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Abstract

We consider multivariate time series where each component series is an un-
known linear combination of latent mutually independent stationary time series.
Multivariate financial time series have often periods of low volatility followed by
periods of high volatility. This kind of time series have typically non-Gaussian
stationary distributions, and therefore standard independent component analysis
(ICA) tools such as fastICA can be used to extract independent component series
even though they do not utilize any information on temporal dependence. In this
paper we review some ICA methods used in the context of stochastic volatility
models. We also suggest their modifications which use nonlinear autocorrelations
to extract independent components. Different estimates are then compared in a
simulation study.
Keywords: blind source separation, GARCH model, nonlinear autocorrelation,
multivariate time series

1 Introduction

In this paper we assume that the observed p-variate time series x = (xt)t=0,±1,±2,...

follows the basic independent component (IC) model

xt = µ+Ωzt, t = 0,±1,±2, . . . ,

where µ is a p-variate location vector, Ω is a full-rank p × p mixing matrix and z =
(zt)t=0,±1,±2,... is an unobservable p-variate stationary time series such that

(i) E(zt) = 0, (ii) COV(zt) = Ip and

(iii) the component series of z are independent.

Then x is also stationary with E(xt) = µ and COV(xt) = Σ = ΩΩ′. In independent
component analysis (ICA) the goal is to find, using the observed time series x1, . . . ,xT ,
an estimate of an unmixing matrix W such that Wx = (Wxt)t=0,±1,±2,... has inde-
pendent component series.

The IC model has recently achieved a lot of attention in financial time series analysis
as complicated p-variate time series models can then be replaced by p simple univariate
(e.g. ARMA or GARCH) models in parameter estimation and prediction problems.
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The model also serves as a dimension reduction tool as often only few component series
in z are relevant and the rest of the components just present noise. For some recent
contributions, see [3, 6, 7, 11, 17].

In the literature standard ICA methods, such as fastICA, are often used to estimate
an unmixing matrix W in a time series context although such methods only use the
marginal distribution of xt and make no use of the information on temporal depen-
dence. On the other hand, there exist second order source separation methods, like
SOBI [1], which are particularly popular for analyzing biomedical data. Such methods
use autocovariances and cross-autocovariances for the estimation. They are capable
of separating time series with nonzero linear autocorrelations, but they do not utilize
nonlinear autocorrelations.

Volatility clustering is a common feature in economic and financial time series, i.e.
there are periods of lower and higher volatility. As the transitions between such peri-
ods do not typically have any clear pattern, they are treated as random occurrences.
There are a vast amount of different models that have been invented for such situa-
tions. Among stochastic volatility models, the GARCH process [2] has been the most
popular one. Another popular model is the SV (Stochastic Volatility) model [20]. In
our simulations we consider these two models. For further information on stochastic
volatility and a recent overview of stochastic volatility models, see for example [13].

In this paper we review various independent component estimators that use nonlin-
ear autocorrelations, and compare their performance to that of fastICA in a simulation
study where the independent time series components come from GARCH and SV mod-
els. The paper has the following structure. First, in Section 2 we define the univariate
stochastic volatility models. In Section 3 we discuss the ICA methods which are con-
sidered in this paper. Section 4 consists of the simulation study.

2 Stochastic volatility models for univariate series

Among stochastic volatility models, the GARCH (Generalized Autoregressive Condi-
tional Heteroscedasticity) process [2] has been the most popular one. A univariate
GARCH(p, q) process is given by

xt = σtǫt,

where ǫt is an independent white noise process and σ2
t a deterministic conditional

variance process

σ2

t = V ar(xt|Ft−1) = ω +

p
∑

i=1

αix
2

t−i +

q
∑

j=1

βjσ
2

t−j .

with ω > 0 and αi, βj ≥ 0 ∀i, j. For (second order) stationarity,
∑p

i=1
αi+

∑q
j=1

βj < 1.
Another popular model is the SV (Stochastic Volatility) model [20], defined as

xt = eht/2ǫt,

ht = µ+ φ(ht−1 − µ) + σηt,
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where ǫt and ηt are two independent white noise innovation processes. Parameter µ is
the level, φ is the persistence and σηt is the volatility of log-variance. The process ht is
called the volatility process and it is strongly stationary with N(0, 1) innovations and
initial state h0 ∼ N(µ, σ2/(1− φ2)). For stationarity, we require |φ| < 1 and µ ∈ R.

3 Source separation for multivariate time series

Under our model assumption, the standardized multivariate series of xt is given by
xst
t = Σ−1/2(xt − µ). One of the key results in ICA states that there exists an or-

thogonal matrix U = (u1, . . . ,up)
′ such that zt = Uxst

t (up to signs and order of the
components) [16]. Here zt denotes the vector of independent series. The final unmixing
matrix functional is then given by W = UΣ−1/2. The estimate of W is then obtained
by replacing Σ and U by their sample counterparts. For finding U , we next list the
criterion functions in different approaches.

In the symmetric fastICA [9] approach and symmetric squared fastICA [15], U

maximizes
p

∑

i=1

|E
[

G(u′

ix
st
t )

]

| and

p
∑

i=1

(

E
[

G(u′

ix
st
t )

])2
,

with a choice of a twice continuously differentiable, nonlinear and nonquadratic function
G such that E[G(y)] = 0 if y ∼ N(0, 1). Two common options are G(z) = z4 − 3 and
G(z) = log(cosh(z)) − E[G(y)], where y ∼ N(0, 1). Notice that both utilize only the
stationary (marginal) distribution of xt.

The estimators presented below make use of the joint distributions of (xt,xt+k), k =
1, 2, . . . . The classical SOBI uses only second moments and it was originally defined as
a method which jointly diagonalizes several autocovariance matrices. However, SOBI
can be reformulated as the maximizer of

p
∑

i=1

K
∑

k=1

(

E
[

(u′

ix
st
t )(u

′

ix
st
t+k)

])2
.

The solution is unique if, for all pairs i 6= j there exists a k, 1 ≤ k ≤ K, such that
E(zt,izt+k,i) 6= E(zt,jzt+k,j). SOBI fails to separate GARCH and SV time series as all
lagged autocovariances are then zero.

The gFOBI procedure proposed in [12] maximizes a sum of fourth moments

p
∑

i=1

K
∑

k=1

(

E
[

(u′

ix
st
t+k)||xst

t ||2
])2

.

For K = 0, the regular ICA method FOBI [4] is obtained.
The gJADE procedure [12], in turn, uses a much richer sum of fourth cumulants

and maximizes
p

∑

i=1

p
∑

r=1

p
∑

s=1

K
∑

k=1

(

κ(u′

ix
st
t+k,u

′

ix
st
t+k,x

st
t,r,x

st
t,s)

)2
.
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where

κ(z1, z2, z3, z4) = E(z1z2z3z4)− E(z1z2)E(z3z4)− E(z1z3)E(z2z4)− E(z1z4)E(z2z3).

Again, for K = 0, the regular ICA method JADE [5] is obtained. Both, gFOBI and
gJADE, were created having stochastic volatility models in mind.

FastICA does not use any knowledge of temporal dependence, but there exist some
fixed-point algorithms aimed for time series context. The FixNA (Fixed-point algo-
rithm for maximizing the nonlinear autocorrelation) method was introduced in [19],
and its criterion function to be maximized is

D1(U) =

p
∑

i=1

K
∑

k=1

E
[

G(u′

ix
st
t )G(u′

ix
st
t+k)

]

,

where G is a twice continuously differentiable function. The G-functions suggested in
[19] are G(z) = log(cosh(z)) and G(z) = z2.

A similar function to be maximized is of the form

D2(U) =

p
∑

i=1

K
∑

k=1

∣

∣

∣
E
[

G(u′

ix
st
t )G(u′

ix
st
t+k)

]

−E
[

G(u′

ix
st
t )

]2
∣

∣

∣
,

and we will denote it as FixNA2. It was first proposed in [8], however only with
G(z) = z2, and K = 1. We further similarly suggest a natural extension of SOBI with
the criterion function

D3(U) =

p
∑

i=1

K
∑

k=1

(

E
[

G(u′

ix
st
t )G(u′

ix
st
t+k)

]

− E
[

G(u′

ix
st
t )

]2
)2

.

As a variant of SOBI, we call this estimator vSOBI.
To obtain the estimating equations for matrix U , the Lagrangian multiplier tech-

nique can be used as in [14]. The Lagrangian function to be optimized is

L(U ,Λ) = Dr(U)−
p−1
∑

i=1

p
∑

j=i+1

λiju
′

iuj −
p

∑

i=1

λii(u
′

iui − 1), for r = 1, 2, 3,

where Λ = (λij) is a symmetric matrix that contains p(p+ 1)/2 Lagrangian multipliers.
Write next

T r,i = T r,i(U ) =
∂

∂ui

Dr(U ), i = 1, . . . , p, r = 1, 2, 3,

and T r = T r(U) = (T r,1, . . . ,T r,p)
′. Solving the optimizing problem then gives the

estimating equations for U , namely,

UT ′

r = T rU
′ and UU ′ = Ip,

or, equivalently,
U = (T rT

′

r)
−1/2T r.

For some tolerance limit ε and initial value U 0, this leads to Algorithm 1.
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Data: Standardized time series xst
t = Σ−1/2(xt − µ)

Result: W = UΣ−1/2

U old = U 0;
∆ = ∞;
while ∆ > ε do

T r = T r(U old);

Unew = (T rT
′

r)
−1/2T r;

∆ = ||Unew −U old||;
U old = Unew;

end

U = Unew;

Algorithm 1: Algorithm for maximizing the criterion function Dr, r = 1, 2, 3.

4 Simulation study

The following simulations are conducted using R 3.2.2 [18] with the packages fGarch,
fICA, JADE and tsBSS. In the simulation study we compare due to space limitations
only the following methods:

• FixNA, FixNA2 and vSOBI with G(z) = z2 and lags 1, . . . , 12

• symmetric fastICA and symmetric squared fastICA with G(z) = z4 − 3

• gFOBI, gJADE with lags 0, 1, . . . , 12 and SOBI with lags 1, . . . , 12.

The comparison is based on the Minimum Distance Index [10], which is defined as

D̂ = D̂(Ŵ ) =
1√
p− 1

inf
C∈C

||CŴΩ− Ip||,

where C is the set of all matrices with exactly one non-zero element in each row and
column, and || · || is the Frobenius (matrix) norm. The index has the range 0 ≤ D̂ ≤ 1,
where zero indicates perfect separation.

For time series of lengths T = 100, 200, . . . , 25600 we report the averages T (p−1)D̂2

based on 2000 repetitions. Such an average represents a global measure of variation of
an unmixing matrix, see [10] for details. As all the methods are affine equivariant, we
choose wlog Ω = Ip and consider the following two 4-variate settings:

• GARCH setting: The sources are four GARCH(1, 1) processes with normal
innovations. The parameters (α1, β1) are chosen so that the first eight moments
are finite, and are: (i) (0.05, 0.9), (ii) (0.1, 0.7), (iii) (0.1, 0.8) and (iv) (0.2, 0.5).

• SV setting: In the second setup the four sources are SV processes with nor-
mal innovations and (µ, φ, σ)-parameter vectors (−10, 0.8, 0.1), (−10, 0.9, 0.2),
(−10, 0.9, 0.3) and (−10, 0.95, 0.4). Again, all the first eight moments exist.
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Figure 1: Comparison of performance of algorithms in the GARCH setting (left panel)
and SV setting (right panel).

Figure 1 summarizes the results for both settings. As expected, SOBI does not work
here. The proposed vSOBI estimator works very well in both cases and outperforms
all the other estimators. Interestingly, both fastICA algorithms perform well in the
SV example but not in the GARCH example. FastICA2 algorithm produces slightly
better results than the fastICA algorithm. While gJADE works quite well in both cases,
gFOBI has much poorer performance. FixNA and FixNA2 algorithms are among the
best methods.

Convergence of FixNA2 algorithm and both fastICA algorithms is low in short
time series (see Figure 2), but gets much better when the time series length increases.
Convergence percentage of vSOBI is also good, and in time series of length 800 onwards
very close to 100%. SOBI, gFOBI and gJADE have very few convergence issues, if any.

5 Discussion

In this paper we surveyed different blind source separation methods suitable for multi-
variate time series with stochastic volatility features. Such methods were earlier quite
scattered in the literature. We also suggested some small modification yielding the
family of vSOBI estimators which showed in our simulations the best performance.
We have shown here the simulation results of vSOBI, both FixNA and both FastICA
algorithms only based on G functions of the form G(z) = zc. However, in an extended
version of this paper we plan to have a larger simulation study, including for example
also log(cosh(z)) as a nonlinearity.
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Figure 2: Comparison of convergence percentages of algorithms in the GARCH setting
(left panel) and SV setting (right panel).
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[7] A. Garćıa-Ferrer, E. González-Prieto, and D. Peña. A conditionally heteroskedas-
tic independent factor model with an application to financial stock returns. Int.
J. Forecasting, 28(1):70 – 93, 2012.

[8] A. Hyvärinen. Blind source separation by nonstationarity of variance: A cumulant-
based approach. IEEE T. Neural Networ., 12(6):1471–1474, 2001.

[9] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component
analyis. Neural Comput., 9:1483–1492, 1997.

[10] P. Ilmonen, K. Nordhausen, H. Oja, and E. Ollila. A new performance index
for ICA: Properties computation and asymptotic analysis. In V. Vigneron et al.,
editor, LVA/ICA 2010. LNCS, volume 6365, pages 229–236, Heidelberg, 2010.
Springer.

[11] C.-J. Lu, J.-Y. Wu, and T.-S. Lee. Application of independent component analysis
preprocessing and support vector regression in time series prediction. In Interna-
tional Joint Conference on Computational Sciences and Optimization, volume 1,
pages 468–471, 2009.

[12] M. Matilainen, K. Nordhausen, and H. Oja. New independent component analysis
tools for time series. Stat. Probabil. Lett., 105:80–87, 2015.

[13] D.S. Matteson and D. Ruppert. Time-series models of dynamic volatility and
correlation. IEEE Signal Proc. Mag., 28(5):72–82, 2011.

[14] J. Miettinen, K. Illner, K. Nordhausen, H. Oja, S. Taskinen, and F. Theis. Sep-
aration of uncorrelated stationary time series using autocovariance matrices. J.
Time Ser. Anal., 37(3): 337–354, 2016.

[15] J. Miettinen, K. Nordhausen, H. Oja, S. Taskinen, and J. Virta. The squared
symmetric FastICA estimator, 2015. http://arxiv.org/abs/1512.05534.

[16] J. Miettinen, S. Taskinen, K. Nordhausen, and H. Oja. Fourth moments and
independent component analysis. Stat. Sci., 30:372–390, 2015.

[17] E. Oja, K. Kiviluoto, and S. Malaroiu. Independent component analysis for finan-
cial time series. In Adaptive Systems for Signal Processing, Communications, and
Control Symposium, pages 111–116, 2000.

[18] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015. R version 3.2.2.

[19] Z. Shi, Z. Jiang, and F. Zhou. Blind source separation with nonlinear autocorre-
lation and non-gaussianity. J. Comput. Appl. Math., 223(1):908–915, 2009.

[20] S. J. Taylor. Financial returns modelled by the product of two stochastic pro-
cesses – a study of daily sugar prices 1961–79. In O. D. Anderson, editor, Time
Series Analysis: Theory and Practice 1, pages 203–216. Springer, North-Holland,
Amsterdam, 1982.

8


