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STRUCTURE OF EQUILIBRIUM STATES ON SELF-AFFINE SETS AND

STRICT MONOTONICITY OF AFFINITY DIMENSION

ANTTI KÄENMÄKI AND IAN D. MORRIS

Abstract. A fundamental problem in the dimension theory of self-affine sets is the construction
of high-dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the
set. A natural strategy for the construction of such high-dimensional measures is to investigate
measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as
equilibrium states of the singular value function introduced by Falconer. Whilst the existence of
these equilibrium states has been well-known for some years their structure has remained elusive,
particularly in dimensions higher than two. In this article we give a complete description of the
equilibrium states of the singular value function in the three-dimensional case, showing in particular
that all such equilibrium states must be fully supported. In higher dimensions we also give a new
sufficient condition for the uniqueness of these equilibrium states. As a corollary, giving a solution
to a folklore open question in dimension three, we prove that for a typical self-affine set in R3,
removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff
dimension.

1. Introduction

If f1, . . . , fN are contractions of a complete metric space X it is well-known that there exists a
unique nonempty compact set E ⊂ X such that E =

⋃N
i=1 fi(E); see [23]. In this circumstance

the tuple (f1, . . . , fN ) is called an iterated function system (IFS) and E its attractor. Iterated
function systems have been extensively studied since the 1980s as idealised models for the fractal
structure of attractors and repellers of dynamical systems. A central problem in the study of
iterated function systems is to calculate or estimate the dimension of the attractor E for various
notions of fractal dimension, most especially the Hausdorff dimension.

Particular interest has been given to the case of affine and similitude iterated function systems,
where the ambient space X is given by Rd for some d ∈ N and the contractions fi take the form
fi(x) = Aix+vi for certain (usually invertible) linear maps Ai and vectors vi. Any iterated function
system of this type is called affine. In the special case where each of the linear maps Ai is a scalar
multiple of an isometry, the system is more usually called similitude. The associated attractors are
called self-affine and self-similar, respectively. The dimension theory of self-similar sets satisfying
the open set condition – a condition on the transformations fi which guarantees that the images
fi(E) do not overlap significantly for different i – was completely resolved in 1981 by Hutchinson
[23]. Since that time research attention has been divided between the study of self-similar sets and
measures which do not satisfy the open set condition (see e.g. [21, 38]) and the dimension theory
of self-affine sets and measures which are not self-similar. This article is concerned with the latter
field of investigation, which has been a source of subtle and persistent open problems since it was
first substantially investigated in the 1980s; see [6, 14, 33]. In many cases the problem can be made
more tractable either by assuming some randomness in the defining affine IFS, as in [5, 17, 24], or
by imposing special relations between the affine maps, as in [1, 10, 18]. Only very recently has the
general deterministic case started to become accessible to researchers (see e.g. [3, 36]), and then
only for self-affine subsets of the plane.
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2 ANTTI KÄENMÄKI AND IAN D. MORRIS

A seminal early paper by Falconer [14] gave a formula for the Hausdorff dimension of a “typical”
self-affine set. The affinity dimension of a self-affine set is a number defined in terms of the linear
parts of the affine transformations fi which was shown by Falconer to be equal to the Hausdorff
dimension for Lebesgue-almost-every choice of the additive parts vi, subject to the additional
assumption that the affinities contract Rd by a factor stronger than 1

2 . In certain exceptional cases
the Hausdorff dimension can be strictly smaller than the affinity dimension; for some examples of
this phenomenon, see e.g. [6, 10, 18, 33]. Since Falconer’s theorem was proved, a long-standing
topic of investigation has been to find testable sufficient conditions for the Hausdorff dimension of
a self-affine set to equal its affinity dimension, see e.g. [2, 22, 30, 36]. Falconer was able to show
unconditionally in [14] that the affinity dimension of a self-affine set is always an upper bound for
the Hausdorff dimension, and the challenge of this problem is therefore to bound the Hausdorff
dimension from below. The standard approach to problems of this type is to construct measures
on a given self-affine set whose Hausdorff dimension approximates the anticipated value (in this
case affinity dimension) from below, and it is with this project that our research is ultimately
concerned.

If an affine IFS (f1, . . . , fN ) on Rd is given, then for every sequence (in)∞n=1 ∈ {1, . . . , N}N the
limit

lim
n→∞

fi1 ◦ fi2 ◦ · · · ◦ fin(x) (1.1)

exists for every x ∈ Rd and is constant with respect to the choice of initial point x. This observation
gives rise to a natural projection π : {1, . . . , N}N → Rd associated to the iterated function system
(f1, . . . , fN ) which takes each sequence (in)∞n=1 ∈ {1, . . . , N}N to the unique limit point of (1.1)
in Rd which corresponds to that sequence. It is easy to see that the projection of the symbolic
space {1, . . . , N}N is simply the entire self-affine set E. A natural approach to the construction
of high-dimensional measures on the self-affine set is as projections of shift-invariant measures
on the symbolic space. In the self-similar case it is sufficient to consider projections of Bernoulli
measures, and this is the method used by Hutchinson [23] to resolve the self-similar case. In
the self-affine case, the appropriate measures must be constructed via a variational principle and
arise as equilibrium states of the singular value function (defined in the following section). While
the existence of these equilibrium states has been known for some time ([27]) their structure has
remained poorly understood, and in dimensions higher than two it is not even known whether or
not the number of ergodic equilibrium states associated to a self-affine IFS is finite.

In this article, we conduct the first detailed investigation of these equilibrium states in dimensions
higher than two. We completely characterise the equilibrium states in dimension three and compute
exactly the maximum possible number of ergodic equilibrium states in that dimension. We also give
a new general sufficient condition for the existence of a unique ergodic equilibrium state in arbitrary
dimensions, and when this condition holds the unique equilibrium state additionally enjoys a
certain natural Gibbs property. As a concrete application of this work we show that for three-
dimensional affine IFS defined by invertible affinities the removal of one of the affine transformations
fi strictly reduces the affinity dimension of the associated self-affine set. In particular, this implies
via the theorem of Falconer that for almost every three-dimensional self-affine set with contraction
coefficient smaller than 1

2 , the Hausdorff dimension of the self-affine set is strictly reduced when
one of the affine transformations is removed. This answers a folklore open problem in dimension
three or lower which has recently been propagated by Schmeling. Examples are given to show that
invertibility of the affinities is necessary for this property and that invertible exceptional cases
exist.

2. Statement of results

To state our results formally we first summarise some foundational results and definitions. Many
of these preliminaries will, for the moment, be asserted without proof, with rigorous treatments
being deferred to the following section. We recall that the singular values α1(A), . . . , αd(A) of
a real d × d matrix A are defined to be the square roots of the non-negative real eigenvalues
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of the positive semidefinite matrix ATA listed in decreasing order with repetition according to
multiplicity. If 0 ≤ s ≤ d then the singular value function of A with parameter s, denoted by
ϕs(A), is defined to be the real number

ϕs(A) = α1(A) · · ·αbsc(A)αdse(A)s−bsc.

Intuitively, the value ϕs(A) represents a measurement of the s-dimensional volume of the image of
the Euclidean unit ball under A. The function (A, s) 7→ ϕs(A) is continuous in both A ∈ GLd(R)
and s ∈ [0, d], and satisfies ϕs(AB) ≤ ϕs(A)ϕs(B).

If an N -tuple of d×d matrices (A1, . . . , AN ) ∈ GLd(R)N is given (where here and throughout we
assume N ≥ 2) then for each s ∈ [0, d] we define the singular value pressure of A = (A1, . . . , AN )
with parameter s to be the quantity

PA(ϕs) = lim
n→∞

1
n log

N∑
i1,...,in=1

ϕs (Ai1 · · ·Ain)

which exists by subadditivity. For a fixed invertible tuple A = (A1, . . . , AN ) the singular value
pressure depends continuously on s, and when each Ai is a contraction in the Euclidean norm
it is a strictly decreasing function of s. In the latter case the affinity dimension of A is defined
to be the unique zero of s 7→ PA(ϕs) for s ∈ [0, d] when such a zero exists, and d otherwise, in
which case PA(ϕs) > 0 for all s ∈ [0, d]. If f1, . . . , fN : Rd → Rd are affine contractions defined by
fi(x) = Aix+vi for all x ∈ Rd then by the classical result of Falconer [14] the affinity dimension of
A is an upper bound for the Hausdorff dimension of the associated self-affine set, and as mentioned
previously this upper bound is attained for Lebesgue-almost-every choice of the additive parts vi
when the norm of each Ai is less than one half.

The singular value pressure and affinity dimension of (A1, . . . , AN ) are related in essential ways to
certain properties of shift-invariant measures on the associated space of sequences {1, . . . , N}N. Let
us fix A = (A1, . . . , AN ) ∈ GLd(R)N and s ∈ [0, d], where each Ai is assumed to be a contraction.
If µ is a Borel probability measure on the compact metrisable space {1, . . . , N}N which is ergodic
and invariant with respect to the shift transformation (in)∞n=1 7→ (in+1)∞n=1, then we define

λA(ϕs, µ) = lim
n→∞

1
n

∫
logϕs(Ai1 · · ·Ain) dµ [(in)∞n=1]

which is well-defined by subadditivity. The function

s 7→ h(µ) + λA(ϕs, µ),

where h denotes Kolmogorov-Sinai entropy, is then also continuous and strictly decreasing and has
at most one zero in [0, d]. We define the Lyapunov dimension of µ to be this unique zero when it
exists, and d when it does not. The projection π∗µ of the measure µ onto the self-affine set E ⊂ Rd
always has Hausdorff dimension bounded above by the Lyapunov dimension of µ and for fixed µ
and A, the Lyapunov dimension gives the exact value of the Hausdorff dimension of the projected
measure π∗µ for Lebesgue-almost-every additive part; see [37].

For each s ∈ [0, d] the singular value pressure may be characterised variationally as

PA(ϕs) = sup(h(µ) + λA(ϕs, µ))

where the supremum is taken over all shift-invariant Borel probability measures µ on {1, . . . , N}N.
This supremum is always attained by at least one ergodic measure which we call a ϕs-equilibrium
state; see [27]. It was observed in [31] that such an equilibrium state is not necessarily unique.
In general, the number of ergodic measures which can attain this supremum is unknown. This
question was brought up already in [26]. Importantly, if s is equal to the affinity dimension of
A then any ϕs-equilibrium state is a measure of maximal Lyapunov dimension. The search for
lower bounds on the Hausdorff dimension of self-affine sets thus leads naturally via the study of
measures of maximal Lyapunov dimension to the investigation of equilibrium states of the singular
value function.
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In the parameter ranges 0 ≤ s ≤ 1 and d − 1 ≤ s ≤ d, the singular value function simplifies
respectively to ϕs(A) = ‖A‖s and ϕs(A) = |detA|s−(d−1)‖A∧(d−1)‖d−s. Equilibrium states associ-
ated to the potential ‖·‖s as opposed to the potential ϕs have proven relatively easy to understand
(see e.g. [16, 34, 36]) and in particular this allows the equilibrium states of the singular value func-
tion in two dimensions to be completely described, since when d = 2 the set [0, 1] ∪ [d − 1, d]
constitutes the entire parameter range of s. This has allowed considerable progress to be made in
the dimension theory of planar self-affine sets by the method of showing that suitable measures on
{1, . . . , N}N project to measures whose Hausdorff dimension matches their Lyapunov dimension;
see e.g. [4, 36]. In order to extend this strategy to higher-dimensional self-affine IFS, then, it is
necessary that the equilibrium states of the singular value function in dimensions higher than two
be understood.

Our first main result shows that in the three-dimensional case, there can be at most six distinct
ergodic ϕs-equilibrium states and that this number can be achieved. The proof of the result is
given in §7.

Theorem A. Let 0 < s < 3 and A ∈ GL3(R)N . Then the maximum possible number of distinct
ergodic ϕs-equilibrium states of A is 6, if 1 < s < 2, and 3, if otherwise, and every equilibrium
state is fully supported.

As an application of this main result we are able to solve a folklore open question concerning a
dimension drop on self-affine sets in dimension three. The question asks whether removing one of
the defining affine maps results in a strict reduction of the Hausdorff dimension. For certain highly
degenerate choices of the affine transformations fi it is possible to obtain counterexamples (for
example, see Example 9.3), so the question is about the generic behaviour. During recent years
the question has been propagated by Schmeling. There is some evidence that this result could be
used to calculate the dimension of a solenoid; see Hasselblat and Schmeling [20].

Theorem B. Let A = (A1, . . . , AN ) ∈ GL3(R)N be such that PA(ϕ3) ≤ 0 and ‖Ai‖ < 1
2 for all

i ∈ {1, . . . , N}. If E′v ⊂ Ev ⊂ R3 are nonempty compact sets satisfying

E′v =
N−1⋃
i=1

Ai(E
′
v) + vi and Ev =

N⋃
i=1

Ai(Ev) + vi

for all v = (v1, . . . , vN ) ∈ (R3)N , then

dimH(E′v) < dimH(Ev)

for L3N -almost all v ∈ R3N .

Theorem B is proved in §8 and the proof is actually a simple consequence of the aforementioned
variational principle and the fact that all the ϕs-equilibrium states are fully supported. The proof
of Theorem A, on the other hand, is more involved. This proof splits into three subcases all of
which are proved by using different methods. Observe that, by Feng and Käenmäki [16, Theorem
1.7], we may assume that 1 < s < 2. The following result is based on an investigation of the Zariski-
closed semigroup generated by A1, . . . , AN and is proved in §4. For the definitions of irreducible
and strongly irreducible matrix tuples the reader is referred to §3.3.

Theorem C. Let k ∈ {0, . . . , d − 1}, k < s < k + 1, and A ∈ GLd(R)N . If A∧k and A∧(k+1) are
both irreducible, and one of them is strongly irreducible, then there exists a unique ϕs-equilibrium
state of A and it is fully supported.

The requirement that A∧k or A∧(k+1) be strongly irreducible cannot be substantially reduced;
see Example 9.2 below. It is worthwhile to note that the ϕs-equilibrium state in the above theorem
satifies a certain Gibbs property; see Remark 4.2.

We will see that in the three-dimensional case, if A is strongly irreducible then Theorem C can
be applied to guarantee the existence of a unique ϕs-equilibrium state for all 1 < s < 2. In the
case where A is irreducible but not strongly irreducible we show in Proposition 7.3 that A is a
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tuple of generalized permutation matrices in some basis. A matrix A ∈ GLd(R) is a generalised
permutation matrix if every row and every column of A has exactly one nonzero entry. Note that
A is a generalised permutation matrix if and only if it permutes the coordinate axes of Rd. Let
Pd(R) ⊂ GLd(R) be the group of generalised permutation matrices. For this kind of tuple the
structure of ϕs-equilibrium states is described by the following theorem.

Theorem D. Let k ∈ {0, . . . , d−1}, k < s < k+1, and A ∈ Pd(R)N . Then the maximum possible

number of distinct ergodic ϕs-equilibrium states of A is (d − k)
(
d
k

)
and every equilibrium state is

fully supported.

We prove Theorem D in §5 and its proof is based on finding an appropriate higher-dimensional
auxiliary matrix tuple to which we can apply the theorem of Feng and Käenmäki [16, Theorem
1.7]. The remaining case to investigate in the proof of Theorem A is the reducible matrix tuples. In
this case, the matrices are block-upper triangular in some basis and hence, the following theorem
together with Proposition 7.5 settles the proof.

Theorem E. Let A = (A1, . . . , AN ) ∈ GLd(R)N and 0 < s < d. If there exist integers d1, . . . , d`

and real matrices A
(j,k)
i such that

∑`
i=1 di = d and

Ai =


A

(1,1)
i A

(1,2)
i · · · A

(1,`)
i

0 A
(2,2)
i · · · A

(2,`)
i

...
...

. . .
...

0 0 · · · A
(`,`)
i


for all i ∈ {1, . . . , N}, where each matrix A

(j,k)
i has dimension dj×dk, then the set of ϕs-equilibrium

states of A is precisely the set of ϕs-equilibrium states of A′ = (A′1, . . . , A
′
N ) ∈ GLd(R)N defined by

A′i =


A

(1,1)
i 0 · · · 0

0 A
(2,2)
i · · · 0

...
...

. . .
...

0 0 · · · A
(`,`)
i


for all i ∈ {1, . . . , N}.

Theorem E is proved in §6 and it substantially generalises the theorem of Falconer and Miao
[12, Theorem 2.5] which treated the upper triangular as opposed to block-upper triangular case.
Although Theorems C–E are stated in arbitrary dimension, together they completely describe
ϕs-equilibrium states only in dimension three. Some obstacles to our understanding of the higher-
dimensional case are discussed in detail in §7.3 below.

The remainder of the article is structured as follows. In the following section we introduce some
preliminary facts and lemmas common to the proofs of Theorems A to E. We then proceed to
prove Theorems C, D and E before combining these results in the proof of Theorem A. In the
penultimate section of this article we prove Theorem B. In the final section, we present examples to
show that the strong irreducibility criterion of Theorem C cannot be removed, that the conclusion
of Theorem B can fail for certain degenerate choices of vector v, and that that theorem can also
fail when the affinities fi are allowed to be non-invertible.

3. Preliminaries

3.1. Set of infinite words. Fix N ∈ N such that N ≥ 2 and equip the set of all infinite words
Σ = {1, . . . , N}N with the usual ultrametric: the distance between two different words is defined
to be 2−n, where n is the first place at which the words differ. It is straightforward to see that Σ
is compact. The left shift is a continuous map σ : Σ→ Σ defined by setting σ(i) = i2i3 · · · for all
i = i1i2 · · · ∈ Σ.
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Let Σ∗ be the free monoid on {1, . . . , N}. The concatenation of two words i ∈ Σ∗ and j ∈ Σ∗∪Σ
is denoted by ij ∈ Σ∗ ∪ Σ. The set Σ∗ is the set of all finite words {∅} ∪

⋃
n∈N Σn, where

Σn = {1, . . . , N}n for all n ∈ N and ∅ satisfies ∅i = i∅ = i for all i ∈ Σ∗. For notational
convenience, we set Σ0 = {∅}. The word i2 · · · in ∈ Σn−1 is denoted by σ(i) for all n ∈ N and
i = i1 · · · in ∈ Σn.

The length of i ∈ Σ∗ ∪ Σ is denoted by |i|. If i ∈ Σ∗, then we set [i] = {ij ∈ Σ : j ∈ Σ} and
call it a cylinder set. If j ∈ Σ∗ ∪ Σ and 1 ≤ n < |j|, we define j|n to be the unique word i ∈ Σn

for which j ∈ [i]. If j ∈ Σ∗ and n ≥ |j|, then j|n = j.

3.2. Multilinear algebra. We recall some basic facts about the exterior algebra and tensor prod-
ucts. Let {e1, . . . , ed} be the standard orthonormal basis of Rd and define

∧kRd = span{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ d}

for all k ∈ {1, . . . , d} with the convention that ∧0Rd = R. Recall that the wedge product ∧ : ∧k
Rd ×∧jRd → ∧k+jRd is an associative and bilinear operator, anticommutative on the elements of
Rd. This means that

v ∧ w = (−1)kjw ∧ v (3.1)

for all v ∈ ∧kRd and w ∈ ∧jRd. If v ∈ ∧kRd can be expressed as a wedge product of k vectors of Rd,
then v is said to be decomposable. Observe that e.g. e1 ∧ e2 + e3 ∧ e4 ∈ ∧2R4 is not decomposable.
The Hodge star operator ∗ : ∧k Rd → ∧d−kRd is defined to be the bijective linear map satisfying

∗(ei1 ∧ · · · ∧ eik) = sgn(i1, . . . , id)eik+1
∧ · · · ∧ eid

for all 1 ≤ i1 < · · · < ik ≤ d, where 1 ≤ ik+1 < · · · < id ≤ d are such that {ik+1, . . . , id} =
{1, . . . , d} \ {i1, . . . , ik}, and sgn(i1, . . . , id) = 1 if (i1, . . . , id) is an even permutation of {1, . . . , d}
and sgn(i1, . . . , id) = −1 otherwise. It is straightforward to see that

∗(∗v) = (−1)k(d−k)v (3.2)

for all v ∈ ∧kRd.
The group of d× d invertible matrices of real numbers is denoted by GLd(R). This space has a

topology induced from Rd2 . If A ∈ GLd(R), we define an invertible linear map A∧k : ∧kRd → ∧kRd
by setting

(A∧k)(ei1 ∧ · · · ∧ eik) = Aei1 ∧ · · · ∧Aeik
and extending by linearity. Observe that A∧k can be represented by a

(
d
k

)
×
(
d
k

)
matrix whose

entries are the k × k minors of A. Using this and standard properties of determinants, it may be
shown that

(AB)∧k = (A∧k)(B∧k), (3.3)

i.e. A 7→ A∧k is a morphism between the corresponding multiplicative linear groups. Furthermore,
if α1(A) ≥ · · · ≥ αd(A) > 0 are the singular values of A, that is, the square roots of the eigen-
values of the positive definite matrix ATA, where AT is the transpose of A, then the products
αi1(A) · · ·αik(A) are the singular values of A∧k, for each 1 ≤ i1 < · · · < ik ≤ d. Furthermore, it is
straightforward to see that

∗(A∧kw) = A∧(d−k)(∗w) (3.4)

for all w ∈ ∧kRd.
The inner product on ∧kRd is defined by setting

〈v, w〉k = ∗(v ∧ ∗w) (3.5)

for all v, w ∈ ∧kRd. Thus, by (3.2) and (3.1), we have

∗v ∧ ∗w = 〈∗v, w〉d−k e1 ∧ · · · ∧ ed = 〈w, ∗v〉d−k e1 ∧ · · · ∧ ed
= w ∧ ∗(∗v) = w ∧ (−1)k(d−k)v = (−1)2k(d−k)v ∧ w = v ∧ w

(3.6)
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for all v ∈ ∧kRd and w ∈ ∧d−kRd. The norm is defined by setting |v|k = 〈v, v〉1/2k for all v ∈ ∧kRd.
It follows that |v1 ∧ · · · ∧ vk|k is the k-dimensional volume of the parallelepiped with the vectors
v1, . . . , vk as sides. The operator norm of the induced linear mapping A∧k is

‖A∧k‖k = max{|A∧kv|k : |v|k = 1} = α1(A) · · ·αk(A). (3.7)

3.3. Irreducibility. Let A be a set of matrices in GLd(R). We say that A is irreducible if there
is no proper nontrivial linear subspace V of Rd such that A(V ) ⊂ V for all A ∈ A; otherwise
A is called reducible. The set A is strongly irreducible if there does not exist a set F which is
equal to a finite union of proper nontrivial linear subspaces of Rd and satisfies A(F ) ⊂ F for
all A ∈ A. Furthermore, a tuple A = (A1, . . . , AN ) ∈ GLd(R)N is irreducible (resp. strongly
irreducible) if the corresponding set {A1, . . . , AN} is irreducible (resp. strongly irreducible). If
A∧k = (A∧k1 , . . . , A∧kN ) is irreducible (resp. strongly irreducible) for some k ∈ {0, . . . , d}, then we
say that A is k-irreducible (resp. strongly k-irreducible). For each n ∈ N and i = i1 · · · in ∈ Σn we
write Ai = Ai1 · · ·Ain ∈ GLd(R).

Lemma 3.1. If A = (A1, . . . , AN ) ∈ GLd(R)N , then the following conditions are equivalent:

(1) The tuple A is irreducible.
(2) For every 0 6= v, w ∈ Rd there is i ∈ Σ∗ such that 〈v,Aiw〉 6= 0.
(3) For every 0 6= w ∈ Rd it holds that span({Aiw : i ∈ Σ∗}) = Rd.
(4) The set {Ai : i ∈ Σ∗} is irreducible.

Proof. The proof is similar to that of [13, Lemma 2.6] and hence omitted. �

Remark 3.2. For a tuple A = (A1, . . . , AN ) ∈ GL2(R)N of invertible 2× 2 matrices reducibility is
equivalent to the property that the matrices Ai can simultaneously be presented (in some coor-
dinate system) as upper triangular matrices; see [28, Remark 2.4(1)]. In the higher dimensional
case, by [16, Proposition 1.4], the reducible tuple A can be presented (in some coordinate system)
as a tuple of block-upper triangular matrices.

Lemma 3.3. Let k ∈ {0, . . . , d} and A = (A1, . . . , AN ) ∈ GLd(R)N . Then A is k-irreducible if
and only if A is (d− k)-irreducible.

Proof. By symmetry, we only need to prove the “only if” part. Indeed, fix 0 6= v, w ∈ ∧d−kRd
and notice that ∗v, ∗w ∈ ∧kRd. Recalling Lemma 3.1, the irreducibility of A∧k implies that there
exists i ∈ Σ∗ such that 〈∗v,A∧ki (∗w)〉k 6= 0. By (3.5), (3.4), and (3.6), we have

〈v,A∧(d−k)
i w〉d−k = ∗(v ∧ ∗(A∧(d−k)

i w)) = ∗(v ∧ (A∧ki (∗w)))

= ∗(∗v ∧ ∗(A∧ki (∗w))) = 〈∗v,A∧ki (∗w)〉k 6= 0,

where the bijectivity of A and of ∗ are required to show that ∗v and A∧ki (∗w) are nonzero. A
second application of Lemma 3.1 finishes the proof. �

3.4. Singular value function. Let k ∈ {0, . . . , d− 1} and k ≤ s < k+ 1. We define the singular
value function to be

ϕs(A) = ‖A∧k‖k+1−s
k ‖A∧(k+1)‖s−kk+1 = α1(A) · · ·αk(A)αk+1(A)s−k (3.8)

for all A ∈ GLd(R) with the convention that ‖A∧0‖0 = 1. Observe that (3.3) and the submulti-
plicativity of the operator norm imply

ϕs(AB) = ‖(AB)∧k‖k+1−s
k ‖(AB)∧(k+1)‖s−kk+1

≤ ‖A∧k‖k+1−s
k ‖B∧k‖k+1−s

k ‖A∧(k+1)‖s−kk+1 ‖B
∧(k+1)‖s−kk+1 = ϕs(A)ϕs(B)

(3.9)

for all A,B ∈ GLd(R). When s ≥ d, we set ϕs(A) = |det(A)|s/d for completeness.
If U, V ∈ GLd(R) are isometries, then ϕs(UAV ) ≤ ϕs(U)ϕs(A)ϕs(V ) = ϕs(A) for all A ∈

GLd(R), and by symmetry ϕs(A) ≤ ϕs(UAV ) since U−1 and V −1 are isometries as well. In
particular, ϕs(A) = ϕs(UAV ) whenever U and V are isometries. If A ∈ GLd(R) is a diagonal
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matrix then the singular values of A are simply the absolute values of the diagonal entries, so
clearly

ϕs(A) = max

{( k∏
i=1

‖Aui‖
)
‖Auk+1‖s−k : u1, . . . , uk+1 ∈ Sd−1 are pairwise orthogonal

}
(3.10)

for all diagonal matrices A ∈ GLd(R). Here Sd−1 is the unit sphere of Rd. Since, by the singular
value decomposition, every A ∈ GLd(R) can be written in the form A = UDV where U, V are
isometries and D is diagonal, it follows that (3.10) holds for all A ∈ GLd(R).

Fix A = (A1, . . . , AN ) ∈ GLd(R)N . If we let α = max{α1(Ai) : i ∈ {1, . . . , N}} and α =
min{αd(Ai) : i ∈ {1, . . . , N}} > 0, then it follows that

ϕs(Ai)α
δ|i| ≤ ϕs+δ(Ai) ≤ ϕs(Ai)α

δ|i|

for all δ ≥ 0 and i ∈ Σ∗. Moreover, (3.9) implies∑
i∈Σn+m

ϕs(Ai) ≤
(∑
i∈Σn

ϕs(Ai)

)( ∑
i∈Σm

ϕs(Ai)

)
(3.11)

for all n,m ∈ N. We define

PA(ϕs) = lim
n→∞

1
n log

∑
i∈Σn

ϕs(Ai) = inf
n∈N

1
n log

∑
i∈Σn

ϕs(Ai) (3.12)

and call it the singular value pressure of A. The limit above exists and equals to the infimum
by the standard theory of subadditive sequences. It is easy to see that, as a function of s, the
singular value pressure is continuous, strictly decreasing, and convex between any two consecutive
integers. Furthermore, since PA(ϕ0) = logN > 0 and lims→∞ PA(ϕs) = −∞ there exists unique
s ≥ 0 for which PA(ϕs) = 0. The minimum of d and this s is called the affinity dimension of A
and is denoted by dimaff(A).

It follows e.g. from [19, Corollary 8.6.2] that the singular value function ϕs(A) is continuous as
a function of A. Recently, it has been observed that the singular value pressure is continuous also
as a function of A. The following result is proved by Feng and Shmerkin [17, Theorem 1.2], and
subsequently re-proved by Morris [35, Theorem 2.2].

Theorem 3.4. If 0 < s < d, then the function A 7→ PA(ϕs) defined on GLd(R)N is continuous.

Let k ∈ {0, . . . , d−1} and k < s < k+1. We say that A is s-irreducible if for every vk, wk ∈ ∧kRd
and vk+1, wk+1 ∈ ∧k+1Rd there is i ∈ Σ∗ such that

〈vk, A∧ki wk〉k 6= 0 and 〈vk+1, A
∧(k+1)
i wk+1〉k+1 6= 0.

Observe that, by Lemma 3.1, if A is s-irreducible, then it is k-irreducible and (k + 1)-irreducible.
We say that A is ϕs-quasimultiplicative if there exists a constant c ≥ 1 and K ∈ N ∪ {0} so that

for every i, j ∈ Σ∗ there is k ∈
⋃K
k=0 Σk such that

ϕs(Ai)ϕ
s(Aj) ≤ cϕs(Aikj). (3.13)

The following lemma is similar to [13, Proposition 2.1], and is also a modification of [15, Proposition
2.8].

Lemma 3.5. Let k ∈ {0, . . . , d − 1} and k < t < k + 1. If A = (A1, . . . , AN ) ∈ GLd(R)N is
t-irreducible, then A is ϕs-quasimultiplicative for all k < s < k + 1.

Proof. We assume, contrary to the claim, that there exists k < s < k+1 such that for every K ∈ N
there are iK , jK ∈ Σ∗ so that

ϕs(AiKkjK ) < ϕs(AiK )ϕs(AjK )/K (3.14)
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for all k ∈ Σ∗ with |k| ≤ K. For each K ∈ N we choose vK,k, wK,k ∈ ∧kRd such that |vK,k|k =
|wK,k|k = 1 and

‖A∧kiK‖k = ‖(A∧kiK )∗‖k = |(A∧kiK )∗vK,k|k,

‖A∧kjK‖k = |A∧kjKwK,k|k.

Defining

v′K,k =
(A∧kiK )∗vK,k

‖A∧kiK‖k
and w′K,k =

A∧kjKwK,k

‖A∧kjK‖k
,

Cauchy-Schwarz inequality gives

〈v′K,k, A∧kk w′K,k〉k =
〈(A∧kiK )∗vK,k, A

∧k
kjK

wK,k〉k
‖A∧kiK‖k ‖A

∧k
jK
‖k

≤
‖A∧kiKkjK

‖k
‖A∧kiK‖k ‖A

∧k
jK
‖k

for all k ∈ Σ∗. We define v′K,k+1, w
′
K,k+1 ∈ ∧k+1Rd in an analogous way. Hence, by recalling (3.14)

and the definition of the singular value function (3.8), we get

〈v′K,k, A∧kk w′K,k〉k+1−s
k 〈v′K,k+1, A

∧(k+1)
k w′K,k+1〉s−kk+1 ≤ 1/K

for all k ∈ Σ∗ with |k| ≤ K. We may now choose a subsequence and elements vk, wk ∈ ∧kRd
and vk+1, wk+1 ∈ ∧k+1Rd with |vk|k = |wk|k = 1 = |vk+1|k+1 = |wk+1|k+1 so that v′K,k → vk,

w′K,k → wk, v
′
K,k+1 → vk+1, and w′K,k+1 → wk+1 when K →∞ along the subsequence. Therefore

〈vk, A∧kk wk〉k+1−s
k 〈vk+1, A

∧(k+1)
k wk+1〉s−kk+1 = 0

for all k ∈ Σ∗. This contradicts the hypothesis of t-irreducibility. �

3.5. Equilibrium states. We denote the collection of all Borel probability measures on Σ by
M(Σ), and endow it with the weak∗ topology. We say that µ ∈ M(Σ) is fully supported if
µ([i]) > 0 for all i ∈ Σ∗. Let

Mσ(Σ) = {µ ∈M(Σ) : µ is σ-invariant},

where σ-invariance of µ means that µ([i]) = µ(σ−1([i])) =
∑N

i=1 µ([ii]) for all i ∈ Σ∗. Observe
that if µ ∈ Mσ(Σ), then µ(A) = µ(σ−1(A)) for all Borel sets A ⊂ Σ. We say that µ is ergodic if
µ(A) = 0 or µ(A) = 1 for every Borel set A ⊂ Σ with A = σ−1(A). Recall that the set Mσ(Σ) is
compact and convex with ergodic measures as its extreme points.

If µ ∈Mσ(Σ), then we define the entropy h of µ by setting

h(µ) = lim
n→∞

1
n

∑
i∈Σn

−µ([i]) logµ([i]) = inf
n∈N

1
n

∑
i∈Σn

−µ([i]) logµ([i]).

In addition, if A = (A1, . . . , AN ) ∈ GLd(R)N , then we define the ith Lyapunov exponent of µ by
setting

λA(αi, µ) = lim
n→∞

1
n

∑
i∈Σn

µ([i]) logαi(Ai)

for all i ∈ {1, . . . , d}. Furthermore, if k ∈ {0, . . . , d− 1} and k < s < k + 1, then we define

λA(ϕs, µ) = lim
n→∞

1
n

∑
i∈Σn

µ([i]) logϕs(Ai) = inf
n∈N

1
n

∑
i∈Σn

µ([i]) logϕs(Ai)

= λA(α1, µ) + · · ·+ λA(αk, µ) + (s− k)λA(αk+1, µ).

Recalling (3.9) and the fact that µ is invariant, the limits above exist and equal the infimums of
the corresponding sequences by the standard theory of subadditive sequences.

An application of Jensen’s inequality yields PA(ϕs) ≥ h(µ) + λA(ϕs, µ) for all µ ∈ Mσ(Σ) and
s ≥ 0. Given ergodic µ ∈ Mσ(Σ) the number s for which h(µ) + λA(ϕs, µ) = 0 is called the
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Lyapunov dimension of µ. A measure µ ∈ Mσ(Σ) is called an ϕs-equilibrium state of A if it
satisfies the following variational principle:

PA(ϕs) = h(µ) + λA(ϕs, µ).

Käenmäki [27, Theorems 2.6 and 4.1] proved that for each A ∈ GLd(R)N and s ≥ 0 there exists
an ergodic ϕs-equilibrium state of A; see also [31, Theorem 3.3]. The example of Käenmäki and
Vilppolainen [31, Example 6.2] shows that such an equilibrium state is not necessarily unique.

As a first observation on the structure of the set of all equilibrium states, we recall the following
result of Käenmäki and Reeve [28, Theorem A].

Theorem 3.6. If 0 ≤ s ≤ d and A = (A1, . . . , AN ) ∈ GLd(R)N is ϕs-quasimultiplicative, then
there exists a unique ϕs-equilibrium state of A and it is fully supported.

By Lemma 3.5, we thus have introduced a condition on matrices to guarantee the uniqueness
of the equilibrium state.

Similarly to (3.12), given A = (A1, . . . , AN ) ∈ GLd(R)N and s ≥ 0, we define

PA(‖ · ‖s) = lim
n→∞

1
n log

∑
i∈Σn

‖Ai‖s

and call it the norm pressure of A. Note that PA(‖ · ‖s) = PA(ϕs) for all 0 ≤ s ≤ 1. If µ ∈Mσ(Σ),
then we also set

λA(‖ · ‖s, µ) = sλA(α1, µ) = lim
n→∞

1
n

∑
i∈Σn

µ([i]) log ‖Ai‖s.

It follows that PA(‖·‖s) ≥ h(µ)+λA(‖·‖s, µ) for all µ ∈Mσ(Σ) and s ≥ 0. A measure µ ∈Mσ(Σ)
is called a ‖ · ‖s-equilibrium state of A if

PA(‖ · ‖s) = h(µ) + λA(‖ · ‖s, µ).

The following theorem is proved by Feng and Käenmäki [16, Theorem 1.7].

Theorem 3.7. If s ≥ 0 and A ∈ GLd(R)N , then there exist at most d distinct ergodic ‖ · ‖s-
equilibrium states of A and they are all fully supported. Furthermore, if A is irreducible, then the
equilibrium state is unique.

As remarked in [16, §3], it has the following corollary which further gives information about the
structure of the set of all equilibrium states.

Theorem 3.8. If s ∈ (0, 1) ∪ (d − 1, d) ∪ {0, . . . , d} and A ∈ GLd(R)N , then there exist at most(
d
s

)
, if s is an integer, and d, if otherwise, distinct ergodic ϕs-equilibrium states of A, and they are

all fully supported.

Observe that together with the non-uniqueness observation [31, Example 6.2] this immediately
results in a two-dimensional version of Theorem A.

4. A geometric argument

In this section, we prove Theorem C. Recalling Lemma 3.5 and Theorem 3.6, its proof follows
after we have shown the following proposition.

Proposition 4.1. Let k ∈ {0, . . . , d − 1} and ∅ 6= S ⊂ GLd(R) be a k-irreducible and (k + 1)-
irreducible semigroup. If there exist nonzero vk, wk ∈ ∧kRd and vk+1, wk+1 ∈ ∧k+1Rd such that

〈vk, A∧kwk〉k 〈vk+1, A
∧(k+1)wk+1〉k+1 = 0,

for all A ∈ S, then S is neither strongly k-irreducible nor strongly (k + 1)-irreducible.

Before going into the proof, we remark that, instead of just being fully supported, the unique
ϕs-equilibrium state of A found in Theorem C satisfies a certain Gibbs property. The original
formulation of Theorem 3.6 in [28] implies this immediately. Since this fact is not needed in our
considerations, we only state it in the following remark for possible future reference.
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Remark 4.2. Let k ∈ {0, . . . , d − 1}, k < s < k + 1, and A ∈ GLd(R)N . If A∧k and A∧(k+1) are
both irreducible, and one of them is strongly irreducible, then there exists a unique ϕs-equilibrium
state µ of A and it satisfies the following property: there exists C ≥ 1 depending only on A and s
such that

C−1e−nPA(ϕs)ϕs(Ai) ≤ µ([i]) ≤ Ce−nPA(ϕs)ϕs(Ai)

for all i ∈ Σ∗.

We recall some elementary facts of algebraic geometry. Let us say that a function p : GLd(R)→
R is a polynomial if it maps each matrix A = [aij ]

d
i,j=1 to the same polynomial function of the

variables1 a11, . . . , add and (detA)−1. The Zariski topology on GLd(R) is then defined to be the
smallest topology in which every set of the form {A ∈ GLd(R) : p(A) = 0} is closed. The Zariski
topology has the following important property, called the descending chain condition: if (Zn)∞n=1 is
a sequence of Zariski-closed sets such that Zn+1 ⊂ Zn for every n ∈ N, then (Zn)∞n=1 is eventually
constant. This property implies that a set is Zariski closed if and only if it is the intersection of
the zero loci of a finite collection of polynomials.

The following result is well-known, but we include a proof for the convenience of the reader who
may be unfamiliar with algebraic geometry.

Lemma 4.3. Let S ⊂ GLd(R) be a semigroup. Then the Zariski closure of S is a Lie group and
has finitely many connected components.

Proof. In this proof all closures are taken with respect to the Zariski topology. To avoid triviality
we assume S to be nonempty. We observe that if A ∈ GLd(R) then the preimage under left-
multiplication by A of a Zariski-closed set Z =

⋂
p∈P {B ∈ GLd(R) : p(B) = 0} is the set A−1Z =⋂

p∈P {B ∈ GLd(R) : p(AB) = 0}, which is also Zariski-closed since B 7→ p(AB) is a polynomial.

It follows that left multiplication by A defines a Zariski continuous map from GLd(R) to itself.
Since left-multiplication by A−1 is also Zariski continuous it follows that left-multiplicaiton by
any A ∈ GLd(R) induces a Zariski homeomorphism of GLd(R). Similar remarks apply to right
multiplication, and we deduce that in particular AX = AX and XA = XA for every set X ⊂
GLd(R).

To begin the proof of the lemma let us show that the Zariski closure S is a semigroup, that is,
that AB ∈ S for all A,B ∈ S. Obviously SA ⊂ S for all A ∈ S and therefore SA = SA ⊂ S
for every A ∈ S. Thus SS ⊂ S. If A ∈ S we thus have in particular AS ⊂ S and therefore
AS = AS ⊂ S. We conclude that for every A,B ∈ S we have AB ∈ S as claimed.

Let us now show that S is in fact a group, for which it suffices to show that A−1S ⊂ S for
every A ∈ S. Let A ∈ S. The sequence of sets (AnS)∞n=1 is a descending sequence of Zariski-
closed subsets of GLd(R) and by the descending chain condition it is eventually constant. Thus
AnS = An+1S for some integer n, and by left multiplication by A−n−1 we have A−1S = S. It
follows that S is a group as claimed.

Since S is Zariski closed it is the intersection of the zero loci of some finite collection of real
polynomials. Such a set is well-known to have only finitely many connected components with
respect to the standard topology (see e.g. [7]). It therefore remains only to show that S is a Lie
group: but since S is closed in the Zariski topology it is closed in the standard topology, and by
a celebrated theorem of von Neumann ([32, Theorem 20.10]) every subgroup of GLd(R) which is
closed in the standard topology is a Lie group. �

We recall that every real Lie group admits a natural real-analytic structure and that every Lie
group homomorphism is analytic. If G is a Lie group then we let G◦ denote the identity component
of G, that is, the unique connected component of G which contains the identity element. Recall

1The conventional inclusion of the variable (detA)−1 is motivated by the fact that each entry of the matrix A−1 is
then a polynomial function of the matrix A. However, our interest in polynomials is essentially restricted to their use
in defining the Zariski topology on GLd(R). In particular since detA is itself a polynomial function of the variables
a11, . . . , add, the class of Zariski-closed sets which we consider is unaffected if the variable (detA)−1 is omitted.
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that, if V is a real vector space, then Aut(V ) is the group of all automorphisms of V , i.e. the
set of all bijective linear transformations V → V , together with functional composition as group
operation. The set End(V ) is the collection of all endomorphisms of V , i.e. the collection of all
linear transformations V → V .

Lemma 4.4. Let G be a real Lie group and for each i ∈ {1, 2} let Vi be a finite-dimensional real
vector space with inner product 〈·, ·〉Vi, ρi : G → Aut(Vi) an irreducible Lie group representation,
and ui, vi ∈ Vi nonzero vectors. Suppose that

〈u1, ρ1(g)v1〉V1 〈u2, ρ2(g)v2〉V2 = 0

for all g ∈ G. Then for each i ∈ {1, 2} there exists a nonzero vector v̂i ∈ Vi such that 〈ui, ρi(g)v̂i〉Vi =
0 for all g ∈ G◦.

Proof. Let us define Xi = {g ∈ G : 〈ui, ρi(g)vi〉Vi = 0} for i ∈ {1, 2}. Obviously G = X1 ∪ X2

and each Xi is closed. We claim that neither Xi is equal to G. Indeed, if Xi = G then defining
Ui = span{ρi(g)vi : g ∈ G} ⊂ Vi we find that ρi(g)Ui = Ui for every g ∈ G. Since Ui is contained
in the orthogonal complement of ui 6= 0 it is a proper subspace of Vi, and since Ui contains
vi 6= 0 it is not the zero subspace. It follows that the representation ρi : G→ Aut(Vi) is reducible,
contradicting the hypotheses of the lemma. This completes the proof of the claim.

Since G = X1 ∪ X2 and X1 is a closed proper subset of G, the set X2 contains the nonempty
open set G \ X1. Similarly X1 contains the nonempty open set G \ X2. For each i ∈ {1, 2}
let `i : End(Vi) → R be the linear mapping given by `i(A) = 〈ui, Avi〉Vi for every A ∈ End(Vi).
The composition `i ◦ ρi : G→ R is consequently real analytic and is zero on Xi, which contains a
nonempty open set. By analyticity it therefore follows that `i◦ρi is zero on a connected component
Hi of G.

For each i ∈ {1, 2} choose any gi ∈ Hi. Since right multiplication by gi induces a Zariski
homeomorphism of G the set G◦gi is a closed and open subset of G, and since G◦ contains the
identity, G◦gi contains gi. It follows that G◦gi = Hi for all i ∈ {1, 2}. In particular, we have

〈ui, ρi(g)ρi(gi)vi〉Vi = 〈ui, ρi(ggi)vi〉Vi = 0

for every g ∈ G◦. Taking v̂i = ρi(gi)vi ∈ Vi completes the proof of the lemma. �

Proof of Proposition 4.1. Let G be the Zariski closure of S, which by Lemma 4.3 is a Lie subgroup
of GLd(R) with finitely many connected components. The set of all A ∈ GLd(R) such that

〈vk, A∧kwk〉k 〈vk+1, A
∧(k+1)wk+1〉k+1 = 0 (4.1)

is the zero set of a polynomial function GLd(R) → R and hence is Zariski closed. Since this set
contains S, it contains the Zariski closure of S and therefore every A in G satisfies (4.1).

Define Lie group representations ρ1 : G → Aut(∧kR) and ρ2 : G → Aut(∧k+1R) by A 7→ A∧k

and A 7→ A∧(k+1), respectively. If ρ1 were reducible then G, and hence S, would preserve a
proper nonzero linear subspace of ∧kRd, contradicting the hypothesis that S is k-irreducible. It
follows that ρ1 is an irreducible representation, and similarly ρ2 is irreducible since S is (k + 1)-
irreducible. Lemma 4.4 thus implies that there exist nonzero ŵk ∈ ∧kRd and ŵk+1 ∈ ∧k+1Rd such
that 〈vk, A∧kŵk〉k = 0 and 〈vk+1, A

∧(k+1)ŵk+1〉k+1 = 0 for all A ∈ G◦.
Let us define linear subspaces U1 of ∧kRd and U2 of ∧k+1Rd by

U1 = span{A∧kŵk : A ∈ G◦} and U2 = span{A∧(k+1)ŵk+1 : A ∈ G◦}.
Clearly U1 is a proper subspace of ∧kRd since it is contained in the orthogonal complement of
vk, and similarly U2 is a proper subspace of ∧k+1Rd. It is also clear that A∧kU1 ⊂ U1 and
A∧(k+1)U2 ⊂ U2 for every A ∈ G◦, which by the invertibility of A implies A∧kU1 = U1 and
A∧(k+1)U2 = U2 for every A ∈ G◦.

We claim that if A,B ∈ G belong to the same connected component of G then A∧kU1 = B∧kU1.
To see this fix B ∈ G and note that BG◦ is a closed and open subset of G which contains B;
thus, BG◦ is the connected component of B. In particular if A is in the same component as
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B then A ∈ BG◦ and therefore B−1A ∈ G◦. It follows that (B−1A)∧kU1 = U1 and therefore
A∧kU1 = B∧kU1. In the same manner it follows that if A,B ∈ G belong to the same connected
component of G then A∧(k+1)U2 = B∧(k+1)U2.

Let us define

X1 =
⋃
A∈G

A∧kU1 and X2 =
⋃
A∈G

A∧(k+1)U2.

Obviously A∧kX1 = X1 and A∧(k+1)X2 = X2 for every A ∈ G. By the preceding claim, the
number of distinct subspaces A∧kU1 as A ranges over G is no greater than the number of connected
components of G, which is finite. Thus X1 is equal to the union of finitely many proper nonzero
linear subspaces of ∧kRd. Similarly X2 is a finite union of proper nonzero subspaces of ∧k+1Rd.
Since X1 is preserved by A∧k for every A ∈ S ⊂ G it follows that S is not strongly k-irreducible, and
by similar consideration of X2, S is not strongly (k + 1)-irreducible. The proof of the proposition
is complete. �

5. Permutation matrices

In this section, we prove Theorem D by showing that the ϕs-equilibrium states of generalised
permutation matrices can be understood via the ‖·‖-equilibrium states of certain auxiliary matrices.
Recall that Pd(R) ⊂ GLd(R) is the group of generalised permutation matrices and that A ∈ Pd(R)
if every row and every column of A has exactly one nonzero entry. Observe that A is a generalised
permutation matrix if and only if there exist a bijection πA : {1, . . . , d} → {1, . . . , d} and nonzero
real numbers a1, . . . , ad such that Aei = aieπA(i) for all i ∈ {1, . . . , d}. If A,B ∈ Pd(R), then clearly

ABei = aπB(i)bie(πA◦πB)(i) (5.1)

for all i ∈ {1, . . . , d}.
Fix k ∈ {0, . . . , d−1}, k < s < k+1, and d′ = (d−k)

(
d
k

)
. Let Sk,d be the set of all k-combinations

of {1, . . . , d}. Denote the standard basis of Rd by {e1, . . . , ed} and let the standard basis of Rd′ be
relabelled as

{eS,i : S ∈ Sk,d and i ∈ {1, . . . , d} \ S}.
If A ∈ Pd(R), then let πA : {1, . . . , d} → {1, . . . , d} be a bijection and a1, . . . , ad nonzero real
numbers such that Aei = aieπA(i) for all i ∈ {1, . . . , d}. Setting

hs(A)eS,i =

(∏
j∈S
|aj |
)
|ai|s−keπA(S),πA(i)

defines a mapping hs : Pd(R)→ Pd′(R).

Lemma 5.1. The mapping hs : Pd(R)→ Pd′(R) is a homomorphism and ϕs(A) = ‖hs(A)‖ for all
A ∈ Pd(R).

Proof. The norm of a generalised permutation matrix A ∈ Pd(R) is simply the maximum of the
absolute values of its entries, and the singular values are the absolute values of the nonzero entries
listed in decreasing order. It follows that

ϕs(A) = max
1≤i1,...,ik+1≤d

ij 6=i`

|ai1 · · · aik ||aik+1
|s−k = max

S∈Sk,d

i∈{1,...,d}\S

(∏
j∈S
|aj |
)
|ai|s−k = ‖hs(A)‖.

To check that hs is a homomorphism, let A,B ∈ Pd(R) respectively satisfy Aei = aieπA(i) and
Bei = bieπB(i) for all i ∈ {1, . . . , d}. For every S ⊂ {1, . . . , d} and i ∈ {1, . . . , d} \ S we have

hs(B)eS,i =

(∏
j∈S
|bj |
)
|bi|s−keπB(S),πB(i)
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and similarly for A. Therefore,

hs(A)hs(B)eS,i =

( ∏
j′∈πB(S)

|aj′ |
)(∏

j∈S
|bj |
)
|aπB(i)|s−k|bi|s−ke(πA◦πB)(S),(πA◦πB)(i).

On the other hand, by (5.1), we have

hs(AB)eS,i =

(∏
j∈S
|aπB(j)bj |

)
|aπB(i)bi|s−ke(πA◦πB)(S),(πA◦πB)(i)

and hence, hs(AB) = hs(A)hs(B) as required. �

With the auxiliary matrices given by hs, we may now apply Theorem 3.7.

Proposition 5.2. Let k ∈ {0, . . . , d − 1}, k < s < k + 1, and A = (A1, . . . , AN ) ∈ Pd(R)N .
Then µ is a ϕs-equilibrium state of A if and only if it is a ‖ · ‖-equilibrium state of hs(A) =

(hs(A1), . . . , hs(AN )). In particular, there are at most (d − k)
(
d
k

)
distinct ergodic ϕs-equilibrium

states of A and they are all fully supported.

Proof. By Lemma 5.1, we have

PA(ϕs) = Phs(A)(‖ · ‖) and λA(ϕs, µ) = λhs(A)(‖ · ‖, µ)

for all µ ∈Mσ(Σ). This implies that the two sets of equilibrium states are identical. The number
of ergodic ϕs-equilibrium states of A is therefore equal to the number of ergodic ‖ · ‖-equilibrium

states of hs(A). By Theorem 3.7, this number is bounded above by the dimension (d − k)
(
d
k

)
of

the matrices hs(Ai). Moreover, each of the ergodic equilibrium state is fully supported. �

To finish the proof of Theorem D it only requires to show that the upper bound (d−k)
(
d
k

)
found

in Proposition 5.2 can be attained. This is done in the following proposition.

Proposition 5.3. Let k ∈ {0, . . . , d− 1}, k < s < k + 1, and A = (A1, . . . , Ad) ∈ Pd(R)d be such
that Aiei = 2ei and Aiej = ej for all i, j ∈ {1, . . . , d} with i 6= j. Then the number of distinct

ergodic ϕs-equilibrium states of A is precisely (d− k)
(
d
k

)
.

Proof. Let d′ = (d − k)
(
d
k

)
. By Proposition 5.2, it is sufficient to show that the d-tuple of d′-

dimensional matrices hs(A) = (hs(A1), . . . , hs(Ad)) has precisely d′ distinct ergodic ‖·‖-equilibrium
states. Observe that the matrix hs(Ai) satisfies

hs(Ai)eS,j =


eS,j , if i /∈ S ∪ {j},
2eS,j , if i ∈ S,
2s−keS,j , if i = j,

for all i, j ∈ {1, . . . , d}. In particular, each hs(Ai) is diagonal. Therefore, by [16, Theorem
1.7], an ergodic measure µ is a ‖ · ‖-equilibrium state of hs(A) if and only if there exists a
basis element eS,j such that µ is a ‖ · ‖-equilibrium state of the d′-tuple of 1 × 1 matrices
hs(A)eS,j = (|hs(A1)eS,j |, . . . , |hs(Ad)eS,j |) and such that the norm pressure of hs(A)eS,j is maximal
with respect to the choice of (S, j).

To prove the proposition it therefore suffices to show that if (S1, i1) 6= (S2, i2) then the norm
pressures of hs(A)eS1,i1 and hs(A)eS2,i2 are the same but their ‖ · ‖-equilibrium states are different.
Indeed, for j ∈ {1, 2} the norm pressures are simply given by

Phs(A)eSj,ij
(‖ · ‖) = log

( d∑
i=1

|hs(Ai)eSj ,ij |
)

= log(2k + 2s−k + d− k − 1) = log(2s−k + d+ k − 1)

since exactly k summands equal 2, exactly one summand equals 2s−k, and the remaining d− k− 1
summands equal 1. The two norm pressures are therefore equal as desired. Now let µ1 and µ2
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denote the respective ‖·‖-equilibrium states corresponding to the distinct pairs (S1, i1) and (S2, i2).
For j ∈ {1, 2} the measure µj is the unique Bernoulli measure on Σ such that

µj([i]) =
|hs(Ai)eSj ,ij |

2s−k + d+ k − 1

for every i ∈ {1, . . . , d}. If i1 6= i2, then |hs(Ai1)eS1,i1 | = 2s−k but |hs(Ai1)eS2,i2 | is either 1 or
2 depending on whether i1 ∈ S2, so µ1([i1]) 6= µ2([i1]). On the other hand, if S1 6= S2 then for
i ∈ S14S2 one of the values |hs(Ai)eS1,i1 | and |hs(Ai)eS2,i2 | equals 2 and the other equals either

1 or 2s−k, and therefore µ1([i]) 6= µ2([i]). We conclude that the number of distinct ergodic ‖ · ‖-
equilibrium states of hs(A) equals the number of distinct basis elements (S, j) which is of course
precisely d′. �

We note that the ϕs-equilibrium states of A ∈ GLd(R)N cannot in general be represented as

‖·‖t-equilibrium states of a collection of auxiliary matrices of dimension strictly less than (d−k)
(
d
k

)
.

If this were the case then the maximum number of ϕs-equilibrium states of A would have to be
strictly less than (d− k)

(
d
k

)
, contradicting Proposition 5.3.

6. Block upper-triangular matrices

In this section, we prove Theorem E. To that end, we will first state and prove a technical
lemma which allows us to estimate the singular value function of a block upper triangular matrix
by the singular value function of the corresponding block diagonal matrix.

Lemma 6.1. If 0 < s < d and A,A′ ∈ GLd(R) are such that

A =

(
B C
0 D

)
and A′ =

(
B 0
0 D

)
for some square matrices B and D, then ϕs(A) ≥ ϕs(A′).

Proof. By the singular value decomposition there exist isometries U1, V1, U2, V2 and diagonal ma-
trices G1, G2 such that

U1BV1 = G1 and U2DV2 = G2.

Since ϕs(UAV ) = ϕs(A) whenever U and V are isometries it follows that

ϕs(A) = ϕs
((

U1 0
0 U2

)(
B C
0 D

)(
V1 0
0 V2

))
= ϕs

(
G1 U1CV2

0 G2

)
,

where we note that the final matrix is upper triangular, and

ϕs(A′) = ϕs
((

U1 0
0 U2

)(
B 0
0 D

)(
V1 0
0 V2

))
= ϕs

(
G1 0
0 G2

)
,

where we observe the final matrix to be diagonal. We therefore lose no generality by assuming A
to be upper triangular and A′ diagonal. If k ∈ {0, . . . , d− 1} is such that k < s < k + 1, then, by
(3.10), we have

ϕs(B) = max

{( k∏
i=1

‖Bui‖
)
‖Buk+1‖s−k : u1, . . . , uk+1 ∈ Sd−1 are pairwise orthogonal

}
for all B ∈ GLd(R). For A′ it is clear that this maximum is attained by taking u1, . . . , uk+1 to
be an appropriate subset of the standard basis. In this case, we clearly have ‖Aui‖ ≥ ‖A′ui‖ for
every i ∈ {1, . . . , k + 1}, and therefore ϕs(A) ≥ ϕs(A′) as claimed. �

Theorem E may be obtained by a repeated application of the following proposition. Its proof is
based on the continuity of the singular value pressure and the previous lemma.
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Proposition 6.2. Let l ∈ {1, . . . , d− 1} and A = (A1, . . . , AN ) ∈ GLd(R)N be such that

Ai =

(
Bi Ci
0 Di

)
for every i ∈ {1, . . . , N}, where Bi ∈ GLl(R), Di ∈ GLd−l(R), and the matrices Ci have dimension
l × (d− l). If A′ = (A′1, . . . , A

′
N ) ∈ GLd(R) is such that

A′i =

(
Bi 0
0 Di

)
for all i ∈ {1, . . . , N}, then the set of all ϕs-equilibrium states of A is precisely the set of all
ϕs-equilibrium states of A′ for all 0 < s < d.

Proof. Let µ be a ϕs-equilibrium state of A. For each ε > 0 let us define Aε = (Aε1, . . . , A
ε
N ) by

setting

Aεi =

(
Bi εCi
0 Di

)
=

(
ε1/2I 0

0 ε−1/2I

)(
Bi Ci
0 Di

)(
ε−1/2I 0

0 ε1/2I

)
for all i ∈ {1, . . . , N}, where I denotes the l× l or (d− l)× (d− l) identity matrix as appropriate.
Since Aε is conjugate to A it has the same singular value pressure and the same ϕs-equilibrium
states. Thus µ is a ϕs-equilibrium state of Aε for all ε > 0. Observe that the function

B 7→ λB(ϕs, µ) = inf
n∈N

1
n

∑
i∈Σn

µ([i]) logϕs(Bi)

defined on GLd(R)N is an infimum of continuous functions and hence upper semi-continuous. It
follows that

λA′(ϕ
s, µ) ≥ lim sup

ε↓0
λAε(ϕs, µ)

and hence

h(µ) + λA′(ϕ
s, µ) ≥ lim sup

ε↓0
PAε(ϕs) = PA′(ϕ

s)

by Theorem 3.4. Therefore µ is a ϕs-equilibrium state of A′.
To show the other direction, let µ be a ϕs-equilibrium state of A′. Recall that PA(ϕs) = PAε(ϕs)

by conjugacy and limε↓0 PAε(ϕs) = PA′(ϕ
s) by Theorem 3.4. Therefore, by Lemma 6.1, we have

PA(ϕs) = PA′(ϕ
s) = h(µ) + λA′(ϕ

s, µ) ≤ h(µ) + λA(ϕs, µ) ≤ PA(ϕs)

and µ is a ϕs-equilibrium state of A. �

7. The three-dimensional case

In this section, we give the proof of Theorem A, which proceeds though a series of cases. If
0 < s ≤ 1 or 2 ≤ s < 3, then the claim follows immediately from Theorem 3.8 and Proposition 5.3,
so we assume 1 < s < 2 throughout the section. Furthermore, if A = (A1, . . . , AN ) ∈ GLd(R)N

is ϕs-quasimultiplicative, then the result follows from Theorem 3.6, so we assume throughout
the section that this is not the case. Observe that if A is strongly irreducible then A∧2 must
be irreducible by Lemma 3.3 and therefore Theorem 4.1 and Lemma 3.5 show that A must be
ϕs-quasimultiplicative. Thus, our standing assumptions in this section imply that A cannot be
strongly irreducible. In this section, we let ρ(A) denote the spectral radius of the matrix A.

7.1. The irreducible case. We first consider the case in which A is irreducible but not ϕs-
quasimultiplicative. We begin our analysis with a pair of lemmas.

Lemma 7.1. If A = (A1, . . . , AN ) ∈ GL3(R)N is irreducible and ρ(Ai) = 1 for every i ∈ Σ∗, then
there exists M > 1 such that ‖Ai‖ ≤M for every i ∈ Σ∗.
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Proof. By a well-known theorem of Berger and Wang (see e.g. [8, 11, 9]), if ρ(Ai) = 1 for every
i ∈ Σ∗ then it follows immediately that the joint spectral radius

lim
n→∞

max
|i|=n

‖Ai‖1/n

is equal to 1. This implies the boundedness of the set {Ai : i ∈ Σ∗} by e.g. [25, Theorem 2.1]. �

Lemma 7.2. If A = (A1, . . . , AN ) ∈ GL3(R)N is irreducible, and for every i ∈ Σ∗ the three
eigenvalues of Ai all have the same modulus, then A is ϕs-quasimultiplicative for all 0 < s < 3.

Proof. Fix 0 < s < 3. By replacing each Ai with |det(Ai)|−1/dAi if necessary, we may assume
without loss of generality that every Ai has determinant ±1 and therefore every Ai has all eigen-
values of modulus 1. In particular ρ(Ai) = ρ(A−1

i ) = 1 for every i ∈ Σ∗. By the previous lemma
it follows that {Ai : i ∈ Σ∗} is bounded, and applying this reasoning to (A−1

1 , . . . , A−1
N ) it follows

that {A−1
i : i ∈ Σ∗} is bounded also. Thus there exists a constant M > 1 such that for every

i ∈ Σ∗
M−1 ≤ ‖A−1

i ‖−1 = αd(Ai) ≤ αd−1(Ai) ≤ · · · ≤ α1(Ai) = ‖Ai‖ ≤M
and consequently, M−s ≤ ϕs(Ai) ≤M s for all i ∈ Σ∗. It follows that for every i, j ∈ Σ∗

ϕs(Ai)ϕ
s(Aj) ≤M2s ≤M3sϕs(Aij)

and therefore A is ϕs-quasimultiplicative as claimed. �

If u ∈ R3 is a nonzero vector, let us write u for the one-dimensional subspace generated by u.
We may now demonstrate that in three dimensions the irreducible but not ϕs-quasimultiplicative
case may be reduced to the case of generalised permutation matrices studied in §5.

Proposition 7.3. Let 1 < s < 2 and A = (A1, . . . , AN ) ∈ GL3(R)N be irreducible such that A is
not ϕs-quasimultiplicative. Then there exists a basis of R3 with respect to which A ∈ P3(R)N .

Proof. Let G denote the group generated by A1, . . . , AN . Clearly it suffices to find a basis in which
every element of G is a generalised permutation matrix. If for every A ∈ G all of the eigenvalues
of A are equal in modulus then, by Lemma 7.2, A is ϕs-quasimultiplicative for all 0 < s < 3. Since
this contradicts the assumption we conclude that there exists A ∈ G whose eigenvalues are not all
equal in modulus.

It is sufficient to prove that there exist linearly independent vectors v1, v2, v3 ∈ R3 such that
{v1, v2, v3} is preserved by G. Taking these vectors to be a new basis yields the result. Since A
is not strongly irreducible (as pointed out in the beginning of this section) there exists a proper
nontrivial subspace V of R3 such that the orbit of V under the semigroup generated by A, and
therefore under G, is finite. We will prove the proposition in the case where V is a one-dimensional
space. If instead V is two-dimensional then the one-dimensional space V ⊥ has a finite orbit under
the irreducible group GT = {BT : B ∈ G} and so the conclusion of the proposition applies to GT .
Obviously if GT is simultaneously similar to a group of generalised permutation matrices then so
is G, and thus no generality is lost by the assumption dimV = 1.

Either A or A−1 has the property that its leading eigenspace is one-dimensional, and without
loss of generality we assume this to be A. Let u be the leading eigenspace of A and P the A-
invariant plane generated by its other two (generalised) eigenvectors. Let {v1, . . . , vn} denote the
orbit of V , which is a finite set of distinct one-dimensional subspaces of R3 which is preserved by
G. We will show that necessarily n = 3.

Let us first show that n ≥ 3. We also show that precisely one of the vi’s is transverse to P .
Indeed, if n ≤ 2 then the linear span of the subspaces vi would be a nontrivial proper subspace
of R3 which is invariant under G, contradicting irreducibility. Similarly, if every vi belongs to P ,
then the linear span of the vi’s is a proper nontrivial G-invariant subspace of R3, so at least one
vi is transverse to P . Now if vi is transverse to P then limn→∞Anvi = u since u is the leading
eigenspace of A. It follows that if vi is transverse to P then either vi = u or the orbit of vi under
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G is infinite, but the latter is a contradiction. We conclude that exactly one vi is equal to u and
the remainder are subspaces of P . Without loss of generality we take v1 = u.

Let us then show that n ≤ 3. By irreducibility, the span of the subspaces v2, . . . , vn is not
invariant under G, so there exist B ∈ G and v` with ` > 1 such that Bv` = v1. In particular v` is
a subspace of P . Assuming contrarily that n ≥ 4, we may choose vj and vk which are subspaces
of P and are not equal to v`. In particular Bvj , Bvk ∈ P since only v` is mapped outside P by B.

Since P is two-dimensional we may write v` = αvj +βvk for some α, β 6= 0. We have Bv` = v1 = u

which is transverse to P , but since Bvj , Bvk are subspaces of P we have Bv` = αBvj + βBvk ∈ P
which is a contradiction. We conclude that n = 3 and the set {v1, v2, v3} is preserved by G. Since
v1 is transverse to P , and v2, v3 belong to P and are distinct from one another, {v1, v2, v3} is
linearly independent. The result follows. �

The case of Theorem A in which A is irreducible but not ϕs-quasimultiplicative now follows by
combining Proposition 7.3 with Theorem D.

7.2. The reducible case. If A is simultaneously upper triangularisable, then, by Theorem E,
the ϕs-equilibrium states of A are the same as those of the corresponding diagonal matrices. By
Theorem D, these equilibrium states are fully supported and at most six ergodic equilibrium states
exist. The remaining reducible cases may be reduced as follows.

Proposition 7.4. Let 0 < s < 3 and A = (A1, . . . , AN ) ∈ GL3(R)N be reducible but not si-
multaneously upper triangularisable. Then there exist (b1, . . . , bN ) ∈ (R \ {0})N and irreducible
C = (C1, . . . , CN ) ∈ GL2(R)N such that the ϕs-equilibrium states of A are precisely the ϕs-
equilibrium states of the tuple A′ = (A′1, . . . , A

′
N ) in which

A′i =

(
bi 0
0 Ci

)
for all i ∈ {1, . . . , N}.

Proof. If A preserves a 1-dimensional subspace of R3, then there exist (b1, . . . , bN ) ∈ (R \ {0})N ,
C = (C1, . . . , CN ) ∈ GL2(R)N , 1 × 2 matrices D1, . . . , DN , and a change of basis matrix X such
that

X−1AiX =

(
bi Di

0 Ci

)
for all i ∈ {1, . . . , N}. If C is reducible, then by a further change of basis we see that A is
simultaneously upper triangularisable which is a contradiction, so C must be irreducible. By
Theorem E, the set of equilibrium states is unchanged if we replace the matrices Di with zero.
This completes the proof in the case where A preserves a 1-dimensional subspace.

If A preserves a 2-dimensional subspace of R3, then there instead exist (b1, . . . , bN ) ∈ (R\{0})N ,
C = (C1, . . . , CN ) ∈ GL2(R)N , 2 × 1 matrices D1, . . . , DN , and a change of basis matrix X such
that

X−1AiX =

(
Ci Di

0 bi

)
for all i ∈ {1, . . . , N}. If C is reducible then A is upper triangularisable which is a contradiction,
so we again find that C is irreducible. Again, by Theorem E, the set of equilibrium states is
unchanged if we replace the matrices Di with zero. Since0 1 0

0 0 1
1 0 0

−1(
Ci 0
0 bi

)0 1 0
0 0 1
1 0 0

 =

(
bi 0
0 Ci

)
for all i ∈ {1, . . . , N} we have finished the proof. �

The following result now suffices to complete the proof of Theorem A.
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Proposition 7.5. Let 1 < s < 2 and A = (A1, . . . , AN ) ∈ GL3(R)N be such that

Ai =

(
bi 0
0 Ci

)
for all i ∈ {1, . . . , N}, where B = (b1, . . . , bN ) ∈ (R \ {0})N and C = (C1, . . . , CN ) ∈ GL2(R)N is
irreducible. Then there exist at most three distinct ergodic ϕs-equilibrium states of A and they are
all fully supported.

Proof. If ν ∈ Mσ(Σ) is ergodic then it is easily seen that the three Lyapunov exponents of ν are
λC(α1, ν), λC(α2, ν), and λB(α1, ν) in some order, with λC(α2, ν) not preceding λC(α1, ν). Thus
there are three possibilities:

(1) λB(α1, ν) ≥ λC(α1, ν) ≥ λC(α2, ν),
(2) λC(α1, ν) ≥ λB(α1, ν) ≥ λC(α2, ν),
(3) λC(α1, ν) ≥ λC(α2, ν) ≥ λB(α1, ν).

Let µ ∈Mσ(Σ) be an ergodic ϕs-equilibrium state of A. By the definition, it satisfies

h(µ) + λA(ϕs, µ) = sup{h(ν) + λA(ϕs, ν) : ν ∈Mσ(Σ)}.
Observe that, since 1 < s < 2, we respectively have three possibilities:

(1) λA(ϕs, ν) = λB(α1, ν) + (s− 1)λC(α1, ν),
(2) λA(ϕs, ν) = λC(α1, ν) + (s− 1)λB(α1, ν),
(3) λA(ϕs, ν) = λC(α1, ν) + (s− 1)λC(α2, ν),

for all ν ∈Mσ(Σ). We treat these three cases separately and show that, in each case, µ is a ‖ · ‖t-
equilibrium state of an auxiliary irreducible matrix tuple for some t > 0. By Theorem 3.7, this
auxiliary tuple has exactly one ‖ ·‖t-equilibrium state and this equilibrium state is fully supported.
It follows that at most three possible candidates exist for the ergodic ϕs-equilibrium state µ of A,
and all three are fully supported.

In the first case, we choose the auxiliary irreducible tuple of matrices A′ = (A′1, . . . , A
′
N ) ∈

GL2(R)N such that A′i = |bi|1/(s−1)Ci for all i ∈ {1, . . . , N}. Since

λA(ϕs, ν) = λB(α1, ν) + (s− 1)λC(α1, ν) = (s− 1)λA′(α1, ν)

for all ν ∈ Mσ(Σ) we see that µ is a ‖ · ‖s−1-equilibrium state of A′. In the second case, we let
A′′ = (A′′1, . . . , A

′′
N ) ∈ GL2(R)N be such that A′′i = |bi|s−1Ci for all i ∈ {1, . . . , N}. We note that

λA(ϕs, ν) = λC(α1, ν) + (s− 1)λB(α1, ν) = λA′′(α1, ν)

for all ν ∈Mσ(Σ) and therefore µ is a ‖ · ‖-equilibrium state of the irreducible matrix tuple A′′. In

the third case, we define A′′′ = (A′′′1 , . . . , A
′′′
N ) ∈ GL2(R)N such that A′′′i = |det(Ci)|(2−s)/(s−1)Ci

for all i ∈ {1, . . . , N}. Since

λA(ϕs, ν) = λC(α1, ν) + (s− 1)λC(α2, ν) = (s− 1)λA′′′(α1, ν)

for all ν ∈Mσ(Σ) we conclude that µ is a ‖ · ‖s−1-equilibrium state of the irreducible matrix tuple
A′′′. �

7.3. Remarks on higher-dimensional cases. It is instructive to count the ways in which these
arguments are inadequate for the problem of understanding ϕs-equilibrium states in four dimen-
sions. Firstly in four dimensions there exist cases where A is strongly irreducible but A∧2 is
reducible (this can occur for example if A ∈ SO(4)N ) and therefore Theorem C cannot be applied,
so additional arguments are required in order to understand the strongly irreducible case. Sec-
ondly if A is irreducible but not strongly irreducible it may fail to be the case that A preserves a
finite union of 1-dimensional or 1-codimensional subspaces. Thus the reduction to a generalised
permutation matrix is impossible, and additional arguments are required in this case too. Thirdly,
in the reducible case one encounters A = (A1, . . . , AN ) of the form

Ai =

(
Bi 0
0 Ci

)
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where (B1, . . . , BN ) ∈ GL2(R)N and (C1, . . . , CN ) ∈ GL2(R)N are both irreducible. Currently we
do not know of any mechanism for resolving this case.

8. Affinity dimension

Knowing that ϕs-equilibrium states are fully supported, we may further study the properties
of the singular value pressure. We will observe that, as a consequence of Theorem A, removing
one matrix from the tuple A causes a strict drop in the value of the singular value pressure at
every s ∈ [0, d]. This, together with Falconer [14, Theorem 5.3], will then imply Theorem B. We
remark that the two-dimensional version of this result is known; it follows from Theorem 3.8. Also,
the result holds in any class of self-affine sets where the dimension is obtained from the affinity
dimension.

Proposition 8.1. Let 0 ≤ s ≤ d and A = (A1, . . . , AN ) ∈ GLd(R)N . If all the ϕs-equilibrium
states of A are fully supported and A′ = (A1, . . . , AN−1) ∈ GLd(R)N−1, then PA′(ϕ

s) < PA(ϕs).
Moreover, if PA(ϕd) ≤ 0, then dimaff(A′) < dimaff(A).

Proof. Let µ ∈Mσ(Σ) be a ϕs-equilibrium state of A. Then

h(ν) + λA(ϕs, ν) < h(µ) + λA(ϕs, µ) = PA(ϕs, µ) (8.1)

for all ν ∈ Mσ(Σ) which are not ϕs-equilibrium states of A. If ν ∈ Mσ(Σ) is a ϕs-equilibrium
state of A′, then it is supported on {1, . . . , N − 1}N ( Σ and thus, by the assumption, it cannot
be a ϕs-equilibrium state of A. Therefore, (8.1) gives the first claim. The second claim follows
immediately from this since the singular value pressure, as a function of s, is continuous and strictly
decreasing. �

Remark 8.2. If A = (A1, . . . , AN ) ∈ GLd(R)N , all the ϕs-equilibrium states of A are fully sup-
ported, and Γ is a proper nonempty closed subset of Σ satisfying σ(Γ) ⊂ Γ, then we may similarly
show that

lim
n→∞

1
n log

∑
i∈Γn

ϕs(Ai) < PA(ϕs).

Note that the limit above exists since i ∈ Γn and j ∈ Γm whenever ij ∈ Γn+m; see [31, §2]. Here
Γn = {i|n ∈ Σn : i ∈ Γ}. Indeed, there exists i ∈ Σ∗ which does not appear in any element of Γ;
see [29, §2.1]. Since Γ ⊂ {j1j2 · · · ∈ Σ : |jk| = |i| and jk 6= i for all k ∈ N} and, by iterating, we
may assume that |i| = 1 the claim follows from Proposition 8.1.

9. Examples

In the final section, we present couple of examples. In Example 9.2, we demonstrate that the
irreducible but not quasimultiplicative case considered in the course of the proof of Theorem A in
§7.1 is nonempty. In Example 9.3, we exhibit degenerate self-affine sets for which Theorem B does
not hold.

Lemma 9.1. Let A = (A1, A2) ∈ GL3(R)2 be such that

A1 =

0 a 0
0 0 b
c 0 0

 and A2 = AT1 =

0 0 c
a 0 0
0 b 0

 ,

where a, b, c ∈ R\{0} and at least two of the numbers a2, b2, c2 are distinct. Then A is irreducible.

Proof. Let us suppose for a contradiction that A is reducible. Clearly the common invariant
subspace has dimension either 1 or 2. We may assume that it has dimension 1. Indeed, if it has
dimension 2, then its orthogonal complement has dimension 1 and is preserved by AT1 and AT2 , i.e.
A2 and A1. This 1-dimensional space must be an eigenspace of A1 and of A2 and therefore the
two matrices commute on it, so A1A2 −A2A1 maps this subspace to zero.
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To complete the proof we will show that ker(A1A2 −A2A1) cannot contain a subspace which is
invariant under either A1 or A2. Since

A1A2 =

a2 0 0
0 b2 0
0 0 c2

 and A2A1 =

c2 0 0
0 a2 0
0 0 b2


we have

A1A2 −A2A1 =

a2 − c2 0 0
0 b2 − a2 0
0 0 c2 − b2

 .

If a2, b2, c2 are all distinct, then the determinant of this matrix is nonzero and its kernel is simply
{0}. Otherwise the numbers a2, b2, c2 take exactly two distinct values and so exactly one of
the diagonal entries is zero. This implies that ker(A1A2 − A2A1) is one of the three coordinate
axes. Since there is no coordinate axis that is preserved by either A1 or A2 we have achieved a
contradiction. �

Example 9.2. In this example, we exhibit an irreducible tuple A of 3 × 3 matrices for which the
ϕs-equilibrium state is not unique. Let d = 3, k = 1 < s < 2, and note that (d−k)

(
d
k

)
= 6. Choose

λ ∈ R such that |λ| /∈ {0, 1} and define

A1 =

0 0 λ
1 0 0
0 λ 0

 , and A2 =

0 1 0
0 0 λ
λ 0 0

 .

By Lemma 9.1, we see that A = (A1, A2) ∈ GL3(R)2 is irreducible. The basis for R6 used in
Proposition 5.1 is then given by e{1},2, e{2},3, e{3},1, e{1},3, e{2},1, e{3},2, and in this basis we have

hs(A1) =


0 0 |λ| 0 0 0

|λ|s−1 0 0 0 0 0
0 |λ|s 0 0 0 0
0 0 0 0 0 |λ|s
0 0 0 |λ|s−1 0 0
0 0 0 0 |λ| 0


and

hs(A2) =


0 |λ|s−1 0 0 0 0
0 0 |λ|s 0 0 0
|λ| 0 0 0 0 0
0 0 0 0 |λ|s−1 0
0 0 0 0 0 |λ|
0 0 0 |λ|s 0 0

 ,

where hs : P3(R)→ P6(R) is as in Proposition 5.1. Thus, if we write

B1 =

 0 0 |λ|
|λ|s−1 0 0

0 |λ|s 0

 , B2 =

 0 |λ|s−1 0
0 0 |λ|s
|λ| 0 0

 ,

D1 =

 0 0 |λ|s
|λ|s−1 0 0

0 |λ| 0

 , D2 =

 0 |λ|s−1 0
0 0 |λ|
|λ|s 0 0

 ,

then

hs(A1) =

(
B1 0
0 D1

)
and hs(A2) =

(
B2 0
0 D2

)
.
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By Lemma 9.1, both B = (B1, B2) ∈ GL3(R)2 and D = (D1, D2) ∈ GL3(R)2 are irreducible.
Defining

X = X−1 =

0 1 0
1 0 0
0 0 1

 ,

it is easy to see that

XB1X
−1 = D2 and XB2X

−1 = D1.

Indeed, it suffices only to check one of these two equations directly, since the relations BT
1 = B2,

DT
1 = D2, andXT = X−1 = X imply that taking the transpose of either equation transforms it into

the other. In particular, it follows that B and D have the same norm pressure, PB(‖ ·‖) = PD(‖ ·‖).
By Corollary 5.2, the ϕs-equilibrium states of A are precisely the ‖ · ‖-equilibrium states of

(hs(A1), hs(A2)), and by Theorem 3.7, or more precisely, by [16, Theorem 1.7], the ergodic ‖ · ‖-
equilibrium states of that pair of matrices are precisely the ergodic ‖ · ‖-equilibrium states of the
two pairs B and D. By irreducibility, it follows that B and D have exactly one ‖ · ‖-equilibrium
state each, which we denote by µB and µD, respectively, and

h(µB) + λB(‖ · ‖, µ) = PB(‖ · ‖) = PD(‖ · ‖) = h(µD) + λD(‖ · ‖, µ).

To show that A has exactly 2 ergodic ϕs-equilibrium states it is therefore necessary and sufficient
to show that µB 6= µD.

It was also shown in [16, Theorem 1.7] that the measures µB and µD satisfy the following Gibbs
property: there exists C ≥ 1 such that

C−1e−|i|PB(‖·‖)‖Bi‖ ≤ µB([i]) ≤ Ce−|i|PB(‖·‖)‖Bi‖
and

C−1e−|i|PD(‖·‖)‖Di‖ ≤ µD([i]) ≤ Ce−|i|PD(‖·‖)‖Di‖
for all i ∈ Σ∗. In particular, by the spectral radius formula, this implies

lim
n→∞

µB([in])1/n = e−|i|PB(‖·‖) lim
n→∞

‖Bn
i ‖1/n = e−|i|PB(‖·‖)ρ(Bi)

and

lim
n→∞

µD([in])1/n = e−|i|PD(‖·‖) lim
n→∞

‖Dn
i ‖1/n = e−|i|PD(‖·‖)ρ(Di) = e−|i|PB(‖·‖)ρ(Di)

for all i ∈ Σ∗. Here in is the n times concatenation of i. It follows, in particular, that if µB = µD,
then ρ(Bi) = ρ(Di) for every i ∈ Σ∗. (In fact, also the converse holds; see [34].) To show that
µB 6= µD we exhibit a word i such that ρ(Bi) 6= ρ(Di). Since ρ(AAT ) = ρ(ATA) = ‖A‖2 for every
A ∈ GLd(R) we have

ρ(B2
1B2B1B

2
2) = ρ(B2

1B2(B2
1B2)T ) = ‖B2

1B2‖2,
ρ(D2

1D2D1D
2
2) = ρ(D2

1D2(D2
1D2)T ) = ‖D2

1D2‖2.

So to demonstrate that µB 6= µD it is sufficient to show that ‖B2
1B2‖ 6= ‖D2

1D2‖. Since 1 < s < 2
we find that if |λ| > 1 then

‖B2
1B2‖ =

∥∥∥∥∥∥
 0 0 |λ|2s+1

|λ|s+1 0 0
0 |λ|3s−2 0

∥∥∥∥∥∥ = |λ|2s+1,

and

‖D2
1D2‖ =

∥∥∥∥∥∥
 0 0 |λ|s+2

|λ|3s−1 0 0
0 |λ|2s−1 0

∥∥∥∥∥∥ = max
{
|λ|s+2, |λ|3s−1

}
< |λ|2s+1

so that ‖B2
1B2‖ < ‖D2

1D2‖. If on the other hand 0 < |λ| < 1 then

‖D2
1D2‖ = |λ|2s−1 > max

{
|λ|s+1, |λ|3s−2

}
= ‖B2

1B2‖.
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We conclude that in either case ρ(B2
1B2B1B

2
2) 6= ρ(D2

1D2D1D
2
2), so µB and µD are distinct as

claimed and therefore A has exactly two ergodic ϕs-equilibrium states.

Example 9.3. In this example, we exhibit degenerate self-affine sets for which the property described
in Theorem B does not hold. Although, for simplicity, the examples are presented in dimension
two, the same phenomenon arises also in dimension three.

(1) Let

A =

(
1
3 0
0 1

5

)
and B =

(
1
2 0
0 1

4

)
,

and define fi : [0, 1]2 → [0, 1]2 by setting

f1(x) = Ax+ (0, 4
10), f4(x) = Bx+ (0, 1

4),

f2(x) = Ax+ (1
3 ,

4
10), f5(x) = Bx+ (1

2 ,
1
4).

f3(x) = Ax+ (2
3 ,

4
10),

The self-affine set associated to these five mappings is clearly [0, 1]× {1
2}. It is equally clear that

[0, 1]×{1
2} is the self-affine set associated to any chosen four mappings. Thus there is no dimension

drop when one mapping is removed.
(2) Let

A =

(
1
3 0
0 1

4

)
and B =

(
1
3 0
0 0

)
,

and define fi : [0, 1]2 → [0, 1]2 by setting

f1(x) = Ax, f4(x) = Bx+ (0, 3
8),

f2(x) = Ax+ (1
3 ,

3
4), f5(x) = Bx+ (0, 1

2),

f3(x) = Ax+ (2
3 , 0), f6(x) = Bx+ (0, 5

8).

It should be emphasised that the matrix B is not invertible and therefore this example lies beyond
the scope of the results in §2. Let F =

⋃3
i=1 fi(F ) and E =

⋃6
i=1 fi(E) be the self-affine sets

corresponding to the first three and six mappings, respectively. Note that dimH(F ) = 1 and E

satisfies the strong separation condition. The set L =
⋃6
i=4 fi([0, 1]2) is a union of three line

segments and hence dimH(L) = 1. Since

E = L ∪
3⋃
i=1

fi(E) = F ∪
⋃

i∈
⋃∞

n=0{1,2,3}n
fi(L)

we have dimH(E) = max{dimH(F ), dimH(L)} = 1. Therefore, removing any of the mappings does
not drop the dimension.
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[1] K. Barański. Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math.,
210(1):215–245, 2007.
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