. These limitations have no significance now, because the low overall 

sample size (n) is an essential feature in our experimental study. The value of the sampling ratio 

was determined as f % = 216/21,025 = 1.03 %. Method-specific allocations are based on the 

formulas presented in Table 1 and Table 2. 

Some details are clarified. We have substituted y* for y in two model-free and two model-

based allocations using area parameters. The Excel Solver procedure with non-linear option is 

used for solving the area sample sizes for NLP allocation. The selected CV limits 0.1901 (19.01 

%) for areas and the CV limit 0.0800 (8.00 %) for the population lead to the overall sample size 

216. Two smallest areas have a computational sample size one in NEY allocation, but they were 

raised to two, on the cost of Uusimaa province, to allow unbiased variance estimation. The 

value for the adjusted homogeneity coefficient (Section 2.2) used for CAL-g1 and MC-q025 

allocations is 0.1697. For the MC-q025 allocation, the value of q was set to 0.25, and the quantity 

G was set to zero. The reason for the choice of these values is to avoid the strong concentration 

of the sample on one area (Uusimaa) and a very low or zero sample size for many areas. 

The allocation-specific area sample sizes, which are presented in Table 3, vary strongly 

between the allocations. The area sizes in the proxy population and the calibrated area sizes 

used for CAL-g1 allocation are also presented. Uusimaa area dominates in three allocations, 

and in NEY allocation it represents almost 60 % of the overall sample. Four areas have sample 

size two in NEY allocation. Low area sample sizes appear also in MC-q025 and PRO allocations. 
 

Table 3. Area sample sizes by allocation. 

4.3. Simulation experiments    

The results are based on design-based simulation experiments. For each allocation, r (here r 

= 1,500) independent stratified SRSWOR samples were simulated using SAS program, which 

was used also in the computation of estimates for regression coefficients, area effects and area 

totals in EBLUP estimation. Other calculations from the simulated samples were implemented 

with SPSS program. We have applied design-based Horvitz-Thompson (H-T notation in tables 

and figures) and model-assisted GREG estimation to the model-free allocations and model-

based EBLUP estimation to CAL-g1 and MC-q025 allocations. 
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The performances of the allocations (accuracy and bias) are evaluated in terms of two quality 

measures computed from the simulated samples. The relative root mean square error RRMSE% 

is the numerical approximation of design MSE Eq. (4) or design variance, and absolute relative 

bias (ARB%) is the numerical approximation of the design bias. Bias values are computed also 

for model-free allocations, although design-based estimators are generally design-unbiased. 

The number of simulated samples is r in each allocation, and diŶ  is a design- or model-based 

estimate for the area total dY  in the ith sample (i = 1, …, r). RRMSE%  for area d is defined as 

d

r

i ddid YYYr /))ˆ(/1(100%RRMSE
1

2/12
 

 , 

and ARB% for area d is defined as 

)1/ˆ(1/100%ARB
1

   d

r

i did YYr ,  

and their means over all D areas are computed as  

MRRMSE% =  

D

d dD
1

%RRMSE/1  and MARB% =  

D

d dD
1

%ARB/1 . 

The estimate for the population total in the ith simulated sample (i = 1, …, r) is the sum of the 

estimates of the area totals:  


D

d dii YY
1

ˆˆ . RRMSE% for the population total is computed as 

RRMSE(pop)% = YYYr
r

i i /))ˆ(/1(100
1

2/12
 

 , 

where Y is the true value of the population total, and the corresponding ARB% is computed as 

 ARB(pop)% =  


r

i EBLUPi YYr
1 , )1/ˆ(/1100 . 

The evaluation of the quality measures is based on the means over the areas, the population 

values, and the area-specific distributions. 

The RRMSEd % means over the areas (MRRMSE%) and population RRMSE%´s are 

presented in Figure 1. The allocations and estimation methods are ordered so that they highlight 

the change in accuracy of area and population estimates when the design-based and model-

assisted GREG estimation have been applied to the model-free allocations. The population level 

RRMSE%´s and means over the areas (MRRMSE%) have decreased clearly in EQU and NLP 

allocations. The corresponding changes in PRO and NEY allocations are contradictory in the 

sense that population RRMSE%`s have decreased slightly, but the means over the areas have 

increased considerably. The typical properties of the EQU, PRO and NEY allocations can be 

recognized from the results. The EQU allocation performs well on the area level, but poorly on 

the population level (H-T: 13.26 % and GREG: 10.97 %). The PRO and NEY allocations are 

far from good performance on the area level.  

On the population level, PRO/GREG combination reaches the lowest population RRMSE% 

(4.82 %), but all the other allocations except EQU and NLP have almost the same accuracy. If 

the allocation-specific aggregate RRMSE%´s are experimentally computed as the sums of the 

means over the areas and population values, the allocations CAL-g1 and MC-q025 have the 

lowest sums, but their mutual differences are small. 

 

Figure 1. Means of area RRMSEd%s and population RRMSE%s by allocation and estimation 

method. 

Figure 2 contains the distributions of the area-specific RRMSEd % values for each allocation, 

and the precise values are presented in the Appendix Table 7. The distributions illustrate the 

relative variation in the area total estimates obtained from the simulated samples and express 

the impact of the randomness on the samples. High values and outliers exist in every 

distribution. The GREG estimation has different effects on the distributions of the model-free 
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allocations. The distributions are considerably wider in PRO and NEY allocations. The 

distribution level of EQU allocation falls, but on the other hand, high values (25.37 % and 20.91 

%) for the largest area Uusimaa occur, regardless of the estimation method. The distribution 

level of NLP allocation falls also, except for two smallest areas. The model-based allocations 

have otherwise a tight distribution with a quite low level, but they both have one small area as 

an outlier case. The randomness is best controlled in the EQU/GREG combination and CAL-

g1 allocations. 

 

Figure 2. Distributions of area-specific RRMSEd %s by allocation and estimation method. 

Table 4 contains the bias (ARB%) means over areas and population ARB%´s obtained from 

EBLUP estimation for every allocation, together with corresponding RRMSE% values. The 

results concerning both quality measures in the model-based allocations are similar. CAL-g1 

allocation has lower values on the area level, and MC-q025 performs better on the population 

level. As expected, the area estimates obtained for the model-free allocations are almost 

unbiased. The overall performances are evaluated by experimentally combining first the area 

and population level RRMSE% and ARB% values and then combining the two sums into 

overall sums. The NLP/GREG and EQU/GREG combinations have the lowest overall sums 

(25.59 % and 27.13 %), but CAL-g1 and MC-q025 allocations have only slightly higher sums. 

 

Table 4. Means over the areas and population values for RRMSE% and ARB% by allocation. 

The table contains also aggregate values and overall aggregate values. 

 

The Appendix Table 8 contains the area-specific bias (ARB%) values for each allocation and 

estimation method combination. As can be anticipated, the model-based allocations have 

considerably higher biases for most of the areas compared with the model-free allocations. The 

low biases occur only in the same five areas, one of which is small. Four same areas have a bias 

10 % or higher, and one of them has a bias as high as over 20 %. The high area biases 

demonstrate that the used model is inappropriate for those areas. The CAL-g1 allocation 

outperforms MC-q025 allocation according to the area-specific biases. 

NEY, PRO, and EQU allocations represent the extreme solutions in the sense that they are 

either very strongly or not at all related to the area sizes. These solutions lead to good estimation 

results only on one level. A strong connection between sample and area sizes does not occur in 

the rest of the allocations (CAL-g1, MC-q025, and NLP), and excluding a few exceptions, they 

perform moderately well on both levels. Any pre-set priorities or tolerances are not used in 

CAL-g1 allocation, but NLP and MC-q025 are based on such limitations, and it may be difficult 

to find proper values for them. The choice of these limitations depends on what importance is 

addressed to the quality of estimation on the area and population level. 

Compared with Horvitz-Thompson estimation, the application of model-assisted GREG 

estimation improves the accuracy of estimates for EQU and NLP allocations. On the other hand, 

the GREG estimation leads to reduced accuracy on area level for PRO and NEY allocations, 

which are tightly related to the area sizes and in which one area (Uusimaa) dominates. EQU 

and NLP allocations do not have the same kind of dependency on the area sizes. 

The two model-based allocations perform moderately well as a whole. The results for small 

areas indicate that model-based estimation can produce accurate estimates despite a low sample 

size, but sometimes a much larger sample size is necessary for reaching adequate accuracy. The 

available auxiliary information suggests that if the characteristics of an area deviate much from 

the corresponding population characteristics, it can lead to a strong underestimation or 

overestimation of the area totals, regardless of the area size dN . If the area sample size dn  is 
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very low, the synthetic part in the estimator Eq. (3) dominates, and the area total estimate 

depends almost completely on the sampled units from the other areas. 

 

5. Conclusion 

The focus in this study was in resolving how area sample sizes can be controlled in stratified 

sampling, when the unit-level linear mixed model and EBLUP estimation is applied to the 

sample data and when the overall sample covers only 1 % of the population. The low overall 

sample size was a deliberate choice in the sense of highlighting the problems in small area 

estimation. The control aims at obtaining the area and population estimates with adequate 

accuracy and low bias. The proposed CAL-g1 allocation method uses auxiliary information, the 

model, and method and is derived in the design phase of the survey. 

The performance of the proposed allocation both on the area and population level was 

assessed through design-based sample simulations using real population data. Five allocations 

selected from the literature served as references. Each of them is based on a different 

optimization criterion and the use of auxiliary information. The MC-q025 allocation uses 

another area model, whereas the other four allocations are model-free. The sample sizes except 

for equal and proportional allocations were calculated using the previous real register data. 

EBLUP estimation was applied to the samples in case of model-based allocations. The design-

based Horvitz-Thompson and model-assisted GREG estimation using sampling weights were 

applied to the samples drawn according to model-free allocations. The results indicate that the 

incorporation of an assisting model does not always improve the estimation results. 

The area sample sizes and estimation results have a large variability in the studied 

allocations. An allocation and estimation method combination with indisputably best 

performance does not exist among the studied alternatives, if the comparison is based on the 

accuracies of the area and population estimates. Every combination has high RRMSE% values, 

and a clear majority of the values over 20 % occur in the distributions of the design-based 

allocations, regardless of the estimation method. 

Proportional and Neyman allocations perform well on the population level, but poorly on 

area level. It is also noteworthy concerning these two allocations that compared with Horvitz-

Thompson estimation, the inclusion of the assisting model leads to reduced accuracies of the 

area estimates. It seems that under these circumstances with an uncommon area structure and 

the strong dependency between sample and area sizes, the model-assisted estimation can be 

more inefficient than Horvitz-Thompson estimation. As far as NLP and equal allocations are 

concerned, the application of GREG estimation improves also the accuracies of area estimates 

on the average, in contrast with proportional and Neyman allocations. The distribution of NLP 

allocation contains two smallest areas as outlier cases, and its overall performance is not the 

best anyway. The largest area Uusimaa is an outlier case in the distribution of equal allocation, 

and many other large areas have inaccurate estimates. The population level RRMSE% values 

which are by far the highest, demonstrate one common weakness of this allocation. As is 

expected, the area and population estimates are almost unbiased when the design-based 

estimation is applied. 

Cal-g1 and MC-q025 allocations perform well both on the population and area level according 

to RRMSE% values, except for one small area as an outlier case. The population estimates are 

almost unbiased, but the area-specific distributions contain the same four areas with a strong 

bias (over 10 %). If these two allocations are evaluated in terms of area-specific bias 

distributions, CAL-g1 allocation performs better compared with MC-q025 allocation, but 

anyway, the same strongly biased four areas are a common problem for both allocations. This 
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indicates the model misspecification for these areas. The bias level of a single area remains 

regardless its sample size. 

When analyzing the results from different standpoints, it is worth taking into consideration 

that they have been obtained in a quite demanding survey and area framework. Although the 

results are partly contradictory, they support the principle that the used model and estimation 

method as well as the available auxiliary information are incorporated in the sampling design 

implemented at the planning stage of the survey. If it is important to obtain accurate area and 

population estimates, the variation between and within the areas must be included in the 

allocation solution. Both model-based allocations satisfy these requirements, but the existence 

of outliers indicates deficiencies which must be corrected.  

A wider conception of the performance of the proposed allocation requires, that it is tested 

together with the reference allocations in various other area frameworks using different study 

and auxiliary variables. Possible directions for further development of the proposed allocation 

are the use of every MSE term (not only dg1 ) and the improvement in calibration of area sample 

sizes. The complexity of the MSE makes it difficult to reach an analytical solution, and for this 

reason, the use of software tools like nonlinear programming become necessary. It is likely that 

an optimization problem relating to the used model has not a closed-form solution in this 

situation. The question related to MC-q025 allocation is the setting of priorities between 

population and area level estimation. This question arises anyway when both the area and 

population level parameters are estimated, regardless of the estimation method. The choice of 

the priorities should be a reasonable trade-off between the levels. 
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Table 2 

Summary of number-based and parameter-based allocations. 

Allocation  Computing area sample size 
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Table 3 

Area sample sizes by allocation. The calibrated area sizes are used for calculating the sample 

sizes for CAL-g1 allocation. The sampling population is denoted “Population”. 

 Proxy data Popu- Model-based Model-free 

Area (province) True Calibrated lation CAL- MC- Number-based Parameter-based 
 Nd Ñd Nd g1 1 q025 

1 

EQU PRO NLP NEY 

Uusimaa 7,449  3,516.5  6,813  43  55  12  69  36  125  

Pirkanmaa 2,121  1,256.8  2,003  12  14  12  20  11  13  

Varsinais-Suomi 1,652  1,670.3  1,543  18  19  12  16  18  14  

Päijät-Häme 1,103  1,368.2  1,166  14  14  12  12  13  8  

Central Finland 1,219  973.8  1,141  9  8  12  12  9  6  

North Ostrobothnia 1,300  1,191.4  1,131  11  11  12  12  9  7  

Satakunta 962  1,189.3  1,017  11  11  12  10  15  6  

Kymenlaakso 836  911.5  929  8  7  12  10  13  4  

Pohjois-Savo 1,009  1,228.7  923  12  11  12  9  13  6  

Kanta-Häme 755  1,021.8  885  9  9  12  9  10  5  

Etelä-Savo 825  1,032.6  751  9  9  12  8  10  4  

South Karelia 481  1,090.7  553  10  9  12  6  12  3  

North Karelia 625  1,225.2  549  12  10  12  6  7  4  

Lapland 649  1,099.2  544  10  9  12  6  12  3  

Ostrobothnia 523  972.2  421  8  7  12  4  8  2  

South Ostrobothnia 346  913.3  311  8  6  12  3  6  2  

Kainuu 216  706.3  185  5  3  12  2  8  2  

Central Ostrobothnia 159  862.3  160  7  4  12  2  6  2  

Total 22,230  22,230  21,025  216  216  216  216  216  216  
1) based on the adjusted homogeneity coefficient (value 0.1697) computed of the proxy variable y*. 
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Table 4 

Means over the areas and population values for RRMSE% and ARB% by allocation. The 

table contains also aggregate values and overall aggregate values. 

Estimation method Model-based Design-based and model-assisted   

Allocation method CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

 g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

 RRMSE% 

Mean over areas (%) 14.02  15.47  19.11  14.71  24.33  26.53  20.13  17.82  30.28  40.68  

Population value (%) 6.06  5.13  13.26  10.97  5.94  4.82  8.23  6.35  5.42  4.98  

Sum (%) 20.08  20.60  32.37  25.68  30.27  31.35  28.36  24.17  35.70  45.66  

 ARB% 

Mean over areas (%) 6.53  7.84  0.37  0.46  0.58  0.43  0.31  0.62  0.79  1.27  

Population value (%) 2.48  1.23  0.29  0.99  0.58  0.58  0.17  0.80  0.19  0.30  

Sum (%) 9.01  9.07  0.66  1.45  1.16  1.01  0.48  1.42  0.98  1.57  

Overall sum (%) 29.09  29.67  33.03  27.13  31.43  32.36  28.84  25.59  36.68  47.23  
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Appendix 

Table 5 

Population summary statistics of the study variable y obtained from the business register in October 

2015 and a proxy variable y* obtained from the business register in April 2015. 

Area (province) Study variable y (price) Proxy variable y* (price) 

Name Nd Total Mean St. dev CV Nd Total Mean St. dev CV 

Uusimaa 6,813  2,067,530  303.47  271.28  0.894  7,449 2,304,368  309.35  273.26 0.883 

Pirkanmaa 2,003  311,634  155.58  106.87  0.687  2,121 332,063  156.56  97.67 0.624 

Varsinais-Suomi 1,543  248,763  161.22  145.36  0.902  1,652 263,589  159.56  129.80 0.814 

Päijät-Häme 1,166  174,104  149.32  107.30  0.719  1,103 170,514  154.59  106.33 0.688  

Central Finland 1,141  153,693  134.70  81.07  0.602  1,219 165,102  135.44  75.67 0.559  

North Ostrobothnia 1,131  180,849  159.90  98.22  0.614  1,300 215,869  166.05  92.58 0.558  

Satakunta 1,017  111,409  109.55  84.94  0.775  962 118,271  122.94  92.42 0.752  

Kymenlaakso 929  91,405  98.39  66.81  0.679  836 85,538  102.32  70.83 0.692  

Pohjois-Savo 923  114,935  124.52  100.49  0.807  1,009 137,991  136.76  95.48 0.698  

Kanta-Häme 885  106,110  119.90  73.85  0.616  755 98,418  130.36  79.40 0.609  

Etelä-Savo 751  89,736  119.49  81.94  0.686  825 109,153  132.31  80.24 0.606  

South Karelia 553  64,087  115.89  73.77  0.637  481 61,378  127.60  84.76 0.664  

North Karelia 549  96,688  176.12  103.19  0.586  625 116,373  186.20  95.21 0.511  

Lapland 544  61,867  113.73  89.11  0.784  649 83,683  128.94  85.42 0.662  

Ostrobothnia 421  58,584  139.15  77.63  0.558  523 74,995  143.39  75.55 0.527  

South Ostrobothnia 311  41,822  134.48  67.02  0.498  346 51,766  149.61  70.97 0.474  

Kainuu 185  15,791  85.36  52.93  0.620  216 21,230  98.29  54.89 0.558  

Central Ostrobothnia 160  22,403  140.02  69.53  0.497  159 23,556  148.15  67.01 0.452  

Population 21,025  4,011,408  190.79  191.69  1.005  22,230 4,433,859  199.45  175.02 0.877  

Mean over areas         95.97  

 

Table 6 

Population summary statistics of the auxiliary variables and correlations between variables obtained 

from the business register in October 2015 

Area (province) Auxiliary variable x1 (size) Auxiliary variable x2 (age) Correlations 

Name Nd Mean St. dev CV Mean St. dev CV (y,x1) (y,x2) (x1,x2) 

Uusimaa 6,813  70.60 28.94  0.410  33.41 30.16 0.903  0.732 0.031 -0.014 

Pirkanmaa 2,003  65.02 23.75  0.365  29.63 25.04 0.845  0.649 -0.170 0.133 

Varsinais-Suomi 1,543  69.26 28.10  0.406  33.83 22.22 0.657  0.573 -0.306 0.143 

Päijät-Häme 1,166  66.07 23.76  0.360  30.84 22.47 0.729  0.576 -0.463 0.031 

Central Finland 1,141  63.90 19.62  0.307  25.80 22.57 0.875  0.433 -0.650 0.029 

North Ostrobothnia 1,131  65.41 23.11  0.353  18.17 21.90 1.205  0.625 -0.434 0.080 

Satakunta 1,017  64.82 20.17  0.311  40.50 24.19 0.597  0.501 -0.163 0.059 

Kymenlaakso 929  63.28 24.09  0.381  38.64 23.13 0.599  0.456 -0.508 0.165 

Pohjois-Savo 923  66.07 26.19  0.396  36.90 19.28 0.523  0.535 -0.465 -0.044 

Kanta-Häme 885  63.22 24.18  0.382  35.05 21.56 0.615  0.499 -0.519 -0.008 

Etelä-Savo 751  62.40 20.83  0.334  34.02 20.62 0.606  0.423 -0.521 -0.009 

South Karelia 553  61.91 18.08  0.292  33.83 21.31 0.630  0.458 -0.542 0.048 

North Karelia 549  61.94 18.98  0.307  20.20 21.80 1.079  0.473 -0.680 0.027 

Lapland 544  64.63 25.15  0.389  31.98 21.58 0.675  0.532 -0.573 0.033 

Ostrobothnia 421  61.56 25.94  0.421  33.08 28.41 0.859  0.513 -0.248 0.181 

South Ostrobothnia 311  64.61 24.15  0.374  25.68 22.18 0.864  0.221 -0.657 0.253 

Kainuu 185  58.84 20.51  0.349  36.35 16.10 0.443  0.472 -0.590 -0.029 

Central Ostrobothnia 160  75.08 40.78  0.543  40.39 26.23 0.649  0.578 -0.145 0.293 

Population 21,025  66.72 25.75  0.386  32.11 25.85 0.805  0.592 -0.097 0.044 

 



21 

 

Table 7 

Area and population level RRMSE%s by allocation and estimation method. The values are computed 

of the simulated samples drawn from the business register in October 2015. 

Area (province) Nd Model-based Design-based H-T and model-assisted 

  CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

  g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

Uusimaa 6,813  12.15  9.95  25.37  20.91  10.10  7.66  14.89  11.28  7.85  5.50  

Pirkanmaa 2,003  10.14  9.72  19.56  14.66  15.01  12.08  21.21  15.57  19.20  17.86  

Varsinais-Suomi 1,543  12.01  11.77  25.77  18.11  23.08  17.52  21.46  15.79  23.91  21.31  

Päijät-Häme 1,166  10.14  10.38  20.42  14.02  20.92  17.03  19.68  15.33  25.26  24.62  

Central Finland 1,141  11.39  12.25  17.32  11.97  16.94  16.20  20.24  16.03  23.77  29.58  

North Ostrobothnia 1,131  8.80  9.22  17.97  11.51  17.35  14.55  19.86  13.73  23.25  23.15  

Satakunta 1,017  16.72  17.87  22.29  18.81  24.27  24.69  19.91  18.15  31.00  35.68  

Kymenlaakso 929  20.62  23.74  19.07  14.72  21.33  26.25  18.88  18.48  32.43  55.80  

Pohjois-Savo 923  14.45  16.24  22.50  16.93  26.50  25.27  22.70  17.69  33.76  38.47  

Kanta-Häme 885  12.90  13.76  17.17  13.25  20.42  22.61  19.14  16.90  27.32  38.37  

Etelä-Savo 751  13.50  14.08  18.92  15.26  23.93  23.90  21.18  18.74  34.25  40.48  

South Karelia 553  12.55  13.15  18.23  13.24  25.50  24.46  18.05  15.46  36.32  44.27  

North Karelia 549  9.63  11.13  17.01  10.90  24.20  19.71  21.64  15.96  29.58  28.34  

Lapland 544  16.23  19.74  22.64  15.67  30.86  32.44  22.54  18.28  45.09  55.22  

Ostrobothnia 421  11.66  12.45  15.75  14.13  28.14  33.23  19.26  19.34  37.96  57.19  

South Ostrobothnia 311  13.19  14.94  13.59  11.67  30.50  40.15  20.25  21.41  36.56  61.48  

Kainuu 185  26.77  32.16  17.12  15.24  43.64  61.49  21.63  26.13  43.71  80.85  

Central Ostrobothnia 160  19.45  25.89  13.31  13.82  35.19  58.30  19.81  26.54  33.80  72.95  

Mean over areas (%)  14.02  15.47  19.11  14.71  24.33  26.53  20.13  17.82  30.28  40.68  

Population value (%)  6.06  5.13  13.26  10.97  5.94  4.82  8.23  6.35  5.42  4.98  
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Table 8 

Area and population level ARB%s by allocation and estimation method. The values are computed of 

the simulated samples drawn from the business register in October 2015. 

Area (province) Nd Model-based Design-based H-T and model-assisted 
  CAL- MC- EQU/ EQU/ PRO/ PRO/ NLP/ NLP/ NEY/ NEY/ 

  g1 q025 H-T GREG H-T GREG H-T GREG H-T GREG 

Uusimaa 6,813  7.63  5.94  0.53  1.61  0.94  1.71  0.40  1.64  0.55  0.98  

Pirkanmaa 2,003  1.28  1.14  0.34  0.35  0.44  0.09  0.07  0.04  0.42  0.22  

Varsinais-Suomi 1,543  0.83  0.46  0.32  1.12  0.60  0.01  0.15  0.10  0.07  0.18  

Päijät-Häme 1,166  0.85  1.03  0.48  0.63  0.10  0.11  0.24  0.39  0.07  0.32  

Central Finland 1,141  5.09  5.84  0.25  0.14  0.33  0.23  0.33  0.37  0.30  0.16  

North Ostrobothnia 1,131  1.53  1.38  0.09  0.08  0.42  0.10  0.16  0.39  0.78  0.46  

Satakunta 1,017  7.77  9.41  0.32  0.97  0.12  0.21  0.52  1.03  0.36  0.06  

Kymenlaakso 929  14.84  17.66  0.60  0.75  0.06  0.49  0.40  0.06  0.68  1.37  

Pohjois-Savo 923  5.40  6.54  0.39  0.59  1.68  0.02  0.45  0.73  1.04  0.52  

Kanta-Häme 885  5.63  6.67  0.23  0.03  0.39  0.59  0.31  0.66  0.28  0.11  

Etelä-Savo 751  5.14  5.66  0.44  0.30  0.64  1.01  0.09  0.42  0.38  3.47  

South Karelia 553  5.94  6.10  0.18  0.07  1.47  0.64  0.09  0.09  1.45  1.44  

North Karelia 549  4.32  6.45  0.27  0.12  0.05  0.02  0.23  0.54  0.39  0.15  

Lapland 544  10.36  13.17  0.40  0.62  1.66  0.69  0.23  1.00  0.97  0.99  

Ostrobothnia 421  2.15  1.68  0.12  0.24  0.17  0.00  0.69  0.01  0.82  1.41  

South Ostrobothnia 311  6.58  7.84  0.39  0.43  1.21  0.35  0.01  0.59  2.53  3.49  

Kainuu 185  21.64  27.14  0.76  0.18  0.21  0.55  0.92  0.22  1.48  0.90  

Central Ostrobothnia 160  10.59  16.93  0.49  0.04  0.01  0.94  0.20  2.97  1.68  6.63  

Mean over areas (%) 6.53  7.84  0.37  0.46  0.58  0.43  0.31  0.62  0.79  1.27  

Population value (%)  2.48  1.23  0.29  0.99  0.58  0.58  0.17  0.80  0.19  0.30  
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Figure 1. Means of area RRMSEd %s (MRRMSE%) and population RRMSE%s by allocation 

and estimation method. EBLUP estimation is applied to CAL-g1 and MC-q025 

allocations. 
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Figure 2. Distributions of area-specific RRMSEd %s by allocation and estimation method. 
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Abstract 

The inadequate control of sample sizes in surveys using stratified sampling and area 
estimation may occur when the overall sample size is small or auxiliary information is 
insufficiently used. Very small sample sizes are possible for some areas. The proposed 
allocation based on multi-objective optimization uses a small-area model and estimation 
method, and semi-annually collected empirical data. The assessment of its performance at the 
area and population levels is based on design-based sample simulations, and five previously 
developed allocations serve as references. The model-based estimator is more accurate than the 
design-based Horvitz-Thompson estimator and model-assisted regression estimator. Two trade-
off issues are between accuracy and bias and between the area- and population-level qualities 
of estimates. If the survey uses model-based estimation, the sampling design should incorporate 
the underlying model and the estimation method. 

Key words: Auxiliary and proxy data, model-based EBLUP, performance, multi-objective 
optimization, trade-off between areas and population. 
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1. Introduction

Sample surveys provide estimates of the various parameters not only for the population of
interest, but also for subpopulations, referred to as areas tratified sampling is a
common design, where strata and areas coincide. How are area sample sizes controlled to
provide satisfactory area and population estimates? The small overall sample size or an
insufficient use of auxiliary information may lead to the fact that the areas are not defined at
the planning stage of the survey. The consequence is that the area sample sizes cannot be
controlled. Nonresponse as one cause of randomness is beyond the scope of the study. The lack
of control can lead to small or even to null sample sizes for some areas. They are regarded as
small, because the area-specific samples are small enough to hinder direct estimates of adequate
precision (Rao and Molina, 2015). Various model-assisted or model-based small-area
estimation techniques, which are hard to implement, have been designed to solve this problem
(Pfeffermann, 2013). The World Bank uses the software PovMap for producing business
statistics. Burgard, Münnich, and Zimmermann (2014) have used various estimators and
studied the performances of small-area point and accuracy estimates under different sampling
designs.

We estimate the area and population totals of the variable of interest under different sampling
designs. The variable measures some quantity in business. Because the overall sample size is
small and the population contains small areas, model-based estimation yields moderately
accurate area estimates. s that sample information
provides a higher estimation power for small areas. Two auxiliary variables correlated with the
variable of interest serve as predictors. The selected model contains area-specific effects,
because the variable of interest is likely to vary from one area to another. We shall compare the
main estimation method, which is model-based, to the design-based Horvitz-Thompson
estimator and to the model-assisted regression estimator, on the basis of model-free allocations.
The model-based estimators have lower variances, but may be biased. The design-based
estimators are design-unbiased, but their variances are large for small areas with small sample
size. The second motivation for using these three estimators is to clarify the trade-off between
accuracy and bias.

Our allocation method, called three-term Pareto method , also uses the model and the
estimation method as auxiliary information at the planning stage. It is based on multiobjective
optimization, the model-based empirical best linear unbiased predictor (EBLUP) estimator for
obtaining the area and population total estimates of the variable of interest, and the mean
squared error estimator. We shall compare this method with five reference methods displaying
various optimization criteria and using auxiliary information. The method called Molefe and

, also uses an area model. We introduce model-related allocations in section 2 and four
model-free allocations in Section 3: Equal,  Costa,  nonlinear programming,  and modified
box-constraint . A fixed, small overall sample size is a common restriction. We present

additional numerical details related to some allocations in section 4.2.
We simulate the allocation-specific random samples from a population containing real

register data, by using stratified simple random sampling without replacement. Because the
variable of interest is unknown and the between-area variation of each auxiliary variable in the
population is too small to support allocation, the allocation-specific sampling design, except for
equal allocation, is based on previous register data, called proxy data .

The relative root mean square error and the absolute relative bias measure the accuracy and
the bias of an estimator in design-based simulations. They are sample-based approximations of
the design mean squared error and of the design bias. The primary measure is the relative root
mean square error, but we also compute the absolute relative bias for design-based estimates.
The area-specific relative biases reflect the validity of the model in each area. There is a trade-



off between the quality of area estimates and the quality of population estimate; and a second 
trade-off between accuracy and bias. 

The results support the sampling strategy, in which not only auxiliary information, but also 
the model and the estimation method should be fixed early, in the design phase of the survey. 
The proposed allocation uses all information available before choosing the allocation method, 
avoiding fixed priorities for the importance of estimation at the area and the population levels. 

2. Model-related allocations 

In the model-based estimation, the area parameter and often the population parameter estimates 
result from the statistical model and from the chosen estimator. The proposed allocation (section 
2.2) is based on the model and the estimator introduced in section 2.1 and on auxiliary 
information. Keto and Pahkinen (2010) have used this model and this estimator to describe the 
relationships between area and sample sizes, estimation results, and area characteristics. One 
reference allocation (section 2.3) is based on a different area model and on a composite 
estimator, and uses auxiliary information. These two allocations are model-related 
allocations . Table 1 shows the summary details of these allocations. 

2.1. Model and model-based area total estimator

The area total estimator of the variable of interest is based on the linear mixed model (Battese, 
Harter, and Fuller, 1988): 

DdNkevxy ddkddkdk   1,...,  ;   1,...,  ;  ,   (1) 

where dkx  is the vector of auxiliary information for unit k in area d, D is the total number of 
areas, dN  is the size (number of units) of area d, is the vector of fixed regression para-
meters, the area-specific effects dv   are distributed as 2(0, )vN , independently of the random 

errors dke , which are distributed as 2(0, )eN . The first value of the vector dkx  is one, and the 
vector contains the intercept term 0 . Eq. (1) is applicable when unit-level values are 
available for the variables x. 

The expected value for the unit k in area d is xyE dkdk)( , and the total variance 
22)( evdkyV       (2) 

is decomposed into the variance 2
v between areas and the variance 2

e  within areas. The 
common intra-area correlation (Meza and Lahiri, 2005) 

22

2

ev

v      (3) 

measures the relative variation of the variable of interest between the areas. 
Before the area parameters, we estimate the model parameters and the area effects from the 

sample data. We denote 2
v  and 2

e  the estimated variance components, and dv  the EBLUP 

area effects. The estimate  of  is obtained using the generalized least-squares method. 
The EBLUP estimator for the area total dY  is the sum of dn  sampled y-values and the sum 

of predicted y-values for ( dd nN non-sampled units: 
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)(Eblup, ,  (4) 

where ds  and ds  denote the sampled and the non-sampled units, and the vectors dkx  and are 
defined as in Eq. (1). The design mean squared error for the estimator in Eq. (4) 

2
Eblup,Eblup,

2
Eblup,Eblup, ))(()()()( MSE dddddd YYEYVYYEY .  (5) 

is the sum of the variance and the squared bias. The Prasad-Rao prediction mean squared error 
estimator (Rao and Molina, 2015) for finite populations is 

2 2 2 2 2 2 2 2
,Eblup 1 2 3 4mse( ) ( , ) ( , ) 2 ( , ) ( , )d d v e d v e d v e d v eY g g g g  (6) 

where the terms dg1 , dg 2 , dg3 , and dg4  are functions of the variance components 

2 2 2 2
1 ( , ) ( ) (1 )d v e d d d vg N n , 

2 2 2 * 1 1 *
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2 Cov( , ))

d v e d d d v e d e v v e
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g N n n n , 

2 2 2
4 ( , ) ( )d v e d d eg N n .    (7) 

The terms dg1  and dg 2  include the shrinkage factor 

2 2 2 1 1( )d v v e dn .     (8) 

The matrix X contains the sampled values of the auxiliary variables, and the vectors dx  and *
dx  

contain the area-specific means for the sampled and the non-sampled x-values. The variance-
covariance matrix V = V(y) has a block diagonal form, with the blocks dV  defined as (Meza and 
Lahiri, 2005): 

(1 )
d dd n nV I J ,      (9) 

where  is defined in Eq. (3), 
dnI is the d dn n  identity matrix, and 

dnJ  is the d dn n  matrix, 

whose all entries are equal to 1. The term dg3  contains the asymptotic variances 2V( )v  and 
2V( )e , and the asymptotic covariance 2 2Cov( , )e v . If these parameters are estimated by 

restricted maximum likelihood, the estimator in Eq. (6) is approximately unbiased (Nissinen, 
2009). The area-specific mean squared error estimates are obtained when the variance 
parameter estimates are inserted into Eq. (7). 

Nissinen (2009) states that the term dg1  contributes for 85 90% of the estimated mean 
squared error, that the proportion of dg4  is seldom over 1%, that the proportion of dg2  is 
between 4 and 6%, and that the proportion of dg3  is between 6 and 10%. We obtained similar 
percentages in our simulations. The high proportion of dg1  indicates that the variation in the 
area estimates is mostly related to the uncertainty about the area effects (Nissinen, 2009). 

The proposed allocation in Eq. (17) uses three terms of the mean squared error estimator in 
Eq. (6). The term dg2  is excluded because of its small proportion of the estimated mean squared 



error and because it involves complex matrix operations and auxiliary variables, whose values 
depend on the sample. 

2.2. Model-based three-term Pareto method allocation using multiobjective optimization 

A sample allocation is often based on the solution of an optimization problem subject to given 
restrictions. It is related to the sample design and to the variance, mean squared error, and the 
coefficient of variation of the estimator. 

Our allocation uses the approximation of the mean squared error (amse) in Eq. (6): 

2 2 2 2 2 2
,Eblup 1 3 4amse( ) ( , ) 2 ( , ) ( , )d d v e d v e d v eY g g g  

2 2( ) (1 )d d d vN n
2 2 2 2 1 3 4 2 4 2 2 2 2 22( ) ( ) ( ( ) ) ( V( ) V( ) 2 Cov( , ))d d d v e d e v v e e v e vN n n n

2( )d d eN n . (10)

Eq. (10) contains the fixed area sizes dN , the area sample sizes dn  to be found by 
optimization, and the unknown variance and covariance parameters. Their values are estimated 
through sample simulations drawn from the register of proxy data (section 1), together with 
auxiliary variables. The estimates of the variance and covariance parameters depend on the 
sample. The means of their sample estimates are inserted into Eq. (10). The sum of the area-
specific approximations in Eq. (10) 

D
d dYY 1 Eblup,Eblup )( amse)( amse   (11) 

is an approximation for the mean squared error estimator of the population total estimator 

Eblup ,Eblup1
D

ddY Y . 

The design-based direct estimator d d dY N y  ( dy is the sample mean) is the estimator for 

the area total dY  and d ddY N y is the estimator for the population total Y.  The design 
coefficients of variation (CV) of these estimators are 
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In the model-based estimation, the mean squared error replaces the variance, and in accordance 
with the design-based estimation, the approximate coefficient of variation (ACV) for the area 
total estimates Eblupd,Y and the population total estimate EblupY  are: 
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where dY  and Y  are obtained from the variable of interest in the proxy data. We denote this 
y*  

This allocation should provide the optimal accuracy both on area and population levels. 
This is the reason why the optimal area sample sizes result from a multi-objective optimization, 
yielding the minimal approximate population coefficient of variation and the minimal mean of 
approximate coefficients of variation over areas. For multi-objective optimization, there may 
exist several solutions, so-called Pareto optimal solutions, where none of the objectives can be 
improved without impairing another one (Miettinen, 1999). In this case, the Pareto optimal 
solutions are such that smaller values for the approximate population coefficient of variation 
cannot be obtained without letting the mean of the approximate coefficient of variation over 
areas increase, and conversely. For two objectives, the Pareto front consisting of all optimal 
solutions is a curve in the two-dimensional objective space. Then all solutions on the Pareto 
front are candidates for the final solution, in the absence of information on preference. A multi-
objective optimization problem is solved either by approximating the whole Pareto front or by 
identifying a preferred solution from the Pareto front. In the first alternative, a set of Pareto 
optimal solutions is generated through optimization. It approximates the whole set, which can 
be infinite, of Pareto optimal solutions. In the second alternative, we take account of 
information on preference in the optimization and identify a Pareto-optimal solution as close as 
possible to this information. We develop both alternatives. The functions to be optimized are 
too complicated to yield closed-form solutions, so that nonlinear numerical optimization 
method is mandatory. The area sample sizes are the variables in the multi-objective 
optimization subject to the constraints 

1
D

dd n n , 
1dn  and dn  (d = D) are integers 

d dn N  ( dN n  is possible for the smallest areas).   (14) 

To approximate the Pareto front, we use -constraint method (Miettinen, 1999), where 
one objective is minimized while the other one is converted into a constraint with a fixed upper 
bound . The solutions on the Pareto front are then obtained by solving the resulting single 
objective optimization problems where we use If the 
resulting single objective problems are not convex, then the globally optimal solutions may be 
intractable and we resort to an appropriate single objective optimization method. If the solutions 
are only locally Pareto optimal, they are Pareto optimal in some neighborhood of the solution. 
We use t -constraint method also in the nonlinear programming allocation (section 3.3), 
because it corresponds to a multi-objective minimization of the overall sample size n, of the 
coefficient of variation for each area, and of the coefficient of variation for the whole 
population. This problem includes D+2 objective functions. 

Figure 1 shows an example of the approximated Pareto front, where the approximate 
population coefficient of variation is minimal under the constraints of 48 upper bounds for the 
approximate mean coefficient of variation over areas, corresponding to 48 Pareto optimal 
solutions (denoted by the star symbols). Each solution represents an allocation with 
corresponding area sample sizes. The Pareto front allows the selection of the allocation. It 
shows the trade-offs between the two objectives. 

The second alternative is to use preference information for identifying the preferred trade-
off, without computing all Pareto optimal solutions. We have used the method of global 
criterion (Miettinen, 1999). The principle is to minimize the distance to the vector whose 
components are the optimal values for each objective. First we compute the minimum of the 
approximate population coefficient of variation in Eq. (13), subject to the constraints of Eq. 



(14). The mean approximate coefficient of variation over the areas is ignored in this 
optimization. Second, we compute the minimal mean over the areas: 

D
YD

d d1 Eblup, )ACV(
MACV  , (15) 

subject to the constraints of Eq. (14), while ignoring the approximate population coefficient of 
variation. The resulting area sample sizes in these two optimizations are only by-products. 
These two minima form the ideal objective vector and are denoted  

))(min(ACVMin Ebluppop Y , 

 min(MACV)Min are , (16)

subject to constraints of Eq. (14). 

We set the initial values on the area sample sizes dn , and minimize the sum of squares 

2
are

2
popEblup )MinMACV()Min)( ACV( YS , (17) 

subject to the constraints of Eq. (14). We obtain the preferred area sample sizes. The solution 
of Eq. (17) is a trade-off between the estimation efficiencies at the area and at the population 
levels. Figure 1 shows the solution obtained by using this allocation, which belongs to the 
Pareto front and is the closest to the objective vector. The dotted lines indicate the values of the 
vector constituting the objective. 

Figure 1: The approximated Pareto front minimizing the mean of approximate coefficients of variation 
over areas and of the approximate population coefficient of variation. The label denotes the 
Pareto optimal solution. 

The accuracy at the population level improves to the detriment of accuracy at the area level. 
The optimal allocation corresponding to the three-term Pareto method allocation has a minimal 
distance to the objective vector. We use the Excel Solver with the option eneralized reduced 



gradient nonlinear  to provide the full Pareto optimal solutions to the single objective 
optimization problems. 

2.3. Model-assisted Molefe and Clark´s allocation 

Molefe and Clark (2015) have developed an allocation based on a composite estimator for 
estimating the area-specific means of the variable of interest. A simple random sample of dn
units is selected from each stratum d D, defined by small areas and containing dN
units. The relative size of the area d is NNP dd / . 

The estimator 

(1 )C d dr d dy y X%   (18) 

combines a synthetic estimator (syn)d dY X , where  is the coefficient in the regression Eq. 

(18) and dX  the vector of area-specific means of auxiliary variables, and a direct estimator 

)( ddddr Xxyy , where  and dX  are the same as in the estimator in Eq. (18), and dy

and dx  are the sample means of the variable of interest and of auxiliary variables in the area d. 

The coefficients d  minimize the design mean squared error of the estimator in Eq. (18). Under 
the conditions given by Molefe and Clark (2015), the approximate design-based mean squared 
error estimator of Eq. (18) is 

22
(syn)

2)1();~(MSE ddddd
C
dp BvYy ,  (19) 

where (syn)dv  is the sampling variance of the synthetic estimator (syn)dY . The bias is 

d U d dB X Y , where (syn)dY  is used to estimate dY , with U  denoting the approximate 

design-based expectation of . 
Molefe and Clark (2015) assume a two-level linear model , conditional on the values of the 

auxiliary variables x, with uncorrelated stratum random effects du  and unit residuals i : 
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where i refers to the unit i in the stratum d. This model implies that the area-specific variance 
of the variable of interest according to Eq. (20) is 222)( dedudiyV  and holds for all 

population units. The covariance of y-values between two units i and j  i is 2),(cov ddji yy
for units in the same stratum and zero otherwise, where 
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is the intra-class correlation in the area d. Molefe and Clark (2015) assume that the areas have 
a common intra-class correlation d  for all d. The ratio of between-area variation to the 
total variation of y is constant. 

After computing the optimal weight d  in Eq. (19), we obtain the approximate optimal 
anticipated mean squared error: 

12
)( ))1(1)(1());(~(MSEAMSE dddoptd

C
dpd nYyE . (22)

The criterion F using anticipated mean squared errors of the small-area mean and the overall 
mean estimators for the model-assisted allocation has the approximative form: 
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The optimal area sample sizes minimize Eq. (23) subject to 1
D

dd n n , and the solution is
consistent with Longford (2006). The weight q

dN  reflects the inferential priority for area d, with 

q and d
q
d

q NN )( . The quantity G is a relative priority coefficient at the population 
level. When G is null, we focus on area-level estimation. The larger G, the less important the 
area-level estimation. The values of q and G depend on these priorities. 

When the population estimation has no priority (G = 0) and the cost of the survey are fixed, 
the minimization of Eq. (23) with respect of dn  has the unique solution  
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In Eq. (23) and (24), both the intra-class correlation  and the area-specific standard 
deviation d  of the variable of interest y are unknown. We replace the intra-class correlation 

 by the adjusted homogeneity coefficient obtained from the proxy variable of interest y*:
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ya S
R , (25)

where MSW is the mean sum of squares of areas, provided by a one-way analysis of variance 
between the areas in the proxy population, and 2

*yS  is the variance of y*. We replace the 

parameter d  by the standard deviation of the proxy variable y* in the area d. 
The reason for both replacements is the link between y and y*. The allocation favors large 

areas with large variances of y*: the higher the value of the constant q, the more likely the 
occurrence of negative sample sizes for small areas with small variances. Also, if the population 
estimate has a strictly positive priority G, then F in Eq. (23) must be minimized numerically; 
theoretical values of q and G are out of reach. 



Table 1: Summary of model-based and model-assisted allocations. 

Allocation Computing sample size for area d D Optimality level 

Three-

term 

Pareto 

method 

Pareto
dn : sample sizes minimize the sum of squares 

2 2
Eblup pop are(ACV( ) Min ) (MACV-Min )S Y , based on the 

approximate coefficients of variation according to Eq. (13), at the 

area and population level. The register of proxy data is used. 

Jointly area and 

population 

Molefe 

and Clark 
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Nnn , where q 

is an adjustable constant q ),  is the common intra-area 
correlation, and d  is the area-specific standard deviation obtained 
from the proxy variable y*. 

Area 

3. Model-free reference allocations

One of the model-free reference allocations, equal allocation, uses only number-based 
information. Others use both number-based and parameter-based information on the variable of 
interest, which is unknown and is replaced by a proxy variable y*. It can be the same variable 
obtained from an earlier research of the same subject. An auxiliary variable correlated with the 
variable of interest also can serve as a proxy variable if its area characteristics are available. 
Table 2 shows the summary details of these allocations introduced in sections 3.1 3.4. 

3.1. Equal allocation 

In equal allocation, the sample size is 

D
nnd

EQU  . (26) 

The expression of this allocation in Eq. (26) includes neither the area-specific characteristics 
nor the between-area variation. It may perform well at the area level, but may lead to poor 
estimates for very large areas and for the population size. The total sample size n should be an 
integer multiple of the total number of areas D. The minimal overall sample size n = 2D allows 
the unbiased estimation of area-specific sampling variances. 

3.2. The Costa allocation 

Costa, Satorra, and Ventura (2004) introduce a convex combination 

COS (1 )d
d

N nn k n k
N D

(27)



of proportional and equal allocations, where k . Value 0 for k yields equal allocation and 
value 1 yields proportional allocation. The equal allocation at the area level and the proportional 
allocation at the population level perform satisfactorily. The choice of k depends on the wished 
qualities of estimates at each level. The design coefficient of variation for the estimator 

ddd yNY  of the area total dY according to Eq. (12) is 
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YC , (28)

where dN  is the size of the area d counted in statistical units, 2
,dyS  is the variance of y and dY

the total of y on the area d, and the sample size dn  is defined according to Eq. (27). The area-
specific coefficients of variation dC  depend on the value of k, because the area-specific totals 
and variances, and the area sizes are fixed. 

The optimal value for k minimizes the difference 

DdCC dd  1,...,; ) min()max( (29) 

subject to the constraints 

10 k  
D
d dd nnn 1 ,2 . (30) 

The idea of this solution is to obtain at least moderately accurate area estimates for the areas 
and for the population size. 

We use the area statistics of the proxy variable y* instead of the unknown variable of interest 
and Excel Solver with generalized reduced gradient nonlinear . We insert the 
optimal value of k from Eq. (29) into Eq. (27) to compute the area-specific sample sizes, 
rounded to the closest integer. 

3.3. Allocation using nonlinear programming 

The allocation for the design-based direct estimation of area-specific and population means 
(Choudhry, Rao, and Hidiroglou, 2012) uses nonlinear programming and the area-specific and 
population coefficients of variation for the variable of interest: 
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The criterion is the minimization of the overall sample size D
d dnn 1

, subject to the fixed 
upper limits for the coefficients of variation in Eq. (31) and dn 2. This allocation favors areas 
with a high coefficient of variation, regardless of the area size dN . Many combinations of upper 
limits may lead to the same minimum overall sample size. This allocation is also applicable for 
the total estimators ddd yNY  and D

d dd yNY 1 , because )CV()CV( dd yY and 

)CV()CV( yY  under stratified simple random sampling. 



Our allocation by nonlinear programming is based on finding the upper limits, which lead to 
the fixed overall sample size n. We use the area and population statistics of the proxy variable 
y*, and Excel Solver with . 

3.4. Allocation using box constraints 

Tschuprow (1923) and Neyman (1934) introduced the allocation for minimizing the variance 
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d dy
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NYV 1
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,

2 )11()( (32) 

for the population total estimator D
d dd yNY 1

 under stratified simple random sampling. 

The minimization of Eq. (32) subject to D
d dnn 1

 leads to the Neyman allocation 

n
SN

SN
n D

d dyd

dyd
d

1 ,

, , (33) 

where the area-specific standard deviations dyS , of the variable of interest or in its absence, of 
a proxy variable, and the number of units must be available. This allocation favors large areas 
with high variation and can lead to area sample sizes dn < 2 or even to over-allocation dn >

dN . When dn < 2, the unbiased estimation of the sample variance is impossible. The box-
constraint optimal allocation avoids these difficulties, by allowing the control of the sample 
sizes or of the sampling fractions and the design weights. The allocation minimizes Eq. (32) 
subject to constraints 

d d dL n U , d D 
D
d d nn1 ,  (34) 

where dL  is the lower limit and dU  is the upper limit for the sample size of domain d. The limits 
are adjusted according to the desired accuracies for the area total estimates, but the choices 
affect the precision of the population total estimate. The lower limit is dL = 2 and the upper limit 

dU = dN . We call this allocation box-constraint  (BCO). We use an R program (Gabler, 
Ganninger, and Münnich, 2012) and the R software ( ) to compute the 
sample sizes. 

Longford (2006) introduces inferential priorities for the areas and for the population. He uses 
those constraints for deriving sample size allocation schemes for direct, composite, and 
empirical Bayes estimators. Molefe and Clark´s (2015) reference allocation uses the allocation 
idea of Longford for a composite estimator, but Longford´s other solutions are not applicable 
here. Falorsi and Righi (2008) propose a sampling strategy for multi-variate and multi-domain 
estimation guaranteeing a pre-defined precision for the domain estimators when the overall 
sample size is small. The point is to collect the sample data by using a multi-stage sampling 
design based on a balanced sampling technique and on generalized regression. This solution 
can be extended with indirect small-area estimators, but we cannot apply it because variables 
of interest are too many. 



Table 2: Summary of number-based and parameter-based allocations. 

Allocation  Computing sample size for area d D Optimality level 

Equal  EQU
d

nn
D

not defined 

Costa 

COS (1 )d
d

N nn k n k
N D

 . 

The constant k is the solution of the minimization problem 
DdCC dd  1,...,; ) min()max( , where the coefficient of 

variation )(CV dd YC  is defined in Eq. (28). 

jointly population 
and area 

Nonlinear 
programming 

NLP
dn : minimize D

d dnn 1  subject to limits for coefficients 

of variation in Eq. (31) ddy 0CV)CV(  and 0CV)CV(y . 
jointly population 
and area 

Box-
constraint 

BCO
dn : minimize the variance of the population total estimator 
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ddd UnL  and D
d d nn1 . dL = 2 and dU = dN  here. 
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3.5. Design-based estimation methods for model-free allocations 

We apply the three estimation methods to model-free allocations. The design-based Horvitz-
Thompson method and the model-assisted generalized regression method use survey weights, 
which are the inverses of the inclusion probabilities. 

The finite population U is composed of D non-overlapping domains or areas, with dN  units 

in each, and D
d d NN1

. A probability sample is drawn from U for estimating the area totals 
dN

k dkd yY 1 , where dky  is the variable of interest for unit k in area d. 
The Horvitz-Thompson estimator for the area total dY  is 

,HT 1 1
d dn n dk

d dk dkk k
dk

yY w y , (35)

where dn  is the sample size for area d, dk  is the inclusion probability of unit k in area d, and 
1

dkdkw  is the sampling weight for the same unit. 
The model-assisted generalized regression estimator for the area total dY  is 

,GREG 1 1
d dN n dk dk

d dkk k
dk

y yY y , (36) 

where the predicted value ddkdk vxy  is based on Eq. (1), and dk  is the inclusion 
probability (Lehtonen, Särndal, and Veijanen, 2003). The first part of Eq. (36) is the predicted 
value for dY  when the assisting model is applied. The predicted values dky  can be computed, 
because the unit-level values of the auxiliary variables x are available. The second term protects 
against model mis-specification (Lehtonen, Särndal, and Veijanen, 2003). 



4. Application: Finnish business register

The estimated parameters are area and population totals of the variable of interest, and the 
overall sample size n is fixed at 216 individuals. 

4.1. Business registers for sampling and allocations 

A national Finnish register of block apartments for sale constitutes the data set. This register is 
maintained by the private company Alma Mediapartners Ltd. Its customers are real estate 
agencies. They deposit all the appropriate information about the apartments in this register as 
soon as they receive an assignment from the owners. The population for sample simulations 
consists of 21,025 sampling units, which are block apartments for sale, selected from the 
register. In October 2015, they cover 18 Finnish provinces, which are treated as areas. The 
smallest area contains 160 units and the largest one contains 6,813 units. The variable of interest 
y measures the price (1,000 of the apartment and two auxiliary variables measure the size (in 
m2) and age (in years) of the apartment. 

All allocations except equal allocation are based on the proxy variable y*, which is the price 
of apartment in the register of April 2015. This proxy register contains 22,230 apartments for 
sale in 18 provinces, and the variables are the same as in the sample population. Table 5 in the 
Appendix contains the sizes dN  of the areas, population summary statistics for the variable of 
interest y, and statistics on the differences between y and y*. The area characteristics of these 
variables have a wide range. The differences between area sizes, area totals, and area means are 
mostly negative, in contrast to the differences in area standard deviations and coefficients of 
variation. This indicates a slight increase in the variation of the prices from April to October 
2015. 

Table 6 in the Appendix shows the population statistics for the auxiliary variables and 
correlations between the variables. The between-area variations of the auxiliary variables are 
very small (1.7% for size and 3.9% for age of total variation, according to a one-way analysis 
of variance), which means that the allocations cannot be based on the present auxiliary 
variables. The province of Uusimaa (near capital Helsinki) is a dominating area, because it 
contains the largest number of apartments (32.4% of the population) and the price level there is 
the highest among all provinces. The variable of interest has a strong positive correlation with 
the size of apartment except for one small area, and a negative correlation with the age of 
apartment except for the largest area. The auxiliary variables are not correlated to one another. 
The area-specific changes between the correlations (Table 7 in Appendix) are small, except 
between auxiliary variables for some areas. 

Considering the reported changes in the variables between the business registers in April and 
October 2015, we consider the structures of these registers to be sufficiently similar. This 
justifies our using the register of April 2015 as the population, which provides the data for 
computing the allocation-specific sample sizes. 

4.2. Allocations 

The small overall sample size (n = 216, sampling ratio 1.0%) is a key feature in our procedure. 
The proxy variable y* replaces the variable of interest in the model-free allocations using area 
parameters. The implementation of the Excel Solver with nonlinear generalized 
reduced gradient  0.3528 for k used in the Costa allocation. We use the 
same Excel option for solving the area sample sizes in the nonlinear programming allocation. 
The selected limit of 19.01% for the coefficient of variation for areas and the 8.00% limit for 



the population size lead to the overall sample size 216. The adjusted homogeneity coefficient 
of 0.1697 computed with the proxy variable y* replaces the unknown intra-class correlation in 
the Molefe and Clark allocation. The low value 0.25 for the constant q and zero for the quantity 
G in this allocation avoid the concentration of sampling units in a single area (here the province 
of Uusimaa). The three-term Pareto method allocation is based on simulations and multi-
objective optimization. We estimated the unknown variance and covariance parameters in Eq. 
(7) using the 1,500 simulated simple random samples drawn from the proxy data register, before
running the actual allocation-specific simulations. The minimum value of 3.74% for the
approximate population coefficient of variation and the minimum value of 22.33% for the mean
approximate coefficient of variation over the areas result from the first optimization in Eq. (16).
The solution of the optimization criteria in Eq. (17) yields the area sample sizes.

The area sample sizes (Table 3) vary much between the allocations. The largest area, the 
province of Uusimaa, dominates in two allocations. For the box-constraint allocation, this area 
contributes for almost 60% of the overall sample size. Four smallest areas have sample size 2, 
which allow the computation of standard errors for the area total estimates in design-based 
estimation. The other allocations contain no very small area-specific sample sizes. The 
structures of the four other allocations have common features. The three-term Pareto method 
allocation favors the smallest areas and one larger area (the province of Kymenlaakso). It favors 
less one area (the province of North Karelia). The sample sizes for the Costa allocation are 
concordant with the area sizes. The nonlinear programming allocation favors areas with a high 
coefficient of variation, which is characteristic of this allocation. 

Table 3: Area sample sizes by allocation. 

Model-related Model-free 
Area (province) Size in Three-term Molefe Equal Costa Nonlinear Box- 
  units Pareto method and Clark programming constraint 
Uusimaa 6,813 36 55 12 33 36 125 
Pirkanmaa 2,003 13 14 12 15 11 13 
Varsinais-Suomi 1,543 11 19 12 13 18 14 
Päijät-Häme 1,166 9 14 12 12 13 8 
Central Finland 1,141 11 8 12 12 9 6 
North Ostrobothnia 1,131 9 11 12 12 9 7 
Satakunta 1,017 12 11 12 11 15 6 
Kymenlaakso 929 14 7 12 11 13 4 
Pohjois-Savo 923 10 11 12 11 13 6 
Kanta-Häme 885 11 9 12 11 10 5 
Etelä-Savo 751 10 9 12 11 10 4 
South Karelia 553 11 9 12 10 12 3 
North Karelia 549 6 10 12 10 7 4 
Lapland 544 11 9 12 10 12 3 
Ostrobothnia 421 9 7 12 9 8 2 
South Ostrobothnia 311 9 6 12 9 6 2 
Kainuu 185 15 3 12 8 8 2 
Central Ostrobothnia 160 9 4 12 8 6 2 
Total 21,025 216 216 216 216 216 216 



4.3. Comparison of the allocations    

The results are based on design-based simulation experiments. For each allocation, we 
simulated r = 1,500 independent stratified simple random samples and estimated the area totals, 
variance parameters, mean-squared error approximations, and the allocation-specific quality 
measures (relative root mean square error and absolute relative bias), using the SAS software 
(www.sas.com/en_us/home.html) or the IBM SPSS software (

). We computed design-based Horvitz-
Thompson and model-assisted regression estimates for the model-free allocations and model-
based EBLUP estimates for every allocation. We compare the allocations, combined with 
estimators, on the basis of the accuracy and bias, which we measure with the relative root mean 
square error and absolute relative bias. We compute these quantities, in percent, as sample-
based approximations of the expressions in Eq. (5). 

The area-specific relative root mean square error and the absolute relative bias in percent are 
1
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where diY  is the design- or the model-based estimate of the area total dY  for the simulated 
sample i = r.  Their means over D areas, in percent, are: 
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 is the estimate for the population total in sample i = 1, r. The 
relative root mean square error for the population total, in percent, is 
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where Y is the true value of the population total, and the corresponding absolute relative bias, 
in percent, is 

ARB(pop) = r
i

i

Y
YY

r 1

1  100 .    (40) 

We evaluate two measures of quality: the mean over the areas and the mean over the 
population level. Tables 8 and 9 in the Appendix show the values for these measures at the area 
and at the population levels. 

Figure 2 shows the means of area-specific relative root mean square errors and population 
relative root mean square errors for each combination of allocation and estimation method. The 
model-based estimation by EBLUP leads to more accurate area estimates than those obtained 
from the design-based estimation (Horvitz-Thompson and generalized regression), whatever 
the three estimation methods applied to whatever of the four model-free allocations. The 
population values among these allocations are the lowest for the model-assisted regression 



estimate. The relative root mean square errors are in stark contrast between the equal and the 
box-constraint allocations. The equal allocation has the lowest mean over areas (12.3%) and 
the highest population value (12.2%) for the estimation by EBLUP. The box-constraint 
allocation performs satisfactorily at the population level, as expected (between 5.0 and 5.6%, 
depending on the estimation method), but poorly at the area level (mean between 22.3% and 
40.6%). The highest mean is obtained for the model-assisted regression estimation, in contrast 
with other model-free allocations. At the population level, the smallest value is for the Molefe 
and Clark allocation (5.1%). The allocations provided either by the three-term Pareto method, 
the Costa method, or by nonlinear programming are good trade-offs, provided the criterion is 
accurate enough at both the area and at the population levels. No allocation has an optimal 
accuracy at both levels at the same time. Figure 1 shows the trade-offs for the area and 
population levels, in the shape of the approximated Pareto front of the bi-objective optimization. 

Figure 2: Means of the area-specific relative root mean square errors and of the population relative root 
mean square errors (in percent) for design- and model-based estimates, by allocation. 
 

On Figure 3, the distributions of the area-specific relative root mean square errors for each 
allocation show the relative variation of the area total estimates and the presence of randomness 
in the simulated samples. The model-free allocations are more accurate with model-based 
estimation. Randomness is the smallest in the three-term Pareto method allocation (lowest 
median and range of values without outliers). The nonlinear programming allocation has the 
smallest area as an outlier. The means over the areas of these three allocations are close to each 
other (Figure 2), although they come from different area-specific distributions. The equal 
allocation has the lowest median, although a narrow range of variation, and a single outlier 
(23.4%) for the largest area, the province of Uusimaa. This is a difficulty inherent in this 
allocation. The area estimates in the box-constraint allocation are the least accurate, regardless 
of the estimation method. The model-assisted regression estimation is the least accurate. 

The EBLUP estimates of the four areas, where the sample size is 2 in the box-constraint 
allocation, have high relative root mean square errors, excluding the province of Ostrobothnia 
(14.4%, close to the median). The model-based estimation then can produce at least moderately 
accurate estimates for a single area, in spite of a small sample size. 



Figure 3: Allocation-specific distributions of area-specific relative root mean square errors (in percent) 
for design- and model-based estimates. 

Table 9 in the Appendix shows the simulation biases for the design-based estimates. As 
expected, these estimates are almost unbiased. The area-specific biases of the Horvitz-
Thompson and of the regression estimates are under 2%, except for three areas in the box-
constraint allocation. The area-specific bias distributions for each allocation (Figure 4) 
demonstrate the similarity between accuracy and bias in the case of the estimation by EBLUP. 
As for the distributions of the relative root mean square errors, the model-based three-term 
Pareto method allocation has the narrowest range and is the only allocation with biases under 
10%. In the distribution of the equal allocation, the upper quartile is under 4%, but four outliers 
appear, including the largest area (almost 15%). The distributions of the Costa and of the 
nonlinear programming allocations are similar, ranging to over 15%. Molefe and Clark´s and 
the box-constraint allocations are the most dispersed. The contrast between the equal and the 
box-constraint allocations is similar for the biases and for the relative root mean square errors. 
The three-term Pareto method, the Costa, and the nonlinear programming allocations with 
moderately low biases on both levels are satisfactory trade-offs. The population estimate is 
almost unbiased for Molefe and Clark´s allocation (1.2%), but most of the area estimates are 
seriously biased, regardless of the sample size. Five areas have important biases for most of the 
allocations, which indicates that the model is not up the task. 



Figure 4: Area-specific absolute relative bias distributions (in %) for model-based empirical best linear 
unbiased predictor (EBLUP) estimates, by allocation. 

Table 4 presents the allocation-specific means over the areas, the population values, and 
their aggregate values (sums), for the relative root mean square errors and the relative biases. 
The aggregate relative root mean square errors are the lowest for the EBLUP estimates, except 
for the equal and the box-constraints allocations. The Horvitz-Thompson estimates are less 
accurate. The model-assisted regression estimates are more accurate than the Horvitz-
Thompson ones, except for the box-constraint allocation, which is high (45.6%). The Horvitz-
Thompson and the regression estimates are almost unbiased for the model-free allocations, but 
the box-constraint allocation is an exception. For the EBLUP estimates, the three-term Pareto 
method, Molefe and Clark´s, Costa´s, and the nonlinear programming allocations have the 
smallest aggregate biases, which are close to each other; the box-constraint allocation has the 
largest aggregate bias. 

Table 4: Means over areas, population values, and aggregate values for quality measures (in percent), 
by allocation. Estimation methods for model-free allocations: 1=Horvitz-Thompson, 2=regression 
estimation, and 3=empirical best linear unbiased predictor. 

Model-related Model-free 
Three- Molefe Equal Costa Nonlinear Box-constraint 
term and programming 
Pareto Clark 1 2 3 1 2 3 1 2 3 2 1 3 

Relative root mean square error 
Mean over areas 13.1 15.5 19.1 14.7 12.3 19.7 17.0 13.3 20.1 17.8 13.5 40.6 30.3 22.3 
Population value 6.7 5.1 13.3 11.0 12.2 8.6 6.6 6.8 8.2 6.4 6.7 5.0 5.4 5.6 
Sum 19.8 20.6 32.4 25.7 24.4 28.3 23.6 20.0 28.4 24.2 20.1 45.6 35.7 27.9 

Absolute relative bias 
Mean over areas 4.9 7.8 0.4 0.5 4.2 0.5 0.5 5.3 0.3 0.6 5.5 1.3 0.8 13.8 
Population value 3.4 1.2 0.3 1.0 7.3 0.4 0.4 3.0 0.2 0.8 3.2 0.3 0.2 2.2 
Sum 8.3 9.1 0.7 1.5 11.5 0.8 0.9 8.3 0.5 1.4 8.7 1.6 1.0 16.0 

Integrated accuracy and bias 
Overall sum 28.1 29.7 33.0 27.1 35.9 29.1 24.5 28.3 28.8 25.6 28.8 47.2 36.7 43.9 



We evaluate the allocations by integrating the aggregate values for the relative root mean 
square error and the absolute relative bias. The model-assisted regression estimates of Costa´s, 
of the nonlinear programming, and of the equal allocations have the smallest values (24.5%, 
25.6%, and 27.1%). The three-term Pareto method allocation has the second smallest value 
(28.1%), which includes a high aggregate bias. The aggregate values indicate that the model-
assisted regression estimation performs the best for the three model-free allocations, although 
not supported by the area-specific relative root mean square errors (Table 8 in Appendix). 

The box-constraint and the equal allocations are extreme, in the sense that they are strongly 
or not at all associated with the area sizes. These solutions lead to satisfactory estimates only at 
one level, either population or area. The three-term Pareto method, Costa´s, and the nonlinear 
programming allocations take both the between-area and the within-area variations into 
account. They perform well at both levels, when the model is included. The three-term Pareto 
method and Costa´s allocations do not use fixed priorities or limits for the area-level and the 
population-level estimation, unlike the nonlinear programming and Molefe and Clark´s 
allocations. 

For small areas, the model-based estimation produces area estimates of moderate accuracy, 
despite a small sample size (provinces of North Karelia and Ostrobothnia). Large sample sizes, 
however, do not guarantee high accuracy (provinces of Satakunta, Kymenlaakso, and Kainuu). 
The accuracy of the area estimates seems to be related to the area-specific means and to the 
coefficients of variation of the variables. Large deviations from the corresponding population 
statistics may bias the estimation of the area totals. The skewness of the variable of interest 
usually confuses the EBLUP estimation, as the important biases for some areas indicate. 

We examined the validity of the unit-level linear mixed model in Eq. (1) by testing the null 
hypothesis that the error terms dv  and dke  are normally distributed. We computed the 

transformed residuals )x(x)y(y dddkdddk , where 2
1

)1(1 dd  and the factor d  is 
defined in Eq. (8) (Rao and Molina, 2015). Under the null hypothesis, the residuals are 
approximately identically and independently distributed as ) (0, 2

eN . We applied the test to a
simple random sample, of n = 5,000 individuals, selected from the population. We took 2

v = 
1,570 and 2

e = 17,550. The Shapiro-Wilks test yielded a p-value of 0.00, leading us to reject 
the null hypothesis. We also computed the allocation-specific means for the variance 
parameters, and the regression coefficients and the area effects of the area total estimator in Eq. 
(4), for the simulated samples. The means for Molefe and Clark´s and the box-constraint 
allocations differ from those for the other allocations. Our model has deficiencies when its 
parameters are estimated by generalized least-squares or by restricted maximum likelihood. It 
is possible, before the estimation phase, to make the distribution of the variable of interest more 
symmetric by an algebraic transformation such as the lognormal method, but we have not done 
that. 

5. Conclusion

We compared six allocation methods in stratified sampling, when applying model-based 
estimation and design-based estimation for obtaining area and population estimates. The fixed 
and small total sample size is a common restriction. Our three-term Pareto method allocation 
uses auxiliary information, the model, and an estimation method. Accuracy at both the area and 
at the population levels are optimized, which requires multi-objective optimization techniques. 
We chose the reference allocations on the basis of the variety of information, which the 
allocations use: model and estimator, optimization criteria, fixed limits or priorities, and 



auxiliary information. The allocation-specific area sample sizes are various. The sample is 
concentrated on the largest area for two allocations, a situation which may lead to inaccurate 
and biased estimates for small areas. 

We computed the area sample sizes for five allocations using the previous register data, 
because the auxiliary variables are insufficient to support the allocations. The distance between 
apartment and the town center has a predictive power, but it is not available. 

We applied design- and model-based estimations and evaluated the allocations in terms of 
accuracy and bias obtained from design-based sample simulations. We confirm that, in this 
survey framework, the model-based estimates are more accurate than the design-based 
estimates.  be significant in surveys where some areas 
have too small sample sizes to allow direct estimates of satisfactory quality.  The model-free 
allocations have similar performance structures at different levels, regardless of the estimation 
method. 

The studied allocations have all pros and cons, depending on the estimation level (area and 
population). Considering the aggregate values, the EBLUP estimates for the three-term Pareto 
method, the Costa, and the nonlinear programming allocations are most accurate. The 
randomness associated with the area estimates is best controlled in the three-term Pareto method 
allocation, from the viewpoint of the area-specific distributions of relative root mean square 
errors. 

The bias results for the EBLUP estimates demonstrate that the allocations have very different 
performances. The three-term Pareto method and the Costa allocations perform better, with 
respect to aggregate values and area-specific distributions. 

By considering accuracy and bias, we showed that the Costa, the nonlinear programming, 
and the equal allocations under model-assisted regression estimation perform the best, and that 
the three-term Pareto method allocation performs very close. This comes from the fact that the 
design-based estimates are almost unbiased, but that many of these estimates are inaccurate. 
The model-based estimation suffers from an important bias, leading to try methods likely to 
improve accuracy and reduce bias. The applicable software is also necessary. 

Getting a well-performing allocation is not an easy task; it is very case-specific and depends 
on the objectives of a survey and on the availability of auxiliary information. Accurate 
estimates, both at the area and at the population levels, are made obtainable by multi-objective 
optimization. The model and the estimation method have become part of the sampling design. 

The first trade-off is between the quality of the area estimates and the quality of population 
estimates. We showed the impossibility of obtaining maximum quality at both levels 
simultaneously. The fixed priorities or limits at the area and at the population levels, which 
some allocations use, do not guarantee the maximum quality. 

The second trade-off is between accuracy and bias of the estimates. Model-based estimators 
are usually more accurate than design-based estimators when the sample size is small, but 
model-based estimators may be importantly biased. The sample allocation affects accuracy and 
bias, but the increment of the area sample size does not correct the bias entirely. This trade-off 
appears commonly in the literature, but the discussion has seldom concerned the priorities of 
these measures. 
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Appendix 

Table 5: Population statistics of the variable of interest y (price) in October 2015 business register and 
the changes between y and proxy variable y* (price in April 2015 business register). 

Variable of interest y (price) Difference y - y* 

Area (province) Size in Total Mean Coefficient Size in Total Mean Coefficient 

  units     of variation units     of variation 

Uusimaa 6,813 2,067,530 303.5  0.89  -636 -236,839 -5.88 0.01 

Pirkanmaa 2,003 311,634 155.6  0.69  -118 -20,429 -0.98 0.06 

Varsinais-Suomi 1,543 248,763 161.2  0.90  -109 -14,826 1.66 0.09 

Päijät-Häme 1,166 174,104 149.3  0.72  63 3,589 -5.27 0.03 

Central Finland 1,141 153,693 134.7  0.60  -78 -11,410 -0.74 0.04 

North Ostrobothnia 1,131 180,849 159.9  0.61  -169 -35,020 -6.15 0.06 

Satakunta 1,017 111,409 109.5  0.78  55 -6,862 -13.40 0.02 

Kymenlaakso 929 91,405 98.4  0.68  93 5,866 -3.93 -0.01 

Pohjois-Savo 923 114,935 124.5  0.81  -86 -23,056 -12.24 0.11 

Kanta-Häme 885 106,110 119.9  0.62  130 7,692 -10.46 0.01 

Etelä-Savo 751 89,736 119.5  0.69  -74 -19,417 -12.82 0.08 

South Karelia 553 64,087 115.9  0.64  72 2,709 -11.71 -0.03 

North Karelia 549 96,688 176.1  0.59  -76 -19,685 -10.08 0.07 

Lapland 544 61,867 113.7  0.78  -105 -21,816 -15.22 0.12 

Ostrobothnia 421 58,584 139.2  0.56  -102 -16,411 -4.24 0.03 

South Ostrobothnia 311 41,822 134.5  0.50  -35 -9,944 -15.14 0.02 

Kainuu 185 15,791 85.4  0.62  -31 -5,439 -12.93 0.06 

Central Ostrobothnia 160 22,403 140.0  0.50  1 -1,153 -8.13 0.04 

Population 21,025 4,011,408 190.8  1.00  -1,205 -422,451 -8.66 0.13 
 
  



Table 6: Population summary statistics of the auxiliary variables size  (m2) and age  (years) and 
correlations between variables in the business register in October 2015. 

Auxiliary variable x1 (size) Auxiliary variable x2 (age) Correlations 

Area (province) Total Mean Coefficient Total Mean Coefficient Price, Price, Size, 

and size in units of variation of variation size age age 

Uusimaa (6,813) 481,026  70.6 0.41  227,623 33.4 0.90  0.73 0.03 -0.01 

Pirkanmaa (2,003) 130,232  65.0 0.37  59,354 29.6 0.85  0.65 -0.17 0.13 

Varsinais-Suomi (1,543) 106,871  69.3 0.41  52,196 33.8 0.66  0.57 -0.31 0.14 

Päijät-Häme (1,166) 77,040  66.1 0.36  35,962 30.8 0.73  0.58 -0.46 0.03 

Central Finland (1,141) 72,908  63.9 0.31  29,438 25.8 0.87  0.43 -0.65 0.03 

North Ostrobothnia (1,131) 73,978  65.4 0.35  20,549 18.2 1.21  0.63 -0.43 0.08 

Satakunta (1,017) 65,924  64.8 0.31  41,189 40.5 0.60  0.50 -0.16 0.06 

Kymenlaakso (929) 58,788  63.3 0.38  35,892 38.6 0.60  0.46 -0.51 0.17 

Pohjois-Savo (923) 60,985  66.1 0.40  34,057 36.9 0.52  0.54 -0.47 -0.04 

Kanta-Häme (885) 55,949  63.2 0.38  31,023 35.1 0.62  0.50 -0.52 -0.01 

Etelä-Savo (751) 46,865  62.4 0.33  25,547 34.0 0.61  0.42 -0.52 -0.01 

South Karelia (553) 34,235  61.9 0.29  18,709 33.8 0.63  0.46 -0.54 0.05 

North Karelia (549) 34,005  61.9 0.31  11,090 20.2 1.08  0.47 -0.68 0.03 

Lapland (544) 35,156  64.6 0.39  17,396 32.0 0.67  0.53 -0.57 0.03 

Ostrobothnia (421) 25,915  61.6 0.42  13,925 33.1 0.86  0.51 -0.25 0.18 

South Ostrob. (311) 20,093  64.6 0.37  7,986 25.7 0.86  0.22 -0.66 0.25 

Kainuu (185) 10,886  58.8 0.35  6,724 36.3 0.44  0.47 -0.59 -0.03 

Central Ostrob. (160) 12,013  75.1 0.54  6,463 40.4 0.65  0.58 -0.15 0.29 

Population (21,025) 1,402,870  66.7 0.39  675,123 32.1 0.81  0.59 -0.10 0.04 



Table 7: Changes in the auxiliary variables and in correlations between October 2015 and April 2015 
(´*´denotes auxiliary variables in the proxy register April 2015). 

Changes x1-x1
* in size Changes x2-x2

* in age Correlation changes 
Area (province) Total Mean Coefficient Total Mean Coefficient Price, Price, Size, 

and size in units of variation of variation size age age 

Uusimaa (6,813) -46,084 -0.16  0.01  1,726  3.08  -0.10 0.00  -0.03  -0.07

Pirkanmaa (2,003) -6,154 0.72 -0.00 1,916  2.55  -0.08 0.04  0.07  -0.01  

Varsinais-Suomi (1,543) -4,632 1.76 0.04 -412  1.98 -0.07 -0.01  0.08  0.07

Päijät-Häme (1,166) 2,567 -1.45 0.01 2,158  0.19  -0.02 0.02  0.07  0.04  

Central Finland (1,141) -2,566 1.98 0.03 233  1.84  -0.05 0.00  0.03  0.04  

North Ostrob. (1,131) -7,082 3.06 -0.02 2,365  4.18  -0.26 0.02  -0.03  -0.02

Satakunta (1,017) 2,752 -0.85 -0.03 5,391  3.29  -0.11 0.04  0.11  -0.00

Kymenlaakso (929) 6,606 0.86  -0.00 3,538  -0.06 -0.03 0.01  0.04  0.04  

Pohjois-Savo (923) -5,640 0.04 0.05 2,452  5.58  -0.20 -0.01  0.09  -0.01

Kanta-Häme (885) 6,754 -1.94 0.02 6,091  2.03  -0.05 -0.03  0.04  0.02

Etelä-Savo (751) -3,232 1.67 0.04 1,638  5.04  -0.18 0.05  0.01  -0.08

South Karelia (553) 3,453 -2.09 -0.01 3,398  2.00  -0.04 -0.06  0.14  0.17

North Karelia (549) -4,025 1.09 -0.00 888  3.88  -0.24 0.02  -0.05  -0.05

Lapland (544) -6,000 1.21 0.04 2,294  8.71  -0.29 0.05  0.07  -0.09  

Ostrobothnia (421) -5,547 1.40 -0.00 904  8.18  -0.22 -0.04  -0.02  -0.11

South Ostrob. (311) -1,555 2.04 0.00 1,347  6.49  -0.29 -0.04  -0.02  -0.02

Kainuu (185) -2,189 -1.69 0.01 -252  4.05 -0.15 0.09  0.10  -0.11  

Central Ostrob. (160) 415 2.13  -0.02 902  5.41  -0.13 0.07  0.17  0.07  

Population (21,025) -72,160 0.37 0.01 36,577  3.39  -0.12 -0.00  -0.01  -0.04



Table 8: Relative root mean square errors (in percent) for areas and population, by allocation. Estimation 
methods for model-free allocations: 1=Horvitz-Thompson, 2=regression estimation, 3=empirical best 
linear unbiased predictor (EBLUP). 

  Model-related Model-free 

Area (province) Three- Molefe Equal Costa Nonlinear Box-constraint 

and size in units term and             programming       

  Pareto Clark 1 2 3 1 2 3 1 2 3 1 2 3 

Uusimaa (6,813) 12.6  10.0  25.4 20.9 23.4 15.5 11.8 12.9 14.9  11.3  12.9  7.9  5.5  6.2  

Pirkanmaa (2,003) 10.4  9.7  19.6 14.7 11.0 17.6 13.3 9.9 21.2  15.6  10.5  19.2  17.9  11.9  

Varsinais-Suomi (1,543) 14.2  11.8  25.8 18.1 13.8 24.7 18.0 13.2 21.5  15.8  12.4  23.9  21.3  15.6  

Päijät-Häme (1,166) 11.1  10.4  20.4 14.0 10.4 20.2 14.9 10.5 19.7  15.3  11.0  25.3  24.6  14.7  

Central Finland (1,141) 10.2  12.3  17.3 12.0 9.5 17.3 13.4 10.0 20.2  16.0  11.1  23.8  29.6  16.8  

North Ostrob. (1,131) 9.5  9.2  18.0 11.5 8.7 17.3 12.0 8.6 19.9  13.7  8.8  23.3  23.2  12.5  

Satakunta (1,017) 16.4  17.9  22.3 18.8 14.7 22.9 20.9 16.1 19.9  18.2  14.8  31.0  35.7  28.7  

Kymenlaakso (929) 15.9  23.7  19.1 14.7 13.5 20.7 18.8 17.1 18.9  18.5  16.7  32.4  55.8  38.2  

Pohjois-Savo (923) 14.5  16.2  22.5 16.9 12.9 23.8 19.3 14.0 22.7  17.7  13.9  33.8  38.5  25.4  

Kanta-Häme (885) 12.2  13.8  17.2 13.3 10.1 18.8 16.2 12.0 19.1  16.9  12.1  27.3  38.4  21.5  

Etelä-Savo (751) 12.9  14.1  18.9 15.3 11.7 20.9 18.1 13.4 21.2  18.7  13.0  34.3  40.5  20.8  

South Karelia (553) 11.5  13.2  18.2 13.2 10.5 19.6 15.9 11.8 18.1  15.5  11.6  36.3  44.3  20.5  

North Karelia (549) 11.7  11.1  17.0 10.9 9.1 18.1 13.3 10.1 21.6  16.0  11.2  29.6  28.3  16.5  

Lapland (544) 15.4  19.7  22.6 15.7 13.8 24.0 18.7 16.1 22.5  18.3  15.0  45.1  55.2  32.0  

Ostrobothnia (421) 12.4  12.5  15.8 14.1 10.6 19.1 18.1 11.6 19.3  19.3  11.8  38.0  57.2  14.4  

South Ostrob. (311) 12.3  14.9  13.6 11.7 9.4 15.8 16.4 12.0 20.3  21.4  13.4  36.6  61.5  21.5  

Kainuu (185) 16.3  32.2  17.1 15.2 16.1 21.6 24.6 21.8 21.6  26.1  22.3  43.7  80.9  39.4  

Central Ostrob. (160) 16.4  25.9  13.3 13.8 11.4 16.9 22.3 17.3 19.8  26.5  19.9  33.8  73.0  44.7  

Mean over areas 13.1  15.5  19.1 14.7 12.3 19.7 17.0 13.3 20.1  17.8  13.5  30.3  40.6  22.3  

Population value 6.7  5.1  13.3 11.0 12.2 8.6 6.6 6.8 8.2  6.4  6.7  5.4  5.0  5.6  
 

  



Table 9: Absolute relative biases (in percent) for areas and population, by allocation. Estimation methods 
for model-free allocations: 1=Horvitz-Thompson, 2=regression estimation, 3= empirical best linear 
unbiased predictor (EBLUP). 

Model-related Model-free 

Area (province) Three- Molefe Equal Costa Nonlinear Box-constraint 

and size in units term and programming 

Pareto Clark 1 2 3 1 2 3 1 2 3 2 1 3 

Uusimaa (6,813) 7.9  5.9  0.5  1.6  14.7  0.9  0.7  7.8  0.4  1.6  8.2  1.0  0.6  3.4  

Pirkanmaa (2,003) 1.9  1.1  0.3  0.4  2.4  0.5  0.2  1.4  0.1  0.0  1.7  0.2  0.4  0.3  

Varsinais-Suomi (1,543) 2.2  0.5  0.3  1.1  3.5  0.1  0.9  1.7  0.2  0.1  0.9  0.2  0.1  3.8  

Päijät-Häme (1,166) 0.7  1.0  0.5  0.6  1.3  0.1  0.1  0.2  0.2  0.4  0.2  0.3  0.1  4.3  

Central Finland (1,141) 3.7  5.8  0.3  0.1  2.9  0.7  0.4  3.4  0.3  0.4  4.6  0.2  0.3  7.5  

North Ostrob. (1,131) 0.7  1.4  0.1  0.1  1.0  0.0  0.3  1.0  0.2  0.4  1.5  0.5  0.8  1.6  

Satakunta (1,017) 5.6  9.4  0.3  1.0  3.3  0.4  0.6  6.4  0.5  1.0  5.1  0.1  0.4  21.4  

Kymenlaakso (929) 9.6  17.7  0.6  0.8  7.2  0.3  0.4  11.1  0.4  0.1  9.8  1.4  0.7  30.8  

Pohjois-Savo (923) 3.9  6.5  0.4  0.6  2.7  0.4  0.4  4.2  0.5  0.7  4.7  0.5  1.0  15.8  

Kanta-Häme (885) 4.3  6.7  0.2  0.0  2.6  0.1  0.4  4.5  0.3  0.7  4.8  0.1  0.3  12.6  

Etelä-Savo (751) 4.4  5.7  0.4  0.3  2.5  0.6  1.0  4.6  0.1  0.4  4.6  3.5  0.4  12.9  

South Karelia (553) 4.3  6.1  0.2  0.1  3.4  0.2  0.2  5.1  0.1  0.1  4.4  1.4  1.5  13.5  

North Karelia (549) 6.8  6.5  0.3  0.1  3.6  0.3  0.3  4.7  0.2  0.5  6.1  0.2  0.4  11.8  

Lapland (544) 8.5  13.2  0.4  0.6  6.8  0.7  0.5  9.7  0.2  1.0  7.8  1.0  1.0  25.3  

Ostrobothnia (421) 2.3  1.7  0.1  0.2  1.9  1.3  0.6  1.5  0.7  0.0  2.2  1.4  0.8  1.7  

South Ostrob. (311) 4.9  7.8  0.4  0.4  3.8  0.7  0.7  5.5  0.0  0.6  6.5  3.5  2.5  13.1  

Kainuu (185) 10.0  27.1  0.8  0.2  10.7  0.6  0.0  15.5  0.9  0.2  15.6  0.9  1.5  32.5  

Central Ostrob. (160) 7.0  16.9  0.5  0.0  2.0  0.3  1.3  7.8  0.2  3.0  10.2  6.6  1.7  36.9  

Mean over areas 4.9  7.8  0.4  0.5  4.2  0.5  0.5  5.3  0.3  0.6  5.5  1.3  0.8  13.8  

Population value 3.4  1.2  0.3  1.0  7.3  0.4  0.4  3.0  0.2  0.8  3.2  0.3  0.2  2.2  
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