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Highlights 

 Nonlinear method for generating high-level musical features is proposed  

 Novel features capturing rhythmic complexity and event synchronicity were identified 

 Neural correlates of the new features have not been studied widely 

 Nonlinear methods can find interesting stimulus features hidden from linear methods  

 

Abstract 
Background: There has been growing interest towards naturalistic neuroimaging experiments, which deepen our 

understanding of how human brain processes and integrates incoming streams of multifaceted sensory 

information, as commonly occurs in real world. Music is a good example of such complex continuous 

phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, 

multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the 

linear combination of the acoustic descriptors computationally extracted from the stimulus audio. 

New method: fMRI data from naturalistic music listening experiment were employed here. Kernel principal 

component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set 

of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features 

were examined.    

Results: The generated features captured musical percepts that were hidden from the linear PCA features, namely 

Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations 

associated to processing of complex rhythms, including auditory, motor, and frontal areas.  
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Comparison with existing method: Results were compared with the findings in the previously published study, 

which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison 

of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. 

Conclusions: Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus 

features, which can in turn reveal new brain structures involved in music processing.  

Keywords: functional magnetic resonance imaging (fMRI), naturalistic fMRI, kernel PCA, music stimulus, musical 

features, feature generation  

1. Introduction 
Music, as an important part of human experience, has long been of interest for neuroimaging community. 

Traditionally, temporal structure of stimulus presentation has been controlled and stimuli have been simplified in 

fMRI experiments in order to maintain control over independent variables. Such experimental design limits 

replicating experience of music and other multifaceted phenomena as they occur in real life and therefore, do not 

provide an optimal framework for studying sensory or cognitive processing mechanisms of continuous information 

flow. Consequently, interest towards naturalistic neuroimaging experiments, where participants are exposed to 

continuous complex stimuli is growing (e.g. see [1]-[3]). Music possesses several inter-related perceptual attributes 

including loudness, timbre, tonality, and rhythm. Many excellent works have examined neural correlates of each 

attribute in isolation to understand neural processing of specific musical features [4]-[6]. However, musical 

dimensions are rarely processed independently from each other and growing evidence suggests that the brain 

areas involved in music processing is not a simple integration over the networks associated to its isolated 

attributes [7], [8]. Therefore, segregation of neural correlates of the musical features should be achieved in natural 

music listening contexts in order to observe simultaneous processing of multiple features as it typically takes place 

in real life [8].  

Functional MRI studies investigating activations in naturalistic music listening settings are scarce. Nevertheless, few 

attempts have been made recently. Abrams et al. [7] examined regions involved in music processing by comparing 

of synchronization between non-musician participants’ brain responses while listening to the recordings of 

classical music (musical stimuli) as well as their phase scrambled and spectrally rotated versions (pseudo-musical 

stimuli). Results revealed that synchrony across subjects in cortical and subcortical regions was significantly greater 

in response to musical compared to the pseudo-musical stimuli. With different objectives, Alluri and colleagues in 

[8] studied neural correlates of multiple musical features in an experiment where 11 musicians listened to a piece 

of modern tango in the fMRI scanner. A set of 25 descriptors were computationally extracted from the music 

stimulus. The descriptors were subsequently summarized in nine principal components, or stimulus features, 

capturing high-level timbral, tonal, and rhythmic aspects of music. Perceptual relevance of the components was 

validated in the perceptual experiment. Neural correlates of the stimulus features revealed large-scale consistent 

foci of activations in cortical and sub-cortical areas. Analogous stimulus feature generation scheme was employed 

in several subsequent studies with similar experimental setup [9]-[11].   

Interestingly, in [8] several brain areas showing high inter-subject consistency that failed to correlate with any of 

the stimulus features were also reported. Authors suggested an incomplete representation of stimulus as one 

possible explanation. In addition, two of the nine stimulus features had to be excluded in early stages of the 

analysis as they failed to significantly correlate with perceptual ratings from the validation experiment. These 

limitations might, among other possible reasons, stem from the existence of nonlinear patterns between the 

initially extracted 25 descriptors, which cannot be captured by linear PCA. In other domains, exploiting nonlinear 

patterns using KPCA-based features has shown to improve classification accuracy when compared to the 

performance of linear features [12]-[14]. This motivated us to explore application of nonlinear kernel PCA for 

generating perceptually relevant high-level features. This study employed the data from [8] (in the following will 
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be referred as original study) to generate alternative stimulus representation. Perceptual and neural correlates of 

the new stimulus features were obtained with the same methodology as in the original study, which enabled direct 

comparison of results.    

Section 2 details methodology for generating nonlinear stimulus features as well as finding perceptual and neural 

correlates of the generated features. Section 3 presents behavioral correlates and stimulus-driven spatial maps. 

Section 4 highlights findings and limitation of the present study. 

2. Materials and Methods  

2.1. Acoustic Feature Extraction and preprocessing 
Overall, 25 descriptors representing timbral, tonal, and rhythmic information were extracted from the overlapping 
windows. Window length was varied to facilitate different time scales of processing needed for different musical 
features. The shorter window length of 25ms with 50% overlap was selected for 20 low-level descriptors capturing 
polyphonic timbre of music. The longer windows spanning three seconds with 67% overlap were employed for the 
remaining more complex features capturing higher-level concepts, such as tonality and rhythm. These descriptors 
were adopted from the original study [8] where the complete list and descriptions are provided. All 25 descriptors 
in the initial set were centered and normalized with respect to their standard deviation, and downsampled to 0.5 
Hz to match fMRI sampling rate. After the initial preprocessing, the features were subjected to KPCA. The 
generated kernel principal components were finally convolved with the canonical hemodynamic response 
function. 
 

2.2. Kernel PCA  
Kernel PCA is an extension of the linear PCA for nonlinear data distributions where mapping into linear subspace is 
not useful [15], [16]. The method has gained popularity as a tool for finding useful image representations with 
wide variety of applications such as edge detection, handwriting recognition, and classification of various medical 
images.  
The most straightforward way to do nonlinear extension of PCA is to introduce a nonlinear mapping to (generally) 

higher dimensional feature space: 𝑋 → 𝜙(𝑥), calculate covariance  𝑉 = 𝜙(𝑥)𝜙(𝑥)𝑇 in the feature space and then 

solve the following eigenvalue problem: 

 𝐶𝑣 = λ𝑣   (1) 

Such mapping can become very expensive or infeasible as the dimensionality of 𝑋 increases. However, in certain 

cases it is possible to bypass the mapping step and directly calculate the dot product in the feature space. This is 

achieved by introducing a kernel function that replaces dot product in the feature space: 

 𝐾(𝑥, 𝑥) = 𝐸{𝜙(𝑥)𝜙(𝑥)𝑇} =
1

𝑚
∑ 𝜙(𝑥𝑖)𝜙(𝑥𝑖)

𝑇
𝑚

𝑖=1
 (2) 

This procedure, called ‘Kernel trick’ reduces mapping and dot product operations to kernel function estimation and 

can be applied as nonlinear extension of any linear method that depends exclusively dot products. Once kernel 

function is estimated, inserting (2) in (1) reformulates the eigenvalue problem:  

 
1

𝑚
∑ 𝜙(𝑥𝑖)𝜙(𝑥𝑖)

𝑇𝑣 = 𝜆𝑣
𝑚

𝑖=1
 (3) 

 By considering that all solutions of 𝑣 in (3) lie in the span of 𝜙(𝑥): 

 𝑣 = ∑ 𝑎𝑖𝜙(𝑥𝑖)
𝑚

𝑖=1
 (4) 
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and substituting (4) into (3), the eigenvalue problem can be expressed as: 

 𝐾𝑎 = λ𝑎 (5) 

 Finally, principal components can be obtained by projecting the sample onto the eigenvectors of the covariance 

matrix in the feature space: 

 〈𝑣, 𝜙(𝑥)〉 = ∑ 𝑎𝑖

𝑚

𝑖=1
𝐾(𝑥𝑖, 𝑥) (6) 

Many nonlinear functions are suitable as the kernel functions. The most common, Gaussian kernel was selected 
here:  

 𝑘𝑖𝑗 = exp (−
‖𝒙𝑖 − 𝒙𝑗‖

2

2𝜀2
) (7) 

 
where 𝑘𝑖𝑗  are the elements of the kernel matrix, and 𝒙𝑖 , 𝒙𝑗 are 𝑑 dimensional instances of 𝑋. The 𝜀 parameter was 

set as median of the minimum value of the distances between the data points i.e. 𝜀 = median
𝑖

min
𝑖≠𝑗

‖𝒙𝑖 − 𝒙𝑗‖. 

Consequently, 10 kernel PCA features were selected for further analysis, retaining about 90% of the variance in the 

data. More thorough derivation of kernel PCA can be found in e.g. [14]. 

2.3. Finding Perceptual correlates of KPCA features  
Perceptual interpretation of the generated kernel PCA features is not straightforward. As mentioned above, in the 

original study Alluri et al. applied PCA to the 25 initially extracted descriptors. The relevant musical percepts 

corresponding to each produced principal component (PC) was estimated by observing principal component 

loadings, i.e. contribution of each of the 25 initial features to the given PC. Consequently, the nine PC-s were 

associated with the following musical percepts: Fullness, Brightness, Timbral Complexity, Activity, Rhythmic 

Complexity, Event Synchronicity, Pulse Clarity, Key Clarity, and Mode. First four can be loosely defined as four 

dimensions of polyphonic timbre, following three represent different aspects of musical rhythm, and the remaining 

two relates to the tonality of music. The applied perceptual labels except Mode (excluded early from the analyses) 

were validated in the subsequent listening experiment, where 21 musicians rated short musical excerpts 

representing varying levels of each percept on scales from 1 to 9. To select the musical excerpts, entire stimulus 

piece was divided by six second moving windows with one-second step size, producing over 470 windows. Next, 

average PC values from all windows were extracted, sorted and 30 values were equidistantly sampled from the 

entire range. Principal components labelled as Rhythmic Complexity and Event Synchronicity failed to correlate 

with corresponding perceptual ratings and were excluded, leaving six validated features that were used in 

subsequent analyses of the original study.    

Unlike PCA, KPCA operates in higher dimensional feature space without explicitly mapping the input data in it. 

Thus, interpreting nonlinear acoustic components by observing the weights of the initial 25 descriptors in the 

resulting kernel PC-s is not applicable here. Following a more heuristic approach, we employed the 9 sets of 30 

short stimulus excerpts and human ratings from the listening experiment conducted in the original study. To this 

end, average values of the 10 kernel PCs were extracted from the musical excerpts and correlated to the 

corresponding perceptual ratings. Statistical significance of correlations was estimated by permutation tests: for 

each feature, average feature values from randomly sampled 30 windows were correlated with randomly selected 

rating multiple (100 000) times. The threshold of significance for correlation coefficients was derived from the 

resulting distribution.  
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In addition to the significance of correlations, we required for a given set of 30 samples to capture majority (at 

least 80%) of the entire range of feature values. Otherwise, correlation (even significant) was rejected. This 

constraint was introduced to be concordant with the sampling criterion originally applied to the linear features. As 

mentioned above, Alluri et al. [8] selected stimulus excerpts such that the entire dynamic range of the PCA 

features was equidistantly sampled, and consequently participants of the experiment rated the excerpts spanning 

all levels of the given feature value. The same set of audio excerpts represent arbitrary sampling for KPCA features, 

which in turn has two limitations if directly correlated with human ratings: 1) it increases chance of spurious 

correlation and 2) by possibly capturing a fraction of the feature range, it violates existing systematic relationship 

between the ratings and corresponding acoustic components. 

2.4. Finding stimulus related brain activations  
The dataset analyzed in this study was collected and preprocessed in the original study and consists of fMRI scans 

of eleven healthy musicians (mean age: 23.2; SD: 3.7; 5 females). Participants were instructed to listen attentively 

to an 8.5-minutes-long instrumental composition by Astor Piazzolla and maintain their gaze on the screen. The 

fMRI measurements were made in 3T scanner at sampling frequency of 0.5 Hz. Obtained fMRI scans went through 

the preprocessing routine, which included realignment, spatial normalization, smoothing and high-pass filtering at 

cutoff frequency of 0.008Hz to reduce effects of scanner drift.  

Following the approach employed in the original study, stimulus-driven activation maps were first obtained per 

subject and per stimulus feature by correlating fMRI voxel time series to the KPCA features. Correlation 

coefficients were converted to z score maps using Fisher’s z transformation, which were adjusted for serial 

correlations and converted to p-maps. Individual subject maps were then pooled to group maps using Fisher’s p-

value technique, such that one functional map was associated to each KPCA feature. The group maps were 

thresholded at p<0.001. Finally, significance thresholds for group maps were adjusted for multiple comparisons 

using cluster size thresholding. More detailed description of the analysis pipeline is provided in [8].  

The obtained group-level maps driven by the KPCA features (𝐾-maps) were compared with the PCA-driven maps 

(𝑃𝐶-maps) reported in the original study. Similarity between the spatial maps was evaluated at global and 

individual level. At global level, a thresholded individual 𝐾-maps and 𝑃𝐶-maps were first combined, and the 

overlap between the combined maps was estimated by: 

𝑂𝑘𝑝 =
𝐾 ∩ 𝑃

|𝐾|
 (8) 

 
where 𝐾 and 𝑃 represent the voxels showing above-threshold activity in 𝐾-maps and 𝑃𝐶-maps respectively, |𝐾| is 

the number of active voxels in 𝐾-map. Such global comparison provided an overview of the shared and exclusive 

regions of activity. For the individual analysis, spatial correlation was calculated between the continuous valued 

(unthresholded) maps. Significance of correlations was assessed by permutation tests. The procedure was similar 

to the one implemented in [11]: one feature from each feature set (PCA and KPCA) was randomly selected and 

phase scrambled. Each randomized feature was voxel-wise correlated to the fMRI data from all participants. The 

subject-specific maps were subsequently averaged, producing one group map per feature. Finally, correlation 

between the pair of group maps was calculated. The process was repeated 11 000 times and the significance 

threshold for correlation was estimated from the resulting distribution. 
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3. Results 

3.1. Perceptual Correlates  
Table 1 contains correlations between the nonlinear features extracted from the audio excerpts and corresponding 

perceptual ratings. As evident from the table, majority of KPCA features were correlated significantly to the ratings 

of at least one musical percept. However, the constraint on spanned dynamic range was not satisfied in all cases 

and accordingly, 𝐾4, 𝐾5, and 𝐾10 were eliminated from further analysis. From the remaining features, 𝐾1 seemingly 

captured all four dimensions of polyphonic timbre and Pulse Clarity; 𝐾2 correlated with Brightness and Event 

Synchronicity; 𝐾3 and  𝐾6 were associated with the perceived Pulse Clarity and Key Clarity respectively, whereas 

 𝐾9 was correlated to Brightness and Rhythmic Complexity. Finally, no significant correlations were observed for 𝐾7 

and 𝐾8, which might indicate that they relate to the perceptual attributes that were not rated in the perceptual 

experiment.  

 𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕 𝑲𝟖 𝑲𝟗 𝑲𝟏𝟎 

Fullness 0.78** -0.23 0.33 0.21 -0.14 -0.27 0.09 -0.2 -0.09 0.13 

Brightness 0.39** 0.48** -0.02 0.1 -0.47 0.02 -0.03 0.33 0.39** -0.17 

T. Complexity 0.73** 0.08 0.22 0.33 -0.05 -0.07 -0.02 -0.22 0.11 -0.28 

R. Complexity -0.1 0.32 0.12 0.1 -0.28 -0.35 -0.33 0.31 0.38** -0.03 

Key Clarity 0.31 0.04 0.2 -0.17 -0.1 -0.53** 0.29 -0.15 -0.22 -0.21 

Pulse Clarity 0.74** -0.14 -0.38** 0.27 0.28 0.03 0.01 -0.04 -0.2 0.29 

E. Synchronicity 0.16 -0.65** 0.21 0.13 0.38 0.21 0.11 -0.32 -0.32 -0.38 

Activity 0.8** -0.11 0.23 0.44 -0.01 -0.1 -0.08 0.08 0.28 -0.3 

Table 1. Correlations between KPCA and perceptual ratings. Significance threshold r=±0.37 (p<0.05). ** indicates cases where 
correlation is significant, and the additional constraint holds. 

 

Strong association of the kernel features with the Event Synchronicity and Rhythmic Complexity ratings is very 

interesting finding, since these were among the musical percepts that did not validate in the perceptual 

experiment in the original study (see Table 2 in [8]). Neural correlates of these features are introduced in the 

following section.  

3.2. Neural correlates 
Similarity between the spatial maps at the global level is summarized in Table 2, where the sizes of combined 

binary maps and the overlap is provided. The size of the spatial map is defined by the number of voxels above the 

threshold of activation. Therefore, as the table shows, 76% of 9863 active voxels in the combined 𝐾-map are 

shared with the combined 𝑃𝐶-map. Figure 1 depicts the shared and exclusive regions of the two combined 

activation maps. As can be seen in the figure, auditory areas occupied the largest portion of the common areas. 

Elsewhere, overlapping clusters were observed in cerebellum, left precentral and bilateral postcentral gyri, 

bilateral inferior parietal gyrus, and right putamen. The unique areas associated with KPCA features (upper row in 

Figure 1) were mostly concentrated in frontal lobe, including bilateral superior frontal gyrus (SFG), middle frontal 

gyrus (MFG), inferior frontal gyrus (IFG), right precentral gyrus, as well as in cerebellum (crus I and II, vermis III, VII 

and VIII). In addition, activated clusters in visual processing-related areas (precuneus, right lingual gyrus and left 

middle and superior occipital gyri), bilateral anterior cingulate and paracingulate gyrus, and right paracentral 

lobule were also present.  

Figure 2 depicts activation maps corresponding to features 𝐾2 (Rhythmic Complexity) and 𝐾9 (Event Synchronicity), 
whereas correlations between 𝐾-maps and 𝑃𝐶-maps are provided in Table 3. These musical percepts were not 
represented by PCA features in the original study as corresponding principal components failed correlate 
significantly with the perceptual ratings. Interestingly, both features also predicted perceived brightness of timbre. 
Functional map of  𝐾2 consists of activations in auditory cortices (in the left hemispheric prominently), visual-
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processing related areas (precuneus) and some cerebellar areas. Left SMA and the right IFG tend to deactivate in 
response to this feature. As shown in Table 3, no significant correlations were observed between 𝐾2-map and any 
of the 𝑃𝐶-maps, although thresholded map shared predominantly auditory areas with timbral maps. In addition, 
𝐾2 map featured regions in right medial inferior orbitofrontal gyrus (negative correlation) and the left middle and 
superior occipital gyri (positive correlation), not reported in the original study.  Similarly, thresholded 𝐾9-map 
featured some overlap with timbral maps in auditory regions. Bilateral STG, MTG, right HG, and right superior 
temporal pole were observed to activate in response to 𝐾9, while small areas in left inferior parietal supramarginal 
and angular gyri, right postcentral gyrus, and right supramarginal gyrus showed deactivation.  
 
 From the remaining features, the largest activation map was driven by 𝐾1. Large scale activations included areas 

bilateral STG, Heschl’s gyrus (HG), rolandic operculum (RO), supramarginal gyrus, superior temporal pole, insula, 

MTG as well as some cerebellar regions. These areas were associated to processing of polyphonic timbre in the 

original study. Indeed, Table 3 reveals high similarity of with the activation maps associated to timbral features and 

Pulse clarity. Negatively correlated regions to 𝐾1 were located mainly in frontal and parietal lobes. We also 

observed few active clusters in occipital gyrus and orbitofrontal cortex that were not reported in the previous 

study.  

Functional map of 𝐾3 consisted of only a few hundred voxels, predominantly showing auditory area (bilateral STG 

and left MTG) and small cluster in postcentral gyrus.  

Finally, feature 𝐾6 was negatively correlated with perceived Key Clarity. Increased activation in clusters located in 

the left precuneus, left angular gyrus, left supramarginal gyrus and left lateralized deactivations in cerebellum, 

inferior frontal gyrus, median cingulate and paracingulate gyrus were observed in response to this feature. In the 

right hemisphere, deactivations in only two small clusters in right insula and right putamen were found.  

4. Discussion 
The present study explored application of kernel PCA for finding new perceptually meaningful auditory stimulus 

features for naturalistic fMRI experiment. In the previously published study [8] fMRI data from music listening 

experiment were collected to examine perceptual and neural correlates of the high-level musical features. These 

features were generated as the linear combination of 25 acoustic descriptors extracted from the music stimulus. In 

the present study, the same fMRI data was employed, and a new set of stimulus features were generated as 

nonlinear combinations of the initial acoustic descriptors. Perceptual and neural correlates of the new stimulus 

features were compared with the results in the original study. While the present study was built upon the data and 

methodology of the original study, exact replication of the previously reported spatial maps were not expected 

since stimulus features in the two studies were different.  

First, perceptual correlates of the stimulus features were examined. We found significant correlations between the 

majority of kernel PC-s and the perceptual ratings. More interestingly, the ratings of Event Synchronicity and 

Rhythmic Complexity were explained better by the kernel PC-s than by the linear PC-s. This finding indicates that 

the KPCA features are capable of capturing high-level musical percepts hidden from the linear PCA counterparts. 

Interestingly, it was also observed that KPCA features were significantly correlated with multiple perceptual ratings 

(see Table 1). While this can be beneficial for compactness of representation, it might also make features difficult 

to interpret. For example, as observed above 𝐾1 feature was simultaneously associated to perceived timbre and 

rhythm, which is not straightforward to explain. Nonetheless, existence of a latent link between perceived clarity 

of the main beat and color of the timbre is possible. Intriguingly, multiple associations were also found when linear 

acoustic components were correlated to all perceptual ratings. For example, in the original study acoustic 

component labeled as Fullness was reported to be significantly correlated with Fullness rating (𝑟 = 0.80; 𝑝 <

0.001). We found that Fullness component can successfully predict Timbral Complexity, Pulse Clarity and Activity 

ratings (𝑟 = 0.68, 𝑝 < 0.001;  𝑟 = 0.74, 𝑝 < 0.001; 𝑟 = 0.79, 𝑝 < 0.001 ). Lack of data is the most likely 
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explanation of such results. As mentioned in Section 2.3, in the perceptual experiment only 30 short audio samples 

were rated per scale. For the long stimulus piece lasting over seven minutes, 30 samples might capture large-scale 

dynamics of acoustic features but will miss fine details. This coarse representation is then further smoothed when 

the ratings are averaged across participants. Consequently, the ratings of different musical percepts will be more 

likely to exhibit very similar dynamics capturing only the most significant changes in music stimulus. Therefore, 

while served well for validation of already applied labels in the original study, the available behavioral rating data 

are probably not optimal to use for our purposes. The solution would be to collect more ratings in a new 

perceptual experiment, where the new sets of representative music excerpts are selected by equidistantly 

sampling KPCA features. Furthermore, the obtained excerpts should be rated on more perceptual scales than was 

available here, and more rigorous testing on inter-subject agreement should be performed before averaging the 

ratings. Alternatively, averaging the ratings can be avoided and instead correlation between a given feature and 

individual ratings can be averaged.    

Another important issue related to the feature generation is the selection of the kernel function and its 

parameters. Due to the absence of the evaluation strategy that would quantify ‘interestingness’ of the features in 

early stages of this study, the most commonly applied Gaussian kernel was chosen as a starting point. Kernel width 

for the Gaussian kernel was also estimated based on the commonly applied heuristics. There is a plenty of room 

for improvements in this regard. For instance, both the kernel and parameter selection can be defined as an 

optimization problem where objective is to maximize correlations between the generated features and the 

behavioral data. This should also reduce the number of discarded features that fail to correlate with the perceptual 

ratings.  

 

 

 

 Global map size (voxels) Overlap 

KPCA 9863 
0.76 

PCA 11468 

Table 2. Overlap of global thresholded KPCA map with the global thresholded PCA map. 

 

 𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑲𝟔 𝑲𝟗 

Fullness 0.98* -0.19 0.2 -0.09 0.42 

Brightness 0.9* 0.41 0.28 -0.12 0.46 

T. Complexity -0.69* -0.24 -0.8** -0.16 -0.67** 

Key clarity -0.04 -0.03 0.02 -0.41 -0.17 

Pulse clarity 0.68* -0.16 0.27 0.45 0.33 

Activity 0.99* -0.13 0.12 -0.12 0.44 

Table 3. Correlations between continuous K-maps and PC-maps. * denotes significant correlations (thresholds: r=±0.47 at 
p<0.05; r=±0.63 at p<0.01). 
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Figure 1. Shared (red) and exclusive (blue) regions between combined K-map and combined PC-map. Exclusive regions in 
combined K-map and PC-map are shown on top and bottom row, respectively. Note that polarity information is discarded here. 

 

As mentioned above, 𝐾2 and 𝐾9 predicted Event Synchronicity and, Rhythmic Complexity ratings better than the 

linear PCA features. Both are high-level musical percepts characterized by rhythmic fluctuations of energy in 

different frequency bands (fluctuation spectrum). Event synchronicity is the centroid of the fluctuation spectrum 

and roughly relates to the average of periodicities in different bands, while Rhythmic Complexity relates to the 

noisiness of the fluctuation spectrum. In addition, both kernel features were correlated with Brightness ratings. As 

these features were absent in the original study, neural correlates cannot be compared with the previous findings. 

Nevertheless, auditory areas comprise the majority of positive correlates for both feature maps. From the regions 

associated with 𝐾2, previous studies on neural processing of rhythm implicate auditory cortex, SMA and 

cerebellum to be involved in rhythm perception [17]-[20] . Recruitment of frontal areas such as the right IFG may 

denote aspects of temporal attention processing during the perception of complex rhythms. Work by Chen et al. 

[20] revealed that frontocortical areas including the IFG were modulated by complexity of the rhythm during an 

auditory-motor synchronization task, and that they were more extensively recruited in musicians than in non-

musicians. They argued this finding to underlie a greater involvement of working memory resulting from 

musicians’ superior ability to organize temporal structure. Interesting to highlight is also activation of visual 

processing regions (left middle and superior occipital gyri) in response of increased 𝐾2 and deactivation of right 

𝐾9 

Figure 2. Spatial maps of the selected KPCA features. Note that polarity information is preserved here. Red color 
denotes positive correlations and blue – negative correlations. 

𝐾2 
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supramarginal gyrus in response to 𝐾9, since visual areas have not been reported active in response to rhythm 

processing thus far. Nevertheless, the precuneus, another area associated with visuo-spatial processing and 

attention, was also found to be negatively correlated with the clarity of the pulse in the original study. Given the 

lack of studies on rhythm complexity, and above-mentioned issues on reliability of perceptual interpretation, 

further investigation is needed in order to achieve a proper interpretation behind the functional neuroanatomy of 

these musical percepts.  

To conclude, this study demonstrated that kernel PCA has the potential to produce features that capture novel 

musical percepts hidden from the linear features. Namely, two new rhythmic features representing periodicities in 

different bands of the frequency spectrum were identified. In addition to previously known anatomical regions 

involved in rhythm processing, visual processing areas were found to be associated with the new features. 

However, we recommend the highlighted limitations of this study to be addressed in future investigations before 

generalizing findings. 
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