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In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear

systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the

control parameter within a given set of values with the initial value problem numerically solved.

The PS-generated attractor approximates the attractor obtained by averaging the control parameter

with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attrac-

tors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustra-

tion. Published by AIP Publishing. https://doi.org/10.1063/1.5007925

In Refs. 1–3, it is proved that the attractors of a chaotic

system, considered as the unique numerical approxima-

tions of the underlying x-limit sets (see, e.g., Ref. 31) after

neglecting sufficiently long transients, can be numerically

approximated by switching the control parameter in some

deterministic or random manner, while the underlying ini-

tial value problem (IVP) is numerically integrated with

the parameter switching (PS) algorithm. The attractors,

whose basins of attractions are not connected with equilib-

ria, are called hidden attractors, while the attractors for

which the trajectories starting from a point in a neighbor-

hood of an unstable equilibrium are attracted by some

attractor are called self-excited attractors.4–6
In this paper,

we prove analytically and verified numerically that the PS

algorithm can be used to approximate any desired hidden

attractors of a class of general systems, which model sys-

tems such as Lorenz, Chen, and R€ossler.

I. INTRODUCTION

One main task in the investigation of a dynamical model

is to study the limiting behavior of the system states after the

transient processes, i.e., the problem of localization and analy-

sis of attractors (limiting sets of system’s states). Here, one of

the challenging problems is to study models with multistability,

whose states can alternate between some mutually exclusive

attractors over time.7 In such models, particularly in the case of

the existence of attractors with very small basins or unidentified

attractors, one can observe sudden switching to unexpected

(unpredictable or unknown) attractors since such systems are

sensitive to noise, initial conditions, and system parameters.8,9

While trivial attractors (stable equilibria) can be found either

analytically or numerically of any dynamical system, the search

for nontrivial attractors could be a very challenging task (e.g.,

the famous Hilbert 16th problem on periodic attractors in two-

dimensional polynomial dynamical systems is still far from

being solved). The structures of many classical physical

dynamical models guarantee that attractors exist because the

trajectories cannot tend to infinity, and the oscillations are

excited by an unstable equilibrium. Such attractors are called

self-excited attractors, which can be easily found by construct-

ing a solution using initial data from a small neighborhood of

the equilibrium, observing how it is attracted, thereby visualiz-

ing the attractor. However, there are attractors of another type,

called hidden attractors,4–6 whose basins of attractions are not

connected with equilibria, and thus, the search and study of

such attractors are very challenging.9,10 For example, hidden

attractors can be in systems with no equilibria or in a multista-

ble system with only one stable equilibrium.6,11–13

Self-excited attractors can be numerically visualized

through a standard computational procedure, in which after

the transient process, a trajectory starting from a point in a

neighborhood of an unstable equilibrium is attracted to an

attractor. In contrast, the basin of attraction for a hidden

attractor is not connected with any small neighborhood of any

equilibrium, and thus, for the numerical localization of a hid-

den attractor, it is necessary to develop a special analytical-

numerical procedure, in which an initial point is chosen from

the basin of attraction. To numerically verify that a chaotic

attractor is hidden, one has to check that all trajectories start-

ing in small neighborhoods of unstable equilibria are either

attracted by stable attractors or diverging to infinity.

The known autonomous chaotic dynamical systems

depending on a single real control parameter p 2 R, such as

the Lorenz system, R€ossler system, Chen system,

Lotka–Volterra system, Rabinovich–Fabrikant (RF) system,

Hindmarsh-Rose system, L€u system, classes of minimal net-

works, and many others, are modeled by the following Initial

Value Problem (IVP):

_xðtÞ ¼ f ðxðtÞÞ þ pAxðtÞ; xð0Þ ¼ x0; (1)

where t 2 I ¼ ½0; T�; x0 2 Rn; p 2 R the control parameter,

A 2 Rn�n a constant matrix, and f : Rn ! Rn a continuous

nonlinear function.
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For example, for the Lorenz system

_x1 ¼ rðx2 � x1Þ;
_x2 ¼ x1ðq� x3Þ � x2;

_x3 ¼ x1x2 � bx3;

(2)

with n¼ 3 and the standard parameter values a¼ 10 and

c¼ 8/3, if one considers p¼q, then system (1) has

f ðxÞ ¼
rðx2 � x1Þ
�x1x3 � x2

x1x2 � bx3

0
B@

1
CA; A ¼

0 0 0

1 0 0

0 0 0

0
B@

1
CA:

The PS algorithm approximates numerically any solu-

tion of the IVP (1).1–3 If one chooses a finite set of values of

the underlying control parameter, PN ¼ fp1; p2;…; pNg;
N � 2, and then switches p within PN for a relatively short

period of time, while the underlying IVP is numerically inte-

grated, then the resultant “switched” numerical solution will con-

verge to the “averaged” solution of the system. Consequently,

any attractor of the underlying system, obtained for p being

replaced with the average of switched values, can be approxi-

mated by the attractor generated from the switching operations.

The PS algorithm was successfully applied to approxi-

mating the attractors of continuous-time chaotic systems of

integer or fractional order, including the Lorenz system,

Chen system, L€u system, R€ossler system, Hastings-Powell

system, Lotka-Volterra system, minimal networks,

Hindmarsh-Rose neuronal system, and Rikitake sys-

tem,1,3,14–22 and also to discrete nonlinear systems of real

variables23,24 or of complex variables (fractals).25,26

Moreover, the algorithm can be utilized in experimental

applications27 and synchronization.28

The PS algorithm is useful, e.g., when one intends to

obtain an attractor, but for some reason, the underlying

parameter of the attractor cannot be set. Also, the PS algo-

rithm could explain why, in some natural systems, alterna-

tions between different dynamics could lead to unexpected

behavior.

In this paper, the PS algorithm is used to approximate

some hidden chaotic attractors, which, as mentioned above,

is a challenging task.

This paper is organized as follows: Sec. II presents the

PS algorithm, its convergence, and its numerical implemen-

tation. In Sec. III, the PS algorithm is used to approximate

hidden attractors in a generalized Lorenz system and the

Rabinovich–Fabrikant system. Section IV ends the

investigation.

II. PARAMETER SWITCHING ALGORITHM

A. Description and convergence of the PS algorithm

Let PN ¼ fp1; p2;…; pNg � R, a set of N values of

parameter-p, N� 2. Consider the IVP (1), numerically inte-

grated it over I with p switching periodically its values

within PN for relatively short periods of time. The PS algo-

rithm is associated with the “switching” equation in the fol-

lowing form:

_xðtÞ ¼ f ðxðtÞÞ þ phðtÞAxðtÞ; xð0Þ ¼ x0; (3)

with ph : I ! PN being a Tp-periodic piece-wise constant

function, depending on a small h> 0, which switches period-

ically its values phðtÞ ¼ phðtþ TpÞ ¼ pi 2 PN; i 2 f1; 2;
…;Ng, for t 2 Ii,j, and j¼ 1, 2,…, where Ii,j are subintervals

of the time interval I ¼ [jð[N
i¼1Ii;jÞ (see the sketch in Fig. 1

for the case of N¼ 3 and P3 ¼ fp1; p2; p3g).
Denote the average of the switched values by p*, which

is a constant having the same value for all t 2 I¼ [0, T]

p� ¼ 1

Tp

ðtþTp

t

phðuÞdu; t 2 I; (4)

where ph(�) is one of the parameter values pi, i 2 {1, 2,…, N}.

Then, the “averaged” equation of (1), obtained for p
being replaced with p*, reads

_�xðtÞ ¼ f ð�xðtÞÞ þ p�A�xðtÞ; t 2 I ¼ 0; T½ �; �xð0Þ ¼ �x0: (5)

It can be proved that switching p within PN in (3)

while the switching equation (3) is integrated, the obtained

solution approximates the solution of the averaged equa-

tion (5). Before proceeding, the following assumption is

needed.

Assumption H1. In the IVP (1), f satisfies the Lipschitz

condition

jf ðy1Þ � f ðy2Þj 	 Ljy1 � y2j; 8y1;2 2 Rn; (6)

for some L> 0.

Denote ph(t):¼P(t/h) and let k � k0 be the maximum

norm on Cð½0; T�;RnÞ, i.e., k�xk0 :¼ maxt2½0;T�j�xðtÞj. Then,

under Assumption H1, on [0, T], the following theorem

holds.29

Theorem 1. Under Assumption H1

jxðtÞ � �xðtÞj 	 ðjx0 � �x0j þ hkAkk�xk0KÞeðLþkPk0kAkÞT ; (7)

for all t 2 [0, T], where

K :¼ max
t2 0;Tp½ �

����
ðt

0

ðPðsÞ � p�Þds

����:

Proof. From (3) and (5), one has

FIG. 1. Piece-wise constant function p for N¼ 3 (sketch).
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jxðtÞ � �xðtÞj 	 jx0 � �x0j þ L

ðt

0

jxðsÞ � �xðsÞjds

þ
����
ðt

0

ðphðsÞ � p�ÞdsjkAkk�xk0

þkPk0kAk
ðt

0

jxðsÞ � �xðsÞjds

¼ jx0 � �x0j þ kAkk�xk0

����
ðt

0

ðphðsÞ � p�Þds

����
þ ðLþ kPk0kAkÞ

ðt

0

jxðsÞ � �xðsÞjds:

Because ph is Tp-periodic, one has

max
t2 0;T½ �

jphðtÞj 	 max
t2 0;Tp½ �

jPðtÞj ¼ kPk0:

On the other hand, one has

ðt

0

ðphðsÞ � p�Þds ¼ h

ðt=h

0

ðPðsÞ � p�Þds:

Since
Ð t

0
ðPðsÞ � q�Þds is Tp-periodic, one has

max
t2 0;T½ �

����
ðt=h

0

ðPðsÞ � p�Þds

���� 	 K:

Hence,

jxðtÞ � �xðtÞj 	 jx0 � �x0j þ hkAkk�xk0K

þ ðLþ kPk0kAkÞ
ðt

0

jxðsÞ � �xðsÞjds:

By the Gronwall inequality,30 one obtains (7). w
Remark 1.

(i) The above proof is more general than the proof pre-
sented in Ref. 3, where the convergence is obtained
via the averaging method31 and the initial conditions
of (3) and (5) are equal. In Ref. 2, the proof is made
numerically on the basis of the global error of Runge-
Kutta. In Ref. 32, beside the convergence of the PS
algorithm, numerical approximation estimation and
Lyapunov method are presented, and moreover, the
PS convergence for any utilized Runge-Kutta method
is proved.

(ii) The periodicity assumption on p in (3) is too strong.
Actually, the convergence proof in Ref. 2 and the
numerical experiments in Refs. 14, 15, and 22 (or
experimental applications in Ref. 27) show that the
PS algorithm can be implemented in some random
way as well. For instance, once PN is set, the order in
which p switches its values, p ¼ pi 2 PN, can be ran-
dom. Therefore, one may assume that random or peri-
odic switches of parameters in natural systems have a
real meaning, such as in ecological systems or cir-
cuitry. Also, random parameter switches in some sys-
tems explain why chaotic (hidden) attractors could
appear unexpectedly.

(iii) If the averaged system has a hyperbolic invariant
compact set, then the switching equation (3) has also
a near hyperbolic invariant compact set.

A global attractor is a compact and invariant set com-

posed of all bounded global trajectories and contains all the

dynamics evolving from all possible initial conditions. In

other words, it contains all solutions, including stationary

solutions, periodic solutions, and chaotic attractors, relevant

to the asymptotic behaviors of the system. On the contrary, a

local attractor is a compact invariant set, which attracts its

neighboring trajectories. A global attractor is hence com-

posed of the set of all local attractors, where each local

attractor only attracts trajectories from a subset of initial con-

ditions, specified by its basin of attraction. In some cases, a

unique local attractor may also be the global one. When a

global attractor is composed of several local attractors, the

initial conditions are essential for the numerical approxima-

tions of these attractors, respectively. Therefore, the follow-

ing assumption is made.

Assumption H2. Suppose that x0 and �x0 belong to the

same attraction basin of solutions to the IVP (3).

The x-limit set of a trajectory through x 2 Rn is given

as xðxÞ ¼ \s�0 [t�s Uðt; xÞ, where U(t, x) is the flow of the

system.

As common in numerical investigations of nonlinear sys-

tems, for every p and x0, by an attractor, one considers the

unique numerical approximation of the underlying x-limit

sets (see, e.g., Ref. 33) neglecting sufficiently long transients.

By Theorem 1, which characterizes the PS algorithm,

the following result can be obtained.

Corollary 2. Every attractor of the system modeled by
the IVP (3) can be numerically approximated using the PS
algorithm.

In other words, using the PS algorithm, the attractor A*

(switched attractor) obtained from Eq. (3) by switching p
within PN will approximate numerically the attractor

denoted Ap� (averaged attractor) obtained from (5).

B. Implementation of the PS algorithm

To implement numerically the PS algorithm, let h be the

step-size of the utilized explicit numerical method for inte-

grating the corresponding IVP (such as the standard Runge-

Kutta method, used in this paper).

Symbolically, for a given h> 0, the PS algorithm can be

denoted as

PS :¼ m1p1;m2p2;…;mNpN½ �; (8)

where mi 2N�; i ¼ 1; 2;…;N, are some positive integers,

called “weights” of the p values. Then, p* can be expressed

as

p� :¼

XN

i¼1

mipi

XN

i¼1

mi

: (9)
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Scheme (8) reads as follows: while the IVP (3) is numeri-

cally integrated, for the first m1 integration steps, p¼ p1, for

the next m2 steps, p¼ p2, and so on, till the last mN step,

when p¼ pN. So, the first set of subintervals Ii,1, for i¼ 1,…,

N, is covered. Next, the algorithm repeats on the next set of

subintervals Ii,2, and so on, until the entire time interval is

covered. Time subintervals Ii,j have lengths mih, for i¼ 1,

2,…, N and j¼ 1, 2,…, and the switching period is

Tp ¼
PN

i¼1 mih.

Remark 2. The main characteristic of the PS algorithm
relies on the linear dependence on p of the right-hand side of
system (1) and on the convexity of relation (9). By denoting

aj ¼ mj=
PN

i¼1 mi; j ¼ 1; 2;…;N, relation (9) becomes p�

¼
PN

i¼1 aipi with
PN

i¼1 ai ¼ 1. Thus, for any set PN, N> 1,

and any weights mi, i¼ 1, 2,…, N, p* is always inside
the interval (pmin, pmax), with pmin 
 minfPNg and
pmax 
 maxfPNg. Therefore, to approximate some attractor
Ap� using the PS algorithm, the set PN has to be chosen

such as

p� 2 ðpmin; pmaxÞ: (10)

Consider a dynamical system modeled by the IVP (3),

with the set of its attractors A and some set of admissible

parameter values PN; N � 2. Based on (10) and on the con-

vexity of relation (9), beside the fact that every attractor can

be approximated with the PS algorithm (Corollary 2), the

following important result can be proved.

Corollary 3. Given a set PN, with N� 2 and weights mi,
i ¼ 1; 2;…;N, the attractor A* obtained with the PS algo-
rithm belongs to A.

To visualize the results, i.e., to underline the match

between the averaged attractor, Ap� , which is to be approxi-

mated, and the approximating attractor, A*, a computer-

graphic criterion is now introduced.

Criterion 4. Two attractors are considered to be
almost-identical if

(a) their geometrical forms in the phase space (almost)
coincide,

(b) the orientation of the motion is preserved.

The above criterion is a suitable modification and adap-

tation of the known concept of topological equivalence (see,

e.g., Ref. 34) for practical use rather than for theoretical

rigor.

Criterion 4.b is easy to implement computationally (e.g.,

with Matlab comet3 function) and has been verified for all

examples studied later in this paper.

To apply Criterion 4.a (the match between the two

attractors), Ap� (blue or green plot) and A* (red plot) are

overplotted in the phase space and also for their Poincar�e
sections. Visually, the histograms reveal the match between

attractors.

Also, the match between the two attractors can be veri-

fied by calculating the Hausdorff distance DHðA�;Ap� Þ
between them. The Hausdorff distance between two sets A
and B in the metric space R3; DHðA;BÞ is given by (Ref. 35,

p. 114)

DHðA;BÞ ¼ max
n

sup
x2A

inf
y2B

dðx; yÞ; sup
y2B

inf
x2B

dðx; yÞ
o
; (11)

where d(a, b) is the Euclidean distance between two points

a¼ (x1, x2, x3) and b¼ (y1, y2, y3) in R3. Since the two

numerically generated attractors A* and Ap� are curves with

the same number of M ordered pairs of coordinates A*¼ {a1,

a2,…, aM} and Ap� ¼ fb1; b2;…; bMg, the distance between

a point ai 2 A* to the set Ap� is given by

dðai;Ap� Þ ¼ min
j
kbj � aik;

for i, j¼ 1, 2,…, M. Therefore, the Hausdorff distance (11)

can be calculated numerically by

DHðA�;Ap� Þ ¼ max
n

max
i
fdðai;Ap� Þg;max

j
fdðbj;A

�Þg
o
:

A study of numerical limitations of the PS algorithm is

presented in Refs. 2 and 21.

III. HIDDEN CHAOTIC ATTRACTORS APPROXIMATED
WITH THE PS ALGORITHM

In this section, under Assumptions H1 and H2, hidden cha-

otic attractors of a generalized Lorenz system and the

Rabinovich-Fabrikant system are computed with the PS algo-

rithm. The approximated hidden chaotic attractor is the averaged

attractor Ap� . To approximate Ap� , one chooses a set of N param-

eter values for the switching process, PN , such that condition

(10) holds, and with weights mi, i¼ 1, 2,…, N, relation (9) is ver-

ified. Then, scheme (8) is applied to obtain the switched attractor

A* which approximates the desired hidden attractor Ap� .

The numerical and simulation results of the PS algorithm

were realized with the standard RK algorithm, which allows

us to implement easily the switches imposed by the algorithm

for every mi step, i¼ 1, 2,…, N. The integration step-size was

taken as h¼ 0.0002–0.001, and the histograms for the x1 com-

ponent use 512 bars. Therefore integration time intervals

could reveal possible long-time transient chaotic behavior

(see, e.g., Ref. 36). However, too large time intervals could

lead to inaccurate numerical solutions (see, e.g., Ref. 37).

For the case of stable cycles, DHðA�;Ap� Þ is of order

10�3–10�2. In the case of chaotic attractors, DHðA�;Ap� Þ is

larger, e.g., for I ¼ ½0; 300�; DHðA�;Ap� Þ is of order 10�1,

while for I ¼ ½0; 500�; DHðA�;Ap� Þ diminishes at 10�2.

In the case of chaotic attractors, in order to reduce

numerical errors, Assumption H2 is strengthened by using

identical initial conditions x0 and �x0.

A. Generalized Lorenz system

Consider the following generalized Lorenz system,38,39

which was obtained from a Rabinovich system:40,41

_x1 ¼ apðx1 � x2Þ � ax2x3;

_x2 ¼ px1 � x2 � x1x3;

_x3 ¼ �x3 þ x1x2;

(12)

with a< 0.

The system reads as (1), with
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f ðxÞ ¼
�ax2x3

�x2 � x1x3

�x3 þ x1x2

0
B@

1
CA; A ¼

a �a 0

1 0 0

0 0 0

0
B@

1
CA:

With a¼ –0.5, the bifurcation diagram, for p 2 [0, 40],

is presented in Fig. 2.

As shown in Refs. 40 and 41, the system reveals hidden

chaotic attractors. In Ref. 42, hidden attractors of the fractional-

order case are studied. In this paper, the hidden attractor, H1

(see Fig. 3), was obtained for p*¼ 7 (similar hidden chaotic

behavior was found for some p*> 7) with equilibria

X�0ð0; 0; 0Þ; X�1;2ð63:533;61:834; 6:481Þ:

Since the eigenvalues of X�0 are (–7.355, –1, 2.855), the

equilibrium X�0 is a saddle. X�1;2 are stable (focus node)

equilibria since their eigenvalues are (–5.497, –0.002

þ 3.900i, –0.002 – 3.900i). The zoomed vicinity VX�
0

of the

unstable equilibrium X�0 reveals the fact that all trajectories

started from VX�
0

are attracted either by the stable equilibrium

X�1 (red trajectories) or by the stable equilibrium X�2 (blue tra-

jectories). Therefore, the chaotic attractor is a hidden

attractor.

Example 1. A stable cycle corresponding to p*¼ 25.5 is

obtained, situated in a relative large periodic window (Fig.

2). The attractor, considered as the averaged attractor Ap� ,

can be obtained using, e.g., scheme (8), with, e.g.,

1p1; 1p2; 1p3; 1p4; 2p5½ �; and

P5 ¼ f6:5; 22:2; 28; 31:9; 32:2g;

where m1¼m2¼…¼m4¼ 1 and m5¼ 2. This gives, via (9),

p*¼ (1� p1þ 1� p2þ 1� p3þ 1� p4þ 2� p5)/(1þ 1þ 1þ 1

þ 2)¼ 25.5. The switching period is Tp ¼
P5

i¼1 mih ¼ 6h.

To underline the perfect match between the obtained

attractor A* (red plot) and the (stable cycle) averaged attrac-

tor (blue plot) Ap� , in Fig. 4, the two attractors are overplot-

ted in the phase space [Fig. 4(a)] and in Poincar�e sections

with x3¼ 28 [Fig. 4(b)], respectively. Histograms relating to

the component x1, for both A* and Ap� , are plotted in Figs.

4(c) and 4(d), respectively, where transients have been

removed.

Example 2. Other sets of PN with appropriate weights

can be used to obtain the same stable cycle, using, for exam-

ple, the scheme

FIG. 2. Bifurcation diagram of the generalized Lorenz system (12).

FIG. 3. Hidden chaotic attractor H1 (green) of the generalized Lorenz sys-

tem (12). Trajectories starting from the vicinity VX�
0

of the unstable equilib-

rium X�0 are attracted either to the stable equilibrium X�1 (red plot) or to the

stable equilibrium X�2 (blue plot).

FIG. 4. Stable cycle of the generalized Lorenz system (12) corresponding to

p*¼ 25.5, obtained using the PS algorithm, with the scheme ½1p1; 1p2;
1p3; 1p4; 2p5�; P5 ¼ f6:5; 22:2; 28; 31:9; 32:2g. (a) Overplots of generated

attractor A* (red plot) and averaged attractor Ap� (blue plot). (b) Overplots

of Poincar�e sections with plane x3¼ 28, corresponding to A* and Ap� . (c)

Histogram with 512 bars of the first component x1 of A* (red plot). (d)

Histogram with 512 bars of the first component x1 of Ap� (red plot).
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1p1; 1p2½ �; with P2 ¼ f21; 30g;

where m1¼m2¼ 1, which gives p*¼ (p1þ p2)/2¼ 25.5. In

this case, Ap� is obtained by alternating every integration

step, p, within P2 ¼ f21; 30g.
Example 3. Not only stable cycles can be approximated

by the PS algorithm but also chaotic (self-excited) attractors,

for example, the one corresponding to p¼ 34.2 (see Fig. 2)

can be approximated by using, e.g.,

2p1; 3p2½ �; with P2 ¼ f25:5; 40g;

which gives p*¼ 34.2 [Figs. 5(a)–5(d), where the Poincar�e
sections are obtained for x3¼ 38]. Because of the infinite

integration time needed to generate a chaotic attractor,

between the two attractors, there are some small differences

as can be seen from the histograms [Figs. 5(c) and 5(d)].

Example 4. To generate the hidden attractor H1, one

needs to find scheme (8) which gives p*¼ 7. One of the pos-

sible choices is

1p1; 1p2½ �; with P2 ¼ f5; 9g:

The match between the switched attractor A* and the aver-

aged attractor Ap� is underlined by the phase overplot of the

averaged (hidden) attractor (green plot) and switched attrac-

tor (red plot) in Fig. 6(a), overplots of Poincar�e sections with

x3¼ 6 [Fig. 6(b)], and the histograms [Figs. 6(c) and 6(d)].

B. Rabinovich-Fabrikant (RF) system

The Rabinovich-Fabrikant (RF) system is modeled by

the following IVP:43

_x1 ¼ x2ðx3 � 1þ x2
1Þ þ ax1;

_x2 ¼ x1ð3x3 þ 1� x2
1Þ þ ax2;

_x3 ¼ �2x3 pþ x1x2ð Þ;
(13)

with a¼ 0.1.

The RF system has extremely rich dynamics, presenting

coexisting attractors, self-excited attractors, hidden-

attractors, and virtual saddle-like equilibria.43,44

In (13), one has

f ðxÞ ¼
x2 x3 � 1þ x2

1

� �
x1 3x3 þ 1� x2

1

� �
�2x3 pþ x1x2ð Þ

0
B@

1
CA; A ¼

a a 0

0 0 0

0 0 0

0
B@

1
CA:

One of the two hidden attractors, H2 (Fig. 7), corresponds to

p¼ 0.2876. For this value of p, the equilibria are

X�0ð0; 0; 0Þ; X�1;2ð71:1600;60:2479; 0:1223Þ;
X�3;4ð70:0850;63:3827; 0:9953Þ:

The equilibrium X�0 is unstable (saddle) since its eigenvalues

are (–0.5752, 0.1 – i, 0.1þ i). Equilibria X3,4 are also unstable

(saddle) with eigenvalues (0.1869, –0.281þ 5.397i, –0.281

–5.397i), while equilibria X�1;2 are stable (focus nodes), with

eigenvalues (–0.2561, –0.060 – 1.473i, –0.060 – 1.473i). As

FIG. 5. Chaotic attractor of the generalized Lorenz system (12) corresponding

to p*¼ 34, obtained using the PS algorithm, with scheme ½1p1; 1p2�;
P2 ¼ f21; 30g. (a) Overplots of generated stable cycle A* (red plot) and aver-

aged stable cycle Ap� (blue plot). (b) Overplots of Poincar�e sections with plane

x3¼ 38, corresponding to A* and Ap� . (c) Histogram with 512 bars of the first

component x1 of A* (red plot). (d) Histogram with 512 bars of the first compo-

nent x1 of Ap� (blue plot).

FIG. 6. Hidden chaotic attractor H1 of the generalized Lorenz system (12)

corresponding to p*¼ 7, obtained using the PS algorithm, with scheme

½1p1; 1p2�; P2 ¼ f21; 30g. (a) Overplots of the generated attractor A* (red

plot) and averaged attractor Ap� (green plot). (b) Overplots of Poincar�e sec-

tions with plane x3¼ 6, corresponding to A* and Ap� . (c) Histogram with

512 bars of the first component x1 of A* (red plot). (d) Histogram with 512

bars of the first component x1 of Ap� (green plot).

013127-6 Danca, Kuznetsov, and Chen Chaos 28, 013127 (2018)



can be seen, trajectories from a small vicinity of the unstable

equilibrium X�0 or X3,4 are attracted either by infinity or by

the stable equilibria X�1;2. Compared with the hidden chaotic

attractor H1 of the Lorenz system (12), due to the presence

of complex eigenvalues, in the case of the hidden chaotic

attractor H2 here, trajectories starting from X�0 (grey and

black) and also from X�3;4 (light brown and blue, for the case

of X�4) exit the vicinities by spiralling routes [see details in

Figs. 3 and 7(b) and 7(c)].

To easily choose the set PN , the bifurcation diagram for

p 2 [0.24, 0.295] may be utilized (Fig. 8).

Example 5. To generate H2, one can use, e.g., the scheme

1p1; 2p2; 2p3½ �; with P3 ¼ f0:28; 0:289; 0:29g;

for which, by (9), p*¼ 0.2876. This generates the hidden

attractor H2. The match between the obtained switched

attractor A* (red plot) and the approximated hidden attractor

H2 (green plot) can be observed from the match in the phase

plot [Fig. 9(a)], Poincar�e sections with x3¼ 0.35 [Fig. 9(b)],

and histograms [Figs. 9(c) and 9(d)].

Example 6. Similarly, the other hidden attractor H3 (Fig.

8),45 which corresponds to p¼ 0.2715, can be obtained with

the PS algorithm, by alternating, e.g., the values of the set

P2 ¼ f0:265; 0:278g, using the scheme

1p1; 1p2½ �:

In this case, the Poincar�e section is set at x3¼ 0.3. Again,

there exists a perfect match between the obtained attractor

A* and the hidden attractor H2 [see the phase overplots,

overplotted Poincar�e sections, and histograms in Figs.

10(a)–10(d), respectively].
FIG. 7. Hidden chaotic attractor H2 (green plot) of the RF system (13) for

p*¼ 0.2876. (a) Phase portrait. (b) Zoomed vicinity VX�
4

of the unstable

equilibrium X�4. (c) Zoomed vicinity VX�
0

of the unstable equilibrium X�0.

Trajectories starting from the unstable points X�0 and X�3;4 are either attracted

to the stable equilibria X1,2 (dotted blue and red, respectively) or to infinity

(light and dark brown, and grey and black).

FIG. 8. Bifurcation diagram of the RF system (13) for p 2 [0.24, 0.3].

FIG. 9. Hidden chaotic attractor H2 of the RF system (13) corresponding to

p*¼ 0.2876, obtained using the PS algorithm, with scheme ½1p1; 2p2;
2p3�; P3 ¼ f0:28; 0:289; 0:29g. (a) Overplots of generated attractor A* (red

plot) and averaged attractor Ap� (green plot). (b) Overplots of Poincar�e sec-

tions with plane x3¼ 0.35, corresponding to A* and Ap� . (c) Histogram with

512 bars of the first component x1 of A* (red plot). (d) Histogram with 512

bars of the first component x1 of Ap� (green plot).
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IV. CONCLUSION

In this paper, it has been proved and verified numeri-

cally that the hidden chaotic attractors of dynamical systems

modeled by a general initial value problem can be approxi-

mated by switching the control parameter, while the problem

is integrated. The approximations are verified with numerical

tools by means of phase portraits, histograms, Poincar�e sec-

tions, and Hausdorff distance. In order to facilitate the choice

of the switching parameters, the bifurcation diagrams are

also utilized. The algorithm has been applied successfully to

a generalized Lorenz system and the Rabinovich-Fabrikant

system.
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