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During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized
protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin
asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have
been previously observed in transversely polarized pþ p collisions at RHIC, and the existing theoretical
framework that was successful in describing the single-spin asymmetry in pþ p collisions predicts only a
moderate atomic-mass-number (A) dependence. In contrast, the asymmetries observed at RHIC in pþ A
collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The
observed asymmetry in pþ Al collisions is much smaller, while the asymmetry in pþ Au collisions is a
factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production
mechanisms is discussed as a possible explanation of the observed A dependence.

DOI: 10.1103/PhysRevLett.120.022001

Understanding forward particle production in high-
energy hadron collisions is of great importance, because
most of the energy goes in the forward direction, and
therefore informs our understanding of overall particle
production. This has particular importance in studies of
ultrahigh-energy cosmic rays, where extraction of the
cosmic ray distributions from air shower measurements
depends on models of forward particle production in the
interaction with nuclei in the air [1–3]. Mechanisms for
forward particle production are not well understood, as
perturbative quantum chromodynamics (pQCD) is not
applicable at small momentum transfers and diffractive
production mechanisms are not well modeled. To better
understand production mechanisms, the measurement of
the single-spin asymmetry AN, describing the azimuthal
asymmetry of particle production relative to the spin
direction of the transversely polarized beam or target,
provides crucial tests and deeper insight beyond just
cross-section measurements. The spin degree of freedom
has served as a strong discriminator between theoretical
models. For example, the origin of the large asymmetries
discovered in forward meson production in pþ p colli-
sions from

ffiffiffi

s
p ¼ 4.9–19.4 GeV [4–11] and later confirmed

at
ffiffiffi

s
p ¼ 62.4–500 GeV at the Relativistic Heavy Ion

Collider (RHIC) [12–17] has been under intensive dis-
cussion for three decades and still remains an open question
[18]. Despite substantial theoretical attempts to reproduce
data in the pQCD regime using the conventional 2 → 2
parton scattering processes, the latest multiplicity-

dependent AN measurements from RHIC [19] indicate that
a significant contribution to the asymmetry may be of a
diffractive nature.
Another important approach in forward particle produc-

tion is to study the nuclear dependence in pþ A collisions.
In the perturbative region, theoretical approaches based on
color-glass-condensate models predicted that hadronic AN
should decrease with increasing A [20–24], while some
approaches based on pQCD factorization predicted that AN
would stay approximately the same for all nuclear targets
[25]. On the other hand, almost no theoretical or exper-
imental studies are available in the nonperturbative region
or diffractive scattering with polarized probes on nuclei,
and interesting phenomena may be hidden in this unex-
plored region.
In the case of forward neutron production in pþ p

collisions, production cross sections [26–28] were success-
fully explained in terms of one-pion exchange [29–33].
However, that model could not explain the sizable AN in
very forward (near zero degree) neutron production, dis-
covered at RHIC in pþ p collisions at

ffiffiffi

s
p ¼ 200 GeV

[28]. To reproduce the experimental asymmetry, an inter-
ference between the spin-flip π exchange and a non-
spin-flip a1-Reggeon exchange was necessary [33].
Kopeliovich, Potashnikova, and Schmidt considered
nuclear absorption effects as a source for a possible A
dependence of AN and found only a small effect [34].
In this Letter, we report the first measurements of AN for

very forward neutron production in collisions between
polarized protons and nuclei (Al and Au) at

ffiffiffiffiffiffiffiffi

sNN
p ¼

200 GeV recorded in 2015 with the PHENIX detector
[35]. For pþ p collisions 18 RHIC stores were used and
one store each for pþ Al and pþ Au measurements, with
a typical store length of 8 h. The average beam polarization
in pþ p, pþ Al, and pþ Au data samples was
0.515� 0.002, 0.59� 0.02, and 0.59� 0.04, respectively,
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with an additional global uncertainty of 3% from the
polarization normalization [36,37].
The experimental setup using a zero-degree calorimeter

(ZDC) [38] and a position-sensitive shower-maximum
detector (SMD) is similar to the one used for pþ p data
[39]. The ZDC comprises three modules located in series
at �18 m away from the collision point. The ZDC has an
acceptance in the transverse plane of 10 × 10 cm2, with a
total of 5.1 nuclear interaction lengths (or 149 radiation
lengths), and an energy resolution of ∼25%–20% for
50–100 GeV neutrons. The SMD comprises x-y (horizon-
tal-vertical) scintillator strip hodoscopes inserted between
the first and second ZDC modules (approximately at the
position of the maximum hadronic shower) and provides a
position resolution of ∼1 cm for 50–100 GeV neutrons.
These detectors are located downstream of the RHIC DX
beam splitting magnet, so that near beam-momentum
charged particles from collisions are expected to be swept
into the beam lines and out of the ZDC acceptance
(see Fig. 1).
To accommodate asymmetric pþ A collisions of beams

with different rigidity, the DX magnets were moved
horizontally [40]. In this special setup for the present
measurement, the proton beam was angled off axis by
∼2 mrad relative to the nominal beam direction at the
collision point, with a crossing angle with the Au (Al) beam
of 2.0 (1.1) mrad. Correspondingly, the ZDCwas moved by
3.6 cm (2 mrad) to keep zero-degree neutrons at the ZDC
center (see Fig. 1).
The data were collected with triggers employing the

ZDC and beam-beam counters (BBCs) [41]. Only the north
ZDC detector, facing the incoming polarized proton beam,
was used in this analysis. Two BBCs are located at
�144 cm from the nominal collision point along the beam
pipe and are designed to detect charged particles in the
pseudorapidity range of �ð3.0–3.9Þ with full azimuthal
coverage. The ZDC inclusive trigger required the energy
deposited in the ZDC to be greater than 15 GeV. The
ZDC ⊗ BBC-tag trigger in addition required at least one

hit in each of the BBCs, and the ZDC ⊗ BBC-veto trigger
required no hits in both BBCs. The latter two sets represent
mutually exclusive but not complete subsets of the ZDC
inclusive triggered data.
As described in detail in Ref. [39], event selection and

neutron identification cuts include (i) a total ZDC energy
cut of 40–120 GeV, (ii) at least two SMD strips fired (above
threshold) in both x and y directions and a nonzero (above
threshold) energy in the second ZDC module (to reject
photons), and (iii) an acceptance cut of 0.5 < r < 4.0 cm
for the reconstructed radial distance r from the determined
beam center (to reduce the impact of the position resolution
and edge effects in the asymmetry measurements).
The raw asymmetry [ϵNðϕÞ] is calculated using the

square-root formula [39] for each azimuthal angle (ϕ)
bin. The polarization normalized Afit

N is then extracted from
the fit to a sine function

ϵNðϕÞ ¼ PAfit
N sin ðϕ − ϕ0Þ; ð1Þ

where P is the proton beam polarization and ϕ0 is the
polarization direction in the transverse plane.
Figure 2 compares ϵNðϕÞ=P results for ZDC inclusive

samples from pþ p, pþ Al, and pþ Au collisions and
shows the nuclear dependence of Afit

N , including a sign
change from negative in pþ p collisions to positive in
pþ Au collisions. The Afit

N was measured separately in
each PHENIX data-taking segment, typically 60 min long,
and then the weighted average was calculated. The obtained
Afit
N is then corrected for backgrounds and detector

responses. The main background contribution comes from
protons, generated by elastic, diffractive, and hard
processes.
Protons from elastic and diffractive reactions travel close

to the beam line and are swept by the DXmagnet to the right
(toward negative x in Fig. 1). Only a small fraction of such
protons scattered by large angles, larger than 4–5 mrad, fall
in the ZDC acceptance. Because the cross section for these
reactions falls sharply with the scattering angle, these
protons contribute mainly on the right side of the ZDC.
This contribution was evaluated from the particle position
distribution as measured by the SMD and found to be 9%
and 32% in the inclusive ZDC and ZDC ⊗ BBC-veto

FIG. 1. ZDC location and beam orbits of a proton (blue) beam
and a heavy-ion (yellow) beam in the special stores used for this
analysis; the z axis shows the nominal beam direction, and the
dashed line represents the zero-degree neutron trajectory. DX and
D0 are the RHIC beam bending dipole magnets.
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FIG. 2. Afit
N fit of ZDC inclusive samples.
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triggered samples, respectively, inpþ p collisions,< 2% in
both samples in pþ A collisions, and negligible in
ZDC ⊗ BBC-tag samples of both pþ p and pþ A colli-
sions. The significant suppression of elastic and diffractive
proton background relative to the neutron signal in pþ A
collisions can be understood as due to the stronger magnetic
fields in the DX magnets. Correspondingly, the minimum
scattering angle for the elastic and diffractive proton back-
grounds to reach the ZDC acceptance increases from 3.8 to
5 mrad, leading to a cross section reduction by an order of
magnitude.
The contribution of the charged hadron background from

hard scattering processes, distributed nearly uniformly over
the ZDC acceptance, was estimated using PYTHIA6 [42]
with a GEANT3 [43] detector simulation. However, from
previous studies where a charge veto counter was installed
in front of the ZDC to measure the charged hadron
background, it was found that the simulation underesti-
mates the proton background by a factor of ∼2 [39].
Therefore, the hard scattering background contribution
from the simulation was scaled by a factor of 2 with an
uncertainty equal to the size of the increase. In pþ p
collisions, this background fraction resulted in 6� 3%,
3� 1.5%, and 12� 6% in ZDC, ZDC ⊗ BBC-veto, and
ZDC ⊗ BBC-tag triggered samples, respectively. In pþ A
collisions, due to the increased neutron signal from
electromagnetic (EM) processes (to be discussed later),
the relative background contributions are expected to be
smaller. Therefore, the measured asymmetries in pþ A
collisions were not corrected for background, but one-sided
systematic uncertainties (in the direction of the asymmetry
magnitude increase) equal to the upper 1σ limit of the
background fractions taken from the pþ p case, i.e., 9%,
4.5%, and 18%, were conservatively assigned in ZDC,
ZDC ⊗ BBC-veto, and ZDC ⊗ BBC-tag triggered sam-
ples, respectively.
From the considerations above, only the pþ p asym-

metries were corrected for backgrounds according to

AS
N ¼ AN

fit − reffAB
N

1 − reff
; ð2Þ

where AS
N and AB

N stand for signal and background
asymmetries, respectively, and reff is the “effective” back-
ground fraction in the reconstructed neutron sample. The
parameter reff accounts for the dilution of the background
effect in Afit

N in the case when the background contributes
preferably on one side of the detector (as from elastic or
diffractive protons). This effect, which was studied in the
simulation, comes from a specific way the left and right
sides of detector acceptance are combined in the square-
root formula for asymmetry calculation. The background
asymmetry AB

N was evaluated from the comparison of
asymmetries with and without the charge veto cut from
the 2008 data when the charge veto counter was available

and then used in Eq. (2). The asymmetries AB
N were found

to be consistent with zero within statistical uncertainties for
all triggers. After a background correction, AS

N results for
pþ p from 2008 and 2015 data were found to be consistent
within statistical uncertainties. Asymmetries from 2015
data were used in the final results.
Besides charged hadrons, the other background sources

are photons and K0 mesons. From the PYTHIA6 simulation,
their contribution after the analysis cuts was evaluated to be
below 3% in all collision systems and triggers and was
neglected in the asymmetry results.
The measured asymmetries are affected by detector

resolutions and other detector systematic effects (e.g., edge
effects), as well as by the uncertainty in the shape of the
neutron production cross section vs pT and xF, the size of
the asymmetry, and the assumption for the shape of ANðpTÞ
within the pT range sampled in this analysis. These effects
were studied in detail with a GEANT3 Monte Carlo
simulation. The fully corrected transverse-single-spin
asymmetry AN was calculated as AN ¼ AS

N=Cϕ, where
the correction factor Cϕ was calculated in the simulation
as the ratio of the measured asymmetry to the average input
asymmetry over the neutron sample collected with exper-
imental cuts used in the analysis. The biggest variation in
Cϕ comes from the position resolution uncertainty and the
assumption for ANðpTÞ. The position resolution in the
simulation vs data was confirmed from the comparison of
the shower shape and its fluctuations in SMD strips. The
simulation was tuned to data by varying noise and thresh-
olds in the SMD channels, as well as by introducing a cross
talk effect, similar to Ref. [39]. An overall value of 3% was
assigned to the Cϕ uncertainty. For the shape of ANðpTÞ, it
was modeled as ANðpTÞ ¼ const (as was assumed in
Ref. [39]) and ANðpTÞ ∝ pT (which is supported by theory
in the pT range relevant here [33]). The difference of 3%
was included in the Cϕ uncertainty. The final correction
factor applied to the measured asymmetries is
Cϕ ¼ 0.855� 0.036. Note that the Cϕ value here is higher
than the one in our previous publication [39] mainly due to
two reasons: First, a more realistic ANðpTÞ ∝ pT
assumption was used in this analysis, and, second, the
optimized SMD thresholds reduced the smearing effect.
In addition to the beam polarization, background, and

smearing correction (Cϕ) discussed above, the other
sources of systematic uncertainties are the ZDC and
SMD gain calibrations (including threshold variation)
and location of the beam center on the ZDC plane. The
latter is among the dominant uncertainties in this data,
contributing 0.002–0.010 to the AN uncertainty. It was
estimated by calculating the asymmetry for varying
assumptions of the beam axis projection on the ZDC plane,
�1 cm in the horizontal and �0.5 cm in the vertical
direction from the ZDC center, which reflect the uncer-
tainty in ZDC alignment relative to the beam axis.
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The analyzed data correspond to the neutron sampled pT
in the range smaller than 0.25 GeV=c peaked at about
0.1 GeV=c, which is defined mainly by detector accep-
tance and which is affected by detector resolutions.
Because of the varying contribution of different processes
to neutron production, the sampled pT distribution may
vary in different collision systems and in different triggered
data. Figure 3 shows the differences in the radial distribu-
tions, which is related to the neutron production cross
section dσ=dpT by pT ∝ r [39]. From a comparison with
the simulation assuming different slope parameters b, in the
parameterization dσ=dpT ∼ e−b·pT , the data were found to
be consistent with b ¼ 4 ðGeV=cÞ−1 for all collision
systems in ZDC ⊗ BBC-tag triggered data and b ¼ 4, 6,
and 8 ðGeV=cÞ−1 in pþ p, pþ Al, and pþ Au collisions,
respectively, in a ZDC ⊗ BBC-veto triggered sample, with
uncertainty σb ¼ 1 ðGeV=cÞ−1 reflecting its sensitivity to
SMD gain calibration and thresholds. These variations lead
to a difference in the average pT sampled in different
collision systems and triggers by as much as 10%. As can
be also judged from Fig. 3, due to the small detector
acceptance, the sampled pT distribution shows a very
modest dependence on the slope of the input pT distribu-
tion, particularly at low pT (or r), which is most responsible
for the dilution of the measured asymmetry. As a conse-
quence, the variation of the correction factor Cϕ due to
different slope parameters b discussed above was less
than 1%.
Figure 4 and Table I summarize the results for AN in

forward neutron production in pþ p, pþ Al, and pþ Au
collisions, for ZDC inclusive, ZDC ⊗ BBC-tag, and
ZDC ⊗ BBC-veto samples. In addition to the 3% scale
uncertainty from polarization normalization, common to all
points, the other part of the polarization uncertainty is
correlated for different triggers in a particular collision
system. The presented asymmetries in pþ p collisions are
consistent with our previous publication [39], albeit with
larger systematic uncertainties in these data due to a larger
background (unlike this measurement, the charged veto
counter was used in Ref. [39] to suppress the background)
and larger variations due to the uncertainty of the beam
position on the ZDC plane.

From Fig. 4, the A dependence of AN for inclusive
neutrons is strong. Compared to the AN of pþ p collisions,
the observed asymmetry in pþ Al collisions is much
smaller, while the asymmetry in pþ Au collisions is a
factor of 3 larger in absolute value and of opposite sign.
This behavior is unexpected, because the theoretical
framework using π and a1-Reggeon interference can
predict only a moderate nuclear dependence, and there is
no known mechanism to flip the sign of AN within this
framework [34].
The asymmetries requiring BBC hits are remarkably

different. Once BBC hits are required (ZDC ⊗ BBC-tag),
the drastic behavior of the inclusive AN vanishes and its
sign stays negative, approaching AN ¼ 0 at large A. In
contrast, the strong A dependence is amplified once no hits
in the BBC are required (ZDC ⊗ BBC-veto). While the
BBCs cover a limited acceptance, the requirement (or veto)
of hits in the BBC should place constraints on the activity
near the detected neutron and thus the corresponding
production mechanism.
One possibility to explain the present results is a

contribution from EM interactions, which have been
demonstrated to be important for reactions with small
momentum transfer, e.g., in ultraperipheral heavy ion
collision at RHIC [44–47] and Large Hadron Collider
[48–51], including forward neutron production in pþ A
collisions [52], and polarization observables in fixed target
experiments [53,54]. Although it was ignored in the
interpretation for the pþ p data [34], EM interactions
become increasingly important for large atomic number (Z)

(a) (b)

FIG. 3. The r distribution of the (a) ZDC ⊗ BBC-tag sample
and (b) ZDC ⊗ BBC-veto sample for three collision systems.

 (atomic mass number)A
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FIG. 4. Forward neutron AN in pþ A collisions for A ¼ 1 (p),
27 (Al), and 197 (Au), for ZDC inclusive, ZDC ⊗ BBC-tag, and
ZDC ⊗ BBC-veto triggered samples; color bars are systematic
uncertainties, and statistical uncertainties are smaller than the
marker size; the 3% scale uncertainty (not shown) is from the
polarization normalization uncertainty. Data points are shifted
horizontally for better visibility.
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nuclei, as the EM field of the nucleus is a rich source of
virtual photons, increasing as Z2. Forward neutrons in the
final state can be produced through nonresonant photo-πþ
production and neutron decay channel from photonucleon
excitation processes, such as the Δ resonance [55].
According to a Monte Carlo study [52], the neutron and

its associated πþ produced through this process are sub-
stantially boosted towards the proton beam direction, so
that only a small fraction of pions would be detected by the
BBC. Thus, a large fraction of EM processes are expected
to be suppressed in the ZDC ⊗ BBC-tag events while
enhanced in the ZDC ⊗ BBC-veto events. Here, it is noted
that the importance of EM processes in pþ A collisions is
also hinted at in the present data: The ratio between
reconstructed neutrons in ZDC ⊗ BBC-veto and
ZDC ⊗ BBC-tag samples increases from smaller than
0.5 in pþ p to ∼1 (∼5) in pþ Al (pþ Au) collisions.
In addition, a faster drop of the neutron production cross
section with pT in pþ A collisions in ZDC ⊗ BBC-veto
triggered data discussed in Fig. 3(b) is consistent with the
increasing role of EM processes that have a softer pT
distribution than hadronic processes.
Similarly in the asymmetry measurements, contributions

of different production mechanisms may be suppressed or
enhanced by different event selection triggers. Hence, while
the result for the ZDC ⊗ BBC-tag sample may be
explained by the conventional pion and a1-Reggeon
interference mechanism [34], that for the ZDC ⊗ BBC-
veto triggered sample could be explained by contributions
from interference with EM amplitudes [55], which are
expected to be enhanced in that data set. However, there
could be other mechanisms, such as diffractive scattering,
which is also expected to be enhanced by a ZDC ⊗ BBC-
veto trigger. Therefore, further studies are needed to fully
understand the present results.
In summary, we observe an unexpectedly strong A

dependence in AN of inclusive forward neutron production
in polarized pþ A collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV.

Furthermore, a distinctly different behavior of AN was
observed in two oppositely trigger-enhanced data sets.

These surprising behaviors could be explained by a con-
tribution of EM interactions, which may be sizable for
heavy nuclei. Further studies of the production mechanism
including EM contributions and diffractive scattering
would have an impact not only to hadron physics but also
to cosmic-ray science, where measurements of high-energy
cosmic rays depend on models of forward particle pro-
duction in the interactions with nuclei in the air. Spin
asymmetry measurements not only provide a unique
discriminating power for the models of particle production
but also will contribute to our understanding of the origin of
the transverse spin asymmetries in hadronic collisions.
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pþ p pþ Al pþ Au
Inclusive BBC tag BBC veto Inclusive BBC tag BBC veto Inclusive BBC tag BBC veto

AN −0.054 −0.064 −0.031 −0.013 −0.057 0.073 0.157 −0.015 0.234
Statistical uncertainty �0.001 �0.002 �0.004 �0.002 �0.003 �0.003 �0.002 �0.005 �0.002
Systematic uncertainty:
Background �0.007 �0.009 �0.017 −0.001 −0.010 þ0.004 þ0.015 −0.003 þ0.012
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