
Anton Nikulin

Smart Prototype Selection for Machine Learning based on

Ignorance Zones Analysis

Master’s Thesis in Information Technology

March 25, 2018

University of Jyväskylä

Faculty of Information Technology

Author: Anton Nikulin

Contact information: annikuli@student.jyu.fi

Supervisor: Prof. Vagan Terziyan

Title: Smart Prototype Selection for Machine Learning based on Ignorance Zones Analysis

Project: Master’s Thesis

Study line: Web Intelligence and Service Engineering

Page count: 62+5

Abstract: The size of databases has been considerably growing over recent decades and

Machine Learning algorithms are not ready to process such large volume of information.

Being one of the most useful algorithms in Data Mining the Nearest neighbor classifier

suffers from high storage requirements and slow response when working with large data sets.

Prototype Selection methods help to alleviate this problem by choosing a subset of data with

a smaller size. In this thesis, the overview of existing instance selection methods is provided

together with the introduction of a new approach. The majority of current methods select

a subset experimentally by checking whether certain point affects classification accuracy or

not. The new approach, presented in this thesis, is based on analyzing data set instances

and choosing prototypes based on discovered ignorance zones. The results obtained from

the analysis show that the proposed method can effectively decrease the size of the data set

while maintaining the same classification accuracy with the Nearest neighbor classifier. In

addition, it allows removing noisy data making the decision boundaries smoother.

Keywords: Prototype selection, Nearest neighbor, Ignorance zones, Data reduction, Classi-

fication

i

Glossary

CNN Condensed Nearest neighbor

DROP Decremental Reduction Optimization Procedures

DRT Data Reduction Techniques

FCNN Fast Condensed Nearest neighbor

GAN Generative Adversarial Network

NN Nearest neighbor

PCA Principal Component Analysis

PG Prototype Generation

PS Prototype Selection

PSC Prototype Selection by Clustering

SNN Selective Nearest neighbor

ii

List of Figures
Figure 1. Two- and three-point ignorance zones and ignorance focuses. 10
Figure 2. Ignorance zones and ignorance focuses in artificial data sets. 12
Figure 3. Parents of ignorance zones selected for classification in Wine data set 18
Figure 4. Training sets and misclassified points of full, smart and random classifiers

for Breast Cancer data set . 21
Figure 5. Parents of ignorance zones in Bupa and Transfusion data sets . 24
Figure 6. 1-parent ignorance zones in rectangular domain . 29
Figure 7. Selected prototypes for Iris data set based on regular and expanded rectan-

gular domains . 31
Figure 8. 1-parent ignorance zones formed as inscribed circles in circular domain. 33
Figure 9. Incremental algorithm with inscribed circles . 35
Figure 10. 1-parent ignorance zones produced with Gabriel principle . 36
Figure 11. Incremental algorithm with circle domain and Gabriel principle 36
Figure 12. 1-parent ignorance zones produced with Relative principle . 38
Figure 13. Incremental algorithm with circle domain and Relative principle 39
Figure 14. Prototypes selected by Professor-Student algorithm from Breast Cancer

data set. 48
Figure 15. Prototypes selected by Professor-Student algorithm from Wine data set 49

List of Tables
Table 1. Description of Data Sets . 15
Table 2. Error rate (ER) using Parents of Ignorance Zones and 1-NN technique 19
Table 3. Percentage of retention (PR) using Parents of Ignorance Zones. 20
Table 4. Error rate (ER) using Parents of Ignorance Zones and 3-NN technique 22
Table 5. Error rate (ER) using Parents of Ignorance Zones and 5-NN technique 23
Table 6. Error rate (ER) and percentage of retention (PR) obtained from incremental

PS with rectangular domain . 30
Table 7. Error rate (ER) and percentage of retention (PR) with circular domain and

inscribed circles based on 1-NN classifier . 34
Table 8. Error rate (ER) and percentage of retention (PR) with circular domain and

Gabriel principle . 37
Table 9. Error rate (ER) and percentage of retention (PR) with circular domain and

Relative principle based on 1-NN classifier . 40
Table 10. Error rates (ER) for different PS algorithms based on 1-NN classifier 41
Table 11. Percentage of retention (PR) for different algorithms based on 1-NN classifier . 42
Table 12. Error rate (ER) with Professor-Student PS algorithm and 1-NN classifier 50

iii

Contents
1 INTRODUCTION . 1

2 PROTOTYPE SELECTION. 4
2.1 Direction of search . 4
2.2 Type of selection . 5
2.3 Condensation methods . 6
2.4 Hybrid methods . 7
2.5 Prototype Selection and Big Data . 8

3 IGNORANCE ZONES . 9
3.1 Open world assumption in Machine Learning . 9
3.2 Ignorance zones discovery . 10
3.3 Prototype Selection with ignorance zones . 13

4 BATCH PROTOTYPE SELECTION WITH IGNORANCE ZONES 15
4.1 Methodology of experiments . 15
4.2 Batch Prototype Selection with 1-NN . 17
4.3 Batch Prototype Selection with 3-NN and 5-NN . 21
4.4 Computational complexity . 25

5 INCREMENTAL PROTOTYPE SELECTION WITH IGNORANCE ZONES 26
5.1 Rectangular domain border . 29
5.2 Circular domain border . 32

5.2.1 Inscribed circles as 1-parent ignorance zones . 33
5.2.2 Circles with Gabriel principle as 1-parent grey zones . 35
5.2.3 Circles with Relative principle as 1-parent grey zones. 38

5.3 Comparison of results . 40
5.4 Computational complexity . 43

6 PROTOTYPE SELECTION WITH AN ADVERSARIAL PROCESS 45
6.1 Adversarial process in Professor-Student algorithm . 45
6.2 Algorithm implementation . 46
6.3 Using Professor-Student prototypes in classification . 48

7 CONCLUSION . 51

BIBLIOGRAPHY . 54

APPENDICES . 58
A Code snippets for calculating 2- and 3-parent Ignorance Zones 58
B Code snippets for classifiers with batch and incremental PS . 61

iv

1 Introduction

In Supervised Learning, classification is one of the most widespread techniques that helps

to identify to which category new observation belongs. After learning from a training set,

that contains a collection of training examples called instances, a machine learning algorithm

tries to predict a class for a new input vector. A large number of classification algorithms

calculates the distance between the new input vector and stored instances when predicting

the class label. Such algorithms that do not build classification model in advance but make

decisions completely relying on existing prototypes from the training set are often named as

Lazy Learners or Instance-Based Learners (Brighton and Mellish 2002).

One the most popular Lazy Learner algorithm is the k Nearest Neighbor classifier (kNN).

Although being invented more than 50 years ago (Cover and Hart 1967) the kNN classifier

has been ranked one of the top 10 Data Mining methods (Wu et al. 2008). The logic of the

algorithm is simple: for each new point x it finds k nearest neighbors from the training set

and chooses the most common class according to majority vote rule. The kNN algorithm

learns very fast because it does not process training instances but only retains all of them in

its memory. Being an effective classifier for many applications, kNN suffers from multiple

weaknesses that can prevent successful application of the algorithm (Kononenko and Kukar

2007):

• high storage requirements (especially for large-scale databases) to store all data set

exemplars in memory;

• demand for powerful computational resources in order to calculate distances between

a new input vector and all original prototypes;

• low noise tolerance because all data instances stored in memory are considered rele-

vant and outliers can harm classification accuracy.

In general, there are two widespread approaches to solve these problems: improve the calcu-

lation speed of nearest neighbors or reduce the training set by selecting only a small fraction

of instances or features (Ougiaroglou, Evangelidis, and Dervos 2015). Within the first group

Indexing methods (Yu et al. 2001) and Cluster-based methods (Hwang and Cho 2007) gained

1

the most interest. Both groups aim to reduce the cost of the nearest neighbor searches by ap-

plying indexing or clustering procedures as pre-processing steps and making the selection

of neighbors faster at classification stage (Ougiaroglou, Evangelidis, and Dervos 2015). Al-

though these methods help to decrease classification response time they do not solve the

problem of noisy instances as the training set remains unchanging.

The second group of methods is called Data Reduction Techniques (DRTs). DRTs aim to

reduce the size of the training set by building a representation set of a smaller size called

a condensing set. These methods not only help to make the classification process faster

but also aim to build a better version of the training set by eliminating noisy instances and

making decision boundaries smoother. DRTs can be divided into two subgroups, which

are called Prototype Selection (PS) and Prototype Generation (PG) algorithms. PG meth-

ods (also known as Prototype Abstraction) create a training set by building new artificial

instances and replacing original prototypes (Triguero et al. 2012). PS algorithms, on the

contrast, form a condensing set by selecting a subset of original points leaving them in-

variant. Although some researchers include PG into PS, in this thesis we will focus on PS

methods that do not modify original prototypes.

Related works comparing classification accuracy and retention percentage of different Proto-

type Selection methods show that there is no clear winner and no evidence to use one method

for all data sets (Garcia et al. 2012). Depending on the primary optimization criterion such

as storage reduction, classification error rate or noise tolerance PS methods show distinct

results. In addition, the structure of data sets has a big impact on algorithm’s work and some

researchers advice to analyze data set structure manually before applying specific PS method

(Brighton and Mellish 2002).

In this thesis, we suggest a new Prototype Selection method based on ignorance zones analy-

sis. Most of the current methods choose prototypes based on experimental approach without

analyzing the training set. The algorithm presented in this thesis is, on the contrary, based on

understanding data set structure, discovering areas of confusion called ignorance zones and

making intelligent decisions based on found insights. The main research questions stated in

this thesis are:

2

• how to approach the ignorance discovery in databases;

• how to benefit from the discovered ignorance in classification and Prototype Selection.

The rest of this thesis is organized as follows. Chapter 2 gives an overview of existing

Prototype Selection methods, contains theoretical background and presents the most popu-

lar algorithms. Chapter 3 describes the idea of ignorance zones, defines their meaning in

Data Analysis and presents an algorithm for their discovery. Chapters 4 and 5 apply knowl-

edge about ignorance zones for classification, present new Prototype Selection methods, and

compare their effectiveness with two modes of operation: batch and incremental. The idea

of Prototype Selection with an adversarial process and its experimental results are presented

in Chapter 6. Finally, Chapter 7 concludes this thesis with achieved results.

3

2 Prototype Selection

The main goal of Prototype Selection is to extract the smallest set from the original database

that would be able to predict classes with the same (or even higher) accuracy as the original

training set. Usually, Prototype Selection algorithms aim to discard the following two types

of instances (Brighton and Mellish 2002):

• harmful instances (noisy data and outliers) that tend to attribute queries to an incorrect

class if the algorithm relies on them;

• redundant instances (superfluous and excessive points) that do not help in making clas-

sification decisions. They can be replaced with other more relevant prototypes without

loss of classification accuracy.

2.1 Direction of search

When creating a subset of instances in order to form the training set there are also different

directions the search can proceed. Usually, three orders are defined: incremental, decre-

mental, and batch (Wilson and Martinez 1997). Incremental technique starts with an empty

training set and gradually adds new prototypes if they meet search criteria. For incremental

search, the order of instances is very important because the probability of being selected for

the same exemplar varies a lot depending on whether it is located in the beginning or at the

end of the data set. Decremental search operates the other way: starts with a complete set of

data and continuously removes instances on each step. Decremental rule is often computa-

tionally more expensive than incremental algorithms, but "the application of a decremental

algorithm can result in greater storage reduction and/or increased generalization accuracy"

(Wilson and Martinez 1997). Batch mode first marks instances that do not comply with the

removal criteria and then removes all of them at once. Similar to decremental algorithms,

batch processing suffers from increased time complexity in comparison with incremental

algorithms (Wilson and Martinez 2000).

In addition to three search orders described above some authors also distinguish a couple of

other variations, such as mixed and fixed techniques. Mixed search starts with a preselected

4

subset of training exemplars selected randomly or by incremental or decremental process and

new exemplars are added or removed later. Due to this flexibility, the algorithm can improve

the training set by removing bad prototypes and adding better ones with time. Fixed search

policy can be defined as a subfamily of mixed search with the special constraint that the

total number of additions and removals always remain the same. This limitation guarantees

that the number of final prototypes is defined at the beginning and stays the same during the

search process.

2.2 Type of selection

Depending on whether the algorithm removes central points or border instances scientists

distinguish three strategies used for prototype selection: edition methods, condensation

methods, and hybrid methods. The first category increases classifier effectiveness by re-

moving noisy instances and achieving smooth decision boundaries. The second category

follows the idea that central points do not influence classification decisions, so it generates

the training set by skipping excessive prototypes located inside class boundaries. Mixed

method aggregates both of these techniques trying simultaneously to get rid of noisy data

and maintain smooth boundaries between classes (Garcia et al. 2012).

While edition methods try to increase accuracy they do not solve the problem of slowness as

usually there is not many noisy data in the data set. On the contrary, condensation technique

aims to make classification process faster achieving the same level of accuracy. There is a

clear trade-off between these two types of algorithms depending on how training set reduc-

tion algorithms are compared. Wilson pointed out, "these [criteria] include speed increase

(during execution), storage reduction, noise tolerance, generalization accuracy, time require-

ments (during learning), and incrementality" (Wilson and Martinez 2000). Each of prototype

selection algorithms aims to improve one or maximum two criteria, so it is important to take

this into consideration when comparing the accuracy of different methods.

5

2.3 Condensation methods

The Condensed Nearest neighbor (CNN) rule presented in the 1960s became the first offi-

cial prototype selection technique for the nearest neighbor decision rule (Hart 1968). Hart

presented a definition of a consistent subset and defined it as a subset that correctly classifies

all the remaining points from the training set using the NN rule. The CNN rule, presented

in the same research work, explained a simple algorithm to create consistent subsets from

the training data. It starts from an empty subset and sequentially checks every point from

the training set: if the point can be correctly classified by a subset it is dropped, otherwise,

added to the subset. The algorithm finishes its work either when all points outside the subset

can be successfully classified by the NN rule, or no points outside the subset are left (Hart

1968).

The CNN algorithm presented a way to create a subset of the original sample set but produced

data was not guaranteed to be a minimal consistent subset. As a result, other condensation

methods were proposed to decrease the size. One of them was the Reduced Nearest Neighbor

(RNN) rule that aimed to create even smaller subset than the CNN. The RNN rule takes a

group of points chosen by the CNN rule as an initial sample set, and following decremental

approach tries to remove more points one after the other: if all patterns are classified correctly

without specific point then this prototype can be dropped, otherwise it is put back to the

subset (Gates 1972). Although it is more computationally expensive to produce a set of

RNN comparing to CNN, the final subset should be smaller and therefore it demands less

computing and storage at the classification stage (Amal and Riadh 2011).

A couple of years later an article about the Selective Nearest neighbor (SNN) Decision Rule

was published. The SNN suggested a newly calculated selective subset that had one principal

difference comparing to the consistent subset: it must fulfill all requirements of the consistent

subset and "all samples must be nearer to a condensed neighbor of the same class than to any

sample of the other class" (Ritter et al. 1975). The authors also presented an algorithm for

finding the selective subset from the database, that became a good alternative to the previous

algorithms as it managed to select fewer points closer to the class borders and make the

selection process less dependent on the order of point processing.

6

Recent algorithms still use the same concept of consistent subsets, but try to speed up the

selection process. The algorithm called the Fast Condensed Nearest neighbor (FCNN) rule

uses a theorem based on class centroids and Voronoi cells (Angiulli 2005). Another exam-

ple is Prototype Selection by Clustering (PSC) that suggests using clustering techniques in

order to divide the training set into regions and analyze each region (cluster) independently

(Olvera-López, Carrasco-Ochoa, and Martínez-Trinidad 2010).

2.4 Hybrid methods

Although condensation methods show a good decrease in the size of training sets their main

philosophy of choosing points located closer to the decision boundary arises problems when

working with noisy data. Hybrid methods aim to maintain benefits of condensation methods

while solving the problem of noise sensitivity.

A collection of new heuristics methods called Decremental Reduction Optimization Proce-

dures (DROP) were proposed to solve the flaws of condensation algorithms (Wilson and

Martinez 1997). All versions of the algorithm rely on two main concepts: associates and

nearest neighbors. The definition of associates are inverse to nearest neighbors: instances P

that have Q as one of their nearest neighbors are called associates of Q.

The first algorithm called DROP1 is identical to RNN and tries to remove noisy points and

choose non-noisy border prototypes. The second version of the algorithm is improved by

ordering the removal process and aims to remove instances located further from the decision

boundary first.

The third version of the algorithm called DROP3 is considered to be one of the best of Pro-

totype Selection methods regarding their reduction power (Garcia et al. 2012). Comparing

to DROP2 it does the noise filtering before sorting the prototypes and removing the center

points. It helps to smooth the decision boundary and avoids the problem of "overfitting"

(Wilson and Martinez 2000).

7

2.5 Prototype Selection and Big Data

Although many PS algorithms work well in term of selecting a representative subset one of

their main drawbacks is complexity. Majority of instance selection methods have quadratic

O(n2) complexity and very few of them can do it in log-linear O(n logn) time (Arnaiz-

González et al. 2016). Such complexity makes prototype selection methods challenging for

big data sets containing thousands and millions of instances.

Stratification is one of the approaches that makes instance selection applicable to the massive

data sets (Cano, Herrera, and Lozano 2005). The underlying idea of stratification is to split

the large size data set into multiple disjoint subsets of a smaller size and apply the prototype

selection method to each of them. The conducted results showed that stratification is a robust

tool to face the scaling problems of instance selection algorithms (Derrac, García, and Her-

rera 2010), but with the increase of the data set size the idea of joining each partial solution

into a global subset can result in having redundant and noisy instances.

The alternative way to handle the large-scale data sets containing millions of prototypes is a

MapReduce-based framework that distributes the work of instance selection methods across

a cluster of computing machines (Triguero et al. 2015). The MapReduce paradigm helps to

parallelize the prototype reduction computation and merge multiple computed subsets into a

global one based on fusion reduce type.

8

3 Ignorance Zones

3.1 Open world assumption in Machine Learning

Prevailing majority of Machine Learning algorithms work with training sets as with closed

world databases. By following the closed world assumption they assume that "if no proof

of a positive ground literal exists, then the negation of that literal is assumed true" (Reiter

1981).

An alternative to the closed databases is the open world assumption. In open world negative

data is listed explicitly in the database and "queries may be either looked-up or derived

from the data and the axioms" (Minker 1982). There is no assumption that certain data is

considered to be false just because positive prove was not found.

For many business problems, such as finding a flight route based on the database of flights

and cities, the closed world assumption works good because their domain implies the truth

of negative facts (Reiter 1981). Though for more complex problems such as classification of

malignant tumors, where creating an all-embracing data set is very expensive or simply im-

possible, inferring the result based on the absence of data might not be the optimal approach.

We believe that by utilizing not only the closed world assumption but also the open world

approach existing Machine Learning algorithms could potentially make smarter decisions

and improve their results. Instead of considering missing data as a false signal, algorithms

can utilize the knowledge of unknown regions. The driving force of learning is the process

of analyzing already available data and looking for areas where the data set has the least

amount of information. Such areas without data are called ignorance or confusion zones.

These areas of emptiness do not give much knowledge taken separately but their form and

size can help to understand accessible data better and make it analysis faster.

In this chapter, we describe the idea of ignorance zones and provide the algorithm for their

discovery in two-dimensional data. This algorithm represents one building block used to

tackle more complex problems in the following chapters. The examples and algorithms de-

scribed in this thesis are presented based on two-dimensional data sets to ease visualization

9

and computation analysis, but in general, the same ideas can apply to n-dimensional proto-

types too.

3.2 Ignorance zones discovery

A considerable part of Machine Learning tasks (such as Classification or Clustering analysis)

works with labeled data where each instance either already has or should be attributed to

some class. Points of the same class form a cluster that has certain unique characteristics

that are different from other classes. As clusters possess different properties in Euclidean

space they are commonly separated from each other by some sort of void. When there are no

data instances inside the void there is no evidence to say what is located there. Such areas of

emptiness located between known clusters represent the concept of ignorance or confusion

zones.

In two-dimensional space, an ignorance zone represents a circle. The geometrical figure of a

circle is chosen because its main property that all points are equally distant from the center.

The center of ignorance zone is called focus and it represents a place of the most confusion.

It is completely unknown what happens there because several points from different classes

are equidistant from the focus.

Figure 1. Two- and three-point ignorance zones and ignorance focuses.

Discovered ignorance focuses are very valuable because classification algorithms tend to fail

10

in these areas. Several classes have the same probability of being located there that makes

the classifier give ambiguous output labels. Ignorance zones are also a type of decision

boundaries (decision surfaces) because they represent an area of feature space where the

transition from one class to the other happens.

The algorithm generates circles based on two or three data points: in case of two points a line

between them should be a circle’s diameter, in case of three the circle should circumscribe

all of them. A circle becomes an ignorance zone if the following criteria are met:

• each of the points forming the circle belongs to a different class;

• no known data points are located inside the circle.

Although in some situations a circle can be built around four and more points (for example,

around a square) it is not a general case, so the algorithm is restricted to work only with pairs

and triples of data because it is always possible to make a circle around them.

Algorithm 1: Calculating 2-point Ignorance Zones
FindIgnoranceZones (X ,Y)

inputs : A training set X = {X1, . . . ,Xn} with coordinate vectors and C = {c1, . . . ,cn}
with class labels

output: The set of ignorance zones Z
Z← /0;
foreach Xi ∈ X do

foreach X j ∈ X do
if ci 6= c j then

Xzone← (Xi +X j)/2;
Rzone← distance(Xi,X j)/2;
if there is no points from X inside circle (Xzone,Rzone) then

Add (Xzone,Rzone) to Z;

return Z;

In this thesis, the algorithm is presented to work with two-dimensional data. Being one of

the limitations of this thesis, it helps to focus on the design of the algorithm rather than

efficiency of its implementation. It is easier to validate the correctness and usefulness of the

algorithm while working with low-dimensional data sets. The philosophy of ignorance zones

and the discovery algorithm can also be expanded to work in a space with higher dimensions.

11

For example, in three-dimensional space ignorance zones will represent spheres, and in the

geometry of higher dimensions, a hypersphere will be a representation of a confusion area.

Designing the algorithm is an iterative process where the initial version gets improved while

the model is being tested and its issues are identified. Analyzing whether specific changes

give better or worse results is hard to do with real data sets because they contain outliers and

noisy data. In addition to using databases from real problems, we created a set of artificial

data sets based on simple geometrical figures (for example, square, circle, ring). Although

such perfect data sets have simple linear decision boundaries and do not occur in reality

with their help it is possible to see how the algorithm behaves in an ideal environment and

ascertain that the core idea is correct.

Figure 2. Ignorance zones (red circles) and ignorance focuses (black squares) discovered in

artificial data sets.

12

In Figure 2 you can see four examples of these databases and ignorance zones discovered

there. In each of these cases, ignorance focuses truly represent points of confusion as they are

located at the exact same distance from two or three various classes and there is no evidence

to say what happens there.

3.3 Prototype Selection with ignorance zones

One potentially useful application for ignorance zones is PS for classification. A problem

of classification is directly connected with producing decision boundaries that help to distin-

guish classes. Decision boundaries representing places of the most confusion are conceptu-

ally similar to the definition of ignorance zones: it is unknown to which class points located

there belong to as they have equal probability to be any of several classes.

In case of k-NN classifier, the class is defined by k known points that are located closest to

the input vector. Due to this fact, the presence of instances situated close to decision bound-

aries in the representation set is a necessary condition for accurate classification. Prototypes

located inside data clusters usually have the same class as points around them and do not

influence classification decisions much.

For ignorance zones, points located closest to decision boundaries are their parents. Choos-

ing parents of confusion zones as prototypes must be a good way to reduce the size of training

set while maintaining classification accuracy. Similar approaches based on proximity graphs

such as relative neighbors (Jaromczyk and Toussaint 1992) and Gabriel neighbors (Toussaint

1980) were also successfully applied for PS (José Salvador Sánchez, Pla, and Ferri 1997).

Idea of relative neighbors is defined as two points xi and x j from the data set E such that dis-

tance between them is smaller than distance from any point xk ∈ E to any of them (Toussaint

1980). In other words, relative neighbors can be defined as follows:

(xi,x j) ∈ E

⇔ dist(xi,x j)≤ max(dist(xi,xk),dist(x j,xk))

∀xk ∈ E,k 6= i, j

Their geometrical form is called "lune" (Jose Salvador Sánchez, Pla, and Ferri 1997) and

13

they visually represent a disjoint intersection of two spheres centered in relative neighbors

and having radii equal to their distance.

Two points xi and x j from the data set E are said to be Gabriel neighbors if their diametrical

sphere does not contain any other point xk ∈ E (Jaromczyk and Toussaint 1992).

(xi,x j) ∈ E

⇔ dist(xi,x j)
2 ≤ dist(xi,xk)

2 +dist(x j,xk)
2

∀xk ∈ E,k 6= i, j

Gabriel neighbors are analogous to ignorance zones calculated based on pairs of points: two

points produce an ignorance zone if there are no other points inside their circle.

Similar to how Gabriel and relative neighbors were successfully used to select a consistent

subset of prototypes for the NN rule (Jose Salvador Sánchez, Pla, and Ferri 1997), we ran

experiments of using parents of ignorance zones as prototypes for 1-NN classifier with the

Euclidian distance metric. Next chapters describe details and present results of these experi-

ments.

14

4 Batch Prototype Selection with ignorance zones

4.1 Methodology of experiments

Experiments have been run over eight data sets of different complexity from the UCI repos-

itory (Blake 1998). Details of individual data sets are presented in Table 1. Normalization

(min-max scaling) was applied to all data set features because feature scaling has an effect

on k-NN algorithm with the Euclidean distance measure.

Since ignorance zones presented in this thesis work with two-dimensional data only, feature

selection or dimensionality reduction is applied to all data sets as a pre-processing step. If

two best features selected from the data set based on a univariate chi-squared χ2 statistical

test are representative, we select them for classification. Otherwise, Principal Component

Analysis (PCA) method is used to produce a pair of features well capturing the variance of

the original data set. The two dimensions, selected by χ2 statistical test, are normalized, so

the normalization is also applied to two principal components produced by PCA. Dimen-

sionality reduction technique (PCA or χ2 test) and proportion of variance explained by two

PCA components are presented in Table 1 for each data set.

Table 1. Description of Data Sets

Data set #Exemplars #Attributes #Classes

Dim.

Reduction

Type

Prop. of

Variance

Explained

Iris 150 4 3 χ2 test -

Wine 178 13 3 χ2 test -

Pima 768 8 2 χ2 test -

Breast Cancer 699 9 2 PCA 0.76

Ionosphere 351 34 2 PCA 0.42

Glass 214 9 7 PCA 0.63

Bupa 345 6 2 PCA 0.6

Transfusion 748 4 2 PCA 0.93

15

For each data set, 10-fold cross-validation is applied by dividing the whole database into ten

equal parts and in turn using one block as a testing set and the remaining nine as training

sets. Cross-validation is repeated ten times and results for each data set are calculated as

means over one hundred experiments.

The proposed algorithms (Ignorance Zone Discovery, Batch PS, Incremental PS, and Professor-

Student) and the experiments, validating their work and effectiveness, are implemented in

Python 2.7. Snippets of principal parts of the code are shown in Appendices A and B. We

use NumPy (eg. “NumPy - NumPy” 2017) for efficient management of multi-dimensional

arrays and basic functionality of linear algebra. Classification and dimensionality reduction

are implemented with the help of open source SciPy (eg. “SciPy.org - SciPy.org” 2018) and

scikit-learn (eg. “scikit-learn: machine learning in Python” 2018) packages. Matplotlib (eg.

“Matplotlib 2.2.2 documentation” 2018) and seaborn (eg. “seaborn: statistical data visual-

ization” 2018) libraries are used for visualization.

Both the arithmetic and the harmonic means were used as two kinds of averages to estimate

found results. For positive data sets the arithmetic mean always gives the best results from

different kind of averages due to big impact of large outliers, thus we also used harmonic

mean for comparison. Opposite to the arithmetic average the harmonic mean aims "to miti-

gate the impact of large outliers and aggravate the impact of small ones" (Machiwal and Jha

2012). The harmonic mean of positive real numbers (x1,x2, . . . ,xn) is calculated as:

H(x1,x2, . . . ,xn) =
n

1
x1
+ 1

x2
+ · · ·+ 1

xn

=
n

∑
n
i=1

1
xi

.

One of the limitations of the harmonic mean is its ability to work with positive indices (qual-

itatively) only (e.g., classification accuracy). In our experiments, negative variables (qualita-

tively), such as error rate or percentage of retention, were aggregated, so the contraharmonic

mean was chosen as an average method. The philosophy of the contraharmonic mean is the

same as of the harmonic mean but for qualitatively negative metrics: it is always higher or

equal to the arithmetic mean and it is as high above the arithmetic mean as the arithmetic

mean is above the harmonic mean. For a variable x, consisting of a set of positive real

16

numbers (x1,x2, . . . ,xn), the contraharmonic mean is calculated as:

C(x1,x2, . . . ,xn) =
x2

1 + x2
2 + · · ·+ x2

n

x1 + x2 + · · ·+ xn
.

4.2 Batch Prototype Selection with 1-NN

Ignorance zones are located close to decision boundaries that have a huge influence on right

classification decisions. This section presents an experiment where a prototype subset is

selected as parents of ignorance zones. The algorithm discovers available grey zones from

the full database and chooses a subset of data by selecting parents of all ignorance zones.

This logic supplies the representative subset of prototypes located close to decision bound-

aries and ignores points located inside the cluster. PS based on parents of ignorance zones is

analogous to Gabriel neighbors idea that was also employed as a PS method (Jaromczyk and

Toussaint 1992). Both approaches focus on sets of points whose diametrical sphere does not

contain any other points.

Figure 3 shows what prototypes are selected to the smart subset of the complete data set

as a result of proposed PS method. The picture shows that points located next to decision

boundaries are retained and prototypes surrounded by points of the same class are ignored.

In practice, this logic means that the more outliers and noisy points the database has the

higher percentage of retention for Prototype Selection is.

In order to evaluate whether the suggested method can be successfully used for PS, we com-

pare error rate and data retention percentage of three classifiers. The first classifier uses all

available data as a training set (100% of data retention). The second classifier uses a smart

PS algorithm and is trained on a subset containing parents of ignorance zones. The third

model uses the same amount of prototypes as the second version but selected randomly.

In theory, it is fair to assume that the first classifier should have the lowest error rate as it

uses all available knowledge. In this case, high classification accuracy is compensated by

low decision-making speed because no data reduction is applied and full data set is used

for analysis. The second classifier is expected to work worse (or similar) in comparison

to the first one but better than the third one. The subset of prototypes selected with smart

17

Figure 3. Parents of ignorance zones selected as a result of Prototype Selection in Wine data

set.

heuristics should define database structure better than the randomly chosen subset. Though

in practice not all assumptions are proved to be true and the results for some data sets are, on

the contrary, opposite to what is expected. A summary of classification results are shown in

Table 2 and Table 3.

Classification error rates for some databases comply with initial assumptions: the classifier

trained on a smart subset of data (parents of ignorance zones) is almost as good as the first

classifier using all available data. For Iris data set 1-NN classifier determines labels correctly

for 96.3% of test points with a complete training set and 96.1% of exemplars with a smart

subset. Comparing harmonic means the difference is even more inessential as both models

correctly classify 89% of test data. As the latter results are achieved with 18% of data points

and the classification accuracy based on a randomly selected subset is far below (94.6% for

Iris) the proposed PS method might work effectively in certain cases. Similar results are

obtained for Wine and Glass data sets where classification accuracy stays on the same level

while the percentage of retention is decreased to 36% and 77% correspondingly.

18

Table 2. Error rate (ER) using Parents of Ignorance Zones and 1-NN technique

Full Set Smart Set Random Set

Data set
Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Iris 3.7 11.0 3.9 11.0 5.4 12.6

Wine 12.9 17.6 13.4 17.9 14.0 18.6

Pima 35.6 36.4 35.8 36.5 34.3 35.1

Breast Cancer 5.3 6.4 5.5 6.5 4.0 5.5

Ionosphere 29.0 31.3 29.6 31.9 29.1 31.4

Glass 39.3 42.4 39.0 42.1 40.9 44.1

Bupa 46.6 47.7 46.5 47.6 46.1 47.4

Transfusion 31.2 32.1 33.1 34.0 30.3 31.4

Average 25.45 28.11 25.85 28.44 25.51 28.26

Along with cases confirming our assumptions, there are many data sets where results are

completely opposite. Majority of data sets from Table 2, such as Pima, Breast Cancer, Iono-

sphere, Bupa, and Transfusion, have an outcome different to previously made assumptions.

The lowest error rate is achieved with the classifier trained on a randomly selected subset.

Both full and smart sets either show relatively similar or even worse classification accuracy.

For example, for Breast Cancer, the model based on random subset classifies only 4% of

test points incorrectly, while with the full set of data this number increases to 5.3%. Having

more prototypes in the training set not only decreases classification speed as expected but

also surprisingly increases error rate for these cases.

Trying to explain why the majority of data sets show the best classification accuracy with

randomly selected subsets we found that the primary reason must be noisy data. For example,

Figure 4 visualizes one iteration of Breast Cancer data set and shows misclassified points for

three classifiers. On the picture, both smart and full classifiers have the same amount of

instances attributed to the wrong class due to having too many random prototypes in the

training set. Random classifier, on the contrary, has a very small amount of noisy points

19

Table 3. Percentage of retention (PR) using Parents of Ignorance Zones

Full Set Smart and Random Sets

Data set
Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Iris 100 100 18.1 18.3

Wine 100 100 35.7 35.8

Pima 100 100 67.7 67.7

Breast Cancer 100 100 10.0 10.1

Ionosphere 100 100 57.9 58.0

Glass 100 100 76.7 76.8

Bupa 100 100 88.2 88.3

Transfusion 100 100 65.9 66.0

Average 100 100 52.53 52.63

and it helps to classify test data correctly. Figure 4 shows one iteration for a single data set

but the same problem happens for other databases too. This case shows that neither 1-NN

classifier nor smart subset can reliably predict future observations when dealing with noisy

data. The algorithm makes incorrect decisions based on erroneous points located close to

decision boundaries.

PS method selecting parents of ignorance zones to the subset discovers all possible grey

zones including very small ones formed by noisy data points. Although it is possible to

modify the algorithm to ignore smaller grey zones at first it is good to confirm that the results

will change with smoother decision boundaries and less noisy data. The easiest way to make

k-NN classifier more resistant to noise is to increase its number of NNs (Liu and Zhang

2012). The next section repeats the same experiment with 3-NN and 5-NN and compares the

results.

20

Figure 4. Training sets and misclassified test points (framed in red squares with correct class

label inside) of full, smart and random classifiers for Breast Cancer data set.

4.3 Batch Prototype Selection with 3-NN and 5-NN

Performance of k-NN classifier heavily relies on several factors: the sample size, the selec-

tion of distance metric and chosen value for k parameter (Liu and Zhang 2012). The selection

of correct k is crucial for successful work of k-NN algorithm. When k parameter is small

the algorithm becomes sensitive to noisy data while larger value makes decision boundaries

smoother. Usually, it is very difficult to predetermine the value of k and its optimal value

varies depending on data set and feature distribution.

Based on results from Table 2 1-NN algorithm is not an optimal classifier for noisy data

sets, such as Breast Cancer or Ionosphere, because its logic is very sensitive to random

21

points. Checking misclassified test points from Figure 4 (the ones framed in red square) it

is visible that the algorithm makes mistakes when predicting the label based on the nearest

noisy instances. Increasing the value of parameter k is one of the easiest ways to define

decision boundaries smoother and check whether classification accuracy becomes better.

For example, by increasing parameter k from 1 to 3 the classifier trained on the full data set

would classify 4 out of 5 points from Figure 4 correctly.

Table 4. Error rate (ER) using Parents of Ignorance Zones and 3-NN technique

Full Set Smart Set Random Set

Data set
Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Iris 5.1 10.1 4.9 11.2 4.4 10.5

Wine 10.4 15.5 9.9 15.0 11.3 16.1

Pima 29.3 30.2 29.5 30.5 28.8 30.0

Breast Cancer 3.6 4.7 3.7 4.9 3.4 5.1

Ionosphere 20.6 22.7 21.3 23.4 21.4 23.5

Glass 38.1 41.7 38.2 41.8 37.8 41.1

Bupa 45.4 46.4 46.5 47.5 45.3 46.4

Transfusion 27.0 28.0 27.8 28.7 26.9 28.0

Average 22.44 24.91 22.73 25.38 22.41 25.09

Table 4 and Table 5 show error rates for the same database-training set pairs as in the previous

section but using 3-NN and 5-NN techniques as classification methods. Results show that

error rates become lower for the majority of data sets and percentage of correctly classified

points is growing with an increased value of parameter k. For example, an average error rate

for the 1-NN classifier using full training set is 25.5%. With the algorithm that checks three

nearest points, this number decreases to 22.4% and with five neighbors - even more down to

21.3%. Amount of data used for training stays the same for all classifiers.

With the larger value of parameter k the NN classifier becomes more resistant to noisy data

and it helps to improve results for certain data sets. The latest version shows lower error rates

22

Table 5. Error rate (ER) using Parents of Ignorance Zones and 5-NN technique

Full Set Smart Set Random Set

Data set
Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Iris 3.3 8.6 4.8 25.0 5.5 14.1

Wine 9.1 14.2 10.6 16.1 10.7 15.5

Pima 27.6 28.7 28.5 29.4 27.7 28.8

Breast Cancer 3.0 4.2 3.1 4.5 3.5 5.0

Ionosphere 19.2 21.2 19.2 21.4 19.8 22.0

Glass 36.8 40.1 38.2 41.0 39.0 42.5

Bupa 45.6 46.7 45.2 46.3 45.6 46.8

Transfusion 25.6 26.5 26.7 27.3 25.3 26.3

Average 21.28 23.78 22.04 26.38 22.14 25.13

for Breast Cancer and Ionosphere when more neighbors are taken into consideration. 5-NN

classifier using the complete training set for decision-making improves error rate by 2.3%

(from 5.3% with 1 neighbor to 3.0% with 5 neighbors) for Breast Cancer and by 9.8% (from

29.0% with 1 neighbor to 19.2% with 5 neighbors) for Ionosphere. The model with smart PS

method also shows similar improvements: from 5.5% to 3.1% for Breast Cancer and from

29.6% to 19.2% for Ionosphere. In addition relation between different models becomes more

logical. The algorithm trained on the full set of data shows the best classification accuracy

and outperforms the classifier trained on parents of ignorance zones. The effect brought by

the smart PS method is, in turn, better than the random subset.

Proposed idea of making decision boundaries smoother improves results, but unfortunately

not for all data sets. The more detailed analysis shows that the larger value of parameter k

is not an ideal solution and it does not work in all cases. It makes results better for certain

data sets, such as Breast Cancer and Ionosphere, whereas other cases, such as Bupa and

Transfusion, still experience problems. These databases obtain analogous results with three

versions of the training set even with 3- and 5-NN classifiers. The fact that the random subset

23

Figure 5. Parents of ignorance zones in Bupa and Transfusion data sets.

sometimes achieves lower error rate than the full training set is even more unintelligible.

Visualization of Bupa and Transfusion prototypes, shown in Figure 5, uncovers details of

data sets structures. The primary reason for low classification accuracy is the absence of ac-

curate borders between classes. Increased parameter k strives to neglect influence of random

points but it becomes ineffectual when the majority of data prototypes are mixed. Batch PS

method presented in this section also has a small impact on these databases as with a large

number of ignorance zones very few prototypes are discarded and percentage of prototype

retention stays high (88.2% for Bupa and 65.9% for Transfusion). Such chaotic databases

lack structure and adding the majority of prototypes to the training set without careful anal-

ysis does not improve the situation.

While it must be impossible to find a single algorithm classifying test points with the lowest

error rate for all data sets, previous experiments unveil weaknesses of Prototype Selection

using parents of ignorance zones. This implementation works well with simple data sets

where borders between classes are accurate, and decision boundaries can be distinct. For

noisy databases, the algorithm results in overfitting because every random point generates an

additional ignorance zone whose parents are added to the final subset.

24

4.4 Computational complexity

Besides poor classification accuracy, shown in Table 2, batch calculation of ignorance zones

might be computationally expensive and make the algorithm hard to use in practice for mas-

sive data sets. To check this, we analyze time complexity of the proposed batch algorithm.

Additionally, assessment of work with n-dimensional data is done.

The batch version of PS method mainly repeats the steps shown in Algorithm 1 to discover

ignorance zones and subsequently select their parents. The runtime algorithm executes the

following iterations:

• for each pair (triple) of points create a circle, representing a potential ignorance zone;

• for each circle calculate distance from its center to every point from the data set;

• if the minimum found distance is less than the radius, skip the circle; otherwise, it is

an ignorance zone;

• return parents of discovered ignorance zones.

For d-dimensional data set with n points, the algorithm using p points to define a circle would

require O(np) runtime for the first step. The second step depends on size and dimensionality

of the data set, requiring O(nd) runtime to calculate distances between the center and each

point from the database. In total, the algorithm uses O(npnd) = O(np+1d) time to discover

ignorance zones and select its parents as prototypes. In this section, the experiments, looking

over pairs of points and forming 2-parent ignorance zones, used O(n3) time (assuming d

being considerably smaller than n). The experiments, iterating over triples of prototypes,

required O(n4) runtime.

We can see that the algorithm complexity grows exponentially with the number of points

forming the circle. Although in d-dimensional space up to d + 1 points can be used to

define a hypersphere, it does not mean that the algorithm should discover all of them. The

exponential time is a poor characteristic of the algorithm, but in general case, it does not

require to find all types of ignorance zones and can select prototypes starting with 2-parent

zones. In this thesis, we do not validate the efficiency of PS for multi-dimensional data set

with different ignorance zones, but it can be a topic for the next research.

25

5 Incremental Prototype Selection with ignorance zones

Batch algorithm of Prototype Selection shown in the previous chapter works well for data

sets without much noise and relatively small amount of points. For bigger data sets it be-

comes computationally expensive because every possible pair of points from the training set

should be examined whether it produces an ignorance zone or not. Due to having these con-

straints, the algorithm has a cubic O(n3) complexity class when working with 2-parent igno-

rance zones and quadratic O(n4) when discovering 3-parent ignorance zones. Although other

popular PS methods as CNN, RNN and DROP also have cubic processing time this property

is considered to be one of the main disadvantages as cubic (and expecially quadratic) running

time is not suitable for massive data sets (Arnaiz-González et al. 2016).

One more serious issue of the algorithm is high noise sensitivity because the batch version

chooses parents of absolutely all ignorance zones to the representative subset. Noisy in-

stances generate a lot of small ignorance zones that are not relevant for classification. For

data sets without distinct class borders (e.g., Figure 5) selecting all grey zones interferes

with the goal to identify data structure. Small grey zones discovered in noisy areas force the

algorithm to add harmful prototypes to the final subset. Excessive data points do not help to

make right classification decisions but rather result in having an overfitted model (Hawkins

2004).

Resembling the batch algorithm that includes parents of ignorance zones to the representa-

tive subset an incremental method also tries to address previously marked issues. The new

version does not examine all available prototypes and does not generate all ignorance zones

straight away. As the name implies the algorithm starts with an empty subset and adds one

prototype on every next iteration till all discovered grey zones become empty. This approach

should help to concentrate on the fundamental structure of the database and ignore noisy

areas. Incremental nature of the algorithm withdraws the necessity to examine all possible

pairs of points and makes running time significantly shorter. Size of the final subset is de-

termined automatically by the algorithm when it converges and not manually based on extra

heuristics and knowledge about the data set.

26

On the first iteration, the algorithm starts with an empty subset and requires at least one

ignorance zone to continue. Due to the lack of any preliminary knowledge about the data

set the whole space represents a grey zone at this point. In order to limit the endless initial

ignorance zone and define its boundaries, we use the concept of domain. Domain contains

complete data set inside it and represents a geometric figure circumscribing all available data

instances. In the beginning, the algorithm estimates boundaries of known data and makes its

first decision based on domain size and form.

Besides playing a role of initial grey zone domain is also important for discovering a new

type of ignorance areas - 1-parent zones. These zones possess the same properties as 2- and

3-parent zones with the only difference in circle definition: the circle must touch selected

point and domain. For the incremental algorithm, 1-parent zones make it possible to find

classes located next to domain frontier. Previously discussed 2- and 3-parent zones are not

capable of discovering unknown prototypes located next to domain because they require at

least two points from different classes while 1-parent zones need only one.

In this thesis, rectangular and circular domains are validated and compared with each other.

For any form of domain the incremental approach of Prototype Selection algorithm stays

identical and works as following:

• on the first iteration a domain boundary for the given training set is calculated (the

smallest rectangular or circle circumscribing all points) and added as the first ignorance

zone;

• on every next iteration a new point located inside the biggest grey zone is added; if

there are several points inside the grey zone then the point being closest to the domain

boundary is chosen for 1-parent zone and the point closest to the center of the grey

zone for 2-parents zone;

• in case the biggest grey zone does not have new points inside, then the second largest

grey zone is examined, and so on. The algorithm stops when there are no grey zones

with vacant points inside left.

27

Algorithm 2: Selecting prototypes by incremental algorithm
FindIncrementalPrototypes (X ,Y)

inputs : A training set X with coordinate vectors and Y with class labels
output: The subset of prototypes Xsubset with coordinate vectors and Ysubset with class

labels
Xsubset ← /0,Ysubset ← /0;
domain =CalculateDomain(X ,Y);
Z = {domain};
do

Z = SortZonesByRadius(Z);
newPointAdded = false;

foreach Zi ∈ Z do
i =index of a point closest to ignorance focus of zone Zi;
if i 6=−1 and newPointAdded = false then

Add X [i] to Xsubset ;
Add Y [i] to Ysubset ;
newPointAdded = true;

Z = FindIgnoranceZones(Xsubset ,Ysubset)∪
FindDomainIgnoranceZones(Xsubset ,domain);

while newPointAdded = true;

return Xsubset ,Ysubset ;

28

5.1 Rectangular domain border

This section presents an algorithm using a rectangle as a geometric figure for domain. The

rectangle must satisfy two criteria: be as small as possible and circumscribe all data points.

In order to satisfy these requirements the algorithm finds from the training set T = {(x1,y1),

(x2,y2), . . . ,(xn,yn)} minimum (xmin,ymin) and maximum (xmax,ymax) values for each axis.

Coordinates of the rectangle are created as combinations of minimum and maximum values

{(xmin,ymin),(xmin,ymax),(xmax,ymax),(xmax,ymin)}.

Figure 6. 1-parent ignorance zones produced by one point in rectangular domain. Initial

point selected from the training set is a red square, domain is a black rectangle subscribing

the full training set.

Depending on domain’s figure the criteria for choosing 1-parent ignorance zones can be

different. This variety is determined by the existence of various ways to define a circle

between a point and edge of domain border. In case of rectangular domain, each point may

create up to four 1-parent ignorance zones with domain. 1-parent ignorance zones are formed

as diametrical circles between the selected point and its projections on each of rectangle’s

29

sides (as shown in Figure 6). In case each of the formed circles does not contain any other

exemplars inside the point forms four 1-parent grey zones, otherwise less. 2-parent grey

zones are discovered the same as in the previous algorithm: as a diametrical circle between

two points from different classes that does not have any other points inside.

The effectiveness of incremental PS with the rectangular domain is tested based on 1-NN

classifier. A smart subset is formed as parents of 1- and 2-parent ignorance zones that are

discovered by the incremental algorithm. Methodology for this and subsequent experiments

remains unchanged: error rate and percentage of retention are measured as average over

100 iterations for each of eight data sets. Results of incremental PS, shown in Table 6, are

compared with the full classifier and batch version of PS.

Table 6. Error rate (ER) and percentage of retention (PR) obtained from incremental PS with

rectangular domain

Full Set

Parents of

Ignorance

Zones

Rectangu-

lar

Domain

Expanded

Rectangu-

lar

Domain

Data set ER PR ER PR ER PR ER PR

Iris 3.7 100 3.9 18.1 7.1 19.3 4.4 19.5

Wine 12.9 100 13.4 35.7 13.9 31.8 14.1 22.9

Pima 35.6 100 35.8 67.7 28.8 17.3 44.8 9.2

Breast Cancer 5.3 100 5.4 9.3 3.9 7.2 4.7 4.6

Ionosphere 29.0 100 29.6 58.2 24.9 28.6 28.4 18.1

Glass 38.4 100 38.0 76.9 39.9 53.5 48.7 40.2

Bupa 46.8 100 46.8 86.7 49.6 26.4 48.2 25.8

Transfusion 31.3 100 33.8 64.5 26.8 6.9 27.6 6.2

Average 25.38 100 25.84 52.14 24.36 23.88 27.61 18.31

On average incremental PS with rectangular domain shows significantly improved results: in

comparison with the full classifier error rate is decreased by 1% (from 25.4% to 24.4%) with

only 23.9% of data being used for decision-making (the former classifier uses 100%). Many

databases, such as Pima, Breast Cancer, and Ionosphere, not only decreased the volume of the

30

representative subset but also improved classification accuracy a bit. Incremental approach

of focusing on bigger ignorance zones and building the data structure also has an impact on

chaotic databases: error rate for Transfusion data set is lowered from 31.3% to 26.8% while

decreasing size of training more than 10 times.

While results are good for data sets that are considered noisy and problematic for the batch

algorithm, for simpler data sets, such as Iris, Wine, and Glass, the performance is lower. One

of the found weaknesses of this algorithm is its trouble in finding classes located next to the

corner of domain. Figure 7 illustrates how the algorithm fails to include any blue point from

Iris database to the final subset. As a result absence of the whole cluster of points intensely

increases classification error rate.

Figure 7. Selected prototypes for Iris data set based on regular and expanded rectangular

domains.

The algorithm may fail to find points located close to the rectangle’s corners because 1-point

grey zones do not always cover that area. In case discovered prototypes are located in the

center of domain (as in Figure 7) their 1-parent grey zones do not cover corners and some

parts of domain are never examined. A potential solution for this issue is to move data points

rather far off the domain corners. Not to break relations between data clusters instead of

moving exemplars themselves we extend domain borders equally in all directions and make

31

its corners free of data.

Expanded rectangular domain solves the problem with undiscovered zones and missed pro-

totypes from the corners. Increasing the domain square twice helps the algorithm to find

and include blue points for Iris data set (the right part of Figure 7). Although Iris leverages

this change to improve its classification accuracy (from 92.9% to 95.6%) in other cases the

results get worse and error rate increases. Incremental approach based on ignorance zones

and rectangular domain shows good results for noisy databases while fails to be a universal

solution due to specifics of the rectangular domain, and thus the next chapter validates the

circular form of domain.

5.2 Circular domain border

Although the rectangular domain works relatively well and finding the rectangle circumscrib-

ing the whole data set is not a computationally intensive task it lacks one important property:

distance from the center of domain to the border varies depending on where the border point

is chosen. The closer to the corners the point is located the further from the domain center

its distance is. As a consequence points located next to the corners are not always covered

by 1-parent grey zones and not selected into the final training set (the left part of Figure 7).

Replacing the rectangular domain with a circular border solves this problem as the distance

from the center to the border remains the same for all points of the circumference. The

concept of ignorance zones discussed before is primarily based on circles, so an alternative

variant of choosing a circle as a geometric representation for the domain border finds a great

match with our previous notion.

Finding the smallest circle around a given set of points, required for creating the circular

domain of the data set, is known as the smallest enclosing circle problem (Shamos and Hoey

1975). Although the problem has been already discussed for more than 160 years, newer

and faster algorithms are still proposed and created. In recent years randomized algorithms

have been developed for many geometry problems and the smallest enclosing circle is not

an exception (Welzl 1991). In this thesis, we use randomized Welzl’s algorithm that overall

solves the problem of the smallest circles in linear time O(n) (Welzl 1991).

32

There is no one correct procedure to choose a 1-parent grey zone inside the circle. It can

be done in different ways depending on how the point of intersection between the ignorance

zone and the domain is chosen. The following sections describe ideas and results of classifi-

cation with three different principles: inscribed circles, Gabriel circles, and Relative circles.

5.2.1 Inscribed circles as 1-parent ignorance zones

At first, we validate an idea of generating ignorance zones as inscribed circles. In this case,

a grey zone represents a circle going through a point from the training set and touching the

domain border at the same time. The circle must be located at a tangent to the domain and

not intersect it. In case no known points are located inside such circle it forms a 1-parent

ignorance zone.

Similar to the algorithm with rectangular domain each known point can generate up to four

1-parent grey zones: two potential grey zones are produced by a line going through the

domain center and two more are created as the biggest inscribed circles in each of two formed

semicircles (Figure 8).

Figure 8. 1-parent ignorance zones formed as inscribed circles in circular domain.

33

Table 7, containing the results of classification experiments with inscribed circles, shows that

this approach turns out to be working well. For all data sets the results are comparable with

the batch version of the algorithm. The average error rate of the algorithm using inscribed

circles (23.8%) not only lower than the batch version (25.8%), but it is also better than results

based on training sets without PS (25.4%). In six out of eight data sets the error rate is either

lower or stays on the same level. For the rest two data sets (Wine and Glass) the classification

accuracy decreased a bit but it is compensated by a significant drop in the percentage of data

retention (for Wine it went down from 35,7% to 29,5%, for Glass - from 76,9% to 47,6%).

Data sets containing noisy instances, such as Breast Cancer and Transfusion, obtain better

classification accuracy with inscribed circles than with the classifier trained on non-filtered

training sets. Incremental nature of the algorithm helps to ignore small ignorance zones pro-

duced by noisy data. Instead, the algorithm focuses on relevant data points from the biggest

ignorance areas. This approach simultaneously results in smaller and more representative

subsets of data.

Table 7. Error rate (ER) and percentage of retention (PR) with circular domain and inscribed

circles based on 1-NN classifier

Full Set

Parents of

Ignorance

Zones

Domain with

Inscribed

Circles

Data set ER PR ER PR ER PR

Iris 3.7 100 3.9 18.1 3.9 21.8

Wine 12.9 100 13.4 35.7 13.6 29.5

Pima 35.6 100 35.8 67.7 31.4 12.6

Breast Cancer 5.3 100 5.4 9.3 4.0 7.2

Ionosphere 29.0 100 29.6 58.2 24.6 26.2

Glass 38.4 100 38.0 76.9 38.8 47.6

Bupa 46.8 100 46.8 86.7 46.2 29.4

Transfusion 31.3 100 33.8 64.5 27.5 9.4

Average 25.38 100 25.84 52.14 23.75 22.96

34

Visualization is usually the most convenient way to understand the logic of the algorithm.

Figure 9 shows first, second and last iterations of the PS algorithm with inscribed zones. On

each iteration, one new point located inside the biggest ignorance zone is added to the final

set and the algorithm repeats this process until only empty grey zones are left. The right

picture from Figure 9 shows the final subset of chosen prototypes and grey zones that were

left empty after the final iteration. Selected subset mainly contains prototypes located on the

edge of two classes or on the edge of domain and the class. Inner points and various noisy

areas formed by different classes being close to each other without specific order are left out

of the chosen subset.

Figure 9. Incremental algorithm with inscribed circles after the first, the second and the last

iterations. Domain is shown as red circle, grey zones are blue circles. Wine data set.

5.2.2 Circles with Gabriel principle as 1-parent grey zones

The second approach of forming 1-parent grey zones within a circular domain. The idea is

analogous to inscribed circles with one difference: circles are not obliged to be fully located

inside the domain and circles can be partially situated outside the domain area.

Each data point generates up to four grey zones: two potential grey zones are produced by

a line going through the domain center like with inscribed circles and two more are created

by a perpendicular to the first line going through the point (Figure 10). Two points that

form an ignorance zone are Gabriel neighbors as their diametrical circle does not contain

any other points from the training set (Jaromczyk and Toussaint 1992). This resemblance

gives a Gabriel principle name for this modification of the algorithm.

35

Figure 10. 1-parent ignorance zones produced with Gabriel principle.

Circles created with Gabriel Principle have a bigger area than inscribed circles because they

do not have a strict limitation of being fully located inside the domain. Bigger circles rep-

resent more valuable areas of curiosity, but at the same time there is a higher probability for

data points to be inside the bigger area, so with Gabriel principle, there are fewer ignorance

zones produced but they are more important.

Figure 11. Incremental algorithm with circle domain and Gabriel principle after the first, the

second and the last iterations. Domain is shown as red circle, grey zones are blue circles.

Wine data set.

36

As shown in Figure 11 prototypes are selected to the subset following the same procedure

as with inscribed circles. The only difference is that some 1-parent ignorance zones are

larger and partly located outside the domain boundary. This slight difference also explains

the distinction between final subsets: the number of prototypes and grey zones in the final

subset is smaller with Gabriel principle and larger with inscribed circles.

Table 8 show positive results obtained with incremental PS with Gabriel principle. On aver-

age both percentages of data retention and error rate are lower in comparison with inscribed

circles. Six out of eight data sets have better classification accuracy with smart PS method

based on Gabriel principle rather than with the classifier trained on raw training sets. For PS

method it is important to maintain selected subset small and representative at the same time,

and proposed algorithm from this section fulfills this requirement.

Table 8. Error rate (ER) and percentage of retention (PR) with circular domain and Gabriel

principle

Full Set

Parents of

Ignorance

Zones

Domain with

Gabriel

principle

Data set ER PR ER PR ER PR

Iris 3.7 100 3.9 18.1 3.7 18.0

Wine 12.9 100 13.4 35.7 13.3 27.2

Pima 35.6 100 35.8 67.7 28.4 11.4

Breast Cancer 5.3 100 5.4 9.3 4.1 5.6

Ionosphere 29.0 100 29.6 58.2 25.2 24.7

Glass 38.4 100 38.0 76.9 40.1 46.4

Bupa 46.8 100 46.8 86.7 46.1 31.9

Transfusion 31.3 100 33.8 64.5 26.1 13.1

Average 25.38 100 25.84 52.14 23.38 22.29

37

5.2.3 Circles with Relative principle as 1-parent grey zones

The third approach of forming 1-parent grey zones within a circular domain. It is similar

to circles with Gabriel principle with one major difference: circles are twice as big and 1-

parent ignorance zones represent crescent, visually shown as a disjoint intersection between

circle and domain. The figure of crescent resembles geometrical figure produced in Relative

neighbors algorithm where it is called "lune" (Jose Salvador Sánchez, Pla, and Ferri 1997).

The similarity of geometrical figures gives this method a name of Relative principles.

As with previous variants each point can generate up to four 1-parent grey zones: two circles

are produced by a line going through the domain center and two more are created by a

perpendicular to the first line going through the chosen point (Figure 12). If no other points

from the training set are situated inside the circle it forms a 1-parent ignorance zone.

Figure 12. 1-parent grey zones produced with Relative principle inside circular domain after

the first iteration of the algorithm.

The algorithm with Relative principle forms bigger grey zones in comparison with previous

versions because circles have a double diameter. This property has an influence on the num-

ber of ignorance zones so that there are fewer of them comparing to Gabriel principle and

38

inscribed circles. Figure 13 visually demonstrates this assumption by possessing even fewer

grey zones and prototypes than in the case of Gabriel principle. Reducing the number of grey

zones and selecting fewer prototypes has a positive impact on the percentage of retention,

though the same logic might not be applicable to the classification accuracy.

Figure 13. Incremental algorithm with circle domain and Relative principle after the first,

the second and the last iterations. Domain is shown as red circle, grey zones are blue circles.

Wine data set.

Table 9 shows classification results for the algorithm using Relative principle. In comparison

with Gabriel principle percentage of retention is lower for all data sets, but as consequence

error rate has also deteriorated. There is always a trade-off between maintaining representa-

tive subset and making it smaller. Relative principle over-restricts prototype’s requirements

and does not include enough points to the final subset. Having sparse subset of data results

in worse classification accuracy almost for all data sets excluding Iris. Iris data set benefits

from Relative principle that decreases its error rate from 3.7% (with Gabriel principle) to

2.6% together with improving retention percentage and leaving only 17.6% of instances. All

other data sets received worse results than with Gabriel principle.

39

Table 9. Error rate (ER) and percentage of retention (PR) with circular domain and Relative

principle based on 1-NN classifier

Full Set

Parents of

Ignorance

Zones

Domain with

Relative

principle

Data set ER PR ER PR ER PR

Iris 3.7 100 3.9 18.1 2.6 17.6

Wine 12.9 100 13.4 35.7 13.9 23.7

Pima 35.6 100 35.8 67.7 28.3 10.7

Breast Cancer 5.3 100 5.4 9.3 4.2 5.6

Ionosphere 29.0 100 29.6 58.2 29.9 18.7

Glass 38.4 100 38.0 76.9 42.7 45.8

Bupa 46.8 100 46.8 86.7 50.8 23.0

Transfusion 31.3 100 33.8 64.5 26.3 7.4

Average 25.38 100 25.84 52.14 24.84 19.06

5.3 Comparison of results

The main outcome of making multiple experiments with different Prototype Selection meth-

ods on eight data sets is that no algorithm consistently outperforms the others. An algorithm

that works well for one data set does not necessarily work well for the other one and vice-

versa. Structure of data sets can vary a lot from a problem to problem and it results in

inconsistency when applying one PS algorithm to all data sets and expecting it to win in all

situations. A similar conclusion is inferred by other researchers who emphasize the neces-

sity of gaining the insights about the structure of data sets manually before applying specific

prototype selection schemas (Brighton and Mellish 2002).

When talking about instance selection maintaining classification accuracy is commonly a pri-

mary goal, but depending on the approach of instance selection various algorithms show dif-

ferent results. Competence enhancement, competence preservation, and hybrid schemes are

emphasized the most. Competence enhancement focuses on removing noisy and corrupted

40

instances, competence preservation aims to delete superfluous prototypes, hybrid approach

tries to take best things from both approaches (Brighton and Mellish 2002).

Incremental versions of the algorithm described in this chapter implement the hybrid ap-

proach. On the one hand, they try to remove superfluous instances with the help of ignorance

zones. Grey zones aim to find variance from the data set by focusing on points from different

classes located next to each other. On the other hand, incremental algorithms ignore noisy

data. They do not analyze all available data not discover all ignorance zones at once. By fol-

lowing incremental approach and adding only one prototype to the subset on each iteration

the algorithm avoids analyzing small ignorance zones and adding noisy prototypes.

There is no single algorithm achieving the best results for every data set individually, but

Table 10 and 11 show that some of the proposed algorithms manage to maintain the same

or even lower error rate in comparison with classifiers trained on full training sets, parents of

ignorance zones and randomly selected subsets. On average the worst classification accuracy

is achieved with the random training set and the best one - with incremental PS algorithm

with circular domain and Gabriel principle.

Table 10. Error rates (ER) for different PS algorithms based on 1-NN classifier

Data set Full Set

Parents

of Igno-

rance

Zones

Ran-

dom

Set

In-

scribed

cirles

Gabriel

princi-

ple

Relative

princi-

ple

Iris 3.7 3.9 5.5 3.9 3.7 2.6

Wine 12.9 13.4 13.9 13.6 13.3 13.9

Pima 35.6 35.8 32.8 31.4 28.4 28.3

Breast Cancer 5.3 5.4 4.3 4.0 4.1 4.2

Ionosphere 29.0 29.6 28.6 24.6 25.2 29.9

Glass 38.4 38.0 47.3 38.8 40.1 42.7

Bupa 46.8 46.8 46.5 46.2 46.1 50.8

Transfusion 31.3 33.8 30.6 27.5 26.1 26.3

Average 25.38 25.84 26.19 23.75 23.38 24.84

41

Due to the hybrid schema of proposed algorithms not only do they remove noisy data and

improve classification accuracy but also speed up decision-making by decreasing the train-

ing set and making storage requirements lower. On average incremental algorithms remove

around 80% of redundant data leaving only 19-22% of prototypes for classification deci-

sions. In comparison, the batch version of the algorithm deletes a bit less than 50% of data

and retains the other half as the representative subset.

Table 11. Percentage of retention (PR) for different algorithms based on 1-NN classifier

Data set Full Set

Parents

of Igno-

rance

Zones

Ran-

dom

Set

In-

scribed

cirles

Gabriel

princi-

ple

Relative

princi-

ple

Iris 100 18.1 18.1 21.8 18.0 17.6

Wine 100 35.7 35.7 29.5 27.2 23.7

Pima 100 67.7 67.7 12.6 11.4 10.7

Breast Cancer 100 9.3 9.3 7.2 5.6 5.6

Ionosphere 100 58.2 58.2 26.2 24.7 18.7

Glass 100 76.9 76.9 47.6 46.4 45.8

Bupa 100 86.7 86.7 29.4 31.9 23.0

Transfusion 100 64.5 64.5 9.4 13.1 7.4

Average 100 52.14 52.14 22.96 22.29 19.06

Percentage of retention, on the contrary to error rate, turns out to be quite a consistent metric.

For incremental algorithms, the number of instances added to the subset depends on amount

and size of grey zones. Relative principle has the lowest percentage of retention for all data

sets (19%). Large "lunes" formed by Relative principle do not form many ignorance zones

because the larger the circle becomes the less the chance not to have other points inside it.

With fewer grey zones fewer prototypes are selected to the final training set. Inscribed circles

have a requirement to be fully located inside the domain area and produce smaller grey zone.

A larger amount of grey zones having smaller size explains the higher percentage of data

retention with inscribed circles (23%). Gabriel principle defines middle-sized circles that

42

correctly corresponds to its average data retention (22.3%).

Achieving the highest classification accuracy with the lowest retention rate with the same PS

algorithm is a non-common scenario. It happened for Iris and Pima data sets only where the

best results are obtained with the algorithm based on Relative principle. For other databases

defining which one of these two metrics is prevailing and looking for a trade-off between

sufficiently low error rate and relatively high percentage of reduction is necessary to find the

best PS method.

5.4 Computational complexity

To assess computational complexity of the incremental method, we should understand what

operations are run while the algorithm is working. The runtime lifecycle consists of the

following iterations:

• calculate domain area and add it to the list of ignorance zones;

• repeat while at least one non-empty ignorance zone exists:

– find the most significant non-empty ignorance zone and select a prototype located

next to its confusion focus;

– discover 1-parent and multi-parent ignorance zones for selected prototype;

• return selected set of prototypes.

For d-dimensional data set with n points, the algorithm using p points to define a multi-

parent ignorance zone would analyze and add all prototypes to the final set in the worst-

case scenario. The first step of calculating domain requires O(nd) runtime as the algorithm

searches for min and max values for each dimension and builds the domain border based on

found values.

The second step has O(n) complexity because it is repeated at every point in the worst case.

A substep for discovering 1-parent ignorance zones for a single point requires O(2pnd)

runtime because the amount of potential zones doubles with every new dimension (up to 4

1-parent ignorance zones in two-dimensional space, up to 6 in three-dimensional, etc.). For

discovering multi-parent ignorance zones, the algorithm spends O(npd) time for each proto-

43

type as it checks all combinations of p-point circles and calculates distances from its center

to each point. All in all, the algorithm complexity is O(nd)+O(n) ∗ (O(2pnd)+O(npd))

and assuming n being considerably bigger than d and p the expression can be simplified to

O(np+1d).

We can see that the worst-case running time is the same both for the batch and the incremen-

tal algorithms. In practice, not all points are chosen to the final subset by the incremental

version, and the algorithm does not discover ignorance zones for all prototypes. Also, it is

possible to stop the incremental algorithm at any point in time when desired classification ac-

curacy is achieved, and the number of points for multi-parent ignorance zones can be limited.

In this thesis, we applied the limitations of discovering confusion areas in two-dimensional

space and calculating 2- and 3-parent ignorance zones only. With these limitations, we

could validate the performance of the algorithm without being concerned about execution

time. Though, taking into account the exponential complexity of the algorithm, detecting

ignorance zones in multi-dimensional space must need further research beforehand and not

included in this thesis.

44

6 Prototype Selection with an adversarial process

Generative Adversarial Network (GAN) has recently become a popular type of deep learning

algorithms and achieved great success in producing realistically looking images, 3D object

generation, and video prediction. Despite discriminative models where high-dimensional

input data is usually mapped to a class label, adversarial networks offer a different approach

where "generative model is pitted against discriminative model" (Goodfellow et al. 2014).

The adversarial method works as a system of two neural networks, where one of them, called

the generator, produces candidates and the other one, called the discriminator, evaluates

them. As a result of learning the generator learns to produce better images while the dis-

criminator improves its detective skills in distinguishing fake and real images. Despite the

success of GANs they have been known to be unstable to train and very difficult to under-

stand from the training perspective (Arjovsky and Bottou 2017).

In this thesis we do not explore the details of GANs, but rather take an idea of two models

being contested with each other and apply its analogy to the previously described concept

of ignorance zones and Prototype Selection. Further experiments show the potential of the

adversarial training applied to PS by generating the training set and making its qualitative

and quantitative analysis.

6.1 Adversarial process in Professor-Student algorithm

The idea of learning from the interaction of two sides, that do not always pursue the same

goal, happens often in our life. One prominent example is a schoolchild-teacher interaction at

school or professor-student cooperation at the university. The former part of these pairs aims

to impartially assess knowledge of the latter part, whose main goal is to answer questions

correctly and pass an exam. This symbiosis results in mutual benefit: professor learns how

to assess knowledge and find the gaps with the least number of questions, and student studies

the least amount of information to be capable of answering professor’s questions.

The interaction between student and professor resembles a classification problem where the

45

model based on training set aims to answer questions asked from testing set. In this chapter,

we design and validate an algorithm called Professor-Student that tries to select the best sub-

set of data based on adversarial process. The idea of Professor-Student algorithm broadly re-

sembles the framework of Generative Adversarial Networks (Goodfellow et al. 2014), where

professor represents the discriminative model and student can be thought the as the genera-

tive model.

Professor’s role is to study the domain well and be competent enough to examine the most

prepared student. Professor can choose necessary data from the data set in order to formulate

hard questions even for the smartest student. During the education process, the professor

has access to student’s ignorance zones simulating the situation of a real exam where the

professor can assess domain areas that student is not familiar of by asking questions.

The primary goal of the student is, on the contrary, to pass the exam by preparing how to do it

with the most competent professor. While studying the student selects optimal data from the

whole training set that is necessary to answer possible exam’s questions. In order to make

preparation process fair for both sides, the student has access to professor’s ignorance zones

and knows which domain spheres are more important than others.

Competition between professor and student drives them both to improve their sets of data so

that the student answers professor’s questions correctly and the professor has good domain

knowledge. The data sets chosen by professor and student as a result of the adversarial

process can be used for classification purpose as a training set.

6.2 Algorithm implementation

Being an incremental method Professor-Student algorithm starts with empty subsets and

selects at most two points into them on each iteration (one for the professor and one for the

student). The full process of the algorithm consists of the following steps:

• on the first iteration both professor and student begin with an empty set of data and

having domain boundary as the only ignorance zone;

• on every next iteration, the student chooses a new point located inside his biggest grey

46

zone. Additionally, the new point must not be inside any of professor’s grey zones;

• similar logic is done by the professor on each iteration: he also selects a new point but

located inside the biggest ignorance zone belonging either to the professor or to the

student;

• the algorithm stops when neither the professor nor the student has grey zones with

vacant points inside.

Algorithm 3: Selecting prototypes by Profesor-Student algorithm
FindStudentProfessorPrototypes (X ,Y)

inputs : A training set X with coordinate vectors and Y with class labels
output: The sets of prototypes Xpro f , Xstud with coordinate vectors and Ypro f ,Ystud with

class labels
Xpro f ← /0,Ypro f ← /0;
Xstud ← /0,Ystud ← /0;
domain =CalculateDomain(X ,Y);
Zstud = {domain},Zpro f = {domain};
do

istud =index of a point from the biggest zone of Zstud located outside Zpro f ;
if istud 6=−1 then

Add X [istud] to Xstud;
Add Y [istud] to Ystud;

ipro f = index of a point from the biggest zone of Zpro f or Zstud;
if ipro f 6=−1 then

Add X [ipro f] to Xpro f ;
Add Y [ipro f] to Ypro f ;

Zstud = FindIgnoranceZones(Xstud,Ystud);
Zpro f = FindIgnoranceZones(Xpro f ,Ypro f);

while istud 6=−1 and ipro f 6=−1;

return Xpro f ,Ypro f ,Xstud,Ystud;

Due to different behavior of data selection between the professor and the student, their sub-

sets of data look diverse. The professor focuses on gaining maximum domain knowledge

that results in having multifarious prototypes covering all data clusters from different angles.

Having less limiting constraints and being able to select points from any ignorance zone,

professor’s subset has considerably more points than student’s one.

Student’s selection is not as comprehensive as professor’s because it is created following a

47

different strategy: prioritize points from own gaps that help to answer professor’s questions.

The student chooses fewer points that do not necessarily cover all domain areas well. Many

of them are located on the very border far from the center and hard to classify, so student’s

data can be used as a testing set for hard classification experiments.

6.3 Using Professor-Student prototypes in classification

In Professor-Student algorithm, both roles simulate the situation where one side asks ques-

tions and the other one tries to respond based on available knowledge. As a result of such

interation the professor starts making more complicated inquiries and the student learns to

give more detailed explanations. Adapting to increased level of questions examiner and

examinee have to discover new relavant knowledge about domain. We believe that such

discovery process eventually forms a carefully chosen representative knowledge set.

Figure 14. Prototypes selected by Professor-Student from Breast Cancer data set. Squares -

professor’s points, triangles - student’s points.

Figures 14 and 15 show the output of Professor-Student algorithm for Breast Cancer and

Wine data sets. Square points represent prototypes selected by the professor, triangles -

points chosen by the student. Professor’s sets contain exemplars mainly concentrated near

the cluster’s borders. It ignores superfluous points and focuses on prototypes located next to

class contours. Based on algorithm’s logic, the examiner must prioritize domain exploration

48

by looking for prototypes in the largest ignorance zones. Selected exemplars comply with

professor’s strategy: with knowledge about class contours the professor is capable of asking

complex questions and assessing student’s knowledge accurately.

Student’s subsets contain fewer exemplars in comparison with professor’s data. For the

most part, prototypes selected by the student are located inside class contours defined by the

professor. This disposition of points is a consequence of examinee’s strategy to answer pro-

fessor’s questions correctly. There is no reason for arbitrary domain exploration because the

professor does not ask questions from ignorance zones. Student’s prototypes taken separately

do not represent a stated value, but in conjunction with professor’s subset, they supplement

the output with valuable knowledge.

Figure 15. Prototypes selected by Professor-Student from Wine data set. Squares - profes-

sor’s points, triangles - student’s points.

In this section, we assess the quality of prototypes, selected with Professor-Student algo-

rithm, by using them for classification. The algorithm takes a complete set of training data

as input and produced output with prototypes is used by 1-NN classifier for training. We

make two experiments with two different output sets. In the first case, the classifier is trained

on professor’s set of prototypes. The second example provides more knowledge for the clas-

sification model by putting professor’s and student’s subsets together.

The results of classification tests, shown in Table 12, gives persuasive evidence that Professor-

49

Table 12. Error rate (ER) with Professor-Student PS algorithm and 1-NN classifier

Full Set Professor’s Set
Professor’s +

Student’s Sets

Data set
Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Arith.

Mean

Contra-

Harm.

Mean

Iris 3.7 11.0 3.9 9.9 2.9 11.0

Wine 12.9 17.6 12.9 19.7 13.0 17.5

Pima 35.6 36.4 29.8 31.0 31.2 32.2

Breast Cancer 5.3 6.3 4.0 5.6 4.1 5.3

Ionosphere 29.0 31.3 26.4 29.6 25.8 28.3

Glass 38.4 41.6 47.1 50.1 38.4 41.5

Bupa 46.8 48.0 46.1 47.5 46.9 48.1

Transfusion 31.3 32.1 27.5 28.4 27.2 28.7

Average 25.38 28.04 24.71 27.73 23.69 26.58

Student algorithm can be used as a PS technique. With prototypes selected by the professor,

1-NN classifier slightly improves its accuracy. With a combined subset of professor’s and

student’s instances, the error rate decreases even more and becomes equal to results obtained

with the incremental algorithm based on inscribed circles. We do not evaluate computational

complexity for Professor-Student algorithm separately in this section because it is based on

the incremental version of PS algorithm, described in Chapter 5, and have the same time

complexity (O(np+1d)).

50

7 Conclusion

This thesis started from the big picture of classification problem and the role of Prototype

Selection in it. We discovered that there is a multitude of methods that differ in direction of

search and type of selection. These algorithms can be very different in their way to construct

the representative subset. However, there is one thing, which makes all of them similar – pro-

totypes get chosen based on classification decisions they make, not on analysis of database

structure. We wanted to challenge the evidence of this approach and we suggested to se-

lect prototypes on the basis of data set ignorance, i.e. by processing the "voids" within the

available data space.

The questions raised in the introduction of this thesis were: how to approach the ignorance

discovery in databases and how to benefit from the discovered ignorance in classification

and Prototype Selection. In this thesis, we started with a geometrical approach to discover

"voids" within databases. Relying on the idea that the most confusion comes from areas that

are equidistant from several known points, we presented the concept of ignorance zones. This

thesis considers cases in two-dimensional space only, so circles were used as a geometrical

abstraction for confusion areas. In order to validate that ignorance zones get discovered in

prospective areas, we created a set of artificial databases and qualitatively assessed the list of

found confusion zones. Based on the visual analysis, the proposed algorithm was capable of

approaching ignorance discovery and forming confusion areas in databases.

Multiple versions of Prototype Selection methods based on confusion zones were proposed

to elucidate whether classification can benefit from ignorance discovery. Three selection

processes were validated: batch, incremental and adversarial. The batch selection could not

improve classification accuracy because of high error rate with noisy data sets. Considerably

better results were achieved with the incremental process. Favoring large ignorance zones

and avoiding smaller ones, incremental PS method based on Gabriel principle showed the

best classification accuracy within proposed algorithms. It could improve classification not

only by increasing average accuracy but also by decreasing time spent on decision-making.

Adversarial methods brought the most innovative approach to PS by pitting generative model

against discriminative. Although they failed to take the lead over incremental algorithms,

51

they managed to improve results obtained from the classifier without PS.

The future of ignorance learning looks promising. By the example of classification and Pro-

totype Selection, this thesis showed that "void" discovery could improve existing Machine

Learning algorithms and make them even smarter. Knowledge about the absence of certain

data can be as beneficial as known facts from the database.

In this thesis, there are two considerable limitations: all experiments were run with two-

dimensional databases, and ignorance zones were discovered from 2- and 3-parent circles

only. Although the primary research goal was to check the hypothesis whether ignorance

discovery can improve ML algorithms and we intentionally did not focus on algorithm’s

implementation effectiveness, the ability for generalization is essential for algorithm’s future.

On a conceptual level, there should not be significant obstacles with generalization as circles,

representing ignorance areas in planar space, would be replaced with hyperspheres in the

geometry of higher dimensions. From the practical side, computational complexity analysis

of the proposed algorithms revealed that they have exponential time complexity, and it would

be hard to generalize them without overcoming this limitation.

The complexity of current algorithms (O(np+1d)) grows exponentially with the number of

points p defining a circle or a hypersphere. With higher dimensionality, the number of such

parents linearly increases, but it does not necessarily mean that the algorithm must use all of

them. Although in N-dimensional space it is possible to create a hypersphere based on up to

N +1 points, we do not know whether ignorance zones with more parents are more valuable

and whether they give better classification accuracy. Hence the trade-off between classifi-

cation accuracy and computational cost in higher dimensions deserves a separate research

article.

An essential part of algorithm time is spent on finding the closest point to the given center. In

this thesis, the code just looks over all exemplars and selects the one with minimum distance.

Being a straightforward and simple approach, it is not a fast solution and requires linear O(n)

runtime to find one nearest point. Based on recent research, the locality-sensitive hashing

(LSH) showed itself as an efficient method for checking similarity between elements in PS

(Arnaiz-González et al. 2016). Depending on parameters of the hash function, with LSH it

52

is possible to obtain the closest point with O(n′) runtime where n′ << n. Considering that

the PS methods, presented in this thesis, heavily rely on nearest point calculations, the usage

of LSH has potential to improve their computational complexity.

Another future direction of research is exploring "voids" with alternative distance metrics.

Euclidian metric, used in this thesis, calculates distance based on coordinates only, whereas

other metrics, such as Social Distance metric (Terziyan 2017), also take into consideration

the distribution of samples within the space, that has a potential impact on classification and

clustering.

53

Bibliography

Amal, Miloud-Aouidate, and BABA-ALI Ahmed Riadh. 2011. “Survey of nearest neighbor

condensing techniques”. IJACSA) Int J Adv Comput Sci Appl 2 (11).

Angiulli, Fabrizio. 2005. “Fast condensed nearest neighbor rule”. In Proceedings of the 22nd

international conference on Machine learning, 25–32. ACM.

Arjovsky, Martin, and Léon Bottou. 2017. “Towards principled methods for training gener-

ative adversarial networks”. arXiv preprint arXiv:1701.04862.

Arnaiz-González, Álvar, José-Francisco Díez-Pastor, Juan J Rodríguez, and César García-

Osorio. 2016. “Instance selection of linear complexity for big data”. Knowledge-Based Sys-

tems 107:83–95.

Blake, Catherine L. 1998. “UCI Repository of machine learning databases, Irvine, University

of California”. http://www. ics. uci. edu/˜ mlearn/MLRepository. html.

Brighton, Henry, and Chris Mellish. 2002. “Advances in instance selection for instance-

based learning algorithms”. Data mining and knowledge discovery 6 (2): 153–172.

Cano, José Ramón, Francisco Herrera, and Manuel Lozano. 2005. “Stratification for scaling

up evolutionary prototype selection”. Pattern Recognition Letters 26 (7): 953–963.

Cover, Thomas, and Peter Hart. 1967. “Nearest neighbor pattern classification”. IEEE trans-

actions on information theory 13 (1): 21–27.

Derrac, Joaquín, Salvador García, and Francisco Herrera. 2010. “Stratified prototype selec-

tion based on a steady-state memetic algorithm: a study of scalability”. Memetic Computing

2 (3): 183–199.

Garcia, Salvador, Joaquin Derrac, Jose Cano, and Francisco Herrera. 2012. “Prototype selec-

tion for nearest neighbor classification: Taxonomy and empirical study”. IEEE transactions

on pattern analysis and machine intelligence 34 (3): 417–435.

Gates, Geoffrey. 1972. “The reduced nearest neighbor rule (Corresp.)” IEEE transactions on

information theory 18 (3): 431–433.

54

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Generative adversarial nets”. In Ad-

vances in neural information processing systems, 2672–2680.

Hart, Peter. 1968. “The condensed nearest neighbor rule (Corresp.)” IEEE transactions on

information theory 14 (3): 515–516.

Hawkins, Douglas M. 2004. “The problem of overfitting”. Journal of chemical information

and computer sciences 44 (1): 1–12.

Hwang, Seongseob, and Sungzoon Cho. 2007. “Clustering-based reference set reduction for

k-nearest neighbor”. In International Symposium on Neural Networks, 880–888. Springer.

Jaromczyk, Jerzy W, and Godfried T Toussaint. 1992. “Relative neighborhood graphs and

their relatives”. Proceedings of the IEEE 80 (9): 1502–1517.

Kononenko, Igor, and Matjaž Kukar. 2007. Machine learning and data mining: introduction

to principles and algorithms. Horwood Publishing.

Liu, Huawen, and Shichao Zhang. 2012. “Noisy data elimination using mutual k-nearest

neighbor for classification mining”. Journal of Systems and Software 85 (5): 1067–1074.

Machiwal, Deepesh, and Madan Kumar Jha. 2012. Hydrologic time series analysis: theory

and practice. Springer Science & Business Media.

“Matplotlib 2.2.2 documentation”. 2018. Visited on March 25, 2018. https://matplot

lib.org/.

Minker, Jack. 1982. “On indefinite databases and the closed world assumption”. In Interna-

tional Conference on Automated Deduction, 292–308. Springer.

“NumPy - NumPy”. 2017. Visited on March 25, 2018. http://www.numpy.org/.

Olvera-López, J Arturo, J Ariel Carrasco-Ochoa, and J Francisco Martínez-Trinidad. 2010.

“A new fast prototype selection method based on clustering”. Pattern Analysis and Applica-

tions 13 (2): 131–141.

55

https://matplotlib.org/
https://matplotlib.org/
http://www.numpy.org/

Ougiaroglou, Stefanos, Georgios Evangelidis, and Dimitris A Dervos. 2015. “FHC: an adap-

tive fast hybrid method for k-NN classification”. Logic Journal of the IGPL 23 (3): 431–

450.

Reiter, Raymond. 1981. “On closed world data bases”. In Readings in artificial intelligence,

119–140. Elsevier.

Ritter, G, H Woodruff, S Lowry, and T Isenhour. 1975. “An algorithm for a selective nearest

neighbor decision rule (Corresp.)” IEEE Transactions on Information Theory 21 (6): 665–

669.

Sánchez, Jose Salvador, Filiberto Pla, and Francesc J Ferri. 1997. “Prototype selection for

the nearest neighbour rule through proximity graphs”. Pattern Recognition Letters 18 (6):

507–513.

Sánchez, José Salvador, Filiberto Pla, and Francesc J Ferri. 1997. “On the use of neighbourhood-

based non-parametric classifiers”. Pattern Recognition Letters 18 (11-13): 1179–1186.

“scikit-learn: machine learning in Python”. 2018. Visited on March 25, 2018. http://

scikit-learn.org/.

“SciPy.org - SciPy.org”. 2018. Visited on March 25, 2018. https://scipy.org/.

“seaborn: statistical data visualization”. 2018. Visited on March 25, 2018. https://sea

born.pydata.org/.

Shamos, Michael Ian, and Dan Hoey. 1975. “Closest-point problems”. In Foundations of

Computer Science, 1975., 16th Annual Symposium on, 151–162. IEEE.

Terziyan, Vagan. 2017. “Social Distance metric: from coordinates to neighborhoods”. Inter-

national Journal of Geographical Information Science 31 (12): 2401–2426.

Toussaint, Godfried T. 1980. “The relative neighbourhood graph of a finite planar set”. Pat-

tern recognition 12 (4): 261–268.

56

http://scikit-learn.org/
http://scikit-learn.org/
https://scipy.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/

Triguero, Isaac, Joaquín Derrac, Salvador Garcia, and Francisco Herrera. 2012. “A taxonomy

and experimental study on prototype generation for nearest neighbor classification”. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (1):

86–100.

Triguero, Isaac, Daniel Peralta, Jaume Bacardit, Salvador García, and Francisco Herrera.

2015. “MRPR: a MapReduce solution for prototype reduction in big data classification”.

neurocomputing 150:331–345.

Welzl, Emo. 1991. “Smallest enclosing disks (balls and ellipsoids)”. In New results and new

trends in computer science, 359–370. Springer.

Wilson, D Randall, and Tony R Martinez. 1997. “Instance pruning techniques”. In ICML,

97:403–411.

. 2000. “Reduction techniques for instance-based learning algorithms”. Machine learn-

ing 38 (3): 257–286.

Wu, Xindong, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,

Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. 2008. “Top 10 algorithms in

data mining”. Knowledge and information systems 14 (1): 1–37.

Yu, Cui, Beng Chin Ooi, Kian-Lee Tan, and HV Jagadish. 2001. “Indexing the distance: An

efficient method to knn processing”. In Vldb, 1:421–430.

57

Appendices

A Code snippets for calculating 2- and 3-parent Ignorance Zones
import numpy as np

import i t e r t o o l s

import math

def c a l c _ d i s t a n c e (s t a r t , end) :

s q u a r e d _ d i f f = lambda x : (s t a r t [x] − end [x]) ∗∗ 2

re turn math . s q r t (sum (map (s q u a r e d _ d i f f , range (s t a r t . shape [0]))))

def c a l c _ d i s t a n c e _ b e t w e e n _ p o i n t s _ f r o m _ d a t a (da t a , s t a r t _ i n d e x , end_ index) :

re turn c a l c _ d i s t a n c e (d a t a [i n t (s t a r t _ i n d e x)] , d a t a [i n t (end_ index)])

def c a r t e s i a n (a r r a y s , o u t =None) :

" " "

Genera te a c a r t e s i a n p r o d u c t o f i n p u t a r r a y s .

Parame ter s

−−−−−−−−−−
a r r a y s : l i s t o f array− l i k e

1−D a r r a y s t o form t h e c a r t e s i a n p r o d u c t o f .

o u t : ndarray

Array t o p l a c e t h e c a r t e s i a n p r o d u c t i n .

R e t u r n s

−−−−−−−
o u t : ndarray

2−D a r r a y o f shape (M, l e n (a r r a y s)) c o n t a i n i n g c a r t e s i a n p r o d u c t s

formed o f i n p u t a r r a y s .

" " "

a r r a y s = [np . a s a r r a y (x) f o r x in a r r a y s]

d t y p e = a r r a y s [0] . d t y p e

n = np . prod ([x . s i z e f o r x in a r r a y s])

i f o u t i s None :

o u t = np . z e r o s ([n , l e n (a r r a y s)] , d t y p e = d t y p e)

m = i n t (n / a r r a y s [0] . s i z e)

o u t [: , 0] = np . r e p e a t (a r r a y s [0] , m)

i f a r r a y s [1 :] :

c a r t e s i a n (a r r a y s [1 :] , o u t = o u t [0 :m, 1 :])

f o r j in xrange (1 , a r r a y s [0] . s i z e) :

o u t [j ∗ m: (j + 1) ∗ m, 1 :] = o u t [0 :m, 1 :]

re turn o u t

def c a l c _ r a d i u s (da t a , p o i n t _ i n d e x e s) :

i f l e n (p o i n t _ i n d e x e s) != 3 :

r a i s e A r i t h m e t i c E r r o r (" Rad ius can be c a l c u l a t e d on ly f o r t r i a n g l e ")

s i d e s = [c a l c _ d i s t a n c e _ b e t w e e n _ p o i n t s _ f r o m _ d a t a (da t a , ∗ s i d e _ p o i n t s) f o r s i d e _ p o i n t s in

i t e r t o o l s . c o m b i n a t i o n s (p o i n t _ i n d e x e s , 2)]

s e m i p e r i m e t e r = sum (s i d e s) / 2

58

v a r = s e m i p e r i m e t e r ∗ (s e m i p e r i m e t e r − s i d e s [0]) ∗ (s e m i p e r i m e t e r − s i d e s [1]) ∗ (s e m i p e r i m e t e r − s i d e s [2])

i f 0 >= v a r > −0.001:

v a r = 0 .001

re turn (s i d e s [0] ∗ s i d e s [1] ∗ s i d e s [2]) / (4 ∗ s q r t (v a r))

def c a l c _ c i r c u m c e n t e r (obs) :

" " "

C a l c u l a t e s c i r c u m c e n t e r c o o r d i n a t e s o f a g i v e n t r i a n g l e .

Parame ter s

−−−−−−−−−−
obs : ndarray

Each row o f t h e 3 by 2 a r r a y r e p r e s e n t s s i n g l e p o i n t i n t h e t r i a n g l e .

R e t u r n s

−−−−−−−
r e s : ndarray

2−d i m e n s i o n a l a r r a y c o n t a i n i n g c i r c u m c e n t e r c o o r d i n a t e s .

" " "

i f obs . shape [0] != 3 or obs . shape [1] != 2 :

r a i s e N ot I mp l em e n t ed E r r o r ()

x1 , x2 = obs [0] [0] , obs [0] [1]

y1 , y2 = obs [1] [0] , obs [1] [1]

z1 , z2 = obs [2] [0] , obs [2] [1]

a_2 = (z1 − y1) ∗∗ 2 + (z2 − y2) ∗∗ 2

b_2 = (z1 − x1) ∗∗ 2 + (z2 − x2) ∗∗ 2

c_2 = (y1 − x1) ∗∗ 2 + (y2 − x2) ∗∗ 2

w1 = a_2 ∗ (b_2 + c_2 − a_2)

w2 = b_2 ∗ (c_2 + a_2 − b_2)

w3 = c_2 ∗ (a_2 + b_2 − c_2)

wsum = w1 + w2 + w3

i f wsum == 0 :

re turn np . a r r a y ([np .NAN, np .NAN])

o1 = (w1 / wsum) ∗ x1 + (w2 / wsum) ∗ y1 + (w3 / wsum) ∗ z1

o2 = (w1 / wsum) ∗ x2 + (w2 / wsum) ∗ y2 + (w3 / wsum) ∗ z2

re turn np . a r r a y ([o1 , o2])

c l a s s I g n o r a n c e D i s c o v e r y :

def _ _ i n i t _ _ (s e l f , da t a , c l a s s e s) :

s e l f . d a t a = d a t a

s e l f . c l a s s e s = c l a s s e s

s e l f . a l l o w _ i g n o r a n c e _ c i r c l e s _ t o _ i n t e r s e c t = F a l s e

s e l f . a l l o w _ d a t a _ i n s i d e _ i g n o r a n c e _ c i r c l e s = F a l s e

s e l f . c h i l d r e n = l i s t ()

s e l f . c h i l d r e n _ p a r e n t s = l i s t ()

s e l f . c h i l d r e n _ d i s t a n c e s _ t o _ p a r e n t s = l i s t ()

def f i n d _ i g n o r a n c e _ p o i n t s (s e l f , type =" mixed ") :

u n i q u e _ c l a s s e s = np . u n i qu e (s e l f . c l a s s e s)

l i n e _ d i s t a n c e s = np . empty (shape = (0 , s e l f . d a t a . shape [1] + 1))

i f type == " l i n e " or type == " mixed " :

c o m b i n a t i o n s = l i s t (i t e r t o o l s . c o m b i n a t i o n s (u n i q u e _ c l a s s e s , 2))

f o r c o m b i n a t i o n in c o m b i n a t i o n s :

59

l o c a l _ d i s t a n c e = s e l f . _ c a l c _ d i s t a n c e _ b e t w e e n _ c l a s s e s (c o m b i n a t i o n)

l i n e _ d i s t a n c e s = np . v s t a c k ((l i n e _ d i s t a n c e s , l o c a l _ d i s t a n c e))

t r i a n g l e _ d i s t a n c e s = np . empty (shape = (0 , s e l f . d a t a . shape [1] + 2))

i f type == " t r i a n g l e " or type == " mixed " :

c o m b i n a t i o n s = l i s t (i t e r t o o l s . c o m b i n a t i o n s (u n i q u e _ c l a s s e s , 3))

f o r c o m b i n a t i o n in c o m b i n a t i o n s :

l o c a l _ d i s t a n c e = s e l f . _ c a l c _ d i s t a n c e _ b e t w e e n _ c l a s s e s (c o m b i n a t i o n)

t r i a n g l e _ d i s t a n c e s = np . v s t a c k ((t r i a n g l e _ d i s t a n c e s , l o c a l _ d i s t a n c e))

s o r t a r r a y w i t h r e g a r d s t o 1 s t column

l i n e _ s o r t e d _ d i s t a n c e s = l i n e _ d i s t a n c e s [l i n e _ d i s t a n c e s [: , 0] . a r g s o r t ()]

t r i a n g l e _ s o r t e d _ d i s t a n c e s = t r i a n g l e _ d i s t a n c e s [t r i a n g l e _ d i s t a n c e s [: , 0] . a r g s o r t ()]

l i n e _ i n d e x , t r i a n g l e _ i n d e x = 0 , 0

whi le l e n (l i n e _ s o r t e d _ d i s t a n c e s) != l i n e _ i n d e x or l e n (t r i a n g l e _ s o r t e d _ d i s t a n c e s) != t r i a n g l e _ i n d e x :

i f l e n (l i n e _ s o r t e d _ d i s t a n c e s) != l i n e _ i n d e x and (

l e n (t r i a n g l e _ s o r t e d _ d i s t a n c e s) == t r i a n g l e _ i n d e x or l i n e _ s o r t e d _ d i s t a n c e s [l i n e _ i n d e x] [0] <=

t r i a n g l e _ s o r t e d _ d i s t a n c e s [t r i a n g l e _ i n d e x] [0]) :

p a r e n t s _ c o m b i n a t i o n = l i n e _ s o r t e d _ d i s t a n c e s [l i n e _ i n d e x]

l i n e _ i n d e x += 1

e l s e :

p a r e n t s _ c o m b i n a t i o n = t r i a n g l e _ s o r t e d _ d i s t a n c e s [t r i a n g l e _ i n d e x]

t r i a n g l e _ i n d e x += 1

d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s = p a r e n t s _ c o m b i n a t i o n [0]

p a r e n t s _ i n d e x e s = p a r e n t s _ c o m b i n a t i o n [1 :] . a s t y p e (i n t)

p a r e n t s = np . a r r a y ([s e l f . d a t a [i] f o r i in p a r e n t s _ i n d e x e s]) . a s t y p e (f l o a t)

c h i l d = s e l f . _make_ch i ld (p a r e n t s)

i f not s e l f . _ v a l i d a t e _ c h i l d (d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s , p a r e n t s _ i n d e x e s , c h i l d) :

c o n t in u e

s e l f . c h i l d r e n . append (c h i l d)

s e l f . c h i l d r e n _ p a r e n t s . append (p a r e n t s _ i n d e x e s)

s e l f . c h i l d r e n _ d i s t a n c e s _ t o _ p a r e n t s . append (d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s)

re turn np . a r r a y (s e l f . c h i l d r e n)

def _make_ch i ld (s e l f , p a r e n t s) :

i f l e n (p a r e n t s) == 2 :

c h i l d = (p a r e n t s [0] + p a r e n t s [1]) / 2

e l i f l e n (p a r e n t s) == 3 :

c h i l d = c a l c _ c i r c u m c e n t e r (p a r e n t s)

e l s e :

r a i s e N ot I mp l em e n t e dE r ro r (" Algo r i t hm can c r e a t e c h i l d r e n on ly f o r l i n e s and t r i a n g l e s ")

re turn c h i l d

def _ v a l i d a t e _ c h i l d (s e l f , d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s , p a r e n t s _ i n d e x e s , c h i l d) :

i f math . i s n a n (c h i l d [0]) or math . i s n a n (c h i l d [1]) :

re turn F a l s e

i f not s e l f . a l l o w _ d a t a _ i n s i d e _ i g n o r a n c e _ c i r c l e s :

f o r i in xrange (l e n (s e l f . d a t a)) :

i f i in p a r e n t s _ i n d e x e s :

c o n t in u e

e l i f c a l c _ d i s t a n c e (s e l f . d a t a [i] , c h i l d) < d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s :

re turn F a l s e

i f not s e l f . a l l o w _ i g n o r a n c e _ c i r c l e s _ t o _ i n t e r s e c t :

f o r i in xrange (l e n (s e l f . c h i l d r e n)) :

i f c a l c _ d i s t a n c e (s e l f . c h i l d r e n [i] , c h i l d) < d i s t a n c e _ b e t w e e n _ c h i l d _ a n d _ p a r e n t s + \

60

s e l f . c h i l d r e n _ d i s t a n c e s _ t o _ p a r e n t s [i] :

re turn F a l s e

re turn True

def _ c a l c _ d i s t a n c e _ b e t w e e n _ c l a s s e s (s e l f , t a r g e t) :

i n d e x e s _ b y _ c l a s s e s = np . a r r a y ([np . where (s e l f . c l a s s e s == c) [0] f o r c in t a r g e t])

f i g u r e s = c a r t e s i a n (i n d e x e s _ b y _ c l a s s e s)

d i s t a n c e s = np . empty (shape =(l e n (f i g u r e s) , l e n (t a r g e t) + 1))

f o r i in xrange (l e n (f i g u r e s)) :

f i g u r e = f i g u r e s [i] . a s t y p e (f l o a t)

i f f i g u r e . shape [0] == 2 :

d i a m e t e r = c a l c _ d i s t a n c e _ b e t w e e n _ p o i n t s _ f r o m _ d a t a (s e l f . da t a , f i g u r e [0] , f i g u r e [1])

d i s t a n c e = d i a m e t e r / 2

e l i f f i g u r e . shape [0] == 3 :

d i s t a n c e = c a l c _ r a d i u s (s e l f . da t a , f i g u r e)

e l s e :

r a i s e E x c e p t i o n (" Algo r i t hm can c a l c u l a t e d i s t a n c e s on ly l i n e s and t r i a n g l e s ")

d i s t a n c e = np . i n s e r t (f i g u r e , 0 , d i s t a n c e)

d i s t a n c e s [i] = d i s t a n c e

re turn d i s t a n c e s

B Code snippets for classifiers with batch and incremental PS
def e v a l u a t e _ c l a s s i f i e r _ a c c u r a c y (x _ t r a i n , y _ t r a i n , x _ t e s t , y _ t e s t) :

model = K N e i g h b o r s C l a s s i f i e r (n _ n e i g h b o r s =1)

model . f i t (x _ t r a i n , y _ t r a i n)

r e s u l t s = np . a r r a y ([model . p r e d i c t (x _ t e s t [i] . r e s h a p e (1 , −1)) [0] == y _ t e s t [i] f o r i in xrange (l e n (x _ t e s t))])

a c c u r a c y = l e n (x _ t e s t [r e s u l t s , :]) / l e n (r e s u l t s)

re turn accu racy , r e s u l t s

c l a s s B a s e S u b s e t C l a s s i f i e r :

_ _ m e t a c l a s s _ _ = ABCMeta

def _ _ i n i t _ _ (s e l f , x _ t r a i n , y _ t r a i n , t r a i n _ s u b s e t _ r a t i o = 0 . 2 , r and = 0) :

s e l f . x _ t r a i n = x _ t r a i n

s e l f . y _ t r a i n = y _ t r a i n

s e l f . t r a i n _ s u b s e t _ r a t i o = t r a i n _ s u b s e t _ r a t i o

s e l f . r and = rand

@ a b s t r a c t p r o p e r t y

def t r a i n _ s u b s e t (s e l f) :

pass

def c a l c u l a t e _ a c c u r a c y (s e l f , x _ t e s t , y _ t e s t) :

x _ t r a i n , y _ t r a i n = s e l f . t r a i n _ s u b s e t

accu racy , r e s u l t s = e v a l u a t e _ c l a s s i f i e r _ a c c u r a c y (x _ t r a i n , y _ t r a i n , x _ t e s t , y _ t e s t)

re turn a c c u r a c y

c l a s s B a t c h C l a s s i f i e r (B a s e S u b s e t C l a s s i f i e r) :

@proper ty

def t r a i n _ s u b s e t (s e l f) :

ign_zone , i g n _ p a r e n t s = c a l c _ i g n o r a n c e _ z o n e s (s e l f . x _ t r a i n , s e l f . y _ t r a i n)

p a r e n t _ i n d i c e s = np . u n i que (reduce (np . append , i g n _ p a r e n t s)) . a s t y p e (i n t)

s e l f . t r a i n _ s u b s e t _ r a t i o = f l o a t (l e n (p a r e n t _ i n d i c e s)) / l e n (s e l f . x _ t r a i n)

x , y = np . t a k e (s e l f . x _ t r a i n , p a r e n t _ i n d i c e s , a x i s = 0) , np . t a k e (s e l f . y _ t r a i n , p a r e n t _ i n d i c e s)

re turn x , y

61

c l a s s I t e r a t i v e C l a s s i f i e r (B a s e S u b s e t C l a s s i f i e r) :

@proper ty

def t r a i n _ s u b s e t (s e l f) :

domain_ type = DomainType . c i r c l e

c i r c l e _ p r i n c i p l e = C i r c l e P r i n c i p l e . g a b r i e l

i f domain_ type == DomainType . r e c t a n g l e :

domain = g e t _ r e c t a n g u l a r _ d o m a i n (s e l f . x _ t r a i n)

d o m a i n _ c e n t e r = (domain [0] + domain [−1]) / 2

e l s e :

domain = g e t _ c i r c l e _ d o m a i n (s e l f . x _ t r a i n)

d o m a i n _ c e n t e r = domain [1 :]

x_smar t , y_smar t = np . a r r a y ([g e t _ c l o s e s t _ p o i n t (s e l f . x _ t r a i n , s e l f . y _ t r a i n , d o m a i n _ c e n t e r) [0]]) , np . a r r a y (

[g e t _ c l o s e s t _ p o i n t (s e l f . x _ t r a i n , s e l f . y _ t r a i n , d o m a i n _ c e n t e r) [1]])

u s e d _ z o n e s = []

whi le True :

o n e _ p o i n t _ z o n e s , b o r d e r s = c a l c _ o n e _ p o i n t _ i g n o r a n c e _ z o n e s (x_smar t , domain , domain_type , c i r c l e _ p r i n c i p l e)

m u l t _ p o i n t _ z o n e s , _ = c a l c _ i g n o r a n c e _ z o n e s (x_smar t , y_smar t , type = ’ l i n e ’)

zones = m u l t _ p o i n t _ z o n e s

i f o n e _ p o i n t _ z o n e s . s i z e :

zones = np . c o n c a t e n a t e (

[m u l t _ p o i n t _ z o n e s , o n e _ p o i n t _ z o n e s]) i f m u l t _ p o i n t _ z o n e s . s i z e e l s e o n e _ p o i n t _ z o n e s

s m a r t _ p o i n t = s e l f . g e t _ n e x t _ s m a r t _ p o i n t (zones , m u l t _ p o i n t _ z o n e s , o n e _ p o i n t _ z o n e s , b o r d e r s , x_smar t , y_smar t)

i f s m a r t _ p o i n t i s None :

break

x_smar t , y_smar t = np . v s t a c k ([x_smar t , s m a r t _ p o i n t [0]]) , np . h s t a c k ([y_smar t , s m a r t _ p o i n t [1]])

u s e d _ z o n e s . append (s m a r t _ p o i n t [2])

s e l f . t r a i n _ s u b s e t _ r a t i o = f l o a t (l e n (x_smar t)) / l e n (s e l f . x _ t r a i n)

re turn x_smar t , y_smar t

def g e t _ n e x t _ s m a r t _ p o i n t (s e l f , zones , m u l t _ p o i n t _ z o n e s , o n e _ p o i n t _ z o n e s , b o r d e r s , x_smar t , y_smar t) :

s o r t e d _ z o n e s = zones [(− zones [: , 0]) . a r g s o r t ()]

f o r zone in s o r t e d _ z o n e s :

t a r g e t _ p o i n t = zone [1 :] i f zone in m u l t _ p o i n t _ z o n e s e l s e b o r d e r s [

np . where (np . a l l (o n e _ p o i n t _ z o n e s == zone , a x i s = 1)) [0] [0]]

c l o s e s t _ p o i n t = g e t _ c l o s e s t _ p o i n t _ i n s i d e _ c i r c l e (s e l f . x _ t r a i n , s e l f . y _ t r a i n , t a r g e t _ p o i n t , zone)

i f c l o s e s t _ p o i n t i s not None :

model = K N e i g h b o r s C l a s s i f i e r (n _ n e i g h b o r s =1)

model . f i t (x_smar t , y_smar t)

i f model . p r e d i c t (c l o s e s t _ p o i n t [0] . r e s h a p e (1 , −1)) [0] != c l o s e s t _ p o i n t [1] :

re turn c l o s e s t _ p o i n t [0] , c l o s e s t _ p o i n t [1] , zone

62

	1 Introduction
	2 Prototype Selection
	2.1 Direction of search
	2.2 Type of selection
	2.3 Condensation methods
	2.4 Hybrid methods
	2.5 Prototype Selection and Big Data

	3 Ignorance Zones
	3.1 Open world assumption in Machine Learning
	3.2 Ignorance zones discovery
	3.3 Prototype Selection with ignorance zones

	4 Batch Prototype Selection with ignorance zones
	4.1 Methodology of experiments
	4.2 Batch Prototype Selection with 1-NN
	4.3 Batch Prototype Selection with 3-NN and 5-NN
	4.4 Computational complexity

	5 Incremental Prototype Selection with ignorance zones
	5.1 Rectangular domain border
	5.2 Circular domain border
	5.2.1 Inscribed circles as 1-parent ignorance zones
	5.2.2 Circles with Gabriel principle as 1-parent grey zones
	5.2.3 Circles with Relative principle as 1-parent grey zones

	5.3 Comparison of results
	5.4 Computational complexity

	6 Prototype Selection with an adversarial process
	6.1 Adversarial process in Professor-Student algorithm
	6.2 Algorithm implementation
	6.3 Using Professor-Student prototypes in classification

	7 Conclusion
	Bibliography
	Appendices
	A Code snippets for calculating 2- and 3-parent Ignorance Zones
	B Code snippets for classifiers with batch and incremental PS

