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Abstract

We consider an infinite, homogeneous linearly elastic beam resting on a system of linearly elastic

supports, as an idealized model for a paper web in the middle of a cylinder-based dryer section.

We obtain closed-form analytical expressions for the eigenfrequencies and the eigenmodes. The

frequencies increase as the support rigidity is increased. Each frequency is bounded from above by

the solution with absolutely rigid supports, and from below by the solution in the limit of vanishing

support rigidity. Thus in a real system, the natural frequencies will be lower than predicted by

commonly used models with rigid supports.
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1. INTRODUCTION

In our previous studies (see, e.g., 3–8), we have considered mathematical modelling of the

mechanical aspects of the paper making process, using analytical and numerical approaches. The

processing of paper, steel, fabric or rubber, and looping systems such as band saws and timing

belts, all belong to the class of systems known as axially moving materials. Typically the material

is a continuous thin sheet, travelling across a rectangular span, with two opposite edges supported

by rollers, and the other two opposite edges free of tractions.

The most often used models for an axially moving continuous material are travelling flexible

strings, membranes, beams, and plates. The string and beam models are applicable also to thin

sheets undergoing cylindrical deformation.

The research field of moving materials can be traced back to (34). Among the first English-language

papers on moving materials were (31) and (25). All these studies considered axially moving ideal

strings. The analytical solution describing the free vibrations of the axially moving ideal string was

derived by (36). Dynamics and stability considerations were first reviewed in (27).

The effects of axial motion of the material on its frequency spectrum and eigenfunctions were

investigated for strings by (2) and for beams by (33). It was shown that the natural frequency of

each mode decreases when the transport speed increases, and that the travelling string and beam

both experience divergence instability at a sufficiently high speed.
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Travelling beams have been further analyzed by (28), and (16). In the latter, an approximate

analytical expression was derived for the eigenfrequencies of a moving beam with small flexural

stiffness. Arbitrary excitations and initial conditions were analyzed with the help of modal analysis

and a Green’s function method in (44). Travelling strings and beams on an elastic foundation

have been investigated by, e.g., (9), (30), (43), and (29). Travelling viscoelastic beams with time-

dependent speed were recently considered by (11).

The loss of stability was studied with an application of dynamic and static approaches in (42). It

was shown via numerical analysis that in the all cases instability occurs when the frequency is zero,

and the critical velocity coincides with the corresponding velocity obtained from a static analysis.

Similar results were obtained for travelling plates by (21).

For exploring further, extensive literature reviews about the dynamics of axially moving continua

can be found in (24) and in (5). For axially moving strings specifically, see the excellent review

article by (10).

For classical stationary (as opposed to axially moving) beams, a simple unified approach for the

vibration analysis of a generally supported beam is presented in (17, 19). A flexural displacement

of the beam is sought as the linear combination of a Fourier series and an auxiliary polynomial

function. (18) provides an alternative discretization scheme based on the Galerkin method. (20)

concentrates on vibration analysis using general boundary conditions and the Rayleigh–Ritz
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method, to determine the modal characteristics of a rectangular plate with general elastic supports

along its edges.

(13) have computed the effects of support stiffness on the static and free vibration responses of

a three-span simply supported plate. Also the critical buckling stresses are discussed. They have

approached the problem by incorporating the finite strip method together with a spring system.

(1) have investigated a particular case of the problem of free vibrations of a uniform beam with

intermediate constraints, and the ends elastically restrained against rotation and translation. In (41),

the fundamental modes of a free-vibrating beam, supported by two symmetrically placed elastic

supports, have been analyzed in depth.

Multi-span beams and related problems have been considered by various authors. (15) have

considered a cantilever beam with one or two additional lateral supports, and showed that there

exists a minimum stiffness of the support above which the fundamental frequency of flexural

vibrations of the beam no longer increases. (22) have considered free vibration analysis of a multi-

span beam with an arbitrary number of flexible constraints. They have assumed that each span of

the continuous beam obeys Timoshenko beam theory, and they solve the system by the transfer

matrix method. (35) have considered quasistatic bending problems of a multi-span beam on linear

viscoelastic foundations of the Kelvin, Maxwell and standard linear solid types. They have solved

the elastic free vibration problem, and then utilized the correspondence principle to determine the

solution of the viscoelastic problem. They provide numerical results for a three-span beam.
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(32) have derived formulae for the computation of the response of periodically supported structures

subject to a moving or stationary harmonic load, using a wavenumber-based approach. As a result,

the load speed has been found to have a significant effect on the vibration of the conventional

pinned–pinned ballasted track. (23) have considered free vibration analysis of a multi-span beam

carrying multiple intermediate spring–mass systems. They have proposed an exact solution for

the problem, and obtained the natural frequencies and associated mode shapes directly from the

differential equation of motion of the continuous beam. (26) have considered the effect of a moving

spring-mass system on the vibration of a cantilever beam.

Exact solutions to beam problems, in general, have been considered by multiple authors. (40) used

a Green’s function approach to derive exact solutions for beams of the Timoshenko type on an

elastic foundation. A Green’s function approach was also used in (12), concentrating on classical

Euler–Bernoulli beams. The authors considered how the approach must be modified in order for

a Green’s function to exist, and under which circumstances it may occur that the problem has no

solutions or an infinite number of solutions. (38) derived analytical solutions for circular beams

made of functionally graded materials, concentrating on the in-plane static case.

A common element, in those of the above-mentioned studies that concentrate on axially moving

materials, is that they focus on a single span. However, for example, a cylinder-based dryer section

in a paper machine consists of a large number of spans. This number is typically about 70; see

the book edited by (14). Furthermore, the rollers at the ends of the span are modelled as perfectly
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rigid, using the simply supported (pinned) boundary conditions for the transverse displacement of

the paper web.

In the present study, we will investigate a simple fundamental problem where both of these

assumptions are relaxed. We consider an infinite beam with identical supports placed at uniform

intervals. This is an idealized model representing the middle part of a multi-span system, far from

either of its ends. Furthermore, we model the supports as linearly elastic using Hooke’s law. This,

when compared to the case with rigid supports, allows us to study the effect of the elasticity of the

supports on the vibration of the infinite beam.

For simplicity, we have chosen to neglect the axial motion of the material. Hence the quantitative

results will be strictly applicable only to low-speed systems, where this motion can be neglected.

Qualitative conclusions are expected to carry over also to high-speed systems.

We first set up the problem, and then derive closed-form analytical solutions for the frequencies of

free vibrations and the corresponding eigenmodes. We conclude by asymptotic analyses of some

periodic solutions.

2. FORMULATION OF THE PROBLEM

Let us consider an elastic continuous beam of unlimited length, elastically supported at the points

xn = n�, where n = 0, ±1, ±2 . . ., and the distance between two consecutive supports is denoted

by � (Figure 1). During small transverse vibrations, the position of the beam is sufficiently close
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Figure 1: Periodic vibrations in the vicinity of equilibrium position for the beam of unlimited

length with equidistant supports. Schematic representation.

to a position of stable equilibrium, and the transverse velocity will be small in absolute value. The

reaction of the considered elastic supports is proportional to the deflection of the beam at that point,

i.e. the beam reaction can be represented by Hooke’s law, kw, in which w is the deflection and k

is a constant usually called the rigidity modulus of the support (modulus of rigidity of an elastic

string). In addition, it is supposed that the considered elastic point supports are characterized by the

continuity conditions for displacements and its first derivative with respect to x. Such theoretical

models for beams of unlimited length with an elastic system of supports are adequate to a wide

class of engineering problems and have been discussed in the classical literature (see, for example,

the books by (37) and (39)).

The governing equation for the deflection function w(x), describing the free transverse vibrations

in the interval xn−1 < x < xn n = 0, ±1, ±2 . . ., is

EI
d4w

dx4
− ρS�2w = 0, xn−1 < x < xn (1)
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with the following boundary conditions at the supporting points:

(w)+xn
= (w)−xn

, (2)(
dw

dx

)+

xn

=
(

dw

dx

)−

xn

, (3)

EI

(
d2w

dx2

)+

xn

= EI

(
d2w

dx2

)−

xn

, (4)

EI

(
d3w

dx3

)+

xn

− EI

(
d3w

dx3

)−

xn

= −k (w)xn
, n = 0, ±1, ±2, . . . (5)

In (1)–(5), EI is the bending rigidity of the beam, S the cross-sectional area of the beam, ρ the

density of the material, and � the frequency of harmonic vibrations. The superscripts ± denote the

limits of the corresponding values at xn + 0 and xn − 0. The condition (5) is Hooke’s law for the

elastic support located at xn.

Note that the boundary conditions (2)–(5) require only C2 continuity at each support, with a finite

jump in the third derivative. At this point in the analysis, no assumption is made of the possible

periodicity of the solution.

For convenience, let us introduce the dimensionless quantities

x = �x̃, ω2 = ρ
S�4

EI
�2, γ = k�3

EI
. (6)
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In the following, the tilde will be omitted. Using (6), the problem (1)–(5) can be rewritten in the

form

d4w

dx4
− ω2w = 0, xn−1 < x < xn (7)

(w)+xn
= (w)−xn

, (8)(
dw

dx

)+

xn

=
(

dw

dx

)−

xn

, (9)

(
d2w

dx2

)+

xn

=
(

d2w

dx2

)−

xn

, (10)

(
d3w

dx3

)+

xn

−
(

d3w

dx3

)−

xn

= −γ (w)xn
, n = 0, ±1, ±2, . . . (11)

Note that due to the dimensionless coordinates, each interval is of unit length.

To analyze the general properties of the spectral problem, we introduce the following notation:

wn = (w)xn
, �n =

(
dw

dx

)
xn

(12)

for the deflection and the derivative of the deflection at the points xn, and wn for the deflection of

the beam in the interval xn−1 ≤ x ≤ xn, i.e. wn = w(x) if xn−1 ≤ x ≤ xn. We will have

(wn)xn−1
= wn−1, (wn)xn

= wn,(
dw

dx

n)
xn−1

= �n−1,

(
dw

dx

n)
xn

= �n.
(13)

We can now represent the solution of the problem (7)–(11) in the interval xn−1 ≤ x ≤ xn in the

form

wn = Nn
11(x)wn−1 + Nn

12(x)�n−1 + Nn
21(x)wn + Nn

22(x)�n, (14)

9
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where Nn
ij(x), i, j = 1, 2 are shape functions satisfying the differential equation (7). In correspon-

dence with the definition of the node values wn and �n, the functions Nn
ij(x) satisfy the following

boundary conditions:

(Nn
11)xn−1 = 1,

(
dNn

11

dx

)
xn−1

= 0, (Nn
11)xn = 0,

(
dNn

11

dx

)
xn

= 0,

(Nn
12)xn−1 = 0,

(
dNn

12

dx

)
xn−1

= 1, (Nn
12)xn = 0,

(
dNn

12

dx

)
xn

= 0,

(Nn
21)xn−1 = 0,

(
dNn

21

dx

)
xn−1

= 0, (Nn
21)xn = 1,

(
dNn

21

dx

)
xn

= 0,

(Nn
22)xn−1 = 0,

(
dNn

22

dx

)
xn−1

= 0, (Nn
22)xn = 0,

(
dNn

22

dx

)
xn

= 1.

(15)

For brevity and simplicity we will use the vector notation

δn =
{

wn

�n

}
, Nn

1(x) =
{

Nn
11(x)

Nn
12(x)

}
, Nn

2(x) =
{

Nn
21(x)

Nn
22(x)

}
. (16)

With the preceding notation, we may write

wn = (
δn−1, Nn

1(x)
) + (

δn, Nn
2(x)

)
, (17)(

δn−1,

(
d2Nn

1

dx2

)
xn

)
+

(
δn,

(
d2Nn

2

dx2

)
xn

)

=
(

δn,

(
d2Nn+1

1

dx2

)
xn

)
+

(
δn+1,

(
d2Nn+1

2

dx2

)
xn

)
, (18)

(
δn−1,

(
d3Nn

1

dx3

)
xn

)
+

(
δn,

(
d3Nn

2

dx3

)
xn

)

=
(

δn,

(
d3Nn+1

1

dx3

)
xn

)
+

(
δn+1,

(
d3Nn+1

2

dx3

)
xn

)
, (19)
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or in more compact matrix form,

Aδn−1 + Bδn + Cδn+1 = 0, n = 0, ±1, ±2, . . . (20)

where A, B and C are real matrices (2 × 2), the elements of which are expressed with the help of

the functions Nn
ij(x) and their second and third derivatives at the nodes xn.

In accordance with the methods of solution of the system of linear homogeneous finite-difference

equations with constant coefficients, the fundamental solution of the considered system is found in

the form

δn = d qn, (21)

where d is a constant vector that does not depend on the index n, and q is a complex-valued scalar.

On the right-hand side, the superscript indicates exponentiation.

Taking into account that n → ±∞, we conclude that a bounded solution of (20) in the form (21)

will occur if and only if |q| = 1. Consequently, we will take the following representation for the

values q:

q = eiα, 0 ≤ α ≤ 2π . (22)

Here α is an arbitrary real number from the interval [0, 2π). The vector d is found as a result of

substituting (21)–(22) into (20) and performing conventional calculations.

11
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Taking into account that the matrices A, B and C are real, we note that the complex-conjugate

expressions (marked by the superscript ∗)

δ∗
n = d∗ (

q∗)n = d∗e−inα = d∗ein(2π−α) (23)

are also solutions apart from (21)–(22). Thus the solution δ∗
n is characterized by the parameter

α̃ = 2π − α.

Consider now the equivalent spectral problem formulated in the unit interval in the dimensionless

variables. For this purpose, note the relation between the node values of the variables wn and �n

at the ends of the interval xn−1 ≤ x ≤ xn:

δn = δn−1q. (24)

Using (24) and (17) we will have

wn+1 =
(
δn, Nn+1

1 (x)
)

+
(
δn+1, Nn+1

2 (x)
)

=
[(

δn−1, Nn+1
1 (x)

)
+

(
δn, Nn+1

2 (x)
)]

q. (25)

From representation (25) and the relations

(
dsNn+1

ij

dxs

)
xn

=
(

dsNn
ij

dxs

)
xn−1

, s = 0, 1, 2 (26)

it follows that

(
dsw

dxs

)±

xn

=
(

dsw

dxs

)±

xn−1

q, s = 0, 1, 2. (27)
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The relations (26) require only that in each interval, the solution can be represented using the same

set of basis functions, namely (14).

For the rest of this study, we will consider the unit interval [0, 1], and using the expression (22), we

rewrite the relations (27) in the form

(
dsw

dxs

)±

x=1
= eiα

(
dsw

dxs

)±

x=0
, α ∈ [0, 2π ], s = 0, 1, 2. (28)

Note that the relations (28), having the general nature, are valid for any periodic system.

The relations (28) can be used to represent the original multipoint periodic problem (7)–(11) in the

form of a spectral problem, defined on the unit interval [0, 1], as

d4w

dx4
− ω2w = 0, 0 < x < 1 (29)

(w)x=1 = (w)x=0 eiα,

(
dw

dx

)
x=1

=
(

dw

dx

)
x=0

eiα,

(
d2w

dx2

)
x=1

=
(

d2w

dx2

)
x=0

eiα, (30)

(
d3w

dx3

)
x=1

=
[(

d3w

dx3

)
x=0

+ γ (w)x=0

]
eiα, 0 ≤ α ≤ 2π . (31)

The spectral boundary value problem (29)–(31) is equivalent to the following variational problem:

ω2(α) = min
wα∈Wγ ,w∗

α∈W∗
γ

⎧⎨
⎩

∫ 1
0

d2wα

dx2
d2w∗

α

dx2 dx + γ (wα)x=0
(
w∗

α

)
x=0∫ 1

0 wαw∗
αdx

⎫⎬
⎭ , (32)

where Wγ and W∗
γ are, respectively, the sets of functions satisfying the boundary conditions (30)–

(31) and the corresponding complex-conjugate conditions.
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The limiting case of absolutely rigid supports means that the value γ = ∞, and the deflection

vanishes at the points x = 0 and x = 1. The corresponding boundary value problem takes the form

d4w

dx4
− ω2w = 0, 0 < x < 1

(w)x=0 = 0, (w)x=1 = 0,

(
dw

dx

)
x=1

=
(

dw

dx

)
x=0

eiα,

(
d2w

dx2

)
x=1

=
(

d2w

dx2

)
x=0

eiα, 0 ≤ α ≤ 2π .

(33)

In this case, the problem (33) is characterized by the following variational formulation:

ω2(α) = min
wα∈Wr,w∗

α∈W∗
r

⎧⎨
⎩

∫ 1
0

d2wα

dx2
d2w∗

α

dx2 dx∫ 1
0 wαw∗

α dx

⎫⎬
⎭ . (34)

Here Wr and W∗
r are, respectively, the admissible sets of functions satisfying the boundary

conditions in (33) and the corresponding complex-conjugate boundary conditions.

The equations (29) and (33) play the role of necessary extremum conditions for the functionals

(32) and (34), respectively. If we vary the functional (32), (34) and require that

δω2(α) = 0 (35)

with corresponding boundary conditions, then we obtain the differential equations (29), (33) as

Euler’s equations of the functional.

From the relations (29)–(31), (33) it follows that the frequencies of harmonic vibrations ω2 =

ω2(α) and the corresponding modes w(x) = wα(x) depend continuously on the parameter α ∈

14



A
cc
ep
te
d
M
an
us
cr
ip
t

[0, 2π ]. Consequently, the eigenvalues of the spectral problems (29)–(31), (33) fill continuous

bands. For real eigenvalues ω2 = ω2(α), apart from the eigenfunctions wα(x), the complex

conjugate functions w∗
α(x) also satisfy differential equations with complex conjugate boundary

conditions. Taking into account that

e−iα = e−iαe2π i = ei(2π−α), (36)

we obtain

w∗
α(x) = w2π−α(x). (37)

Note that for α = π , we have

w∗
π(x) = wπ(x), (38)

and thus the solution wπ(x) is real.

Using the variational representation for ω2(2π − α) and the equality (37), we will have ω2(α) =

ω2(2π − α). As a result, we arrive at the conclusion that the two eigenfunctions wα(x) and

w∗
α(x) = w2π−α(x) correspond to one and the same eigenvalue ω2(α). Consequently, for α �= π ,

the eigenfrequencies of harmonic vibrations are double and

ω2(α) = ω2(2π − α), w∗
α(x) = w2π−α(x). (39)

Using the properties (39), without loss of generality we can study the problem only for the interval

α ∈ [0, π ].

15
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Taking into account the properties of (29)–(31) and (33) with respect to the operation x → 1− x, it

is possible to perform more detailed analysis of the problem under consideration. With this purpose,

we introduce the following notation:

w̃α(x) = wα(1 − x), (40)

and note that the function w̃α(x) apart from the function wα(x) satisfies the differential equation

for the one and the same value ω2(α). In this case the boundary conditions for the functions w̃α(x)

correspond to α̃ = 2π − α and in correspondence with (37) we have

w̃α(x) ≡ w∗
α(x). (41)

As a result, we obtain

wα(1 − x) ≡ w∗
α(x), 0 ≤ x ≤ 1, 0 ≤ α < 2π . (42)

3. CONSTRUCTION OF EXPLICIT SOLUTIONS

Let us construct the solution of the spectral problem (7)–(11). To this purpose, we will represent

the shape functions Nn
ij(x) in the form

Nn
ij(x) = Aij cosh

(√
ω

[
x − xn−1

]) + Bij cos
(√

ω
[
x − xn−1

])
+ Cij sinh

(√
ω

[
x − xn−1

]) + Dij sin
(√

ω
[
x − xn−1

])
. (43)
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The constants Aij, Bij, Cij and Dij are determined by inserting (43) into the boundary conditions

(15), and solving the resulting equation system. The solution is

A11 = (
1 − cosh

√
ω cos

√
ω − sinh

√
ω sin

√
ω
)
�−1,

� = 2
(
1 − cosh

√
ω cos

√
ω
)

,

A12 = (
sinh

√
ω cos

√
ω − cosh

√
ω sin

√
ω
) (√

ω�
)−1

,

A21 = (
cosh

√
ω − cos

√
ω
)
�−1, A22 = − (

sinh
√

ω − sin
√

ω
) (√

ω�
)−1

,

B11 = (
1 − cosh

√
ω cos

√
ω + sinh

√
ω sin

√
ω
)
�−1,

B12 = −A12, B21 = −A21, B22 = −A22,

C11 = (
cosh

√
ω sin

√
ω + sinh

√
ω cos

√
ω
)
�−1,

C12 = (
1 − cosh

√
ω cos

√
ω + sinh

√
ω sin

√
ω
) (√

ω�
)−1

,

C21 = − (
sinh

√
ω + sin

√
ω
)
�−1, C22 = (

cosh
√

ω − cos
√

ω
) (√

ω�
)−1

,

D11 = −C11, D21 = −C21, D22 = −C22,

D12 = (
1 − cosh

√
ω cos

√
ω − sinh

√
ω sin

√
ω
) (√

ω�
)−1

.

(44)

Inserting (43)–(44) into (16)–(19), the matrices A, B and C in equation (20) can be represented as

A =
(

α̃
√

ω β

−β
√

ω −α̃

)
, B =

(
0 γ2

γ1
√

ω + γ 0

)
, C =

( −α̃
√

ω β

−β
√

ω −α̃

)
, (45)

where we have defined

α̃ = 2ω
(
cosh

√
ω − cos

√
ω
)
�−1, β = 2ω

(
sinh

√
ω − sin

√
ω
)
�−1,

γ1,2 = 4ω
(
cosh

√
ω sin

√
ω ± sinh

√
ω cos

√
ω
)
�−1.

Substituting the expressions (45) into (20), we obtain a homogeneous system of linear equations

for determining the components d1, d2 of the vector d:

[ −2i
√

ω sin α 2β cos α + γ2

−2β
√

ω cos α + γ1
√

ω + γ 2iα̃ sin α

](
d1

d2

)
= 0. (46)
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To obtain a nontrivial solution of the system, we require that its determinant �(ω; α, γ ) vanishes:

�(ω; α, γ ) ≡ cos2 α +
[
− (

cosh
√

ω + cos
√

ω
) + γ

4
√

ω3

(
sinh

√
ω − sin

√
ω
)]

cos α

+ cosh
√

ω cos
√

ω + γ

4
√

ω3

(
cosh

√
ω sin

√
ω − sinh

√
ω cos

√
ω
) = 0. (47)

Equation (47) determines the frequencies ω(α, γ ) of free harmonic vibrations of the continous

beam as functions of rigidity γ of supports and the parameter α.

Let us analyze the solutions ωk(α, γ ) of the equation

�(ω; α, γ ) = 0. (48)

Note that because of the identity cos α ≡ cos(2π − α) we have

ω(α, γ ) ≡ ω(2π − α, γ ), 0 ≤ α ≤ 2π , (49)

and consequently to analyze the solution of (48) it is enough to perform the analysis for the values

α ∈ [0, π ].

4. EXPLICIT SOLUTIONS WITH ZERO PHASE SHIFT

In the next two sections, as an example, we will consider the behaviour of periodic solutions

ωk(α, γ ), first for zero phase shift per period, α = 0, and then with a phase inversion between

adjacent periods, α = π ; i.e., we will consider solutions ωk(0, γ ) and ωk(π , γ ). Each of these two

cases splits into two subcases by utilization of symmetry properties.
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In the case α = 0, the boundary value problem (29)–(31) is reduced to

d4w

dx4
− ω2w = 0, 0 < x < 1

(w)x=1 = (w)x=0 ,

(
dw

dx

)
x=1

=
(

dw

dx

)
x=0

,

(
d2w

dx2

)
x=1

=
(

d2w

dx2

)
x=0

,

(
d3w

dx3

)
x=1

=
(

d3w

dx3

)
x=0

+ γ (w)x=0 .

(50)

All relations in (50) are invariant with respect to the mirroring operation x → 1 − x and

consequently, all solutions of the spectral problem (50) can be classified using properties of

symmetry:

ws(x) ≡ ws(1 − x) (51)

for symmetric solutions ws(x) and

wa(x) ≡ −wa(1 − x) (52)

for antisymmetric solutions wa(x).

For symmetric vibration modes, the boundary conditions of the problem (50) are rewritten as

(
dws

dx

)
x=0

= 0,

(
d3ws

dx3

)
x=0

= −γ

2 (ws)x=0 ,

(
dws

dx

)
x=1

= 0,

(
d3ws

dx3

)
x=1

= +γ

2

(
ws)

x=1 .

(53)
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Taking into account (53), we find the following representation for the symmetric modes:

ws(x) = Cs

⎛
⎝ sin

(√
ω

2

)
sinh

(√
ω

2

) cosh

(√
ω

(
x − 1

2

))
+ cos

(√
ω

(
x − 1

2

))⎞
⎠ , (54)

and the transcendental equation for determining the frequencies corresponding to symmetric modes

is

coth

√
ω

2
+ cot

√
ω

2
= 4

√
ω3

γ
. (55)

Let us denote by ωk(γ ) the kth branch of the solution of equation (55). As the equation follows

from a variational principle, it holds for all branches that

dωk

dγ
≥ 0. (56)

Consequently ωk are monotonically increasing functions and as a result we have

(ωk)γ=0 ≤ ωk ≤ (ωk)γ=∞ . (57)

Figures 2 and 3 show the first two branches, ωs
0 and ωs

1, for the range 0 ≤ γ ≤ 104. Note that

ωs
0

∣∣∣∣
γ=∞

≈ 22.3733, ωs
1

∣∣∣∣
γ=∞

≈ 120.9034, (58)

and that the increase of ωs
0 and ωs

1 as functions of γ is very slow.

Let us analyze equation (55) for asymptotically small (γ � 1) and asymptotically large (γ  1)

values of the parameter γ . Asymptotic representation of the solution of equation (55) for small γ
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Figure 2: Frequency ωs
0(γ ) for 0 < γ < 104.

Figure 3: Frequency ωs
1(γ ) for 0 < γ < 104.
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is given by the expression

ωs
k(γ ) ≈ 4k2π2 + γ

4k2π2
, k = 1, 2, . . . (59)

The special case ωs
k(γ ) � 1 is analyzed separately, taking also into account the smallness of γ . By

series expansion around the point ω = 0, the left-hand side of (55) is approximately 4/
√

ω, and

hence we obtain

ωs
0(γ ) ≈ √

γ , γ � 1. (60)

Asymptotic solution (60) and rigorous numerical solutions of equation (55) practically coincide.

The asymptotic representation (60) is very effective in the range 0 ≤ γ ≤ 10. For example, for

γ = 1, we have that the rigorous numerical solution is ωs
0(1) = 0.999306 and the asymptotic

solution ωs
0(1) = 1. For γ = 10, the rigorous numerical solution gives ωs

0(10) = 3.14042 and the

asymptotic solution ωs
0(10) = 3.16228; the values are within 1% of each other.

In the case γ → ∞, equation (55) is reduced to

tan

(√
ω

2

)
= − tanh

(√
ω

2

)
, (61)

which gives the frequencies for the corresponding case with rigid supports. The first two solutions

of (61), obtained numerically, were given in (58).

We observe that tanh(
√

ω/2) → 1 very quickly as ω increases; for ω ≥ 2π2, the difference is less

than 3%, and for ω ≥ 4π2, less than 0.3%. This motivates an analytical approximation. Instead
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of (61), we solve tan(
√

ω/2) = −1, obtaining

ωs
0

∣∣∣∣
γ=∞

≈ 9

4
π2 ≈ 22.2066, ωs

1

∣∣∣∣
γ=∞

≈ 49

4
π2 ≈ 120.9027.

Using these approximations for the values ωs
k(γ = ∞) and relations (59)–(60) for γ � 1, the

inequalities (57) can be defined concretely, and written in the following form:

4k2π2 ≤ ωs
k(γ ) ≤ 4

(
k + 3

4

)2

π2, k = 0, 1, 2, . . . , (62)

For antisymmetric vibration modes wa(x), the boundary conditions in (50) take the following form:

(wa)x=0 = 0,

(
d2wa

dx2

)
x=0

= 0,

(wa)x=1 = 0,

(
d2wa

dx2

)
x=1

= 0.

(63)

In this case, the solutions of the spectral problem with boundary conditions (63) coincide with the

antisymmetric solutions of the harmonic vibration problem for the beam with hinged supports. We

have

ωa
k = 4k2π2, k = 1, 2, . . . , (64)

wa
k(x) = Ca

k sin

(
2kπ

[
x − 1

2

])
.

Thus, this set of solutions does not depend on the rigidity of the supports.
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5. EXPLICIT SOLUTIONS WITH INVERTING PHASE SHIFT

Let us move onto the case α = π . The boundary value problem (29)–(31) is reduced to

d4w

dx4
− ω2w = 0, 0 < x < 1

(w)x=1 = − (w)x=0 ,

(
dw

dx

)
x=1

= −
(

dw

dx

)
x=0

,

(
d2w

dx2

)
x=1

= −
(

d2w

dx2

)
x=0

,

(
d3w

dx3

)
x=1

= −
(

d3w

dx3

)
x=0

− γ (w)x=0 .

(65)

The problem (65) is invariant with respect to the transformation x → 1 − x. Consequently, all

solutions of the problem (65) are classified as either symmetric vibration modes ws(x), for which

ws(x) = ws(1 − x), or antisymmetric vibration modes wa(x), for which wa(x) = −wa(1 − x).

It follows from (65) that the boundary conditions for symmetric modes ws(x) have the form

(ws)x=0 = 0,

(
d2ws

dx2

)
x=0

= 0,

(ws)x=1 = 0,

(
d2ws

dx2

)
x=1

= 0.

(66)

These modes correspond to the symmetric solutions of the harmonic vibration problem for the

beam with hinged supports.

The boundary conditions (66), at first glance, may look the same as (63). The difference is implicit

in the nature of symmetric and antisymmetric solutions. Symmetric solutions will automatically

satisfy the boundary condition for dw/dx in (65). The condition (ws)x=0 = 0 eliminates the γ term

24



A
cc
ep
te
d
M
an
us
cr
ip
t

from the boundary condition for d3w/dx3, and the remaining part of this condition is automatically

satisfied because the solution is symmetric.

Similarly, in the previous case (63), the antisymmetric nature of the solution will automatically

satisfy the condition for dw/dx set in (50), while the condition (wa)x=0 = 0 again eliminates the

γ term from the boundary condition for d3w/dx3. The remaining part of that condition is then

automatically satisfied because the solution is antisymmetric.

Returning to the symmetric solutions for (65), in this case we have

ωs
k = (2k + 1)2π2, k = 0, 1, 2, . . . (67)

ws
k(x) = Cs

k cos

(
(2k + 1)π

[
x − 1

2

])
.

This set of solutions does not depend on the rigidity of the supports.

For antisymmetric vibration modes wa(x), we will have the following boundary conditions:

(
dwa

dx

)
x=0

= 0,

(
d3wa

dx3

)
x=0

= −γ

2 (wa)x=0 ,

(
dwa

dx

)
x=1

= 0,

(
d3wa

dx3

)
x=1

= +γ

2 (wa)x=1 .

(68)

The above remark on the boundary conditions applies also to the difference between the cases (68)

and (53).
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Figure 4: Frequency ωa
1(γ ) for 0 < γ < 104.

In this case we find the following shape of vibrations:

wa(x) = Ca

⎛
⎝−

cos
(√

ω

2

)
cosh

(√
ω

2

) sinh

(√
ω

[
x − 1

2

])
+ sin

(√
ω

[
x − 1

2

])⎞
⎠ , (69)

and the following transcendental equation for their frequencies:

tanh

(√
ω

2

)
− tan

(√
ω

2

)
= 4

√
ω3

γ
. (70)

See Figures 4 and 5 for the first two branches, ωa
1 and ωa

2, for the range 0 ≤ γ ≤ 104.

If γ � 1, then the solutions of equation (70) have the following asymptotic representation:

ωa
k(γ ) = (2k − 1)2 π2 + γ

(2k − 1)2 π2
, k = 1, 2, . . . (71)
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Figure 5: Frequency ωa
2(γ ) for 0 < γ < 104.

Note that, in contrast to the case with symmetric vibrations, in (71) there are no frequencies which

tend to zero. In the case γ → ∞, the equation (70) is reduced to

tan

(√
ω

2

)
= tanh

(√
ω

2

)
, (72)

and the corresponding modes have the form

wa(x) = Ca

⎛
⎝−

sin
(√

ω

2

)
sinh

(√
ω

2

) sinh

(√
ω

[
x − 1

2

])
+ sin

(√
ω

[
x − 1

2

])⎞
⎠ . (73)

The relations (72)–(73) describe the antisymmetric vibrations of the continuous beam with clamped

ends. The first two solutions of (72), obtained numerically, are

ωa
1

∣∣∣∣
γ=∞

≈ 61.6728, ωa
2

∣∣∣∣
γ=∞

≈ 199.8594.
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Taking into account (71) and the following approximate values for ωa
k(γ = ∞) obtained by solving

the approximate equation tan(
√

ω/2) = 1:

ωa
1

∣∣∣∣
γ=∞

≈ 25π2

4
≈ 61.6850, ωa

2

∣∣∣∣
γ=∞

≈ 81π2

4
≈ 199.8595,

we find the following two-sided estimate for the frequencies ωa
k(γ ):

(2k − 1)2π2 ≤ ωa
k(γ ) ≤ ωa

k

∣∣∣∣
γ=∞

≈ (2k + 1

2
)2π2, k = 1, 2, . . . (74)

6. CONCLUSION

In this paper, the problem of harmonic vibrations of a continuous infinite elastic beam having

constant rigidity and inertial characteristics was investigated. The beam was fastened by a set of

equally spaced elastic supports.

Closed-form analytical solutions were obtained for the frequencies of free vibrations and the

corresponding eigenmodes. The transcendental equations determining the frequencies, appearing

in two of the four cases studied in detail, were solved numerically.

It was observed that the frequencies increase monotonically as the rigidity of the supports is

increased. For each mode, the frequency is bounded from above by a limiting value, which is

realized for the case with absolutely rigid supports. For these upper limits, both numerical solutions

and analytical approximations were given.
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The frequencies are also bounded from below by the limit solution as the rigidity of the supports

approaches zero. Asymptotic representations were given for these lower limits.

The motivation and context of the study is in the process industry, especially paper making. The

aim was to relax two common assumptions: those of a single span, and of absolutely rigid supports.

The infinite beam considered in this study is a simplified model representing the middle part of a

multi-span system, such as a cylinder-based dryer section, far from either of its ends. The beam

model is appropriate, as it can also be used to model cylindrical deformation of a thin sheet.

Because in this study, the axial motion is neglected, the results are strictly quantitatively valid

only for low-speed axially moving systems. However, the qualitative results are expected to carry

over also to high-speed systems; it is expected that similar lower and upper bounds still apply. For

quantitative results for high-speed systems, future studies are required.

Another limitation is that the study concentrated on the case of identical supports, with each support

having the same boundary conditions. Although this is the most relevant case in a process industry

context, mathematical generalization into supports with inequal stiffnesses is a possible topic for

further studies.

In conclusion, we have seen that the elasticity in the supports, which allows them to vibrate, reduces

the natural frequencies of the beam when compared to the case of absolutely rigid supports. Thus
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one may expect that in a real system, the natural frequencies will be lower than those predicted by

a model with absolutely rigid supports.
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