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TENSOR TOMOGRAPHY ON CARTAN-HADAMARD MANIFOLDS

JERE LEHTONEN, JESSE RAILO, AND MIKKO SALO

Abstract. We study the geodesic X-ray transform on Cartan-Hadamard manifolds, generalizing
the X-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging.
We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order.
The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and
polynomially decaying if the sectional curvature decays at infinity. This work extends the results
of [Leh16] to dimensions n ≥ 3 and to the case of tensor fields of any order.

1. Introduction

1.1. Motivation. This article considers the geodesic X-ray transform on noncompact Riemannian
manifolds. This transform encodes the integrals of a function f , where f satisfies suitable decay
conditions at infinity, over all geodesics. In the case of Euclidean space the geodesic X-ray transform
is just the usual X-ray transform involving integrals over all lines, and in two dimensions it coincides
with the Radon transform introduced in the seminal work of Radon in 1917 [Rad17].

X-ray and Radon type transforms in Euclidean space are widely used as mathematical models
for medical and industrial imaging methods, such as CT, PET, SPECT and MRI (see [Nat01]).
In these applications one is interested in reconstructing unknown coefficients in a bounded region.
However, it is often convenient to model the problems in terms of compactly supported functions
in the noncompact space Rn, which makes it possible to use Fourier transform based methods for
instance.

Another important class of imaging problems arises in geophysics, when determining interior
properties of the Earth from acoustic scattering or earthquake measurements. In these problems
one encounters X-ray transforms over general families of curves, which often correspond to geodesic
curves of a sound speed profile within the Earth. Moreover, if the sound speed is anisotropic
(depends on direction), then one needs to consider geodesic X-ray transforms of tensor fields [Sha94].
A typical feature is that rays originating near the Earth surface eventually curve back to the surface.
A simple mathematical model, which has been used as a first approximation for this behaviour,
is to think of the domain as embedded in hyperbolic space Hn and to consider the geodesic X-
ray transform in Hn [Bal05]. The hyperbolic geodesic X-ray transform also appears in Electrical
Impedance Tomography in connection with the method of Barber and Brown [BCT96] and in
partial data problems [KS14].

Another setting where X-ray transforms on noncompact manifolds appear is inverse scattering
theory (for instance in quantum mechanics, acoustics, or electromagnetics). The connection be-
tween scattering theory and Radon type transforms goes back at least to Lax and Phillips [LP89],
and the X-ray transform of a scattering potential can be determined from measurements of the full
scattering amplitude at high frequencies (see e.g. [Wed14]). The X-ray transforms that appear in
these contexts are often Euclidean. However, in inverse scattering applications related to general
relativity and black holes one encounters more general manifolds that resemble asymptotically hy-
perbolic ones [JSB00], and in recent results on phaseless inverse scattering problems more general
geodesic X-ray transforms also arise (see [Kli17] and references therein). We remark that both
in quantum mechanics and general relativity, the functions that one would like to reconstruct are
often not compactly supported and thus it is important to deal with noncompact manifolds.
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In this article we will study the invertibility of geodesic X-ray transforms on noncompact Rie-
mannian manifolds. Our results will include Euclidean and hyperbolic space as special cases, but
will apply to more general manifolds with nonpositive curvature (Cartan-Hadamard manifolds).
This work also follows the long tradition of integral geometry problems as discussed for instance in
[GGG03, Hel99, Hel13]. Here one of the main points is that our results apply to manifolds that do
not need to have special symmetries (see the recent preprint [GGSU17] for related results).

1.2. Results. For Euclidean or hyperbolic space in dimensions n ≥ 2, one has the following basic
theorems on the injectivity of this transform (see [Hel99], [Jen04], [Hel94]):

Theorem A. If f is a continuous function in Rn satisfying |f(x)| ≤ C(1 + |x|)−η for some η > 1,
and if f integrates to zero over all lines in Rn, then f ≡ 0.

Theorem B. If f is a continuous function in the hyperbolic space Hn satisfying |f(x)| ≤ Ce−d(x,o),
where o ∈ Hn is some fixed point, and if f integrates to zero over all geodesics in Hn, then f ≡ 0.

We remark that some decay conditions for the function f are required, since there are examples
of nontrivial functions in R2 which decay like |x|−2 on every line and whose X-ray transform
vanishes [Zal82], [Arm94]. Related results on the invertibility of Radon type transforms on constant
curvature spaces or noncompact homogeneous spaces may be found in [Hel99], [Hel13].

The purpose of this article is to give analogues of the above theorems on more general, not
necessarily symmetric Riemannian manifolds. We will work in the setting of Cartan-Hadamard
manifolds, i.e. complete simply connected Riemannian manifolds with nonpositive sectional cur-
vature. Euclidean and hyperbolic spaces are special cases of Cartan-Hadamard manifolds, and
further explicit examples are recalled in Section 2. It is well known that any Cartan-Hadamard
manifold is diffeomorphic to Rn, the exponential map at any point is a diffeomorphism, and the
map x 7→ d(x, p)2 is strictly convex for any p ∈M (see e.g. [Pet06]).

Definition. Let (M, g) be a Cartan-Hadamard manifold, and fix a point o ∈ M . If η > 0, define
the spaces of exponentially and polynomially decaying continuous functions by

Eη(M) = {f ∈ C(M) ; |f(x)| ≤ Ce−ηd(x,o) for some C > 0},
Pη(M) = {f ∈ C(M) ; |f(x)| ≤ C(1 + d(x, o))−η for some C > 0}.

Also define the spaces

E1
η(M) = {f ∈ C1(M) ; |f(x)|+ |∇f(x)| ≤ Ce−ηd(x,o) for some C > 0},

P 1
η (M) = {f ∈ C1(M) ; |f(x)| ≤ C(1 + d(x, o))−η and

|∇f(x)| ≤ C(1 + d(x, o))−η−1 for some C > 0}.

Here ∇ = ∇g is the total covariant derivative in (M, g) and | · | = | · |g is the g-norm on tensors.

It follows from Lemma 4.1 that if f ∈ Pη(M) for some η > 1, then the integral of f over any
maximal geodesic in M is finite. For such functions f we may define the geodesic X-ray transform
I0f of f by

I0f(γ) =

∫ ∞
−∞

f(γ(t)) dt, γ is a geodesic.

The inverse problem for the geodesic X-ray transform is to determine f from the knowledge of I0f .
By linearity, uniqueness for this inverse problem reduces to showing that I0f = 0 implies f = 0.

More generally, suppose that f is a C1-smooth symmetric covariant m-tensor field on M , written
in local coordinates (using the Einstein summation convention) as

f = fj1...jm(x) dxj1 ⊗ · · · ⊗ dxjm .
2
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We say that f ∈ Pη(M) if |f |g ∈ Pη(M), and f ∈ P 1
η (M) if |f |g ∈ Pη(M) and |∇f |g ∈ Pη+1(M),

etc. We recall that, in terms of local coordinates,

|f(x)|g =
(
gj1k1(x) · · · gjmkm(x)fj1...jm(x)fk1...km(x)

)1/2

where (gjk) is the inverse matrix of (gjk).
Now if f ∈ Pη(M) for some η > 1, then the geodesic X-ray transform Imf of f is well defined

by the formula

Imf(γ) =

∫ ∞
−∞

fγ(t)(γ̇(t), . . . , γ̇(t)) dt, γ is a geodesic.

This transform always has a kernel when m ≥ 1: if h is a symmetric (m− 1)-tensor field satisfying
h ∈ P 1

η (M) for some η > 0, then Im(σ∇h) = 0 where σ denotes symmetrization of a tensor field
(see Section 3.3). We say that Im is solenoidal injective if Imf = 0 implies f = σ∇h for some
(m− 1)-tensor field h.

Our first theorem proves solenoidal injectivity of Im for any m ≥ 0 on Cartan-Hadamard mani-
folds with bounded sectional curvature, assuming exponential decay of the tensor field and its first
derivatives. We will denote the sectional curvature of a two-plane Π ⊂ TxM by Kx(Π), and we
write −K0 ≤ K ≤ 0 if −K0 ≤ Kx(Π) ≤ 0 for all x ∈M and for all two-planes Π ⊂ TxM .

Theorem 1.1. Let (M, g) be a Cartan-Hadamard manifold of dimension n ≥ 2, and assume that

−K0 ≤ K ≤ 0, for some K0 > 0.

If f is a symmetric m-tensor field in E1
η(M) for some η > n+1

2

√
K0, and if Imf = 0, then f = σ∇h

for some symmetric (m− 1)-tensor field h such that h ∈ Eη−ε(M) for any ε > 0. (If m = 0, then
f ≡ 0.)

The second theorem considers the case where the sectional curvature decays polynomially at
infinity, and proves solenoidal injectivity if the tensor field and its first derivatives also decay
polynomially.

Theorem 1.2. Let (M, g) be a Cartan-Hadamard manifold of dimension n ≥ 2, and assume that
the function

K(x) = sup {|Kx(Π)| ; Π ⊂ TxM is a two-plane}
satisfies K ∈ Pκ(M) for some κ > 2. If f is a symmetric m-tensor field in P 1

η (M) for some

η > n+2
2 , and if Imf = 0, then f = σ∇h for some symmetric (m − 1)-tensor field h ∈ Pη−1(M).

(If m = 0, then f ≡ 0.)

The second theorem is mostly of interest in two dimensions because of the following rigidity
phenomenon: any manifold of dimension ≥ 3 that satisfies the conditions of the theorem is isometric
to Euclidean space [GW82]. See Section 2 for a discussion. We will give the proof in any dimension
since this may be useful in subsequent work.

We remark that Theorems 1.1–1.2 correspond to Theorems A and B above, but the manifolds
considered in Theorems 1.1–1.2 can be much more general and include many examples with non-
constant curvature (see Section 2). The results will be proved by using energy methods based
on Pestov identities, which have been studied extensively in the case of compact manifolds with
strictly convex boundary. We refer to [Muk77], [PS88], [Sha94], [Kni02], [PSU14] for some earlier
results. In fact, Theorems 1.1–1.2 can be viewed as an extension of the tensor tomography results
in [PS88] from the case of compact nonpositively curved manifolds with boundary to the case of
certain noncompact manifolds. We remark that one of the main points in our theorems is that
the functions and tensor fields are not compactly supported (indeed, the compactly supported case
would reduce to known results on compact manifolds with boundary).

3
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More recently, the work [PSU13] gave a particularly simple derivation of the basic Pestov identity
for X-ray transforms and proved solenoidal injectivity of Im on simple two-dimensional manifolds.
Some of these methods were extended to all dimensions in [PSU15] and to the case of attenuated
X-ray transforms in [GPSU16]. Following some ideas in [PSU13], the work [Leh16] proved versions
of Theorems 1.1–1.2 for the case of two-dimensional Cartan-Hadamard manifolds.

In this paper we combine the main ideas in [Leh16] with the methods of [PSU15] and prove
solenoidal injectivity results on Cartan-Hadamard manifolds in any dimension n ≥ 2. However,
instead of using the Pestov identity in its standard form (which requires two derivatives of the
functions involved), we will use a different argument from [PSU15] related to the L2 contraction
property of a Beurling transform on nonpositively curved manifolds. This argument dates back
to [GK80a, GK80b], it only involves first order derivatives and immediately applies to tensor fields
of arbitrary order. The C1 assumption in Theorems 1.1–1.2 is due to this method of proof, and the
decay assumptions are related to the growth of Jacobi fields. We mention that Theorems 1.1–1.2
also extend the two-dimensional results of [Leh16] by assuming slightly weaker conditions.

This article is organized as follows. Section 1 is the introduction, and Section 2 contains ex-
amples of Cartan-Hadamard manifolds. In Section 3 we review basic facts related to geodesics
on Cartan-Hadamard manifolds, geometry of the sphere bundle and symmetric covariant tensors
fields, following [Leh16], [PSU15], [DS10]. Section 4 collects some estimates concerning the growth
of Jacobi fields and related decay properties for solutions of transport equations. Finally, Section 5
includes the proofs of the main theorems based on L2 inequalities for Fourier coefficients.

Acknowledgements. All authors were supported by the Academy of Finland (Finnish Centre of
Excellence in Inverse Problems Research, grant numbers 284715 and 309963), and J.L. and M.S.
were also partly supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Starting Grant agreement no 307023.

2. Examples of Cartan-Hadamard manifolds

In this section we recall some facts and examples related to Cartan-Hadamard manifolds. Most
of the details can be found in [BO69], [KW74], [GW79], [GW82], [Pet06]. We first discuss the case
of two-dimensional manifolds, which is quite different compared to manifolds of higher dimensions.

2.1. Dimension two. Let K ∈ C∞(R2). A theorem of Kazdan and Warner [KW74] states that
a necessary and sufficient condition for existence of a complete Riemannian metric on R2 with
Gaussian curvature K is

(2.1) lim
r→∞

inf
|x|≥r

K(x) ≤ 0.

This provides a wide class of Riemannian metrics satisfying the assumptions of Theorem 1.1 in
dimension two. However, this does not directly give an example of a manifold satisfying the
assumptions of Theorem 1.2 since the condition (2.1) is given with respect to the Euclidean metric
of R2.

Examples of manifolds satisfying the assumptions of Theorem 1.2 can be constructed using
warped products. Let (r, θ) be the polar coordinates in R2 and consider a warped product

(2.2) ds2 = dr2 + f2(r)dθ2,

where f is a smooth function that is positive for r > 0 and satisfies f(0) = 0 and f ′(0) = 1. This
is a Riemannian metric on R2 having Gaussian curvature

(2.3) K(x) = −f
′′(|x|)
f(|x|)

,

4
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which depends only on the Euclidean distance |x| := r(x) to the origin. We remark that distances
to the origin in the Euclidean metric and in the warped metric coincide. It is shown in [GW79,
Proposition 4.2] that for every k ∈ C∞([0,∞)) with k ≤ 0 there exists a unique warped metric
of the form (2.2) such that k(|x|) = K(x). Hence warped products provide many examples of
two-dimensional manifolds for which K(x) ≤ C(1 + |x|)−κ with κ > 0, i.e. K ∈ Pκ(M).

2.2. Higher dimensions. Warped products can also be used to construct examples of higher di-
mensional Cartan-Hadamard manifolds satisfying the assumptions of Theorem 1.1, see e.g. [BO69].

In the case of Theorem 1.2 it turns out that the decay condition for curvature is very restrictive
in higher dimensions: the only possible geometry is the Euclidean one. This follows directly from a
theorem by Greene and Wu in [GW82]. IfM is a Cartan-Hadamard manifold with n = dim(M) ≥ 3,
k(s) = sup{K(x) ;x ∈M,d(x, o) = s }, where o is a fixed point, and one of the following holds:

(1) n is odd and lim infs→∞ s
2k(s)→ 0 or

(2) n is even and
∫∞

0 sk(s) ds is finite,

then M is isometric to Rn.

3. Geometric facts

Throughout this work we will assume (M, g) to be an n-dimensional Cartan-Hadamard manifold
with n ≥ 2 unless otherwise stated. We also assume unit speed parametrization for geodesics.

In this section we collect some preliminary facts on geodesics on Cartan-Hadamard manifolds,
derivatives on the unit tangent bundle and related Jacobi fields, and tensor fields. These facts will
be used in the subsequent sections.

3.1. Behaviour of geodesics. By the Cartan-Hadamard theorem the exponential map expx is
defined on all of TxM and is a diffeomorphism for every x ∈ M . Hence every pair of points can
be joined by a unique geodesic. Let SM = {(x, v) ∈ TM ; |v| = 1} be the unit sphere bundle,
and if (x, v) ∈ SM denote by γx,v the unique geodesic with γ(0) = x and γ̇(0) = v. The triangle
inequality implies that

(3.1) dg(γx,v(t), o) ≥ |t| − dg(x, o)

for all t ∈ R, o ∈M .
We say that a geodesic γ is escaping with respect to the point o if the function t 7→ dg(γ(t), o)

is strictly increasing on the interval [0,∞). The set of all such geodesics is denoted by Eo. For
γx,v ∈ Eo the triangle inequality gives

(3.2) dg(γx,v(t), o) ≥

{
dg(x, o), if 0 ≤ t ≤ 2dg(x, o),

t− dg(x, o), if 2dg(x, o) < t.

However, since (M, g) is a Cartan-Hadamard manifold, Jacobi field estimates give a stronger bound.
For γx,v ∈ Eo one has (see [Jos08, Corollary 4.8.5] or [Pet06, Section 6.3])

(3.3) dg(γx,v(t), o) ≥
√
dg(x, o)2 + t2, t ≥ 0.

The following lemma is proved in [Leh16] in two dimensions. The proof in higher dimensions is
identical, but we include a short argument for completeness.

Lemma 3.1. Suppose o ∈M . At least one of the geodesics γx,v and γx,−v is in Eo.

Proof. Since (M, g) is a Cartan-Hadamard manifold, the function h(t) = dg(γx,v(t), o)
2 is strictly

convex, h′′ > 0, on R. If h′(0) ≥ 0 then γx,v is escaping, and if h′(0) ≤ 0 then γx,−v is escaping. �
5
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3.2. On the geometry of the unit tangent bundle. We first briefly explain the splitting of
the tangent bundle of SM into horizontal and vertical bundles. Then we give a short discussion on
geodesics of SM . Finally, we include a proof that SM is complete when M is.

3.2.1. The structure of the tangent bundle. The following discussion is based on [Pat99], [PSU15],
where these topics are considered in more detail. We denote by π : TM →M the usual base point
map π(x, v) = x. The connection map K∇ : T (TM)→ TM of the Levi-Civita connection ∇ of M
is defined as follows. Let ξ ∈ Tx,vTM and c : (−ε, ε) → TM be a curve such that ċ(0) = ξ. Write
c(t) = (γ(t), Z(t)), where Z(t) is a vector field along the curve γ, and define

K∇(ξ) := DtZ(0) ∈ TxM.

The maps K∇ and dπ yield a splitting

(3.4) Tx,vTM = H̃(x, v)⊕ Ṽ(x, v)

where H̃(x, v) = kerK∇ is the horizontal bundle and Ṽ(x, v) = ker dx,vπ is the vertical bundle.
Both are n-dimensional subspaces of Tx,vTM .

On TM we define the Sasaki metric gs by

〈v, w〉gs = 〈K∇(v),K∇(w)〉g + 〈dπ(v), dπ(w)〉g,

which makes (TM, gs) a Riemannian manifold of dimension 2n. The maps K∇ : Ṽ(x, v) → TxM

and dπ : H̃(x, v) → TxM are linear isomorphisms. Furthermore, the splitting (3.4) is orthogonal
with respect to gs. Using the maps K∇ and dπ, we will identify vectors in the horizontal and
vertical bundles with corresponding vectors on TxM .

The unit sphere bundle SM was defined as

SM :=
⋃
x∈M

SxM, SxM := {(x, v) ∈ TxM ; |v|g = 1}.

We will equip SM with the metric induced by the Sasaki metric on TM . The geodesic flow
φt(x, v) : R× SM → SM is defined as

φt(x, v) := (γx,v(t), γ̇x,v(t)).

The associated vector field is called the geodesic vector field and denoted by X.
For SM we obtain an orthogonal splitting

(3.5) Tx,vSM = RX(x, v)⊕H(x, v)⊕ V(x, v)

where RX ⊕ H(x, v) = H̃(x, v) and V(x, v) = ker dx,v(π|SM ). Both H(x, v) and V(x, v) have
dimension n− 1 and can be canonically identified with elements in the codimension one subspace

{v}⊥ ⊂ TxM via dπ and K∇, respectively. We will freely use this identification.
Following [PSU15], if u ∈ C1(SM), then the gradient ∇SMu has the decomposition

∇SMu = (Xu)X +
h

∇u+
v

∇u,

according to (3.5). The quantities
h

∇u and
v

∇u are called the horizontal and the vertical gradients,

respectively. It holds that 〈
v

∇u(x, v), v〉g = 0 and 〈
h

∇u(x, v), v〉g = 0 for all (x, v) ∈ SM .
As discussed in [PSU15], on two-dimensional manifolds the horizontal and vertical gradients

reduce to the horizontal and vertical vector fields X⊥ and V via

h

∇u(x, v) = −(X⊥u(x, v))v⊥ and
v

∇u(x, v) = (V u(x, v))v⊥

6
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where v⊥ is such that {v, v⊥} is a positive orthonormal basis of TxM . In [Leh16] the flows associated
with X⊥ and V were used to derive estimates for X⊥u and V u. We will proceed in a similar manner
in the higher dimensional case.

Let (x, v) ∈ SM and w ∈ SxM, w ⊥ v. We define φhw,t : R→ SM by φhw,t(x, v) = (γx,w(t), V (t)),
where V (t) is the parallel transport of v along γx,w. It holds that

(3.6) K∇

(
d

dt
φhw,t(x, v)

∣∣∣
t=0

)
= 0 and dπ

(
d

dt
φhw,t(x, v)

∣∣∣
t=0

)
= w.

We define φvw,t : R→ SM by φvw,t(x, v) = (x, (cos t)v + (sin t)w). It holds that

(3.7) K∇

(
d

dt
φvw,t(x, v)

∣∣∣
t=0

)
= w and dπ

(
d

dt
φvw,t(x, v)

∣∣∣
t=0

)
= 0.

The following lemma states the relation between φhw,t and φvw,t and the horizontal and the vertical
gradients of a function.

Lemma 3.2. Suppose u is differentiable at (x, v) ∈ SM . Fix w ∈ SxM,w ⊥ v. Then it holds that

〈
h

∇u(x, v), w〉g =
d

dt
u(φhw,t(x, v))

∣∣∣
t=0

and

〈
v

∇u(x, v), w〉g =
d

dt
u(φvw,t(x, v))

∣∣∣
t=0

.

Proof. Using the chain rule and the equations (3.6) we get

d

dt
u(φhw,t(x, v))

∣∣∣
t=0

= 〈∇SMu(φhw,t(x, v)),
d

dt
φhw,t(x, v)〉gs

∣∣∣
t=0

= 〈
h

∇u(x, v), w〉g.

For
v

∇ we use the equations (3.7) in a similar fashion. �

The maps φhw,t and φvw,t are related to normal Jacobi fields along geodesics. We can define

Jh
w(t) :=

d

ds
π
(
φt(φ

h
w,s(x, v))

) ∣∣∣
s=0

= dφt(x,v)π

(
d

ds
φt(φ

h
w,s(x, v))

∣∣∣
s=0

)
.

Since Γ(s, t) = π
(
φt(φ

h
w,s(x, v))

)
is a variation of γx,v along geodesics, Jh

w(t) is a Jacobi field along

γx,v. It has the initial conditions Jh
w(0) = w and DtJ

h
w(0) = 0 by the symmetry lemma (see

e.g. [Lee97]).
Replacing φhw,s with φvw,s gives a Jacobi field Jv

w(t) with the initial conditions Jv
w(t)(0) = 0 and

DtJ
v
w(t)(0) = w. In the both cases the Jacobi field is normal because 〈v, w〉g = 0.

By the symmetry lemma

K∇

(
d

ds
φt(φ

h
w,s(x, v))

∣∣∣
s=0

)
= Ds∂tγφhw,s(x,v)(t)

∣∣∣
s=0

= Dt∂sγφhw,s(x,v)(t)
∣∣∣
s=0

= DtJ
h
w(t).

From the definition of the Sasaki metric we then see that〈
∇SMu(x, v),

d

ds
φt(φ

h
w,s(x, v))

∣∣∣
s=0

〉
gs

=
〈 h

∇u(x, v), Jh
w(t)

〉
g

+
〈 v

∇u(x, v), DtJ
h
w(t)

〉
g
.

and 〈
∇SMu(x, v),

d

ds
φt(φ

v
w,s(x, v))

∣∣∣
s=0

〉
gs

=
〈 h

∇u(x, v), Jv
w(t)

〉
g

+
〈 v

∇u(x, v), DtJ
v
w(t)

〉
g
.

Remark 1. The constructions in this subsection remain valid at a.e. (x, v) ∈ SM if one assumes that

u is in the space W 1,∞
loc (SM). Functions in W 1,∞

loc (SM) are characterized as locally Lipschitz func-
tions, and further by Rademacher’s theorem, differentiable almost everywhere and weak gradients
equal to gradients almost everywhere (see e.g. [Eva98, Chapters 5.8.2–5.8.3]).
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3.2.2. Geodesics on the unit tangent bundle. Next we describe some facts related to geodesics on
SM (see e.g. [BBNV03] and references therein). Let R(U, V ) denote the Riemannian curvature
tensor. A curve Γ(t) = (x(t), V (t)) on SM is a geodesic if and only if

(3.8)

{
∇ẋẋ = −R(V,∇ẋV )ẋ

∇ẋ∇ẋV = − |∇ẋV |2g V, |∇ẋV |2g is a constant along x(t)

holds for every t in the domain of Γ (see [Sas62, Equations 5.2]). Given (x, v) ∈ SM , the horizontal
lift of w ∈ TxM is denoted by wh, i.e. the unique vector wh ∈ Tx,v(SM) such that d(π|SM )(wh) = w
and K∇(wh) = 0, and the vertical lift wv is defined similarly. Initial conditions for x, ẋ, V and ∇ẋV
at t = 0 with g(V (0),∇ẋ(0)V (0)) = 0 and |V (0)|g = 1 determine a unique geodesic Γ = (x, V ), by

(3.8), which satisfies the initial conditions Γ(0) = (x(0), V (0)) and Γ̇(0) = ẋ(0)h + (∇ẋ(0)V (0))v

where the lifts are done with respect to (x(0), V (0)) ∈ SM . The geodesics of SM are of the
following three types:

(1) If∇ẋ(0)V (0) = 0, then Γ is a parallel transport of V (0) along the geodesic x onM (horizontal
geodesics).

(2) If ẋ(0) = 0, then Γ is a great circle on the fibre π−1(x(0)) and x(t) = x(0) (vertical geodesics,
in this case one interprets the system (3.8) via ∇ẋ = Dt).

(3) All the rest, i.e. solutions of (3.8) with initial conditions ẋ(0) 6= 0 and ∇ẋ(0)V (0) 6= 0
(oblique geodesics).

We state the following lemma for the sake of clarity.

Lemma 3.3. Fix (x, v) ∈ SM and w ∈ SxM , w⊥ v. Then φt(x, v) and φhw,t(x, v) are horizontal
unit speed geodesics and φvw,t(x, v) is a vertical unit speed geodesic with respect to t.

Proof. The fact that φt(x, v) and φhw,t(x, v) are horizontal geodesics and φvw,t(x, v) is a vertical
geodesic follows immediately from their definitions and the above discussion based on the system
of differential equations (3.8). The fact that φt(x, v), φhw,t(x, v) and φvw,t(x, v) are unit speed follows
from the equations (3.6) and (3.7) and the definition of the Sasaki metric. �

Lemma 3.3 allows us to derive the following formulas which are used in the proof of Lemma 4.7.

Corollary 3.4. Let (x, v) ∈ SM . Assume that Y ∈ Tx,v(SM) has the decomposition

Y = aX(x, v) +H + V, H ∈ H(x, v), V ∈ V(x, v), a ∈ R.

Then

(Dφt)x,v(aX(x, v)) = aX(φt(x, v)),

(Dφt)x,v(H) = |H|gs
[
(Jh
wh

(t))h + (DtJ
h
wh

(t))v
]
,

(Dφt)x,v(V ) = |V |gs
[
(Jv
wv

(t))h + (DtJ
v
wv

(t))v
]
,

where Dφt is the differential of φt, wh = dπ(H)/ |dπ(H)|g and wv = K∇(V )/ |K∇(V )|g. Moreover,

(Dφt)x,v(X(x, v)) is orthogonal to (Dφt)x,v(H) and (Dφt)x,v(V ).

Proof. Lemma 3.3 gives that φs(x, v), φhwh,s(x, v) and φvwv,s(x, v) are unit speed geodesics on SM .

If Γ(s) = φs(x, v), then Γ(s) is a unit speed geodesic on SM , Γ̇(0) = X(x, v), and

(Dφt)x,v(X(x, v)) = Dφt(Γ̇(0)) = (φt ◦ Γ)′(0) = X(φt(x, v)).
8

Page 8 of 23AUTHOR SUBMITTED MANUSCRIPT - IP-101443.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Moreover, using the unit speed geodesic Γ(s) = φhwh,s(x, v) on SM , and using the formulas after
Lemma 3.2, gives

(Dφt)x,v(H) = Dφt(|H|gsΓ̇(0)) = |H|gs(φt ◦ Γ)′(0)

= |H|gs
[
(Jh
wh

(t))h + (DtJ
h
wh

(t))v
]

which is orthogonal to X(φt(x, v)). Finally, the unit speed geodesic Γ(s) = φvwv,s(x, v) on SM gives

(Dφt)x,v(V ) = Dφt(|V |gsΓ̇(0)) = |V |gs(φt ◦ Γ)′(0)

= |V |gs
[
(Jv
wv

(t))h + (DtJ
v
wv

(t))v
]

which is also orthogonal to X(φt(x, v)). �

3.2.3. Completeness of the unit tangent bundle. We will need the fact that SM is complete when
M is complete. This need arises from theory of Sobolev spaces on manifolds (see Section 5). We
could not find a reference so a proof is included.

Lemma 3.5. Let M be a complete Riemannian manifold with or without boundary. Then SM is
complete.

Proof. Let (y(j)) be a Cauchy sequence in (SM, dgs). We show that it converges in the topology
induced by gs. The definition of the Sasaki metric implies that

Lgs(Γ) ≥
∫ τ

0

∣∣∣dπΓ(t)(Γ̇(t))
∣∣∣
g

dt = Lg(π ◦ Γ) ≥ dg(π(Γ(0)), π(Γ(τ)))

where Γ : [0, τ ]→ SM is any piecewise C1-smooth curve. Hence

(3.9) dgs(a, b) ≥ dg(π(a), π(b))

for all a, b ∈ SM . The above inequality implies that (π(y(j))) is a Cauchy sequence in (M, g) and
converges, say to p ∈M , by completeness of M .

Consider a coordinate neighborhood U of p in M , so that π−1(U) is diffeomorphic to U × Sn−1.
Choose an open set V and a compact set K so that p ∈ V ⊂ K ⊂ U . Now π−1(K) is homeomorphic

to K × Sn−1 which is compact as a product of two compact sets. Since π(y(j)) → p, there exists

N such that π(y(j)) ∈ V for all j ≥ N , and this implies y(j) ∈ π−1(K) for all j ≥ N . Hence (y(j))

has a limit in (π−1(K), dgs |π−1(K)) since it is a Cauchy sequence, and thus (y(j)) converges also in
(SM, dgs). �

3.3. Symmetric covariant tensor fields. We denote by Sm(M) the set of C1-smooth symmetric
covariant m-tensor fields and by Smx (M) the symmetric covariant m-tensors at point x. Following
[DS10] (where more details are also given), we define the map λx : Smx (M)→ C∞(SxM),

λx(f)(v) = fx(v, . . . , v)

which is given in local coordinates by

λx(fi1...imdx
i1 ⊗ · · · ⊗ dxim)(v) = fi1...im(x)vi1 . . . vim .

The map λ smoothly depends on x and hence we get an embedding λ : Sm(M) → C1(SM). The
map λ identifies symmetric trace-free covariant m-tensor fields with spherical harmonics (with
respect to v) of degree m on SM . More precisely, if Smx (M) and C∞(SxM) are endowed with their
usual L2-inner products, then λx is an isomorphism, and even an isometry up to a factor, from the
set of trace-free symmetric m-tensors at x onto the set of spherical harmonics (with respect to v) of
degree m on SxM (see [DS10, Lemma 2.4 and subsequent remarks]). We will use this identification
and do not always write λ explicitly.

9
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The symmetrization of a tensor is defined by

σ(ω1 ⊗ · · · ⊗ ωm) =
1

m!

∑
π∈Πm

ωπ(1) ⊗ · · · ⊗ ωπ(m),

where Πm is the permutation group of {1, . . . ,m}. From the above expression we see that if a
covariant m-tensor field f is in E1

η(M) or P 1
η (M) for some η > 0, then so is σf too. Furthermore,

for f ∈ Sm(M) one has

(3.10) λ(σ∇f) = Xλ(f).

It follows from the last identity and the fundamental theorem of calculus that if f ∈ P 1
η (M) for

some η > 0, then Im(σ∇f) = 0. This shows that Im always has a nontrivial kernel for m ≥ 1, as
described in the introduction.

The next lemma states how the decay properties of a tensor field carry over to functions on SM .

Lemma 3.6. Suppose f ∈ Sm(M) and η > 0.

(a) If f ∈ E1
η(M), then

sup
v∈SxM

|Xf(x, v)|g ∈ Eη(M), sup
v∈SxM

|
h

∇f(x, v)|g ∈ Eη(M) and sup
v∈SxM

|
v

∇f(x, v)|g ∈ Eη(M).

(b) If f ∈ P 1
η (M), then

sup
v∈SxM

|Xf(x, v)|g ∈ Pη+1(M), sup
v∈SxM

|
h

∇f(x, v)|g ∈ Pη+1(M) and sup
v∈SxM

|
v

∇f(x, v)|g ∈ Pη(M).

Proof. (a) The result for Xf follows from (3.10). To prove the other statements we take x ∈M and
use local normal coordinates (x1, . . . , xn) centered at x and the associated coordinates (v1, . . . , vn)
for TxM . In these coordinates f(x) = fi1...im(x) dxi1 ⊗ · · · ⊗ dxim and ∇f(x) = ∂xjfi1...im(x) dxj ⊗
dxi1 ⊗ · · · ⊗ dxim . We see that

|f(x)|g =

 ∑
i1,...,im

|fi1...im(x)|2
1/2

and |∇f(x)|g =

 ∑
j,i1,...,im

∣∣∂xjfi1...im(x)
∣∣21/2

.

For Xf,
h

∇f and
v

∇f at x we have coordinate representations (see [PSU15, Appendix A])

Xf(x, v) = vj∂xjf,

h

∇f(x, v) =
(
∂xjf − (vk∂xkf)vj

)
∂xj ,

v

∇f(x, v) = ∂vjf∂xj .

We get that

Xf(x, v)X(x, v) +
h

∇f(x, v) = ∂xjf∂xj = ∂xjfi1...im(x)vi1 . . . vim∂xj

and, using the orthogonality of Xf(x, v)X(x, v) and
h

∇f(x, v) and the Cauchy-Schwarz inequality,

sup
v∈SxM

|
h

∇f(x, v)|g ≤

 ∑
j,i1,...,im

∣∣∂xjfi1...im(x)
∣∣21/2

= |∇f(x)|g.

This implies that supv∈SxM |
h

∇f(x, v)|g ∈ Eη(M).
10
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For
v

∇f , the identity ∂vjv
k = δkj − vjvk (see [PSU15]) implies that

v

∇f(x, v) =
n∑
j=1

(fji2...imv
i2 . . . vim − f(x, v)vj)∂xj + . . .+

n∑
j=1

(fi1...im−1jv
i1 . . . vim−1 − f(x, v)vj)∂xj

= m

n∑
j=1

(fji2...imv
i2 . . . vim − f(x, v)vj)∂xj

Thus orthogonality and expanding the squares gives

|
v

∇f(x, v)|2g = m2
n∑
j=1

∣∣fji2...im(x)vi2 . . . vim
∣∣2 ≤ m2

∑
i1,...,im

|fi1...im(x)|2 = m2 |f(x)|2g

which in turn implies that supv∈SxM |
v

∇f(x, v)|g ∈ Eη(M). The proof for (b) is the same. �

4. Growth estimates

Throughout this section we assume that f is a symmetric covariant m-tensor field in Pη(M) for
some η > 1. The main results in this section are Lemmas 4.3 and 4.7. They state that if f is such
a tensor field, possibly with some additional decay at infinity, then the corresponding solution uf

of the transport equation will have decay at infinity.
We begin by observing that the geodesic X-ray transform is well defined for such f .

Lemma 4.1. Let f ∈ Pη(M) for some η > 1. For any (x, v) ∈ SM one has∫ ∞
−∞
|fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t))| dt <∞.

Proof. The assumption implies that |fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t))| ≤ C(1 + d(γx,v(t), o))
−η. One can

then change variables so that t = 0 corresponds to the point on the geodesic that is closest to o,
split the integral over t ≥ 0 and t ≤ 0, and use the fact that the integrands are ≤ C(1 + |t|)−η by
the estimate (3.3). �

If f ∈ Pη(M) for some η > 1, we may now define

uf (x, v) :=

∫ ∞
0

fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t)) dt.

It is straigthforward to see that

uf (x, v) + (−1)muf (x,−v) = Imf(x, v)

for all (x, v) ∈ SM .
We have the usual reduction to the transport equation.

Lemma 4.2. Let f ∈ Pη(M) for some η > 1. Then Xuf = −f .

Proof. By definition

Xuf (x, v) = lim
s→0
−1

s

∫ s

0
fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t)) dt = −fx(v, . . . , v). �

Next we derive decay estimates for uf under the assumption that Imf = 0.

Lemma 4.3. Suppose that Imf = 0.
11
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(a) If f ∈ Eη(M) for η > 0, then∣∣∣uf (x, v)
∣∣∣ ≤ C(1 + dg(x, o))e

−ηdg(x,o)

for all (x, v) ∈ SM .
(b) If f ∈ Pη(M) for η > 1, then∣∣∣uf (x, v)

∣∣∣ ≤ C

(1 + dg(x, o))
η−1

for all (x, v) ∈ SM .

Proof. Since Imf = 0, one has
∣∣uf (x, v)

∣∣ =
∣∣uf (x,−v)

∣∣. By Lemma 3.1, possibly after replacing
(x, v) by (x,−v), we may assume that γx,v is escaping. We have∣∣∣uf (x, v)

∣∣∣ =

∣∣∣∣∫ ∞
0

f(γx,v(t))(γ̇x,v(t), . . . , γ̇x,v(t)) dt

∣∣∣∣ ≤ ∫ ∞
0
|f(γx,v(t))|g dt.

The rest of the proof is as in [Leh16, Lemma 3.2]. �

Lemma 4.4. Let f ∈ Pη(M) for some η > 1. If Imf = 0 and uf is differentiable at (x, v) ∈ SM ,
then

h

∇uf (x,−v) = (−1)m−1
h

∇uf (x, v) and
v

∇uf (x,−v) = (−1)m
v

∇uf (x, v).

Proof. From Imf = 0 it follows that

uf (x, v) + (−1)muf (x,−v) = 0.

Fix w ∈ SxM, w ⊥ v. We note that

uf (φhw,s(x,−v)) + (−1)muf (φh−w,−s(x, v)) = 0

and hence

d

ds
uf (φhw,s(x,−v))

∣∣∣
s=0

= −(−1)m
d

ds
(uf (φh−w,−s(x, v)))

∣∣∣
s=0

= (−1)m
d

ds
(uf (φh−w,s(x, v)))

∣∣∣
s=0

.

By Lemma 3.2

〈
h

∇uf (x,−v), w〉 = (−1)m〈
h

∇uf (x, v),−w〉 = −(−1)m〈
h

∇uf (x, v), w〉.

For
v

∇uf we use that

uf (φvw,s(x,−v)) + (−1)muf (φv−w,s(x, v)) = 0

and by Lemma 3.2 we get that

〈
v

∇uf (x,−v), w〉 = (−1)m−1〈
v

∇uf (x, v),−w〉 = (−1)m〈
v

∇uf (x, v), w〉. �

We move on to prove growth estimates for Jacobi fields. These estimates will be used to derive

estimates for
h

∇uf and
v

∇uf .

Lemma 4.5. Suppose J(t) is a normal Jacobi field along a geodesic γ.

(a) If all sectional curvatures along γ([0, τ ]) are ≥ −K0 for some constant K0 > 0, and if
J(0) = 0 or DtJ(0) = 0, then

|J(t)|g ≤ |J(0)|g cosh(
√
K0t) + |DtJ(0)|g

sinh(
√
K0t)√

K0

for t ∈ [0, τ ].
12
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(b) If t0 ∈ (0, τ), then

|DtJ(t)|g + |J(t)

t
−DtJ(t)|g ≤

[
|DtJ(t0)|g +

∣∣∣∣J(t0)

t0
−DtJ(t0)

∣∣∣∣
g

]
e

2
∫ t
t0
sK(γ(s)) ds

for t ∈ [t0, τ ], where K is as defined in Theorem 1.2.

Proof. (a) follows from the Rauch comparison theorem [Jos08, Theorem 4.5.2]. For (b), we follow
the argument in [Leh16]. Consider an orthonormal frame {γ̇(t), E1(t), . . . , En−1(t)} obtained by
parallel transporting an orthonormal basis of Tγ(0)M along γ. Write J(t) = uj(t)Ej(t), so that the
Jacobi equation becomes

(4.1) ü(t) +R(t)u(t) = 0

where u(t) = (u1(t), . . . , un−1(t)) and Rjk = R(Ej , γ̇, γ̇, Ek). We wish to estimate v(t) = u(t)
t , and

we do this by writing v(t) = A(t) + B(t)
t where

A(t) = u̇(t), B(t) = u(t)− tu̇(t).

By using the equation (4.1), we see that

A(t)−A(t0) = −
∫ t

t0

sR(s)v(s) ds,

B(t)−B(t0) =

∫ t

t0

s2R(s)v(s) ds.

Write g(t) = |A(t)|+
∣∣∣B(t)

t

∣∣∣. If t ≥ t0 one has

g(t) =

∣∣∣∣A(t0)−
∫ t

t0

sR(s)v(s) ds

∣∣∣∣+
1

t

∣∣∣∣B(t0) +

∫ t

t0

s2R(s)v(s) ds

∣∣∣∣ ≤ g(t0) + 2

∫ t

t0

s‖R(s)‖g(s) ds.

The Gronwall inequality implies that

g(t) ≤ g(t0)e
2
∫ t
t0
s‖R(s)‖ ds

.

The result follows from this, since ‖R(s)‖ = sup|ξ|=1R(s)ξ · ξ = supγ̇(s)∈ΠK(Π) ≤ K(γ(s)). �

Corollary 4.6. Suppose that (M, g) is a Cartan-Hadamard manifold. Let γ be a geodesic and
J a normal Jacobi field along it, satisfying either J(0) = 0 and |DtJ(0)| ≤ 1 or |J(0)| ≤ 1 and
DtJ(0) = 0.

(a) If −K0 ≤ K ≤ 0 and K0 > 0, then

|J(t)|g ≤ Ce
√
K0t and |DtJ(t)|g ≤ Ce

√
K0t

for t ≥ 0 where the constants do not depend on the geodesic γ.
(b) If K ∈ Pκ(M) for some κ > 2, then

|J(t)|g ≤ C(t+ 1) and |DtJ(t)|g ≤ C

for t ≥ 0. If in addition γ ∈ Eo, then the constants do not depend on the geodesic γ.
13
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Proof. (a) The estimate for |J(t)|g follows directly from Lemma 4.5. Using the same notations as
in the proof of that Lemma we have |DtJ(t)|g = |u̇(t)| and by integrating (4.1) from 0 to t we get

|u̇(t)| ≤ |u̇(0)|+
∫ t

0
‖R(s)‖|u(s)| ds

≤ |DtJ(0)|+
∫ t

0
K0|J(s)| ds

≤ Ce
√
K0t.

(b) For a fixed geodesic, the estimates follow from Lemma 4.5. If K ∈ Pκ(M) for κ > 2, then

A := sup
γ∈Eo

∫ ∞
0

sK(γ(s)) ds ≤ C sup
γ∈Eo

∫ ∞
0

s(1 + dg(γ(s), o))−κ ds <∞

by using (3.3). Let us fix t0 = 1 and suppose that J is a Jacobi field along a geodesic in Eo whose
initial values satisfy the given assumptions. From Lemma 4.5 and (a) we then get that

|J(t)|g ≤ e2A (2|DtJ(1)|g + |J(1)|g) t

≤ e2ACe
√
K0t

for t ≥ 1, where K0 = supx∈M K(x).

For t ∈ [0, 1] we can estimate |J(t)|g ≤ Ce
√
K0 . By combining these two estimates we get

|J(t)|g ≤ C(1 + e2At) ≤ Ce2A(1 + t)

for t ≥ 0, and the constants do not depend on γ ∈ Eo.
For |DtJ(t)|g, Lemma 4.5 gives the estimate

|DtJ(t)|g ≤ e2A (2|DtJ(1)|g + |J(1)|g)

for t ≥ 1, and for t ∈ [0, 1] we get a bound from (a). Neither of these bounds depends on γ ∈ Eo. �

Lemma 4.7. Suppose that Imf = 0.

(a) If −K0 ≤ K ≤ 0, K0 > 0 and f ∈ E1
η(M) for some η >

√
K0, then uf is differentiable

along every geodesic on SM , uf ∈W 1,∞(SM) and∣∣∣∣ h∇uf (x, v)

∣∣∣∣
g

≤ Ce−(η−
√
K0)dg(x,o)

for a.e. (x, v) ∈ SM .
(b) If K ∈ Pκ(M) for some κ > 2 and f ∈ P 1

η (M) for some η > 1, then uf is differentiable

along every geodesic on SM , uf ∈W 1,∞(SM) and∣∣∣∣ h∇uf (x, v)

∣∣∣∣
g

≤ C

(1 + dg(x, o))
η−1

for a.e. (x, v) ∈ SM .

The same estimates hold for
v

∇uf with the same assumptions.
14
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Proof of uf ∈W 1,∞
loc (SM). We show that uf is locally Lipschitz continuous. Fix (x0, v0) ∈ SM ,

and suppose that Γ(s) is a unit speed geodesic on SM through (x0, v0). We have for any r > 0

uf (Γ(r))− uf (Γ(0))

r
=

∫ ∞
0

f(φt(Γ(r)))− f(φt(Γ(0)))

r
dt

=

∫ ∞
0

1

r

∫ r

0

∂

∂s
[f(φt(Γ(s)))] ds dt(4.2)

=

∫ ∞
0

1

r

∫ r

0
〈∇SMf(φt(Γ(s))), Dφt(Γ(s))Γ̇(s)〉gs dsdt.

We write
Γ̇(s) = 〈Γ̇(s), X(Γ(s))〉gsX(Γ(s)) +HΓ̇(s) + VΓ̇(s)

where HΓ̇(s) ∈ H(Γ(s)) and VΓ̇(s) ∈ V(Γ(s)). When we apply Corollary 3.4 to the right hand side
of (4.2) (and omit the identifications), we find that

uf (Γ(r))− uf (Γ(0))

r
=

∫ ∞
0

1

r

∫ r

0

[
Xf(φt(Γ(s)))〈Γ̇(s), X(Γ(s))〉gs

+ 〈
h

∇f(φt(Γ(s))), |HΓ̇(s)|gsJh
wh(s)

(t) + |VΓ̇(s)|gsJv
wv(s)

(t)〉g

+ 〈
v

∇f(φt(Γ(s))), |HΓ̇(s)|gsDtJ
h
wh(s)

(t) + |VΓ̇(s)|gsDtJ
v
wv(s)

(t)〉g

]
ds dt

(4.3)

where wh(s) = HΓ̇(s)/|HΓ̇(s)|gs and wv(s) = VΓ̇(s)/|VΓ̇(s)|gs . Here the Jacobi fields are along
the geodesic γΓ(s)(t) := π(φt(Γ(s))). By definition their initial values fulfill the assumptions of
Corollary 4.6.

From this point on we will work under assumptions of (b). The proof under assumptions of
(a) is similar but simpler. We fix a small ε > 0. We show that the integral (4.3) has a uniform
upper bound for every r ∈ (0, 1] and every geodesic Γ through a point in B(x0,v0)(ε) ⊂ SM . For
(x, v) ∈ SM we denote by G(x, v) the set of unit speed geodesics on SM through (x, v), and define

J(x0, v0, ε) := {Γ ∈ G(x, v) ; (x, v) ∈ B(x0,v0)(ε)}.
For all Γ ∈ J(x0, v0, ε),Γ(0) = (x, v), and s ∈ (0, r] the estimate (3.9) gives that dg(x, x0) ≤ ε

and
dg(γΓ(s)(0), x) = dg(π(Γ(s)), x) ≤ dgs(Γ(s), (x, v)) ≤ s.

The estimate (3.1) implies that

dg(π(φt(Γ(s))), o) = dg(γΓ(s)(t), o) ≥ t− dg(γΓ(s)(0), x0)

≥ t− sup
s∈(0,r]

dg(γΓ(s)(0), o) ≥ t− dg(x, o)− r

≥ t− dg(x0, o)− ε− r

(4.4)

for all t ≥ t0 where t0 := dg(x0, o) + r + ε. We can use a trivial estimate dg(π(φt(Γ(s))), o) ≥ 0 on
the interval [0, t0]. Further, the estimate (4.4) gives

(4.5) K(γΓ(s)(t)) ≤
C

(1 + dg(γΓ(s)(t), o))η
≤ C

(1 + t− dg(x0, o)− ε− r)η

for all t ≥ t0 where the constant C does not depend on s ∈ (0, r] or the geodesic Γ ∈ J(x0, v0, ε),
and hence

(4.6) sup
Γ∈J(x0,v0,ε),

s∈(0,r]

∫ ∞
0

tK(γΓ(s)(t)) dt <∞.
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Using the proof of Corollary 4.6 together with (4.6), we can find a constant C which does not
depend on s ∈ (0, r] so that one has

|Jh
wh(s)

(t)|g ≤ Ct, |DtJ
h
wh(s)

(t)|g ≤ C

for all t ≥ 0 and Γ ∈ J(x0, v0, ε). Similar estimates hold also uniformly for Jv
wv(s)

(t) and DtJ
v
wv(s)

(t).

Recall that |HΓ̇(s)|gs , |VΓ̇(s)|gs ≤ |Γ̇(s)|gs = 1, and that wh(s), wv(s) depend on Γ. By combining
the above estimates for Jacobi fields with estimate (4.4) and Lemma 3.6 we get for the integrand
in (4.3) that∣∣Xf(φt(Γ(s)))〈Γ̇(s), X(Γ(s))〉gs

+ 〈
h

∇f(φt(Γ(s))), |HΓ̇(s)|gsJh
wh(s)

(t) + |VΓ̇(s)|gsJv
wv(s)

(t)〉g

+ 〈
v

∇f(φt(Γ(s))), |HΓ̇(s)|gsDtJ
h
wh(s)

(t) + |VΓ̇(s)|gsDtJ
v
wv(s)

(t)〉g
∣∣

≤ |Xf(γΓ(s)(t))|g + |
h

∇f(γΓ(s)(t))|g||HΓ̇(s)|gsJh
wh(s)

(t) + |VΓ̇(s)|gsJv
wv(s)

(t)|g

+ |
v

∇f(γΓ(s)(t))|g||HΓ̇(s)|gsDtJ
h
wh(s)

(t) + |VΓ̇(s)|gsDtJ
v
wv(s)

(t)|g

≤ |Xf(γΓ(s)(t))|g + |
h

∇f(γΓ(s)(t))|g
(
|Jh
wh(s)

(t)|g + |Jv
wv(s)

(t)|g
)

+ |
v

∇f(γΓ(s)(t))|g
(
|DtJ

h
wh(s)

(t)|g + |DtJ
v
wv(s)

(t)|g
)

≤ Ct

(1 + t− dg(x0, o)− ε− r)η+1
+

C

(1 + t− dg(x0, o)− ε− r)η

(4.7)

for all t ∈ [t0,∞), s ∈ (0, r] and Γ ∈ J(x0, v0, ε). On the interval [0, t0] we also get a uniform upper
bound since f , its covariant derivative and sectional curvatures are all bounded.

We can conclude that integral on the right hand side of (4.3) converges absolutely with some
uniform bound C < ∞ over r ∈ (0, 1] and the set J(x0, v0, ε). This shows that uf is locally

Lipschitz, i.e. uf ∈ W 1,∞
loc (SM) (cf. Remark 1). Moreover, the uniform estimate together with the

dominated convergence theorem guarantees that the limit r → 0 of (4.2) exists for all geodesics Γ
on SM . This finishes the first part of the proof. �

Proof of the gradient estimates. By Rademacher’s theorem uf is differentiable almost everywhere,
and thus we can assume that uf is differentiable at (x, v) ∈ SM . By Lemmas 3.1 and 4.4 we

can assume that (x, v) satisfies γ = γx,v ∈ Eo. We may also assume that
h

∇uf (x, v) 6= 0. Since

〈
h

∇uf (x, v), v〉g = 0, we can take w =
h

∇uf (x, v)/|
h

∇uf (x, v)|g in Lemma 3.2 and get that

|
h

∇uf (x, v)|g =
d

ds
uf (φhw,s(x, v))

∣∣∣
s=0

=

∫ ∞
0
〈
h

∇f(φt(x, v)), Jh(t)〉g + 〈
v

∇f(φt(x, v)), DtJ
h(t)〉g dt

(4.8)

where Jh is again a Jacobi field along γ fulfilling the assumptions of Corollary 4.6. Under the
conditions in part (a), the estimate (3.3) implies

|
h

∇uf (x, v)|g ≤ C
∫ ∞

0
e−ηdg(γ(t),o)e

√
K0 t dt ≤

∫ ∞
0

e−η
√
dg(x,o)2+t2e

√
K0 t dt.

Writing r = dg(x, o) and splitting the integral over [0, r) and [r,∞) gives

|
h

∇uf (x, v)|g ≤ C
[∫ r

0
e−ηre

√
K0 t dt+

∫ ∞
r

e−ηte
√
K0 t dt

]
≤ Ce−(η−

√
K0)dg(x,o).
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The above estimate also shows that |
h

∇uf |g is bounded. Similarly, under the conditions in part (b),
Lemma 3.6, Corollary 4.6 and (3.3) imply

|
h

∇uf (x, v)|g ≤ C
∫ ∞

0

1 + t

(1 + dg(γ(t), o))η+1
dt+ C

∫ ∞
0

C

(1 + dg(γ(t), o))η
dt

≤ C
[∫ r

0

1 + t

(1 + r)η+1
dt+

∫ ∞
r

1 + t

(1 + t)η+1
dt

]
≤ C(1 + r)−(η−1)

where r = dg(x, o). The same arguments apply to
v

∇uf . Hence uf ∈W 1,∞(SM) in the both cases,
(a) and (b). �

Lemma 4.8. (a) If −K0 ≤ K ≤ 0 and K0 > 0, then

VolSo(r) ≤ Ce(n−1)
√
K0r

for all r ≥ 0.
(b) If K ∈ Pκ(M) for κ > 2, then

VolSo(r) ≤ Crn−1

for all r ≥ 0.

Proof. We define the mapping f : SoM → So(r),

f(v) = (π ◦ φr)(o, v) = expo(rv).

We denote by dΣ the volume form on So(r) and have that

VolSo(r) =

∫
So(r)

dΣ =

∫
SoM

f∗(dΣ) =

∫
SoM

µ dS,

where dS denotes the volume form on SoM (induced by Sasaki metric) and µ : SoM → R.

Let v ∈ SoM and {wi}n−1
i=1 be an orthonormal basis for TvSoM with respect to Sasaki metric.

By the Gauss lemma {dvf(wi)}n−1
i=1 is an orthonormal basis for Tf(v)So(r) and

f∗(dΣ)v(w1, . . . , wn−1) = dΣf(v)(dvf(w1), . . . , dvf(wn−1)).

It holds that dvf(wi) = Ji(r) where Ji is a Jacobi field along the geodesic γo,v with initial values
Ji(0) = dvπ(wi) and DtJi(0) = K∇(wi). We get that

|µ(v)| ≤
n−1∏
i=1

|dvf(wi)|g =
n−1∏
i=1

|Ji(r)|g.

Since the tangent vectors wi lie in V(o, v) we have |Ji(0)|g = 0 and |DtJi(0)|g = |wi|gs = 1, and
the estimates for the volume of So(r) then follow from Corollary 4.6. �

5. Proof of the main theorems

In this section we will combine the facts above to prove Theorems 1.1 and 1.2. We begin by
introducing some useful notation related to operators on the sphere bundle and spherical harmonics.
One can find more details in [GK80b], [DS10] and [PSU15]. We prove the main theorems of this
work in the end of this section.
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The norm ‖ · ‖ in this section will always be the L2(SM)-norm. We define the Sobolev space
H1(SM) as the set of all u ∈ L2(SM) for which ‖u‖H1(SM) <∞, where

‖u‖H1(SM) =
(
‖u‖2 + ‖∇SMu‖2

)1/2
=

(
‖u‖2 + ‖Xu‖2 + ‖

h

∇u‖2 + ‖
v

∇u‖2
)1/2

.

Let C∞c (SM) denote the smooth compactly supported functions on SM . It is well known that if
N is complete Riemannian manifold, then C∞c (N) is dense in H1(N) (see [Eic88, Satz 2.3]). By
Lemma 3.5 SM is complete when M is complete. Hence C∞c (SM) is dense in H1(SM).

For the following facts see [PSU15]. The vertical Laplacian ∆ : C∞(SM)→ C∞(SM) is defined
as the operator

∆ := −
v

div
v

∇.

Here
v

div denotes the vertical divergence which is the adjoint of −
v

∇ (see [PSU15, Appendix A]).
The Laplacian ∆ has eigenvalues λk = k(k + n − 2) for k = 0, 1, 2, . . . , and its eigenfunctions are
homogeneous polynomials in v. One has an orthogonal eigenspace decomposition

L2(SM) =
⊕
k≥0

Hk(SM),

where Hk(SM) := {f ∈ L2(SM) ; ∆f = λkf}. We define Ωk = Hk(SM) ∩H1(SM). In particular,
by Lemma 5.1 below any u ∈ H1(SM) can be written as

u =
∞∑
k=0

uk, uk ∈ Ωk,

where the series converges in L2(SM).
One can split the geodesic vector field in two parts, X = X+ + X−, so that (by Lemma 5.1)

X+ : Ωk → Hk+1(SM) and X− : Ωk → Hk−1(SM). The next lemma gives an estimate for X±u in

terms of Xu and
h

∇u.

Lemma 5.1. Suppose u ∈ H1(SM). Then X±u ∈ L2(SM) and

‖X+u‖2 + ‖X−u‖2 ≤ ‖Xu‖2 + ‖
h

∇u‖2.

Moreover, for each k ≥ 0 one has uk ∈ H1(SM), and there is a sequence (u
(j)
k )∞j=1 ⊂ C∞c (SM) ∩

Hk(SM) with u
(j)
k → uk in H1(SM) as j →∞.

Proof. Let u ∈ C∞c (SM). By [PSU15, Lemma 4.4] one has the decomposition

h

∇u =
v

∇

[ ∞∑
l=1

(
1

l
X+ul−1 −

1

l + n− 2
X−ul+1

)]
+ Z(u)

where Z(u) is such that
v

divZ(u) = 0. Hence

‖
h

∇u‖2 =

∞∑
l=1

(
l(l + n− 2)

∥∥∥∥1

l
X+ul−1 −

1

l + n− 2
X−ul+1

∥∥∥∥2
)

+ ‖Z(u)‖2

=

∞∑
l=1

(
l + n− 2

l
‖X+ul−1‖2 − 2〈X+ul−1, X−ul+1〉+

l

l + n− 2
‖X−ul+1‖2

)
+ ‖Z(u)‖2.
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We also have

‖Xu‖2 = ‖X−u1‖2 +
∞∑
l=1

(
‖X+ul−1 +X−ul+1‖2

)
= ‖X−u1‖2 +

∞∑
l=1

(
‖X+ul−1‖2 + 2〈X+ul−1, X−ul+1〉+ ‖X−ul+1‖2

)
by the definition of X+ and X−. Adding up these estimates gives that

‖Xu‖2 + ‖
h

∇u‖2 = ‖Z(u)‖2 + ‖X−u1‖2 +
∞∑
l=1

(
A(n, l)‖X+ul−1‖2 +B(n, l)‖X−ul+1‖2

)
where A(n, l) = 2 + n−2

l and B(n, l) = 1 + l
l+n−2 . Since A(n, l) ≥ 1 and B(n, l) ≥ 1 for all

l = 1, 2, . . . and n ≥ 2, the estimate for ‖X+u‖2 + ‖X−u‖2 follows when u ∈ C∞c (SM), and it
extends to H1(SM) by density and completeness.

Moreover, if u ∈ C∞c (SM) and if k ≥ 0, then the triangle inequality ‖Xuk‖ ≤ ‖X+uk‖+‖X−uk‖
and orthogonality imply that

‖uk‖+ ‖Xuk‖+ ‖
v

∇uk‖ ≤ ‖u‖+ ‖X+u‖+ ‖X−u‖+ ‖
v

∇u‖.

We may also estimate
h

∇uk by [PSU15, Proposition 3.4] and orthogonality to obtain

‖
h

∇uk‖2 ≤ (2k + n− 1)‖X+uk‖2 + (sup
M

K)‖
v

∇uk‖2 ≤ Ck(‖X+u‖2 + ‖
v

∇u‖2).

It follows from the first part of this lemma that

‖uk‖H1(SM) ≤ Ck‖u‖H1(SM), u ∈ C∞c (SM).

This extends to u ∈ H1(SM) by density and completeness. Finally, if u ∈ H1(SM) and the

sequence (u(j)) ⊂ C∞c (SM) satisfies u(j) → u in H1(SM), then also u
(j)
k → uk in H1(SM) by the

above inequality. �

Corollary 5.2. Suppose u ∈ H1(SM). Then

lim
k→∞
‖X+uk‖L2(SM) = 0.

Proof. By Lemma 5.1 one has

‖X+u‖2 =

∞∑
k=0

‖X+uk‖2 <∞

which implies the claim. �

Lemma 5.3. Let u ∈ H1(SM) and k ≥ 1. Then one has that

‖X−uk‖ ≤ Dn(k)‖X+uk‖
where

D2(k) =

{√
2, k = 1

1, k ≥ 2,

D3(k) =

[
1 +

1

(k + 1)2(2k − 1)

]1/2

Dn(k) ≤ 1 for n ≥ 4.
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Proof. This result was shown for smooth compactly supported functions in [PSU15, Lemma 5.1].
The result follows for u ∈ H1(SM) by an approximation argument using Lemma 5.1. �

The estimates from Section 4 allow us to prove the following result:

Lemma 5.4. Suppose that f is a symmetric m-tensor field and either of the following holds:

(a) −K0 ≤ K ≤ 0, K0 > 0 and f ∈ E1
η(M) for η > (n+1)

√
K0

2

(b) K ∈ Pκ(M) for κ > 2 and f ∈ P 1
η (M) for η > n+2

2 .

Then uf ∈ H1(SM).

Proof. We prove only (a), the proof for (b) is similar. By Lemma 4.7 we have that uf ∈W 1,∞(SM).
Lemma 4.3 gives that

|uf (x, v)| ≤ C(1 + dg(x, o))e
−ηdg(x,o)

on SM . By using the coarea formula with Lemma 4.8 we get∫
SM
|uf (x, v)|2 dVgs ≤ C

∫
M

(1 + dg(x, o))
2e−2ηdg(x,o) dVg

= C

∫ ∞
0

(1 + r)2e−2ηr

(∫
So(r)

dS

)
dr

≤ C
∫ ∞

0
(1 + r)2e−2ηre(n−1)

√
K0rdr.

The last integral above is finite and hence uf ∈ L2(SM). Similar calculations using Lemmas 4.2

and 4.7 show that Xuf ,
h

∇uf and
v

∇uf all have finite L2-norms under the assumption η > (n+1)
√
K0

2 ,

and therefore the H1-norm of uf is finite. �

We are ready to prove our main theorems.

Proof of Theorems 1.1 and 1.2. Suppose that the m-tensor field f and the sectional curvature K
satisfy the assumptions of Theorem 1.1 or 1.2. Recall that we identify f with a function on SM as
described in Section 3.3. Then u = uf is in H1(SM) by Lemma 5.4, and Lemma 4.2 states that
Xu = −f on SM . Note also that f ∈ H1(SM), which follows as in the proof of Lemma 5.4.

Since f is of degree m it has a decomposition

f =

m∑
k=0

fk, fk ∈ Ωk,

and u has a decomposition

u =
∞∑
k=0

uk, uk ∈ Ωk.

We first show that uk = 0 for k ≥ m. From Xu = −f it follows that for k ≥ m we have

X+uk +X−uk+2 = 0.

This implies that

(5.1) ‖X+uk‖ ≤ ‖X−uk+2‖, k ≥ m.
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Fix k ≥ m. We apply Lemma 5.3 and the inequality (5.1) iteratively to get

‖X−uk‖ ≤ Dn(k)‖X+uk‖
≤ Dn(k)‖X−uk+2‖
≤ Dn(k)Dn(k + 2)‖X+uk+2‖

≤

[
N∏
l=0

Dn(k + 2l)

]
‖X+uk+2N‖.

By Corollary 5.2

lim
l→∞
‖X+uk+2l‖ = 0.

Moreover, as stated in [PSU15, Theorem 1.1], one has

∞∏
l=0

Dn(k + 2l) <∞.

Thus we obtain that

‖X−uk‖ = ‖X+uk‖ = 0.

This gives Xuk = 0, which implies that t 7→ uk(φt(x, v)) is a constant function on R for any
(x, v) ∈ SM . Since u decays to zero along any geodesic we must have uk = 0, and this holds for
all k ≥ m.

It remains to verify that the equation Xu = −f on SM together with the fact u =
∑m−1

k=0 uk
imply the conclusions of Theorems 1.1 and 1.2. This is done as in [PSU13, end of Section 2].
Suppose that m is odd (the case where m is even is similar). The function f is a homogeneous
polynomial of order m in v and hence its Fourier decomposition has only odd terms, i.e.

f = fm + fm−2 + · · ·+ f1.

It follows that the decomposition of u has only even terms,

u = um−1 + um−3 + · · ·+ u0.

By taking tensor products with the metric g and symmetrizing it is possible to raise the degree
of a symmetric tensor: if F ∈ Sm(M), then αF := σ(F ⊗ g) ∈ Sm+2(M). Functions λ(αF ) and
λ(F ) have the same restriction to SM , since λ(g) has a constant value 1 on SM .

We define h ∈ Sm−1(M) by

h := −
(m−1)/2∑
j=0

αj(Um−1−2j),

where Um−1−2j(x) is the unique symmetric trace-free (m − 1 − 2j)-tensor field which satisfies
λx(Um−1−2j(x)) = um−1−2j(x, · ), see Section 3.3.

Then λ(h) = −u on SM . Equation (3.10) gives λ(σ∇h) = X(λh) = −Xu = λ(f) on SM . Since
both f and σ∇h are symmetric we get f = σ∇h. To show the decay condition for h, we assume
the conditions of Theorem 1.1 and observe that Lemma 4.3 implies that for any fixed ε > 0,

(5.2) |u(x, v)| ≤ C(1 + dg(x, o))e
−ηdg(x,o) ≤ Cεe−(η−ε)dg(x,o).

We next observe that |σF | ≤ |F | for any tensor F (this can be seen by using an orthonormal basis

{εi1 ⊗ . . .⊗ εim} for m-tensors, Cauchy-Schwarz and the definitions), and |F ⊗ g| = n1/2|F | (which
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also follows from the definitions). Thus |αF | ≤ n1/2|F |. Consequently, using that the map λx in
Section 3.3 is an isometry up to a factor depending on n and m,

|h(x)|2 ≤ Cn,m
(m−1)/2∑
j=0

|Um−1−2j(x)|2 ≤ Cn,m
(m−1)/2∑
j=0

‖um−1−2j(x, · )‖2L2(SxM).

The orthogonality of spherical harmonics and the estimate (5.2) imply that

|h(x)|2 ≤ Cn,m
∫
SxM
|u(x, v)|2 dS ≤ Cε,n,me−2(η−ε)dg(x,o).

This shows that h ∈ Eη−ε(M) as required. The proof in the case of Theorem 1.2 follows similarly
by replacing (5.2) with the estimate in Lemma 4.3(b). �
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