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1 Introduction

In high-energy scattering, the aspect of a particle depends on the energy scale at which it is

probed. In hadronic collisions this effect can be seen in the well known energy dependence

of parton distribution functions. The energy dependence can be accessed in a more detailed

way by looking at less inclusive observables, for example ones probing correlations between

very different rapidities, opening a window on the transverse structure of the projectile.
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One then encounters another fundamental evolution equation of QCD, the Balitsky-Fadin-

Kuraev-Lipatov (BFKL) equation [1, 2].

In contrast to other evolution equations, which are typically linear, nonlinear effects

can also play a role in rapidity evolution: once scattering at a given impact parameter

has reached opacity, it must saturate. A nonlinear evolution equation which incorporates

such effects within perturbation theory has been derived by Balitsky and Kovchegov [3, 4].

Asymptotically, saturation may occur at distances shorter than the nonperturbative scale

Λ−1
QCD, justifying the use of perturbation theory [5, 6]. For many observables, such as

inclusive jet correlations or deep inelastic scattering, perturbation theory is also justified

by the large momentum transfer in the problem (see for example [7, 8] and references

therein). The need to control higher order corrections, and the need to better understand

the theory at finite coupling, motivate a deeper look into the perturbative series.

The next-to-leading-order evolution equation has been known for some time [9]. It

reproduces, in the appropriate limit, the next-to-leading order BFKL Pomeron trajec-

tory [10, 11]. A notable feature is that the degree of nonlinearity and its complexity

increases with each new order in perturbation theory. This is a rather unfamiliar situation

which makes it unclear how to best formulate the equation at finite coupling. Further-

more, the corrections have turned out to be numerically large. This has been attributed to

collinear effects, suggesting a possibility to resum them at higher orders at both the linear

(BFKL) and nonlinear level [12–14]. In order to shed light on these issue, and to critically

assess the quality of proposed resummations, higher-loop data is clearly highly desirable.

The aim of this paper is to initiate a systematic study of the Balitsky-Kovchegov and

BFKL equations at three loops and beyond. Specifically, as a first step, we will derive its

three-loop (next-to-next-to-leading order) correction in the planar limit of N = 4 super

Yang-Mills (SYM). This calculation is made possible by recent conceptual and technological

developments in the calculation of scattering amplitudes. Our methods remain however

essentially diagrammatic and we expect them to prove applicable to QCD in a next step.

The SYM model is an ideal stepping stone for several reasons. First, partial cross-

checks are available due to a recent and highly remarkable prediction of the Pomeron

trajectory exploiting integrability in this model [15, 16]. Such tests are valuable both from

the perturbative and integrability perspective. At the nonlinear level, the interactions to

be predicted are related to structure constants [17], soon to be within reach of similar

methods. Together with the AdS/CFT correspondence at strong coupling [18], these hint

at a possible exact description of the Pomeron and its interactions at finite coupling in

this model.

1.1 High-energy scattering, soft gluons, and non-global logarithms

A modern description of high-energy forward scattering is based on the eikonal approxima-

tion: fast projectiles and targets are approximated by null Wilson lines U . More precisely,

by a collection of such Wilson lines, reflecting the transverse structure of the colliding

objects at the given rapidity scale [3]. It is simple to translate this language to that of

classic Regge theory: the reggeized gluon is the state sourced by (the logarithm of) a null

Wilson line [19].

– 2 –
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The three-loop calculation in this paper is enabled by a recently established corre-

spondence with the physics of wide-angle soft radiation, sometimes called “non-global log-

arithms.” Consider the QCD decay of a color singlet state like a virtual photon or Z

boson, with energy Q. A representative observable, sensitive to soft wide-angle radiation,

is the probability to not find radiation with energy above a cutoff µ within an exclusion

region R (see figure 1). If the cutoff µ is low, this probability is small and controlled in the

planar approximation (’t Hooft limit Nc → ∞) by the Banfi-Marchesini-Smye evolution

equation [20]:

d

d log µ
U12 =

λ

16π2

∫
dΩ0

4π

α12

α10α02

(
2U12 − 2U10U02

)
≡ λ

16π2
K(1)U12. (1.1)

This resums large logarithms log Q
µ . Here αij ≡ 1−cos θij

2 , and the subscripts denote the

angles of outgoing partons; the dipole Uij = 1
Nc

Tr[U(θi)U
†(θj)] is a function of two angles

which can be interpreted (see below) as the trace of a color dipole at angles θi and θj .

The basic physics of this equation is that the color flow, and therefore the energy flow,

is affected by radiation of an extra gluon at angle θ0. The observable, through the exclusion

region R, is encoded by the infrared boundary condition that Uij = 0 when either i or j are

in R. Qualitatively, the evolution leads to an increased effective size of the exclusion region,

as radiation near the allowed boundaries become more and more in danger of leaking out.1

This equation is mathematically equivalent to the Balitsky-Kovchegov equation, which

governs the rapidity dependence of perturbative high-energy scattering near the forward

direction. In this context, the trivial fixed point Uij=1 represents a transparent target,

which is unstable: by linearizing in the departure (1−U), which gives the BFKL equation,

one finds a growing solution known as the BFKL Pomeron. The nonlinear term then

accounts for a class of saturation effects which stop the growth (locally in the transverse

plane) toward the attractive, opaque, fixed-point Uij=0.

The nonlinear term in both equations share a similar physical origin: in both cases

one is interested in the probability that something does not happen, while many possibly

complicated things may happen [21]. Indeed, to describe the probability to not radiate

in a certain region, one must keep track of all allowed radiation, which is what the non-

linear term of eq. (1.1) produces. Similarly, in near-forward scattering, one measures the

probability for a projectile to not be destroyed at a given impact parameter. The two

evolutions share other physical similarities: both are dominated by soft gluons, and both

feature “opaque” and “transparent” regimes.

Given these similarities, it seems natural to expect a relationship between these two

problems. The geometry is however different. To establish a rigorous map turns out

to require a conformal transformation [22, 23], which equates detector measurements at

infinity with the physics of a fast particle crossing a Lorentz-contracted target (also known

as a shockwave). This had been used notably by Hofman and Maldacena and others to

describe detector measurements in conformal field theories [22, 24, 25] and at the same

1The form (1.1) is valid provided that R is smooth enough that no jets are forced to be narrow. This

is assumed here in order to avoid further subtractions of collinear singularities as in the original setup [20],

thereby focusing on soft wide-angle radiation and preserving the most symmetrical form of the equation.

– 3 –
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time gain new insight into high-energy scattering. This conformal transformation is just

the stereographic projection of a two-sphere onto the transverse impact parameter plane:∫
dΩ

4π
⇔
∫
d2z

π
,

1− cos θij
2

⇔ m2|zi − zj |2,
d

d log µ
⇔ − d

dη
. (1.2)

Here m is an arbitrary mass scale and η is rapidity. Under this dictionary, the Banfi-

Marchesini-Smye equation (1.1) becomes precisely the Balitsky-Kovchegov equation, as

was noted early on [26].

In this paper we will exploit this correspondence and work exclusively on the non-

global logarithm side, which is technically advantageous due to a body of knowledge on

the infrared and collinear factorization of amplitudes and cross-sections. This correspon-

dence was emphasized and tested explicitly at two-loops in [23], where the full two-loop

BFKL/BK equation (including running coupling effects and non-planar corrections) was

re-derived starting from non-global logarithm problem.

The evolution equation (1.1) at finite coupling is best viewed as a renormalization

group (RG) equation: [
d

d log µ
+ β(g2)

d

dg2
−K

]
σ[U ;µ] = 0, (1.3)

where the color density matrix, or weighted cross-section σ[U ], is defined operationally

by weighing each final state parton by a color rotation U(θi) [23] (see also [27]). These

color rotations can be understood as Wilson lines U(θi) accounting for the effect of more

infrared radiation (these Wilson lines connect the decaying state in the matrix element and

its conjugate) [28, 29]. In the planar limit, the color factors reduce to products of color

dipoles and the color density matrix simplifies to a single function Uij of only two angles,

as shown in figure 1, which illustrates the “UU” term in eq. (1.1).

In both eqs. (1.1) and (1.3), µ is an infrared cutoff below which all radiation is inclusive.

In our practical calculation we will work within dimensional regularization to D = 4 − 2ε

(ε < 0). Then the cutoff µ appears in a renormalization procedure. Following standard

procedure, this is equivalent to integrating the RG equation from the deep infrared:

σbare[U ] = P exp

[
−
∫ µ

0

dλ

λ
K(g2(λ))

]
σren[U ;µ] , (1.4)

where, writing g2(λ) = g2(µ)(λ/µ)−2ε + O(g4) for the running coupling in D dimensions,

one can see that the integral produces 1/ε poles. The subtraction then cancels the poles

in the bare amplitude so as to make σren[U ;µ] finite as ε→0. That the divergences expo-

nentiate in precisely this way was proved to all orders in ref. [23], exploiting known results

on the factorization of soft partons [30, 31]. The upshot of eq. (1.4) is that we can use

the 1/ε poles in the dimensionally regulated weighted cross-section to read off the non-

global-logarithm/Balitsky-Kovchegov kernel K. Note that this is identical to the standard

procedure to extract (ultraviolet) anomalous dimensions of local operators, by using their

1/ε poles. The fact that divergences (either infrared or ultraviolet) are controlled by renor-

malization group equations is of course due to the Wilsonian decoupling between physics

at different scales.

– 4 –
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U(θ1)

U(θ0)

U(θ2)

*

Figure 1. Soft wide-angle radiation: radiation is allowed in some region but excluded in another.

To keep track of the allowed radiation we use a color density matrix, defined by applying an angle-

dependent color rotation U(θi) between the matrix element and its conjugate for each final state

particle. In the planar limit this configuration reduces to a product of two color dipoles.

This paper is organized as follows. In section 2 we introduce useful notations for

soft currents and phase space integrals. In section 3 we revisit the two-loop calculation,

improving on previous treatments by introducing a scheme where Lorentz symmetry is

manifest at each step; under the correspondence with the Regge limit, this is equivalent to

maintaining the conformal symmetry of the BK equation. In section 4 we perform the three-

loop calculation, paying special attention to the combinatorics of subdivergences and their

cancellations, culminating in the final result for the nonlinear equation in subsection 4.6.

In section 5 we analyze its linearized limit, compute its eigenvalues, and compare it with

integrability predictions. Finally section 6 contains our concluding remarks. In three

appendices, we record the one-loop double soft current squared (appendix A), we detail

our algorithm to compute finite angular or transverse integrals (appendix B), and record

the three-loop eigenvalue (appendix C).

2 Notations

The calculation of K requires squared matrix elements for emitting soft partons off two

color-correlated parents (“dipole”), the so-called soft currents. The evolution equation,

just like the soft currents, is universal and does not depend on details of the underlying

short-distance process, only on the color charges and angles of the outgoing partons. Final

states are then weighted, in the planar limit, by a product of color dipoles (see figure 1).

For each such product, it is useful to pull out a universal factor which accounts for its

dimensionality and most singular limits. We thus write the contribution from the soft

current with n soft partons to the n-loop cross-section, starting from a parent dipole U12

along directions p1 and p2, as:

σ
(1)
1 =

∫
p0

s12

s10s02
2U10U02 F[1 0 2] , (2.1a)

σ
(2)
2 =

∫
p0,p0′

s12

s10s00′s0′2
4U10U00′U0′2 F[1 00′ 2] , (2.1b)

σ
(3)
3 =

∫
p0,p0′ ,p0′′

s12

s10s00′s0′0′′s0′′2
8U10U00′U0′0′′U0′′2 F[1 00′0′′ 2] , etc. (2.1c)

– 5 –
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Here loops are counted in powers of g2 ≡ g2
YMNc
16π2 = αsNc

4π , Uij = 1
Nc

Tr[U(θi)U
†(θj)], and

phase-space integrals are normalized as
∫
p0
≡ 16π2

∫ µ2εd3−2εp0

(2π)3−2ε2p0
0
. For the Mandelstam

invariants and their multi-index generalizations, we let:

sij = 2pi·pj , si(jk) = 2pi·(pj + pk), sijk = 2(pi·pj + pi·pk + pj ·pk) . (2.2)

All invariants will always be positive (timelike), since we assume a color singlet initial state.

Naturally for our setup, on-shell momenta will be split into an energy a0 and angular parts

β0: pµ0 = a0β
µ
0 where βµ0 = (1, ~n0) is null. The Lorentz-invariant phase space measure

correspondingly splits into an energy and angular parts:∫
p0

= µ2ε

∫ ∞
0

2da0(2a0)1−2ε ×
∫
β0

,

∫
β0

≡
∫

d2−2εΩ0

(4π)1−2ε
. (2.3)

For angles we write αij =
1−cos θij

2 , which runs between 0 and 1. Throughout, we will use

the subscripts 0, 0′, 0′′ to index radiated gluons.

The various factors of 2 in our definitions have been chosen to simplify limits and

preclude unnecessary (log 2)’s in integrated expressions. For example, for one soft gluon,

F [1 0 2] is the square of the well-known eikonal soft current. Including the factor T aT a/Nc =

1/2 from the color sum, this evaluates to

2s12

s10s02
F[1 0 2] ≡

1

2

∣∣∣∣ pµ1
p1 · p0

− pµ2
p2 · p0

∣∣∣∣2 −→ F[1 0 2] = 1 . (2.4)

For two soft partons one needs the square of the double soft current, described for example

in [30]. The result after squaring it and including the fermions and scalars of N = 4 SYM

can be borrowed from formulas of ref. [23] (section 3), also rederived below in subsection 4.1:

F[1 00′ 2] = 1 +
s12s00′ + s10s0′2 − s10′s02

2s1(00′)s(00′)2
. (2.5)

One can easily verify that this factorizes in soft limits:

F[1 00′ 2]
|p0|�|p0′ |−−−−−−→ F[1 0 0′]F[1 0′ 2] = 1, F[1 00′ 2]

|p0′ |�|p0|−−−−−−→ F[0 0′ 2]F[1 0 2] = 1 . (2.6)

Our three-loop computation builds on the one-loop corrections to F[1 00′ 2] and the tree-level

three-parton amplitude F[1 00′0′′ 2], which will be efficiently obtained as described below.

3 Two-loop evolution: fixing a convenient scheme

The next-to-leading order correction to the Balitsky-Kovchegov equation was obtained in

QCD and N = 4 SYM in [9, 32]. It was postulated [33] and verified explicitly that the

same kernel governs non-global logarithms [23].

In the latter reference, soft partons were organized in terms of their energies. Because

“energy” is not Lorentz invariant, this scheme did not manifest Lorentz invariance, which

had to be restored manually through a finite renormalization (guaranteed to exist given the

– 6 –
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Lorentz invariance of the underlying theory). This is formally similar to the transformation

used to reach to the so-called conformal scheme in the BK literature [32]. Indeed the

mapping (1.2) interchanges the Lorentz and conformal symmetry of the two problems.

Here we improve on this by using explicitly Lorentz-invariant cutoffs. To fully define

the scheme in which our three-loop result will apply, we thus quickly revisit the two-loop

calculation.

3.1 One-loop in Lorentz-invariant form

The idea is to define the evolution so that its exponentiation generates the emission prob-

ability of a soft gluon, in the soft approximation, integrated over a complete phase space

region bounded by a Lorentz-invariant cutoff. For example, at one-loop, we define the

anomalous dimension K(1) so that its integral (following the first term in the expansion of

eq. (1.4)) matches the emission amplitude given in eqs. (2.1a), (2.4):

−
∫ µ

0

dλ

λ
λ−2εK(1)U12 ≡

∫
p0

θ(Q[1 0 2] < µ)
s12

s10s02

(
2U10U02 − 2U12

)
, (3.1)

where θ(x < y) is a step function forcing x to be smaller than y, and Q2
[1 0 2] ≡

s10s02
s12

defines

our cutoff. From this definition one can see that Q[1 0 2] is proportional to the energy of

the radiated gluon. Physically, Q[1 0 2] is the absolute value of its transverse momentum in

a frame where the parents p1 and p2 are back to back. (This ordering variable has been

used in many other contexts, see for example [34].) It is the only Lorentz invariant scale

that depends on the direction but not the energies of the parent partons.

To find K(1) from the definition (3.1), we simply identify the integration over the

energy component of p0 (called a0 in eq. (2.3)) with that over the ordering scale λ. More

precisely, λ is proportional, but not equal, to the energy a0, because of the angle dependence

of Q[1 0 2]:

λ = Q[1 0 2] = 2a0

√
α10α02

α12
. (3.2)

Inserting this change of variable into the right-hand-side of eq. (3.1) using the measure (2.3),

and stripping off
∫
dλ
λ λ
−2ε on both sides, we thus get:

K(1)U12 =

∫
β0

(
α12

α10α02

)1−ε (
2U12 − 2U10U02

)
. (3.3)

This of course reproduces the one-loop Banfi-Marchesini-Smye equation recorded in (1.1),

except for the ε in the exponent, which arose because of the angular dependence of the

ordering variable Q[1 0 2]. This exponent ensures exact Lorentz invariance in any dimension,

not only in the ε→ 0 limit2, which is critical to ensure Lorentz invariance of the higher-loop

corrections to K [23].

We briefly comment on the inclusion of virtual corrections, which simply add the

(−2U12) term to eq. (3.1). This form is determined by the Kinoshita-Lee-Nauenberg (KLN)

2An angular integral
∫
d2−2εΩ0 I(β0) is Lorentz invariant if I is homogenous of degree −(2 − 2ε) in

β0. This condition ensures that the rescaling of β0 under a boost cancels against the Jacobian of the

transformation.

– 7 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
8

theorem [35, 36], which states that there can be no infrared divergences in a fully inclusive

cross-section. This implies, in particular, that Uij = 1 is a fixed point of the evolution.

At any loop order this can (and will) be used to obtain the coefficient of U12 from that of

other color structures.

3.2 Lorentz invariant slicing of multi-particle phase spaces

To move on to higher loops, we define, similarly, scales for multiple emissions:

Q2
[1 0 2] =

s10s02

s12
, Q2

[1 00′ 2] ≡
(
s10s00′s0′2

s12

)1/2

, Q2
[1 00′0′′ 2] ≡

(
s10s00′s0′0′′s0′′2

s12

)1/3

, etc.

(3.4)

Similar combinations appeared already in the integration measures in eqs. (2.1). The

exponents may appear unwieldy, but in practice these definitions will be very convenient

because the scales of complicated processes are equal to appropriate geometric means of

subprocess scales, for example:

Q2
[1 00′ 2] = Q[0 0′ 2]Q[1 0 2] = Q[1 0 0′]Q[1 0′ 2]. (3.5)

As an organizing principle, when writing the higher-loop contributions to the evolution

kernel K, we make sure to completely cover the multi-parton phase space up to a cutoff

in Q. Let us consider for illustration a term arising from an `-loop virtual correction to

the emission of two real partons (` = 0 being the relevant case for the two-loop kernel to

be detailed shortly). If I` denotes the corresponding soft current, the following expression

integrates it over all the phase space with Q[1 00′ 2] below the cutoff:∫
p0,p0′

s12

s10s00′s0′2
θ(Q[1 00′ 2] < µ) I`(p0, p0′). (3.6)

Importantly, the integrand will always be homogeneous, due physically to the fact that the

Yang-Mills coupling is dimensionless. More precisely, within dimensional regularization,

the `-loop correction to the two-parton emission has an overall dimension determined by the

running coupling g2(λ) ≈ λ−2ε, raised to the power (`+ 2). We thus change variable from

the two energies (a0, a0′) to the overall scale λ ≡ Q[1 00′ 2] and relative energy τ = a0/a0′ .

Dimensional reasoning then implies that, after factoring out the running coupling evaluated

at that scale Q[1 00′ 2], the integrand becomes homogeneous and depends only on the ratio

τ , but not λ:

I`(p0, p0′) = (g2(Q[1 00′ 2]))
`+2 × Ĩ`(τβ0, β0′) . (3.7)

With this change of variable the two-particle phase-space then factors as

eq. (3.6) =

∫ µ

0

dλ

λ
(g2(λ))`+2

∫
β0,β0′

(
α12

α10α00′α0′2

)1−ε ∫ ∞
0

dτ

τ
Ĩ(τβ0, β0′) . (3.8)

The integral over the scale λ precisely matches what appears in the integrated renormal-

ization group equation (see eq. (1.4)), so by simply stripping it off we get the contribution

to the kernel K(`+2), simply generalizing eq. (3.3). Note, importantly, that the equality is

– 8 –
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exact to all orders in ε and holds not only for the 1/ε poles. The only assumption is that

the integrand I` is computed in the leading soft approximation where the energy scales

of the parent partons does not enter, e.g. I` is the standard soft current comes from soft

currents, The generalization to more partons is immediate: in our slicing scheme we will

always get integrations that depend only over relative energies τ , with an ε-free measure.

(Strictly speaking, the identity (3.8) is only valid when the integrand I` vanishes in its

factorization limits τ → 0,∞ so the τ -integral converges, which holds for the subtracted

integrand F sub to be defined shortly.)

This equivalence between scale integrals and energy integrals can also be applied in

the reverse direction, to subtract the iteration of the lower-loop kernels generated by the

path-ordered exponential (1.4). For example the product of two K(1)’s corresponding to

the successive emission of parton 0 between 1 and 2, followed by parton 0′ between 0 and

2, can be written as

µ4ε

∫ µ

0

dλ

λ
λ−2ε

∫ λ

0

dλ′

λ′
λ′−2ε

∫
β0,β0′

r[0 0′ 2]r[1 0 2] =

∫
p0,p′0

s02

s00′s0′2

s12

s10s02
θ(Q[0 0′ 2] < Q[1 0 2] < µ) ,

(3.9)

where r[1 0 2] = (α12/(α10α02))1−ε is the angular measure in eq. (3.3).

3.3 Quick rederivation of two-loop evolution

With this technology it is now rather straightforward to re-derive the two-loop evolution

equation. Let us start with the contribution from two real partons. Matching with eq. (1.4),

this requires the squared matrix element for two partons, minus the iteration of one-loop

subprocesses. This later subtraction will neatly remove all subdivergences. There are two

possible one-loop subprocesses: either p0 or p′0 can be radiated first. The relation (3.9)

allows to subtract these directly at the integrand level, by defining a subtracted soft current:

F sub
[1 00′ 2] ≡ F[1 00′ 2] − θ

(
Q[0 0′ 2]<Q[1 0 2]

)
− θ
(
Q[1 0 0′]<Q[1 0′ 2]

)
. (3.10)

Multiplying with the product of dipoles U10U00′U0′2 in eq. (2.1b) and removing the overall

scale integral using eq. (3.8), we get K as a convergent integral:

K(2)U12 =

∫
β0,β0′

(
α12

α10α00′α0′2

)1−ε ∫ ∞
0

dτ

τ
(−2U10U00′U0′2)2F sub

[1 (τβ0)β0′ 2] + . . . (3.11)

where the omitted terms involve virtual corrections (involving products of fewer than three

U dipoles). The τ integral converges absolutely in both the τ → 0 and τ → ∞ limits

thanks to the factorization of the soft current F noted in eq. (2.6).

Note that we have omitted the µ upper cutoff in the step functions in F sub
[1 00′ 2]. This is

because all the 1/ε poles at two loops come from the infrared region where p0 ∼ p0′ � µ,

where this cutoff plays no role [23]. The region near the upper cutoff only affects the two-

loop amplitude by a finite amount, thus affecting the evolution starting only from three

loops (in a way which can be systematically accounted for, see eq. (4.21c)). The τ -integral

in (3.11), using the explicit expression (2.5), involves only elementary integrals and gives
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a simple angular function

K
(2)
[1 00′ 2] ≡

∫ ∞
0

dτ

τ
2F sub

[1 (τβ0)β0′ 2] = 2 log
α12α00′

α10′α02
+

(
1 +

α12α00′

α10α0′2 − α10′α02

)
log

α10α0′2

α10′α02
.

(3.12)

Finally we turn to the virtual corrections, which can have color factors U10U02 or U12.

They are strongly constrained by physical principles: Lorentz invariance, the absence of

collinear singularities, and the KLN theorem. A simple way to solve these constraints is

to add (U10U02 + U10′U0′2) to the color factor in eq. (3.11), which automatically removes

collinear singularities when 0‖0′ (where U00′ → 1) and fulfills KLN. By Lorentz invariance,

the remainder is then determined up to a single multiple of one-loop:

K(2)U12 =

∫
β0,β0′

(
α12

α10α00′α0′2

)1−ε
K

(2)
[1 00′ 2]

(
U10U02 +U10′U0′2−2U10U00′U0′2

)
+γ

(2)
K K(1)U12 .

(3.13)

The coefficient γ
(2)
K can be fixed by matching a certain limit controlled by the cusp anoma-

lous dimension (see section 5): γ
(2)
K = −π2/3 + O(ε). The full two-loop planar evolution

is then given as (3.13) which agrees completely with the existing result for the Balitsky-

Kovchegov equation [32].

3.4 More on virtual corrections

Although they were not strictly needed to obtain the two-loop result (3.13) (having taken

the two-loop cusp anomalous dimension as a known input), it is instructive to explicitly

compute the virtual corrections. Learning to handle them expediently will prevent them

from becoming the bane of our existence at higher loops.

Morally, the coefficient γ
(2)
K is related to the one-loop correction to the single soft

current, which has been obtained long ago (see [37, 38]):

F
(1)bare
[1 0 2]

F
(0)
[1 0 2]

= 2Re

cΓ

ε2

(
e−iπQ2

[1 0 2]

µ2

)−ε
−πε

sin(πε)

=

(
Q2

[1 0 2]

µ2

)−ε [
−2cΓ

ε2
+

2π2

3
+O(ε)

]
.

(3.14)

Here cΓ = Γ(1+ε)Γ(1−ε)2

Γ(1−2ε)(4π)−ε is a ubiquitous loop factor. This formula does not depend on the

matter content of the theory. The “bare” superscript indicates that we have performed

ultraviolet renormalization but have not yet subtracted the infrared divergence, to which

we now turn.

Obviously this result is divergent, whereas we’re trying to compute the finite coefficient

γ
(2)
K . Of course, what happens as usual is that the physics cannot depend on such a “bare”

quantity but only on renormalized ones. A useful intuition here is that infrared divergences

in bare amplitudes reflect that scattering states are defined in the deep infrared, and one

must always use the renormalization group to evolve the amplitude back to the physical

scale µ of interest, as detailed in eq. (4.9) below. This will remove all remaining 1/ε poles.

In the present case, the precise renormalization to use, including finite factors, follows from

the other virtual contributions already included in K. First there is the U12 term in K(1),
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predicted above using the KLN theorem, which can multiply the real part of K(1) iterated

using relation (3.9):

s10

s1vsv0
θ(Q[1 v 0] < Q[1 0 2]) +

s02

s0vsv2
θ(Q[0 v 2] < Q[1 0 2])−

s12

s1vsv2
θ(Q[1 v 2] < Q[1 0 2]) . (3.15)

Second there are the UU terms in the two-loop ansatz (3.13):

s10

2s1vsv0
F sub

[1 v0 2] +
s02

2s0vsv2
F sub

[1 0v 2] . (3.16)

It is important to note that both these contributions are expressed in terms of the phase

space of two real partons 0 and v, whereas the one-loop virtual correction to the soft

current (3.14) is to be integrated over the phase space of a single parton p̃0. We thus

have to match these phase spaces somehow. The crucial requirement is that the collinear

singularities match at the integrand level. This requires that, in the limit where 0 and v

are collinear, their total energy matches that in the virtual calculation: a0 + av = ã0.

The simplest way to do this, while respecting Lorentz invariance away from the collinear

limit, is to keep the angles the same, p̃0 ∝ p0, but use Q[1 0 2] and Q[1 v 2] to define Lorentz-

covariant energies for the two daughters 0 and v. Thus we match the above two corrections

with the virtual one at total momentum p̃0 ≡ p0
Q[1 0 2]+Q[1 v 2]

Q[1 0 2]
. Let us denote as f split(p0, pv)

the sum over the five terms in (3.15)–(3.16), or more generally any homogeneous function

of p0, pv. After changing variable from p0 to p̃0 the two-parton phase space factorizes as:∫
p0,pv

1

|p0|2
f split(p0, pv)H

parent(p̃0) =

∫
p̃0

1

|p̃0|2
(
Q2

[1 0̃ 2]

)−ε
Hparent(p̃0)

∫
βv

(
α12

α1vαv2

)−ε
×
∫ 1

0

dx

[x(1− x)]1+2ε
f split (xβ0̃, (1− x)Cβv) , (3.17)

with C =
(
α10̃α0̃2
α1vαv2

)1/2
, Hparent(p̃0) is an arbitrary test function, and x and 1− x represent

the (covariant) energy fractions of the two daughters.

The splitting function f split defined by the sum of (3.15)–(3.16) contains complicated

angle-dependent step functions, which come both from the former equation and from those

in F sub, explicited in eq. (3.10). Conveniently, up to a part that is antisymmetric in x →
1− x and therefore cancel upon integration, all the step functions cancel out except those

proportional to θ(Q[1 v 2] < Q[1 0 2]). Keeping only these surviving terms, and decomposing

the sum into two pieces for later convenience, we thus write f split ≡ G{1 v0 2}+G{1 0v 2} where

G{1 v0 2} ≡ −
(

s10

s1vsv0
− s12

2s1vsv2

)
θ(Q[1 v 2] < Q[1 0 2])−

s10

2s1vsv0

(
F[1 v0 2] − 1

)
,

G{1 0v 2} ≡ −
(

s02

s0vsv2
− s12

2s1vsv2

)
θ(Q[1 v 2] < Q[1 0 2])−

s02

2s0vsv2

(
F[1 0v 2] − 1

)
.

(3.18)

Stripping off the integral over the radiated gluon momentum p̃0 in eq. (3.17), we then get

the total effective soft current:

F
(1)ren
[1 0 2] = F

(1)bare
[1 0 2] +

(
Q2

[1 0 2]

)−ε
δ(1) (3.19)
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with δ the integral over the splitting function:

δ(1) ≡ −
∫ 1

0

dx[
x(1− x)

]1+2ε

∫
βv

(
α10

α1vαv2

)−ε
2
(
G{1 v0 2} +G{1 0v 2}

)
pv=p0

0βv
(1−x)C

x

=

∫ 1
2

0

2dx

[x(1− x)]1+2ε
×
∫
βv

(
α12

α1vαv2

)−ε( α10

α1vαv0
+

α02

α0vαv2
− α12

α1vαv2

)
+

∫
βv

α02

α0vαv2

[
1 +

α12α0v

α01αv2 − αv1α02

]
log

α01αv2

αv1α02
=

(
2cΓ

ε2
− π2

)
+O(ε). (3.20)

Note that, although it is defined as a complicated looking integral, δ(1) is just a constant:

this had to be the case since the integral is manifestly Lorentz-invariant and an homoge-

neous function of three null vectors, and all such invariants are constant. Adding it to the

bare matrix element (3.14) according to (3.19) then gives:

F
(1)ren
[1 0 2] ≡ γ

(2)
K = −π

2

3
+O(ε) (3.21)

in perfect agreement with the two-loop cusp anomalous dimension recorded below

eq. (3.13).

4 Three-loop evolution

We now proceed to derive and assemble the ingredients for three-loop infrared divergences.

The chief conceptual issue is to organize the subtraction of subdivergences, of which there

are plenty at three loops. We would like to (and will) obtain the evolution kernel K(3) as

a sum of absolutely convergent integrals involving physical building blocks (the so-called

remainder function) in which we can set ε = 0 directly.

4.1 First ingredient: triple-soft current

The first building block is the square of the tree-level soft current for emission of three

partons. This needs to be summed over all produced parton species: gluons, fermions or

scalars.

The easiest way to obtain it is from the soft limit of the planar four particle integrand,

which is amply documented in the literature. We fix two external legs to be in the matrix

element and two in the conjugate, and sum over all (Cutkoski) unitarity cuts which separate

them. In the relevant limit, where the cut internal propagators become soft, the integrand

from the outer square factors out and the outermost cut propagators act as the parent

dipole U12.

As an illustration, consider the two-loop integrand, which in planar N = 4 is a sum of

two double-boxes. With the momenta labelled as in figure 2a:

I(2) =
[(pa + pb)

2]2(pa − pa′)2

p2
1p

2
0p

2
2(p1 + p0)2(p2 + p0)2(p1 − pa)2(p1 + p0 − pa′)2

+ (one permutation). (4.1)

Taking p1, p2 and p0 to be on-shell with p0 soft, this simplifies to

p2
1p

2
0p

2
2 I(2) −→ (pa + pb)

2(pa − pa′)2

(p1 − pa)2(p1 − pa′)2
× s12

s10s02
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(a) (b)

Figure 2. Extracting squared soft currents from the four-particle integrand: cuts which give the

squares of single (a) and double (b) emissions by taking the cut internal propagators to be soft.

where the first factor is recognized as just the cut of the one-loop amplitude (a scalar box).

Dividing it out leaves the dipole radiator (2.4), as expected. The other three-particle cut

of the same diagram (where the cut runs south-east) adds the correct factor 2, and the

rotated double-box is subleading in the soft limit.

Moving on, the three-loop integrand is the sum of ladders and tennis court scalar

integrals (with simple, specific numerators, see [39]). Four cuts, shown in figure 2b, together

with their top-down flips, contribute in the soft limit. They yield, respectively, the four

terms (from left to right and top to down):

F[1 00′ 2] =
s12s00′

2s1(00′)s(00′)2
+

s10

2s1(00′)
+

s0′2

2s(00′)2
+

1

2

= 1 +
s12s00′ + s10s0′2 − s10′s02

2s1(00′)s(00′)2
. (4.2)

This is in perfect agreement with the direct calculation recorded in eq. (2.5).

Having thus validated the method, it is a simple exercise to extract the square of the

triple-soft current from the known 4-loop integrand. We found the 7-loop package [40]

(recently extended to 8 loops [41]) particularly useful for this. To most usefully record the

result, we note that its soft limits are easily predicted. There are five independent soft

limits, where (by factorization) it must reduce to double-soft currents:

F[1 00′0′′ 2]
0 soft−−−→ F[1 0′0′′ 2], F[1 00′0′′ 2]

0′ soft−−−−→ F[1 00′′ 2], F[1 00′0′′ 2]
0′′ soft−−−−→ F[1 00′ 2],

F[1 00′0′′ 2]
0∼0′ both soft−−−−−−−−−→ F[1 00′ 0′′], F[1 00′0′′ 2]

0′∼0′′ both soft−−−−−−−−−−→ F[0 0′0′′ 2] .
(4.3)

There are also various double scaling limits, where F reduces to 1. With a simple ansatz
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each limit can be accounted for by a single term, hence leaving a finite remainder:

F[1 00′0′′ 2] = 1 + (1 + P )

(
s12s00′ + s10s0′2 − s10′s02

2s1(00′)s(00′0′′)2
+
s10′′s00′ + s10s0′0′′ − s10′s00′′

2s1(00′)s00′0′′

)
+
s12s00′′ + s10s0′′2 − s10′′s02

2s1(00′0′′)s(00′0′′)2
+ F safe

[1 00′0′′ 2] . (4.4)

Here P the parity operation {1, 0} ↔ {2, 0′′}. The result we obtain from the four-point

integrand matches precisely this form, with the remainder vanishing in all soft limits. For

future convenience we write it here as a sum of individually regular pieces:

F safe
[1 00′0′′ 2] = (1 + P )(e1 + e2) + e3 + e4 , (4.5)

e1 =
1

4s1(00′0′′)s(0′0′′)2s00′0′′

×

(
s00′′(2s10′′s0′2 + s10′(s0′2 − s0′′2))− s00′(2s10′s0′′2 + s10′′(s0′′2 − s0′2))

+s0′0′′(2s10s0′′2 − s1(0′0′′)s02 − s12s0(0′0′′))

)
,

e2 =
s10(s12s0′0′′ + s10′′s0′2 − s10′s0′′2)

4s1(00′)s1(00′0′′)s(0′0′′)2
,

e3 =
s10′s0′2

2s1(00′)s(0′0′′)2
− s10′s0′2 + s10′s02 + s10′′s0′2

2s1(00′0′′)s(00′0′′)2
,

e4 =
s12(s12s00′s0′0′′ + s10s0′′2s00′0′′)

4s1(00′)s1(00′0′′)s(00′0′′)2s(0′0′′)2
+
s12(s00′ + s0′0′′ − s00′′)

4s1(00′0′′)s(00′0′′)2

− s12s00′

4s1(00′)s(00′0′′)2
− s12s0′0′′

4s1(00′0′′)s(00′)2
.

As a cross-check, we have reproduced numerically the squared soft current (4.4)–(4.5) by

a direct Feynman diagram calculation, summing up the gluon, fermion and scalar con-

tributions, and also using the computer package [42]. For convenience, this formula, and

others in this paper, is included in computer-readable format in the ancillary text file

formulas.txt, attached to the arXiv submission of this paper.

4.2 Second ingredient: double-soft current and the remainder function

To obtain the one-loop correction to the double soft current in the simplest way, we take

the limit of two soft partons in the known one-loop six-point amplitude. These soft partons

can be of any species (gluons, fermions and scalars). Consider for example the case when

the two soft gluons have the same helicity. In this case we use the one-loop correction to

the MHV amplitude (four positive and two negative helicity gluons), divided by the tree

amplitude [43]:

1

cΓ

M
(1)MHV
6

M
(0)MHV
6

= (1 + C2 + C4)

[
−2

ε2
+

2

ε
log

(
(−s23)(−s56)

µ4

)
+ Li2

(
1− s123s345

s12s45

)
+
π2

3

− log

(
(−s23)

µ2

)
log

(
(−s12)(−s34)

µ2(−s56)

)]
, (4.6)
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Figure 3. One-loop virtual correction to double soft current contributing to the cross-section at

three loops.

where the operation C is a cyclic rotation by one. The one-loop soft current is obtained by

taking the limit where partons 2 and 3 become the soft partons 0 and 0′, and subtracting

the one-loop correction to the parent four-point amplitude. In this limit, the two color-

adjacent partons 1 and 4 define the parent dipole, and the other two decouple, thus giving

us the soft current

1

cΓ

S(1)
[1 0+0′+ 2]

S(0)
[1 0+0′+ 2]

= − 2

ε2
+

2

ε
log
−Q2

[1 00′ 2]

µ2
− log

(
(−s10)(−s0′2)

µ2(−s12)

)
log

(
(−s00′)

µ2

)

+Li2

(
−s10′

s10

)
+ Li2

(
− s02

s0′2

)
+ Li2

(
1−

s1(00′)s(00′)2

s12s00′

)
+O(ε). (4.7)

It is important to note that since all invariants are positive (timelike), the Feynman pre-

scription adds an imaginary part to all logarithms: log(−sij) = log |sij | − iπ.

For soft gluons of opposite helicity, as well as for soft fermions and scalars, one needs

the NMHV (super)amplitude [44, 45]. It may be amusing to note that the two fermions

soft current is the same in QCD and N = 4 SYM, since the contributing diagrams are the

same. Thus some effective supersymmetry can also be used at one loop in QCD as well.

The component formulas are somewhat involved, and in the N = 4 theory further

simplifications occur when summing over particle species in the interference with the tree

amplitude. For this reason, here we record only the final result of the helicity sum, e.g. the

one-loop correction to the squared soft current, in appendix in eq. (A.1):

F
(1)
[1 00′ 2] ≡

(
4s12

s10s00′s0′2

)−1 ∑
h1,h2

([
S(1)[1 0h10′h2 2]

]∗ [
S(0)[1 0h10′h2 2]

]
+ c.c.

)
. (4.8)

We used the package in [46] to cross-check our expressions.

Importantly, as was the case at two loops (and for the MHV example above), this

one-loop correction is infrared divergent, while we expect the physics to depend only on

renormalized, finite quantities. The standard, MS way to renormalize is to remove the
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integral of the infrared anomalous dimension:

F
(1)ren,MS
[1 00′ 2] ≡ P̄ exp

[∫ µ

0

dλ

λ
γIR(λ)

]
F

(1)bare
[1 00′ 2] (4.9)

where at one-loop γIR =
g2
YMNc
8π2 log

|s10s00′s0′2|
|s12|µ4 for the soft current squared. This is the

conventional definition of so-called hard matrix elements in the SCET literature. Although

a good starting point, this is however not very convenient for us, because we would like to

subtract something which has a simple representation as a phase space integral.

The governing physical principle is that the subtraction should match all singularities of

the triple-real emission at the integrand level, in all (single-) soft and collinear limits. This

ensures that when we add it back later all divergences will cancel cleanly pre-integration.

Furthermore we would like a simple analytic form for the integrated subtraction. This

can be achieved by defining Lorentz-invariant functions of three angles, like we did in

section 3.4, since these automatically integrate to constants.

Let us thus consider the general problem of renormalizing an amplitude F[1 23... n] with

(n− 2) soft partons. We want to renormalize it by adding, say at one-loop, a phase space

integral with one additional real parton v:∫
p2,...,pn−1

(
F

(1)ren
[1 2... n] − F

(1)bare
[1 2... n]

)
≡
∫
p2,...,pn−1,pv

Γv[1 2... n]F
(0)
[1 2... n] . (4.10)

There are two constraints. In the limit where v is soft, the integrand should reduce to

minus the square of the soft current, G{i v j} ≡ −
sij

sivsvj
, emitted from all possible regions,

minus that from the parent dipole. In collinear limits there is a similar factorization, but

with the important distinction that the parent amplitude must be evaluated with the total

momentum (here j = 2, . . . , n− 1 and i = j − 1, k = j + 1):

Γv[1 2... n]F
(0)
[1 2... n]

pv soft−−−−→

(
−G{1 v n} +

n−1∑
i=1

G{i v i+1}

)
F

(0)
[1 2... n],

Γv[1 2... n]F
(0)
[1 2... n]

pv‖pj−−−→ 1

svj
F[i jv k] × F

(0)
[1 ...(pj+pv)... n] .

(4.11)

Note that the labels i and k decouple in the collinear limit. The fact that the argument of

the amplitude is shifted to (pj+pv) is the main complication since it precludes a simple mul-

tiplicative solution. To solve it, recycling the ingredients in the two-loop subtraction (3.18),

we define a three-index operator Γ[i j k] which rescales pj in whatever it multiplies:

Γv[i j k]F[1 ...j... n] ≡
(
G{i vj k} +G{i jv k}

)
F[1 ...j̃... n], p̃µj ≡ p

µ
j

(
1 +

Q[i v k]

Q[i j k]

)
. (4.12)

Then, it is easy to see that all constraints are simultaneously solved by:

Γv[1 2... n] ≡
1

2

n−1∑
i=2

(
Γv[1 i i+1] + Γv[i−1 i n]

)
. (4.13)

Indeed, the three-index Γv[i j k] only has collinear singularities in one region pv‖pj , where

the spectator labels i and k decouple, so the collinear limits work out. In the soft limit it
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approaches G{i v j} + G{j v k} − G{i v k}, and using telescopic cancellations one can also see

that the first of (4.11) is fulfilled.

Using the change of variable (3.17) and the integral (3.20), the renormalization defined

at one-loop by eq. (4.10) can be rewritten in a more suggestive form:

F ren
[1 2... n] = F bare

[1 2... n] ×
[
V[1 2n]V[2 3n]· · ·V[n−2n−1n]

]
×
[
V[1 2 3]V[1 3 4]· · ·V[1n−1n]

]
, (4.14)

where

V[i j k] = e
1
2
δ(1)g2(Q[i j k]) (4.15)

represents the real-emission correction to the soft current squared between legs i and k.

We recall that δ(1) ≈ 2
ε2

(3.20) starts with a double pole, and g2(λ) ≈ (λ/µ)−2εg2(µ) is the

D-dimensional running coupling. Physically, the renormalized amplitude is thus obtained

by including amplitudes for a sequence of splittings, each with the coupling evaluated at

its natural scale. (Either of the sequences in the square brackets would work, but we chose

to include both and multiply the exponent by 1
2 for symmetry reasons.)

The renormalized amplitude F ren is finite for any number of points. At one-loop F (1)ren

is obtained from the bare result (A.1) by the simple substitution given in eq. (A.2). It turns

out that F ren is closely related to another canonical finite function in N = 4 SYM: the

Bern-Dixon-Smirnov remainder function [47]. This is defined by dividing the amplitude by

an ansatz ABDS
n+2 (essentially an exponential of the one-loop MHV amplitude), which makes

it finite and dual-conformal invariant and trivializes its collinear limits. The ansatz has four

parameters: three are essentially the constant, order ε and ε2 terms in the function called

f(ε) in [47], which multiplies the one-loop amplitude in the exponent, while the fourth

adds a common multiplicative factor to all n-point amplitudes and cancels out for the soft

current. Thus three parameters affect the soft current; comparing with eq. (4.15) it is easy

to see that these three parameters are in one-to-one correspondence with the double-pole,

single-pole and constant term in δ(1), and that the infrared divergent parts match. The ε0

term in our δ is slightly different because for five-partons our scheme automatically yields

the cusp anomalous dimension F[1 0 2] = γK (see section 5 for the higher-loop explanation)

whereas by definition the BDS remainder is unity for five-points. Thus, with a somewhat

schematic notation, we can express our renormalized soft current directly in terms of the

BDS remainder to all loop orders:

F ren
[1 2 ... n] = (γK)n−2 × |Rn+2|2 × eγKfn , (4.16)

where Rn+2 = An+2/A
BDS
n+2 is the BDS remainder (e.g. the amplitude An+2 divided by the

BDS ansatz ABDS
n+2 ) and fn an explicitly known (and finite) function equal to the real part

of the difference between the exponent in eq. (4.14) and the squared one-loop MHV soft

current (given for n = 4 in (4.7)), which was exponentiated by BDS. As we will prove

shortly, only the ε→ 0 limit of the finite F ren, and thus also BDS remainder, is needed to

get the evolution kernel K.

Finally, it is interesting to look at eq. (4.16) in the other direction, going from the soft

current to the remainder. We can count the number of variables on which the soft current

F ren depends for m soft partons. Each on-shell parton gives 3m degrees of freedom while
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invariance under two Lorentz generators and one independent rescaling of the βi remove 3,

giving 3(m− 1) invariants. Due to dual conformal symmetry, the k-point BDS remainder

Ak/A
BDS
k in eq. (4.16) depends on 3(k−5) invariants, which is equal since k=m+4. These

two numbers agree! That is, dual conformal symmetry implies that the soft limit is not

lossy, and we conclude that, through eq. (4.16), the ε→ 0 limit of BDS remainder in planar

N = 4 SYM uniquely determines the renormalized soft current, and vice-versa.

4.3 Nested subtractions for virtual contribution

Given the renormalized amplitude, it is natural to integrate it over relative energies to

obtain a contribution to K, with suitable subtractions as was done in section 3.3:

Kren
[1 00′ 2] ≡ g

4(Q[1 00′ 2])

∫ ∞
0

dτ

τ
2F ren,sub

[1 (τβ0)β0′ 2] . (4.17)

For the subtracted integrand F ren,sub it would be tempting to use again eq. (3.10), but one

needs to be more careful and pay due attention to the renormalization scales of the various

objects. Indeed, as is clear from the renormalization group equation (1.4), all couplings in

the subtractions get evaluated at their private scales Q[i j k], which are distinct from the

common overall scale Q[1 00′ 2] that we assign to Kren
[1 00′ 2]. In addition, the finite parts of

the renormalization (4.14) do not match. The correct loop-level definition, which accounts

for all these effects, is rather

F ren,sub
[1 00′ 2] ≡ F ren

[1 00′ 2]

−θ(Q[1 0 0′]<Q[1 0′ 2])κ[1 0 0′];[1 0′ 2]F
ren
[1 0 0′](g

2(Q[1 0 0′]))F
ren
[1 0′ 2](g

2(Q[1 0′ 2]))

−θ(Q[0 0′ 2]<Q[1 0 2])κ[0 0′ 2];[1 0 2] F
ren
[0 0′ 2](g

2(Q[0 0′ 2]))F
ren
[1 0 2](g

2(Q[1 0 2])), (4.18)

where all the couplings are to be evaluated in terms of the common one of the overall

process: g2(λ) 7→ g2(Q[1 00′ 2])
(

λ
Q[1 00′ 2]

)−2ε
. The prefactors, which account for the coupling

constants stripped from the two-parton amplitude and for mismatching subtractions of

infrared divergences, are

κ[1 0 0′];[1 0′ 2] ≡
g2(Q[1 0 0′])g

2(Q[1 0′ 2])

g4(Q[1 00′ 2])
e

1
2
δ(1)
(
g2(Q[1 0 0′])+g

2(Q[1 0′ 2])−g2(Q[0 0′ 2])−g2(Q[1 0 2])
)

= eg
2κ(1)

+O(ε), κ(1) = log
s10s02

s10′s0′2
log

s12s00′

s10′s02
. (4.19)

For the other subprocess we get the same but with −κ(1). Specializing to what we need at

three loops, extracting the coefficient of g2(Q[1 00′ 2]) in F ren,sub and using that F
(1)ren
[1 0 2] =

−π2/3 from subsection 3.4, this becomes

F
(1)ren,sub
[1 00′ 2] = F

(1)ren
[1 00′ 2] − θ

(
Q[0 0′ 2]<Q[1 0 2]

)(−2π2

3
+ κ(1)

)
− θ
(
Q[1 0 0′]<Q[1 0′ 2]

)(−2π2

3
− κ(1)

)
. (4.20)
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The critical conceptual point here is that we won’t need the O(ε) terms in this expression.

This is because the combination in eq. (4.18), in which all objects are defined to all orders

in ε, is precisely the one which vanishes to all order in ε near the endpoints τ → 0 and

τ →∞ (this follows from the factorization properties of the bare amplitudes F bare). This

precludes any ε/ε effect. The extension to higher loops is clear: one just includes more

terms in the expansion of δ. Also we expect only minor changes in the presence of a

nontrivial β-function as in full QCD, where g2(λ) will now be a series in g2(Q[1 00′ 2]).

4.4 Nested subtractions for triple real contribution

We now turn to the fully real contribution to K(3), which is given by the IR divergent

part of triple-real emission, minus the subdivergences associated with iterations of K(1)

and K(2). The basic idea is to write the subtractions as phase space integrals with step

functions, exploiting (3.9) and its higher-multiplicity generalizations. In this way all energy

sub-divergences (with fixed angles, as appropriate since the angles are fixed by the color

rotations U) will cancel under the integration sign. To write the result concisely, we

recursively define subtracted integrands F sub, generalizing eq. (3.10). Introducing the

abbreviations

[X][Y ] ≡ F sub
[X] F

sub
[Y ] θ(Q

2
[X]<Q

2
[Y ]), [X][Y ][Z] ≡ F sub

[X] F
sub
[Y ] F

sub
[Z] θ(Q

2
[X]<Q

2
[Y ]<Q

2
[Z]),

these are defined as:

F sub
[1 0 2] ≡ F[1 0 2] = 1, (4.21a)

F sub
[1 00′ 2] ≡ F[1 00′ 2] − [1 0 0′][1 0′ 2]− [0 0′ 2][1 0 2], (4.21b)

F sub
[1 00′0′′ 2] ≡ F[1 00′0′′ 2] − [1 0 0′][1 0′0′′ 2]− [0 0′ 0′′][1 00′′ 2]− [0′ 0′′ 2][1 00′ 2]

−[1 00′ 0′′][1 0′′ 2]− [0 0′0′′ 2][1 0 2]

−[1 0 0′][1 0′ 0′′][1 0′′ 2]− [0′ 0′′ 2][0 0′ 2][1 0 2]− [0 0′ 0′′][1 0 0′′][1 0′′ 2]

−[0 0′ 0′′][0 0′′ 2][1 0 2]− [1 0 0′][0′ 0′′ 2][1 0′ 2]− [0′ 0′′ 2][1 0 0′][1 0′ 2]. (4.21c)

The structure is straightforward: there is one subtraction for each possible subprocess

(consistent with the planar structure), and the unsubtracted F ’s are given in eq. (2.5)

and (4.4). Intuitively, the F sub’s are a device to compute the logarithm of F : the preceding

equations can be generated (and generalized to all orders) by formally solving the equation

Pe
∫
F sub

=
∫
F , order by order in the number of emitted partons.

As shown in section 3, what is relevant for the evolution is the integral over relative

energies:

K
(3)
[1 00′0′′ 2] ≡

∫ ∞
0

dτ

τ

dτ ′

τ ′
4F sub

[1 (τβ0)(τ ′β0′ )β0′′ 2]. (4.22)

Thanks to the pattern of subtractions, and to the factorization of soft currents (see eqs. (2.6)

and (4.3)), F sub
[1 00′0′′ 2] vanishes in all soft limits and its energy integral at fixed angles is

absolutely convergent at all orders in ε. One might worry that the step functions make

it tricky to integrate in practice, but in fact they always multiply trivial measures like

dτ/τ . Furthermore, the explicit expression (4.4) naturally splits into several individually
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convergent pieces. For example, the piece F safe doesn’t contain any step function and

converges by itself. The pieces from the “1” in F[1 0 2], F[1 00′ 2] and F[1 00′0′′ 2] contain

multiple step functions, but all share the trivial measure dτ/τ dτ ′/τ ′ and so immediately

integrate to logarithms. Finally, the five nontrivial subtractions in (4.4) naturally combine

with the remaining terms in (4.21c), to produce five individually convergent integrals.

So our problem is reduced to computing finite energy integrals; these produce func-

tions of transcendental weight 2. A good, systematic way to compute such integrals is

the differential equation method described B.3 The most difficult integrals are contained

within F safe. One of them, in particular, coming from the first line below eq. (4.5), cannot

be written simply in terms of the angular distances αij , but requires associated spinors

(βαβ̇i ≡ λαi λ̃β̇):

f1 ≡
∫ ∞

0

dτ

τ

dτ ′

τ ′
4e1(τβ0, τ

′β0′ , β0′′) (4.23)

= 2Re

{[
1 +

α0′0′′〈0 2〉[2 1]

α0′′2〈0 0′〉[0′1]−α0′2〈0 0′′〉[0′′1]

] [
Li2

(
1−α10′α0′′2

α10′′α0′2

)
−Li2

(
1−α00′′α0′2

α00′α0′′2

)
+Li2

(
− [1 0][0′ 0′′]

[1 0′′][0 0′]

)
− Li2

(
−〈1 0〉〈0′ 0′′〉
〈1 0′′〉〈0 0′〉

)
+ log

α10α0′0′′

α10′′α00′
log

α0′′2〈0 0′〉[0′1]

α0′2〈0 0′′〉|[0′′1]

]}
.

Here we have used a commonly used notation for the Lorentz-invariant spinor products:

〈i j〉 = εαβλ
α
i λ

β
j and [i j] = εα̇β̇λ̃

α̇
i λ̃

β̇
j with ε antisymmetric. (Under the stereographic

projection (1.2), these map respectively to: 〈i j〉 = (zi − zj) and [i j] = (z̄i − z̄j).) The

other integrals are more elementary and produce at most dilogarithms of cross-ratios of α’s.

To give the final result we define the five cross-ratios:

u1 ≡
α12α00′

α10′α02
, u2 ≡

α12α0′0′′

α10′′α0′2
, u3 ≡

α12α00′′

α10′′α02
, v1 ≡

α10α0′2

α10′α02
, v2 ≡

α10′α0′′2

α10′′α0′2
.

Then the triple-real integral gives

K
(3)
[1 00′0′′ 2] =

(
1− u3

1− v1v2

) 2Li2

(
1− 1

v1v2

)
− 2Li2

(
1− 1

v1

)
− 2Li2

(
1− 1

v2

)
+ log v1 log v2 + log(v1v2)

(
log(u1u2)− 3

2 log u3

)


+ (u1u2 − u1v2 − u2v1 + v1 + v2 − u1 − u2 + u3)

[
Li2

(
1− 1

v1v2

)
− ζ2

]
+3 log u1 log u2 − 3

2 log2 u3 + (1 + P )(f + f1), (4.24)

where f1 is the special function in eq. (4.23), P exchanges labels (1, 0) and (2, 0′′) and acts

3For energy integrations the method is considerably simpler than for the transverse integrals illustrated

in appendix, because partial fractions and integration-by-parts in one variable are more elementary and the

final contributions are given from boundary terms instead of contact terms.
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on cross-ratios as (u1, v1)↔(u2, v2), and:

f =

(
1− u1

1− v1

)[
2Li2

(
1− 1

v1

)
+ log v1

(
log

u2

v2
− 1

2
log u1

)
+
(
1 + v2 − u2

){
Li2

(
1− 1

v2

)
− Li2

(
1− 1

v1v2

)}]
+

(
1− u1

u3 − v1u2

)[
log

v1u2

u3

(
log

u2

v2
− 3

2
log

u1

u3

)
− 2Li2

(
1− v1u2

u3

)]
. (4.25)

4.5 Nested subtractions for renormalization counter-terms

The final ingredient is the “add” part from the “add and subtract” game that led to

the renormalized amplitude (4.18). These also have three angular integrations but one

fewer color dipole U . In addition there are similar pieces inherited from lower loops, for

example from the term with just U10′U0′2 in the two-loop evolution. It is useful to devise

a notation for such terms, like G{1 00′ 2}, wherein the underlined index represents the angle

from which a Wilson line is omitted and the curly bracket highlights the presence of a virtual

parton. This is why we’ve split the virtual correction into two terms (G{1 v0 2}+G{1 0v 2}) in

eq. (3.18), because these two end up with different color structures and so get exponentiated

at different scales: Q[1 v0 2] 6= Q[1 0v 2].

Similarly, to exponentiate the three-loop kernel (as would be needed for a putative

four-loop calculation), we would need to specify where v fits within the color structures of

Γv[1 00′ 2], which determines the relevant scale Q. Thus although not strictly necessary here,

it is useful to account for that information because it helps show the internal logic. Thus

we organize the “add” terms into three color structures:

K(3)U12

∣∣3 angles
=

∫
β0,β0′ ,β0′′



K
(3)
[1 00′0′′ 2]

α12
α10α00′α0′0′′α0′′2

(−2U10U00′U0′0′′U0′′2)

+K
(3)add
{1 00′0′′ 2}

α12
α10′α0′0′′α0′′2

(−2U10′U0′0′′U0′′2)

+K
(3)add
{1 00′0′′ 2}

α12
α10α00′′α0′′2

(−2U10U00′′U0′′2)

+K
(3)add
{1 00′0′′ 2}

α12
α10α00′α0′2

(−2U10U00′U0′2)


. (4.26)

Here we only show the terms in K(3) with three angular integrations, two has been dealt

with in subsection 4.3 and one will be dealt with shortly. The underlined index shows the

variable whose Wilson line and radiator factor are omitted. The angular functions are the

integrals over relative energies of corresponding Gsub’s,

K
(3)add
{1 00′0′′ 2} =

∫ ∞
0

dτ

τ

dτ ′

τ ′
Gsub
{1 (τβ0)(τ ′β0′ )β0′′ 2}

, etc. (4.27)

The Gsub’s contain two ingredients. First, there is the difference between the renormalized

F ren,sub in eq. (4.18) and the corresponding bare expression:

Gv[1 00′ 2] ≡ Γv[1 00′ 2]F
sub
[1 00′ 2] + (Γv[1 0 0′] + Γv[1 0′ 2])θ(Q[1 0 0′]<Q[1 0′ 2])

+ (Γv[0 0′ 2] + Γv[1 0 2])θ(Q[0 0′ 2]<Q[1 0 2]).
(4.28)

– 21 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
8

Second, there is the subtraction of everything inherited from virtual corrections at lower

loops: from the U12 term at one-loop (3.3), and from the (U10U02 + U10′U0′2) part of two-

loop (3.13). To allow their subsequent exponentiation, the result is to decomposed into 3

color structures:

Gsub
{1 v00′ 2} +Gsub

{1 0v0′ 2} +Gsub
{1 00′v 2} ≡ G

v
[1 00′ 2] − lower subtractions . (4.29)

A simple systematic color decomposition for the subtractions can be done as follows. When-

ever, in a subprocess, both indices adjacent to v are the same as in the considered Gsub, we

weight this contribution by 1; when only one index is shared, we weight by 1
2 , and when

none is shared, we weight by 0. For example, consider the following term coming from the

real part of K(1) times the virtual part of K(2):

F sub
[1 0 0′]G

sub
{1 v0′ 2}θ(Q[1 0 0′]<Q[1 v0′ 2]). (4.30)

We place half of this term into Gsub
{1 v00′ 2} and half into Gsub

{1 0v0′ 2}, because v occurs between

1 and 0′. Using these rules to generate the subtractions recursively, using the same notation

as in eq. (4.21c) (writing {a b . . . c} ≡ Gsub
{a b... d} and inserting a step function between each

bracket, either curly or square), then gives

Gsub
{1 v 2} ≡ G{1 v 2} = − s12

s1vsv2
(4.31a)

Gsub
{1 v0 2} ≡ Γ{1 v0 2}[1 0 2]−

(
{1 v 0} − 1

2{1 v 2}
)

[1 0 2], (4.31b)

Gsub
{1 0v 2} ≡ Γ{1 0v 2}[1 0 2]−

(
{0 v 2} − 1

2{1 v 2}
)

[1 0 2], (4.31c)

Gsub
{1 v00′ 2} ≡ Γ{1 v00′ 2}[1 00′ 2] +

(
Γ{1 v0 0′} + 1

2Γ{1 v0′ 2}

)
[1 0 0′][1 0′ 2] + Γ{1 v0 2}[0 0′ 2][1 0 2]

−1
2 [1 0 0′]{1 v0′ 2} − {1 v0 0′}[1 0′ 2]− [0 0′ 2]{1 v0 2}

−
(
{1 v 0} − 1

2{1 v 2}
)(

[1 00′ 2] + [1 0 0′][1 0′ 2] + [0 0′ 2][1 0 2]
)

(4.31d)

−[1 0 0′]
(

1
2{1 v 0′} − 1

2{1 v 2}
)

[1 0′ 2]− [0 0′ 2]
(
{1 v 0} − 1

2{1 v 2}
)

[1 0 2] ,

Gsub
{1 0v0′ 2} ≡ Γ{1 0v0′ 2}[1 00′ 2]

+
(

Γ{1 0v 0′} + 1
2Γ{1 v0′ 2}

)
[1 0 0′][1 0′ 2] +

(
Γ{0 v0′ 2} + 1

2Γ{1 0v 2}

)
[0 0′ 2][1 0 2]

−1
2 [1 0 0′]{1 v0′ 2} − {1 0v 0′}[1 0′ 2]− 1

2 [0 0′ 2]{1 0v 2} − {0 v0′ 2}[1 0 2]

−{0 v 0′}
(
[1 00′ 2] + [1 0 0′][1 0′ 2] + [0 0′ 2][1 0 2]

)
−[1 0 0′]1

2{1 v 0′}[1 0′ 2]− [0 0′ 2]1
2{0 v 2}[1 0 2] , (4.31e)

Gsub
{1 00′v 2} ≡ PGsub

{2 v0′0 1}, (4.31f)

where P is the parity (10)↔(0′2). This looks messy, but the upshot is that the inter-

nal logic is straightforward and the terms can be automatically generated to any desired

order. (Formally, the terms can be generated by series-expanding the schematic formula
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Pe
∫

(F sub+Gsub) =
∫

(F +G)e
∫
K|U12 .4) This generalizes the subtractions used at two loops:

the energy integral of Gsub
{1 v0 2} matches the U10′U0′2 term in eq. (3.13). Although we haven’t

defined the individual Γ{1 v00′ 2} (only their sum Γv[1 00′ 2]) we expect that a definition exists

which will make the energy integrals converge absolutely for each of the color structure

Gsub
{1 v00′ 2}, as this is certainly the case for the sum which is all we need here at three loops.

Furthermore, by construction, the collinear singularities of K(3)add cancel exactly those of

K(3), to all orders in ε, so it is apparent that O(ε) corrections to any kernel are not needed.

Thus we only need to compute the finite integral (4.26) with ε = 0. The integrated

result turns out to be somewhat inelegant, so we decided to replace it by a simpler counter-

term with the same collinear singularity. From inspection of the triple-real result (4.24),

we find divergences as 0‖0′ or 0′‖0′′, and also in the double scaling limit 0‖0′‖0′′, but not

when one or two partons become collinear to 1 or 2. A simple counter-term which removes

the divergence as 0′‖0′′ is:

K
(3)c.t.
[1 00′0′′ 2] =

[(
1 +

α12α00′

α10α0′2 − α10′α02

)
log

α10α0′2

α10′α02
+

3

2
log

α12α00′

α10′α02

]
log

α12α02α
2
0′0′′

α10′′α00′′α
2
0′2

.

(4.32)

To construct an integral that is also absolutely convergent in double collinear limits, we

can easily play with the color structures, exploiting that Uij → 1 when i‖j. Arranging

for each color factor to separately fulfill the KLN theorem (vanishing when Uij = 1), the

full three-loop evolution is then written as (4.34c) below, where the difference compared

to subsection 4.3 is simply:

K
(3)
[1 00′ 2] −K

(3)ren
[1 00′ 2] =

∫
βv

[
(1 + P )

α0′2

α0′vαv2
K

(3)c.t.
[1 00′v 2] +K

(3)add
{1 v00′ 2} +K

(3)add
{1 0v0′ 2} +K

(3)add
{1 00′v 2}

]
with P the symmetry (10)↔(20′). This is again an absolutely convergent integral which

can be done at ε = 0, using the methods of appendix B. We find a surprisingly compact

result:

−
(

1 +
α12α00′

α10α0′2 − α10′α02

)[
log2

(
α12α00′

α10′α02

)
+ 4ζ2

]
log

(
α10α0′2

α10′α02

)
− 11

6
log3

(
α12α00′

α10′α02

)
.

(4.33)

Its simplicity (compared with eqs. (4.31)) suggests that an even simpler organization of the

subtractions could exist. Adding this result to the energy integral of the one-loop remainder

function (4.20), (A.1), (A.2), computing using the same method explained above, we thus

obtain the part of the evolution with two angular integrals.

4.6 Final result: the three-loop BK equation in planar N = 4 SYM

In summary, we have computed the three-loop correction to the Balitsky-Kovchegov ra-

pidity evolution equation (or equivalently Banfi-Marchesini-Smye equation for non-global

logarithms) in planar N = 4 SYM, in terms of absolutely convergent integrals over squared

4The fully virtual correction e
∫
K|U12 to the parent dipole U12 appears on the right-hand side since the

soft currents F are defined to act on the bare amplitude; this is also the reason why {1 v 2} appears with

opposite sign wherever it does.
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amplitudes (or BDS remainder). The subtraction of subdivergences has been organized

around the physical principle of factorization (see eqs. (4.18), (4.21), (4.31)), in such a way

that all cancellations are manifest at the integrand level and valid to all orders in ε. This

allowed us to set ε = 0 directly in all integrals and be completely certain that we did not

miss any ε/ε effect.

We have used the squared amplitude for triple-real emission and also the one-loop

correction to double-real emission (related to the one-loop six-point remainder function).

In addition K receives contribution from single-real emission at two-loops, and fully vir-

tual corrections. However, it is not necessary to explicitly compute them. As mentioned

already, fully virtual corrections follow simply from the KLN theorem. And by Lorentz

symmetry (kept manifest at all stages of our calculation) the single-real emissions can

only produce a constant γ
(3)
K time one-loop. As argued (and tested) in the next sec-

tion, provided that the U12 color structure appears nowhere else in our expression, what

multiplies one-loop must be the cusp anomalous dimension (known to all loops [48]):

γK ≡ 1
4Γcusp =

g2
YMNc
16π2

(
1− π2

3
g2
YMNc
16π2 + 11π4

45

(
g2
YMNc
16π2

)2
+ . . .

)
.

Thus our final result for the three-loop BK equation, recalling the lower loop results, is:

K(1)U12 =

∫
β0

α12

α10α02

(
2U12 − 2U10U02

)
, (4.34a)

K(2)U12 = −π
2

3
K(1)U12 +

∫
β0,β0′

α12

α10α00′α0′2
K

(2)
[1 00′ 2]

(
U10U02 + U10′U0′2 − 2U10U00′U0′2

)
,

(4.34b)

K(3)U12 =
11π4

45
K(1)U12 +

∫
β0,β0′

α12

α10α00′α0′2
K

(3)
[1 00′ 2]

(
U10U02 + U10′U0′2 − 2U10U00′U0′2

)
+

∫
β0,β0′ ,β0′′

α12

α10α00′α0′0′′α0′′2

[
K

(3)
[1 00′0′′ 2]

(
2U10′U0′2 − 2U10U00′U0′0′′U0′′2

)
−(1 + P )

(
K

(3)c.t.
[1 00′0′′ 2]

(
2U10′U0′2 − 2U10U00′U0′2

))]
, (4.34c)

where P is the parity (10)↔(20′′), αij ≡ |zi−zj |2 are transverse distances and
∫
β0
≡
∫
d2z0
π .

(Equivalently, for the non-global-logarithmic problem, the stereographic projection (1.2)

gives αij ≡ 1−cos θij
2 and

∫
β0
≡
∫
d2Ω0
4π ).

The two-loop transverse function K
(2)
[1 00′ 2] was given in eq. (3.12), and the triple-real

function K
(3)
[1 00′0′′ 2] and counter-term K

(3)c.t.
[1 00′0′′ 2] are in eqs. (4.24) and (4.32). Finally,

defining cross-ratios u and v and associated complex numbers x, x̄,

u ≡ xx̄ =
α12α00′

α10′α02
, v ≡ (1− x)(1− x̄) =

α10α0′2

α10′α02
, (4.35)

the effective single-virtual kernel (the sum of eqs. (4.17) and (4.33)) is given as

K
(3)
[1 00′ 2] =

(
1− u

1− v

)
log v

[
log u log

v

u
− 1

3
log2 v − 4ζ2

]
+ 2(1 + v − u)

(
ζ2 log

u

v
− 2ζ3

)
+

(
2u

1− v
+ v − u− 1

)[
4Li3

(
1− 1

v

)
+ 2Li2

(
1− 1

v

)
log

v

u

]
− 5

6
log3 u

+4
(
Li3(x) + Li3(x̄)− 2ζ3

)
− 2
(
Li2(x) + Li2(x̄) + 2ζ2

)
log u . (4.36)
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For convenience, these formulas are reproduced in computer-readable format in the ancil-

lary text file formulas.txt, attached to the arXiv submission of this paper.

We note that eq. (4.36) is a single-valued combination of polylogarithms. That is, it

does not have any branch cut for physical angles (where x and x̄ are complex conjugate

of each other: x̄ = x∗, as is easily verified). This has to be the case since the kernel

represents a physical probability for radiation and there can’t be multiple answers for a

given set of angles. Concretely, although this is not manifest, one can verify that the series

expansion of the last line around x = x̄ = 1 contains only single-valued logarithms of the

type log(1− x)(1− x̄), but log(1− x) never appears separately from log(1 − x̄).

5 Linearized evolution and BFKL Pomeron trajectory

In many applications to the high-energy limit, especially those involving dilute targets

and projectiles, the Wilson lines remain close to unity and the physics is governed by a

linearized version of eqs. (4.34). Then we set

Uij = 1− Uij (5.1)

and treat Uij as a small quantity. Generically, in the ‘t Hooft large Nc limit, Uij ∼ 1/N2
c

when scattering objects made of a fixed number of partons, or for example a four-point

correlator of single-trace operators. The resulting linear equation is referred to as the

BFKL equation and its eigenvalue j = 1 − K is the Pomeron Regge trajectory. With

this application in mind, in this section we will use the language of transverse plane and

conformal symmetry, instead of the stereographically equivalent language of angles and

Lorentz symmetry.

Linearizing the color structures in the three loop result (4.34c) produces many terms,

but these turn out to organize simply into the combination which appears already at

two loops:

U10U02 + U10′U0′2 − 2U10U00′U0′2 7→ U10′ + U02 − U10 − U0′2 − 2U00′ . (5.2)

This is due to an exact symmetry: the large Nc theory is invariant under the local gauge

transformations Uij → Uije
αi−αj , representing independent U(1) gauge transformations in

the past and future. (Beyond the planar limit, only the global SU(Nc)past×SU(Nc)future

survives as a symmetry of the Balitsky-JIMWLK equation.) The combination (5.2) is the

only one invariant under the linear transformation Uij 7→ Uij + αi − αj , which does not

contain U12 and is invariant under the parity (10)↔(20′). That parity is automatic for

any conformally-invariant function of four transverse points 1, 0, 0′, 2, and so not really an

assumption.

The first four terms on the right of eq. (5.2) naively integrate to zero,∫
d2z0d

2z0′(U10 − U10′)
α12K[1 00′ 2]

α10α00′α0′2

naively
=

∫
d2z0

α12 U10

α10α02

∫
d2z0′

[
α02K[1 00′ 2]

α00′α0′2
− (1↔2)

]
= 0, (5.3)
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because by conformal symmetry the z0′ integral can only produce a constant and thus

cannot be antisymmetric in 1 and 2. In the first equality we have used the just-mentioned

parity symmetry to trade (0↔0′) for (1↔2). A subtlety however is that in this rewriting

the middle integral fails to be absolutely convergent in the double scaling limit z0, z0′ → z2,

even though the left-hand side is. Due to this, the conformal symmetry argument breaks

down for z0 = z2, enabling a contact term δ2(z0−z2) to appear. (See appendix E of ref. [32]

for explicit examples.)

Taking into account the possibility of such contact terms by adding a constant C(L),

the linearization at L-loops takes the general form

K(L)U12 =
(
γ

(L)
K K(1) + 2C(L)

)
U12 +

∫
d2z0d

2z0′

π2

(−2)α12 U00′

α10α00′α0′2
K

(L)lin
[1 00′ 2] , (5.4)

where at two loops K
(2)lin
[1 00′ 2] = K

(2)
[1 00′ 2] and at three loops

K
(3)lin
[1 00′ 2] = K

(3)
[1 00′ 2] + 2

∫
d2zv
π

α0′2

α0′vαv2

(
K

(3)
[1 00′v 2] −K

(3)c.t.
[1 00′v 2]

)
. (5.5)

This integral, like others in this paper, is absolutely convergent. The factor of two accounts

for the contribution with 0 and 0′′ interchanged, which produces the same result due to

the parity symmetry. We computed this integral using the differential equation method ex-

plained in appendix B. The resulting function of the cross-ratios x, x̄ (defined in eq. (4.35))

has 5 letters in its symbol: x, x̄, 1− x, 1− x̄, 1− v, where v = (1− x)(1− x̄). At transcen-

dental weight 3 there exists rather few such functions that are real and single-valued in

the physical region x̄ = x∗, in the sense explained below (4.36). We have found only three

nontrivial ones O1,2,3. Since there is limited information content in these functions them-

selves, we record them in appendix in eq. (B.10) and here record the concise coordinate

space expression for the BFKL kernel (u = xx̄, v = (1− x)(1− x̄)):

K
(3)lin
[1 00′ 2] = 2

(
1− u

1− v

)[
6O1 + 3O2 + 6Li3(1− v)− 2Li3(1− v−1)− log(u2v)Li2(1− v)

+1
2 log3 v − log u log2 v − 3

2 log2 u log v + 3ζ2 log v + 24ζ3

]
+(1+v−u)

[
−3O1− 3O2+ 6Li3(1−v−1)− 2Li3(1−v)− log(u2v−1)Li2(1−v−1)

−5
6 log3 v + 3

2 log u log2 v + 8ζ2 log u− 9ζ2 log v − 30ζ3

]
−3(x− x̄)O3 − 4

3 log3 u+ 8O1 . (5.6)

Now the linear equation (5.4) can be diagonalized explicitly because its eigenfunctions

are determined by conformal symmetry [49]. The eigenvalue depends on two quantum

numbers: a scaling dimension ν and an (integer) angular momentum m. It can be extracted

by looking at the translation invariant wavefunctions5

Uij ≡ U(zi − zj) = |zi − zj |1+iν [(zi − zj)/(z̄i − z̄j)]m/2. (5.7)

5In conventional Regge theory, trajectories j(t) are functions of the transverse momentum squared. In

a conformal theory there is a continuum of such trajectories for each value of t, but this continuum is

generated by a symmetry and with fixed p and ν the spectrum becomes discrete, see for example [18].
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Figure 4. The linear kernel K(3)lin in coordinate space in the physical region x̄ = x∗.

A special eigenfunction is U(zi − zj) = zi − zj , corresponding to m = 1 and ν = 0, which

is a generator of the aforementioned U(1) gauge symmetry at large Nc. The eigenvalue of

K = 1−j must thus vanish in this case, which leads to an exact prediction for the intercept

of the Odderon trajectory at large Nc [19, 50]:

j(m=1, ν=0) = 1. (5.8)

Since this property was manifest in the original starting point, i.e. eq. (5.2) before eq. (5.3)

was used, in practice we will use this property to fix the constant C(L). Translation-

invariance of the trial wavefunctions enables one transverse integral to be done explicitly.

This simplifies the evolution (5.4) to:

K(L)U(x) =
(
γ

(L)
K K(1) + 2C(L)

)
U(x)−

∫
d2y

|y|2
H(L)(y)U(xy) , (5.9)

where, labelling four points as {z1, z0, z0′ , z2} = {1, z, z − y, 0}, the translation-invariant

kernel is

H(L)(y) =

∫ d2z 2K
(L)lin
[1 z (z−y) 0]

π|1− z|2|y − z|2
. (5.10)

Plugging in the wavefunction (5.7), we see that the Pomeron trajectory is the Mellin

transform of H(L)(y).

The parity symmetry of K(L)lin makes |y|H(L)(y) invariant under the inversion y →
1/y. The eigenvalue can thus be written as the sum of two terms, analytic in the lower- and

upper-half ν-planes respectively, representing the contributions from |y| < 1 and |y| > 1.

Following a common notation in the literature, we thus write the Regge trajectory j =

1−K as:

j(m, ν) = 1 +

∞∑
L=1

(
g2

YMNc

16π2

)L (
F (L)
m,ν + F

(L)
m,−ν

)
(5.11)
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where, for L > 1,

F (L)
m,ν = γ

(L)
K F (1)

m,ν − C(L) +

∫
|y|<1

d2y

|y|2
|y|1+iν(y/ȳ)m/2H(L)(y) . (5.12)

In summary, the Pomeron trajectory j(m, ν), defined conceptually as the eigenvalue of

the evolution (5.4) on the eigenfunctions (5.7), is obtained at three loops by computing

the Mellin transform (5.12) of the translation invariant projection (5.10) of the coordinate

space kernel (5.6).

5.1 Result for the eigenvalue

To efficiently integrate (5.10) we used the differential equation method, wherein derivatives

are iteratively computed and simplified using integration-by-parts identities. This method

has a long and successful history in the context of dimensionally regulated Feynman in-

tegrals [51, 52]. We used a variant that exploits simplifications occuring for absolutely

convergent integrals, based on ideas in refs. [53, 54]. Our procedure is illustrated in ap-

pendix B in a few examples. The result is an expression for H(3)(y) in terms of iterated

integrals starting from the origin y = 0.

In principle these iterated integrals could be rewritten in terms of polylogarithms, but

we found this neither illuminating nor useful in practice. Rather, to extract the eigenvalue,

we found it more efficient to perform the angular integration directly at the level of the

iterated integral, using again the differential equation method to obtain the result as a

iterated integral in the radial variable x = |y|2. The radial functions then turned out

to be conventional harmonic polylogarithms. At one- and two-loop this procedure gives

expressions that are very uniform for all transverse angular momentum m (m ≥ 0):

F (1)
m,ν = 4

∫ 1

0

dx

x
x

1+|m|+iν
2

1

(1− x)+
= 4

[
ψ(1)− ψ

(
1 +m+ iν

2

)]
, (5.13)

F (2)
m,ν =

−π2

3
F (1)
m,ν+12ζ3 + 8

∫ 1

0

dx

x
x

1+m+iν
2

[
H0,0

x−1
+

(1+x−m)H2 + (1−(−x)−m)H−1,0

x+ 1

]
reg.

Here the ‘reg.’ notation is an instruction to subtract all the negative powers of x (and

powers of log(x) they multiply) from the series expansion of the bracket around x = 0.

The harmonic polylogarithms (with omitted argument x) are defined recursively as [55, 56]6

H±i,a2...,an(x) =

∫ x

0

dx′

1∓ x
logi−1(x/x′)

(i− 1)!
Ha2...,an(x

′), H0,...,0(x) =
logk x

k!
. (5.14)

The concise expression (5.13) for the two-loop eigenvalue is apparently new, but we have

verified that it agrees, for all values of |m|, with the known result in N = 4 SYM [10, 11, 57].

Equations (5.13) takes the form of a Mellin transform over harmonic polylogarithms,

which is well-known to give harmonic sums (see appendix C), which in the case of eq. (5.13)

would have argument 1+|m|+iν
2 and 1−|m|+iν

2 . However, it is important to note the “reg”

6Using classical functions: H2(x) = Li2(x), H−1,0(x) = Li2(−x) + log(x) log(1 + x) and H0,0(x) =
1
2

log2(x).
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subscript in that equation, which implies that a number of powers of x terms, which grows

with |m|, have to be subtracted. It would be interesting to see if the result can be usefully

written as some kind of “regulated” harmonic sum.

At three-loops, although the “reg.” notation seems to help, we did not succeed in

finding a compact formula accounting for the full m dependence, and so here we restrict

our attention to individual values of m, for example

F
(3)
0,ν =

11π4

45
F

(1)
0,ν − 16(ζ2ζ3 + 5ζ5) + 32

∫ 1

0

dx

x
x

1+iν
2

[
H0,0,0,0

1− x
+

f
(3)
0

1 + x

]
, (5.15)

f
(3)
0 =−2H4−2H−3,0−4H−1,3 +H3,0+4H3,1 + 2H−2,−1,0−H−2,0,0+2H−1,−2,0 − 2H−1,2,0

−8H−1,2,1 − 2H2,0,0 + ζ2(H−2 +H−1,0 − 2H2 − 2H0,0) + 3ζ3(3
2H0 −H−1)− 10ζ4.

The Mellin integral in eq. (5.15) gives a practical and efficient way to compute the

eigenvalue numerically for any desired value of ν. The result of the integral can also be

formally expressed in terms of harmonic sums (see eq. (C.3)), although evaluating these

sums for complex ν then requires an analytic continuation. In appendix C we also provide

harmonic sums expressions for m = 1.

Interestingly, the same constant C(3) = 16(ζ2ζ3 + 5ζ5), fixed here analytically from

the condition (5.8), also appears in the large-spin limit of twist-two anomalous dimensions

(∆ − 2 − j → 8γK(log(j) + γE) − C), and in the large-ν limit of the color-adjoint BFKL

kernel [58].

A Mathematica notebook trajectories 3loop.nb attached to the arXiv submission

article allows to evaluate the eigenvalues for any m and ν. (The command j3Eval[m,nu]

evaluates numerically to high accuracy the 3-loop correction to j(m, nu), by numerically

integrating the series-expansion around 0 and 1 of the radial functions; the command

F3integrandHPL[m] produces symbolic expressions for the radial function and transverse

spin m in terms of harmonic polylogarithms.)

For even m = 2, 4, 6 . . ., something new happens: the integrand requires a generaliza-

tion of harmonic polylogarithms involving iterations of
∫

d
dx′ log 1−i

√
x′

1+i
√
x′

. This is related to

the square-root containing entries of the symbol of H(y) recorded at the end of appendix B.

While still straightforward to evaluate the Mellin transform numerically, the result cannot

be written in terms of conventional harmonic sums and it is an interesting open problem

to characterize this new class of sums.

Finally, we have compared our result for m = 0 with the recent works [15, 16], which

exploited, respectively, integrability of the theory and high-loop data in the collinear limit.

After converting to our basis, we found perfect agreement with both references (showing

in particular that they agree with each other). The coordinate space kernel (5.6), its

corresponding eigenvalue for m > 0, and the nonlinear terms in eq. (4.34c), are new

predictions.

5.2 Collinear singularities and resummation

The eigenvalue is plotted for m = 0 and m = 1 in figures 5–7. It is apparent that, especially

near the peak for m = 0, the perturbative series suffers from slow convergence. This was
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Figure 5. The BFKL eigenvalue for m = 0 along the real ν axis at various orders for λ = g2YMNc =

6. Convergence near the maximum is visibly slower than away from it. The “resummation of

leading-order” is defined below eq. (5.16).

observed already at two loops and explained in terms of nearby singularities in the complex

plane at iν = ±1 [12].

In short, these singularities are related to the collinear limit of BFKL, where the scaling

dimension ∆ = 2+iν = 3 of the exchanged state coincides with that of twist-two operators:

∆ = 2 + j + γ(j) with j close to 1, e.g. the operators entering the DGLAP equation. As is

common for two-level quantum systems, this crossing of two energy levels [18] gets resolved

as depicted in figure 6:

j ≈ 1 +
∆− 3±

√
(∆− 3)2 + 32g2

2
, ∆ = 2 + iν. (5.16)

At small g2 ≡ g2
YMNc
16π2 , one branch choice gives the near-horizontal BFKL trajectory while

the other gives the 45◦ twist-two (DGLAP) trajectory. (The square root formula follows

easily by solving ∆(j) ≈ j + 2 + 8g2

j−1 for the j, within the overlapping regime of validity

of BFKL and DGLAP g2 � |j − 1| � 1 where the anomalous dimension γ(j) can be

approximated by its leading pole.) It was shown that, expanding the square root to order

g4, reduces by half the magnitude of the two-loop corrections to the intercept j(0, 0) (if one

also includes the complex conjugate singularity at iν = −1) [12]. The “LO resummation”

curve in figure 5, called “scheme 2” in ref. [12], thus shows the LO trajectory plus eq. (5.16)

minus its O(g2) expansion. (It would be useful to develop a NLO resummation and we

leave it as an open problem for the future.)

The formula (5.16), expanded to three loops, turns out to not predict very well the

three-loop correction to the intercept j(0, 0) ≈ 1 + 11.09g2 − 84.08g4 − 2543.05g6 +O(g8).

In fact it gets even the sign wrong. By looking at the singular terms in F close to the pole

we can try to understand why:

F0,ν
iν→1−−−→ 8g2

δ
− 64g4

δ3
+ g6

(
1024

δ5
− 512ζ2

δ3
− 576ζ3

δ2
− 464ζ4

δ

)
+ regular +O(g8), (5.17)
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Eq.(5.16)
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Figure 6. Level repulsion between the Pomeron and DGLAP trajectories for m = 0 as a function

of scaling dimension, illustrating the ν = ±i singularities. (LO expressions plotted with λ = g2YMNc

= 1.)
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Figure 7. The BFKL eigenvalue for m = 1 along the real ν axis at various orders for λ = g2YMNc

= 6.

where δ = 1 − iν. Comparing with eq. (5.16), we find that the leading pole 1024g6/δ5 is

exactly as predicted (as it had to). Setting δ = 1, the subleading poles however also give a

numerically large contribution to the intercept 2F , so truncating to the leading pole does

not give a good approximation to the intercept. However, summing up all the singular

terms in eq. (5.17), one finds that about 80% of the three-loop correction to the intercept

is reproduced. A heuristic explanation is that the contributions from the next singularities,

at iν = ±3, are suppressed by their distance.

Interestingly, all polar terms at L-loops can be obtained from the L-loop DGLAP

equation. (See for example [59, 60].) From the higher-loop DGLAP equation one can get
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nonsingular terms in the expansion (5.17), see for example eq. (21) of [16]. We have verified

that our result (5.15)–(C.3) agrees with all these constraints.7

We conclude that the physical picture of [12], that large corrections to the intercept

originate from the iν = ±1 collinear singularities, is consistent with the three-loop trajec-

tory we obtained, although the full polar part, predicted by DGLAP (as opposed to just

the leading pole), must be retained. In general it would be very interesting to find a way

to make full use of the DGLAP information at a given loop order

Finally, we comment on the Mellin transform of the level-crossing formula (5.16) back

to coordinate space. The transform produces a Bessel function:∫ +∞

−∞

dν

2π
|z|iν−1

√
(iν − 1)2 + 32g2 = 32g2J1(4g

√
2 log |z|)

4g
√

2 log |z|
. (5.18)

The right-hand side has appeared in coordinate space and momentum space resumma-

tions [13, 14], so it is nice to see how it arises form the familiar two-level crossing for-

mula (5.16).

6 Discussion and conclusion

In this paper we have computed, for the first time, the evolution equation which resums

large rapidity logarithms in forward scattering to three loops in a gauge theory. Our main

results are the full nonlinear equation (4.34) in planar supersymmetric Yang-Mills theory,

its linearization (5.6), characterizing the BFKL Pomeron in impact parameter space, as

well as its eigenvalue, the Pomeron Regge trajectory, described in appendix C. This result

is a first step toward the analogous QCD result, and by itself can already be used to assess

the convergence of perturbation theory and its proposed resummations, and shed light on

nonlinear saturation effects at finite coupling.

This computation was made possible thanks to a recently established correspondence

with the resummation of large so-called non-global logarithms, which occur when soft radia-

tion is excluded from a fixed angular region. This correspondence is helpful because it makes

available a body of knowledge on the factorization of infrared and collinear divergences,

and at a conceptual level it defines in a clear way the evolution equation to all loop orders.

This allowed us to derive a systematic subtraction method for nested subdivergences, em-

bodied in eq. (4.21), such that all energy integrals at fixed angle become convergent. We

then dealt with collinear subdivergences and real-virtual cancellations in a second step, by

multiplying and dividing by the corrections to the single soft current as in eq. (4.14).

Therefore, although we set up our calculation in dimensional regularization and some

divergent intermediate objects appeared, we find that in the end the evolution equation de-

pends only on the ε→ 0 limit of physical scheme-independent quantities like the the Bern-

Dixon-Smirnov remainder (4.16)! This opens a new possibility to relate an object with the

topology of the cylinder, the BFKL Pomeron, to the integrable system appearing in planar

scattering amplitudes [61]; graphically speaking, this cuts the cylinder into two half-pipes.

7Compared to eq. (21) of [16] (version 1), we have ω 7→ −ω, to match with the generally accepted

convention ω = j − 1 that we are following.
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As a highly nontrivial test, of both our calculation and of the integrability approach,

we have compared our extracted Pomeron trajectory (5.15) with the recent predictions for

m = 0 in [15, 16], and found perfect agreement! We have also found perfect agreement, in

the collinear limit, with the prediction from anomalous dimensions of twist-two operators.

The trajectory for other transverse angular momenta m, and nonlinear interactions, are new

predictions which it would be very interesting to check within the integrability approach.

It is important to clarify the 1/Nc counting in which our result is valid. The projectile

is assumed to be made of a finite ∼ N0
c number of Wilson lines, but whose expectation val-

ues across the target can be finite, 1
Nc

Tr[U1U
†
2 ] ∼ 1. This asymmetric setup, motivated for

example in proton-nucleus collisions, is the same as that for which the Balitsky-Kovchegov

equation is strictly derived. In the context of AdS/CFT this counting would apply to e.g.

a light probe of a black hole. This is also a well-defined setup and in fact it would be

interesting to work out the nonlinear terms in the Balitsky-Kovchegov equation at strong

coupling λ, including perhaps 1/
√
λ stringy effects. The linear terms, which govern corre-

lators of light operators with large but not-to-large energies (before the onset of saturation,

such that 1−U ∼ sj0−1/N2
c � 1) have already been identified with graviton exchange [18].

There are several directions in which this work could be extended. One is to go beyond

the planar limit at weak coupling, where the two-loop corrections have recently become

available [23, 62, 63]. Interesting new physical effects appear at three loops in the non-

planar sector, for example the 4→2 reggeon transition which “closes the Pomeron loop”

and restores the symmetry between the target and projectile would first be seen there

(see for example [19]). Through the KLN theorem, the three-loop evolution could also

independently predict from real corrections, and thus test, the recent result for three-loop

soft anomalous dimension [64]. Another direction is towards QCD: technically, our setup

gives direct access to the evolution equation for non-global logarithms, which in QCD will

differ from rapidity evolution by terms proportional to the β-function. These could thus be

calculated subsequently by calculating matter loops on both sides of the correspondence.
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A One-loop correction to the squared double soft current

Here we record the interference of the tree and one-loop double soft current, defined in

eq. (4.8), obtained from the soft limit of the six point amplitude as explained in the text.

2F
(1)bare
[1 00′ 2] =

(
s10s02 − s10′s0′2

s1(00′)s(00′)2 − s12s00′

)
log

(
s10s(00′)2

s1(00′)s0′2

)
log

(
s12s00′

s1(00′)s(00′)2

)
+(1 + P )

(
s12s00′ − s10′s02 − s10s0′2

s10′s(00′)2

)
log

(
s10

s1(00′)

)
log

(
s12s00′

s1(00′)s0′2

)
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+2F
(0)
[1 00′ 2]

(
4 log ()

s10

s1(00′)
log

(
s0′2

s(00′)2

)
− 1

2
log2

(
s10s0′2s12s00′

s2
1(00′)s

2
(00′)2

)
− 2π2

3
+X

)

−2Li2

(
1− s10

s1(00′)

)
− 2Li2

(
1− s0′2

s(00′)2

)
− 2Li2

(
1− s12s00′

s1(00′)s(00′)2

)
+

2π2

3

+ log2

(
s10s(00′)2

s1(00′)s0′2

)
+ log

(
s12s00′

s10s0′2

)
log

(
s10s0′2

s1(00′)s(00′)2

)
, (A.1)

with X = −2 cΓ
ε2

(Q2
[1 00′ 2]/µ

2)−ε + 2π2 +O(ε), and the parity operation P : {1, 0} ↔ {2, 0′}.
Here all analytic continuations have been performed, so the logarithms are all real for

timelike (positive) invariants, as is the case for our application. The infrared divergences

are contained in the factor X but in practice all we will need is the fully renormalized form

factor, defined in eq. (4.14), which is finite and obtained by a simple substitution:

F
(1)ren
[1 00′ 2] = F

(1)bare
[1 00′ 2] with X 7→ 1

4
log2 α12α10α00′

α2
10′α0′2

+
1

4
log2 α12α00′α0′2

α10α2
02

. (A.2)

B Doing transverse integrals efficiently

Two-dimensional integrals can be done extremely efficiently with the differential equation

method. Here we elaborate on our implementation, emphasizing the simplifications related

to the fact that all the integrals are absolutely convergent and done directly in 2 dimensions.

We first illustrate the method on the integral

g1(y, ȳ) = −
∫
d2z

π

|1− y|2

|1− z|2|y − z|2
log

|y|2

|z − 1− y|2|z|2
, (B.1)

which occurs at two-loops when obtaining the translation-invariant kernel H(y) (5.10).

The idea is to differentiate with respect to y and add a total derivative with respect to z

to remove derivatives of rational factors. Indeed, using the relevant identity:(
d

dy
+

d

dz

1− z
1− y

)
|1− y|2

|1− z|2|y − z|2
= 0, (B.2)

one readily gets that

d

dy
g1(y, ȳ) = −

∫
d2z

π

(
d

dy
+

d

dz

1− z
1− y

)
|1− y|2

|1− z|2|y − z|2
log

|y|2

|z − 1− y|2|z|2
. (B.3)

We “win” because the derivatives commutes with the rational factor and hits the logarithm,

producing a simpler integral.

An important subtlety is that the left-hand-side of eq. (B.2) is singular and so the

equation is only strictly valid for generic z. There are additional contact terms given by

the “holomorphic anomaly”

d

dy

1

ȳ − z̄
=

d

dȳ

1

y − z
= πδ2(y − z). (B.4)

This can be understood from the two-dimensional Poisson equation ∂z∂z̄ log(zz̄) = πδ2(z).

These terms would be absent in dimensional regularization but appear because we insist
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to work with ε = 0 (see [54] for four-dimensional examples). In the example (B.3), the

contact terms are at z = 1 and z = y but the logarithm turns out to vanish on both, so

these can be dropped. Evaluating the derivative then gives simply

d

dy
g1(y, ȳ) =

1

y

∫
d2z

π

(1 + y)

z(1 + y − z)

(1− ȳ)

(1− z̄)(ȳ − z̄)
. (B.5)

To finish, one can repeat the same procedure, inserting a variant of eq. (B.2) to differentiate

the integral with respect to y (and/or ȳ). Now only the contact term contributes and a

general result obtained this way is

Iab,cd =

∫
d2z

π

(a− b)
(z − a)(z − b)

(c̄− d̄)

(z̄ − c̄)(z̄ − d̄)
= log

|a− d|2|b− c|2

|a− c|2|b− d|2
, (B.6)

which gives (using the vanishing at y = −1 to fix the integration constant)

d

dy
g1(y, ȳ) =

1

y
× 2 log(yȳ) −→ g1(y, ȳ) = log2(yȳ) . (B.7)

This result can be easily confirmed by numerical integration.

A critical point to emphasize is that the factor 1/y in eq. (B.5) had to be pulled out

in front of the integral before taking the second derivative. If the derivative were allowed

to act on that factor, one would gain nothing from it. Only properly normalized integrals

simplify upon taking derivatives.

A simple criterion to identify properly normalized integrals is that all the Poincaré

residues of their rational factors should be constant (these are often called leading sin-

gularities). These are simply the double residue with respect to z followed by z̄, of the

rational factors in the integrand, with z and z̄ treated as independent complex variables.

This property is easily verified in eqs. (B.1) and (B.6). Its significance is that it ensures

that derivatives of the rational factors have vanishing Poincaré residues, which is needed

for them to be total derivatives which simplify upon integration by parts as in eq. (B.2).

See for instance refs. [53, 54] for other applications of this criterion.

The procedure to decompose an integral into properly normalized ones is essentially

partial fractions. When the denominators do not couple z and z̄, it is in fact literally

partial fraction in these two variables, one after the other. But the integrals we need

also contain in the denominator an irreducible quadratic form Q(z, z̄), which is harder to

partial-fraction out. We illustrate this with the other integral appearing in H(2)(y), coming

from the second term in the kernel (3.12):∫
d2z

π

1

|1− z|2|y − z|2

[
1 +
|y|2

Q

]
log
|1− z|2|y − z|2

|1 + y − z|2|z|2
, Q = |1−z|2|y−z|2−|1+y−z|2|z|2 .

Despite appearances, Q is a quadratic form in z, z̄. The leading singularities of the rational

factor can be computed and found to be linear combinations of 1/[(1 − y)(1 + ȳ)] and

1/[(1 + y)(1− ȳ)], so the decomposition into properly normalized integrals will require two

terms. To illustrate the result of the partial-fraction method to be detailed shortly, one

indeed finds that the integral can be rewritten exactly as:

1

(1− y)(1 + ȳ)

∫
d2z

π

y(1− y)(1 + ȳ)

(1− z)(y − z)Q
log
|1− z|2|y − z|2

|1 + y − z|2|z|2
+ (y ↔ ȳ) . (B.8)

– 35 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
8

This rewriting of the integrand is a purely algebraic identity. The upshot is that all residues

have been pulled out and the leading singularities of the rational factor inside the integral

are only ±1. One then expects, and finds, that the derivative d/dy of the integral is a

total derivatives in z and z̄. One does not need to make any clever guess to find this total

derivatives: in practice we simply write down an ansatz with a polynomial numerator in z

and z̄ and solve for the coefficients. We obtain for example the identity:[
d

dy
+

d

dz

1− z
1− y

+

(
d

dz
(2z − 1− y) +

d

dz̄
(2z̄ − 1− ȳ)

)
ȳ(1 + y)(1− z)(y − z)

y(1− y)(y + ȳ)(1 + yȳ)

]
× y(1− y)(1 + ȳ)

(1− z)(y − z)Q
= 0 ,

again up to contact terms arising from the holomorphic anomaly (at z = y and z = 1).

Plugging this into the integral (B.8) thus gives its y-derivative in terms of contact terms and

the simpler integral (B.6). The derivative can then be easily integrated, and the integration

constant again is fixed by the vanishing at y = −1, yielding the two-loop linearized kernel:

H(2)(y) =
4 log(yȳ)2

(1− y)(1− ȳ)
+ 8Re

Li2(y)− Li2(ȳ) + Li2(−yȳ)− log(yȳ) log 1−ȳ
1+yȳ + 1

2ζ2

(1 + y)(1− ȳ)
.

(B.9)

This agrees precisely with the result in eq. (105) of Balitsky& Chirilli 0710.4330.

Chief advantages of this method are its speed and uniform applicability. Indeed, the

basic steps (integration by parts and partial fractions) are algebraic and independent of

the transcendental weight of the functions being integrated. That is, the same code we

used to do the two-loop integral H(2)(y) as just described, automatically also worked for

H(3)(y) and would presumably work at higher orders as well (producing the result as an

iterated integral).

To conclude, we elaborate on partial fractions in the presence of the quadratic form Q

in the denominator. The main step is to exploit the geometry to create a complete basis.

For the integrals involving Q, there are other singularities on the 8 lines z = 0, 1, y, 1+y and

z̄ = 0, 1, ȳ, 1+ȳ, each line intersecting the quadric Q at two points. However the geometry is

a bit degenerate and there are only 8 intersections: (z, z̄) = {(1, 0), (0, 1), (0, ȳ), (y, 0), (1+

y, 1), (1, 1+ȳ), (y, 1+ȳ), (1+y, ȳ)}. A complete basis of rational functions is then obtained

by writing 8 objects na
(z−a)Q where a ∈ {0, 1, y, 1 + y} and the numerators na are linear in z̄

and chosen to leave only one Poincaré residue nonzero (and equal to 1). A ninth integral√
yȳ/Q (accounting for a residue at infinity), together with simpler integrals with only

linear denominators, complete the basis. Once a basis is fixed, partial fraction identities

like (B.8) follow simply from computing Poincaré residues, a fast operation.

The other integrals needed in this paper, involving the triple-real functions (4.33)

and (5.5), were dealt with in a similar way, although their geometry is somewhat simpler

(no square roots appeared in these cases).

B.1 Single-valued functions for the linearized kernel

The linearized kernel (5.5) is a weight 3 function of one complex variable; the preceding

method produces it in the form of an iterated integral, whose integration constants could
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be easily fixed from the limit x → 1. Its symbol turns out to be made of the five letters

x, 1 − x, x̄, 1 − x̄ and 1 − v = x + x̄ − xx̄. At transcendental weight 3, we found only

three nontrivial single-valued functions with such symbol, in terms of which the three-loop

linearized kernel K(3)lin(x) in (5.6) is compactly written:

O1 = 2
(
Li3(x) + Li3(x̄)− 2ζ3

)
− log u

(
Li2(x) + Li2(x̄)

)
, (B.10a)

O2 = 2
(
Li3(1− x) + Li3(1− x̄)− 2ζ3

)
− log v

(
Li2(1− x) + Li2(1− x̄)

)
, (B.10b)

O3 =

{
Li3

(
x̄

x(x̄− 1)

)
+ Li3

(
x(x̄− 1)

x̄

)
+

1

2

[
Li2

(
x̄

x(x̄− 1)

)
− Li2

(
x(x̄− 1)

x̄

)]
× log(1− x)(1− x̄)− 4Li3(x)− 2Li3(1− x) + log(xx̄)Li2(x) +

1

6
log3(1− x)

−1

2
log2(1− x)

(
log(x)− log(x̄)

)
− 1

4
log2(1− x) log(1− x)(1− x̄) + ζ2 log(1− x)

}
−(x↔ x̄). (B.10c)

Although not manifest from these formulas, these functions have no branch cut on the

complex plane where x̄ = x∗. This can be confirmed by series-expanding around singular

points such as x = x̄ = 0 and x = x̄ = 1, where to all orders one finds only single-

valued logarithms of log(xx̄) or log(1−x)(1− x̄) but never log(x) nor log(1−x) separately.

Furthermore, there are no singularities along 1 − v = 0 (which traces a unit circle with

center at x = 1).

We note that the same five letters are also singularities of the two-loop kernel, so it is

natural to conjecture that no other letters appear in K(L)lin(x) to any order in perturbation

theory in planar N = 4 SYM. Its translation-invariant projection H(L)(y), defined by the

integration (5.10), can then be obtained by applying the algorithm detailed above, which

implies that at most the ten letters d log
{
y, ȳ, 1±y, 1±ȳ, y+ ȳ, 1+yȳ,

√
y+i
√
ȳ√

y−i
√
ȳ
, 1+i

√
yȳ

1−i
√
yȳ

}
can

appear in its symbol (all of which do indeed appear at three loops).

C Eigenvalue in terms of harmonic sums for m = 0 and m = 1

Here we give explicit expressions for the 3-loop Pomeron trajectory, given in coordinate

space in eq. (5.6), in Mellin space using the harmonic sums

Sa(N) =
N∑
i=1

(sign a)i

i|a|
, Sa1,...,an(N) =

N∑
i=1

(sign a)i

i|a|
Sa2,...,an(i) . (C.1)

This defines the sums for integer N and the Mellin transform produces their analytical

continuation from even N . Using standard algorithms [55], we have converted the Mellin

integral projected onto transverse angular momentum m = 0, eq. (5.15), to harmonic sums
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with argument N = −1+iν
2 :

F
(1)
0,ν =−4S1, F

(2)
0,ν = 8S3 − 16S−2,1 + 8ζ2

(
3S−1 + 3 log 2 + S1

)
− 6ζ3, (C.2)

F
(3)
0,ν

32
=−S5 + 2S−4,1 − S−3,2 + 2S−2,3 − S2,−3 − 2S3,−2 + 4S−3,1,1 + 4S1,−3,1 + 2S1,−2,2

+2S1,2,−2 + 2S2,1,−2 − 8S1,−2,1,1 + ζ2

(
S1S2 − 3S−3 + 2S−2,1 − 4S1,−2

)
− 49

2 ζ4S1

+7ζ3

(
2S1,−1 + 2(S1 − S−1) log 2− S−2 − log2 2

)
+ (8ζ−3,1 − 17ζ4)

(
S−1−S1+log 2

)
−1

2ζ3S2 + 4ζ5 − 6ζ2ζ3 + 8ζ−3,1,1 . (C.3)

Here ζ−3,1 ≈ 0.087786 and ζ−3,1,1 ≈ −0.009602 are multi-zeta values. This result is in

precise agreement with [15]. The Pomeron trajectory is the sum of Fm,ν and Fm,−ν , see

eq. (5.11). For m 6= 0 our result is new. For m = 1, for example, the Mellin transform can

be expressed in terms of harmonic sums now with argument N = iν
2 , giving the Odderon

Regge trajectory:

F
(1)
1,ν =−4S1,

F
(2)
1,ν

8
= N−1(S−2 + ζ2)−N−2S1 + S3 + ζ2S1 + 1

2ζ3, (C.4)

F
(3)
1,ν

16
=N−1 (−3S−4 + 2S−3,1 + 2S−2,2 + 2S1,−3 + 4S2,−2 − 8S−2,1,1 + 4S1,−2,1 − 8S1,1,−2)

+N−2
(
2S3−S−3−2S−2,1+4S1,−2+4ζ2S1−5ζ3

)
+N−3 (4S1,1−4S−2−S2−3ζ2)

+N−1
(
ζ2(−2S2

1 − 6S−2) + ζ3(7S−1 + 3S1)− 9ζ4

)
+ (3N−4 − 11

2 ζ4)S1 − 2S5

−ζ2ζ3 − 3ζ5 . (C.5)

This is regular and in fact vanishes at ν = 0, in accordance with the all-order result (5.8).

Other values of m can be evaluated numerically using the attached Mathematica notebook.
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