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Multi-objective Optimization for Computation
Offloading in Fog Computing

Liqing Liu, Zheng Chang, Senior Member, IEEE, Xijuan Guo, Shiwen Mao, Senior Member, IEEE,
Tapani Ristaniemi, Senior Member, IEEE

Abstract—Fog computing system is an emergent architec-
ture for providing computing, storage, control, and networking
capabilities for realizing Internet-of-Things (IoT). In the fog
computing system, the mobile devices (MDs) can offload its
data or computational expensive tasks to the fog node within
its proximity, instead of distant cloud. Although offloading can
reduce energy consumption at the MDs, it may also incur
a larger execution delay including transmission time between
the MDs and the fog/cloud servers, and waiting and execution
time at the servers. Therefore, how to balance the energy
consumption and delay performance is of research importance.
Moreover, based on the energy consumption and delay, how to
design a cost model for the MDs to enjoy the fog and cloud
services is also important. In this paper, we utilize queuing
theory to bring a thorough study on the energy consumption,
execution delay and payment cost of offloading processes in a fog
computing system. Specifically, three queuing models are applied
respectively to the MD, fog and cloud centers, and the data
rate and power consumption of the wireless link are explicitly
considered. Based on the theoretical analysis, a multi-objective
optimization problem is formulated with a joint objective to
minimize the energy consumption, execution delay and payment
cost by finding the optimal offloading probability and transmit
power for each MD. Extensive simulation studies are conducted
to demonstrate the effectiveness of the proposed scheme and the
superior performance over several existed schemes are observed.

Index Terms—fog computing; cloud computing; energy con-
sumption; execution delay; cost; offloading probability; power
allocation

I. INTRODUCTION

A. Background and Motivation

With the rapid development of ICT industry, mobile de-
vices (MDs) have become an indispensable part of our daily
life as they can provide convenient communications almost
anytime and anywhere. The mobile application markets are
also boosted by the advanced mobile technologies and high
data rate wireless networks. However, due to the restrictions
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of the MDs on size, weight, battery life, and heat dissipa-
tion, the gap between the capability of limited computing
resources and demand for executing complex applications is
gradually increasing [1]. Many computational-intensive and
delay-intensive mobile applications have poor performance
when they are executed on devices, especially for Internet-
of-Things (IoT) devices which are particularly limited with
transmission power, storage, and computing resources [2].

Recent study shows that mobile cloud computing (MCC)
technology provides a promising opportunity to overcome the
limitation of hardware and obtain energy saving for the MDs
by offloading the computational-intensive tasks to the cloud
for execution [3], [4], [5], [6]. After execution in the cloud,
the final results are returned back to the MDs. By such, MCC
is able to efficiently overcome the limitations of processing
capabilities or battery capacity of the MD. To date, several
types of mobile cloud architectures are categorized [7], such as
the traditional central cloud [6], [8], ad hoc mobile cloud [9],
[10], cloudlet [11], [12], [13], [14], etc. The traditional central
cloud (such as Amazon EC2 cloud, Microsoft Windows Azure
or Rackspace) can provide huge storage, rich computational
resources, as well as good security. By offloading different
components of mobile applications to the cloud server, the
performance of mobile applications can be greatly improved
and the energy consumption of the MDs can be significantly
reduced [4], [6]. However, it is worth mentioning that the
traditional central cloud is usually remotely located and far
away from their users. Thus, for latency-sensitive mobile appli-
cations, such as high quality video streaming, mobile gaming
and so on, offloading to the distant central cloud may not be a
perfect solution. Therefore, the traditional centralized cloud
is encountering growing challenges, for the future mobile
networks, especially for the emerging IoT paradigm.

To overcome these disadvantages, fog computing, also
known as "cloud at the edge," [4], [15] emerges as an
alternative proximity solution to provide pervasive and agile
computation services for the MDs at anytime and anywhere
and support future cloud services and applications, especially
to the Internet-of-Things (IoT) applications with strict require-
ment of latency and high resilience [16], [17]. As a novel MCC
paradigm, fog computing can provide computing resources
at the edge of radio access networks (RAN) [4]. In this
case, the need for interactive response between fog computing
and cloud center can be met by fiber transmission from the
network edge to the central cloud computing infrastructures
with low-latency. The idea of using fog computing brings both
computational and radio resource more closer to the MDs, thus
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improving scalability from both computation and radio aspects
[18], [19]. However, it can be noticed that the computational
resource in the fog node cannot be treated as sufficiently as
that in the traditional central cloud, as it is usually targeted to
serve a small portion of users.

With MCC, the mobile requests from the IoT applications
can be locally executed or offloaded to the cloud for process-
ing. However, offloading may incur additional delay and gener-
ate related cost for enjoying the cloud service. Specifically, to
minimize the delay performance and cost of mobile requests,
one may run the tasks locally at the MDs as no additional
costs for communication time, waiting delay at the cloud and
resource utilization are incurred. However, running too many
requests locally may consume large amount of energy, thus
shorten the lifetime of the MDs. On the contrary, offloading
the requests to the cloud can save the energy at the MDs, but it
unavoidably incurs the corresponding delay including waiting
time at the server and the communication time between the
cloud and the MDs, and the payment cost for utilizing the
resource in cloud server. Thus, the tradeoff among energy
consumption, delay performance and payment cost for the
MDs needs to be addressed [20], [21]. In this paper, our
aim is to investigate such a tradeoff in a heterogeneous fog
computing environment and propose optimal offloading and
power allocation policies.

B. Contributions
In this paper, we investigate the problem of joint energy

consumption, delay and payment cost (E&D&P) minimization
for the MDs in a fog computing heterogeneous network. The
main contribution of this paper is summarized as follows:

1) A fog-based mobile cloud computing system is inves-
tigated. Different queue models are applied to different
network elements in order to provide in-depth study on
energy consumption and delay performance, e.g., the
queues at the MD is considered as a M/M/1 queue,
the one at the fog node is considered as a M/M/c
queue with a defined maximum request rate, and the
one at the central cloud is considered as a M/M/∞
queue. Such a fog computing system is rarely studied
in the previous works about MCC. In particular, both
wireless transmission and computing capabilities are
explicitly and jointly considered when modelling the
energy consumption, delay performance and payment
cost.

2) We present a joint E&D&P optimization problem, in-
cluding the energy consumption and delay in local exe-
cution process, computational task transmission process,
fog execution and transmission process, and central
cloud execution and transmission process, together with
the payment cost, which can thoroughly complement the
existing analysis of the fog computing system.

3) A multi-objective optimization problem is formulated,
which involves minimizing the energy consumption,
delay and payment cost by finding the optimal offloading
probability and transmit power. Using the scalarization
method, we are able to transform the multi-objective op-
timization problem into a single-objective optimization

problem. Interior Point Method (IPM) is then applied
to address transformed optimization problem. The pro-
posed IPM-based algorithm can reduce the accumulated
error and improve the calculation accuracy during the
iteration process effectively.

4) Extensive simulation studies are conducted to evaluate
the effectiveness of the proposed schemes. It is shown
that our scheme can find the optimal offloading proba-
bility and transmit power, and to achieve the E&D&P
minimization.

The reminder of this paper is organized as follows. We
briefly overview the recent related works in Section II. In
Section III the system model is introduced and the joint
E&D&P optimization problem is presented. In Section IV
we propose a scalarization and IPM based algorithm to solve
the formulated problem. The simulation results are presented
to verify the proposed schemes in Section V. Finally, we
conclude our work in Section VI.

II. RELATED WORK

In the MCC, offloading study is an attractive yet challenging
topic, which involves making decisions regarding where to run
the mobile requests and how to allocate computing resources.
In [2], the authors summarize the opportunities and challenges
of fog, focusing primarily in the networking context of IoT. As
an architecture, fog supports a growing variety of applications,
including those in the Internet of Things (IoT), fifth-generation
(5G) wireless systems, and embedded artificial intelligence
(AI). In [4], the authors introduce the definition of edge com-
puting, followed by several case studies, ranging from cloud
offloading to smart home and city, as well as collaborative
edge to materialize the concept of edge computing. In [5],
the authors consider a mobile computation offloading problem
where multiple mobile services in workflows be invoked to
fulfill their complex requirements and the decisions be made
on whether the services of a workflow should be offloaded. In
[6], the authors presents a quantitative study on the energy-
traffic tradeoff problem from the perspective of entire Wireless
Local Area Network (WLAN). In [8], the authors review first a
series of offloading mechanisms and then to provide a math-
ematical formulation of these problems aimed at optimizing
the communication and computation resources jointly, posing
a strict attention to latency and energy constraints. Wherever
possible, the authors also try to emphasize those features of 5G
systems that can help meet the strict latency constraints while
keeping the energy consumption at a minimum level. The
authors of [10] study the problem that nearby mobile devices
can efficiently be utilized as a crowd-powered resource cloud
to complement the remote clouds and present a work-sharing
mode using an adaptation of the well-known work stealing
method to load balance independent jobs among heteroge-
neous mobile nodes. Vehicular cloud is a practical application
of ad hoc mobile cloud. In [11], the authors develop a Markov
decision process (MDP)-based optimal offloading algorithm
for the mobile user in an intermittently connected cloudlet
system, considering the users’ local load and availability
of cloudlets. The authors of [12] consider a multi-resource
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allocation problem in the cloudlet environment for resource-
intensive and latency-sensitive mobile applications.

Meanwhile, the average transmission delay between the
MDs and central cloud can be relatively long. To address such
a problem, cloudlet/fog deployed in the vicinities of users has
gained recognition as an alternative offloading destination due
to its short response time and relatively large capability. In
[13], the authors study different cloudlet placement problems
in a large scale Wireless Metropolitan Area Network (WMAN)
consisting of many wireless access points (APs), with the
objective to minimize the average access delay between mobile
users and the cloudlet. In [14], the authors design a threshold-
based policy to improve the QoS of MCC by cooperation of
the local cloud and Internet cloud resources, which takes the
advantages of low latency of the local cloud and abundant
computational resources of the Internet cloud simultaneously.
Fog computing is a new concept emerged in recent years and
provides pervasive and agile computation augmenting services
for the MDs with short delay [15]–[19]. The article of [16]
introduces a layered fog-to-cloud architecture and its benefits,
as well as the arising open and research challenges. In [17], the
authors study the multi-user computation offloading problem
for fog computing in a multi-channel wireless interference
environment and show that the problem is NP-hard to compute
a centralized optimal solution, and adopt a game theoretic
approach for achieving efficient computation offloading in
a distributed manner. In [18], the tradeoff between power
consumption and transmission delay in the fog-cloud comput-
ing system is investigated. The authors formulate a workload
allocation problem which suggests the optimal workload al-
locations between fog and cloud toward the minimal power
consumption with the constrained service delay and solving
it using an approximate approach by decomposing the primal
problem into three subproblems of corresponding subsystems.
In [19], the authors formulate the offloading problem as
the joint optimization of the radio resources (the transmit
precoding matrices of the mobile users) and the computational
resources (the CPU cycles/second assigned by the fog to each
mobile user), in order to minimize the overall users’ energy
consumption, while meeting latency constraints.

It can be found that some of the aforementioned literatures
take the energy consumption, delay performance, or cost for
resource usage individually into account when designing the
offloading schemes. However, to date, the problem of jointly
optimizing these three goals in a fog computing system has
not been well addressed. Moreover, most of the previous
works consider transmit power fixed, which is too simplistic
and inconsistent with the reality. In addition, many works
consider the cloud or fog are with infinite computing servers
or capabilities whereas the reality is against it. Therefore,
in this paper, we first thoroughly analyze the related energy
consumption, delay performance, and cost models, and then
formulate a joint E&D&P optimization to find the optimal
offloading and power allocation solutions.

Fig. 1. The model of the fog computing system

TABLE I
NOTATIONS

Notations Meanings
N the number of MDs in the system
λi the average request arrival rate of the MD i
pCi the offloading probability of the MD i
uM
i the computing capability of the MD i

lMi the normalized workload of the MD i
κi the locally execution power of MD i
θi the computation input data size in each request of MD i
W the channel bandwidth
Pi the transmission power of the MD i
Pmax
i the maximum transmission power of MD i

hi the channel gain between the MD i and the base station
ωi the background interference power
c the number of servers in the fog node
uF the service rate in the fog node
uF
b the sending rate of the fog node

T o the fixed delay from fog to the central cloud
uCC the service rate of the central cloud
uCC
b the sending rate of the central cloud

Ẽ the expected energy consumption of MDs in the system
T̃ the expected delay performance of MDs in the system
M̃ the expected payment cost of MDs in the system

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we assume that the considered system
consists of N MDs, a fog node, and a distant central cloud.
The MD can connect with the fog/cloud via the deployed
base station (BS). The set of MD is denoted as N . Each
MD executes an application and generates a series of service
requests. In this paper, we consider the traffic model at the
MD as an M/M/1 queue [22], the one in the fog node
as an M/M/c queue [13] and the one at the central cloud
as an M/M/∞ queue [22]. For each MD, it can offload a
portion or the whole of its requests to the fog node through
the wireless channel, where the transmission suffers from
interference generated by other MDs. If the total request rate
is less than the maximum accepted rate of the fog node, then
all the offloaded requests will be processed in the fog node.
Otherwise, the fog node will further offload the overloaded
requests to the central cloud for execution.

We assume that the requests generated from MD i, i ∈ N ,
follow a Poisson process with an average arrival rate of λi [13].
The requests are assumed to be computationally intensive,
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mutually independent, and can be executed either locally in
the MD or remotely on the fog node and the central cloud via
computation offloading. Each request generated from the MD
i is of data size θi. The MD chooses to offload the service
request with a probability pCi , 0 ≤ pCi ≤ 1. Accordingly,
the service requests which are offloaded to the cloud follow
a Poisson process with an average rate of pCi λi and it is
denoted as the offloading rate. The service requests that are
processed locally also follow a Poisson process with average
rate of

(
1− pCi

)
λi, and it is called as local execution rate.

We can observe that when the value of pCi becomes larger,
more requests are delivered to the fog node or the central
cloud while the less requests are processed locally. The key
notations are summarized in Table 1.

Let uMi denotes the computing capability of MD i. Addi-
tionally we assume that lMi denotes the normalized workload
on the MD i which represents the percentages of CPU that
have been occupied. lMi = 0 indicates that the CPU is totally
idle. When considering a M/M/1 queue at the MD, the
average response time TM

i for locally processing requests at
MD i is expressed as follows [22]:

TM
i

(
pCi
)
=

1

uMi
(
1− lMi

)
−
(
1− pCi

)
λi
. (1)

When MD i transmits the data to the fog node, with the
consideration of the interference caused by other MDs, we
can obtain the uplink data rate for computation offloading of
MD i as follows:

Ri =W log2

(
1 +

Pihi
ω0 +

∑
j∈N,j ̸=i Pjhj

)
, (2)

where W is the channel bandwidth and Pi is the transmission
power of the MD i. Additionally, 0 < Pi < Pmax

i , where
Pmax
i is the maximum transmit power of MD i. hi is the

channel gain between MD i and the BS. ω0 denotes the noise
power. Note that (2) is the the worst case that all MDs are
transmitting simultaneously without any coordination. From
(2), we can obtain the transmission time of MD i for offloading
the data from MD i as follows:

T t
i

(
pCi , Pi

)
=
pCi λiθi
Ri

. (3)

As one can observe, the energy consumption of MD i
comprises of two parts: (1) energy consumption of the MD for
local service request processing; (2) energy consumption for
transmitting data to the BS. The energy consumption EM

i

(
pCi
)

for locally executing the requests for MD i can be given as
follows:

EM
i

(
pCi
)
= κiT

M
i

(
pCi
)
= κi

1

uMi
(
1− lMi

)
−
(
1− pCi

)
λi
,

(4)
where κi is the energy coefficient denoting the locally execut-
ing power of MD i, which is related to the intrinsic nature of
the MDs. For the sake of simplicity, we assume κi is constant
during the waiting time and computation process.

We denote the energy consumption for transmitting the
requests from the MD to the BS is ES

i (pi), which can be

given as follows [19]:

ES
i

(
pCi , Pi

)
= PiT

t
i

(
pCi
)
= Pi

pCi λiθi
Ri

=
Pip

C
i λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

) . (5)

It can be noticed that the computing resource of the fog
node may be adequate for running several mobile requests si-
multaneously, but insufficient for executing too many requests.
The central cloud, on the other hand, has sufficient computing
resources. So it can be considered to be always available as
long as the users purchase the service. Therefore, if the fog
node is overloaded, the overloaded requests will be further
offloaded to the central cloud.

Accordingly, we assume that there are c homogeneous
servers deployed in the fog node. The service rate for each
server is denoted as uF . The maximum workload of the fog
node is capped at a maximum request rate denoted as λFmax.
The purpose of defining λFmax for the fog node is to avoid
the excessive queueing delay when the fog node servers are
heavily loaded. The requests from different MDs in the system
are pooled together with a total rate λMTotal. According to the
properties of the Poisson process, λMTotal is given as follows:

λMTotal =
N∑
i=1

λip
C
i . (6)

Then the fraction of the requests ψF that the fog node can
process is given as:

ψF =

{
1, λFmax ≥ λMTotal;
λF
max

λM
Total

, λFmax < λMTotal.
(7)

Correspondingly, the actual execution rate at the fog node
can be expressed as:

λFp = ψFλMTotal =

{
λMTotal, λFmax ≥ λMTotal;
λFmax, λFmax < λMTotal.

(8)

To this end, based on the analysis of M/M/c queue at the
fog node and Erlang’s Formula [23], we define

ρF =
λFp
cuF

. (9)

Therefore, the average waiting time of each request at the
fog node, which contains the waiting time and execution time,
is denoted as follows [13], [23]:

TF
wait

(
λFp
)
=
C
(
c, ρF

)
cuF − λFp

+
1

uF
, (10)

where

C
(
c, ρF

)
=

(
(cρF )

c!

)(
1

1−ρF

)
∑c−1

k=0
(cρF )k

k! +
(

(cρF )
c!

)(
1

1−ρF

) . (11)

Assuming uFb is the transmission data rate of the fog node,
we can obtain the expected time TF

b for the execution results
waiting in the fog node before they are completely delivered
out as follows:
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TF
b

(
λFp
)
=

1

uFb − λFp
. (12)

If the fog node cannot process all the requests due to the
limitation of computational resources, overloaded requests are
transmitted to the central cloud through wired connection.
Accordingly, we assume that the transmission of those requests
to the central cloud incurs a fixed time delay TO. As the
central cloud has sufficient computing resources to process
these requests, the queuing time of the requests in the central
cloud can be negligible. The queue model at the central cloud
is considered as M/M/∞ with the service rate uCC , which
is usually faster than the fog node service rate uF . Then, the
waiting time TCC

wait of the overloaded requests, which includes
the transmission time from the fog node to the central cloud,
and the execution time at the central cloud can be presented
as follows:

TCC
wait = TO +

1

uCC
. (13)

After processing the tasks, the central cloud will transmit
the results to the fog node, and the fog node would send the
results to the MDs, since the central cloud might not know the
IP address of the MD. Then the expected time TCC

b for the
results waiting in the cloud before they are completely sent
out is denoted as

TCC
b

(
pCi
)
=

1

uCC
b −

(
λMTotal − λFp

) . (14)

The time and energy consumption for the MD to receive
the results can be ignored, due to the fact that for many ap-
plications (e.g., face recognition), the size of the computation
outcome in general is much smaller than that of input data [5],
[17]. From (4) and (5), we can obtain the energy consumption
of MD i as follows:

Ei

(
pCi , Pi

)
=
(
1− pCi

)
EM

i

(
pCi , Pi

)
+ pCi E

S
i

(
pCi , Pi

)
.

(15)
From (1), (3), (10), (12), (13) and (14), we can obtain the

execution time of MD i, which is denoted as follows

Ti
(
pCi , Pi

)
=
(
1− pCi

)
TM
i

(
pCi
)
+ pCi T

t
i

(
pCi , Pi

)
+ pCi ψ

F
(
TF
wait + TF

b

)
+ pCi

(
1− ψF

) (
TCC
wait + TCC

b

)
.

(16)

Correspondingly, the average energy consumption and ex-
ecution time of all MDs in the system are given in (17) and
(18).

In addition, the MD has to pay for the resource they used
in the fog node or the central cloud. We assume that the unit
cost for the fog node is rF and that for the central cloud
is rCC . In general, rCC > rF as the central cloud has a
number of powerful servers that need a lot of resources to
maintain and it can also encourage the use of fog computing.
We also assume that the cost is related to the use of resources,
e.g., execution rate. Through the above assumptions, we can
compute the average cost of the MDs as follows:

M
(
pCi
)
=

1

N

{
rFλFp

(
pCi
)
+ rCC

[
λMTotal

(
pCi
)
− λFp

(
pCi
)]}

.

(19)

B. Problem Formulation

To this end, with above analytic results on the expected
energy consumption, execution delay and payment cost per-
formance, we are able to formulate the joint E&D&P mini-
mization problem. The problem can be considered as a multi-
objective optimization which involves minimizing energy con-
sumption, execution delay and cost, as follows:

P1 : min
{pC

i ,Pi}

{
E
(
pCi , Pi

)
, T
(
pCi , Pi

)
,M

(
pCi
)}
, (20)

subject to (
1− pCi

)
λi < uMi

(
1− lMi

)
, (21)

λFp < cuF , (22)

λFp < uFb , (23)

λMTotal − λFp < uCC
b , (24)

0 < Pi < Pmax
i ∀i ∈ N , (25)

0 ≤ pCi ≤ 1 ∀i ∈ N . (26)

Constraints (21), (22), (23), and (24) are derived from (1),
(10), (12), and (14) respectively. (21) enforces that the request
arrival rate of local execution should not exceed the MD’s
processing rate. (22) enforces that the actual processing rate
at the fog node should not exceed the service rate of the fog
node. (23) makes sure that the actual processing rate at the fog
node should not exceed the transmission rate of the fog node
and (24) ensures that the requests arrival rate at the central
cloud should not exceed the transmission rate of the central
cloud.

It can be noticed that the formulated problem is a multi-
objective nonlinear optimization problem with various con-
straints. As discussed in [24], in general, there are two
kinds of algorithms to solve the multi-objective optimization
problems, which are traditional optimization algorithm and
intelligent optimization algorithm. The traditional optimization
methods include weighted method, constraint method, linear
programming method and so on. In the use of the weighted
method, the first goal is to obtain a dimensionless process for
each objective function. Therefore, we assume that the MDs in
the system have an expected maximum energy consumption,
execution delay and payment cost, which are denoted as Ẽ,
T̃ , M̃ respectively and they are all constants. To address such
a kind of problem, the scalarization method can be applied.
To qualify the tradeoff, we incorporate a set of weight factors:
{α1, α2, α3}, where α1 +α2 +α3 = 1, to reflect the relative
importance of the energy costs, execution time and payment
cost, respectively. For example, when the system is more
energy constrained, then the weight factor α1 can be made
relatively larger and vice versa.

By such, the multi-objective optimization system is able to
be transformed to a single objective optimization problem P2,
which is

min
{pC

i ,Pi}
α1

E
(
pCi , Pi

)
Ẽ

+α2

T
(
pCi , Pi

)
T̃

+α3

M
(
pCi
)

M̃
. (27)

subject to: (21)-(26).
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E
(
pCi , Pi

)
=

1

N

N∑
i=1

Ei

(
pCi , Pi

)
=

1

N

{
N∑
i=1

[(
1− pCi

)
EM

i

(
pCi
)
+ pCi E

S
i

(
pCi , Pi

)]}

=
1

N


N∑
i=1

(1− pCi
) κi

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi
Pip

C
i λiθi

W log2

(
1 + Pihi

ωi+
∑

j∈N,j ̸=i Pjhj

)


(17)

T
(
pCi , Pi

)
=

1

N

[
N∑
i=1

Ti
(
pCi , Pi

)]

=
1

N

N∑
i=1

{(
1− pCi

)
TM
i

(
pCi
)
+ pCi

[
T t
i

(
pCi , Pi

)
+ ψF

(
TF
wait

(
pCi
)
+ TF

b

(
pCi
))

+
(
1− ψF

) (
TCC
wait + TCC

b

(
pCi
))]}

=
1

N

N∑
i=1



(
1− pCi

) 1

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi
pCi λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

)

+pCi ψ
F

(
C
(
c, ρF

)
cuF − λFp

+
1

uF
+

1

uFb − λFp

)
+pCi

(
1− ψF

)TO +
1

uCC
+

1

uCC
b −

(
N∑
i=1

λipCi − λFp

)



(18)

From the above description, we can see that the optimization
variables pCi and Pi of MD i, i ∈ N interact with each other.
When the value of pCi becomes larger, the energy consumption
of the MD decreases while the execution delay increasing;
when the value of Pi becomes larger, the energy consumption
of the MD increase while the execution time decreases. Thus,
in this paper, we should optimize the offloading probability
pCi and transmission power Pi in order to optimize the energy
consumption, execution time, and cost.

IV. ALGORITHM DESIGN

Through a detailed analysis, we can find that the maximum
request rate of the fog node is an important factor for the
system performance as it can determine whether there is any
requests transferred to the central cloud. By comparing the
values of λFmax and λMTotal, we can further divided the case
into two sub-cases.

1) In the first sub-case, we assume that the maximum
request rate of the fog node is larger than the total
workload in the system, i.e., λFmax ≥ λMTotal. In other
words, all the MDs’ requests in the system can be
processed at the fog node. In this situation, ψF =1 and

λFp = λMTotal=
N∑
i=1

pCi λi. Substituting (1), (3), (4), (5),

(10), (11), (12) and (19) into (27), we can obtain the
E&D&P optimization problem P3 in a specific analytical
expression in (28) subject to

(
1− pCi

)
λi < uMi

(
1− lMi

)
, (29)

N∑
i=1

λip
C
i − cuF < 0, (30)

N∑
i=1

λip
C
i − λFmax < 0, (31)

N∑
i=1

λip
C
i − uFb < 0, (32)

0 ≤ pCi ≤ 1, (33)

0 < Pi < Pmax
i , (34)

where ρF =
λF
p

cuF =

N∑
i=1

λip
C
i

cuF .
2) In the second subcase, we assume that the maximum

requests rate of the fog node is less than the total
requests workload in the system, which means that
λFmax < λMTotal. In this situation, ψF = λF

max

λM
Total

=
λF
max

N∑
i=1

pC
i λi

.

In other words, the fog node can only process as much
as λFmax workload, and the overloaded requests will
be further offloaded to the central cloud to execute.
Substituting (1), (3), (4), (5), (10), (11), (12), (13),
(14) and (19) into (27), we can obtain the E&D&P
optimization problem P4 in (35) where ρF =

λF
max

cuF .
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min
{pC

i ,Pi}
V1
(
pCi , Pi

)
=

α1
1

N

1

Ẽ

N∑
i=1

(1− pCi
) κi

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi
Pip

C
i λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

)


+ α2
1

N

1

T̃

N∑
i=1



(
1− pCi

) 1

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi

 pCi λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

)+
C
(
c, ρF

)
cuF −

N∑
i=1

λipCi

+
1

uF
+

1

uFb −
N∑
i=1

λipCi




+ α3r

F 1

N

1

M̃

N∑
i=1

λip
C
i

(28)

min
{pC

i ,Pi}
V2
(
pCi , Pi

)
=

α1
1

N

1

Ẽ


N∑
i=1

(1− pCi
) κi

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi
Pip

C
i λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

)


+ α2
1

N

1

T̃

N∑
i=1



(
1− pCi

) 1

uMi
(
1− lMi

)
−
(
1− pCi

)
λi

+pCi
pCi λiθi

W log2

(
1 + Pihi

ω0+
∑

j∈N,j ̸=i Pjhj

)

+ pCi

 λFmax

N∑
i=1

pCi λi

(
C
(
c, ρF

)
cuF − λFmax

+
1

uF
+

1

uFb − λFmax

)

+ pCi

1− λFmax

N∑
i=1

pCi λi


(
TO +

1

uCC
+

1

uCC
b −

(
λMTotal − λFmax

))


+ α3

1

N

1

M̃

[
rFλFmax + rCC

(
N∑
i=1

pCi λi − λFmax

)]

(35)

subject to (
1− pCi

)
λi < uMi

(
1− lMi

)
, (36)

λFmax −
N∑
i=1

λip
C
i < 0, (37)

N∑
i=1

λip
C
i − λFmax − uCC

b < 0, (38)

0 ≤ pCi ≤ 1, (39)

0 < Pi < Pmax
i . (40)

In order to solve the nonlinear programming problems P3
and P4, we may consider using one special "punishment"
approach called IPM as presented in [?], [?]. The role of
introducing penalty function is equivalent to setting obstacles
on the boundary of the feasible region, so that the iterative
solution process of solving always in the feasible region.

Correspondingly, the penalty functions for the first subcase
and second subcase are given as (41) and (42). In (41) and
(42), ξ(k)1 > 0 and ξ

(k)
2 > 0 are the penalty coefficients, and

ξ
(k)
j , j ∈ {1, 2} satisfies the following iterative rules:

ξ
(k+1)
j = βjξ

(k)
j , (43)

where βj are the reduction factors. In general, the smaller of
the reduction factor, the faster the penalty coefficient value
falls, resulting in a larger interval of the optimal sequence. In
contrast, the larger the reduction factor, the denser the interval
of the optimal sequence, and the number of solving uncon-
strained optimal solution increases undoubtedly. In general,
with 0 < βj < 1, we can always obtain the optimal solution.

Theorem 1: Assume that the feasible domain is a convex
set and the constructed penalty function is continuous, then
with the iterative IPM approach, at least one feasible solution
can be obtained and it converges to the global optimum [24].
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Φ1

(
pCi , Pi, ξ

(k)
1

)
= V1

(
pCi , Pi

)
− ξ

(k)
1 ln

[
N∏
i=1

∣∣(1− pCi
)
λi − uMi

(
1− lMi

)∣∣]− ξ
(k)
1 ln

∣∣∣∣∣
N∑
i=1

λip
C
i − cuF

∣∣∣∣∣
− ξ

(k)
1 ln

∣∣∣∣∣
N∑
i=1

λip
C
i − λFmax

∣∣∣∣∣− ξ
(k)
1 ln

∣∣∣∣∣
N∑
i=1

λip
C
i − uFb

∣∣∣∣∣− ξ
(k)
1 ln

(
N∏
i=1

∣∣pCi ∣∣
)

− ξ
(k)
1 ln

(
N∏
i=1

∣∣pCi − 1
∣∣)− ξ

(k)
1 ln

(
N∏
i=1

|Pi|

)
− ξ

(k)
1 ln

(
N∏
i=1

|Pi − Pmax
i |

)
(41)

Φ2

(
pCi , Pi, ξ

(k)
2

)
= V2

(
pCi , Pi

)
− ξ

(k)
2 ln

[
N∏
i=1

∣∣(1− pCi
)
λi − uMi

(
1− lMi

)∣∣]− ξ
(k)
2 ln

∣∣∣∣∣λFmax −
N∑
i=1

λip
C
i

∣∣∣∣∣
− ξ

(k)
2 ln

∣∣∣∣∣
N∑
i=1

λip
C
i − λFmax − uCC

b

∣∣∣∣∣− ξ
(k)
2 ln

(
N∏
i=1

∣∣pCi ∣∣
)

− ξ
(k)
2 ln

(
N∏
i=1

∣∣pCi − 1
∣∣)

− ξ
(k)
2 ln

(
N∏
i=1

|Pi|

)
− ξ

(k)
2 ln

(
N∏
i=1

|Pi − Pmax
i |

)
(42)

We can easily find that the constraints in P3 and P4 are
linear, so the feasible domain are convex sets undeniably.
Moreover, the penalty functions that we constructed in (41)
and (42) are continuous. So we can obtain the global optimum
with IPM approach as Theorem 1 described.

By evaluating the following equations,
∂Φ1

(
pC
i ,Pi,ξ

(k)
1

)
∂pC

i
=0, (i = 1, 2, · · · , N) ,

∂Φ1

(
pC
i ,Pi,ξ

(k)
1

)
∂Pi

=0, (i = 1, 2, · · · , N) .

(44)


∂Φ2

(
pC
i ,Pi,ξ

(k)
2

)
∂pC

i
=0, (i = 1, 2, · · · , N) ,

∂Φ2

(
pC
i ,Pi,ξ

(k)
2

)
∂Pi

=0, (i = 1, 2, · · · , N) ,

(45)

we can obtain the extreme points
(
pCi

(
ξ
(k)
a

)
, Pi

(
ξ
(k)
a

))N
i=1

of these two penalty functions. Through iteration, we can

obtain the optimal solution
((
pCi
)∗
, (Pi)

∗
)N
i=1

.
The detailed procedure of the proposed algorithm is de-

picted in Algorithm 1. With Algorithm 1, we can find the
optimal offloading probability and the optimal transmit power
for each MD in order to minimizing the E&D&P in the system
under different cases.

The major advantages of the IPM scheme are the low-
degree polynomial complexity, and an unrivalled ability to
deliver optimal solutions in an almost constant number of
iterations which depends very little, if at all, on the problem
dimension. Thus, from a practical point of view, they have
produced solutions to many industrial problems that were
hitherto intractable. For the proposed IPM-based algorithm,
the complexity is O(n) where n denotes the number of
iterations [25].

Algorithm 1 Proposed IPM-based Algorithm
1: Initialization:

initial feasible point
((

pCi
)0

, (Pi)
0
)N

i=1
; initial value of penalty coeffi-

cients ξ
(0)
j ; the reduction factor βj , k = 0.

2: Define εj as a sufficiently small positive real number.
3: Solving the extreme points of the penalty functions as(

pCi

(
ξ
(k)
j

)
, Pi

(
ξ
(k)
j

))N

i=1
(j = 1, 2).

4: while (
∥∥∥∥((

pCi

(
ξ
(k)
j

)
, Pi

(
ξ
(k)
j

))N

i=1

)
−

(((
pCi

)0
, (Pi)

0
)N

i=1

)∥∥∥∥ >

εj ) do
5: Iteration: ξ(k+1)

j = βjξ
(k)
j (j = 1, 2; k = 0, 1, 2 · · · ),((

pCi
)0

, (Pi)
0
)N

i=1
=
(
pCi

(
ξ
(k)
j

)
, Pi

(
ξ
(k)
j

))N

i=1
(j = 1, 2),k =

k + 1 .
6: end while
7: return

(
pCi

(
ξ
(k)
j

)
, Pi

(
ξ
(k)
j

))N

i=1
(j = 1, 2).

TABLE II
SIMULATION PARAMETERS OF THE SINGLE-USER SCENARIO

Parameters uF (MIPS) uF
b (MIPS) uM

i (MIPS) λi (MIPS)
Value 10 10 4.5 1.5
Parameters κi (w) θi (bits) lMi
Value 16 3.2e+6 0.3

V. PERFORMANCE EVALUATIONS

In this section, extensive simulations are conducted to
validate the effectiveness of the proposed algorithm for the
joint E&D&P optimization problem. We also assume that the
maximum energy consumption, delay and cost for MDs in the
system is 15 Joule, 2 Second and 0.1, respectively. The unit
payment using the fog computing is assumed to be 0.001 and
for the central cloud is 0.005. The number of servers in the
fog node is c = 4.

First, we investigate the impact of offloading probability
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Fig. 2. The impact of offloading probability on energy consumption
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Fig. 3. The impact of offloading probability on execution delay

pCi and transmission power Pi on the energy consumption and
delay performance. For simplicity, we concentrate on a single-
user scenario. The simulation parameters can be found in Table
II and some of them are modified from [8], [22]. In Fig. 2,
we investigate the impact of offloading probability pCi on the
energy consumption at different transmit powers. As we can
see that at a certain transmit power, the energy consumption
decreases with the increased offloading probability. When
offloading probability increases, more and more requests are
offloaded to the fog node. As considered, the transmit energy
consumption is less than the local energy consumption, thus,
the MD’s energy consumption becomes less and less. From
Fig. 2, the benefits on energy consumption of using MCC can
be observed. Meanwhile, when the transmit power becomes
larger, the transmission energy consumption also grows, which
can be found by comparing the three curves at a certain
offloading probability in Fig. 2.

In Fig. 3, the impact of offloading probability pCi on the
execution delay at different transmit powers is illustrated. As
we can see that at a certain level of transmit power, the
execution delay increases along with the offloading probability.
When more and more requests offloaded to the cloud, the
transmission time and queue time will be increased, which is
in line with the trend in Fig. 3 and also indicates the drawbacks
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of MCC on delay.
In Fig. 4, we also study the impact of transmit power Pi

on the execution delay at different offloading probabilities.
Generally, a larger transmits power can result in a larger uplink
data rate, and obtain a smaller delay, which can be found
from Fig. 4. Also, the lager of offloading probability, as more
requests are offloaded to the cloud servers, the execution delay
would naturally increase, which can be found by comparing
the three curves in Fig. 4.

We examine the impact of maximum transmit power on
energy consumption in Fig. 5. From this figure, we can find
that at the beginning, the energy consumption increases with
the increment of the maximum transmit power. The energy
consumption approaches a constant value at a certain point.
This is mainly because of the proposed optimization solution,
the optimized transmit power level is reached. Comparing
these four figures, we can clearly observe the necessity for
investigating the tradeoff between the energy consumption and
execution delay with respect to the offloading probability and
transmit power.

Secondly, we evaluate the system performance of the first
sub-case, where the fog node processing capability is relatively
large, i.e., λMTotal < λFmax and assume that there are 3 MDs in
the system if not specified. The simulation parameters of the
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TABLE III
SIMULATION PARAMETERS OF THE FIRST-SUB CASE

Parameters (Units) MD 1 MD 2 MD 3
κi (w) 16 16 16
θi (bits) 3.2e+6 2.7e+6 2.3e+6
uM
i (MIPS) 4.6 4.5 4.5

P th
i (dBm) 23 23 23

lMi 0.3 0.3 0.3

MDs for the first sub-case are presented in Table III, and they
are also modified from [9] and [25].

With the proposed scheme, we can obtain the optimal
offloading probability and optimal transmission power for each
MD at any arrival rate at a certain weight set. For example, we
determine (α1, α2, α3) = (0.4, 0.5, 0.1), when the arrival rates
are (1.4, 1.8, 1.6), the optimal transmission power and optimal
offloading probability is (13.8976, 0.8021), (10.5612, 0.7699),
(14.7653, 0.8357) for MD 1, MD 2, and MD 3 respectively.

We also investigate the optimal transmit power and optimal
offloading probabilities for different sets of weight factors to
see the impact of weight factors at a certain arrival rate for
each MD In Table IV. We set arrival rate for each MD as
(1.4, 1.3, 1.6) respectively. The optimal transmission power
and optimal offloading probability at different sets of weight
factors for each MD is displayed at Table IV which illustrate
the impact of weight factors. For example, when the system
puts more attention on energy, the offloading probability is
0.8817 but the transmission power is 11.4533 for MD 1,
which decrease the energy consumption from both higher
offloading probability and lower transmit power, while the
system puts more attention on delay performance, the the
offloading probability is 0.5499 but the transmission power
is 15.0433, which decrease the execution delay from both
lower offloading probability and higher transmission power.
When the MD puts more attention on the cost, the offloading
probability is also relatively lower.

Then we evaluate the system performance of the second
sub-case in Figs. 6- 8, where the processing capability of the
fog node is smaller comparing with the requests, i.e., λMTotal >
λFmax. We assume that there are 10 MDs in the system unless
specified.

With the proposed scheme, we can also compute the op-
timal offloading probability and optimal transmission power
in order to minimize the system overhead at any arrival
rates of the MDs at a certain weight set. For example, we
determine (α1, α2, α3) = (0.2, 0.4, 0.4), when the arrival
rates are (1.6, 2.1, 1.8) for MD 1, MD 2, and MD 3, the
optimal transmission power and optimal offloading probability
is (12.2029, 0.8990), (11.3717, 0.7308), (11.4979, 0.8450),
respectively.

In addition, we investigate the impact of the number of
MDs on E&D&P, which is displayed in Fig. 6. From Fig.
6, we can find that when the number of MDs increases, the
energy consumption and execution delay also increase, while
the payment cost decreases. There is no doubt that resources
contention and sharing can cause delay and performance
degradation that might result in higher and higher response
time. With the increased execution delay, some MDs prefer
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Fig. 7. The impact of transmission power on E&D&P

to execute some requests locally, so the energy consumption
increases and payment cost decreases.

In Fig. 7, we investigate the impact of transmit power
on the total E&D&P at different offloading probabilities. At
first, with transmission power increasing, the total weighted
E&D&P decrease. The E&D&P reaches the minimum, at a
certain transmission power value, which is the optimal transmit
power. Then the total weighted E&D&P increase with the
transmit power increasing. This rule can be found from any
curve in Fig.7, which denotes different offloading probabilities.
Moreover, the larger offloading probability, the less E&D&P
can be obtained, which can be found by comparing the four
curves in Fig. 7.

In Fig. 8, we compare our proposed scheme with other
schemes proposed in [14], [22]. In our scheme, we optimize
both offloading probability and transmit power to minimize
the E&D&P while the method in [14] can be viewed as the
one only optimizes the offloading probability and the one in
[22] only optimizes the transmit power. We can see that our
method can achieve a better performance in E&D&P by jointly
optimizing the offloading probability and transmit power,
which demonstrates the comprehensiveness and validity of this
study.
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TABLE IV
THE OPTIMAL TRANSMISSION POWER AND OPTIMAL OFFLOADING PROBABILITY OF THE FIRST SUB-CASE

Sets of weight factors
(
(P1)

∗,
(
pF1

)∗) of MD 1
(
(P2)

∗,
(
pF2

)∗) of MD 2
(
(P3)

∗,
(
pF3

)∗)of MD 3
(0.6, 0.2, 0.2) (11.4533, 0.8817) (10.4731, 0.8632) (10.4680, 0.9237)
(0.2, 0.7, 0.1) (15.0433, 0.5499) (11.5344, 0.5354) (11.5278, 0.5774)
(0.1, 0.2, 0.7) (13.7332, 0.6246) (11.1569, 0.5938) (11.1201, 0.6439)
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Fig. 8. Comparing among different schemes

VI. CONCLUSION

In this paper, we investigated the problem of energy con-
sumption, delay performance and payment cost in a mobile fog
computing system. Specifically, we optimized the offloading
probability and transmission power for the MDs to jointly
minimize the energy consumption, delay performance and
cost. We derived analytic results on energy consumption,
delay performance and payment cost assuming three different
queueing models at mobile devices, the fog node and central
cloud and explicit consideration of the wireless channel. By
leveraging the obtained results, a multi-objective problem
with various constraints is formulated and addressed by using
an IPM-based algorithm. The performance evaluations were
presented to illustrate the effectiveness of the proposed scheme
and demonstrate the superior performance over the existing
schemes.
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