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Discovering Gender-Specific Knowledge from Finnish
Basic Education using PISA Scale Indices

Mirka Saarela
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Technology
University of Jyvaskyla
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mirka.saarela@gmail.com

ABSTRACT

The Programme for International Student Assessment, PISA,
is a worldwide study to assess knowledge and skills of 15-
year-old students. Results of the latest PISA survey con-
ducted in 2012 were published in December 2013. Accord-
ing to the results, Finland is one of the few countries where
girls performed better in mathematics than boys. The pur-
pose of this work is to refine the analysis of this observation
by using education data mining techniques. More precisely,
as part of standard PISA preprocessing phase certain scale
indices are constructed based on information gathered from
the background questionnaire of each participating student.
The indices describe, e.g., students’ engagement, drive and
self-beliefs, especially related to mathematics, the main as-
sessment area in PISA 2012. However, around 30% of the
scale indices are missing so that a nonstructured sparsity
pattern must be dealt with. We handle this using a special,
robust clustering technique, which is then applied to Finnish
subset of PISA data. Already direct interpretation of the
created clusters reveals interesting patterns. Clusterwise
analysis through relationship mining refines the confidence
on our final conclusion that attitudes towards mathemat-
ics which are often gender-specific are the most important
factors to explain the performance in mathematics.
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1. INTRODUCTION

PISA (Programme for International Student Assessment) is
an international assessment programme by the Organisation
for Economic Co-operation and Development (OECD) that
studies students’ learning outcomes in reading, mathemat-
ics, and scientific literacy triennially. It is referred as the
“world’s premier yardstick for evaluating the quality, equity
and efficiency of school systems” [21]. More than seventy
countries and economies have already participated in PISA.
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Finland has consistently been one of the top-performing
countries in the assessment [11]. Each time the study is
repeated the main learning outcome focus area changes. In
the latest assessment (PISA 2012) it was mathematics. A
database of the results is publicly available!.

One general key finding from PISA 2012 was the gender dif-
ference in mathematics performance: On average, boys out-
perform girls in mathematics. Finland, however, is, accord-
ing to the assessment, one of the eight countries where girls
perform better than boys in mathematics: The mean score
of girls in mathematics was 520 while boys had the mean
score of 517 [23]. Despite the slightly better performance in
mathematics women are, also in Finland, underrepresented
in mathematics related jobs [27].

The purpose of this work is to apply educational data mining
approch and corresponding techniques to study the perfor-
mance of Finnish student population in mathematics, focus-
ing especially on gender-related findings. As part of stan-
dard PISA preprocessing phase, certain scale indices are con-
structed based on information gathered from the background
questionnaire for each participating student [21]. These in-
dices describe, e.g., students’ engagement, drive and self-
beliefs, especially related to mathematics. However, around
30% of the scale indices are missing due to lack of reliable
student responses for the background questions. This means
that the knowledge discovery process is realized with data
having a nonstructured sparsity pattern. We handle this
using a special, robust clustering technique as proposed in
[4]. Furthermore, the clustering result obtained is further
analyzed using itemset mining [1] to foster the generation of
novel information and new knowledge.

The contents of the paper is as follows: First, we provide
a short summary on PISA data and how students’ capabili-
ties and attributes are presented. We then describe a certain
set of scale index variables that are associated with the per-
formance in mathematics. Subsequently, we apply methods
from two (see [7] for a complete categorization) of the main
branches in educational data mining. In Section 3, we utilize
a special clustering approach to find groups of students with
similar characteristics with respect to scale indices. In or-
der to further refine the characterization of student groups,
we then apply frequent itemset mining and association rule
learning to selected clusters in Section 4. Finally, we sum-

!See http://www.oecd.org/pisa/pisaproducts/.
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marize and conclude our study in Section 5.

2. ON PISA DATA

We apply educational data mining for the PISA 2012 data
subset of Finland. In each country participating PISA, the
schools and students selected for the survey reflect the whole
population and characteristics of the educational context. In
Finland, 311 schools and 10157 students from these schools
were sampled for the assessment in 2012. Out of the sampled
students 8829 participated in the actual PISA test. Hereby,
each student that takes part has to (i) solve a set of exer-
cises/tasks and (ii) fill out one background questionnaire®
with demographic questions.

Finnish PISA data is stored in two different data sets: One
data set includes all the students that participated in the
test, and the second one includes all sampled schools. The
student data set has more than 600 variables. A set of those
variables directly encode the students answers given in the
background questionnaire. Moreover, since the participating
students should reflect all 15-year-old students in Finland,
certain weights are assigned to each student to align the sam-
ple with the true population. In PISA reports and learning
analysis, student abilities are not given as direct responses
to task questions but in the form of the so-called Plausible
Values (PVs).

Since a very broad domain of knowledge and skills should
be tested but the testing time for each student is limited,
only certain subsample of students respond to each ques-
tion/task. In order to reliably compare results of different
students, even if they have not answered exactly to the same
set of questions, PISA uses the Rasch Model [19]. Depending
on how many students have solved a task correctly, a certain
7difficulty value” is assigned to the tasks and depending on
how many tasks a student solved, a certain "plausible com-
petence value” is assigned to each student. Difficulty and
competence scores are then scaled so that the OECD aver-
age in each domain (mathematics, reading and science) is
500 and the standard deviation is 100.

Usually, five PVs are drawn from each student’s compe-
tence distribution for each main assessment area to describe
the performance. For instance, in the Finnish data set for
2012 we have have five PVs for each student in reading, sci-
ence, and mathematics. Moreover, since mathematics was
the main assessment area, five PVs for each of the 7 sub-
scales, i.e. subtopics in mathematics (change and relation-
ship, quantity, space and shape, uncertainty and data, for-
mulate, employ, interpret) are enclosed.

2.1 PISA Scale Indices

PISA scale indices (see Table 1) are derived variables based

on information gathered from the background questionnaires.

The scale indices are constructed in order to better char-
acterise students dispositions, behaviours, and self-beliefs.
Indeed, many of the self-reported indicators of engagement
in school are strongly associated with the performance in
mathematics. Especially, the index of economic, social and

2An example of such background questionnaire can be
found from http://nces.ed.gov/surveys/pisa/pdf/MS12_
StQ_FormA_ENG_USA_final.pdf.

cultural status (ESCS) explains 46% of the performance vari-
ation among OECD countries so that a socio-economically
more advantaged student scores 39 points higher in mathe-
matics® than a less advantaged student [20]. Furthermore,
according to [19], the ESCS is the "strongest single factor
associated with performance in PISA”.

Table 1 provides an overview of the PISA scale indices used
in this study. In the first two columns, we provide the name
of the index and it’s abbreviation used in the data set. It
should be noted that some indices emphasize negative orien-
tation with respect to mathematics. For example, it usually
is not beneficial to the performance in mathematics if a stu-
dent has a high value in the index which measures the anx-
iety towards mathematics (ANXMAT). Each index in the
PISA data is standardized to have mean zero and scaled to
have standard deviation one across OECD countries. Hence,
a positive score index does not necessarily mean that a stu-
dent has replied positively to the corresponding questions
but that the answers are above the OECD average.

Correlations between the scale indices and the overall per-
formance in mathematics are provided in the third column
in Table 1. In the fourth column, ranking of the correla-
tions based on their absolute values is given. We notice that
the three indices having highest linear relationship with per-
formance in mathematics are mathematics specific whereas
the fourth index in ranking describes readiness for problem
solving and only the fifth one is the already mentioned sta-
tus indicator ESCS. The correlations are computed using
the subset of Finnish students for which a particular index
is available. In order to obtain reliable estimates we have,
as recommended in [19], analyzed each PV separately. This
means that we have first computed five correlation coeffi-
cients and then used their mean as the actual result.

As already observed, not every student in the data set has
a value for each of the indices. In fact, 33.24% of the index
values are missing/invalid. There are different reasons why
a specific scale index for a particular student is unusable.
First of all, not all background questions were administered
to all students. Students, that were not administered the
questions included in the index had missing value by design.
Second of all, it might be that the student got the questions
but did not answer them. Finally, a reason for a missing
index value can be that questions were answered but answers
were found to be unreliable or invalid in manual scanning.

3. CLUSTER ANALYSIS USING ROBUST
PROTOTYPES

Clustering is an unsupervised data analysis technique, where
a given set of objects is divided into subsets (clusters) such
that objects in the same cluster are similar to each other and
dissimilar to objects in other clusters. Even if this appears
as a simple rule, there are many approaches for clustering
[10]. The classical division of algorithms is the separation
into partitional and hierarchical clustering methods [16, 28].
Hierarchical clustering is usually applied for small data sets
since most of the algorithms have quadratic or higher com-
putational complexity [9]. However, the main difference be-
tween these methods is related to the shape of clusters which

339 score points equal nearly one year of schooling.
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Table 1: PISA scale indices and correlation to mathematics performance

PISA scale index abbreviation | corr | rank
economic, social and cultural status ESCS 0.36 5
sense of belonging BELONG 0.01 15
attitude towards school: learning outcome ATSCHL 0.15 11
attitude towards school: learning activities ATTLNACT 0.08 12
perseverance PERSEV 0.31 6
openness to problem solving OPENPS 0.42 4
self-responsibility for failing in mathematics FAILMAT -0.20 10
interest in mathematics INTMAT 0.25 7
instrumental motivation to learn mathematics | INSTMOT 0.23 9
self-efficacy in mathematics MATHEFF 0.51 2
anxiety towards mathematics ANXMAT -0.44 3
self-concept in mathematics SCMAT 0.52 1
behaviour in mathematics MATBEH 0.04 13
intentions to use mathematics MATINTFC 0.23 8
subjective norms in mathematics SUBNORM -0.02 14

is readily amplified in the interpretation of the clustering re-
sult. Hierarchical clustering is based on connecting locally
similar objects so that the global shape of a cluster can be al-
most arbitrary. Partitional methods, which rely on creating
subsets with respect to global similarities, are quaranteed
to produce geometrically closed subsets. Moreover, the spe-
cial prototype characterizing the properties of all the cluster
members provides a well-defined pattern for the interpreta-
tion of the clustering result.

Prototype-based partitional clustering methods, such as k-
means, a popular algorithm in EDM studies [29], can be
described using an iterative relocation algorithmic skeleton

with an explicitly defined score function [12] (see Algorithm 1).

Partitional clustering creates a k—partion C' = {C1,...,Ci}
(k < n) of data X, such that

1) C; # 0 withi=1,.... k;
2) Ule C; = X; and
3) CiC; =0 with i,5 = 1,...,k and i # j.

In order to realize a prototype-based partitative clustering
algorithm some further issues need to be addressed. First
of all, all iterative relocation algorithms search better parti-
tions locally so that the final result depends on the initial-
ization. Although a lot of work has been attributed to this
problem, still no universal method for identifying the initial
partition exists (actually such an approach would provide
an approximate solution to the clustering problem itself).
Another main issue is to define the similarity measure that
reflects the closedness in the data space. To this end, the
amount of clusters must be determined in order to end up
with one, final clustering result for the interpretation.

Our data to be clustered is problematic, because there is
an arbitrary pattern of missing scale indices to deal with.
Such missing values could be considered as extreme out-
liers because they can have any value from each variable’s
value range. Hence, second order statistics and least-mean-
squares estimates that are sensitive to nonnormal degre-
dations are not suitable, and we use instead the so-called
nonparametric, robust statistical techniques and distance
measures [15, 26, 14]. Out of the simplest robust location

Algorithm 1: Iterative relocation clustering algorithm

Input: Dataset X with n observations and a given number
of clusters k.
Output: A set of k clusters, which minimizes the score
function.

Select k points as the initial prototypes;

repeat
1. Assign individual observation to the closest
prototype;
2. Recompute the prototypes with the assigned
observations;

until The partition does not change;

estimates, median and spatial median, we use spatial me-
dian due to it’s multidimensional nature which allows bet-
ter utilization of the local/clusterwise available data pattern
[17]. Spatial median has many attractive statistical proper-
ties and, especially, it’s breakdown point is 0.5, i.e. it can
handle up to 50% of contaminated data.

In [4], a robust approach utilizing the spatial median to clus-
ter sparse and noisy data was introduced. The k-spatial-
medians clustering algorithm is based on the algorithmic
skeleton as presented in Algorithm 1. As the score function
one utilizes

T =Y Y IIPii —¢))l, (1)

j=1i=1

where the last sum is computed over the subset of data at-
tached to cluster j. Here the projections P;,i = 1,..., N,
capture the existing variable values of the ith observation,
ie.

(Py); = {(1), if (ml)J fexists,
, otherwise.
In Algorithm 1, the projected distance as defined in (1) is
used in the first step, and recomputation of the prototypes,
as spatial median with the available data, is realized using
the SOR (Sequential Overrelaxation) algorithm [4] with the
overrelaxation parameter w = 1.5.



Figure 1: Ray-Turi index for £ =2,...,11

3.1 Initialization and Number of Clusters

It is a well-known problem that all iterative clustering al-
gorithms are highly sensitive to the initial placement of the
cluster prototypes and, thus, such algorithms do not guar-
antee unique clustering [18, 9, 6, 16]. Numerous methods
have been introduced to address this problem. Random ini-
tialization is still often chosen as the general strategy [30].
However, several researchers (e.g., [3, 5]) report that having
some other than random strategy for the initialization often
improves final clustering results significantly. Having these
issues in mind, we developed the following deterministic and
context-sensitive approach to find good initial prototypes.

For a subset of 2520 students in the Finnish data, there are
no missing scale index values. For this subset we want to find
(i) the most suitable amount of clusters k£ and (ii) the initial
prototypes for the clustering algorithm with the whole data.
For this purpose, we utilize a simple search strategy with
two nested loops. The first loop iterates through different
values of k and the second loop repeats the k-spatialmedians
algorithm with random initialization ten times. For each
clustering result, we then compute the so-called Ray-Turi
index, see [24]. This index captures the principal purpose
of clustering prototypes, i.e. accurate presentation of sepa-
rate subset of data, and it is computed by simply dividing
the score function (1) with the distance of the two closest
prototypes. Figure 1 visualizes the plot of the Ray-Turi in-
dex for a set of values for the number of clusters. From
the visualization we observe that the clustering result (Ray-
Turi index) is decreasing when more clusters are introduced.
However, after four clusters the speed of improvement is de-
creased. Moreover, for four clusters the result is very stable
because all the ten random repetitions provide exactly the
same clusters and prototypes. To this end, based on these
observations, k = 4 is used as the number of clusters and the
unique result for the full data as initialization for the whole,
sparse data set clustering with Algorithm 1. The obtained
result, characterized by four prototypes with available value
for all scale indices, is to be interpreted next.

3.2 Interpretation of Clustering Result

The four cluster prototypes are depicted in Figure 2. Ta-
ble 2 provides information about the students in the dif-
ferent clusters. Hereby, valid indices shows the percentage

of existing index values in each cluster. As can be seen, the
available data is quite evenly distributed among the clusters.
While sample size denotes the actual number of students in
the data, population size of target group is the same but
each student is weighted so that they represent the whole
Finnish population of 15-year-old students. WA math score
is the weighted average of the mathematics scores from the
students in the respective cluster.

As can be inferred from Figure 2 in combination with Ta-
ble 2, we have one clear "high performance” and one clear
”low performance” national cluster: The students in Cluster
1 have mean performance in mathematics of 571.53 and they
are on average the most advantaged students with highest
beliefs in themselves. In all indices that are associated with
highperformance in mathematics, the prototype that repre-
sents this cluster has the highest value. Solely in the ”"inten-
tions” to use mathematics later in their life, the students in
Cluster 1 lack behind the students in Cluster 3. Cluster 4,
on the other hand, represents the most disadvantaged stu-
dents in Finland, with lowest mean score in mathematics,
and also lowest beliefs in themselves.

Cluster 2 and Cluster 3 are, at the same time, similar and
very different. According to the average performance of the
students in those two clusters, both belong to PISA score
Level 3 (see Table 4). As specified in the proficiency level
descriptions in [22] this means that students in both of these
clusters are able to, for example, solve tasks with clearly
described procedures, but are unlikely to be able to (this
proficiency is attributed to students from higher levels) also
solve tasks that involve constraints or call for making as-
sumptions. However, the prototypes (see Figure 2) show
that students from these clusters can be opposite to each
other by means of many scale indices.

While the students in Cluster 2 generally are slightly more
socially and economically advantaged, feel that they belong
to school, and commonly have very positive attitude towards
school, they definitely have below OECD average intentions
to use mathematics, so that they also score worse in mathe-
matics. Cluster 2 is predominantly populated by girls. Clus-
ter 3, on the other hand, has the lowest percentage of girls
in it. This cluster consists of mostly boys who do not have
the best attitude towards school. They also do not feel like
they belong to school and generally are socially and econom-
ically less advantaged than the students in Clusters 1 and 2.
However, they have the highest intentions to use mathemat-
ics later in their life, and pursue mathematics-related studies
or careers in the future. They also tend to attribute failure
in mathematics more to external factors than to themselves,
have less anxiety towards mathematics than the OECD av-
erage, and are (although they do not seem to be interested
in school in general) more interested in mathematics than
the OECD average. It seems that they have already decided
to have a career in a mathematics related profession, on the
contrary to the (mostly female) students in Cluster 2.

As for the correlations before, we also created a ranking
of indices to clarify the interpretation of the clustering re-
sult. The distance that defines the ranking to distinguish
Clusters 2 and 3 is just the absolute difference between the
index values of the two prototypes. This is generalized as
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Figure 2: Clustering results

Table 2: Facts of clusters

valid sample | population size of target group ‘WA math score
cluster | indices | size all Q (in %) d I Q g
C1 64% 1967 12884 | 5302 (41% 7582 571.53 | 578.66 | 566.55
C2 69% 2192 14038 | 8598 5440 509.82 | 516.76 | 498.85
C3 67% 2450 16751 | 6434 10317 536.02 | 541.74 | 532.45
C4 66% 2220 16374 | 8876 (54%) 7498 467.21 | 472.96 | 460.40
Cl-C4 | 67% 8829 60047 | 29210 (49%) | 30837 518.75 | 520.19 | 517.39

Table 3: Separation of clusters

all clusters Cluster 2 -3
index distance | rank | distance | rank
ESCS 0.62 15 0.15 10
BELONG 0.98 13 0.53 6
ATSCHL 1.38 9 0.78 4
ATTLNACT | 1.54 7 1.40 2
PERSEV 1.35 10 0.07 13
OPENPS 1.66 6 0.08 12
FAILMAT 0.83 14 0.17 8
INTMAT 1.86 3 0.44 7
INSTMOT 1.71 4 0.11 11
MATHEFF 1.68 5 0.16 9
ANXMAT 1.46 8 0.65 5
SCMAT 2.00 1 0.81 3
MATBEH 1.14 12 0.04 15
MATINTFC | 1.91 2 1.63 1
SUBNORM 1.30 11 0.06 14

the distance between all clusters by simply summing the
three absolute differences between individually ordered pro-
totype indices. These two distances and the implied rank-
ings are provided in Table 3. As can be seen from Table 3,
the students’ self-concept in mathematics, the index which
also correlates the most with the performance in mathemat-
ics (see Table 1), discriminates all the clusters the most. It
seems that students’ beliefs in their own mathematics abili-
ties capture their true knowledge and skills fairly well. Addi-
tionally, the intentions to use mathematics and the interest
in this subject provide a good separation of the four clusters.
Those two indices describe the students’ drive and interest
to learn mathematics because they perceive this subject as
profitable and appealing to their future. The two interesting

clusters, Cluster 2 and Cluster 3, are separated the most by
the intentions to pursue a career in mathematics and by the
attitudes towards school concerning learning activities.

4. ASSOCIATION RULE DISCOVERY

The goal of association rule mining, one of the most uti-
lized methods in EDM [8, 25], is to automatically find pat-
terns that describe strongly associated attributes in data.
The discovered patterns are usually represented in the form
of implication rules or attribute subsets [1, 31]. We have
two explicit clusters - Cluster 1 which consists of the high-
est performing students and Cluster 4 which consists of the
lowest performing students - but for the two remaining clus-
ters with mixed profile, Cluster 2 and Cluster 3, we want to
find patterns/rules that further characterize these students.
Hence, we form for each student that belongs to one of these
two clusters an itemset which contains the gender of the stu-
dent (first subset in Table 4), all the scale indices (central
subset in Table 4), and the categorized proficiency level in
mathematics (last subset in this table).

PISA score levels define the performance level of the stu-
dents. For example, for PISA 2012 the range of difficulty of
tasks generates six levels of mathematics proficiency. Stu-
dents with a performance score within the range of Level 1
are likely to be able to successfully complete Level 1 tasks,
but are unlikely to be able to complete tasks at higher levels.
Level 6 reflects tasks that are the most difficult in terms of
mathematical skills and knowledge [22]. On average, both
student clusters of interest belong to performance Level 3
(see Table 2). Therefore, in the corresponding item, we only
distinguish three categories: below, within, or above Level
3 (see the last subset in Table 4).

In order to separate an individual student from main bulk



Table 4: Items for Association Rules
id item
1 girl
2 boy
3&4 (+,—) ESCS
5& 6 (+,—) BELONG
7&8 (+,—) ATSCHL
9 & 10 (+,—) ATTLNACT
11 & 12 | (+,—) PERSEV
13 & 14 | (+,—) OPENPS
15 & 16 | (+,—) FAILMAT
17 & 18 | (+,—) INTMAT
19 & 20 | (+,—) INSTMOT
21 & 22 | (+,—) MATHEFF
23 & 24 | (+,—) ANXMAT
25 & 26 | (+,—) SCMAT
27 & 28 | (+,—) MATBEH
29 & 30 | (4+,—) MATINTFC
31 & 32 | (+,—) SUBNORM
33 Level 2 or below: < 482.38
34 Level 3: 482.38 — 544.68
35 Level 4 or above: > 544.68

of students, we fix a threshold value of 0.2 to define whether
an item is part of the itemset for that particular student.
The threshold 0.2 is chosen because it provides the median
(rounded to one decimal place) of the absolute values of
scale indices of all cluster prototypes. If a positive index
value for a certain student is above the threshold, then the
first ¢d in the matrix (see Table 4) will be part of the item-
set. Similarly, if a negative index value is below the nega-
tive threshold, then the second id (see Table 4) will belong
to the itemset. Again, we utilize only the available indices.
This means that in case the student’s index value is inside
[—0.2,0.2] or missing/invalid, it is not included in the item-
set. For finding frequent itemsets based on the encoding, we
used the implementation described in [13], and for generat-
ing association rules from the obtained frequent itemsets we
utilized the implementation explained in [2].

4.1 Basic Concepts of Frequent Itemsets

Let I be the set of all items. An important property of an
itemset is its support count, which refers to the number of
transactions that contain a particular itemset. Let S1 be a
subset of the set of items (S1 C I). Logically, a transaction
t; € T, where T denotes the set of all transactions, is said
to contain itemset S if S1 is a subset of ¢;. Mathematically,
the support count, o(S1), for an itemset S1 can be stated as
follows:

o(S1) ={ti| S$1 Cti,t: € TH,

where | - | stands for the number of elements in a set. An
Association Rule is then an implication expression of the
form S; — SQ, where 81752 CTland S1NS: = 0.

The support, s(S1 — S2), determines how often a rule is
applicable to a given data set. Furthermore, the confidence,
c(S1 — S2), determines how frequently items in Sy appear
in the transactions that contain S;. Mathematically this can
be expressed as follows:

S(Sl — SQ) = 70-(5'17952) and C(Sl — SQ) = 70(Slusz),

I o(S1)

Support is an important measure since a rule that has very
low support may occur simply by chance. Therefore, sup-
port is often used to eliminate uninteresting rules. Confi-
dence, on the other hand, measures the reliability of the in-
ference made by a rule. For a given rule A — B, the higher
the confidence the more likely it is for B to be present in
transactions that contain A. Confidence also provides an
estimate of the conditional probability of B given A.

4.2 Obtained Rules and Interpretation

When we use the applied implementation of the famous
Apriori Algorithm, we obtain many trivial rules. For ex-
ample, it is already obvious from the clustering prototypes
that those students who have highly positive attitude to-
wards learning activities have also highly positive attitude
towards learning outcomes. However, as already discussed,
our itemsets can be divided into three subsets: the set that
contains the gender, the set which contains theperformance
in mathematics, and the set which contains the different
scale indices. We are interested in the gender differences
and the performance in mathematics. Therefore, we search
inside the algorithm’s output for rules that have items of
the gender and/orperformance interval subsets at the right
hand side of the rule.

We start with high values for support and confidence and
lower then the confidence threshold. Since we are especially
interested in rules that contain the gender, the support has
to have a relatively small value, so we choose the minimum
value 0.1 while trying to keep the confidence value as high
as possible. Starting with confidence of 1 and lowering it
successively, we obtain the first rule that has gender on the
right side with confidence 0.71:

{-ATTLNACT, +SCMAT, +MATINTFC} = {boy}  (2)

In words (2) means that those students who have negative
attitudes towards school but a high self-concept and high
intentions in mathematics are boys.

The first rule that we obtain for girls with confidence 0.69
is of the form:

{ -MATHEFF, - MATINTFC} = {girl} (3)

Rule (3) says that those students who have negative self-
efficacy and no intention to use mathematics are girls.

If we lower the minimal acceptable support into 0.095, we
obtain the following interesting rule (4): Those students who
have positive attitudes towards school but no intention to
use mathematics later in life are girls.

{+ATTLNACT, -MATINTFC} = {girl} (4)

Next, with the same minimal support we are searching ex-
plicitly for rules that have performance value below or above
level 3 at the left-hand side of the rule and gender at the
right-hand side. Here, we first obtain the following rule with
a confidence value of 0.6:

{+ATTLNACT, above Level 3 performance} = {girl} (5)



According to (5), those students with a proficiency level
above 3 and a clearly above average positive attitude to-
wards learning activities in school are girls.

With confidence 0.52 we obtain the first rule for boys:
{+SCMAT, above Level 3 performance} = {boy} (6)

Rule (6) means that those students with a proficiency level
above 3 and a clear above average self-concept in mathemat-
ics are boys.

Subsequently, we are searching for rules wich have both gen-
der and below or above Level 3 performance at the left-hand
side of the rule. Such rule with the highest confidence (0.65)
reads as:

{-ATSCHL -ATTLNACT +OPENPS -FAILMAT
+SCMAT} = {boy, above Level 3 performance}

According to (7), those students with negative attitudes to-
wards school (both, learning outcome as well as learning
activities) but with clearly above average openness to prob-
lem solving, a high self-concept in mathematics and strictly
below average self-responsibility for failing in mathematics,
are boys that perform above Level 3.

For girls the rule with the highest confidence (0.63) is given
by (8):

{-ESCS +ATTLNACT +ANXMAT -SCMAT}
= {girl, below Level 3performance}

(8)

This means that those students who are socially and eco-
nomically less advantaged, have high anxiety towards math-
ematics and a low self-concept in mathematics, but still
clearly above average attitude towards school, are girls who
perform below Level 3.

If we unite the rules given in (2)-(8), we see that in all the
rules that contain boys the item which represents the high
self-concept in mathematics is present. In general, high-
performing boys are also convinced that they can succeed
(see 6). Moreover, even when they fail in mathematics, they
are more likely to see other individuals or factors responsible
on this than themselves (see 7). In addition, they have the
highest intentions to use mathematics later in their life (see
2). However, according to the rules, male students can have
negative attitude towards school (see 2 and 8), whereas the
most positive attitudes appear only in the rules that include
girls. Even the below average performing and socially and
economically more disadvantaged girls with low self-concept
and high anxiety towards mathematics, perceive the learn-
ing activities in their schools as very important (see 8). The
same positive attitude towards school is also associated with
the highest performing girls (see 5). Moreover, female stu-
dents are much less confident about their mathematic skills
(see 3) and have least intentions to pursue a mathematics
related career (see 3 and 4).

To sum up, we conclude that specific characteristics and at-
titudes in the two middle performing clusters are, indeed,
often gender-specific. Since we explicitly searched for rules
that have certain items in them, we can not express pre-
cisely how typical these situations are. Nevertheless, when

we combine all obtained rules with the clustering result two
main characterizations appear: On the one hand, we have a
specific subgroup of mainly girls who we nominated "to-be-
nurses”: they seem to be capable of performing well if they
want to, having strongly positive attitude towards school.
However, these students have low beliefs in themselves to
be able to succeed in mathematics, and even a somewhat
fear towards mathematics. On the other hand, we have a
subgroup of mainly boys which we refer as "to-be-engineers”.
These students do not seem very interested in school in gen-
eral. Yet, they trust in their capabilities and are extremely
confident about their skills to perform well in mathematics.
Even if they fail, they attribute this failure more to other
external factors than to themselves.

5. SUMMARY AND CONCLUSIONS

Although Finland is one of the few countries in which, on
average, girls perform slightly better than boys in mathe-
matics, professional careers related to this subject are also
in here still dominated by men. We have applied methods
from two of the main educational data mining branches on
PISA data to obtain more gender-specific knowledge which
might explain this observation.

First of all, we utilized a special robust clustering approach
to group the students according to those PISA scale indices
that are associated with performance in mathematics. The
index that represents the student’s self-concept in mathe-
matics (SCMAT), and which also was the variable that cor-
relates the most with the students performance in mathe-
matics (see Table 1), is the most important discriminator for
the four clusters that we obtained (see Table 3). Combined
with the other attributes we conclude that those students
who have a higher self-concept, and tend to be socially and
economically more advantaged, perform better than their
less advantaged peers. They also have better attitudes to
school, trust more in their own capabilities, and have greater
expectation for their future careers (see Figure 2).

Two of the clusters we obtained, Cluster I representing
the "high performing” and Cluster 4 representing the ”low
performing” students, can to a large extend be explained
by these differences. However, the two "medium” clusters
show the opposite behaviour: Socially and economical more
advantaged students with very positive attitudes towards
school and learning from Cluster 2 perform worse in math-
ematics than the somewhat more disadvantaged students in
Cluster 3. We found that these clusters are separated the
most by the index that measures the student’s intentions to
pursue a mathematics related career. Since Cluster 2 is with
61% dominated by girls, while Cluster 3 consists of a larger
percentage (62%) of boys we assumed that this difference
could be explained by the gender of the student.

Association rule mining in the data subset of these two re-
maining medium clusters revised the gender-specific atti-
tudes even more, and confirmed our assumption. Those 15-
year-old students from this subset who already seem to have
decided to pursue a mathematics related career are mostly
boys. On the other hand, the attribute that is the most
ascribable to girls is the positive attitude towards school.
Altogether, the results of our study suggest that there are
distinct groups of high and low performing students. How-



ever, the bulk of the girls with average performance seem to
have no intentions to pursue a mathematics related profes-
sion. This is neither connected to their social status nor to
their attitudes towards school. In fact, they often show a
better feeling of belonging to school and have very positive
attitudes towards school and learning. While boys often con-
sider mathematics as a great part of their future even when
they do not show obvious skills, girls tend to be discour-
aged much faster and to easier favour other subjects. We
feel that this is an important finding that should be studied
further, especially concerning when such a gender-specific
orientation starts to emerge.
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