
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Analysis and optimization against buckling of beams interacting with elastic
foundation

Banichuk, Nikolay; Barsuk, Alexander; Ivanova, Svetlana; Makeev, Evgeni;
Neittaanmäki, Pekka; Tuovinen, Tero

Banichuk, N., Barsuk, A., Ivanova, S., Makeev, E., Neittaanmäki, P., & Tuovinen, T.
(2018). Analysis and optimization against buckling of beams interacting with elastic
foundation. Mechanics Based Design of Structures and Machines, 46(5), 615-633.
https://doi.org/10.1080/15397734.2017.1377619

2018



Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lmbd20

Download by: [ Jyvaskylan Yliopisto] Date: 11 January 2018, At: 23:58

Mechanics Based Design of Structures and Machines
An International Journal

ISSN: 1539-7734 (Print) 1539-7742 (Online) Journal homepage: http://www.tandfonline.com/loi/lmbd20

Analysis and optimization against buckling of
beams interacting with elastic foundation

Nikolay Banichuk, Alexander Barsuk, Svetlana Ivanova, Evgeni Makeev,
Pekka Neittaanmäki & Tero Tuovinen

To cite this article: Nikolay Banichuk, Alexander Barsuk, Svetlana Ivanova, Evgeni Makeev,
Pekka Neittaanmäki & Tero Tuovinen (2017): Analysis and optimization against buckling of beams
interacting with elastic foundation, Mechanics Based Design of Structures and Machines, DOI:
10.1080/15397734.2017.1377619

To link to this article:  https://doi.org/10.1080/15397734.2017.1377619

Accepted author version posted online: 20
Oct 2017.

Submit your article to this journal 

Article views: 23

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lmbd20
http://www.tandfonline.com/loi/lmbd20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/15397734.2017.1377619
https://doi.org/10.1080/15397734.2017.1377619
http://www.tandfonline.com/action/authorSubmission?journalCode=lmbd20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lmbd20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/15397734.2017.1377619
http://www.tandfonline.com/doi/mlt/10.1080/15397734.2017.1377619
http://crossmark.crossref.org/dialog/?doi=10.1080/15397734.2017.1377619&domain=pdf&date_stamp=2017-10-20
http://crossmark.crossref.org/dialog/?doi=10.1080/15397734.2017.1377619&domain=pdf&date_stamp=2017-10-20


A
cc
ep
te
d
M
an
us
cr
ip
t

Analysis and optimization against buckling of beams interacting with elastic foundation

Nikolay Banichuk, Alexander Barsuk, Svetlana Ivanova, Evgeni Makeev, Pekka Neittaanmäki,

and Tero Tuovinen

Abstract

We consider an infinite continuous elastic beam that interacts with linearly elastic foundation and

is under compression. The problem of the beam buckling is formulated and analyzed. Then the

optimisation of beam against buckling is investigated. As a design variable (control function) we

take the parameters of cross-section distribution of the beam from the set of periodic functions

and transform the original problem of optimisation of infinite beam to the corresponding problem

defined at the finite interval. All investigations are on the whole founded on the analytical

variational approaches and the optimal solutions are studied as a function of problems parameters.
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1. INTRODUCTION

The model of beam resting on elastic foundation is very important as from theoretical as from

engineering point of view for example in paper making processes. The value of this model is that

it is the simplest one describing the interaction of elastic beam and external media and admits

analytical investigations in many interesting practical cases. Reader can study a historical outline of

the basic ideas in the theory of beams and plates resting on elastic foundation, described by Winkler

law and contained in the books Timoshenko and Gere (1961); Timoshenko and Woinowsky-Krieger

(1959).

The models of beams, interacting with elastic foundation, are often used for analysis of vibrations

and stability. Static forms of elastic stability, developed by Euler (1766) for a differential equation

describing the bending of a beam or column, were analyzed in Yayli (2017). The stability analysis

of discrete models of compressed beams in elastic media is considered in De Angelis (2012).

The influence of the elastic medium stiffness in the buckling behaviour of compressed beams

on elastyic foundation is treated by De Angelis and Cancellara (2012). Analytical and numerical

observations for buckling problems for beams on elastic foundation are presented by Griffiths and

Bee (2014). Thermal bucling of beams on elastic foundation is considered in Vaz et al. (2014).

Vibrations analysis of a continuous beam on elastic supports was presented in Banichuk et al.

(2016). Special case of buckling and vibration is devoted infinite beams lying on elastic foundation.

Corresponding methodology for the static analysis of infinite periodic structures under general

loading was described in Moses et al. (2001). Stability of a beam with periodic supports was

investigated in Avetisyan et al. (2015). Note also the paper by Soldatos and Selvadurai (1985)
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devoted the static problem analysis of the flexure of a beam resting on a nonlinear Winkler-type

foundation.

In this paper we consider an infinite continuous elastic beam that interact with elastic foundation

and formulate and solve the beam optimisation against buckling. As a result, we conclude that the

optimal thickness distribution maximizing the critical buckling load of infinite beam resting on

elastic foundation is a periodic structure with the period equal to the critical length of the finite

compressed beam lying on elastic foundation with simply supported ends and optimal thickness

distribution.

2. ANALYSIS OF VARIATIONAL PROBLEMS DEPENDING ON SCALAR

PARAMETERS

Many variational problems, including buckling problem for a beam resting on a linearly elastic

foundation, can be formulated as the following variational problem

ψ(γ ) = min
w

J (w; γ ) , (1)

where J (w, γ ) is the problem functional depending on the system state function w and a real

scalar parameter γ . It is supposed that the state variable is differentiable function satisfying some

boundary conditions.
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Let us obtain the expression for the first derivative dψ(γ )/dγ . To this purpose we will use the

formula

dψ(γ )

dγ
= lim

1γ→0

ψ (γ +1γ )− ψ(γ )

1γ
. (2)

Let solutions w(γ ) and w(γ + 1γ ) of variational problem in the equation 1 correspond to the

values γ and γ +1γ and thus we have

δwJ (w(γ ); γ ) = 0 (3)

δwJ (w (γ +1γ ) ; γ +1γ ) = 0 (4)

ψ(γ ) = J (w; γ ) , ψ (γ +1γ ) = J (w (γ +1γ ) ; γ +1γ ) (5)
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Taking into account the equations (1)–(5) we transform the expression for the first derivate ofψ(γ )

as

dψ(γ )

dγ
= lim

1γ→0

J (w(γ +1γ ); γ +1γ )− J (w(γ ); γ )

1γ

= lim
1γ→0

J (w(γ )+1w(γ ); γ +1γ )− J (w(γ ); γ )

1γ
(6)

= lim
1γ→0

δwJ (w(γ ); γ )+ ∂J
∂γ
1γ

1γ
=
∂J

∂γ
.

Thus we arrive the following representation for dψ(γ )/dγ in the form

dψ(γ )

dγ
=
∂J (w; γ )

∂γ
. (7)

In the case, when γ1 ≤ γ ≤ γ2 and dψ(γ )/dγ 6= 0, where γ1 and γ2 are given values, the

dependence ψ(γ ) is monotonic and achieves its extreme values at γ = γ1 and γ = γ2.

Let γ = γ∗ is the value of the problem parameter for which dψ(γ )/dγ=0. According to the

equation (7) we have the following condition

∂J (w; γ )

∂γ
= 0 (8)

for determination of γ∗. Note that the equation (8) is a nonlinear with respect to γ and its solution

can be considered as some functional defined on the solution w. Let us denote the solution of

equation (8) (one from solutions if there exist several solutions) by γ∗ = γ (w) and the dependence

ψ(γ ) corresponding γ = γ∗, by ψ∗ = ψ(γ∗).
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It is possible to show that the following variational representation

ψ∗ = min
w

J (w; γ (w)) = min
w
8(w), (9)

8(w) ≡ J (w; γ (w)) (10)

is valid. In fact, taking into account equations (3)-(5) and (8) we obtain

δ8(w) = δwJ (w; γ (w))+
∂J

∂γ
δγ (w) = 0 (11)

and consequently the first variation of functional 8(w) vanish (reduces zero) at γ = γ∗.

Variational formulation (9) and (10) will be essentially used for analysis of considered problems

and can be taken as a basis for obtaining variational estimates of ψ∗.

3. STABILITY OF BEAMS WITH CONSTANT STIFFNESS PARAMETERS

To analyze the stability problem of continuous beam of periodic mechanical and geometrical

characteristics distribution and periodic boundary conditions let us consider an elastic beam of finite

length ℓ and volume V resting on a linearly elastic foundation, characterizing by rigidity coefficient

c. The beam has constant (along the beam) bending rigidity EI and is subjected to compression

by axial force P. The beam endpoints are simply supported at x = 0 and x = ℓ (see schematic

Figure 1). The governing equation of buckling (loss of the stability) and boundary conditions for

deflection function w(x), describing the transverse beam displacements in the interval 0 < x < ℓ,
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are

EI
d4w

dx4
+ P

d2w

dx2
+ cw = 0 (12)

w(0) = EI

(

d2w

dx2

)

x=0

= w(ℓ) = EI

(

d2w

dx2

)

x=ℓ
= 0 (13)

where E is Young modulus, I is moment of inertia of the beam’s cross-section. The reaction of the

considered elastic foundation is proportional to the deflection of the beam at that point, that is, the

beam reaction can be represented by Hooke’s law, cw. Such theoretical model for beams resting

on elastic foundation are adequate to a wide class of engineering problems stipulated by buckling

phenomena and have been discussed in the classical literature (see e.g. the books by Timoshenko

and Woinowsky-Krieger (1959) and von Kármán and Biot (1940)).

For convenience of comparative analysis of solutions of spectral problem (12) and (13) with

constant bending rigidities EI and analogous problem with varying bending rigidities EI(x) we

introduce the bending rigidity distribution of the form

EI = AjS
j, j = 1, 2, 3 (14)

where S is cross-sectional area, and the coefficients A1, A2 and A3 characterize the type of cross-

section. In this connection j = 0, corresponding to the bending rigidity EI = A0, is not related

with the cross-section shape characteristics. Thus, all obtained relations for j = 0 correspond to

generally accepted relations for beams with constant bending rigidity distribution.
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Let us introduce dimensionless independent variable x̃, normalized cross-section area S̃, parameter

λ and c̃ (in what follows tilde is omitted)

x = ℓx̃, S =
VS̃

ℓ
, P = AjV

jλ, (15)

c = AjV
jc̃, j = 0, 1, 2, 3.

and rewrite spectral boundary-value problem as

d4w

dx4
+ λℓj+2 d2w

dx2
+ cℓj+4w = 0 (16)

w(0) =
(

d2w

dx2

)

x=0

= w(1) =
(

d2w

dx2

)

x=1

= 0. (17)

Note that the stability equation is formulated in the form (16) to represent the dependence on the

beam length in the explicit manner. Solutions of the boundary-value problem (16) and (17) are

found with the help of Fourier series

w(x) =
∞
∑

n=1

cn sin nπx. (18)

Using equation (18) we transform equations (16) and (17) into the following equation

∞
∑

n=1

cn

(

(nπ)4 − (nπ)2λℓj+2 + cℓj+4
)

sin nπx = 0. (19)

8

D
ow

nl
oa

de
d 

by
 [

Jy
va

sk
yl

an
 Y

lio
pi

st
o]

 a
t 2

3:
58

 1
1 

Ja
nu

ar
y 

20
18

 



A
cc
ep
te
d
M
an
us
cr
ip
t

Taking into account the properties of completeness and orthogonality of the system sin nπx, where

n = 1, 2, 3, . . . , we conclude that the equation (19) is fulfilled when all coefficients in the equation

(19) vanish, i.e.

cn

(

(nπ)4 − (nπ)2λℓj+2 + cℓj+4
)

= 0, n = 1, 2, 3, . . . (20)

Vanishing of the first multiplier cn in the equation (20) means the exclusion of the corresponding

Fourier term from the equation (18), but the vanishing of the second multiplier in the equation (20)

gives us the relation

(nπ)4 − (nπ)2λℓj+2 + cℓj+4 = 0 (21)

between the parameters λ, c and ℓ. We can also write this relation as

λn(ℓ) =
n2π2

ℓj+2
+ c

ℓ2

n2π2
, n = 1, 2, 3, . . . (22)

Critical force of buckling corresponds to minimal value of λn(ℓ), which is found for appropriate

meaning of n.

If we fix some number n and consider the buckling phenomenon with formation of n half-waves

than we can determine the critical value of beam length ℓ minimizing λn(ℓ) and satisfying the

conditions

dλn(ℓ)

dℓ
= 0. (23)
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Using equation (23) we obtain the expression for critical lengths ℓ∗n and corresponding critical

buckling forces λ∗
n = λn

(

ℓ∗n
)

:

ℓ∗n =
(

j + 2

2c

)
1

j+4

(nπ)
4

j+4 , n = 1, 2, 3, . . . (24)

λ∗
n =

j + 4

2

(

2c

j + 2

)

j+2
j+4

(nπ)
−2j
j+4

In particular case, when j = 0, from the equation (24) it follows that

ℓ∗n =
nπ

c1/4
, λ∗

n = 2
√

c, n = 1, 2, 3, . . . (25)

As it is seen from the equation (25), the decreasing of the foundation stiffness corresponds to

increase of critical beam length and the critical force λ∗
n (for this length) does not depend on the

number of half-waves.

4. VARIATIONAL PROBLEM FOR THE BEAMS OF CRITICAL LENGTH

Differential equation (12) is a necessary extremum condition, i.e. Euler differential equation, for

nonadditive functional

P = min
w

∫ ℓ

0 EI
(

d2w
dx2

)2
dx + c

∫ ℓ

0 w2dx

∫ ℓ

0

(

d2w
dx2

)2
dx

. (26)
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Using notations from equation (15) the variational problem of elastic stability (12), (13) and (26)

is written as

λ(ℓ) = min
w

{

1

ℓj+2

J1(w)

J3(w)
+ cℓ2 J2(w)

J3(w)

}

(27)

w(0) =
(

d2w

dx2

)

x=0

= 0, w(1) =
(

d2w

dx2

)

x=1

= 0 (28)

Here we use the following notations for introduced functional

J1(w) =
1
∫

0

(

d2w

dx2

)2

dx (29)

J2(w) =
1
∫

0

w2dx, (30)

J3(w) =
1
∫

0

(

dw

dx

)2

dx (31)

Note that for rigorous solutions

wn(x) = cn sin nπx, n = 1, 2, 3, . . . (32)
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of the variational problem (27)–(28) we have

J1 (wn) =
n4π4

2
c2

n, J2 (wn) =
1

2
c2

n, J3 (wn) =
n2π2

2
c2

n (33)

After substitution of expressions (33) into equation (27), we obtain the expression (22) for λn(ℓ).

Note that the variational representation in the equation (27) is valid for the beams of arbitrary length

and gives us the possibility to find corresponding critical buckling forces.

Let us transform the variational representation (27) to the form for the beams of critical length

defined by the condition dλ(ℓ)/dℓ = 0. Using the rule of differentiation with respect to parameter

(7) and formulas (9) and (10) we obtain the following representation for the beam of critical lengths

ℓ∗ =
(

j + 2

2c

)
1

j+4
(

J1(w)

J2(w)

)
1

j+4

, (34)

λ∗ =
j + 4

2

(

2c

j + 2

)

j+2
j+4

min
w
8j (w) (35)

8j (w) =
1

J3(w)

(

J2
1 (w) J

j+2
2 (w)

)
1

j+4
, j = 0, 1, 2, 3. (36)

Here the deflection functions w satisfies the boundary conditions (27). Necessary extremum

condition δ8j(w) = 0 for the functional 8j(w) and the corresponding boundary conditions
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constitute the following spectral boundary value problem

d4w

dx4
+ a(w)

d2w

dx2
+ b(w)w = 0 (37)

w(0) =
(

d2w

dx2

)

x=0

= w(1) =
(

d2w

dx2

)

x=1

= 0 (38)

where the functionals a(w) and b(w) are determined by the following expressions

a(w) =
j + 4

2

J1(w)

J3(w)
, b(w) =

j + 2

2

J1(w)

J2(w)
. (39)

We will find the solution of spectral boundary-value problem (37)–(38) in the form of Fourier series

(18). Substitution of Fourier series (18) into (37) and some elementary transformations give us the

equation

∞
∑

n=1

cn

(

(nπ)4 − a(w)(nπ)2 + b(w)
)

sin nπx = 0. (40)

Performing corresponding analysis we reduce the equation (40) to the relations between the

functionals a(w) and b(w):

(nπ)4 − a(w)(nπ)2 + b(w) = 0, n = 1, 2, 3, . . . (41)

Note that the coefficients cn 6= 0. It is seen that the functionals J1(w), J2(w) and J3(w) have the

following representation

J1(w) =
1

2

∞
∑

n=1

(nπ)4 c2
n, J2(w) =

1

2

∞
∑

n=1

c2
n, J3(w) =

1

2

∞
∑

n=1

(nπ)2 c2
n. (42)
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In particular, when the deflection function w is expressed by one component representation (32)

with one harmonic function the considered functionals J1(wn), J2(wn) and J3(wn) take the values

(33) and the functionals a(w) and b(w) are represented as

a(wn) =
j + 4

2
n2π2, b(wn) =

j + 2

2
n4π4, n = 1, 2, 3, . . . (43)

The equations (41) are satisfied for a(w) and b(w) from (43) and ∀n = 1, 2, 3, . . . and thus the

functions wn(x), given by the equation (32), are the rigorous solution of the spectral problem (37)–

(38). For indicated rigorous solutions we will have the following values for the functional 8j(w),

critical beam lengths and critical buckling forces when n = 1, 2, 3, . . . and j = 0, 1, 2, 3 (see,

Table 1).

5. ANALYSIS AND STABILITY OPTIMIZATION FOR BEAMS WITH VARIABLE

RIGIDITY CHARACTERISTICS

5.1. Variational problem

Consider variational formulation of elastic stability problem for beam with variable rigidity char-

acteristics resting on elastic foundation. For the beam of given length the problem of determination

of critical buckling load is formulated as

P = min
w

Aj

∫ ℓ

0 Sj
(

d2w
dx2

)2
dx + c

∫ ℓ

0 w2dx

∫ ℓ

0

(

dw
dx

)2
dx

, (44)

with boundary conditions

w(0) = 0,

(

Sj d
2w

dx2

)

x=0

= 0, w(ℓ) = 0,

(

Sj d
2w

dx2

)

x=ℓ
= 0. (45)
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Using dimensionless variables from (15) and notation

m(x) = Sj(x)

(

d2w

dx2

)

, j = 1, 2, 3 (46)

we rewrite the problem (44) as

λ (S, ℓ) = min
w

{

1

ℓj+2

J1(S, w)

J3(S, w)
+ cℓ2 J2(w)

J3(w)

}

(47)

with conditions

w(0) = m(0) = 0, w(1) = m(1) = 0 (48)

where m = m(x) is the bending moment and the functionals J1, J2 and J3 are given by the following

expressions

J1(S, w) =
1
∫

0

Sj(x)

(

d2w

dx2

)2

dx =
1
∫

0

m2(x)

Sj(x)
dx (49)

J2(w) =
1
∫

0

w2dx, (50)

J3(w) =
1
∫

0

(

dw

dx

)2

dx. (51)
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Let us transform (47)–(48) for beams of critical lengths using condition dλ(ℓ)/dℓ = 0, or more

detailed writing

−
j + 2

ℓj+3

J1

J3
+ 2cℓ

J2

J3
= 0. (52)

As result we obtain the expressions for critical beam lengths and corresponding buckling loads

ℓ∗ =
(

j + 2

2c

)
1

j+4
(

J1(S, w)

J2(w)

)
1

j+4

, j = 0, 1, 2, 3, (53)

λ∗ =
j + 4

2

(

2c

j + 2

)

j+2
j+4

min
w
8j (S, w) (54)

8j (S, w) =
1

J3(w)

(

J2
1 (S, w) J

j+2
2 (w)

)
1

j+4
. (55)

The last expression for the functional 8j was derived with the help of (9). It is assumed here that

the deflection functions satisfy the boundary conditions in (48). Necessary extremum condition for

the functional 8j makes possible to formulate the boundary-value problem

d2

dx2

(

Sj d
2w

dx2

)

+ a(S, w)
d2w

dx2
+ b(S, w)w = 0 (56)

w(0) =
(

Sj d
2w

dx2

)

x=0

= w(1) =
(

Sj d
2w

dx2

)

x=1

= 0 (57)
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which can be also written in the following form

d2m

dx2
+ a(S, w)

d2w

dx2
+ b(S, w)w = 0 (58)

w(0) = m(0) = 0, w(1) = m(1) = 0 (59)

using the expressions for the moment (46) and the following expressions for the functionals a and

b:

a(S, w) =
j + 4

2

J1(S, w)

J3(w)
(60)

b(S, w) =
j + 2

2

J1(S, w)

J2(w)
. (61)

5.2. Optimization problem

Consider the problem of cross-section area distribution maximizes the critical buckling load under

beam volume constraints

S∗(x) : λ∗(ℓ) = max
S(x)

λ (S, ℓ) :

1
∫

0

S(x)dx = 1 (62)
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where the functional λ(S, ℓ) is determined by the formulas (46), (47)and conditions (48). The

requirement δλ (S, ℓ) = 0 gives us the necessary optimality condition

m2(x) = Sα+1(x), α = 1, 2, 3 (63)

which is valid for arbitrary beam, including the case with ℓ = ℓ∗.

For critical lengths of beam the functional λ∗(S) = λ(S, ℓ∗) is determined by the equations (53)–

(55), (60), (61) and {(56), (57)}, or {(58), (59)}.

Necessary optimality conditions, the equation (63) with the equations (60), (61) and {(56), (57)},

or {(58), (59)} constitutes the system for finding the optimal cross-sectional beam distribution.

5.3. Some asymptotics

In correspondence with the equation (63) and the boundary conditions m(0) = m(1) = 0 (see,

(59)) the optimal cross-section area is equal to zero at the beam ends, that vanish the coefficients

for the highest derivative in the differential equation (56) at x = 0 and x = 1. In this context the

spectral problem (56)–(57) with optimal solution S∗(x) belongs to the singular perturbated spectral

problems, which are required application of special analysis. To this purpose we investigate the

asymptotic behaviour of optimal solutions in the vicinity of the beam-ends. Now we will consider

the asymptotic behaviour at x = 0 (x ≪ 1).
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With application of equation (58)–(59) and necessary optimality condition (63) and also double

integration of (58) with corresponding boundary conditions (59) we obtain the following integral

equation

m + aw + b

x
∫

0

(x − s)w(s) = Cx, C = b

1
∫

0

(1 − s)w(s)ds. (64)

Asymptotic behaviour of deflections and moments is found for x ≪ 1 taking into account boundary

conditions w(0) = 0 and m(0) = 0 as

m(x) ≈ C1xβ , w(x) ≈ C2xγ , β, γ > 0. (65)

Using necessary optimality condition (63) and relations (65) we obtain the required asymptotic

formulas

S(x) = m2/α+1 ≈ C
2
α+1
1 x

2β
α+1 (66)

wxx(x) =
m(x)

Sα(x)
≈ C

− α−1
α+1

1 x− α−1
α+1β . (67)

5.4. Analytical optimal solution for α = 1

If we take into account necessary optimality condition (63) and the case α = 1 we present

m2(x) = S2(x)

(

d2w(x)

dx2

)2

= S2(x) (68)
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and nonlinear differential equation

(

d2w

dx2

)2

= 1 or

(

d2w

dx2

)

= ±1. (69)

Using the boundary conditions we have

w(x) =
1

2
x (1 − x) (70)

and corresponding representation for the bending moment

m(x) = S(x)
d2w(x)

dx2
= −S(x). (71)

Taking into account the previous relations we can write the differential equation and boundary

conditions for S(x) as

−
d2S

dx2
− a +

1

2
bx(1 − x) = 0, S(0) = S(1) = 0 (72)

where a and b for α = 1 are determined by the expressions (see equations (60) and (61))

a =
5

2

J1

J3
, b =

3

2

J1

J2
. (73)

In correspondence with the equation (70) the functional J1, J2 and J3 (see equations (49)–(51)) are

equal to

J1 = 1, J2 =
1

120
, J3 =

1

12
(74)
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and consequently the functionals a, and b and the solution of the optimization problem (72) are

a = 30, b = 180, S(x) =
15

2
x(1 − x) [1 − x (1 − x)] . (75)

Obtained optimal solution of cross-sectional areas is symmetric with respect to the middle point

and archives the maximum value at this point:S(1/2) = 45/32. Note that this optimal solution

(75) does not depend on the basement rigidity. Optimal solution S(x) and critical buckling force,

corresponding to (53)–(55), are given by

ℓ∗ =
(

3

2c

J1

J3

)1/5

=
(

3

2c

)1/5

· 2.60517 (76)

λ∗ =
5

2J3

(

(

2c

3

)3

J2
1J3

2

)1/5

=
5

2

(

2c

3

)3/5

· 0.678692 (77)

For comparison we present also the values ℓ∗ and λ∗ for the beam of constant cross-section S(x) = 1

using the expressions (24) with α = 1 and n = 1.

We have

ℓ∗ =
(

3

2c

)1/5

· 2.49873, λ∗ =
5

2

(

2c

3

)3/5

· 0.63262. (78)

The shape of the optimal solution is presented in the Figure 2.
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5.5. Numerical optimization solutions for α = 2, 3

Consider the relations (49)–(55) and the formulation of optimization problem (62) where the

functional λ(S, ℓ) and the variational problem are determined as

λ∗ =
(

α + 4

2

)(

2c

α + 2

)
α+2
α+4

min
w
8α (S, w) , (79)

8α (S, w) =
1

J3(w)

(

J2
1 (S, w) Jα+2

2 (w)
)

1
α+4

, α = 1, 2, 3 (80)

where the functionals J1, J2 and J3 are determined by the equations (49)–(51).

The optimization problem as formulated in (62) with optimality conditions (63) give us the

following relations

m(x) = −aw(x)+ b



x

1
∫

0

(1 − τ)w (τ ) dτ −
x
∫

0

(x − τ)w(τ )dτ



 (81)

w(x) =
x
∫

0

(x − τ)

Sα(τ )
dτ − x

1
∫

0

(1 − τ)m(τ )

Sα(τ )
dτ (82)

as a basis for the iteration procedure of finding the optimal solutions. Realization of iteration

algorithm (which we omit) and performed the corresponding computations give us the following

optimal solutions (see Figures 3 and 4).
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6. OPTIMIZATION OF CONTINUOUS (INFINITE) BEAM WITH PERIODIC

RIGIDITY CHARACTERISTIC

6.1. Stability of beam

Consider the buckling problem for infinite elastic beam satisfied the following relation

d2

dx2

(

EI(x)
d2w(x)

dx2

)

+ P
d2w(x)

dx2
+ cw(x) = 0 (83)

|w(x)| ≤ C 6= ∞, −∞ < x < ∞, (84)

EI(x) ≡ EI(x + nℓ), n = 0, ±1, ±2, . . . (85)

where ℓ is the period.

The fundamental property of periodic spectral problem consists in

mk+1 (xk + x) = eiαℓmk (xk−1 + x) , 0 ≤ x ≤ ℓ (86)

k = 0, ±1, ±2, . . . 0 ≤ αℓ < 2π .

The x-axis is divided in the equal intervals by points xk−1 = (k − 1)ℓ (left end) and xk = kℓ (right

end) k = 0, ±1, ±2, . . . , while

EI (xk + x) = EI (xk−1 + x)
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and

mk+1 (xk + x) = eiαℓmk (xk−1 + x) .

The upper index in the equation (86) corresponds to the interval number.

Taking into account the continuity of variables

w(x),
dw(x)

dx
, m(x),

dm(x)

dx

at the nodes xk, we can write the considered spectral problem for periodic intervals as

d2

dx2

(

EI(x)
d2w(x)

dx2

)

+ P
d2w(x)

dx2
+ cw(x) = 0, 0 < x < ℓ (87)

w(ℓ) = eiαℓw(0),

(

dw

dx

)

x=ℓ
= eiαℓ

(

dw

dx

)

x=0
,

m(ℓ) = eiαℓm(0),

(

dm

dx

)

x=ℓ
= eiαℓ

(

dm

dx

)

x=0

0 ≤ α ≤ 2π

or in dimensionless variables

x = ℓx̃, S =
VS̃

ℓ
, P = AjV

jλ, (88)

C = AjV
jC̃, αℓ = α̃, j = 1, 2, 3.
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(Tilde is omitted) as

d2

dx2

(

Sj(x)
d2w

dx2

)

+ λℓj+2 d2w

dx2
+ cℓj+4w = 0, 0 < x < 1 (89)

w(1) = eiαw(0),

(

dw

dx

)

x=1

= eiα

(

dw

dx

)

x=0

m(1) = eiαm(0),

(

dm

dx

)

x=1

= eiα

(

dm

dx

)

x=0

0 ≤ α ≤ 2π

where EI(x) = AjS
j(x), j = 1, 2, 3.

In what follows we will also use the complex conjugate system

d2

dx2

(

Sj(x)
d2w∗

dx2

)

+ λℓj+2 d2w∗

dx2
+ cℓj+4w∗ = 0, 0 < x < 1 (90)

w∗(1) = e−iαw∗(0),

(

dw∗(1)

dx

)

= e−iα

(

dw∗(0)

dx

)

m∗(1) = e−iαm∗(0),

(

dm∗(1)

dx

)

= e−iα

(

dm∗(0)

dx

)

0 ≤ α ≤ 2π

6.2. Variational formulation

The presented relations (89) and (90) are necessary conditions δλ for extremum of the functional

(δλ = 0) : λ =
1

ℓk+2

∫ 1
0 Sk(x)

d2w(x)

dx2
d2w∗(x)

dx2 dx
∫ 1

0
dw(x)

dx
dw∗(x)

dx
dx

+ (91)
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cℓ2

∫ 1
0 w(x)w∗(x)dx
∫ 1

0
dw(x)

dx
dw∗(x)

dx
dx

→
extr

w(x) ∈ B, w∗(x) ∈ B∗

where B and B∗ are classes of functions satisfying boundary conditions. Consider the analysis of

the functional λ of the problem parameters ℓ, c and α. To this purpose we present the functional λ

as

λ =
1

ℓk+2

J1

J3
+ cℓ2 J2

J3
(92)

where

J1 =
1
∫

0

Sk d2w

dx2

d2w∗

dx2
dx, J2 =

1
∫

0

ww∗dx, J3 =
1
∫

0

dw

dx

dw

dx
(93)

Suppose that we give some increments: ℓ → ℓ + δℓ, c → c + δc, α + δα. Then for the first

variations we will have

δλ = δℓλ+ δcλ+ δαλ =
dλ

dℓ
δℓ+

dλ

dc
δc +

dλ

dα
dα (94)

Performing the variationals of the functional we obtain

dλℓ
dℓ

= −
k + 2

ℓk+3

J1

J3
+ 2cℓ

J2

J3
(95)

dλc

dc
= ℓ2 J2

J3
.

Using the transformation

e−iα = e2π ie−iα = ei(2π−α) (96)
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we find that the solution w∗(x,α) corresponds to the solution w(x, 2π − α) and thus we will have

w∗(x;α) = w(x; 2π − α). (97)

Using this relation we transform the presentation of the functional (91) to the following form

λ(α) =
1

ℓk+2

∫ 1
0 Sk d2w

dx2 (x;α)d2w
dx2 (x; 2π − α)dx

∫ 1
0

dw(x;α)
dx

dw(x;2π−α)
dx

dx
+ (98)

cℓ2

∫ 1
0 w(x;α)w(x; 2π − α)dx
∫ 1

0
dw(x;α)

dx
dw(x;2π−α)

dx
dx

where it is followed that λ(α) = λ(2π − α). As a result we conclude that eigenvalue λ(α)

correspond the eigenfunctions w(x,α) and w∗(x,α) = w(x, 2π − α) and consequently λ(α) is

double valued and also

λ(α) = λ(2π − α), w(x,α) = w∗(x, 2π − α), 0 ≤ α ≤ 2π . (99)

In general case w(x,α) = cw∗(1 − x,α), where c 6= 0 arbitrary constant, but in our considered

problem we can take c = 1 and thus

w(x,α) = w∗(1 − x,α), 0 ≤ x ≤ 1, 0 ≤ α < 2π (100)

Using the (100) we construct the solution of spectral problem at 0 ≤ x ≤ 0.5. To formulate the

solution

w(x,α) = u(x,α)+ iv(x,α) (101)
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where u(x,α) and v(x,α) are real and imaginary parts of the w(x,α) we represent w(x,α) in the

form

u(x,α) = u(1 − x,α), 0 ≤ x ≤ 1, 0 ≤ α ≤ 2π (102)

v(x,α) = −v(1 − x,α), 0 ≤ α < 2π , 0 ≤ α ≤ 2π (103)

Thus u(x,α) is even function of x and v(x,α) is odd function.

Using these conditions and corresponding boundary conditions and the property S(x) = S(1 − x)

we represent the variation of functional as

δλ =
1

J3

[

1

ℓk+2

(

mδ
dw∗

dx

∣

∣

∣

∣

1

0

+m∗δ
dw

dx

∣

∣

∣

∣

1

0

−
dm∗

dx
δw

∣

∣

∣

∣

1

0

− (104)

−
dm

dx
δw∗

∣

∣

∣

∣

1

0

)

− λ

(

dw∗

dx
δw

∣

∣

∣

∣

1

0

+
dw

dx
δw∗

∣

∣

∣

∣

1

0

)

]

Let w(x,α+δx) and w∗(x,α+δx) are solutions of the spectral problems (89) and (90) corresponding

to the parameter α + δα and

δw(x,α) =
dw(x,α)

dx
δα, δw∗(x,α) =

dw∗(x,α)

dx
δα (105)
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are variations of these functions corresponding to parameter variation δα. For variations of

boundary conditions in (89) and (90) we have

δαw(1) = ieiαw(0)δα, δαw∗(1) = ie−iαw∗(0)δα, (106)

δα

(

dw(1)

dx

)

= ieiα

(

dw(0)

dx

)

δα, δα

(

dw(1)

dx

)

= ie−iα

(

dw(0)

dx

)

δα.

Using presented expressions (106) for boundary variations and general representation (104) for

variation of functional λ we obtain the following formula of functional sensitivity with respect to

parameter α

δαλ =
dλ

dα
δα (107)

dλ

dα
= −

2

J3
Im

[

1

ℓj+2

(

m∗(0,α)
dw

dx
(0,α)−

dm

dx
(0,α)w (0,α)

)

− (108)

−λ
(

dw∗

dx
(0,α)w (0,α)

)]

where Im is the imaginary part of the expression in brackets. In the cases α = 0, π , 2π the

solutions of the spectral problems are real and consequently dλ/dα = 0.
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6.3. Optimal design of continuous beams

As it can be shown (see, for example Appendix A) the solution of stability problem for the infinite

homogeneous beam resting on elastic foundation represents rigorously periodic structure. In this

context it is reasonable to consider periodic distributions of rigidity characteristics in the process

of beam optimization against buckling.

We will construct the optimal solution in the class of periodic bending rigidity distributions

EI(x) = AjS
j(x), j = 1, 2, 3; S(x) = S(x + nℓ), n = 0, ±1, ±2.

with unknown before handed period ℓ. We assume also that the optimal solution is symmetric

S(x) = S(ℓ− x).

As it was shown previously the original buckling problem for infinite beam can be formulated

at finite (unit) interval and described by (89) using the variables (88). Corresponding variational

formulation at unit interval is given by (91)–(93).

The problem of optimization against buckling consists in determining of periodic distribution of

beam ”thickness”, the value of period ℓ and parameter α, such that

λ (S, ℓ,α) → max
S(x),ℓ,α

(109)
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under volume constraint

1
∫

0

S(x)dx = 1. (110)

Performing variations of the optimized functional λwith respect to S(x)we will have the following

necessary optimality conditions

m(x)m∗(x) = Sj+1(x), j = 1, 2, 3 (111)

m(x) = Sj(x)
d2w(x)

dx2
.

Note that for symmetric distribution S(x) = S(1 − x) the following equalities are correct

w(x) ≡ w∗(1 − x), m(x) = m∗(1 − x).

If the thickness distribution S(x) and the parameter α are fixed then the variation of the optimizing

functional with respect to ℓ is reduced to calculation of derivative of the functional with respect to

this parameter, while extremal values of ℓ are found with the help of equation dλ(ℓ)/dℓ = 0 and

represented as

ℓ∗ =
(

j + 2

2c

)1/j+4 (
J1

J2

)1/j+4

(112)

λ∗ =
j + 4

2J3

(

2c

j + 2

)

j+2
j+4 (

J2
1J

j+2
2

)1/j+4
.
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Wave generated periodic structure is described by spectral problem (89) and represented in the

form

w(x) = w0(x)eiαx, w0(x) ≡ w0(x + nℓ), n = 0, ±1, ±2, . . .

From this representation it follows that w(n) = eiαw(n − 1) and w(1) = eiαw(0) in particular

case when n = 1. In the considered problem of optimal design the period of thickness distribution

coincides with the beam halfwave length. Thus −αℓ = π or −α = π (in dimensionless form).

Formulation of the spectral problem (89) for α = π is written as

d2

dx2

(

Sj(x)
d2w

dx2

)

+ λℓj+2 d2w

dx2
+ cℓj+4w = 0, 0 < x < 1 (113)

w(1) = −w(0),

(

dw(1)

dx

)

= −
(

dw(0)

dx

)

m(1) = −m(0),

(

dm(1)

dx

)

= −
(

dm(0)

dx

)

.

Using the property w(x) ≡ w∗(1 − x) and the representation w(x) = u(x) − iv(x) we conclude

that u(x) = u(1 − x) (symmetric function) and v(x) = −v(1 − x) (antisymmetric function). In

what follows we present deflections in the form w(x) = ws(x)+ iwa(x), where ws(x) and wa(x) are

respectively symmetric and antisymmetric functions.
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For symmetric solution the boundary conditions in the equation (113) are transformed to the form

ws(0) = 0, ws(1) = 0, ms(0) = 0, ms(1) = 0 (114)

and correspond to simple supported conditions.

Thus the symmetric solutions of spectral problem (113) correspond to the symmetric buckling

shapes of simply supported beam of the length ℓ. Note that full analysis and determination of

optimal solution were given in section 5.

Consider now the antisymmetric solution and show that the solutions of optimization problem

coincide for both cases. For antisymmetric solutions the boundary conditions in the equation 113

are reduced to

(

dwa(0)

dx2

)

= 0,

(

dwa(1)

dx2

)

= 0,

(

dma(0)

dx2

)

= 0,

(

dma(1)

dx2

)

= 0,

while the conditions

wa(1) = −wa(0),

(

d2wa(1)

dx2

)

= −
(

d2w(0)

dx2

)

are automatically satisfied as it follows from definition of antisymmetric solution wa(x) = −wa(1−

x).
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7. NOTES AND CONCLUSIONS

It is possible to analyse also the class of antisymmetric solutions and to show that the optimization

problem solutions are the same for both classes (symmetric and antisymmetric functions).

Presented analysis and construction of optimal solutions for simply supported beams of the finite

length are full applicable for analysis and optimization against buckling of infinite beam.

As a result of investigations we conclude that the optimal thickness distribution maximizing the

critical buckling load of infinite beam resting on elastic foundation is a periodic structure with the

period equal to the critical length of the finite compressed beam lying on elastic foundation with

simply supported ends and optimal thickness distribution. These findings can be utilized when

analyzing and optimizing a number of practical situations in production facilities.
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APPENDIX A

Stability of infinite beams with constant rigidity characteristics

In what follows we present an explicit solution of the buckling problem for infinite (continuous)

beam resting on a linearly elastic foundation. Instead of boundary conditions, used for beams of

finite length, we apply the constraint

∣

∣w(x)
∣

∣ < C 6= ∞, −∞ < x < ∞ (115)

In this case the ordinary differential equation

EI
d4w(x)

dx4
+ P

d2w(x)

dx2
+ cw(x) = 0, −∞ < x < ∞ (116)

describing the bending of the beam, and its fundamental solution

w(x) = eiβx (117)

are reduced to characteristic equation

β4 −
P

EI
β2 −

c

EI
= 0 (118)
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with respect to parameter β. Corresponding solutions of this equation can be written as

β1,2 = ±





P

2EI
+
(

(

P

2EI

)2

−
c

EI

)1/2




1/2

(119)

β3,4 = ±





P

2EI
−
(

(

P

2EI

)2

−
c

EI

)1/2




1/2

(120)

As follows from the equation (115) the value of βi i = (1, 2, 3, 4) are real and consequently we

obtain the following estimate

P ≥ 2
√

cEI (121)

for critical buckling forces. From equation (118) and condition for critical force P∗

P(β) = EIβ2 +
c

β2
(122)

P∗ : P(β) → min
β

we will have

β∗ =
( c

EI

)1/4
, P∗ = 2 (cEI)1/2 . (123)

If P = P∗ then the expressions (119) take values

β1 = β3 =
(

P∗
2EI

)1/2

= β∗ (124)
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β2 = β4 = −
(

P∗
2EI

)1/2

= −β∗. (125)

Thus the roots of characteristic equation (118) are double and real. Corresponding general solution

is written as

w(x) = (C1 + C2x) eiβx + (C3 + C4x) e−iβ∗x. (126)

Using constraint (115) we obtain C2 = C4 = 0 and reduce (126) to the expression

w(x) = C1eiβ∗x + Ce
−iβx

3 = A sin (β∗x + ϕ) (127)

with two arbitrary constants A (amplitude) and ϕ (phase). Taking into account that the considered

beam is infinite and consequently we can apply arbitrary shift of coordinate origin we assume

ϕ = 0. Thus, we have

w(x) = A sin (β∗x) (128)

If x = ℓ∗ and β∗ℓ∗ = π we find from (124) the following representation for the critical parameter

ℓ∗:

ℓ∗ =
π

β∗
= π

(

EI

c

)1/2

(129)

corresponding to the critical beam length, introduced before in the case of buckling with one

semiwave.
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Note that in the points

x = xk = k∗ℓ∗ = kπ (k = 0, ±1, ±2, . . . )

deflections and bending moments are equal zero, i.e.

w(xk) = 0, m(xk) = EI

(

d2w

dx2

)

x=xk

= 0 (130)

and consequently we can consider an infinite beam as a system of beams of the length ℓ simply

supported at the nodes x = xk.
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Table 1: Values for the functional8j(w), critical beam lengths and critical buckling forces when
n = 1, 2, 3, . . . and j = 0, 1, 2, 3.

j ℓ∗n 8j(wn) λ∗
n

0 nπ
c1/4 1 2

√
c

1
(

3
2c

n4π4
)1/5 1

(n2π2)
1/5

5
2

(

8c3

27n2π2

)1/5

2
(

2
c

)1/6 (
n2π2

)1/3 1

(n2π2)
1/3 3

(

c2

4

)1/3
1

(n2π2)
1/3

3
(

5
2c

n4π4
)1/7 1

(nπ)6/7
7
2

(

2c
5

)5/7 1
(nπ)6/7
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Figure 1: A finite elastic beam on linearly elastic foundation.
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Figure 2: Optimal cross-sectional area distribution S(x)(α = 1).
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Figure 3: Optimal cross-section area distribution S(x) when α = 2.
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Figure 4: Optimal cross-section area distribution S(x) when α = 3.
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