
Pentti Laitinen

VULNERABILITIES IN THE WILD: DETECTING
VULNERABLE WEB APPLICATIONS AT SCALE

UNIVERSITY OF JYVÄSKYLÄ
DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2018

ABSTRACT

Laitinen, Pentti
Vulnerabilities in the wild: Detecting vulnerable web applications at scale
Supervisor: Semenov, Alexander
Jyväskylä: University of Jyväskylä, 2018, 75 p.
Information Systems, Master’s Thesis

Web applications are a popular target for malicious attacks. Common web applica-
tions can have multiple different security flaws discovered within a timespan of
a year. It is important and useful practice to keep these applications up to date
to avoid possible exploitation of these flaws, but rarely these systems have great
automatic update systems built in, so the maintenance tasks fall to the users. If
system is hacked by a malicious party it might not only be used to harm the owner
of the system but to also harm other parties. Knowing the current installation
base of specific web applications allows reacting to possible problems within the
patching practises.

This study aims to construct a method for collecting meta information regard-
ing vulnerable web applications at Internet-wide scale. Web content management
system WordPress has been chosen for the testing application of this method
as it is one of the most popular open source web application used today. Con-
struction process of this information gathering method followed the six steps
of the Design Science Research Methodology. Web content management system
(WCMS) security literature has been reviewed within this study, to gain knowl-
edge of vulnerabilities and risks that WCMS applications face. These results are
then compared to the vulnerabilities and risks facing other common web appli-
cations. Second literature review covers previous reputable studies comparing
and discussing vulnerability scanning. The information gained from this second
literature review allows us to understand how applicable these methods presented
in vulnerability scanning literature are to large scale scanning.

With knowledge gained from these literature reviews a scanning method was
created and tested. The testing proved that new kind of extendable open source
scanning tools created by The ZMap Project are fast and efficient for internet
wide web application information gathering. The Censys project actively uses
ZMap to gather research data from internet. This study uses the research data
collected by Censys for testing of the constructed method. The data gained
from the testing showed that there are still quite many hosts which had over
a year old versions of WordPress running. The results allowed exploration of
the installation age differences between continents, but these differences were
quite small. Web applications which had digital certificate installed had slightly
more recent versions of WordPress installed, compared to the sites which had no
certificate.

Keywords: vulnerability, web crawling, information security, web applications,
vulnerability scanning, web crawling, design science, WCMS

TIIVISTELMÄ

Laitinen, Pentti
Vulnerabilities in the wild: Detecting vulnerable web applications at scale
Ohjaaja: Semenov, Alexander
Jyväskylä: Jyväskylän yliopisto, 2018, 75 s.
Tietojärjestelmätiede, Pro gradu -tutkielma

Web-sovellukset ovat suosittu kohde pahansuoville hyökkäyksille. Yleisissä web-
sovelluksista voi löytyä useita haavoittuvuuksia vuoden aikana, joten on tärkeää
päivittää sovelluksia aktiivisesti, jos niihin tulee tietoturvapäivityksiä. Harvoin
näissä sovelluksissa on kuitenkaan automaattisia päivityksiä, joten järjestelmien
päivittäminen on usein käyttäjän harteilla. Jos järjestelmä joutuu hyökkäyksen
kohteeksi, sitä ei pelkästään saateta käyttää sivuston omistajaa vastaan, vaan myös
aiheuttamaan haittaa sen käyttäjille. Mikäli web-sovellusten päivitystavat olisivat
paremmin tiedossa, voitaisiin päivityskäytäntöjä parantaa tämän tiedon pohjalta.

Tutkielman tavoitteena on muodostaa menetelmä internetin laajuiseen web-
sovellusten haavoittuvuuteen liittyvän metainformaation tiedonkeruuseen. Meto-
dia tullaan testaamaan WordPress-sovellusta vastaan, joka on yksi suosituimmista
avoimen lähdekoodin web-sovelluksista. Menetelmä on artefakti, joka kehitetään
noudattaen kuusi askelta käsittävää suunnittelutieteen (Design Science) metodolo-
giaa.

Tutkimuksen yhteydessä tehdään kaksi kirjallisuuskatsausta. Ensimmäinen
kirjallisuuskatsaus on toteutettu web-sovelluksia käsittelevän tietoturvakirjal-
lisuuden pohjalta ja se keskittyy yleisemmällä tasolla web-sovelluksiin. Tämän
katsauksen avulla pyritään hahmottamaan, millaisia riskejä ja hyökkäyksiä vas-
taavat sovellukset yleensä kohtaavat. Toinen kirjallisuuskatsaus keskittyy web-
sovellusten haavoittuuksien skannaukseen, minkä avulla on mahdollista arvioida
paremmin ovatko nykyiset ratkaisut sopivia koko verkon kattavaan tiedonkeru-
useen.

Kirjallisuuskatsausten pohjalta tutkimuksessa muodostetaan menetelmä In-
ternetin laajalle web-sovellusten informaation keruulle. Metodin testauksen ja
arvioinnin tuloksena voidaan todeta, että modernit laajennettavat ZMap projektin
luomat avoimeinlähdekoodin työkalut ovat nopeita ja tehokkaita laaja-alaiseen
skannaukseen ja informaation keruuseen. Censys projekti käyttää ZMap-työkalua
aktiivisesti datan keruuseen tutkimuksia varten. Tässä tutkimuksessa käytetään
Censys projektin keräämää dataa apuna metodin testauksessa. Testeissä saatu-
jen tuloksien perusteella on pääteltävissä, että varsin suurella osalla WordPress-
asennuksista oli käytössä yli vuoden vanha versio sovelluksesta. Asennettujen
versioiden tuoreudessa oli havaittavissa pieniä viitteitä siitä, että joillain man-
tereilla sijaitsevat asennukset olivat astetta tuoreempia kuin toisilla. Sillä oliko
web-sovelluksen web-sivulle asennettu sertifikaatti, ei näyttänyt olevan juurikaan
vaikutusta sovelluksen version tuoreuteen.

Asiasanat: haavoittuvuus, tietoturva, web-sovellukset, haavoittuvuusskannaus,
web-indeksointi, suunnittelutiede, web-sisällön hallintajärjestelmä

FIGURES

FIGURE 1. DSRM Process Model..10
FIGURE 2. Framework of Security in WCMS Applications.................................. 21
FIGURE 3. Potential WCMS attacks..24
FIGURE 4. WCMS metamodel excerpt...26
FIGURE 5. Secubat Attacking Architecture..30
FIGURE 6. ZMap Architecture ..39
FIGURE 7. The proposed method for scanning ...44
FIGURE 8. WordPress installation counts .. 51
FIGURE 9. WordPress installation counts before 2015 ..52
FIGURE 10. Certificate installation numbers after 2015..53
FIGURE 11. Certificate installation numbers before 201554
FIGURE 12. Total installations for each continent ...54
FIGURE 13. Linear regression of release age and total number of installations . 57

TABLES

TABLE 1. OWASP Top 10 2013 List...18
TABLE 2. OWASP Top 10 similarities in articles.. 27
TABLE 3. Recommended Scanning Practises...42
TABLE 4. WordPress versions with most installations.. 51
TABLE 5. Descriptive statistics.. 57
TABLE 6. Certificate correlations ..58
TABLE 7. Continent correlations...58

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES
TABLES

1 INTRODUCTION...7
1.1 Motivation..8
1.2 Objectives ...8
1.3 Research methods..10
1.4 Method implementation ... 11
1.5 Expected results ...12

2 WEB APPLICATION SECURITY..14
2.1 Security in web application context ...14
2.2 Software testing ...16
2.3 Common web application threats .. 17

3 LITERATURE OVERVIEW ..20
3.1 Web Content Management Systems...20

3.1.1 Security in dynamic web content management systems
applications... 21

3.1.2 Security in Open Source Web Content Management Systems23
3.1.3 Towards an Access-Control Metamodel for Web Content

Management Systems ..25
3.1.4 Conclusions on WCMS security ... 27

3.2 Vulnerability Scanners ..28
3.2.1 SecuBat: A Web Vulnerability Scanner...................................28
3.2.2 State of the art: Automated black-box web application

vulnerability testing ...30
3.2.3 Why Johnny Can’t Pentest: An Analysis of Black-BoxWeb

Vulnerability Scanners ...32
3.2.4 Enemy of the State: A State-Aware Black-Box Web Vul-

nerability Scanner ..34
3.2.5 Conclusions on vulnerability scanning tools35

4 CONSTRUCTION OF THE ARTEFACT ..36
4.1 Requirements ...36
4.2 Methods of conducting internet wide scanning.................................. 37

4.2.1 ZMap...38
4.2.2 Application detection ..39
4.2.3 Vulnerability databases..40
4.2.4 Ethics ... 41

4.3 The proposed method ...43

5 DEMONSTRATION...46
5.1 Testing method ..46
5.2 Choosing database...48
5.3 Information collection ...49
5.4 Results ..50
5.5 Validation ...55

6 CONCLUSION ...59

DEFINITIONS .. 61

REFERENCES ...63

APPENDIX 1. First appendix .. 67

7

1 INTRODUCTION

Importance of information security has grown during the past decades as more and
more of our services and information has moved online. Security is important in all
information systems but it is especially important with systems that are connected
to the Internet as flaws and vulnerabilities can create serious consequences to both
users and operators of the system (Meike, Sametinger and Wiesauer, 2009). We
daily use different web applications (See Definitions) which range from regular
news sites to banking. Some of these applications are closed source applications,
meaning that the source code used to build the application isn’t open for public.
There are also open source applications which publish their source code. As our
technology usage grows the news about new software vulnerabilities or risks have
become more common. Sometimes these vulnerabilities are even branded to gain
more media coverage, take Heartbleed or Shellshock vulnerabilities as an example
(MITRE Corporation, 2013, 2014).

Keeping applications up-to-date is an effective way of mitigating known
vulnerabilities and hence avoid possible attacks. Usually software vendors aim to
release patches for vulnerabilities as soon as possible, however users don’t apply
patches immediately after release (Shahzad, Shafiq and Liu, 2012). Vendors react
faster to publicly disclosed vulnerabilities and vulnerabilities with high severity
(Arora, Krishnan, Telang and Yang, 2010). Open source vendors supply patches
noticeably faster than their closed sourced counterparts (Arora et al., 2010). User
and application management behaviour of postponing patching increases the life
cycle of the vulnerabilities (See Definitions) even past the patch days (Shahzad
et al., 2012). In a way securing application environments is shared responsibility
between users and vendors, but depending on user base of the applications,
the importance of easy or automated patching grows. In the context of web
applications this can mean automated patching systems, continuous integrations
or active maintenance by the user.

There has been discussion in information security literature on how users
are the major risk for security of informations systems. Arce (2003) calls users
The Weakest Link of information systems and Bulgurcu, Cavusoglu and Benbasat
(2010) discuss how previous information systems research has pointed out that
employees’ can be both considerable information security risk and asset at the

8

same time. Technology is used and managed by people and there is always chance
of human errors which may cause software security issues.

1.1 Motivation

Unpatched software is a risk to both individuals and organizations. Vulnerabilities
in even small applications within the network can work as a stepping stone for
malicious parties to gain access to the systems and even extend vertically within
these private networks.

Popular web applications can have multiple patches released within a time
span of a year, which fix serious vulnerabilities within the application. Patching
these applications isn’t usually automated and hence it requires human interaction
with the system. For individuals this can mean that some applications are left
unpatched for long time. It is also possible that management of web applications
can fall through the cracks also in organizational environments. By being able
to gather statistical information regarding the running web application versions
would give insight on how regularly people update their hosted web applications
and what kind of security and patching differences there are between applications
such as WordPress and Drupal which are being used for similar purposes. Know-
ing version information would also enable information gathering regarding the
running vulnerable web application instances.

To the best of my knowledge studies regarding the process of large scale
detection of web applications which have known vulnerabilities haven’t been
published. Known in this context means that there has been a public vulnerability
disclosure on specific application version. By constructing a robust way of appli-
cation information collection and vulnerability cross-referencing at scale would
allow us to gain better knowledge about the application management behaviour
and how well web applications are kept up-to-date. This data collection method
should also be able to collect other metadata related to the content of web applica-
tion as this would allow more elaborate analysis of the management behaviour.
For example detecting whether a site is hosted and owned by a larger organization
might mean that management operations such as updating are carried out more
regularly than for a site which is owned and managed by a hobbyist.

1.2 Objectives

This thesis aims to construct a method of collecting web application meta informa-
tion regarding vulnerabilities at scale. This method should be able to fingerprint
the web application, gather related variables such as version information and cross-
reference it to known vulnerabilities related to that application. Data collection
method should also be able to gather or search keywords mentioned on the web
application with which the sites can be further categorized. We can summarize
this into our main research question:

9

• How to collect web application vulnerability information at large scale?

One of the most popular types of web applications are Web Content Manage-
ment Systems (WCMS). According to survey done by W3Tech, about 52.9% of the
websites use some kind of web content management systems (WCMS) for websites
(W3Techs, 2017b). W3Techs surveys are based on three months average ranking of
the Alexa top 10 million websites and the survey doesn’t include subdomains or
redirects (W3Techs, 2017b). The most popular open source WCMS are WordPress,
Drupal and Joomla. Technology survey done by BuiltWith Pty Ltd states that
about 37% of Alexa top hundred thousand and 46% of top million websites use
WordPress as of April 2017 (BuiltWith Pty Ltd, 2017). Meike et al. (2009) explain
that WCMSs allow users even without in depth knowledge to deploy and use
these systems. Due to the popularity of these systems they’ve become an interest-
ing target for malicious attackers, therefore one could say that importance of the
security features and overall security of these applications has risen. This is why
non-technical users should take extra precautions when using these systems and
keep their systems always up-to-date. (Meike et al., 2009)

As this thesis aims to construct base for a method of the web application
vulnerability information collection at internet wide scale, it isn’t feasible to ex-
amine multiple different web applications, but rather construct the method and
explain the steps needed for usage of this method. That is why this study focuses
on collecting vulnerability information of most popular web applications, WCMS
and specifically WordPress which has the largest user base out of different WCMS
applications. To validate our choice of inspecting and evaluating the method on
WordPress, we first need to know how flaws and weaknesses related to WCMS
differ from general web applications. For vulnerability information collection it is
also required to know the best practises and limitations of vulnerability scanners.
We can condense these into the two sub research questions.

• Which web application flaws and weaknesses especially relate to WCMS?

• What are the best practises for application vulnerability information gather-
ing?

This thesis attempts to answer these sub questions by conducting a systematic
literature review on the subjects of WCMS security and Vulnerability Scanning
tools. The knowledge gained from the literature review will be used for the vul-
nerability information collection method. The method will then be used for proof
of concept data collection of sites running popular web application WordPress.
The collected data will be then evaluated against other data sets such as the one
collected by F-Secure corporations web crawler called Riddler.io which also col-
lects version information of web applications. Research methods and structure of
this thesis is presented in the following section 1.3.

10

1.3 Research methods

Design science has been discussed and used in the field of Information Systems
Science during past couple decades and multiple different researchers have pre-
sented papers on the subject of IS research and Design Science (DS). At its core it
is a problem solving paradigm that has its roots in engineering (Hevner, March,
Park and Ram, 2004).

A notable Information Systems Science publication on Design Science is by
Hevner et al. (2004), paper which presents seven guidelines for effective Design
Science research in the field of Information Systems. Since then Design Science
has slowly gained popularity in our field and Peffers, Tuunanen, Rothenberger
and Chatterjee (2007) presented specific methodology called Design Science Re-
search Methodology (DSRM) which builds upon previous Design Science research
in Information Systems Science and demonstrates how DS research should be
conducted in Information System Science. Main goals of the Methodology are to
increase quality and validity of research done within Design Science. (Peffers et
al., 2007)

FIGURE 1: DSRM Process Model (Peffers et al., 2007)

This thesis follows the DSRM framework presented in the paper by Pef-
fers et al. (2007). DSRM gives four different entry points for research. They are
Problem-Centered Initiation, Objective-Centered Solution, Design and Develop-
ment Centered Initiation and Client or Context Initiated research. Process model
consists of six activities which are presented in sequential order but researcher
isn’t restricted to follow this structure from the beginning to the end as the point
of entry might mean that the process starts from the middle and moves outwards
from there (Peffers et al., 2007). Research questions and the motivation behind this
thesis are problem centric so the Problem-Centered Initiation in the framework
is a suitable entry point for this research into the process model. The following

11

sections of this chapter discuss each of the activities related to this thesis and
present how these activities will be applied in this thesis.

The construction part of this thesis requires knowledge about previous scien-
tific publications related to the subject of vulnerability testing tools or scanners
and web applications. As literature review in this thesis serves as one of the main
data collection methods for the construction, the eight guidelines for conducting a
systematic literature review by Okoli and Schabram (2010) are going to be used
for the review. These are Defining purpose of the literature review, Protocol and train-
ing, Searching for the literature, Practical screening, Quality appraisal, Data extraction,
Synthesis of studies and Writing the review (Okoli and Schabram, 2010).

The first step of the guideline is similar to the first step of the DSRM where
we defined the motivation and purpose of this thesis. Second step according to
Okoli and Schabram is essentially meant for reviews where multiple reviewers are
employed and therefore it can be excluded for this thesis. In the following third
step reviewer needs to explicitly define the details of the literature search and
describe the comprehensiveness of the search. During the search process reviewer
also needs to conduct practical screening which is the fourth guideline. This requires
clear presentation of the studies which were considered for the review and which
were eliminated without further examination. Quality appraisal is the step where
reviewer needs to define the criteria for judging which articles are insufficient
quality to be included in the review synthesis. After this step, reviewer may extract
the data from each of the chosen studies. This is followed with the synthesis of
studies or analysis where reviewer combines the facts extracted from the studies.
Finally, reviewer will write the review. (Okoli and Schabram, 2010)

This thesis consist of two literature review parts as literature related to both
WCMS security and vulnerability scanning tools will be discussed. Practical
screening explanations and boundaries of quality appraisals will be defined in
chapter 3 where the review will be conducted.

1.4 Method implementation

This study follows the sequential order of activities presented in Design Science
Research Methodology framework:

1. Problem identification and motivation: Introduction chapter lightly intro-
duced the problem and the research questions. However, in following chapter
called Web application security and literature review section Web Content
Management Systems we further shed light on the foundation of the techno-
logical field behind research problem and the questions.

2. Define the objectives for a solution: This step consists of studying the prob-
lem definition and deducing what is possible and inferring the objectives of
the solution. These objectives can either be quantitative or qualitative. For
qualitative definitions this can mean for example rationally inferring why the
artefact would better address the problem than possible previous research

12

artefacts created. (Peffers et al., 2007) Constructing these object definitions
will be carried out in the chapters following the definition chapters as the
further study of previous research and the research area is needed for the
base of better solution objective definitions.

3. Design and development: Valid artefacts in design science can for example
be constructs, models, methods or instantiations (Peffers et al., 2007). For
this study the design and development part of the research consists of con-
struction of vulnerability information collection method for web applications.
This construction is based on the previous research done of web application
security and vulnerability scanning in web content management systems.
The method created in this step is the artefact from which proof of concept
data collection is done for the fourth demonstration step.

4. Demonstration: Concludes the testing of the data collection method at larger
scale for WordPress applications.

5. Evaluation: Validity and accuracy of the data collection method will be
evaluated in this step by comparing the results of data collection to other data
sets, such as Riddler.io and statistics of web technology survey companies
such as W3Techs and BuiltWith. Quantitative analysis on version detection
rate and other application variables will be done in this step.

6. Communication: In the last step the problem and its importance will be
discussed in section 5.5. This includes discussion about the findings and
results of the evaluation as well as utility and novelty of the artefact (Peffers
et al., 2007). In conclusions chapter the applicability to other web application
will be further discussed and suggestions on how similar studies could be
improved in future will be given.

1.5 Expected results

The main artefact from this research will be the method of conducting large scale
scanning of web application version information. This method should describe
the approach which is most suitable for large scale web application security
information gathering and provide steps on how this can be done. Building such
approach requires knowledge of web application vulnerability detection, hence
following chapters should give insight into how web application scanning has
been done and how it can be conducted at a larger scale. The resulting method or
artefact can be considered to be a guideline of conducting vulnerability information
collection with testing conducted on popular web application WordPress.

The demonstration and testing of the artefact will consist of building a small
application that can gather this data and allow us to see the installation bases
between different WordPress versions. The hypothesis is that there are noticeable
percentage of sites running versions of WordPress which are older than one year.

13

Noticeable in this sense means anything above 10%. As WordPress had its initial
release back in 2003, there are likely still versions running which are over ten
year-old. Still there is likely a negative correlation with release age and number
of installations, which means that newer versions have larger number of active
installations. It is also expected that sites which have some kind of certificate
installed are more likely running newer versions compared to the sites which
have no certificate installed. Data collection should also be able to collect the
IP addresses of the sites and these addresses can be then geolocated. This data
most likely shows little difference between different continents regarding installed
versions. List bellow shows these five hypothesis condensed into short statements.

1. Over 10% of the installations are running versions which have been released
over a year before the scan.

2. There are still some installations running early versions.

3. Older the version is, less it has active installations.

4. Sites having certificates are more likely running new versions.

5. Data shows little difference between continents.

14

2 WEB APPLICATION SECURITY

World Wide Web Consortium (W3C) the international standards organisation
for World Wide Web doesn’t clearly specify the definition for Web Application.
W3C itself states that the subject referred as Web Applications hasn’t been clearly
addressed in HTML documentation (W3C, 2014). There seems to be no consistent
definition for this term. Stuttard and Pinto (2011) define web applications as
those applications that we access and communicate with by using a web browser.
Generally a web application consist of server-side and client-side programs. Client
side code is sent to the client from the server and the client then executes this code
in the browser. Usually for web applications this means logic that server side
doesn’t need to observe and validate and which is more efficient to be handled
on the client side such as changes in user interface. Server side of the application
is the part of the program that handles for example the validation, authorization,
data access and controller logic.

Public web applications are usually accessible from anywhere in the word
but there are a lot of corporate web applications which have restricted the net-
work area where they are able to be accessed. We use different web applications
daily that handle very sensitive information, all ranging from banking, electronic
prescriptions to accessing backups of our photos. Even applications which don’t
handle sensitive or valuable data are interesting targets for attackers as they can
be used for other malicious gains such as serving malicious content.

Meike et al. (2009) classifies Web content management system as web ap-
plications. This chapter discusses the security of web applications and presents
the terms and concepts that are relevant to this research. In the latter part of this
chapter common risk and vulnerabilities related to web applications and software
in general are also presented.

2.1 Security in web application context

Writing computer programs can be a complex task and the modern software de-
velopment flow usually incorporates using many libraries together. According to

15

Shirey (2007) a flaw is "An error in the design, implementation, or operation of an infor-
mation system. A flaw may result in a vulnerability". Same Internet Security Glossary
defines vulnerability as "A flaw or weakness in a systems design, implementation, or
operation and management that could be exploited to violate the systems security policy".
(Shirey, 2007). Therefore, it is always a possibility that program has one or more
flaws and these flaws may sometimes inflict a vulnerability in the program but a
flaw doesn’t necessarily mean that there is a vulnerability.

Design errors are a risk especially when security of the program hasn’t been
taken into consideration from the beginning of the design process. The architecture
and design of the system needs to be coherent and take the security principles
into account. Assumptions should be documented during the design process and
there should also be clear risk analysis at both specifications- and class-hierarchy
design stages. (Mcgraw, 2004). Possible design errors can range from varying
error handling or not taking into account possible infrastructure weaknesses in
the architecture.

Implementation errors or bugs may result for example into buffer overflows,
race conditions or authentication system faults (See Definitions). Code reviews,
unit testing and static analysis tools may be useful for identifying these imple-
mentation errors. Implementation errors can be as harmful as design errors, but
faulty design is usually much harder to correct. (Mcgraw, 2004) Open source
advocate Eric Raymond for example believes that simpler implementations and
algorithms result into fewer faults and better working software. For example the
KISS principle (Keep It Simple, Stupid!) has been advocated in his book The Art of
Unix Programming. (Raymond, 2003)

Persons responsible of operation and management should actively moni-
tor production systems for attacks. Information about these attacks and break
in attempts should be collected and passed forward to development teams so
that the systems security can further be improved and threat models could be
updated. (Mcgraw, 2004) Developers and operations should also monitor third
party libraries that are included in the system, for possible vulnerabilities and
updates.

Definition of attack by Shirey (2007) is "An intentional act by which an entity
attempts to evade security services and violate the security policy of a system. That is, an
actual assault on system security that derives from an intelligent threat". So an attack is
a purposeful act where attacker, person who is attacking, tries to gain access or
make the system execute something that he/she shouldn’t be able to do.

Web applications can be hosted within the internal network of a company
and outside access can be blocked by a firewall. Usually web applications face
the public internet and thereby they are access-able in theory by anyone. Even in
the cases when web applications are hosted in internal networks they might face
attacks from outside by for example proxying the attack. Access restrictions like
firewalls provide therefore mitigations, but if an application works in some kind
of networked environment, the security should have high priority throughout the
application life cycle.

The field of application security and development is constantly evolving and
moving forward. For example the field of virtualization has changed a lot in a
couple years with different operating system level virtualization implementations

16

like Docker. These methods also offer possibility to restrict access to a host operat-
ing system and make elevating privileges to other systems harder for attackers in
theory.

Application security also extends in a way to people managing and using
these systems. Attackers might try to gain access with different social engineering
attacks such as phishing. Social engineering attacks are either non-technical or use
low-technology methods to gain attack information by tricks or fraud. Phishing
is a term for technique of trying to acquire sensitive data from users through a
fraudulent solicitation in email or on a website (Shirey, 2007). In a phishing attack
the malicious party masquerades the website or email as a legitimate business or
other reputable source (Shirey, 2007).

Penetration testing (See Definitions) can be a useful way of evaluating security
and vulnerabilities in a system. Shirey (2007) defines penetration test as a system
test, which is often a part of system certification in which evaluator attempt to
circumvent the security features of a system. Black-box testers can be a useful
assistance tool for penetration- and other testers. Analysing program by running
it with various inputs and without use or knowledge of the source code is called
black-box testing. White-box analysis, on the other-hand, means analysing the
source code and understanding the design of the program. (Potter and McGraw,
2004)

2.2 Software testing

Amman and Offutt define software testing as the process of evaluating software
by observing its execution. Testing software consist of designing tests, then ex-
ecuting them and evaluating the output of the tests. These tests can be derived
from specifications, design artefacts, requirements or from the source code of the
program. Amman and Offutt (2008) describe five different software testing levels
or testing activities. Acceptance testing is the activity where software is assessed
with respect to the requirements. System testing assesses it against architectural
design and Integration testing with respects to subsystem design. Assessments
against detailed design are called Module testing and Unit testing. Module testing
consists of assessing isolated individual modules where as unit testing tests parts
of the source code and can be considered the lowest level of testing. (Amman and
Offutt, 2008)

One limitation of software testing is that it only shows the presence of failures
(See Definitions) but not actually the absence of them (Amman and Offutt, 2008).
Validation and verification are common terms used in conjunction with software
testing. Verification is usually the activity that requires more technical knowledge
about the individual software artefacts, requirements and specifications whereas
validation has more domain specific knowledge requirements (Amman and Offutt,
2008). Amman and Offutt define Validation as The process of evaluating software at
the end of software development to ensure compliance with intended usage. Verification
process is more related to determining whether software fulfils the requirements es-

17

tablished for it in a previous phase of development (See also Definitions). (Amman
and Offutt, 2008)

Security testing focuses on testing software for undesirable and malicious
behaviour (Amman and Offutt, 2008). Arkin, Stender and McGraw (2005) explain
that security testing is in a way testing software for negatives when normal feature
testing tests that functions properly perform specific tasks. This kind of testing for
negative effects is a hard task as merely enumerating possible malicious actions
only uncover that those specific faults (See Definitions) are not in the software
under specified test conditions. Because new flaws (See Definitions) can always
be discovered, these tests do not actually prove that tested systems are immune to
all possible attacks. (Arkin et al., 2005)

Penetration testing is a form of security testing. Penetration testers use
commonly static and dynamic analysis tools and fuzzers (Arkin et al., 2005). Black-
box testing tools are also used for penetration testing Bau, Bursztein, Gupta and
Mitchell (2010). Amman and Offutt (2008) defines black-box testing as tests which
are derived from external descriptions of the software. For black-box testing tools
this generally means that the tools have no internal knowledge of the system prior
to scan. Commonly organizations have used penetration testing in the latter part of
projects as a final acceptance regimen (Arkin et al., 2005). However, organisations
such as HackerOne (hackerone.com) and Bugcrowd (bugcrowd.com) have made
penetration testing more accessible for organizations of all sizes with public bug
and security bounties.

Black-box testing tools such as the Burp suite are common for penetration
testing where one wants to gather more information regarding the target web
application by fuzzing (See Definitions) the applications parameters. This informa-
tion can then help vulnerability discovery process. (Seitz, 2015) Term vulnerability
scanner is sometimes used for these tools, but static analysis tools or white-box
scanners can also be considered to be vulnerability scanners, but with access to
source code.

2.3 Common web application threats

The Open Web application Security Project (OWASP) is a not-for-profit organiza-
tion focused on improving software security and increasing security awareness.
OWASP Top 10 is well-known project which aims to improve web application
security by identifying ten most critical risks facing them. Most recent rever-
sion of the project is OWASP Top 10 2013 (Table 1) and it is widely referenced.
(OWASP Foundation, 2013b) Project is a great resource for anyone interested in
web application security and the common threats and pitfalls.

The Top 10 list functions as a reference for application security and should
not be used only by developers. Listing has a severity rating. The first entry is
more serious than the second one, that is more severe than the third one, and so
on. This however doesn’t mean that A10 isn’t critical or serious, as there are also
other risks that are left outside the list. The list should be used as a guideline for
managing web application security risks.

18

A1 Injection
A2 Broken Authentication and Session Management
A3 Cross-Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross-Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities
A10 Unvalidated Redirects and Forwards

TABLE 1: OWASP Top 10 2013 List (OWASP Foundation, 2013b)

Injection flaws are usually related to database such as SQL, NoSQL or Light-
weight Directory Access Protocol. Injection flaws can also affect XML parsers and
program arguments. Injection flaws can be easier to find out by examining code
than testing. Fuzzing or scanning the application can help discover these faults.
(OWASP Foundation, 2013b)

Broken Authentication and Session Management is the second on the OWASP
Top 10 list. Building custom authentication and session management schemes
securely and correctly is hard and this is why these parts of applications have
frequently flaws in them and finding these flaws can be hard due to the unique
implementation. (OWASP Foundation, 2013b)

The third item on the list is XSS or Cross Site Scripting. It is probably the
most common fault that affects web applications. Cross site scripting usually
happens when application doesn’t correctly validate and escape the user input
and allows injecting scripts to within its content. XSS flaws can be categorized into
two different types, reflective- and stored attacks. Reflective attacks are attacks
where the injected script is reflected off the server via error message or some other
response. Stored attacks inject scrip permanently to applications database or some
other permanent store location from which victim then retrieves the malicious
script. (OWASP Foundation, 2013b)

Insecure direct object references is the fourth item on the list. Direct object
references may compromise all the data that is referenced by the object, that is
why direct name or key references should be avoided for example when web
pages are being generated. Insecure direct object references are common although
static code analysis and testing are usually able to pinpoint these flaws easily but
exploiting these flaws is also fairly easy. (OWASP Foundation, 2013b)

The fifth point on the list is Security Misconfiguration which is also a common
flaw related to web applications. Misconfiguration may happen on any layer of
the application stack. This means that the configuration flaws may be present at a
platform, web server, application server, database, framework and in any custom
code related to the application. Communication between developers and system
administrators plays key part in avoiding and fixing these problems according to
OWASP Foundation (2013b). Automated scanners are also useful for detecting
problems such as outdated systems, misconfiguration and use of default accounts.
(OWASP Foundation, 2013b)

19

Sensitive data exposure is the sixth item on the list and the most common
cause for this flaw is not encrypting sensitive data or using weak key generation
and management for encryption algorithm. According to OWASP Foundation
(2013b) weak algorithms are unfortunately common for password hashing but
exploiting these flaws is hard since external attackers usually have limited ac-
cess. Severity of these attacks is however high as this data may contain valuable
information such as credit card- and personal data. (OWASP Foundation, 2013b)

These attacks seem to have gained popularity during the year 2016 as multiple
huge breaches were disclosed such as the huge Yahoo data breach of approximately
one billion accounts (Thielman, 2016) and the breach of Homeland Security of
United States (Lichtblau, 2016). There seems to have been a quite noticeable trend
of these kinds of attacks becoming more common especially when looking at the
Data Breach report of Identity Theft Resource Center where year 2016 was the
all-time high number of data breaches (Identity Theft Resource Center, 2017).

Missing Function Level Access Control the next risk on the OWASP list.
Missing function level access control manifests itself either as result of system
misconfiguration when function protection is managed with configuration or as
forgotten access right checks in applications code. Again this flaws like this have
moderate impact as they may allow unauthorized access to functionality and the
exploitation can be fairly trivial. (OWASP Foundation, 2013b)

The eight risk on the list is the Cross site Request Forgery (CSRF) that is
common vulnerability within web applications. Exploitation of this type of a flaw
can leverage the fact that web applications allow attackers to predict all the details
of particular action in the application. Applications often use session cookies
for authentication which allows attackers then use forged malicious cookies for
authentication in cases where the token is predictable. (OWASP Foundation,
2013b)

The ninth item is using components with known vulnerabilities. This is a very
widespread problem as almost all applications have dependencies like common
libraries to aid the development process. Detection of these problems is hard
according to the OWASP as many development teams don’t focus on keeping all
the components and libraries used in the application up-to-date. Often it is even
hard to know all the components which are being used in the application. (OWASP
Foundation, 2013b) This is especially true when these libraries may themselves
have multiple different dependencies and noticing use of possible vulnerable
libraries within these may be very hard for development teams to keep track on.

The last item on the OWASP Top 10 list is Unvalidated Redirects and For-
wards. This risk manifests itself as a possibility of manipulating redirects with the
help of a parameter that isn’t being validated within the application. This allows
an attacker to choose the destination page of the forward or redirect action. As
an example an attacker may use this to evade access control or redirect victims to
disclose passwords or other sensitive information. (OWASP Foundation, 2013b)

20

3 LITERATURE OVERVIEW

This chapter consists of two separate literature reviews which have been separated
in their own sections. The first section covers the literature related to web con-
tent management systems and how these systems have been studied previously.
Second section discusses the literature which presents vulnerability scanners or
comparisons between different vulnerability scanners.

3.1 Web Content Management Systems

A Web Content Management System (WCMS) is a system that supports creating
and publishing content in structured web formats. These systems usually include
possibility of approving, reviewing and archiving of the content. Most often they
are used for building corporate websites, online shops or community portals.
Meike et al. (2009) According to April 2017 survey by W3Techs (2017b), about
52.9% of the websites use some kind of WCMS. Most popular WCMSs according
to both W3Techs (2017b) and BuiltWith Pty Ltd (2017) are Wordpress, Joomla and
Drupal. All three of these systems are open sourced and thereby free of use. This
partly explains popularity of WCMSs as open source Web Content Management
System is a low cost alternative to corporate software. They allow small business
and organizations to create websites, blogs and web-stores for relatively low cost.
WCMS are designed to be easy to use and allow users with little development
knowledge to create customized web sites with broad functionality (Meike et al.,
2009). This however rises a question on how well administrative tasks such as
updating of the system are taken care of.

In this section we review WCMS security research and articles. Each paper
chosen for review has been covered in its own section. Google Scholar and IEEE
Xplore and ScienceDirect were used for searching articles. Keywords Web content
management system, WCMS, Security, Vulnerability Testing and Black box testing were
used. Articles were chosen based on the citation count and reputation of the
journal or publisher. Extra value was given for articles which appeared in journals
of information science, computer science and newer articles were preferred.

21

With these keywords the search engine results showed hundreds of results.
However large part of these results were not actually related to web content man-
agement systems security or vulnerabilities relating to WCMS. Further restricting
search criteria presented us with nine articles that relate to WCMS security. Tree
articles were chosen out of these nine and selected to be presented here based on
the number of citations the papers had and where they were published. Following
sections present these three articles.

3.1.1 Security in dynamic web content management systems applications

Vaidyanathan and Mautone in their journal article published in Communications
of the ACM discuss security in WCMS from organisation’s point of view. They
note that some organisations are adopting information technology like WCMS
without understanding the security concerns which relate to it (Vaidyanathan and
Mautone, 2009).

Writers state that there are five attributes of information security when talking
about WCMS. Confidentiality attribute means that information isn’t accessed by
unauthorized user. Second attribute integrity is ensuring that applications and
data cannot be modified by unauthorized users. Authentication is ensuring that
content origin is identified correctly and that identities are not falsified. Availability
for WCMS means that systems are available when authorized users need them to
be and last attribute non-reputation is security assurance of sender and receiver not
being able to deny transmission of content. (Vaidyanathan and Mautone, 2009)
With the help of these attributes they formulate "Framework of Security in WCMS
Application" (figure 2) which integrates eight functional dimensions of WCMS with
the five goals of security (Vaidyanathan and Mautone, 2009).

FIGURE 2: Framework of Security in WCMS Applications (Vaidyanathan and
Mautone, 2009)

22

Vaidyanathan and Mautone (2009) point out that if security isn’t one of
the main goals when building a web system, it will more likely require more
patches and updates to continually fix newly found flaws. They state that many
vulnerabilities of WCMS are introduced at the application level. These include
interruption, interception, fabrication and modification. Interruption means denial
off access to assets of the system via deletion of them or making them unusable or
unavailable. If unauthorized party gains access to an asset, it has been intercepted.
Modification is the attack on the integrity of the data when attacker gains access to
it. Attacker may also fabricate or counterfeit objects on the network. (Vaidyanathan
and Mautone, 2009)

Configurations is one of the eight functional dimensions that Vaidyanathan
and Mautone present and it means that WCMS should be configured properly on
the server to ensure top-level security (Vaidyanathan and Mautone, 2009). Second
dimension is cookies if handled improperly they may allow malicious user to hijack
web sessions. Forms when poorly designed in a web application, may contain
hidden fields that contain private information of users, accounts and sessions.
Improper implementation may also allow attacker to execute code and this is why
validation of form inputs and doing referrer checks on the server side should be
done. According to the writers Embedded Queries in the framework means that
malicious user may input additional field in hijacked forms to receive confidential
information. To combat this Vaidyanathan and Mautone suggest careful examina-
tion of database queries for wild characters, validating inputs and taking care that
proper permissions exist on the database objects accessed by web application. Ses-
sions are often target of an attack and properly ensuring consistent and appropriate
session timeouts for the application can be used as a security measure. Directory
on the framework is the risk of having important application files accessible by
malicious users. This should be handled by disabling directory browsing, hav-
ing good file management process and removing unwanted files from document
root entirely. Lastly XML or XML communication on the framework means not
properly hiding or handling XML file transfer authentications. Encryption of
XML files, enforcing security policies authorizing access and by generating log of
these activities is proposed for tracking potential hackers wanting to use XML in
malicious way. (Vaidyanathan and Mautone, 2009)

Vaidyanathan and Mautone used the framework to evaluate security of
two different WCMS tools, Mambo and vBulletin. At the time of the research
Mambo was leading WCMS (Vaidyanathan and Mautone, 2009). Based on the
evaluation both systems had most of the security features in place, but some
features needed to be placed with third party software. Writers also noted that
there is no automatic update capabilities in these systems. Five goals of security
were still mostly covered by both applications. (Vaidyanathan and Mautone, 2009)
Writers concluded that constructed framework and evaluation can be insightful
for academicians, information technology managers and practitioners of electronic
business.

23

3.1.2 Security in Open Source Web Content Management Systems

Meike et al. take general approach of covering WCMS security in their article
published in IEEE Security & Privacy Magazine. Paper defines that WCMS are
commonly used for web sites, online shops and community portals (Meike et al.,
2009). The paper also gives definitions to programming and computer security
terms.

The authors maintain that especially open source WCMS are lucrative targets
for attackers due to their popularity and the openly available source code that
makes seeking out and locating possible flaws in the applications easier (Meike
et al., 2009). With the help of defining key web application threats: Data manip-
ulation, Accessing confidential data, Phishing, Code execution and Spam the authors
conclude that "Web applications in general and WCMSs in particular, operate in hostile
environment" (Meike et al., 2009).

The authors also point out that attackers often use various attack patterns
which are blueprints for creating attack of specific type. There are many phases for
each attack, and they consist of discovery and exploitation itself. Motivation for
attack ranges from gaining confidential user data such as credit card information
from e-commerce sites hosted with WCMS, gathering user information such as
addresses, to damaging company reputation by altering content of the website
in damaging way (Defacement). Meike et al. also list four qualities, which web
application needs to have to be considered secure. Authentication is needed to
ensure that the entities or people are who they pretend to be. Confidentiality ac-
cording to authors, means hiding information from unauthorized people. Integrity
is prevention of unauthorized people the right of modifying, withholding and
deleting information. Availability means performing the operations according to
their purpose over time. (Meike et al., 2009)

Meike et al. (2009) conducted analysis on two open sourced WCMSs Drupal
(version 5.2) and Joomla (Version 1.0.13) that is derivative of Mambo. Goal was
to get sense of systems security status and if users can trust this security without
further ado. (Meike et al., 2009) The security analysis was conducted in multiple
steps. The first step was to evaluate how different configuration settings influence
security issues. Secondly they performed simple penetration test sending various
malicious inputs using different penetration testing tools like OWASP WebScarab
and TamperData. In the third step the source code was inspected and reviews for
security issues produced. In the following fourth step this gained information of
the source code was used to issue more focused malicious requests to systems.
As the final step the writers evaluated community support for security issues by
browsing project websites and forums. (Meike et al., 2009)

As a result to the analysis communities around both systems paid adequate
attention to security aspects, systematically tracking vulnerabilities and providing
patches with security fixes. Meike et al. explains that installation process should
be as automated as possible for WCMSs as many users are non experts. This
is also why default configuration settings should be secure. Both systems had
plenty of room for improvement in installation process according to analysis. Both
Joomla and Drupal were prepared for parameter manipulation, but they also had

24

deficiencies and neither of them sufficiently filtered HTTP headers and Web form
data. Systems in analysis also were adequate in preventing cross-site scripting
and both also performed checks to prevent SQL injection from happening. In
authentication management Joomla and Drupal had weakness related to password
security and unauthorized access to functions, however both system had proper
security in login mechanisms and session data were handled correctly. All aspects
of spam prevention had been covered in Joomla but Drupal had yet to make full
effort in this field and malicious files weren’t detected by either of the systems
during upload process. Both systems had also weaknesses in privilege elevation.
Drupal and Joomla have systems in place that warn user when trying to add
questionable modules (plugins) to the system. (Meike et al., 2009)

From the results of the analysis Meike et al. form summary of possible attacks
(figure 3) that WCMS might face. Application might encounter database level
attacks such as SQL Injection or web server level attacks that attempt parameter
manipulation, malicious file upload, authentication bypass, elevation of privilege,
spam relay or session hijacking. User can also become a victim of XSS attacks or
spam. (Meike et al., 2009)

FIGURE 3: Potential WCMS attacks (Meike et al., 2009)

Meike et al. (2009) conclude that given expert knowledge eliminating vul-
nerabilities in both systems is possible. However they note that these systems
are targeted to a non-expert audience and both systems had vulnerabilities that
attackers can easily exploit. To minimize threats users should take precautions.

25

Especially non-technical users should always use the latest available version and
technically skilled users can stick to older versions if they are aware of versions
security status and regularly follow vulnerability and countermeasure updates
provided by the communities. (Meike et al., 2009)

3.1.3 Towards an Access-Control Metamodel for Web Content Management
Systems

Martínez, Garcia-Alfaro, Cuppens, Cuppens-Boulahia and Cabot (2013) take more
focused approach in their paper by studying access-control (AC) in WCMS. Writers
describe Access-control as "a mechanism aiming at the enforcement of the confiden-
tiality and integrity security requirements" (Martínez et al., 2013). This means that
access-control defines the subjects, objects and actions that system has and makes
describing the assignments of permissions to subjects possible. These permis-
sions then assert which actions the subject is allowed to preform on the objects.
(Martínez et al., 2013)

Authors explain that integrated security mechanisms play an important role
in WCMS as they usually manage sensitive information and users of WCMS’s
often lack an in-depth technical and security expertise. Martínez et al. therefore
create a meta-model for WCMS access-control which allows AC implementation to
be represented and analysed vendor-independently. This proposed access-control
meta-model (figure 4) allows analysis of the access-control information disregard-
ing the specificities of the concrete WCMS security features and implementation.
(Martínez et al., 2013)

The meta-model is inspired by RBAC (Role-based access control) and contains
all the basic concepts from it. Model consist of four elements, which are Contents,
Actions, Permissions and Subjects. Content in the model is data that WCMS manages.
Each of the Content elements has a ContentType which identifies the type. This
presentation style allows both fine- and coarse-grained access-control. Users
in the meta-model are provided with predefined content such as Node, which
represents the principal contents of the WCMSs. There is also Page which means
the full content pages of WCMS and Post that represents individual blog posts.
CustomNode meta-class is also included in the model so that additional node types
can be integrated into model. Representing the comments that can be added to
other content elements is the Comments class. Martínez et al. have decided not
to include the back-end administrative pages in the model as their behaviour is
represented with the administrative operation execution permissions in the model.
(Martínez et al., 2013)

All the actions that can be performed over the WCMS are called Operations.
In the model these operations are divided into two types, content operations and
administration operations. In addition, there is a third operation type called custom
operation so that model can be extended (figure 4). Content operations are able
to use all CRUD actions, that means creating, reading, updating and removing
actions. There is also search operation available in the model since it is common for
WCMS applications to have. In addition, there are Publish and Unpublish actions
which Subjects of WCMSs can perform. (Martínez et al., 2013)

26

FIGURE 4: WCMS metamodel excerpt (Martínez et al., 2013)

The third element is called Permissions, and they represent the right of per-
forming actions at the WCMS. These permissions can define constraints obeying
which actions can be executed. In the meta-model there are two constraints iden-
tified Authorship and NotBlacklisting. Authorship permissions are only effective if
Subject is the author of the Content. NotBlacklisting restricts the applicability of
the permission to the condition of not being blacklisted. In addition, there is also
GenericCondition to allow extending of the model. (Martínez et al., 2013)

Last element presented by Martínez et al. is Subjects. These are the elements
which interact with the contents of the WCMS by performing actions. Meta-model
represents subjects in Users and Roles in which users get their roles assigned.
Depending on the specific WCMS the Roles might be predefined by the developer
of the system. If predefinitions have been done, they are represented in the model
with predefined attribute. Martínez et al. identified two common roles IdentifiedRole
and NotIdentifiedRole which are commonly present in WCMS applications and
determinate whether user has logged in or not. The meta-model also supports
role inheritance as seen in the Figure 4. (Martínez et al., 2013)

With the help of the constructed meta-model Martínez et al. examined open
source WCMS Drupal by mapping the information from Drupal system to the
meta-model. As a result there exists three main content types Pages, Articles and
Comments. In Drupal there are three roles by default Anonymous, Authenticated

27

and Administrator. Meta-model was able to represent access-control information
of Drupal. (Martínez et al., 2013)

The paper suggest three different applications for the constructed meta-model.
The first is Visualization as the model makes it easier to analyse and visualize the
access-control in WCMSs. The second application is Queries, where model eases
the security queries when one wants to learn in more detail about specific details of
the security policies in the evaluated system, especially in WCMS the information
is scattered among number of databases. The last application Migration, ie. when
a user wants to migrate the content from one WCMS to another. The model eases
the migration process of the old access-control information to the other WCMS
application As a conclusion the authors state that they successfully presented a
meta-model for WCMSs access-control which is vendor-independent and that
they currently have ability to extract this model data from Drupal installations.
(Martínez et al., 2013)

3.1.4 Conclusions on WCMS security

Web content management applications have wide range of features and use cases
as presented by the articles in this section. Meike et al. covered both corporate and
individual users of WCMS and Vaidyanathan and Mautone’s paper was targeted
more towards helping organisations rank and evaluate security of competing
systems. WCMS have also multiple different use cases all ranging from web-stores
to simple websites, blogs and forums.

The framework for WCMS security assessment by Vaidyanathan and Mau-
tone overlaps on many points with the OWASP Foundation Top 10 list as seen
in Table 2 and only risks similar or related to Unvalidated Redirects and Forwards
(A10) were not covered by their framework. Similarly, paper by Meike et al. covers
or mentions almost all the top 10 risks in their paper. Martínez et al. specifi-
cally discussed access control and although their paper notices multiple similar
risks related to WCMS, they cover mostly access control related risks such as
authentication and session management.

Vaidyanathan andMautone, 2009 Meike et al.,2009 Martínez et al., 2013
A1 X X X
A2 X X X
A3 X X
A4 X X
A5 X X X
A6 X X X
A7 X X X
A8 X
A9 X X
A10

TABLE 2: OWASP Top 10 similarities in articles

28

Risks that surround WCMS seem to be very similar to the ones that general
web applications face. Importance of keeping these systems up to date and
configured properly were mentioned by both Meike et al. (2009) and Vaidyanathan
and Mautone (2009). As about 52.9% of websites use some kind of WCMS, there
exists huge number of sites that need to have configured and managed their sites
in security aware way (W3Techs, 2017b).

3.2 Vulnerability Scanners

In this section we take a look on the previous research done on the subject of
vulnerability scanners and security scanning tools. Related papers were searched
with Google Scholar, IEE Xplore and ScienceDirect by using following keywords
Vulnerability, Scanner, Black-box, Security and Testing. Also the citations within the
papers were checked for related articles. From this group we chose the papers
which were from reputable sources and had great amount of quality citations.
Newer articles were weighted higher on the scale. These papers were chosen for
the following literature review.

3.2.1 SecuBat: A Web Vulnerability Scanner

Kals, Kirda, Kruegel and Jovanovic discuss construction and evaluation of a new
open source black-box testing tool called SecuBat, which they created. Authors
assume that many web developers are not security-aware and that many web sites
are vulnerable. In their paper Kals et al. aim to expose how simple exploiting and
attacking application-level vulnerabilities automatically is for attackers. (Kals et
al., 2006)

Kals et al. discuss how most web application vulnerabilities result from input
validation problems such as SQL injection and Cross-Site Scripting. Two main
approaches exist for the bug and vulnerability testing software. One is white-box
testing, in which the testing software has access to source code of the application
and this source code is then analysed to track down defections and vulnerabilities
in the code. Authors state that these operations are usually integrated into devel-
opment process with the help of add-on tools in the development environments.
Other approach is called black-box testing, where the tool has no access to source
code directly, but instead tries to find vulnerabilities and bugs with special input
test cases which are generated and then sent to the application. Responses are
then analysed for unexpected behaviours that indicate errors or vulnerabilities.
(Kals et al., 2006)

SecuBat is a black-box testing tool as it crawls and scans websites for the
presence of exploitable SQL injection and cross-site scripting (XSS) vulnerabilities
(Kals et al., 2006). The scanning component in SecuBat utilizes multiple threads to
improve crawling efficiency as remote web servers have relatively slow response
time. The attack component in SecuBat initiates after crawling phase is completed
and list of targets has been populated (figure 5). The scanning component is

29

especially interested in presence of web forms at the web sites as they constitute
our entry points to web applications. These web forms are then observed by the
tool as it chooses type of attack which will be sent to the form. (Kals et al., 2006)

At the time when the paper was written the white-box testing hadn’t ex-
perienced widespread use for finding security flaws in applications. Authors
explain that the important reason for this has been limited detection capability of
white-box testing tools. (Kals et al., 2006)

Kals et al. explain that then popular black-box vulnerability scanners such as
Nikto and Nessus use large repositories of known software flaws for detection.
Authors argue that these tools lack ability to identify previously unknown in-
stances of vulnerabilities due to relying mainly on these repositories. SecuBat, the
vulnerability scanner created by Kals et al. does not rely on known bug database
but scans for general classes of vulnerabilities (SQL Injection, XSS and CSRF).
Secubat attempts to generate proof-of-concept exploits in certain cases to increase
the confidence of detections. (Kals et al., 2006)

SecuBat consists of crawling component, attack component and analysis component.
The crawling component crawls the target site using queued workflow system
to combat slow response times of web servers. This allows 10 to 30 concurrent
worker threads to be deployed for a vulnerability detection run. The crawling
component is given root target address (URL) from which SecuBat steps down the
link tree. Authors note that the crawling component has been heavily influenced
by crawling tools such as Ken Moody’s and Marco Palomino’s SharpSpider and
David Cruwys’ spider. (Kals et al., 2006)

The crawling phase is followed by the attacking phase, in which SecuBat
processes the list of target pages. The component scans each crawled page for
presence of web forms and fields as they are the common entry points to web
applications. Action address and the method used to submit the content are
then extracted from these forms. Depending on the attack being launched the
appropriate form fields are chosen and then the content will be uploaded to server.
The possible response from the server is then analysed by the analysis module that
parses and interprets the response. Module uses attack-specific response criteria
and keywords for confidence value calculations to decide whether the attack was
successful.

Kals et al. implemented the components in SecuBat in the architecture seen
in Figure 5. The architecture supports adding possible new analysis and attacking
plugins into application. Secubat was implemented as Windows Forms .NET
application that uses SQL server for saving and logging the crawling data. This
also allows generation of reports from the crawling and attack runs. SecuBat
uses a dedicated crawling queue for crawling tasks. The crawling tasks consist of
web pages that are to be analysed for potential targets. Attacks are implemented
with Attack queue that is handled with queue controller that periodically checks
the queue for new tasks. These tasks are then passed to thread controller that
selects free worker threads. Worker threads execute the analysis task and notify
the workflow controller when the task has been completed. (Kals et al., 2006)

Researchers evaluated the effectiveness of the vulnerability scanner SecuBat
by doing combined crawling and attack run. The crawling was started by using a
Google search response page for word login as a seed page for the crawler. Total 25

30

FIGURE 5: Secubat Attacking Architecture (Kals et al., 2006)

064 pages and 21 627 web forms were included in the crawl to which the automatic
attacks were performed. Results indicated that the analysis module had found
between 4 to 7 percent of the pages to be potentially vulnerable to attacks which
were included in SecuBat. (Kals et al., 2006)

The authors further evaluated the accuracy of the tool by selecting a hundred
interesting web sites from the potential victim list for further analysis. Kals et
al. carried out manual confirmation of the exploitable flaws in the identified
pages. Among these victims were well-known global companies. No manual SQL
vulnerability verification were done based on ethical reasons as SQL attacks have
risk of damaging the operational databases. Writers notified the owners of the
pages about possible vulnerabilities. (Kals et al., 2006)

Kals et al. conclude that many web application vulnerabilities product of
generic input validation problems and that many web vulnerabilities are easy to
understand and avoid. However web developers are not security-aware and there
are many vulnerable web applications on the web. Researchers predict that it is
only matter of time before attackers start using automated attacks. (Kals et al.,
2006)

3.2.2 State of the art: Automated black-box web application vulnerability test-
ing

In their paper Bau et al. examine commercial black-box web application vulnerabil-
ity scanners. Authors discuss how these black-box tools have become commonly
integrated into compliance processes of major commercial and governmental stan-
dards such as Payment Card Industry Data Security Standard (PCI DSS), Health
Insurance Portability and Accountability Act (HIPAA) and Sarbanes-Oxley Act.
Bau et al. aimed to study current automated black-box web application scanners
and evaluate what vulnerabilities these scanners test, how well these tested vul-

31

nerabilities represent the ones in the wild and how effective the scanners are. (Bau
et al., 2010)

Researchers were unable to find competitive open-source tools in this area
and therefore the study consists of eight well-known commercial vulnerability
scanners WVS (Acunetix), HailStorm Pro (Cenzic), WebInspect (HP), Rational
AppScan (IBM), McAfee Secure (McAfee), QA Edition (N-Stalker), QualysGuard
PCI (Qualys) and NeXpose (Rapid7). Bau et al. explain that the study isn’t aimed
to be considered a purchase recommendation, as they provide no comparative
detection data. (Bau et al., 2010)

Authors compare the vulnerability categories given by the scanning tools to
the vulnerability incident rate data recorded by VUPEN security. VUPEN is an
aggregator and validator of vulnerabilities reported by various databases such as
National Vulnerability Database (National Institute of Standards and Technology,
2017). Bau et al. found that Cross-Site Scripting, SQL Injection and forms of Cross-
Channel Scripting have been consistently the three of top four most reported web
application vulnerability classes and Information Leaking being the one of the
top four ones. Comparing these results with the commercial application scanning
tests, the authors concluded that these were also the top four vectors that the
scanners found. (Bau et al., 2010)

Their first phase of the experiments evaluated the scanner detection per-
formance on established web applications. Authors chose previous versions of
Drupal, phpBB and WordPress from around January 2006 as all of them had
well-known vulnerabilities. Testing the scanning applications against these web
applications showed that the scanners did well in Information Disclosure and
Session Management vulnerability detection. Bau et al. hypothesise that adding
effective test vectors to these categories is easier than to others. According to the
tests the scanners did also reasonably well in detecting XSS and SQL vulnerabili-
ties with approximately 50% detection rate. CSRF detection however was quite
low. (Bau et al., 2010)

The second phase authors constructed a custom application that was used as
a testbed. It contained set of contemporary vulnerabilities as well as vulnerabilities
found in the wild. Application had also functionality to test all the vulnerabilities
specified in the NIST Web Application Scanner Functional Specification as well
as most of the vulnerability scanner detection capabilities specified in the Web
Application Security Consortium. Scanners were also evaluated for how well they
handled different encoding links in crawling of the testbed site. (Bau et al., 2010)

Running the vulnerability scanners against the testbed showed that scanning
time between products varied from 66 minutes to 473 minutes. Also amount
of network traffic range was quite large from 80 MB to nearly 1 GB. Coverage
analysis by the researchers showed that the scanners had low comprehension of
active technologies such as Java applets, Silverlight and Flash. Bau et al. speculate
that some scanners might only perform textual analysis and this might be result
of that. Detection results show that the scanners can detect over 60% of reflected
XSS vulnerabilities. Most of the scanners also detected first-order SQL Injection
vulnerabilities. Other vulnerability classification groups didn’t fair so well in the
results as no other group passed detection rating of more than 32.5%. (Bau et al.,
2010)

32

Authors conclude that no scanner was top performer between vulnerability
classifications and that for example the top performer in XSS and SQL Injection
detection was in the bottom three in the Session Vulnerability detection. The
writes state that the high detection rate scanners were able to control the number
of false positives, while the low detection rate scanners produced many false
positives. The study found that the vulnerability detection rates of the scanners
were generally below 50%. Authors, however, note that black-box testing tools
may prove to be very useful components in security-auditing when considering
the factors of costs and time saved from manual review. (Bau et al., 2010)

3.2.3 Why Johnny Can’t Pentest: An Analysis of Black-BoxWeb Vulnerability
Scanners

Doupé, Cova and Vigna evaluate both commercial and open-source black-box web
vulnerability scanners in their paper. The authors explain that popularity of web
application scanners has risen because scanners have become automated, easy to
use, and they are not restricted to specific web application technologies (Doupé et
al., 2010). Writers point out that these tools however have their limitations as most
testing tools, there is no provided guarantee of integrity of results and naive use
of the scanners might results in false sense of security. Doupé et al. aimed to find
out why these tools have poor detection performance and what are the root causes
of the errors that these tools make. Custom web application called WackoPicko
was build by the authors to evaluate black-box testing tools and to find out what
are the root causes of these errors.

According to Doupé et al. web application scanners commonly consist of
three different main modules a crawler, an attacker and an analysis module. The
WackoPicko web application was designed to asses black-box web application
scanners and these modules. WacoPicko is fully functional application that con-
tains sixteen vulnerabilities that represent the vulnerabilities found in wild, as
reported by the OWASP Top 10 project. (Doupé et al., 2010)

Researchers ran 11 web application scanners against their WackoPicko ap-
plication. Scanning tools tested were Acunetix, AppScan, Burp, Grendel-Scan,
Hailstorm, Milescan, N-Stalker, NTOSpider, Paros, w3af and Webinspect. Three
of these were open source programs (Grendel-Scan, Paros and w3af) and others
had a commercial licence. Three different configuration modes were used when
running the scanners. In initial configuration mode the scanner was just directed
to initial page of the application and told to scan all the vulnerabilities. Config
configuration gave scanner valid username and password combination or login
macro before a scan and in manual configuration most of the work was done by
the user as scanners were put into proxy mode. (Doupé et al., 2010)

The authors noticed that the time span that the scanners used to scan the
application was quite large; Burb was able to scan the application in 74 seconds
while N-Stalker used 6 hours. Most of the scanners however completed their
scan under 30 minutes. Authors gave their students a task to detect all the vul-
nerabilities in the application and only forceful browsing vulnerability was not
found by the students. This result was compared to the scanning results where

33

no scanner was able to detect Session ID, Parameter Manipulation, Stored SQL
Injection, Directory Traversal, Multi-Step Stored XSS, Logic Flaw and Forceful
Browsing vulnerabilities. Only one scanner was able to exploit weak passwords
in the system and login into administrator page. (Doupé et al., 2010)

All scanners except Milescan, generated false positive results. Majority of
these false positives were due to supposed information leakage vulnerability
where application leaks local file paths. Authors explain that two main reasons
for false positives seemed to be that the scanners passed file name parameters in
file traversal testing, which were then stored to some pages such as guest book,
and caused scanner in later run detect these paths as information leakage. Other
reason for false positive generation was that WackoPicko uses absolute paths for
href attribute anchors and scanners mistook this as disclosure of paths in the local
file system.(Doupé et al., 2010)

Doupé et al. studied how each of the scanners attempted to detect vulnerabil-
ities and found that scanners would first crawl the site looking for injection points.
After detecting these points the scanners would then try injecting values into each
of the parameter and observe the responses that the web application returns. If
pages had multiple inputs, scanners would generally try each of them in turn. This
impacted some scanners as they left some fields empty in WackoPicko comment
form and were unable to post comment as some required fields were left empty.
(Doupé et al., 2010)

Crawling capabilities also varied between scanners. Some scanners had over
1000 accesses for each vulnerable URLs where Grendel-Scan never had accessed
URLs more than 50 times. Two scanners had defective HTML parsing that caused
them to miss stored XSS attack. The main feature for WackoPicko application was
uploading of pictures. Three of the scanners were unable to upload successfully
any pictures to application, where some uploaded 324 pictures. Scanners had
also problems of running all dynamic JavaScript challenges in the page. Only
one successfully completed all of them. No scanner found Flash vulnerability
on applications onclick-event. Infinite web sites (pages that generate sites based
on user input) proved to be problematic for Grendel-Scan as the WackoPickos
calendar caused it to run out of memory while trying to access all the pages.
(Doupé et al., 2010)

Doupé et al. conclude that scanning modern web applications was a serious
challenge for vulnerability scanners. They point out two types of problems that
affect web application vulnerability scanners. The first are the problems consists
of implementation errors such as faulty HTML parsers or lack of support for
commonly-used technologies such as JavaScript or Flash. The second are the
problems cripple the crawling of these scanners. Modern applications with input
validation and complex forms seem to effectively block scanning and crawling of
the pages. The cause for this seems to be that the scanners do not model and track
the state of the application. Doupé et al. suggest that more intelligent algorithms
are needed for modern application "deep" crawling and that scanners need to be
state aware. (Doupé et al., 2010)

Doupé et al. conclude that in order for scanners to be effective they require a
sophisticated understanding of the applications they are running the test on and
the limitations of the tool itself. Scanners detect certain kinds of well-established

34

vulnerabilities but not well-understood vulnerabilities cannot be detected by these
scanners. (Doupé et al., 2010)

3.2.4 Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner

Doupé, Cavedon, Kruegel and Vigna introduce state-awareness to vulnerability
scanners in their research. Writers claim that black-box scanners often operate in
point-and-shoot manner when testing web applications and this has limitations as
application complexity increases and when multiple actions within application
change its state. This classic black-box scanning approach crawls web applica-
tion to enumerate all reachable pages and then fuzzes the input data within sites.
Classical approach completely ignores the different states that modern web ap-
plications may have which causes the scanner to likely test only fraction of the
application. Doupé et al. aim to improve black-box scanning by constructing a
partial model of the web application’s state machine using automation. (Doupé et
al., 2012)

State-awareness in black-box scanning allows scanner to detect pages that
have their functionality change based on different states of the application. An
example of a state change is a login page of a web application that is in the state
zero when user is not logged in, and when a login has been completed, the page
has a different functionality and is in the state one. After logging in the page might
show links to other pages within application that were previously unknown to the
scanner. (Doupé et al., 2012)

Doupé et al. create a state-change detection algorithm that detects state
changes based on the applications outputs on identical inputs. When identical in-
puts cause different outputs the applications state has likely changed. Researchers
explain that the algorithm first crawls the application sequentially by making
requests based on a link in the previous response. It assumes that the state stays
the same but when two identical requests following each other receive different
responses, the algorithm presumes that one of the requests has changed the state
of the web application. (Doupé et al., 2012)

The state-aware vulnerability scanner also clusters similar pages together to
handle possible infinite sections of web applications and to detect when response
has changed. This is done by modelling the pages using links present on the page.
When links differ on the page the state of the application has changed. To detect
which request by the scanner introduced the change in the web applications state,
the scanner uses heuristics. Their heuristic favours the newer request over older
requests and POST requests over GET requests. (Doupé et al., 2012)

Common black-box scanners use concurrent requests to increase performance
of the scanner. However scanner of Doupé et al. needs to browse the web pages
in a sequential order as concurrent requests can influence application’s state. As
scanner progresses trough a web application it only moves to the next page when
the last page contains no unvisited links. When selecting path, the scanner tries to
select links that are less likely to cause state changes as it wants to explore as much
of the application in the current state as possible before changing the state. It also
selects next pages by favouring ones with the biggest number of links that haven’t

35

been previously visited or links that have been infrequently visited. Authors used
fuzzing plugins of open-source scanner called w3af as the fuzzing component of
the scanner. Implementation of the scanner allowed any fuzzing component to be
used with it. (Doupé et al., 2012)

Doupé et al. evaluated their scanner against other scanners by using two
metrics, False Positives and Code Coverage of the scanners. The scanners com-
pared were wget, w3af, skipfish and their own state-aware scanner. Scanners were
tested against eight different applications including two different WordPress ver-
sions. State-aware scanner had the best code coverage of the scanners. This
verifies the effectiveness of the state-aware scanner algorithms. Most importantly
the state-awareness showed improvements against w3af scanner which used the
same fuzzing component. Improved code coverage against other scanners varied
between half a percent to 140.71 percent. The authors conclude that using the
presented state-aware black-box scanner it would be possible to scan more of
the web application’s states and that all black-box tools wanting to understand
the internal state machines of web applications should adopt a similar approach.
(Doupé et al., 2012)

3.2.5 Conclusions on vulnerability scanning tools

Kals et al. (2006) and Doupé et al. (2012) both suggested improvements to general
black-box scanning tools, whereas papers Bau et al. (2010) and Doupé et al. (2010)
gave more in-depth comparison of available tools, their features and detection
rates. Kals et al. (2006) noted that popular black-box scanners use large software
flaw and vulnerability repositories instead of trying to find new vulnerabilities. As
of 2010 tools seemed to have moved more towards the scanning methodology of
SecuBat as scanners were able to find custom flaws from custom web application
created by Doupé et al. (2010). However scanning time seemed to vary quite a bit
between different scanners as some were able to complete scans under two minutes
and some scanners took 6 hours to scan applications (Doupé et al., 2010). Similar
large variance of scanning times were detected by Bau et al. (2010) when running
commercial scanners against their testbed as scanning time ranged between 66
and 473 minutes.

Only Kals et al. (2006) carried out tests to live production applications in in-
ternet as others constructed a lab environment that ran different web applications.
SecuBat evaluation run scanned about 25 thousand pages and Kals et al. (2006)
found that about 5% of these sites were vulnerable to SQL injections and differing
XSS attacks. Interestingly it seems like the tools mentioned in Bau et al. (2010)
were not using up to date or on the fly cross-referencing vulnerability databases,
as applications had generally about 50% detection rate of XSS and SQL vulner-
abilities. Seemingly this kind of cross-referencing vulnerability databases when
checking non custom web applications could work as a quick way of detecting
possible known vulnerabilities in specific web applications.

36

4 CONSTRUCTION OF THE ARTEFACT

In this chapter we define the requirements for an internet wide vulnerability
detection method and explain the steps taken while creating the construct itself. We
also discuss best practises when doing large scale scanning and ethical dilemmas
surrounding it.

4.1 Requirements

The aim of this study is to construct an effective way of conducting internet wide
vulnerability information gathering on web applications. The method should
be able to scan most of the IPv4 address space. Scanning IPv6 range would be
cumbersome as its specification makes large vertical scans very slow compared
to IPv4 scans. This is because IPv6 increases IP address size from 32 bits (232) to
128 bits (2128) (IETF, 2017). This means that entire IPv4 address space can fit into
IPv6 address space 79 octillion times. It would be preferable that the scanning
could be done within a time span of one day as this would mean that the scan
data can be considered a snapshot of that one day and that is why scanning only
IPv4 range is preferable. Fast scanning would make it possible to conduct monthly
or even weekly scanning with the method. It is realistic to restrict scanning to
most common web application ports TCP/80 (HTTP) and TCP/443 (HTTPS) as
scanning all open ports from available IP addresses would exponentially increase
the time required for scanning (See Definitions).

Detection of WCMS versions should then be done against the IP addresses
which respond to HTTP GET requests. The method should be able to detect
major and minor versions of the application, in this study this means detecting
WordPress versions such as 4.7.3. If the version detection fails but the scanner is
able to detect with high accuracy that site is running WordPress, the site (source
data) should then be saved so that the detection can be further improved. After
version detection, it should be possible to list related vulnerabilities on basis of
versions.

37

Collection of the related metadata, such as server certificates and other HTTP
headers would also increase usability of the scanner as this data can serve as an
important piece of information when data is to be analysed. We can form these
functional requirements and constraints into the list bellow.

• Theoretical ability of scanning entire IPv4 address space.

• Able to conduct fast scanning.

• Ability to detect IPv4 addresses which respond to HTTP GET requests on
port 80 or 433.

• Ability to gather HTTP header and body.

• Ability to gather HTTP/HTTPS related information such as certificate infor-
mation.

• Reliably detect most versions of specified web application.

Scanners covered in the previous chapter are not designed for scanning whole
IP range, and they are also meant for new vulnerability detection. Using even the
fastest scanner covered in the literature review, it would take much longer than a
day to go tough the vast number of websites. Following section discusses methods
of conducting internet wide scanning.

4.2 Methods of conducting internet wide scanning

Internet wide scanning isn’t an easy task. A common approach for website scan-
ning is to use web crawler in combination with a search engine, such as Google.
Web crawlers however have multiple different problems. Doupé et al. (2010) noted
that some crawling components of vulnerability scanners had over 1000 accesses
to same URLs (See Definitions). Detecting infinite loops and actual depth of crawl-
ing in web applications can be difficult for crawlers when sites are not static, as
the case is often with web applications. The other problem is related to the large
amount of pages in the web and the amount of data included (Castillo, 2005).
This means that crawling can take a long time and that the result isn’t actually a
snapshot as multiple pages may have changed during the scan (Castillo, 2005).

There has been, however, changes in the internet wide scanning during the
past couple of years, as new tools, such as ZMap and Masscan, have been released
(Durumeric, Wustrow and Halderman, 2013 and Graham, 2014). These tools aren’t
however crawlers but rather ports scanners that can be extended or their results
passed forwards. They are similar to the Nmap that is an open source network
exploration and security auditing utility (Lyon, 2011). With a tool like Nmap it
requires multiple machines and weeks of time to complete horizontal scan of
public address space Durumeric et al. (2013). Masscan is an internet port scanner
that can scan entire IPv4 range under 6 minutes and uses custom TCP/IP stack
in order to achieve this (Graham, 2014). ZMap on the other hand promises to be
able to scan entire public IPv4 address range in under 45 minutes by using single
mid-range machine and gigabyte Ethernet connection (Durumeric et al., 2013).

38

Before these tools, internet wide horizontal scans took a lot of time or a botnet
(See Definitions). Legitimate way of doing internet wide scanning and research
related to it has been previously very difficult for researchers whereas it has been
known that malicious parties do this with the help of stolen network access e.g.
larger botnets. (Durumeric et al., 2013) Both malicious parties and researches have
now taken into these new tools as likely malicious scans are conducted with them
from bullet-proof hosting companies and legal academic research is being done by
researchers. Almost 80% of the single port scan traffic is originating from large
scans that target over 1% of IPv4 address space and 30% of scans target more than
50% of the IPv4 address space. (Durumeric, Bailey and Halderman, 2014)

ZMap and Masscan are the most popular scanners when these horizontal
scans target over 10% of IPv4 address space. Seemingly ZMap is being used more
and more when the coverage of the scan increases as it was the tool of choice for
21.7% of scans that targeted more than 50% of the address space whereas Masscan
was used only for 3.4% of these scans. The same study found that academic
scholars clearly identify themselves when conducting scanning and that 30% out
of ZMap scans targeting over 10% of the address space scanned HTTP and HTTPS
ports. These scans were done by academic institutions. (Durumeric et al., 2014)

Due to the academic background, extendibility and multiple publications
related to ZMap it seems like an obvious choice for conducting academic internet
wide vulnerability research. ZMap is also still under active development and it
is being used for multiple different ongoing scanning projects such as Rapid7’s
Project Sonar and Censys project (Durumeric, Adrian, Mirian, Bailey and Halder-
man, 2015 and Rapid7, 2017b). In the following subsection we take a closer look
on how ZMap operates.

4.2.1 ZMap

ZMap was created by researchers working at University of Michigan to improve
internet wide network scanning. ZMaps architectural choices allow it to be 1300
times faster than Nmap with most aggressive settings, without sacrificing accuracy.
(Durumeric et al., 2013)

ZMap has Optimized probing, which means that ZMap assumes that source
network is well provisioned and that targets are randomly ordered and widely
dispersed. ZMap skips TCP/IP stack altogether and generates Ethernet frames
directly. Nmap on the other hand adapts its transmission rate so that it won’t
saturate source or target networks. (Durumeric et al., 2013)

ZMap also has No per-connection state compared to Nmap, which maintains
the state for each connection. ZMap can skip storing the connection states as
it selects addresses according to a random permutation generated by a cyclic
multiple group. ZMap accepts response packets with correct state fields for the
duration of the scan, and thereby it is able to extract as much data as possible from
the responses it receives. (Durumeric et al., 2013)

There is also No retransmission like in NMap where connection retransmits
and timeouts are handled. ZMap skips this step by sending always a fixed number
of probes per target. Although this can cause variation in results due to packet

39

loss, it has been shown that ZMap still manages to reach 98% network coverage
when using only single probe per host even when running at maximum scanning
speed. (Durumeric et al., 2013).

Scanner consists of three parts scanner core, probe modules and output handlers as
seen in Figure 6. Scanner core consists of command line, configuration, performance
monitoring, address generator, address exclusions, progress monitoring, progress
reading and writing networks packages. Probe modules are extensible and can be
customized for different types of probes. They are also used for generating probe
packets and for interpretation of response packets for validity. Output handlers are
modular and make it possible for scanner results to be piped to other processes,
added to databases or passed straight to user code. (Durumeric et al., 2013)

FIGURE 6: ZMap Architecture (Durumeric et al., 2013)

Limitation of ZMap is that as of writing this it only works for IPv4 address
range. Approximately 9.9% of web sites have IPv6 enabled (W3Techs, 2017a). This
however doesn’t mean that these pages or hosts are inaccessible via IPv6 range as
many sites such as Google and Wikipedia have enabled IPv6 support but, they are
still accessible via IPv4 addresses.

Creators of ZMap have also created companion tools for it such as ZTee,
ZGrab. ZTee is the tool recommended being used when piping ZMap to other
programs such as application scanners. It is similar to regular Unix tee-command
which is output buffer and splitter, but ZTee also has buffering. ZGrab is a TSL
banner fetcher which also gathers other information (ZMap Team, 2017). For
example ZGrab can gather HTTP request bodies and server metadata such as web
server version information.

4.2.2 Application detection

Running regular application vulnerability scanners against numerous websites
would be very time-consuming, illegal or in most case would at least require
permission from the owners. Other way of detecting possible vulnerabilities is to
detect application and then fingerprint its version.

40

Detecting if a site is running specific web application varies between appli-
cations. In the case of WordPress there are a couple ways of checking if the site
is running it. For example, if the site has /wp-login.php file available, /wp-content/
path is accessible or doesn’t return error, readme.html exists and states that the site
is running WordPress, or a HTML meta tag with the attribute name containing a
generator and the content attribute containing text WordPress. It is possible for a
host to have configured their installation in a way that removes or changes these
paths, so its not always possible to detect whether the site is running WordPress
with the help of these. WPScan is a popular WordPress black box vulnerability
scanner which is included in Kali Linux and also uses these methods for detection
(WPScan Team, 2017a).

Similarly, there are multiple possibilities for version detection. WordPress
states its version in Readme.html file with default configuration. Version in-
formation is also stated in HTML meta tag within the content attribute (con-
tent="WordPress 4.x.x") with default configuration. Version information is also
listed in WordPress RSS and Atom feeds.

For other web applications this version detection and application pinpointing
approach of course differs as different applications give varying amounts of
information regarding their versions to end users. Default installations of both
Joomla and Drupal use meta that includes generator name information. Drupal
also includes the major version number in the generator field.

There exist also an option of calculating hashes for supplied style sheets,
scripts and other files for each version of the software and comparing these hashes
to the hashes of the files that the site is hosting. This however can also be unre-
liable and time-consuming. Choosing the lookup for HTML Tag of WordPress
versions seems like a good baseline since it is shown with the default WordPress
configuration. Using it for the detection will give quite a reliable way of examining
the installation version and it is possible to use the other methods on top of this to
increase the reliability of the scan results.

4.2.3 Vulnerability databases

Probably the most well-known vulnerability database is the National Vulnerabil-
ity Database that is hosted by National Institute of Standards and Technology.
NVD is the U.S. government repository of standards based vulnerability management
data represented using the Security Content Automation Protocol (National Institute
of Standards and Technology, 2017). NVD includes databases all ranging from
security checklists to impact metrics. NVD also has a vulnerability search engine
which allows one to search for known software flaws (National Institute of Stan-
dards and Technology, 2017). NVD uses Common Vulnerabilities and Exposures
(CVE) identifiers for vulnerability naming and standardized CVE style description
style for each vulnerability (MITRE Corporation, 2017 and National Institute of
Standards and Technology, 2017). These vulnerabilities are scored with help of
Common Vulnerability Scoring System (CVSS) which is a framework for assess-
ing and quantifying the impact of software vulnerabilities (Mell, Scarfone and
Romanosky, 2006).

41

There exists also other sites that use the same data provided by NVD and
combine it with other databases. One of these is CVE Details which uses NVD
feeds and combines other additional information such as possible Metasploit
modules that use vulnerability in question and other related exploits listed by the
Exploit Database (Exploit Database, 2017 and Özkan, 2017 and Rapid7, 2017a).
There is also vulnerability database only for WordPress and its plugins called
WPScan Vulnerability Database which is also searchable by WordPress version
and lists all possible vulnerabilities related to that specific version as a result
(WPScan Team, 2017b).

4.2.4 Ethics

Crawling the web causes traffic and might cause financial costs to the owners
of web sites which are crawled. There are also other ethical problems related to
crawling. These things should be taken into consideration before using a web
crawler.

The robots.txt protocol which governs the way how web crawlers should
operate has been quite widely adopted. Robots.txt protocol allows website owners
to implement mechanism for controlling how crawlers scan their pages or if they
are even allowed to do so. (Thelwall and Stuart, 2006) However this method only
works if crawler respects this protocol. According to Thelwall and Stuart (2006)
there are four types of issues that web crawlers may raise for society or individuals.
These are denial of service, cost, privacy and copyright. (Thelwall and Stuart,
2006)

Denial of service here doesn’t mean purposeful denial of service attack but an
unwanted one where websites design causes crawler to access the same location
multiple times. It is also possible that crawler might slow down the traffic for other
users of the website. Cost issue here means that the extra traffic that crawler causes
could cause increased cost due to a more excessive bandwidth usage. Privacy
issue arises if the crawled information is used in a non-ethical way, for example,
if the crawler collects email addresses from websites and adds them to a spam
list. Thelwall and Stuart (2006) claims that the biggest issue with crawlers is that
they ostensibly do illegal things, that is making copies of copyrighted material.
(Thelwall and Stuart, 2006)

Scanning done with ZMap however isn’t strictly web crawling as ZMap
operates with IP addresses and doesn’t crawl links in possible web sites. ZMap
can of course be extended with modules to do so or the results can be piped to
a web crawler. Still, the creators of ZMap discuss good internet citizenship in
regard to scanning. ZMap tries to avoid stressing target network by accessing
addresses according to a random permutation (Durumeric et al., 2013). A regular
web crawler tries to go through specific website in a sequential order and this has
a higher possibility of causing traffic peaks. ZMap is unable to honour robots.txt
standard as it is a port scanner and there doesn’t exist similar standard for port
scanning software currently.

However, there is still a small change that any interaction with remote sys-
tems may cause problems for the owners, or they might become alarmed by the

42

abnormal traffic (Durumeric et al., 2013). Durumeric et al. suggest that researchers
should prepare a website that informs about the intention of the scan and includes
possible contact details. In their case the website was hosted on same address as
the scans originated from so it was easy to find. ZMap creators also present seven
guidelines for good scanning practises as seen in the Table 3 bellow.

1. Coordinate closely with local network administrators to reduce risks
and handle inquiries

2. Verify that scans will not overwhelm the local network or upstream
provider

3. Signal the benign nature of the scans in web pages and DNS entries
of the source addresses

4. Clearly explain the purpose and scope of the scans in all
communications

5. Provide a simple means of opting out and honour requests promptly
6. Conduct scans no larger or more frequent than is necessary for

research objectives
7. Spread scan traffic over time or source addresses when feasible

TABLE 3: Recommended Scanning Practises (Durumeric et al., 2013)

43

4.3 The proposed method

Previous chapters have discussed the approaches for vulnerability detection and
flaws related to WCMS applications. Common vulnerability testing scanners are
designed for small scale scans where one application or server is scanned per
scan. The fastest scanners in Doupé et al. (2010) paper managed to scan their test
application in 74 seconds. This would mean that even in the best scenario scanning
Alexa Top 1 million sites would take over 856 days if scans averaged 74 seconds
for each page and the connection speeds would be similar to the ones Doupé et
al. (2010) had in their lab environment and if the scans would be conducted in
sequence.

Black-box scanning tools are designed for assessing a single application at a
time for vulnerabilities. Using these tools which are mainly designed for scanning
single application for parallel scanning would most likely be inappropriate for the
solution, but possible. Some of the programs mentioned by Doupé et al. (2010)
can be executed in parallel like the Burp suite. Using Burp suite for parallel
scanning huge amount of websites would require building an application to
execute Burp scans and handle the list of target websites, for example which of
the Alexa Top 1 million sites have been successfully scanned. Scanning time for
such an experiment is hard to estimate as adding more simultaneous scanners
would result into diminishing returns quite fast due to limitations of network
bandwidth and computing power. There are also ethical problems regarding this
type of scanning, not to mention the legal ones which vary between different
jurisdictions because running black-box scanner against unknown website might
reduce websites performance or affect it in some other way.

With the help of vulnerability databases we can see which versions likely
have vulnerabilities, so detecting applications version is in most cases enough
for detecting if installation of the application has a flaw. Detecting applications
and their versions should give us approximation of the number of vulnerable
applications in the wild. The proposed method of conducting internet wide
application vulnerability scanning consists of following steps depicted in Figure 7.

44

1. Collect IP
addresses

2. Get
responses

3. Save
responses

4. Query for
application

patterns

5. Gather
vulnerability
information

6. Save results

FIGURE 7: The proposed method for scanning

1. Collect IP addresses. All IP addresses and response bodies of addresses
which respond to port scans on HTTPS or HTTP will be collected and saved
for the following steps. Since ZMap doesn’t have multi-portscan support,
it is required to conduct two scans. The following two commands save IP
addresses which respond on ports 80 or 443.
zmap −p 80 −−output−f i l e = h t t p _ r e s u l t s . csv
zmap −p 443 −−output−f i l e = h t t p s _ r e s u l t s . csv

2. Get responses. ZMap companion tool ZGrab which is a TSL banner grabber
with other functionality included. It can be used to get TSL banners from IP
addresses but It can also gather other information such as HTTP body and
server headers. Piping the addresses from ZMap to ZGrab can be done with
ZTee output buffer and splitter which is included with ZMap. (ZMap Team,
2017) Following commands will run ZMap and pass the port scan results via
ZTee to ZGrab which will then grab server related information and HTTP
body from root of the address (See Definitions). Data will then be saved in
JSON-format.
zmap −p 80 −−output−f i e l d s =* | ztee h t t p _ r e s u l t s . csv | zgrab −−

port 80 −−http ="/" −−output−f i l e =http_banners . j son
zmap −p 443 −−output−f i e l d s =* | ztee h t t p s _ r e s u l t s . csv | zgrab

−−port 443 −− t l s −−http ="/" −−output−f i l e =https_banners . j son

3. Save responses. The Resulting file will be large and parsing huge JSON files
can be inefficient. Importing data into more manageable form will improve
its usability. Importing the JSON data into a database allows querying the
data with relative ease.

45

4. Query for application patterns. As the data mass resulting from large scale
scanning is huge, we have only collected the HTTP body responses from
the sites which we have discovered. Web applications commonly still have
patterns in their landing page which reveal a version related information
(subsection 4.2.2). In case of a default WordPress installation, version infor-
mation is stored in every generated page within HTML meta tag. Example
query for approximate number of sites running WordPress version 4.7.3 could
for example be following in pseudo-code.
SELECT count (*) from db WHERE db . httpbody CONTAINS ’ content ="

WordPress 4 . 7 . 3 ’ AND NOT db . httpbody CONTAINS ’ content ="
WordPress 4 . 7 . 3 . ’

In the pseudo query we discard results of the versions which match the
version string, but where the following character is dot as this can mean that
we count other versions also (e.g. version 4.7 and version 4.7.3).

In case full version detection for web application requires additional infor-
mation from other application path, it is possible to run ZGrab or other
application scanner again as we have stored the IP addresses. For example if
we can detect that website is running Web Application "A" based on the html
tags, but the version information is usually stored in some JavaScript file or
Readme.html and the path is guessable we can run the ZGrab with different
–http parameter and save this information to our database.

5. Gather vulnerability information. When the number of installations for
specific versions has been determined, we can gather version related vulner-
ability information from vulnerability database of our choice and add this
information to our database.

6. Save results. Query results and vulnerability information should be saved
or exported for further analysis.

By following these steps it is possible to collect vulnerability information
regarding web applications at scale. Tools like ZMap also allow us to gather other
metadata such as server information, certificates and possibly location information
during the scan. ZMap, ZTee and ZGrab related commands presented above
and their results were tested in a small lab environment. The following chapter
demonstrates use of this method.

46

5 DEMONSTRATION

This chapter demonstrates the use of the six steps (Figure 7) for collecting vulnera-
bility information at large a scale and presents the findings regarding WordPress
versions in the wild. Demonstration is done with the help of Censys database of
University of Michigan which uses ZMap and ZGrab to collect Internet-wide data
for research purposes (Durumeric et al., 2015).

The previous chapter discussed methods of conducting Internet-wide scan-
ning and presented a method for doing detection of vulnerable web applications
at larger scale. A small scale testing of the method will be done in a small lab
environment to validate that the tools would output useful data for version finger-
printing. This testing will be presented in the next section. Conducting large scale
scanning is problematic in Finland due to Chapter 38, Section 8 of The Criminal
Code of Finland called Computer break-in (Ministry of Justice of Finland, 2015).
There is prejudice (KKO:2003:36) related to this section where port scanning of
address space of a Finnish bank was considered a crime and penalties were given
(Supreme Court of Finland, 2003). Because of these reasons Internet-wide data
collection will not be done within this these, but rather ready collected data will
be used for analysis. Luckily there are open databases which collect data with
the same or similar tools. The next section presents how lab environment test-
ing was conducted and section after that discusses available databases for the
demonstration.

5.1 Testing method

Section 4.3 presented method which could be used for an Internet-wide scanning
of web applications. Small home lab environment was build to examine how these
steps could be used for gathering the required information. The environment
consisted of eight different IP addresses which were hosting pages on HTTP port.
One of these addresses was hosting WordPress website with default configurations
of version 4.7.3 and other addresses had either static sites of other web applications
running on them.

47

The first step of the method is the IP address collection. The address range of
ZMap scans can be restricted by specifying scanning subnet address for the tool.
The lab environment used here was hosted under subnet address of 192.168.0.0/16
and ZMap has restricted scans to specific subnets with a blacklist as these are not
usually the preferred targets of the scans. Unblocking the local network subnet was
therefore needed to conduct this scan and this was done by editing the blacklist
configuration file. After unblocking the desired subnet, following command was
run from the scanning machine to check that desired amount of addresses was
returned from the ZMap scan.

zmap −p 80 −o r e s u l t . csv 1 9 2 . 1 6 8 . 0 . 0 / 1 6

Scanning the subnet for responding addresses took around six seconds, but
running scan in the lab environment with these settings seemed to give an incom-
plete list as the results. Dropping the default scanning rate 10 000 packets per
second down to 300 packets per second seemed to fix the problem of dropped
packages. Most likely the consumer grade router in the environment couldn’t
handle the average rate of 8 000 packages per second and dropped most of them
during the scan. This might have been a security measure in the router. Scanning
with the following command showed the all the eight addresses desired in the
results.

zmap −p 80 −r 300 −o r e s u l t . csv 1 9 2 . 1 6 8 . 0 . 0 / 1 6

Rate limiting shouldn’t be needed in large scale scanning as ZMap dispenses
the scanning probe so that addresses will not be scanned in sequential order.
However, as the subnet of the lab environment is so small the router in the environ-
ment seemed to suffer from the large number of packets. With the rate limits we
can proceed to the second step of the method which is the actual data collection.
Collection of http information from the subnet can be done with the following
command.

zmap −p 80 −r 300 −−output−f i e l d s =* 1 9 2 . 1 6 8 . 0 . 0 / 1 6 | ztee
h t t p _ r e s u l t s . csv | zgrab −−port 80 −−http ="/" −−output−f i l e =
h t t p _ r e s u l t s . j son

Scan produces results into a file which is formatted into JavaScript Object
Notation (JSON). The File consists of an array of objects which can be parsed
through. Each IP address in the file has information regarding time stamp of the
scan and data of the response. In this test case it means information regarding
HTTP response, such as status code, protocol, HTTP headers and HTTP body. File
from the lab environment scan is so small that importing the results into database
would be inefficient. Instead, each HTTP body data object will be parsed through
with following the regular expression (RegEx) for WordPress site matches.

RegEx : content\x3D\x5C\x22WordPress . ([0 −4]\ .\d+\.?\d?\.?\d ?)

This regular expression allows us to match the HTML body content tag
version information as presented in the method proposal. For example, it is
possible to match the following escaped HTML string.

content =\"WordPress 4 . 7 . 1

It is also possible to use regular expression capture grouping (round brackets
in the above expression) to gather the matching versions into a list of the matched

48

versions or count the matched versions with it. In our test results we have one
matching site which has the WordPress version information in the body content
tag and the sites IP address matches our WordPress hosts address. This rudimen-
tary testing has proven that detection is possible with the method presented in
section 4.3.

As the testing environment was so small with limited hardware, it is hard to
estimate how long scanning of all the available addresses in the internet would
take. However, even gathering the available addresses is 1300 times faster with
ZMap compared to Nmap (Durumeric et al., 2013). It is also possible to download
HTTP responses during the scan by using ZMap and ZGrap at the same which
makes data gathering quite fast. The hardest thing is to estimate how long parsing
such a data mass would take. However, this parsing could be done with help of
virtual machines or databases provided by huge cloud providers with relatively
small cost. In the next section we will discuss the possibility of using data collected
in a similar way for analysis part of this thesis.

5.2 Choosing database

Internet-Wide Scan Data Repository (Scans.io) is an archive of public research data
which has been collected by active scans of the internet. It lists multiple different
datasets of different scans ranging from different port scans, certificate scans to
HTTP scans. Both Rapid7 and University of Michigan have multiple datasets
listed on the site which have been collected with the help of ZMap. (Censys Team,
2017b)

Rapid7’s Project Sonar conducts both HTTP and HTTPS scans weekly and
provides these as a compressed package of JSON via the Internet-Wide Scan Data
Repository. These packages include the HTTP GET responses from servers and
SSL certificate information if it is available. Rapid7 approximates that each HTTP
scan is a snapshot of a maximum of 8 hours. The scan of March 14th 2017 for
HTTP consists of 75GB of compressed data and for HTTPS 67GB of data. In the
uncompressed format these would be over 1.5TB each. (Rapid7, 2017b) There are
multiple tools that can be used to ease the analysis of this data, but there are not
public query-able databases for Project Sonar, so using SQL syntax for searching
fingerprints would require us to import the data into a database.

Other option is the Censys project by the Censys Team and University of
Michigan which is aimed at enabling researchers to conduct research regarding
internet-wide scanning. Censys offers search engine to scans of IPv4 address space,
Alexa top million domains and X.509 Certificates. The scan data is also provided
in a raw format if one wants to analyse it locally. (Durumeric et al., 2015) ZMap
being able to scan IPv4 range under 45 minutes and ZGrab taking about 6 hours
and 20 minutes for HTTPS handshakes, Censys scans also are a snapshot of under
8 hours (Durumeric et al., 2015, 2013).

Censys team uses exclusion list for the scans so that organisations and indi-
viduals have option to opt-out from the scan range. This exclusion list consisted
of 0.11% of the public IPv4 addresses in 2013 and ZMap was able to find 97%

49

of the theoretical maximum number of IPv4 addresses (Durumeric et al., 2013).
Current exclusion list isn’t public and it is not known how many organizations
have blocked scans in other way. However, there are currently over 116 million
hosts which have HTTP enabled and are included in the Censys scan. Authors
of Censys also compared the tool to other similar tool called Shodan, which is
a similar service but closed source and requires paying for results of more than
50 hosts. According to their results Censys found 222% more HTTP hosts than
Shodan.

However, limitation of the Censys data is that there is currently no HTTPS
Get results within the data compared to Project Sonar. Censys and Project Sonar
also only collect the root path of the server. If for example same server hosts
WordPress on a different path (e.g. /blog/ or /wordpress/) the scan data doesn’t
show these. Censys offers web search engine for the scan data and REST API that
allows programmatic access to the same data. It is also possible to get SQL like
query access as a researcher to the raw data which is being hosted on Google’s
BigQuery. There are multiple snapshots for almost every moth dating back to
October 2015 and it is also possible to query them via the SQL access. (Durumeric
et al., 2015). Due to the access to historical data, possibility of using SQL queries to
crawl trough the HTTP bodies of large amount of hosts and transparency Censys
dataset was chosen to be used in this thesis.

5.3 Information collection

Censys project REST API which offers search, view, report and data endpoints for
any registered users and SQL query and export endpoints for verified researchers
(Durumeric et al., 2015). There is also Python library which is also created by
Censys project and is a lightweight Python wrapper for the API (Censys Team,
2017a).

WordPress has used similar HTML meta content field to inform its version
atleast since version 0.71. List of WordPress versions since the version 0.71 were
collected from WordPress GitHub page as well as from the release archive located
on WordPress home page. In total 224 unique versions were found, ranging from
June 9th 2003 with version 0.71 to the current version 4.7.3 which was released on
March 6th 2017. (WordPress Foundation, 2017a, b)

SQL queries for Censys use Google BigQuery as a backend and the search
queries use the specific BigQuery syntax for searches. (Durumeric et al., 2015
and Google, 2017) With the help of Censys python library, a small data collection
application was constructed to query and extract information regarding different
WordPress installations from the database. Search query was improved further
to use regular expressions and minimize the number of queries required for
information gathering. Example of the total installations gathering query used can
be seen in bellow.

50

SELECT version , count (*) AS count FROM (
SELECT REGEXP_EXTRACT(i . p80 . ht tp . get . body , r ’ content =" WordPress

. ([0 −4]\ .\d+\.?\d?\.?\d ?) ’) AS vers ion
FROM [ipv4 . 2 0 1 7 0 3 1 8] i)
WHERE vers ion IS NOT NULL
GROUP BY vers ion
ORDER BY vers ion DESC

The results were exported from database into coma-separated values (CSV)
format and extra information regarding version specific vulnerabilities were at-
tached to this information. Vulnerability data was collected during the database
scan from WPScan Vulnerability Database which closely matches the WordPress
Vulnerabilities disclosed by National Vulnerability Database.

After these steps the results were sanitized from unknown versions with the
help of known unique version listing. Total 20 unknown versions were removed
from the results. There were 14 versions with less than two detected installations.
The highest numbers of installations for non-listed versions were for version
4.8 (161 installations) and 4.7.4 (21 installations). These versions are most likely
upcoming versions which are under testing. In total 215 unique known versions
were left after the sanitization. The oldest version of these being 1.2 with the
release date of May 2004.

Current data collection application uses single query for gathering installation
numbers from all versions of WordPress. Further queries are required as data
regarding server certificates or geographic continents. Gathering information
regarding installation counts, certificate levels, geographic locations and up-to-
date CVE vulnerability information for found versions takes approximately 3
minutes with the constructed application when querying the full IPv4 dataset.

5.4 Results

Data collection was done against the Censys IPv4 full scan data dated 01.04.2017.
Total 692 039 WordPress installations with valid versions were found with the
regular expression search method. Figure 8 shows installation counts based on the
release dates of the found versions.

51

05
/2

00
4

01
/2

00
5

01
/2

00
6

01
/2

00
7

01
/2

00
8

01
/2

00
9

01
/2

01
0

01
/2

01
1

01
/2

01
2

01
/2

01
3

01
/2

01
4

01
/2

01
5

01
/2

01
6

04
/2

01
7

100

101

102

103

104

105

Version release dates

N
um

be
r

of
in

st
al

la
ti

on
s

FIGURE 8: WordPress installation counts

Table 4 shows the top ten versions which had the highest number of instal-
lations. Because WordPress releases security updates for older minor versions
also, there can be multiple different versions released on the same day. For exam-
ple versions 4.6.1 and 4.5.4 include fixes for the same security issues (WordPress
Foundation, 2016). Version 4.7.3 is the most common installation encountered
with 142 555 identified pages. It was released on 6th of March 2017 and there are
zero known disclosed vulnerabilities that affect the version as of 3rd of April 2017.
Version 4.6.1 has the second most installations with 119 238 unique addresses
detected and release date of 7th of September 2016. At the time of the scan there
were 13 known disclosed vulnerabilities in that version.

Version Total Installations Disclosed Vulnerabilities Release Date
4.7.3 142555 0 06.03.2017
4.6.1 119238 13 07.09.2016
4.5.4 33417 13 07.09.2016
4.7.2 32216 6 26.01.2017
4.6.4 27714 0 06.03.2017
4.5.3 26358 16 21.06.2016
4.4.5 23352 13 07.09.2016
4.5.7 17927 0 06.03.2017
4.7 15880 18 06.12.2016
4.4.8 15421 0 06.03.2017

TABLE 4: WordPress versions with most installations

52

Figure 9 allows us to see that there are a couple versions released before
2015 which still have over 5000 active installations. For example version 2.5 has 5
630 installations based on the results. Version 2.5 is almost 10 years old with the
release date of March 29th of 2008 and there are 14 different vulnerabilities which
haven’t been patched in that specific version. Version 3.5.1 has the highest number
of active installations from the versions released before 2015 with release date of
24.1.2013 and total 7 036 detected sites still running it.

05
/2

00
4

01
/2

00
5

01
/2

00
6

01
/2

00
7

01
/2

00
8

01
/2

00
9

01
/2

01
0

01
/2

01
1

01
/2

01
2

01
/2

01
3

01
/2

01
4

01
/2

01
5

100

101

102

103

104

Version release dates

N
um

be
r

of
in

st
al

la
ti

on
s

FIGURE 9: WordPress installation counts before 2015

Censys also has certificate information in their database as the ZGrab is able
to collect it during the scan. There are three different validation levels for digital
certificates (Leavitt, 2011). Levels are based on the degree of validation that the
sender provides. Domain validated (DV) certificates base the validation on the fact
that the requester has rights for the domain name. Organization validated (OV)
certificates require verification of organization’s formal name and the DNS names
of organization. Certificate Authorities (CA) usually verify the formal name by
asking copies of paperwork, like articles of incorporation. Extended validation
(EV) certificates have the highest validation criteria (Leavitt, 2011). The criteria for
issuing EV certificates is created and kept up to date by organization of leading
Certificate Authorities, Browser makers and application vendors and it is called
CA/Browser Forum (CA/Browser Forum, 2017 and Leavitt, 2011).

Figure 10 shows post-2015 release installation numbers for different certificate
validation levels. Similarly, to the total installation values the Version 4.7.3 has
the most installations with Domain Validated certificates totalling at 81 656. Non
surprisingly it is also the most popular version for Organization Validated cer-
tificates with 5 198 installations and for Extended Validation certificates with 847.

53

Installation number drops in the Figure 9 and following Figure 10 are explained
by the versions which have no or very few installations (see Appendix 1).

01
/2

01
5

06
/2

01
5

01
/2

01
6

06
/2

01
6

04
/2

01
7

100

101

102

103

104

105

Version release dates

N
um

be
r

of
in

st
al

la
ti

on
s No Cert.

DV Cert.
OV Cert.
EV Cert.

FIGURE 10: Certificate installation numbers after 2015

Certificate installation information for versions released before 2015 can be
seen in Figure 11. Version 2.5 released on March 29th of 2008 has a notable number
of 5 492 installations without certificates and this can be seen as the spike in early
2008 in Figure 11. There are installations with version 2.5 and Extended Validation
certificate but there are 124 instances with Domain Validated certificates and 14
sites with Organization Validated certificates for that version.

54

05
/2

00
4

01
/2

00
5

01
/2

00
6

01
/2

00
7

01
/2

00
8

01
/2

00
9

01
/2

01
0

01
/2

01
1

01
/2

01
2

01
/2

01
3

01
/2

01
4

01
/2

01
5

100

101

102

103

104

Version release dates

N
um

be
r

of
in

st
al

la
ti

on
s No Cert.

DV Cert.
OV Cert.
EV Cert.

FIGURE 11: Certificate installation numbers before 2015

Geographic location information was also queried from the database. Fig-
ure 12 show the total installation numbers between continents. Majority of the
installations are located in North America with total 392 360 detected installations.
Second largest continent is Europe with 197 865.

N
or

th
A

m
er

ic
a

Eu
ro

pe

A
si

a

O
ce

an
ia

So
ut

h
A

m
er

ic
a

A
fr

ic
a

N
on

e

0

1

2

3

4

·105

3.92 · 105

1.98 · 105

75,913

14,149 8,086 2,852 814

N
um

be
r

of
in

st
al

la
ti

on
s

FIGURE 12: Total installations for each continent

55

The following section 5.5 will discuss the results presented in this chapter
and compare them to the expected results which were hypothesised in section 1.5.
Results will also be compared against other similar datasets and statistics presented
of WordPress installations.

5.5 Validation

This study aimed to construct a method of collecting web application vulnerability
information at large scale. The proposed method for data collection was presented
in chapter 4 and it was then applied to data collection in chapter 5. Censys
database was used to streamline the data collection. The dataset for the Censys
dataset of 1st of April 2017 contained total 63 297 814 unique IP addresses which
responded with HTTP status code OK (200 OK) and had HTTP body content. The
Data collection method presented in this thesis was able to find 692 039 unique IP
addresses which responded to HTTP/HTTPS requests with metadata that matches
WordPress installation. Hence, the detection found that approximately 1.08% of
the addresses which had web server running with data were hosting WordPress
in the root directory.

BuiltWith Pty Ltd estimates that there are total 18 308 117 WordPress sites
in the entire web and 234 918 sites within Alexa top million sites (BuiltWith Pty
Ltd, 2017). The total number of installations is hard to verify as BuiltWith Pty Ltd
specifies only that they use combination of Alexa and Quantcast for data sources.
This likely includes sites which run on same address and different subdomain
or path. As Censys also offers dataset containing responses and information
regarding Alexa top million sites, we can compare the BuiltWith Pty Ltd data with
our search query. The same query as the one presented in chapter 5 was modified
to run against Censys Alexa top million sites dataset of date 1st of April 2017. This
resulted in total 122 343 sites which were running some version of WordPress and
responded with status HTTP status OK. Whole Censys Alexa dataset had 789 564
sites which had HTTP body content and which responded with OK status code.
This means that the simple application version detection in case of WordPress
detected that approximately 15.5% of the sites in Censys Alexa top million sites
were running WordPress. According to BuiltWith Pty Ltd 23.5% of the top million
sites are running WordPress so the HTTP body based detection is able to detect
66% of the sites which BuiltWith Pty Ltd detects as WordPress (BuiltWith Pty
Ltd, 2017). However, BuiltWith Pty Ltd can’t detect other than the major version
numbers (1.x, 2.x, 3,x, 4.x) of the WordPress sites, meaning it is unable to tell
difference between the versions 4.0 and 4.1.

Riddler is a tool for web topology mapping, attack surface enumeration and web
discovery (F-Secure, 2017). Riddler is a combination of fast web crawler and
high performance custom database. Riddler also has an application detection
functionality built in and it is possible to search for example WordPress sites
with search query keyword:wordpress (F-Secure, 2017). Random sample of 200
addresses from the results of this study were chosen for comparison against F-
Secures Riddlers application detection. Out of the 200 unique sites chosen, only

56

three sites had any information in Riddlers database and only one of them was
detected to be running WordPress. However, the version detected by the scan of
this study was 4.6.1 whereas Riddler thought that the site was running version
3.6.2. It was manually confirmed that the site was actually running version 4.6.1.
Riddler data regarding the site also included HTTP response date which was
dated 15th of September 2014 so we can deduce that the site information and the
version information in Riddlers database regarding that specific site wasn’t recent
and that the site might have been running version 3.6.2 in 2014, but we are unable
to confirm this.

Riddler doesn’t rely on port scanners like ZMap due to the chance of source
IP address of scans might become automatically blocked by firewalls with such
tools. This might be the reason why only three out of 200 addresses had any
information in Riddlers database. Not relying on link crawling but going trough
all accessible IPv4 addresses has seemingly the advantage of detecting sites which
haven’t been referred by search engines or other sites.

Successful data collection done in chapter 5 also allows us to explore the five
hypothesis presented in section 1.5. The first hypothesis stated that over 10% of
the active installations are running versions which have been released over a year
ago. As the scan was conducted on first of April 2017 this means that versions
released on or before first of April 2016 are of interest to us. In total 122 622 sites
out 692039 sites had an older than one year old version in the sample. The first
hypothesis is thus correct as approximately 17.7% of the sites detected had older
versions installed. Interestingly the scan only picked 183 unique sites which were
running versions released before first of April 2007. In our sample these 183 sites
are a minority but still these sites are at risk if the vulnerabilities in these versions
haven’t been mitigated in an other way by the owners. This means that there are
still some instances of early the versions like the second hypothesis hypothesised.

The third hypothesis claimed that there is a negative correlation between
release age and number of installations. When calculating linear regression with
dependent value as total installation number for each version and having the
release age as the covariate we get R-value of -0.182. This is illustrated in Figure 13
This indicates that there is weak negative correlation between the release age and
the number of installations there are for that specific version. The R2 for the pair
is 0.033, so the model explains only a small part of the variation in number of
installations and release age. The second hypothesis is therefore correct, but the
model doesn’t explain the variance well and making predictions on the installation
numbers in the future is hard. Partly this variance can be explained with the fact
that multiple versions have same release dates different versions get same security
updates for example.

The fourth hypothesis presented in section 1.5 was that sites which have a
certificate installed are likely to have more recent version of WordPress installed.
Standard descriptive information relating certificates and WordPress installation
numbers were calculated can be seen in Table 5. Descriptive statistics show that
installations without a certificate have the highest mean and Domain Validated
certificates having next highest mean of release age.

57

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

0

100

101

102

103

104

105

Release age in days

N
um

be
r

of
in

st
al

la
ti

on
s

FIGURE 13: Linear regression of release age and total number of installations

Total No Cert DV Cert OV Cert EV Cert Release Age
Mean 3234 1686 1389 141.8 17.09 1298
Std. Deviation 1.344e+4 6696 6592 455.8 75.66 1313
Miniimum 1.000 0.000 0.000 0.000 0.000 26.00
Maximum 1.426e+5 7.212e+4 8.166e+4 5198 847.0 4697

TABLE 5: Descriptive statistics

Table 6 shows both Pearson’s R and Spearman’s RHO calculated for the re-
lease age and different certificate types. Dataset is more monotonic rather than
just linear. Pearson’s R shows quite similar negative correlation between all of the
certificate classes, with more expensive (OV and EV) certificates having higher
negative correlation than the sites with Domain Validated certificates or non vali-
dated sites. Still Spearman’s coefficient can give better measure of the strength of
the association between two variables whereas Pearson’s correlation might give
misleading information on the dataset (Hauke and Kossowski, 2011). Spearman’s
RHO shows that all certificate classes have strong strength of correlation to re-
lease age thus meaning that newer versions have likely more running instances.
Seemingly there is small difference between the strength of correlation between
the classes, but the difference itself seems to be non significant. Sites without
certificate have Spearman’s RHO of -0.526 whereas the Domain Validated sites
have the highest strength of -0.592. There seems to be small but non significant
difference sites which have a certificate and sites which don’t, but based on the
results it is hard to argue that the fourth hypothesis of sites with certificates having
newer version has strong support based on the data.

The last hypothesis expected there to be very little difference between differ-
ent continents and the ages of the running releases. However, Table 7 shows that
there are much larger differences between different continents when comparing

58

Total No
Cert

DV
Cert

OV
Cert

EV
Cert

Pearson’s r -0.182** -0.181** -0.171* -0.212** -0.212
p-value 0.007 0.008 0.012 0.002 0.007
Spearman’s rho -0.557**** -0.526*** -0.592*** -0.551*** -0.582***
p-value <.001 <.001 <.001 <.001 <.001
* p <.05, ** p<.01, *** p<.001

TABLE 6: Correlation of release age and total active installations and release age
and different certificate installations. The first column shows values for total
installations and the second column for installations without certificates. The third
has the values for Domain Validated certificates, the fourth for organizational
validated certificates and the last column for extended validated certificates.

the differences between certificate classes. South America has the lowest Spear-
man’s rho value of -0.494 whereas Oceania has the highest value with -0.613. This
proves the last hypothesis wrong as there is clear noticeable difference between
age of the release and continents.

South
America Oceania North

America Europe Asia Africa

Pearson’s r -0.208** -0.176** -0.176* -0.184** -0.212** -0.152*
p-value 0.002 0.010 0.010 0.007 0.002 0.026
Spearman’s rho -0.494*** -0.613*** -0.551*** -0.550*** -0.574*** -0.541***
p-value <.001 <.001 <.001 <.001 <.001 <.001
* p <.05, ** p<.01, *** p<.001

TABLE 7: Correlation between release age and active installations on different
continents. The first column shows values for South American installations and
the following columns show the values for Oceania, North America, Europe, Asia
and Africa in sequence.

Data showed that a surprisingly large number of the WordPress sites have
recent versions of the software installed. This might be due to the automatic
maintenance and security updates which were introduced into WordPress in
version 3.7 (WordPress Foundation, 2013). It would be interesting to compare
the state of running installations before release of 3.7, but unfortunately similar
Censys data doesn’t go that far back.

59

6 CONCLUSION

The purpose of this study was to find an effective way of collecting web application
vulnerability information at large scale. This study was conducted by following
a Design science research methodology (see section 1.4) where a vulnerability
scanning method was the artefact resulting from the study.

Literature review was conducted to gain better understanding of risks that
WCMS applications face and how vulnerability scanning should be conducted.
Articles with good reputation were chosen for review on both subjects. Based on
the literature review on WCMS application security, it seemed that the risks facing
these applications are very similar to the ones that are listed as most common risk
facing web applications in general. Review on articles relating to web application
vulnerability scanning reinforced the idea that vulnerability scanning is seen as a
useful tool to improve software security. However, the articles comparing different
vulnerability scanners also presented the problem relating to the speed of general
vulnerability scanners which make it infeasible to use these tools for large number
of sites, not to mention the ethical and legal problems relating to running full
feature vulnerability scanners against sites without permission from the owners.

Based on the literature review, an alternative approach was to be taken for
large scale vulnerability information collection. In chapter 4 requirements for such
method were laid out and available extendable tools which are able to do full IP
range scans were further studied. After this a method for scanning was proposed.
This collection method was then tested via demonstration scan and the results
were compared to the hypothesis presented in the introductory chapter.

Demonstration showed that the method of scanning and detecting sites
with vulnerable versions of application seems to yield fast and fairly accurate
information on large scale. Tools such as ZMap and ZGrab allow conducting fast
internet wide sweeps of open ports and capture important application information
during this. Simple filtering of the data was enough in the case of WordPress to
detect most of the running WordPress installations and their versions.

Resulting data from the scan showed that 17.7% of the WordPress sites de-
tected older than one year old versions. There was also clear negative correlation
between the release age and the number of installations that version has. Only
small differences could be seen between different certificate type installations and

60

release age. There were minor differences between different continents on how
recent versions were common within them.

Modern tools and access to high bandwidth allows collecting of snapshot like
data of application versions and detecting possible sites which have unpatched
vulnerabilities. Similar data has likely been collected by malicious parties for
quite some time with help of botnets or other tools. New tools allow better
understanding of the status of current installed web applications. This information
might become useful as vulnerable applications are not only risk for the owners of
the sites and machines where they are being ran on, but also for other people as
they can be used for malicious attacks such as DDoS.

This study has worked as a proof of concept that vulnerability information
collection of web applications is possible at the internet wide scale. The constructed
WordPress detection is in itself quite simple but it seems to be quite effective.
Extending the method to other applications would be a subject for further study
and such scans could be used for monitoring current installation bases of web
applications.

61

DEFINITIONS

Authentication in the computer security context means the process of verifica-
tion of user or other entity who it claims to be. For example users commonly
authenticate with web applications by submitting their user name and password
to authenticate with the application.

Backdoor usually allows malicious user to connect to computer with little or no
authentication and execute commands on the local system. Backdoor is usually
gained with malicious code that installs itself on the computer. (Sikorski and
Honig, 2012)

Botnet consists of multiple computers that have been infected with backdoor.
These computers listen for instructions from command-and-control server and act
upon them. (Sikorski and Honig, 2012)

Buffer overflow is an attack technique that leverages a storage bounds checking flaw
in either software or hardware. (Shirey, 2007)

Content Management System (CMS) is an application that allows management
and creation of digital content.

Failure is an event when a system is unable to perform within the specified limits
or when it is altogether unable to perform the required tasks. (ISO, IEC and IEEE,
2017, pp. 178)

Fault is an error in software. (ISO et al., 2017, pp. 179)

Flaw can be an error in the implementation design or operation of an information
system. (Shirey, 2007)

Fuzzing is the process of dynamically generating common attack string inputs or
queries to find vulnerabilities in applications. (Stuttard and Pinto, 2011)

Hypertext Transfer Protocol (HTTP) is a TCP-based, internet protocol that is used to
carry data requests and responses in World Wide Web (Shirey, 2007). Typically,
the port number 80 is used for HTTP connections.

Hypertext Transfer Protocol Secure (HTTPS) is an adaptation of the HTTP proto-
col for secure communications. Transport Layer Security (TSL) is commonly used
for securing the HTTPS connections. Previously this was done with the Secure
Sockets Layer (SSL).

Penetration test is the practice where experts try to break in or abuse the sys-
tem and this way find the flaws, so they can be fixed. Commonly penetration tests

62

closely resemble what real attacker would do. (Pfleeger, Pfleeger and Margulies,
2015)

Root address is the root path of an address. For example, www.example.org address
is a root path but www.example.org/example/ isn’t.

Uniform resource identifier (URI) is a compact sequence of characters that can be
used to identify an abstract or physical resource available on the Internet. (ISO et
al., 2017, pp. 485)

Uniform resource locator (URL) is a URI which describes both access method and
location of information source object on the internet (e.g. http://example.org).
(Shirey, 2007)

Validation is the process of evaluating that a system fulfils the requirements speci-
fied for the system. (ISO et al., 2017, pp. 495-496)

Verification is the process of confirming whether the specified requirements have
been fulfilled by examining the objective evidence. (ISO et al., 2017, pp. 500)

Vulnerability is design, implementation or operation and management flaw or
weakness which could be exploited to gain access or otherwise violate system’s
security policy. (Shirey, 2007)

Web Content Management System (WCM) is a system that allows users to create and
manage web content.

Web application is an application which can be accessed and communicated with
by using a web browser (Stuttard and Pinto, 2011).

63

REFERENCES

Amman P. and Offutt J. (2008). Introduction to Software Testing. Cambridge
University Press.

Arce I. (2003). The weakest link revisited. IEEE Secur. Priv. Mag. 1(2), 72–76.
Arkin B., Stender S. and McGraw G. (2005). Software penetration testing. IEEE

Secur. Priv. 3(1), 84–87.
Arora A., Krishnan R., Telang R. and Yang Y. (2010). An empirical analysis of

software vendors’ patch release behavior: Impact of vulnerability disclosure.
Inf. Syst. Res. 21(1), 115–132.

Bau J., Bursztein E., Gupta D. and Mitchell J. (2010). State of the art: Automated
black-box web application vulnerability testing. Proc. - IEEE Symp. Secur.
Priv. , 332–345.

BuiltWith Pty Ltd (2017). CMS technologies Web Usage Statistics, April. Retrieved
03.04.2017 from http://trends.builtwith.com/cms.

Bulgurcu B., Cavusoglu H. and Benbasat I. (2010). Information security policy
compliance: An empirical study of rationality-based beliefs and information
security awareness. MIS Q. 34(3), 523–548.

CA/Browser Forum (2017). Guidelines For The Issuance And Management Of
Extended Validation Certificates Version 1.6.1. Technical report.

Castillo C. (2005). Effective web crawling. ACM SIGIR Forum 39(1), 55.
Censys Team (2017a). Censys Python Library. Retrieved 22.03.2017 from https:

//github.com/censys/censys-python.
Censys Team (2017b). Internet-Wide Scan Data Repository. Retrieved 22.03.2017

from https://scans.io/.
Doupé A., Cavedon L., Kruegel C. and Vigna G. (2012). Enemy of the State: A

State-Aware Black-Box Web Vulnerability Scanner. USENIX Secur. Symp. ,
523–538.

Doupé A., Cova M. and Vigna G. (2010). Why Johnny can’t pentest: An analysis of
black-box web vulnerability scanners. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 6201 LNCS, 111–
131.

Durumeric Z., Adrian D., Mirian A., Bailey M. and Halderman J.A. (2015). A
Search Engine Backed by Internet-Wide Scanning. Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur. - CCS ’15 , 542–553.

Durumeric Z., Bailey M. and Halderman J.A. (2014). An Internet-Wide View of
Internet-Wide Scanning. 23rd USENIX Secur. Symp. (USENIX Secur. 14) ,
65–78.

Durumeric Z., Wustrow E. and Halderman J.A. (2013). ZMap: Fast Internet-wide
Scanning and Its Security Applications. Proc. 22nd USENIX Secur. Symp.
(August), 605–619.

Exploit Database (2017). Exploit Database. Retrieved 16.03.2017 from https://
www.exploit-db.com.

F-Secure (2017). Ready to explore the deep web? Retrieved 22.03.2017 from
https://riddler.io/static/riddler_white_paper.pdf.

http://trends.builtwith.com/cms
https://github.com/censys/censys-python
https://github.com/censys/censys-python
https://scans.io/
https://www.exploit-db.com
https://www.exploit-db.com
https://riddler.io/static/riddler_white_paper.pdf

64

Google (2017). Google BigQuery Reference. Retrieved 22.03.2017 from https:
//cloud.google.com/bigquery/docs/reference/legacy-sql.

Graham R.D. (2014). MASSCAN: Mass IP port scanner. Retrieved 03.03.2017 from
https://github.com/robertdavidgraham/masscan.

Hauke J. and Kossowski T. (2011). Comparison of Values of Pearson’s and Spear-
man’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 30(2).

Hevner A.R., March S.T., Park J. and Ram S. (2004). Design Science in Information
Systems Research. MIS Q. 28(1), 75–105.

Identity Theft Resource Center (2017). Data Breaches Increase 40 Percent in 2016,
Finds New Report from Identity Theft Resource Center and CyberScout.
Retrieved 28.01.2017 from http://www.idtheftcenter.org/2016databreaches.
html.

IETF (2017). Internet Protocol, Version 6 (IPv6) Specification. Retrieved 19.11.2017
from https://tools.ietf.org/html/rfc8200.

ISO, IEC and IEEE (2017). Systems and software engineering – Vocabulary , 1–522.
Kals S., Kirda E., Kruegel C. and Jovanovic N. (2006). SecuBat: A Web Vulnerability

Scanner. In Proc. 15th Int. Conf. World Wide Web - WWW ’06. 247.
Leavitt N. (2011). Internet security under attack: The undermining of digital

certificates. Computer (Long. Beach. Calif). 44(12), 17–20.
Lichtblau E. (2016). Hackers Get Employee Records at Justice and Homeland

Security Depts. Retrieved 28.01.2017 from https://www.nytimes.com/2016/
02/09/us/hackers-access-employee-records-at-justice-and-homeland-
security-depts.html.

Lyon G. (2011). Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning.

Martínez S., Garcia-Alfaro J., Cuppens F., Cuppens-Boulahia N. and Cabot J.
(2013). Towards an Access-Control Metamodel for Web Content Management
Systems. In Curr. Trends Web Eng., April. 148–155.

Mcgraw G. (2004). Software security. IEEE Secur. Priv. Mag. 2(2), 80–83.
Meike M., Sametinger J. and Wiesauer a. (2009). Security in Open Source Web

Content Management Systems. IEEE Secur. Priv. Mag. 7(August).
Mell P., Scarfone K. and Romanosky S. (2006). Common Vulnerability Scoring

System. IEEE Secur. Priv. Mag. 4(6), 85–89.
Ministry of Justice of Finland (2015). The Criminal Code of Finland .
MITRE Corporation (2013). CVE-2014-0160. Retrieved 19.11.2017 from https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160.
MITRE Corporation (2014). CVE-2014-6271. Retrieved 19.11.2017 from https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271.
MITRE Corporation (2017). Common Vulnerabilities and Exposures. Retrieved

17.03.2017 from https://cve.mitre.org/about/.
National Institute of Standards and Technology (2017). National Vulnerability

Database. Retrieved 16.03.2017 from https://nvd.nist.gov/.
Okoli C. and Schabram K. (2010). Working Papers on Information Systems A

Guide to Conducting a Systematic Literature Review of Information Systems
Research. Work. Pap. Inf. Syst. 10(26), 1–51.

OWASP Foundation (2013a). OWASP - Top 10 2013. Retrieved 01.03.2015 from
https://www.owasp.org/index.php/Top_10_2013.

https://cloud.google.com/bigquery/docs/reference/legacy-sql
https://cloud.google.com/bigquery/docs/reference/legacy-sql
https://github.com/robertdavidgraham/masscan
http://www.idtheftcenter.org/2016databreaches.html
http://www.idtheftcenter.org/2016databreaches.html
https://tools.ietf.org/html/rfc8200
https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-and-homeland-security-depts.html
https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-and-homeland-security-depts.html
https://www.nytimes.com/2016/02/09/us/hackers-access-employee-records-at-justice-and-homeland-security-depts.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/about/
https://nvd.nist.gov/
https://www.owasp.org/index.php/Top_10_2013

65

OWASP Foundation (2013b). OWASP Top Ten Project. Retrieved 01.03.2015 from
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

Özkan S. (2017). CVE Details. Retrieved 16.03.2017 from https://www.cvedetails.
com.

Peffers K., Tuunanen T., Rothenberger M.a. and Chatterjee S. (2007). A Design
Science Research Methodology for Information Systems Research. J. Manag.
Inf. Syst. 24(3), 45–77.

Pfleeger C.P., Pfleeger S.L. and Margulies J. (2015). Security in Computing. Prentice
Hall, 5th edition.

Potter B. and McGraw G. (2004). Software security testing. IEEE Secur. Priv. Mag.
2(5), 81–85.

Rapid7 (2017a). Metasploit. Retrieved 16.03.2017 from https://metasploit.com/.
Rapid7 (2017b). Project Sonar. Retrieved 22.03.2017 from https://sonar.labs.rapid7.

com/.
Raymond E.S. (2003). The Art of Unix Programming. Addison-Wesley.
Seitz J. (2015). Black Hat Python - Programming for Hackers and Pentesters. No

Starch Press, Inc.
Shahzad M., Shafiq M.Z. and Liu A.X. (2012). A large scale exploratory analysis

of software vulnerability life cycles. In 2012 34th Int. Conf. Softw. Eng. IEEE,
771–781.

Shirey R.W. (2007). Internet Security Glossary, Version 2. In Req. Comments, vol-
ume 4949. The Internet Engineering Task Force, 1–365.

Sikorski M. and Honig A. (2012). Practical Malware Analysis, volume 53. No
Starch Press, Inc.

Stuttard D. and Pinto M. (2011). The web application hacker’s handbook: dis-
covering and exploiting security flaws. Indianapolis: Wiley Publishing, 2
edition.

Supreme Court of Finland (2003). KKO:2003:36. Retrieved 22.03.2017 from http:
//www.finlex.fi/fi/oikeus/kko/kko/2003/20030036.

Thelwall M. and Stuart D. (2006). Web crawling ethics revisited: Cost, privacy, and
denial of service. J. Am. Soc. Inf. Sci. Technol. 57(13), 1771–1779.

Thielman S. (2016). Yahoo hack: 1bn accounts compromised by biggest data
breach in history. Retrieved 28.01.2017 from https://www.theguardian.com/
technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-
breached.

Vaidyanathan G. and Mautone S. (2009). Security in dynamic web content man-
agement systems applications. Commun. ACM 52, 121.

W3C (2014). HTML5 A vocabulary and associated APIs for HTML and XHTML.
Retrieved 30.01.2017 from https://www.w3.org/TR/html5/introduction.
html.

W3Techs (2017a). Usage of IPv6 for websites. Retrieved 14.03.2017 from https:
//w3techs.com/technologies/details/ce-ipv6/all/all.

W3Techs (2017b). Usage Statistics and Market Share of Content Management
Systems for Websites, April 2017. Retrieved 04.03.2017 from https://w3techs.
com/technologies/overview/content_management/all.

WordPress Foundation (2013). WordPress 3.7 Changelog. Retrieved 01.04.2017
from https://codex.wordpress.org/Version_3.7.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.cvedetails.com
https://www.cvedetails.com
https://metasploit.com/
https://sonar.labs.rapid7.com/
https://sonar.labs.rapid7.com/
http://www.finlex.fi/fi/oikeus/kko/kko/2003/20030036
http://www.finlex.fi/fi/oikeus/kko/kko/2003/20030036
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.w3.org/TR/html5/introduction.html
https://www.w3.org/TR/html5/introduction.html
https://w3techs.com/technologies/details/ce-ipv6/all/all
https://w3techs.com/technologies/details/ce-ipv6/all/all
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://codex.wordpress.org/Version_3.7

66

WordPress Foundation (2016). WordPress Version 4.5.4. Retrieved 19.11.2017 from
https://codex.wordpress.org/Version_4.5.4.

WordPress Foundation (2017a). WordPress GitHub. Retrieved 22.03.2017 from
https://github.com/WordPress/WordPress/.

WordPress Foundation (2017b). Wordpress Release Archive. Retrieved 22.03.2017
from https://wordpress.org/download/release-archive/.

WPScan Team (2017a). WPScan. Retrieved 16.03.2017 from https://github.com/
wpscanteam/wpscan.

WPScan Team (2017b). WPScan Vulnerability Database. Retrieved 16.03.2017 from
https://wpvulndb.com/.

ZMap Team (2017). ZGrab. Retrieved 21.03.2017 from https://github.com/zmap.

https://codex.wordpress.org/Version_4.5.4
https://github.com/WordPress/WordPress/
https://wordpress.org/download/release-archive/
https://github.com/wpscanteam/wpscan
https://github.com/wpscanteam/wpscan
https://wpvulndb.com/
https://github.com/zmap

67
A

PPEN
D

IX
1

FIRST APPENDIX

Scan results of running the demonstration program against Censys IPv4 dataset presented in chapter 5.

Version Total
Installs

No
Cert

DV
Cert

OV
Cert

EV
Cert

South
America

Oceania North
America

Europe Asia Africa None Vuln.
Count

Release
Date

4.7.3 142555 54854 81656 5198 847 993 3046 86359 40127 11458 273 299 0 2017-03-06
4.6.4 27714 10161 16247 1159 147 252 695 16984 7131 2542 66 44 0 2017-03-06
4.5.7 17927 7075 9741 1003 108 181 336 10777 4621 1944 43 25 0 2017-03-06
4.4.8 15421 6454 8080 803 84 219 203 9418 4164 1375 29 13 0 2017-03-06
4.3.9 7738 3100 3832 776 30 88 116 3964 2342 1200 20 8 0 2017-03-06
4.2.13 6085 2309 3198 548 30 54 115 3367 1760 770 15 4 0 2017-03-06
4.1.16 3761 1330 1999 410 22 43 85 2024 990 605 9 5 0 2017-03-06
4.0.16 2412 829 1304 266 13 21 42 1266 696 384 3 0 0 2017-03-06
3.9.17 2496 819 1336 331 10 19 44 1388 554 474 13 4 0 2017-03-06
3.8.19 1650 556 930 154 10 8 28 953 418 239 4 0 0 2017-03-06

68
A

PPEN
D

IX
1

3.7.19 527 170 276 80 1 9 3 320 132 63 0 0 0 2017-03-06
4.7.2 32216 14535 16081 1371 229 309 687 18675 9187 3273 46 39 6 2017-01-26
4.6.3 4581 2079 2302 172 28 66 128 2725 1120 521 14 7 4 2017-01-26
4.5.6 2757 1239 1355 149 14 35 70 1654 654 336 6 2 4 2017-01-26
4.4.7 2370 1115 1135 111 9 34 52 1429 621 230 3 1 4 2017-01-26
4.3.8 1111 544 466 94 7 12 19 573 325 180 1 1 4 2017-01-26
4.2.12 937 385 456 93 3 8 15 523 231 155 5 0 4 2017-01-26
4.1.15 576 241 280 54 1 10 10 299 143 113 1 0 3 2017-01-26
4.0.15 320 134 146 36 4 5 5 169 87 52 1 1 3 2017-01-26
3.9.16 403 195 159 45 4 5 4 181 73 137 3 0 2 2017-01-26
3.8.18 266 111 136 17 2 6 3 163 53 41 0 0 2 2017-01-26
3.7.18 88 30 46 12 0 0 1 58 16 13 0 0 2 2017-01-26
4.7.1 10210 4889 4897 350 74 88 214 6103 2854 896 37 18 10 2017-01-11
4.6.2 4048 1901 1999 132 16 34 90 2440 1046 419 10 9 7 2017-01-11
4.5.5 2177 994 1057 114 12 17 32 1291 542 287 8 0 8 2017-01-11
4.4.6 1686 829 780 67 10 28 21 1027 451 153 5 1 8 2017-01-11
4.3.7 822 413 358 47 4 13 12 418 217 158 3 1 8 2017-01-11
4.2.11 629 282 294 52 1 8 9 358 162 91 1 0 6 2017-01-11
4.1.14 383 181 163 38 1 3 6 177 124 71 1 1 4 2017-01-11
4.0.14 262 113 119 27 3 3 6 146 58 48 1 0 4 2017-01-11
3.9.15 280 134 115 27 4 4 2 125 58 89 1 1 3 2017-01-11
3.8.17 171 81 83 6 1 1 4 88 35 42 1 0 3 2017-01-11
3.7.17 53 20 26 7 0 0 2 29 13 9 0 0 4 2017-01-11
4.7 15880 8287 7007 490 96 133 314 9439 4492 1418 33 51 18 2016-12-06
4.6.1 119238 72121 43224 3272 621 1338 3008 69194 33304 11553 740 101 13 2016-09-07
4.5.4 33417 21173 11316 799 129 304 852 18813 8788 4498 138 24 13 2016-09-07
4.4.5 23352 14934 7767 573 78 276 399 12577 7716 2237 131 16 13 2016-09-07

69
A

PPEN
D

IX
1

4.3.6 9650 5847 3324 442 37 119 227 4891 2777 1536 87 13 13 2016-09-07
4.2.10 6790 3965 2474 318 33 109 165 3421 1972 1073 46 4 11 2016-09-07
4.1.13 4400 2488 1639 256 17 68 119 2148 1252 798 11 4 9 2016-09-07
4.0.13 2599 1444 951 188 16 38 75 1285 721 472 8 0 9 2016-09-07
3.9.14 3105 1936 957 200 12 32 55 1407 603 914 91 3 8 2016-09-07
3.8.16 1722 915 706 90 11 20 23 893 419 345 19 3 8 2016-09-07
3.7.16 521 267 214 39 1 4 14 294 116 93 0 0 8 2016-09-07
4.6 7572 4711 2595 227 39 114 158 4415 2086 773 21 5 15 2016-08-16
4.5.3 26358 20271 5335 653 99 421 446 9798 13271 2356 58 8 16 2016-06-21
4.4.4 1934 1318 563 44 9 45 60 1066 498 260 4 1 15 2016-06-21
4.3.5 925 603 280 40 2 11 28 489 236 157 4 0 15 2016-06-21
4.2.9 775 499 232 41 3 21 21 362 214 156 1 0 13 2016-06-21
4.1.12 334 208 104 22 0 5 4 200 85 39 1 0 11 2016-06-21
4.0.12 291 137 88 65 1 0 7 191 70 21 2 0 11 2016-06-21
3.9.13 319 210 97 10 2 7 10 134 58 110 0 0 10 2016-06-21
3.8.15 188 122 61 5 0 0 1 110 30 21 21 5 10 2016-06-21
3.7.15 46 22 17 7 0 0 3 26 14 3 0 0 10 2016-06-21
4.5.2 8569 5327 2816 356 70 185 187 4617 2535 1001 32 12 21 2016-05-06
4.4.3 1183 696 429 51 7 16 24 704 297 137 5 0 18 2016-05-06
4.3.4 444 251 167 24 2 8 5 258 99 73 1 0 18 2016-05-06
4.2.8 976 750 193 31 2 5 6 205 91 666 3 0 16 2016-05-06
4.1.11 176 94 67 15 0 4 6 101 48 17 0 0 13 2016-05-06
4.0.11 105 65 35 4 1 1 1 50 34 16 3 0 13 2016-05-06
3.9.12 138 89 37 10 2 1 0 74 20 41 2 0 12 2016-05-06
3.8.14 50 23 25 2 0 1 0 31 8 10 0 0 12 2016-05-06
3.7.14 23 10 9 4 0 1 0 18 3 1 0 0 12 2016-05-06
4.5.1 1528 922 462 132 12 21 31 873 438 163 2 0 20 2016-04-26

70
A

PPEN
D

IX
1

4.5 2177 1443 633 87 14 33 39 1347 546 200 11 1 20 2016-04-12
4.4.2 14755 8662 5422 579 92 242 211 8596 4102 1553 46 5 23 2016-02-02
4.3.3 1006 593 362 44 7 20 25 579 238 139 4 1 23 2016-02-02
4.2.7 736 443 245 46 2 11 15 386 163 158 3 0 21 2016-02-02
4.1.10 416 217 163 33 3 5 6 252 92 57 4 0 17 2016-02-02
4.0.10 198 113 63 21 1 8 5 107 56 22 0 0 17 2016-02-02
3.9.11 281 131 133 17 0 2 9 137 81 49 3 0 16 2016-02-02
3.8.13 157 85 64 8 0 2 2 84 53 16 0 0 16 2016-02-02
3.7.13 45 23 18 4 0 0 1 29 11 4 0 0 16 2016-02-02
4.4.1 3182 1930 1079 156 17 64 83 1670 1023 333 8 1 25 2016-01-06
4.3.2 508 293 190 20 5 5 6 233 181 79 3 1 25 2016-01-06
4.2.6 201 120 67 7 7 2 2 124 46 27 0 0 23 2016-01-06
4.1.9 141 69 66 6 0 2 1 92 26 20 0 0 19 2016-01-06
4.0.9 83 50 29 4 0 1 1 40 25 16 0 0 19 2016-01-06
3.9.10 54 27 24 2 1 0 0 35 13 6 0 0 18 2016-01-06
3.8.12 43 22 20 1 0 0 1 22 13 7 0 0 18 2016-01-06
3.7.12 6 3 3 0 0 0 1 5 0 0 0 0 18 2016-01-06
4.4 2726 1766 826 114 20 56 46 1412 928 282 2 0 26 2015-12-08
4.3.1 9727 5702 3408 525 92 175 150 5312 2927 1114 45 4 27 2015-09-15
4.2.5 1933 1520 357 54 2 28 11 474 1210 200 8 2 25 2015-09-15
4.1.8 435 239 178 14 4 8 4 263 104 53 3 0 21 2015-09-15
4.0.8 288 159 103 25 1 4 2 157 62 63 0 0 21 2015-09-15
3.9.9 303 114 163 20 6 4 16 128 119 35 1 0 20 2015-09-15
3.8.11 150 65 78 7 0 1 7 98 32 11 1 0 19 2015-09-15
3.7.11 56 24 24 8 0 1 2 35 12 6 0 0 19 2015-09-15
4.3 2495 1519 849 111 16 57 46 1430 680 274 6 2 29 2015-08-18
4.2.4 2205 1025 1058 110 12 44 31 1426 455 240 8 1 27 2015-08-04

71
A

PPEN
D

IX
1

4.1.7 199 116 71 11 1 2 7 106 50 34 0 0 23 2015-08-04
4.0.7 129 85 38 6 0 3 2 61 27 36 0 0 23 2015-08-04
3.9.8 123 48 63 11 1 9 0 63 29 22 0 0 22 2015-08-04
3.8.10 57 21 31 3 2 0 1 35 13 8 0 0 22 2015-08-04
3.7.10 12 5 4 3 0 0 1 6 3 2 0 0 24 2015-08-04
4.2.3 907 548 305 49 5 22 23 491 256 112 2 1 32 2015-07-23
4.1.6 74 35 34 4 1 1 0 51 16 6 0 0 28 2015-07-23
4.0.6 32 19 12 1 0 0 1 15 11 5 0 0 28 2015-07-23
3.9.7 29 12 13 4 0 0 0 14 9 6 0 0 27 2015-07-23
3.8.9 13 2 9 2 0 1 1 5 5 1 0 0 27 2015-07-23
3.7.9 1 0 0 1 0 0 0 1 0 0 0 0 27 2015-07-23
4.2.2 5773 3318 2071 340 44 134 137 3028 1628 800 44 2 33 2015-05-07
4.1.5 515 253 216 43 3 11 18 258 140 87 1 0 29 2015-05-07
4.0.5 220 103 89 27 1 3 2 126 48 40 1 0 29 2015-05-07
3.9.6 250 127 108 14 1 7 4 106 58 75 0 0 28 2015-05-07
3.8.8 115 57 52 4 2 1 0 68 28 18 0 0 28 2015-05-07
3.7.8 26 8 8 10 0 1 1 16 5 3 0 0 28 2015-05-07
4.2.1 836 500 291 44 1 7 21 488 234 84 1 1 34 2015-04-27
4.1.4 495 147 327 13 8 5 2 411 57 19 1 0 30 2015-04-27
4.0.4 40 16 20 4 0 2 0 25 10 3 0 0 29 2015-04-27
4.2 302 180 99 20 3 14 14 142 90 40 1 1 35 2015-04-23
4.1.3 49 19 27 2 1 1 0 16 19 13 0 0 30 2015-04-23
4.0.3 23 9 12 2 0 0 0 16 3 4 0 0 29 2015-04-23
3.9.5 57 32 20 5 0 2 0 22 17 16 0 0 28 2015-04-23
3.8.7 13 6 6 1 0 0 0 8 4 1 0 0 28 2015-04-23
3.7.7 6 3 3 0 0 1 0 3 0 2 0 0 28 2015-04-23
4.1.2 201 117 74 9 1 4 6 101 53 36 1 0 31 2015-04-21

72
A

PPEN
D

IX
1

4.0.2 17 8 7 2 0 0 0 10 4 3 0 0 29 2015-04-21
3.9.4 48 10 37 1 0 0 0 11 2 35 0 0 28 2015-04-21
3.8.6 9 4 4 1 0 0 0 5 3 1 0 0 28 2015-04-21
4.1.1 3437 1937 1273 204 23 72 63 1753 1031 511 7 0 34 2015-02-18
4.1 2918 1656 1033 199 30 85 57 1395 979 396 6 0 33 2014-12-17
4.0.1 2159 1128 882 139 10 54 30 1189 588 288 10 0 31 2014-11-20
3.9.3 531 270 232 28 1 12 5 293 136 84 0 1 29 2014-11-20
3.8.5 457 244 193 19 1 7 2 262 135 51 0 0 28 2014-11-20
3.7.5 92 38 52 2 0 2 1 58 21 10 0 0 28 2014-11-20
4.0 3316 1941 1110 245 20 87 47 1733 964 474 9 2 35 2014-09-04
3.9.2 2076 1182 729 153 12 43 27 971 419 587 29 0 35 2014-08-06
3.8.4 297 175 110 10 2 4 3 187 68 35 0 0 29 2014-08-06
3.7.4 94 24 67 3 0 0 1 74 13 6 0 0 29 2014-08-06
3.9.1 3081 1850 1027 199 5 83 36 1657 773 470 57 5 38 2014-05-08
3.9 703 391 249 61 2 18 11 355 186 133 0 0 39 2014-04-16
3.8.3 532 270 230 31 1 5 8 300 144 75 0 0 36 2014-04-14
3.7.3 77 41 29 7 0 0 4 48 13 12 0 0 27 2014-04-14
3.8.2 312 187 100 24 1 12 7 147 76 70 0 0 36 2014-04-08
3.7.2 26 13 12 1 0 0 0 13 4 9 0 0 26 2014-04-08
3.8.1 2220 1305 714 196 5 35 38 1173 593 358 21 2 41 2014-01-23
3.8 1042 629 325 84 4 25 26 570 326 95 0 0 38 2013-12-12
3.7.1 1087 635 351 98 3 17 11 599 311 146 3 0 41 2013-10-29
3.7 89 66 15 6 2 2 0 43 26 18 0 0 36 2013-10-24
3.6.1 3422 2010 1039 363 10 64 55 1473 950 836 37 7 23 2013-09-11
3.6 2499 1465 792 237 5 43 44 1647 440 310 15 0 32 2013-08-01
3.5.2 3123 1489 1436 188 10 25 33 1513 1112 325 111 4 24 2013-06-21
3.5.1 7036 3708 2690 609 29 90 80 4035 1741 1023 63 4 29 2013-01-24

73
A

PPEN
D

IX
1

3.5 1573 791 639 141 2 35 18 888 416 207 1 8 30 2012-12-11
3.4.2 3944 2258 1272 397 17 44 32 1990 1148 571 147 12 27 2012-09-06
3.4.1 1836 896 746 186 8 46 28 1065 418 275 3 1 25 2012-06-27
3.3.3 6 1 5 0 0 0 0 1 3 2 0 0 20 2012-06-27
3.4 482 250 166 64 2 13 5 276 101 85 1 1 25 2012-06-13
3.3.2 1291 639 523 123 6 23 7 775 285 198 3 0 27 2012-04-20
3.3.1 2540 1326 964 244 6 23 31 1550 599 334 2 1 26 2012-01-03
3.3 336 156 132 48 0 3 2 212 75 44 0 0 25 2011-12-12
3.2.1 2386 1258 853 265 10 36 43 1302 658 322 24 1 24 2011-07-12
3.2 219 79 131 9 0 4 0 84 110 21 0 0 24 2011-07-04
3.1.4 443 241 162 39 1 6 3 97 56 281 0 0 24 2011-06-29
3.1.3 507 249 191 64 3 8 2 298 99 99 0 1 25 2011-05-25
3.1.2 488 225 191 67 5 10 0 268 129 81 0 0 25 2011-04-26
3.0.6 5 3 1 1 0 0 0 1 1 3 0 0 22 2011-04-26
3.1.1 282 132 106 44 0 4 2 156 55 64 0 1 25 2011-04-05
3.1 1038 644 269 123 2 3 4 449 442 138 2 0 25 2011-02-23
3.0.5 250 134 94 22 0 2 2 122 77 47 0 0 25 2011-02-07
3.0.4 456 251 149 55 1 4 3 289 90 70 0 0 25 2010-12-29
3.0.3 156 73 64 19 0 1 2 106 23 24 0 0 27 2010-12-08
3.0.2 80 38 25 17 0 1 0 60 9 10 0 0 26 2010-11-30
3.0.1 1125 544 441 134 6 20 17 651 258 175 2 2 30 2010-07-29
3.0 407 213 163 28 3 4 5 290 64 44 0 0 30 2010-06-17
2.9.2 1142 647 380 115 0 5 10 683 294 149 0 1 19 2010-02-15
2.9.1 256 136 91 29 0 2 1 159 60 34 0 0 19 2010-01-04
2.9 89 51 27 11 0 6 1 47 16 19 0 0 21 2009-12-18
2.8.6 262 121 115 26 0 3 1 143 50 65 0 0 18 2009-11-12
2.8.5 100 49 38 12 1 2 1 70 17 9 0 1 19 2009-10-20

74
A

PPEN
D

IX
1

2.8.4 330 191 117 22 0 5 1 184 91 47 1 1 18 2009-08-12
2.8.3 26 11 10 5 0 1 1 9 6 9 0 0 19 2009-08-03
2.8.2 60 26 27 7 0 0 0 50 7 3 0 0 18 2009-07-20
2.8.1 26 10 15 1 0 2 0 13 7 4 0 0 19 2009-07-09
2.8 182 129 41 12 0 1 4 98 57 21 0 1 17 2009-06-10
2.7.1 389 248 121 20 0 9 1 219 96 63 1 0 16 2009-02-10
2.7 242 185 45 12 0 8 0 148 43 42 1 0 16 2008-12-10
2.6.5 22 9 11 2 0 0 0 11 7 4 0 0 14 2008-11-25
2.6.3 69 40 26 3 0 1 0 29 30 9 0 0 14 2008-10-23
2.6.2 59 39 19 1 0 0 0 36 13 10 0 0 15 2008-09-08
2.6.1 38 21 14 3 0 3 0 16 12 7 0 0 16 2008-08-15
2.6 44 25 16 3 0 1 2 27 8 6 0 0 14 2008-07-15
2.5.1 84 48 28 8 0 0 1 52 15 16 0 0 14 2008-04-25
2.5 5630 5492 124 14 0 71 12 3960 1426 160 1 0 14 2008-03-29
2.3.3 25 17 6 2 0 0 0 10 15 0 0 0 11 2008-02-05
2.3.2 11 7 3 1 0 0 0 8 3 0 0 0 12 2007-12-29
2.3.1 33 21 10 2 0 1 0 19 10 3 0 0 13 2007-10-26
2.3 15 5 9 1 0 0 0 12 2 1 0 0 11 2007-09-24
2.2.3 13 11 2 0 0 0 0 10 3 0 0 0 12 2007-09-08
2.2.2 21 15 4 2 0 0 0 16 4 1 0 0 12 2007-08-05
2.0.11 6 3 3 0 0 0 0 2 3 1 0 0 12 2007-08-05
2.2.1 27 19 5 3 0 0 0 20 6 1 0 0 12 2007-06-21
2.2 20 11 9 0 0 0 0 13 6 1 0 0 14 2007-05-16
2.1.3 40 19 20 1 0 0 0 7 32 1 0 0 13 2007-04-03
2.0.10 1 0 1 0 0 0 0 1 0 0 0 0 12 2007-04-03
2.1.2 8 4 3 1 0 0 0 4 4 0 0 0 14 2007-03-02
2.1.1 3 2 1 0 0 0 0 2 0 1 0 0 14 2007-02-21

75
A

PPEN
D

IX
1

2.1 47 42 5 0 0 0 0 26 20 1 0 0 11 2007-01-22
2.0.7 3 3 0 0 0 0 0 3 0 0 0 0 12 2007-01-15
2.0.6 2 0 1 1 0 0 0 1 1 0 0 0 13 2007-01-05
2.0.5 18 14 4 0 0 0 0 11 6 1 0 0 13 2006-10-27
2.0.4 22 17 4 1 0 0 0 18 3 1 0 0 13 2006-07-29
2.0.3 8 4 4 0 0 0 0 3 4 1 0 0 13 2006-06-01
2.0.2 25 12 12 1 0 0 0 25 0 0 0 0 13 2006-03-10
2.0.1 3 2 1 0 0 0 0 2 1 0 0 0 12 2006-01-31
2.0 12 6 5 1 0 0 0 10 0 2 0 0 12 2005-12-26
1.5.2 15 9 6 0 0 0 0 14 1 0 0 0 6 2005-08-14
1.5.1.2 1 0 1 0 0 0 0 1 0 0 0 0 10 2005-05-27
1.5.1.1 1 0 1 0 0 0 0 1 0 0 0 0 12 2005-05-09
1.5 12 10 2 0 0 0 0 11 0 1 0 0 10 2005-02-17
1.2.1 2 0 2 0 0 0 0 1 1 0 0 0 6 2004-10-06
1.2 1 1 0 0 0 0 0 1 0 0 0 0 7 2004-05-22

	Abstract
	Tiivistelmä
	Figures
	Tables
	Table of contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research methods
	1.4 Method implementation
	1.5 Expected results

	2 Web application security
	2.1 Security in web application context
	2.2 Software testing
	2.3 Common web application threats

	3 Literature overview
	3.1 Web Content Management Systems
	3.1.1 Security in dynamic web content management systems applications
	3.1.2 Security in Open Source Web Content Management Systems
	3.1.3 Towards an Access-Control Metamodel for Web Content Management Systems
	3.1.4 Conclusions on WCMS security

	3.2 Vulnerability Scanners
	3.2.1 SecuBat: A Web Vulnerability Scanner
	3.2.2 State of the art: Automated black-box web application vulnerability testing
	3.2.3 Why Johnny Can’t Pentest: An Analysis of Black-BoxWeb Vulnerability Scanners
	3.2.4 Enemy of the State: A State-Aware Black-Box Web Vulnerability Scanner
	3.2.5 Conclusions on vulnerability scanning tools

	4 Construction of the artefact
	4.1 Requirements
	4.2 Methods of conducting internet wide scanning
	4.2.1 ZMap
	4.2.2 Application detection
	4.2.3 Vulnerability databases
	4.2.4 Ethics

	4.3 The proposed method

	5 Demonstration
	5.1 Testing method
	5.2 Choosing database
	5.3 Information collection
	5.4 Results
	5.5 Validation

	6 Conclusion
	Definitions
	References
	Appendix 1. First appendix

