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Introduction 1

Introduction

This thesis comprehends Malliavin calculus for Lévy processes based on 1to’s
chaos decomposition, fractional smoothness and approximation of stochastic
integrals. Our interest is in functionals of Lévy processes such as f(X;, —
Xigy ooy Xt,, — X4, 1), where Xy, — X3, k= 1,...,m, are increments of
a Lévy process and f is a Borel function. An explicit formulation of the
Malliavin derivative is given using a difference quotient and weak derivative
of the functional. In particular, f(X7) is considered. The Skorohod integral
is expressed using pathwise integration for a class of stochastic fields.

Certain stochastic integrals are approximated in Lo(P) by their left Rie-
mann sums and also with the optimal choice of a discrete time process. For
example, the stochastic integral f(O,l} p¢—dX; arising from the Galtchouk-
Kunita-Watanabe representation

J) =t / o dX, + N

(0,1]

is approximated. The convergence rate of the approximation error under
certain discretizations is related to Malliavin fractional smoothness of the
integral.

1 Malliavin calculus

Malliavin calculus or stochastic calculus of variations merges differential cal-
culus and probability theory. Initially Paul Malliavin [39, 38] gave the basis
for the theory while investigating the smoothness of the density of a random
variable providing a probabilistic proof for Hormander’s theorem in 1978.
The differential calculus on the Wiener space was further developed by sev-
eral mathematicians such as Stroock [58, 59], Bismut [11] and Watanabe
[62] and was applied again in studying the regularity of probability laws of
solutions of stochastic differential equations driven by Brownian motion.

Later Malliavin calculus was applied to computing the trading strategy of
contingent claims in complete markets. The Clark-Ocone formula by Ocone
[45], an explicit interpretation of the Clark representation formula [14, 15],
was used by Ocone and Karatzas [46] in 1991. Since then more applications
in finance have been discovered, such as computation of greeks by Fournié et
al. [20] in 1999.

Meanwhile there was increasing interest in using Lévy process based mod-
els in finance as well as investigation of smoothness of densities of solutions
of stochastic differential equations driven by Lévy processes. The question
whether the theory of Malliavin calculus could be extended to Lévy processes



with jumps gave rise. In the first attempts the Malliavin derivative was de-
fined as a stochastic gradient by Bass and Cranston [4], Bichteler et al. [10]
and Norris [41]. Another approach developed by Carlen and Pardoux [13],
E-Khatib and Privault [19], Malliavin and Thalmaier [40] and others is based
on the concept of pathwise instantaneous derivative or true derivative.

A third orientation uses [t6 chaos decomposition by It6 [33], and it has
been the tool for Nualart and Vives [44], Privault [52], Lee and Shih [35, 34],
Lokka [37], Oksendal and Proske [47], DiNunno et al. [18, 17], Solé et al.
[56], Alds et al. [2], Applebaum [3] and many others. For the Brownian
motion the chaos decomposition based definition and the stochastic gradient
are analogous, but in general they differ.

One more way of creating Malliavin calculus for Lévy processes is using
Teugels martingales based on power jump processes, where the existence of
all moments for the process is required. This chaotic representation was
shown by Nualart and Schoutens [43], and Malliavin calculus based on it has
been studied by authors such as Leon et al. [36] and Davis and Johansson
[16] as well as Benth et al. [7] and Solé et al. [57], who compare the two
chaos expansion based approaches.

In this thesis we consider Malliavin calculus which is founded on Ito’s
chaos decomposition.

1.1 Lévy processes

Considering stochastic processes starting at zero with independent and sta-
tionary increments, the only such process with continuous paths is the Brow-
nian motion. This process is the underlying stochastic process in Paul Malli-
avin’s calculus. When the trajectories are not necessarily continuous, but
almost surely right-continuous with left limits, then such processes are called
Lévy processes.

Each Lévy process admits a Lévy measure, which expresses the jump
intensity of the process. Given a Lévy process X = (X¢)i>0, we write AX; :=
X — limg<syr X5. The Lévy measure of X is the Borel measure v : B(R) —
0, o] given by

v(A) =E#{t € (0,1] : AX; € A\ {0}} forall Aec B(R).

The Lévy-1t6 decomposition states that when X = (X;);>0 is a Lévy
process on a complete probability space (2, F,P), then there exist 7 € R,
o > 0, a standard Brownian motion W and a Poisson random measure N on
R, x (R\ {0}) with intensity dtv(dz) such that

Xy =t +oW, + // xN(dt,dx) + // N (dt, dz)
(0,t] x{@:|x|>1} (0,t] x{z:0<|x|<1}
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a.s. for all t > 0, where N(dt,dz) = N(dt,dz) — dtv(dz).

1.2 Ito’s chaos decomposition

In this subsection we shortly explain the chaos decomposition shown by Ito
[33]. Let
LZ(]P)) = LZ(Qw?‘Xa]P))?

where FX is the completion of the o-algebra generated by X. We define
measures 4 : B(R) — [0,00] and m : B(Ry x R) — [0, o0] by

p(dr) = o?(dx) + 2?v(d),
m(dt,dz) = dtp(dx).

For sets B € B(R, x R) such that m(B) < co we let

M(B):za/ dW; + lim // z AN (t, z)
{teR:(t,0)€B} oo t,x)€B:1/n<|z|<n}

where the convergence is taken in Ly(IP). The measure M is an independent
random measure with EM (B;)M(B;) = m(B;N By) for all By, By € B(Ry x
R) such that m(B;) < 0o and m(Bsy) < oc.

We write Ly(m®”) := R and Ly(m®") := Ly((Ry xR)", B(R; xR)", m®")
forn =1,2,.... We define the multiple integral of order n,

I, : Ly(m®") — Ly(P)
as follows: Set Iy(fo) := fo for fo € R. Let n > 1. Any mapping in Ls(m®")

can be approximated by simple functions of the form

m
>l a1) ® -+ ® T (tn, 70),

where a; € R, Bf € B[Ry x R), m(B;) < oo and Bf N BY = () for k =
1,....m,1,7=1,...,n, j #iand m = 1,2,... For a simple function the
multiple integral is defined by

I, (Z aplpr @ ® ]lBrkl> = apM(Bf)---M(B}).
k=1 k=1

We denote by f; the symmetrization of f,,

fn((tlu‘xl)u“'a(tn?xn = ‘ Z fn (1), Lr( 1)) w(tw(n)axw(n)))?

TETy



where m, is the set of all permutations = : {1,...,n} — {1,...,n}. We

have that I,(f,) = I.(f.) and 1L (f)llZ, @) = 2l fallZ,(meny for any simple

function f,, € L(m®"). By the denseness of simple functions in Ls(m®")
and continuity of I,, we may deﬁne L,(f,) for any f, € Lo(m®") as the Ly(P)-

limit of 7,( ,(Zm)), where ( fn ) _, are simple functions converging to f, in
L2 (Irn®”)
See [33] for further properties of I,.

Theorem 1 (Theorem 2, [33]). Let F' € Ly(P). Then there exist functions
fn € Lo(m®"), n=0,1,2,..., such that

F:i[n(fn) a.s..
n=0

Furthermore,

o0

1F o) = | D nMall? ey
n=0

1.3 The Malliavin derivative and known results

The Malliavin Sobolev space D 5 is the space of all F =5  I,(f,) € Lo(P)
such that

o0

1Fllpra = | S0+ DU, men < o0

n=0

For F' € Dy 5 the Malliavin derivative D : Dy 5 — Lo(m ® IP) is defined by

Dy F = in[nl (fn(., (t, x))) in Lo(m ® P).

Our aim is to give an explicit representation for DF when F' is a functional
of increments of the Lévy process. If X is the Brownian motion, then the
Malliavin derivative reduces to D., and it is well known that

)
DmoF = Z —kf(th — Xtoa ey Xtm - Xtm—l)]l(tk_btk}(t)

for ' = f(Xy, — Xy ooy Xy, — Xy,,_,) With f € C*(R™) (i.e. [ is infinitely
many times differentiable in all coordinates and is of at most polynomial
growth).
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The Malliavin derivative D, , for x # 0 has been shown to relate to a shift
transformation or a difference quotient: Nualart and Vives [44] consider the
chaos expansion with respect to N instead of M on the Poisson space: For
a measure space (T, B, \) satisfying certain conditions let

Qi={w=>)» 6.,: ICN, €T}

el

and N(A)(w) := w(A) for A € B and choose P such that N is a Poisson
random measure on (€2,0(N),P). Nualart and Vives [44] show that the
Malliavin derivative D satisfies

D.F(w) =F(w+06,) — F(w).

An analogous transformation is also used by Picard [50, 49, 51]. Lgkka [37]
uses a general probability space and he showed that if o = 0, X is a square
integrable martingale and the distribution of X; is absolutely continuous,
then

Dt@F = Z f(th + .Z']l(07tl}(t), Ce >Xtm + .Z']l(07tm}) — F
k=1
for ' = f(Xy,...,X;,) with f € C(R™) (i.e. fissmooth and has compact
support).

Solé et al. [56] use the chaos decomposition with respect to the measure
M. They construct a canonical probability space and show that for x # 0

F(wi,) — F(w)

Dt@F(W) = s
where the shift transformation w;, can be interpreted as adding a jump of
size x at time t to the trajectory.

The crucial difference in using the measure N instead of M in the pure

jump case is in multiplying the Malliavin derivative by z. Essentially, D, , [’ =
IDt7$F.

1.4 Finding explicit representations for the Malliavin derivative on a general
probability space

We convert above representation properties to any complete probability space
generated by a Lévy process for certain functionals of the Lévy process using
a difference quotient of the functional.



Definition 1. For f : R™ — R we denote by AL the difference quotient in
the 1th coordinate,

ALF(zy, .. ) = [y, o w2 +a:,xi+;,...,a:m) — flz1,. . xm)

for x # 0. If f € LYR™ B(R™),dx) and there exists a function h; €
Lie(R™, B(R™), dz) such that

Y

- (x)aiigo(x)dx =— /m hi(z)p(z)dz  for all p € C°(R™),

then we say that f has a weak derivative in the direction i and write
If m = 1, we also use the notation Af == A'f.

Definition 2. Given a Borel function f : R™ — R, we say that the random
variable f( Xy, — X4y, ..., X4, — X4,,_,) is in the domain of D, Dom(D), if

(i) in case o # 0, the function f has weak derivatives of order one in all
coordinates, i.e. ALf exists, and AL f( Xy, — Xy oo, Xy, — X4, ,) €
Ly(P) for allk=1,...,m and

(11) A];f(th _Xt07 ey Xtm_Xtmfl)]]'Ro (x) c LQ(M@P) fOT’ all k = ]_, e, .

For f( Xy, — Xty .-, Xt,, — Xt,,_,) € Dom(D) we define

m

Dt,xf(Xt1 - Xto> ce 7Xtm - Xtm—l)

)0, forx=01ifo=0
' >, ARF(XG — Xy oo, Xy, — Xio )Lty 14 (t),  otherwise.

If f(th — Xt07 e 7Xtm — Xtm—l) c IDOIH(D)7 then
Df(th - Xt07 ce ,Xtm - Xtm71) c LQ(IIH (%9 ]P))
Definition 3 (Smooth random variables, S). We call a random variable F
smooth, if there exists a set of time points T = {0 <ty <t < -+ <t, < oo}
and a function f € C2(R™) such that
F = f(th _Xt07Xt2 _Xt17"'7Xtm _Xtm—l) a.S.

We denote the set of smooth random variables by S.
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Theorem 2 ([GL], Theorem 4.1 and Lemma 3.1). The set of smooth random
variables S is dense in Dy 2, S € Dom(D) and

DF =DF m®P-a.e. foralF €S.

Remark 1. Note that for F' € S the representation F' = f(Xy, — Xy, -+, Xt —

Xy, ) is not unique. However, if F = f(Xy, — Xy,---, Xs,, — X4,_,) =
9(Xs, — X Xs, — Xs,_,) €S, then

S0yttt Sk

Df(th — Xt07 . 7Xtm — Xtm—l) = Dg(XSl — XS()a .. 'aXs — Xsk—l)

k

It is now possible to define the Malliavin derivative on the set of smooth
random variables using the operator D and obtain an equivalent definition
by taking its closure. The relation D = D yields a criterion for f(X;) € Dy
for a Borel function f.

Proposition 1 ([L], Corollary 3.1). Let f(X;) € Ly(P), where f : R — R
is a Borel function. Then f(X1) € Dyo if and only if f(X;) € Dom(D).
Moreover, if f(X1) € Dy o, then

Df(Xl) = Df(Xl) m ® P-a.e..

From Proposition 1 one might make the conjecture that Dom(D) C Dy »
and DF = DF for any F' € Dom(D). For simplicity, the claim is proved
only for f(X7) in [L].

When X is the Brownian motion it is well known that the Malliavin
derivative admits the chain rule: let F' € D5 and ¢ € C*'(R) be Lipschitz
continuous. Then ¢(F) € Dy 5 and Dy gp(F) = ¢'(F)DoF m ® P-a.e. Solé
et al. [56] generalize the chain rule in the following way: Let F' € D5 be
measurable with respect to the completion of the o-algebra generated by the
Brownian motion part of the Lévy process and G € Ly(IP) be measurable
with respect to the completion of the g-algebra generated by the jump part.
Let ¢ : R? — R be continuously differentiable in the first variable such that
the mapping (x, z3) — 82 o(x1,x5) is bounded. Suppose p(F,G) € Lo(P).
Then

OQOFG ZnIn 1fn s\ Ty )))

is defined in Ly(m ® P) and

D.opo(F,G) = aigp(F, G)D.oF m®@P—a.e.

X1



From the difference quotient formula in Proposition 1 one can immediately
see that the chain rule does not apply for x # 0. However, we have the
following equation.

Proposition 2 ([GL], Proposition 5.1). Let ¢ : R — R be Lipschitz contin-
uwous and F' € Dy 5. Then ¢(F) € Dy 5 and

GD,F forxz =10

D, o(F) = {¢(F+7th,zF)—eo(F) for z #0

m ® P-a.e., where G is a random variable bounded by the Lipschitz constant
of .

If the function ¢ in Proposition 2 is continuously differentiable, then it
holds that G = ¢'(F'). This can be seen by the same procedure as in [42,
Proposition 1.2.2].

1.5 A chaos expansion with Hermite polynomials

We present a chaos decomposition for f(X;) € LQ( )u smg Hermite polyno-
mials Hy, that is Ho(z) := 1 and Hy(z) := (_kl,) 675— for k =1,2,.

Proposition 3 ([L], Proposition 2.1). Assume f(X1) = Y 2 L.(f.) €
LQ(]P)) and let Yi = X1 — JWl.

(i) There exist functions Gy, k =0,1,2,..., such that Gi(Y1) € La(P) and

F(X1) =) Ge(V) Hy(Wi)o*  in Ly(P).

(il) There exist symmetric functions g, € Lo(u®") such that

Fl(t, 1), (b @) = gn(@n, - 2) 1G5 (1)

and

= (m+ k) "
Gk(}ﬁ)zz(mi!)[m(ngrk(-,O SO g,)s E=0,1,. .

m=0 k

(ili) If f € C*(R), then the functions Gy, are obtained from

dk;
Gk:[R@ (cx + )Py, (dz) for k=0,1,...
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The fact that f, = gn]l‘(%’fl] was shown by Baumgartner [5] and follows
also from the results in [GL]. According to [L, Lemma 3.1], if the sum
DY f(X1) = >0 ndya (fule, (8,2))) e, <oy (£, ) converges in Ly(m ® PP),

then

o)

DOf(X1) =Y Gr(V)H(W1)o* M g1uqey  in La(m @P).
k=1

1.6 The Skorohod integral

The adjoint of the Malliavin derivative is the Skorohod integral and it is
commonly denoted by §. If u € Ly(m ® P) and there exists H € Ly(IP) such
that

(u, DG)LQ(m®P) = (H, G)Lg(]P’) for all G € ]D)l,g,

then u €Dom(d) and d(u) = H. If u is predictable, then the Skorohod
integral coincides with the Ito integral.

The forward integral is defined pathwise and - like the Skorohod integral
- it extends the Ito integral to anticipating integrands (see Russo and Vallois
[53] for continuous integrators). We are interested in the relation of the Sko-
rohod integral and a pathwise integral with respect to the random measure
M.

Considering certain pathwise integrable random fields, the relation be-
tween the Skorohod integral and a pathwise integral is shown by Aléds et al.
[2, Corollary 2.9] in the canonical probability space under the assumption
Jz #*v(dz) < co. Oksendal and Zhang [48, Lemma 2.1] consider the relation
for a class of pathwise integrable random fields in the pure jump case. In
[48] the space 2 is the continuous dual of the Schwartz space and X is an
Lo(P)-martingale. We show the relation on a general probability space and
express the Skorohod integral using the pathwise integral on a dense subset
of Dom(9).

Let m € N, f € Cp°(R™"!) such that the set {z : f(y,z) # 0 for some y €
R™} is bounded, 0 <ty <t; <---<t, <ooand k € {1,...,m}. Denote

U(t, .75) = f(th — Xtoa e 7Xtm — Xtmil,x)]l(tk_l,tk](t), (1)
bU(t, .75) = f(th — Xtoa e ,th — th—l —Z,... ,Xtm — Xtmfﬂ‘r)ﬂ'(tk—htk}(t)
and

A7bu(t, x)

= A];f(th — Xt07 Ce 7Xt th 1 Ty... 7Xtm — Xtm—l?'r)ﬂ(tkfl,tk](t)'

ko _
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For u(t,0) = bu(t,0) we define the pathwise integral as:

/ / u(t, )M (dPt, dz)
R+X{0}

_f th Xtoa"'aX _Xtm 170)U(Wtk _VVtk—1)

a.s. Moreover, we define

// u(t, )M (dPt, dz)
]R+><|x|>5

= Z bu(t, AX;)AX; — / / u(t, x)zdtv(dz).
Ry Jlz|>e

|AXi|>€

The right-hand side of the above equation is well defined since the sum is
a.s. finite.

By [L, Lemma 4.1] we have u € Dom(0), and [L, Proposition 4.1] states
that the linear span of random fields of the form (1) is dense in Dom(d). The
Skorohod integral of u can be expressed using the pathwise integral in the
following way.

Theorem 3 ([L]|, Theorem 4.1). For compact sets U. C R\ {0} such that
U. CUx fore' <e and|J..,U: = R\ {0}, it holds that

_ lim ( / / u(t, ) M(d?t, dz)
e—0 Ry x UEU{O}

_ // A*bu(t, .’ﬂ)m(dt> d.T)) ’
R4 x (U:U{0})

where the limit is taken in Ly(IP).

2 Fractional smoothness and approximation

Fractional smoothness of random variables is considered here in terms of
fractional order Sobolev spaces obtained by real interpolation. These spaces
have been considered by Watanabe [62] and Hirsch [30] on the Wiener space
and Adams [1] for the usual Sobolev spaces. Letting v denote the standard
normal distribution, Geiss and Geiss [21] and S. Geiss and Hujo [25] found
out that the interpolation spaces between the weighted Sobolev space Dy o(7)
and Ls(7y) are connected to the convergence rate of the approximation of
stochastic integrals driven by (geometric) Brownian motion.

In mathematical finance the models of perfect hedging are based on trad-
ing continuously. In practice continuous trading is infeasible. When dis-
cretizing a trading strategy, an error occurs. The error has been measured in
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the weak sense by, for instance, Bertsimas, Kogan and Lo [9], Hayashi and
Mykland [29] as well as S. Geiss and Toivola [26] for continuous processes
and by Tankov and Voltchkova [60] for jump processes. Approximation in
L,(P) for p > 2 was considered by S. Geiss and Toivola [27]. In this work
we measure the error in Ly(P) as has been done by Zhang [63], Gobet and
Temam [28], S. Geiss [23, 24], Geiss and Geiss [21, 22], S. Geiss and Hujo
[25], Hujo [31, 32] and Seppala [55] for continuous processes and Brodén and
Tankov [12] for jump processes. We consider stochastic integrals driven by an
exponential Lévy process or a Lévy process and show that the convergence
rate depends on the choice of discretization time points and the fractional
smoothness of the stochastic integral.

Consider a Lévy process X which is an Ly (P)-martingale and its Doléans-
Dade exponential S = £(X),

St - ]. + Sr—dXT.

(0,¢]

Then a random variable f(Sr) € Lo(P) admits the orthogonal Galtchouk-
Kunita-Watanabe representation

F(Sr) = Vo + / o dS, + N

(0,7]

We are interested in the quantitative Riemann approximation of the stochas-
tic integral f(o,T] vdS; and its relation to fractional smoothness. When X
is the Brownian motion, then A/ = 0. We consider discrete time points
0=ty <ty <---<t, =T and measure the error in Ly(P). The convergence
rate of the approximation error is r, if

—-T
Ncn

Lo (P)

/ (Ptfdst - Z ('ptk—l(stk - Stk—l)
(0,17 1

for all n.

First results of the convergence rate were obtained for the Brownian mo-
tion. Zhang [63] showed that if f is absolutely continuous and is of poly-
nomial growth, then the convergence rate is r = 1/2. Gobet and Temam
28] proved that for f = Lix ) it holds » = 1 and for f(z) = (z — K)%, we
have r = i + 5, a € (0, %) Both Zhang [63] as well as Gobet and Temam
[28] used equidistant time nets and the essential observation is that the more
smooth the pay-off function f is, the more accurate is the approximation.
S. Geiss [23] showed that using non-equidistant time nets may improve the

approximation rate.
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Geiss and Geiss [21] showed that whenever the pay-off function f is
in a Besov space Bj (7), the optimal convergence rate r = 4 can be ob-
tained using certain non-equidistant time nets. Besov spaces Bg,q(v) =
(L2(7y), Dy 2(7))s,4 are obtained by real interpolation between Ly(7y) and the
weighted Sobolev space Dy o(), where 7 is the distribution of Sy. By S. Geiss
and Hujo [25] a characterization for f € Bf (v) is given by means of the be-
haviour of the approximation.

These results were obtained in the Brownian motion setting. First approx-
imation results concerning the discontinuous exponential Lévy model came
from Brodén and Tankov [12]. They use equidistant time-nets and compare
the convergence rates of the optimal trading strategy and delta-hedging and
show that under certain assumptions the optimal strategy leads to faster
convergence. Brodén and Tankov [12] compute under various assumptions
the convergence rate and show that it depends on the small-jump behaviour
of the Lévy process when o = 0: for the optimal trading strategy they state
some integrability and smoothness conditions under which r = % For the
digital option 1jk )(S7) they show the convergence rate r = 3a~' — 3 for
v(dz) = k(z)|z|~*"*dz and a € (£,2) for a class of functions k.

We connect the convergence rate in the Lévy process setting to Malliavin
fractional smoothness. The underlying process in [GGL] is the Lévy process
X itself or its stochastic exponential S. The convergence results are analo-
gous for the two processes. Therefore we omit here the case of the stochastic
exponential S.

The rest of this section involves approximation of a stochastic integral

F= / Spt—de
(0,1]

where the integrand is of the form

o= I (9a15). telo),
n=1

with g, € Lo(pu®"). Tt is notable that this is always the case when ¢ is the
integrand from the Galtchouk-Kunita-Watanabe projection

f(Xl) =c+ / QthdXt +N
(0.1]
For a time net 7 = {0 = t, < t; < --- < t, = 1} we denote by a(F;7) the

Lo (P)-approximation error,

CL(F§7—) =||F - ngtkfl(th - thﬂ)

k=1

Lo (P)
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The approximation number a(F; 1) corresponds to a®'(F;7) in [GGL]. Here
the integral is approximated with its left Riemann sum, which also minimizes
| F = > vp—1(Xy, — X4, ,)||Lop) Over square integrable predictable discrete
time processes v, when the discretization time points are fixed. Therefore
the left Riemann sum gives optimal approximation. When the underlying
stochastic process is the stochastic exponential, then the left Riemann sum
is no longer optimal, but the convergence rate remains the same.

2.1 Approximation

When the underlying process is continuous, then it is known from Geiss and
Geiss [21] that the convergence rate is never better than %, unless ¢ is a
deterministic constant. The following theorem states that the best possible
convergence rate for any Lévy process is also r = %

Theorem 4 (Theorem 5, [GGL]). Unless there are a,b € R such that F =
a+ bX; a.s., we have

lim inf inf F 0.
im inf \/n {#Tmnﬂa( 77’):| >

n—oo

Let H(F;t) := /$E|¢?|. When the underlying process is continuous,
S. Geiss [23] showed that

“a(Fi7) < (i / " —t)HQ(F;t)dt)E < ca(F; 7) 2)

for a constant ¢ > 1 not depending on 7 or F. In [GGL] we see that the
approximation number is related to an integral of H also for processes with
jumps.

Theorem 5 (Theorem 3, [GGL)). It holds that

o(F:7) = u(R) (Z /t "l —t)HZ(F;t)dt) |

If the underlying process is the stochastic exponential S instead of the
Lévy process X, the equation of Theorem 5 turns into an equivalence like
(2) with constant ¢ = ¢(7) such that ¢(r,) — 1if sup,, ;o [th —th—1| — 0
as n — 00.

According to Seppald [55, Theorem 2.4], the optimal convergence rate

r = 3 for (inf,, a(F;7,)),., is obtained if and only if fol H(F;t)dt < co. In
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this case one gets the optimal rate using the regular time nets generated by
H(F;-), i.e. the nets 7, = {0 =t <t} <--- <t =1}, which satisfy

t”l
H(F;t)d /HFt dt forallk=1,....n

n
tkl

The function H(F;-) is increasing, which causes the need for the time points
i to be concentrated close to 1. The regular time nets generated by ¢ —
(1 —t)’~1 where 6§ € (0,1], are the following nets 77.

Definition 4. For 0 € (0,1] let us denote by 70 the time net which consists
of the time points t, =1 — (1 — %)%, k=0,...,n

If H(F;t) ~ (1—t)~1, then the optimal convergence rate is again achieved
with the time nets 77. S. Geiss [23] showed this before the results of Seppéli
[55]. These time nets give the optimal convergence rate also in the case
that F' has certain Malliavin fractional smoothness (see [21] for continuous
processes and [GGL]| for processes with jumps).

2.2 Fractional smoothness and its connection to approximation

The convergence rate of the approximation relates to fractional smoothness
in terms of Besov spaces. This observation was made first for approximation
in Ly(IP) by Geiss and Geiss [21] and S. Geiss and Hujo [25] and Seppalé [55].
S. Geiss and Toivola considered weak convergence [26] and L, (IP) convergence
for p > 2 [27]. Seppéla [54] studied the convergence rate for stochastic
integrals with no fractional smoothness in the usual sense. All these papers
assume the underlying stochastic process to be continuous.

The Besov spaces ng are defined as interpolation spaces between D o
and Ls(IP). We use the K-method of real interpolation to describe the spaces
BG

For F € Ly(P) and t > 0, the K-functional is defined by

K(F,t; Ly(P), Dy o) := mf{[| Fy || o) + Ul Follpy, - F = Fy + F2}

Given 6 € (0,1) and ¢ € [1,00], we let Bf  be the space of all F' € Ly(P)
such that

||FHBqu = Ht_GK(F,t; L2(P),D1,2)HL(1((O’OO)’%) < 0.

The spaces 32 4 are intermediate spaces of D5 and Ly(P) and they have a
lexicographical order,

Dl,Z g ng/ g Bg,q g Bg:q/ g LQ(P)
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whenever 0 < ¢ < 0 < 1and 1 < ¢ < ¢ < oo. We refer to Triebel [61],
Bennet and Sharpley [6] or Bergh and Lofstrém [8] for more information
about interpolation.

The following theorem was formulated for continuous processes by S. Geiss
and Hujo [25], and it shows that the more smooth F' is with respect to 0,
the better is the approximation for the equidistant time net. The relation is
shown for Lévy processes with jumps in [GGL].

Theorem 6 (Theorem 6, [GGL)). Let 6 € (0,1), ¢ € [1,00] and 7, be
equidistant with #1, =n+ 1. Then F € Bg,q if and only if

H(ng_%a(F;Tn))Oo

< 0Q.
£q

n=1

For ¢ = oo the theorem exposes the convergence rate r = g for F' € Bg,oo.
If F ¢ B, for any (0,q) € (0,1) x [1,00] then a(F;7,) converges to zero
slower than n™" for any r > 0. The convergence rate in the case of having
no fractional smoothness has been investigated for continuous processes by
Seppéld [54], who uses more general interpolation spaces.

Like for the Brownian motion (Geiss and Geiss [21]), the convergence
rate can be improved by choosing appropriate non-equidistant time nets (see
Theorem 7). On the other hand the convergence can be arbitrarily slow
despite optimizing over time nets: when X is the Brownian motion, it was
shown by Hujo [31] that for any sequence of positive real numbers 5 = (3,)5°,
with (3, | 0 there exists fz € Lo(7) such that

#Tilea(fﬂ(Xl);T) > 3, for all n.

The following theorem states that the optimal convergence rate r = % can be
attained for F' € ng by using the time nets 77 from Definition 4. The less
smooth the integral F' is, the more we need the discretization time points to
be concentrated close to 1. The observation was made first for continuous
processes by S. Geiss [23] and Geiss and Geiss [21] and for processes with
jumps in [GGL]. Seppéld [54] shows for the continuous underlying that this
convergence rate is achievable also if F ¢ Bf, for any 6 € (0,1), but F is
contained in a more general interpolation space.

Theorem 7 (Theorem 7, [GGL)). Let 6 € (0,1], 7% be from Definition 4 and
write By, := Dy1o. Then F € BY, if and only if sup,, v/na(F;7l) < oo. If
Fe ]B%%Q, then

n—~o0

lim v/na(F;7%) = \/2—19 /01(1 — 1)V H2(F;t)dt.
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The fractional smoothness of f(X;) = ¢+ f(o 1] - dX; + N is related
to the smoothness of the term F = f(o 1 p;—dX; in the Galtchouk-Kunita-
Watanabe decomposition:

f(X1) € BY, implies F € B,
for 6 € (0,1) and ¢ € [1, 00] and
f(Xl) S ]D)LQ 1mphes F e ]D)LQ

by [GGL, Lemma 3]. The integral part F' may indeed have better smoothness
than f(X;): Suppose X is tempered a-stable with a € (1,2) such that
v(dr) = d|z|7'7*(1 + |z|)"™dx for some m > 2 —a and d > 0. By [L,
Example 3.1] and [GGL, Proposition 1] we have

]]-[K,oo)(Xl) ¢ DLQ and / QOt_dXt c DLQ.

(0,1]

3 Conclusions

Malliavin calculus for Lévy processes has been considered in this thesis on
a general probability space. Some results from special probability spaces
(canonical, dual of the Schwarz space) have been converted to a general
probability space for functionals of the Lévy process. It was shown that the
Malliavin derivative defined for smooth functionals using a difference quotient
yields a definition which is equivalent to the definition based on It6’s chaos
decomposition.

Some approximation results of stochastic integrals were generalized from
the Brownian motion setting to the general Lévy process setting, provided
that the underlying process is an Ls(IP)-martingale. Connections between
Lo(P)-approximation and Malliavin fractional smoothness were found. The
fractional smoothness of functionals of a Lévy process as well as the fractional
smoothness of stochastic integrals seem to depend heavily on the jump inten-
sity of small jumps. However, so far only special cases have been investigated.
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Abstract. The Malliavin derivative for a Lévy process (X ) can be de-
fined on the space D12 using a chaos expansion or in the case of a pure jump
process also via an increment quotient operator. In this paper we define the
Malliavin derivative operator D on the class S of smooth random variables
f(Xt,,...,X¢,), where f is a smooth function with compact support. We
show that the closure of L2 (P) 2 S B, (m ® P) yields to the space D .
As an application we conclude that Lipschitz functions operate on D1 2.
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1. INTRODUCTION

In the recent years Malliavin calculus for Lévy processes has been developed
using various types of chaos expansions. For example, Lee and Shih [5] applied
a white noise approach, Leon et al. [6] worked with certain strongly orthogonal
martingales, Lgkka [7] and Di Nunno et al. [2] considered multiple integrals with
respect to the compensated Poisson random measure and Solé et al. [11] used the
chaos expansion proved by It6 [4].

This chaos representation from It6 applies to any square integrable functional
of a general Lévy process. It uses multiple integrals like in the well-known Brow-
nian motion case but with respect to an independent random measure associated
with the Lévy process. Solé et al. propose in [12] a canonical space for a general
Lévy process. They define for random variables on the canonical space the incre-
ment quotient operator

\I"t,xF(w) = F(Wt’x) — F(w)v x 7é 07

T

* Partially supported by the Academy of Finland, project 110599.
** Supported by the Finnish Cultural Foundation.
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in a pathwise sense, where, roughly speaking, w; , can be interpreted as the out-
come of adding at time ¢ a jump of the size x to the path w. They show that on the
canonical Lévy space the Malliavin derivative D; , I defined via the chaos expan-
sion due to Itd and ¥, , F coincide a.e. on R} x Ry x Q (where Ry := R\ {0})
whenever F' € Lo and EfR+XRO |U; . F|?dm(t, z) < oo (see Section 2 for the
definition of m). On the other hand, on the Wiener space, the Malliavin deriva-

tive is introduced as an operator D mapping smooth random variables of the form
F= f(W(hl), cee W(hn)) into Ly(2; H), i.e.

DF = ﬁ;aiif(W(hl),...,W(hn))hi

(see, for example, [8]). Here f is a smooth function mapping from R” into R such
that all its derivatives have at most polynomial growth, and {W(h),h € H} is an
isonormal Gaussian family associated with a Hilbert space H. The closure of the
domain of the operator D is the space D1 5.

In the present paper we proceed in a similar way for a Lévy process (X¢)>o.
We will define a Malliavin derivative on a class of smooth random variables and
determine its closure. The class of smooth random variables we consider consists
of elements of the form F = f(Xy,..., X, ), where f : R — R is a smooth
function with compact support.

Analogously to results of Solé et al. [12] about the canonical Lévy space the
Malliavin derivative DF' € Ly(m ® IP), defined via chaos expansion, can be ex-
pressed explicitly as a two-parameter operator D ;. For certain smooth random
variables of the form F' = f(Xy,,..., Xy, ) we have

LG
Dt,zf(th e 7th) = Z %(Xtm s th)]I[O,ti]X{O}(t>$)
=1 ?

+ \Ijt,xf(tha ceey th)]I{z;éO} (.1‘)
for m ® P-a.e. (¢, z,w). Here U, ,, for x # 0 is given by
Uiof(Xtyy o5 Xt,,)

f(Xt1 + J"]I[O,tl](t)a s 7th + x]I[O,tn} (t)) - f(Xt17 s 7th)
X

Our main result is that the smooth random variables f(Xy,..., Xy, ) are
dense in the space D1 o defined via the chaos expansion. This implies that defin-
ing D as an operator on the smooth random variables as in Definition 3.2 below
and taking the closure leads to the same result as defining D using Itd6’s chaos
expansion (see Definition 2.1).

The paper is organized as follows. In Section 2 we shortly recall Itd’s chaos
expansion, the definition of the Malliavin derivative and some related facts. The
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third and fourth sections focus on the introduction of the Malliavin derivative op-
erator on smooth random variables and the determination of its closure. Applying
the denseness result from the previous section we show in Section 5 that Lipschitz
functions map from D > into D ».

2. THE MALLIAVIN DERIVATIVE VIA ITO’S CHAOS EXPANSION

We assume a cadlag Lévy process X = (X;);>0 on a complete probability
space (Q, F,P) with Lévy triplet (y,02,v), where v € R, 0 > 0 and v is the
Lévy measure. Then X has the Lévy—It6 decomposition

Xi=~t+oW;+ [ xdN(t,z)+ i zdN(t,z),
(0,t]x{|z|>1} [0,t]x{0<|z|<1}
where W denotes a standard Brownian motion, /N is the Poisson random measure

associated with the process X and N the compensated Poisson random measure,
dN(t,z) = dN(t,x) — dtdv(x). Consider the measures 1 on B(R),

du(z) := o%ddo(z) + x2dv(x),
and m on B(R; x R), where Ry := [0, 00),
dm(t,z) := dtdu(zx).
For B € B(R; x R) such that m(B) < oo let

M(B)=o i dW; + lim [ zdN(t, ),
{teR,:(t,0)eB} 0 L (t,2)e Bl /n<|z|<n}

where the convergence is taken in the space L2(Q2, F,P). Now EM (B;)M (Bs)
= m(B1 N By) forall By, By withm(B;) <ooand m(Bg) <oo.Forn =1,2,...
let us write

b= Ly (Ry x R)", B(R4 x R)®", m®").

For f € L% It6 [4] defines a multiple integral I,,(f) ‘with respect to the random

measure M. It follows that I,,(f)=1I,,(f) a.s., where f is the symmetrization of f,

1
f(zla"'azn) = E Z f(zﬂ'(l)v"'azﬂ(n))

*TeESH

for all z; = (t;,z;) € Ry x R, and S,, denotes the set of all permutations on
{1,...,n}.

Let (FX);>0 be the augmented natural filtration of X. Then (F;¥);>0 is right
continuous ([9], Theorem I 4.31). Set FX := \/1520 ]—"tX . By Theorem 2 of 1t6 [4]
the chaos decomposition

Ly = Ly(Q, FX,P) = P I,(L})
n=0
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holds, where I(L9) := R and I,,(L3) := {L.(fn) : fn € LY} forn =1,2,...
For I' € Ly the representation

F=3 L(f)

n=0
with Iy(fo) = EF a.s. is unique if the functions f,, are symmetric. Furthermore,

o0

IE11Z, = 32 nlll fullZ;-

n=0

DEFINITION 2.1. Let D; o be the space of all F' = ZZO:O I,(fn) € Ly such
that

0 ~
IFI3, , = 3 (n+ D)!Ifully < oo
n=0

Set Ly(m ®@ P) := Ly (R} x R x Q,B(R; x R) ® F¥X, m ® P). The Malliavin
derivative D : Dy 5 — Lo(m ® P) is defined by

[e.e]

Q1)  DyFi=3Y nIn_l(fn((t,m), -)), (t,z,w) € Ry x R x Q.

n=1

We consider (as Solé et al. [12]) the operators D. o and D. ,,, x # 0, and their
domains D?,z and ID){Q. For o > 0 assume that D?,z consists of random variables

F =3%"  I.(fn) € Lo such that

o0
HF|]]%)92 = ”FH%Q +> n n!”fn]I(R+><{O})><(]R+><]R)"—1H%g < 0.

n=1

For v # 0, let ]D{2 be the set of F' € Lo such that

oo ~
IFIBs = IFIZ, + 3 n- nll fullie, xioyx (e, xmynt 7y < o0,
’ n=1
where Rp := R \ {0}. If both ¢ > 0 and v # 0, then
(2.2) D12 =D),NDY,.

In case v = 0, D. o coincides with the classical Malliavin derivative DWW (see, for
example, [8]) except for a multiplicative constant, D}V ' = oDioF.

In the next lemma we formulate a denseness result which will be used to de-
termine the closure of the Malliavin operator from Definition 3.2 below.

LEMMA 2.1. Let L C Lo be the linear span of random variables of the form
M(Ty x Ay)...M(T, x A,), n=12...

where the A;’s are finite intervals of the form (a;, b;] and the T;’s are finite disjoint
intervals of the form T; = (s, t;]. Then L is dense in Ly, D1 2, D , and DY .
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Proof. 1° First we consider the class of all linear combinations of
M(Bl) ce. M(Bn) = In(]Ile...XBn)v

n=1,2,..., where the sets B; € B(Ry x R) are disjoint and fulfill the condition
m(B;) < oo. It follows from the completeness of the multiple integrals in Lo (see
[4], Theorem 2) that this class is dense in L. Especially, the class of all linear
combinations of Ip, x..xp, With disjoint sets By, ..., B;, of finite measure m is
dense in LY = Lo (R4 x R)™, B(R4 x R)®", m®"). Let H,, be the linear span
of W7y x A1) x (Ty x A )» Where A; = (a;, b;] and T; = (s;,;]. One can easily see
that H,, is dense in L5 as well. Indeed, because m is a Radon measure, there are
compact sets C; C B; such that m(B; \ C;) is sufficiently small to get

[UB,x..xB, — Lcyx..xcullLp <e

for some given £ > 0. Since the compact sets (C;) are disjoint, one can find dis-
joint bounded open sets U; 2 C; such that || 1o, x..xc,, — Tuyx..xu, ||y < €. For
any bounded open set U; C (0,00) x R one can find a sequence of ‘half-open
rectangles’ Q; = (sZ,tZ] X (ai;, bZ;] = T,i X Ai; such that U; = UZO:1 Qi 1 (tak-
ing half-open rectangles (), C U; with rational ‘end points’ containing the point
x € U; gives U; = UngUi Q.).

Hence for sufficiently large K;’s we have

K1 K,
H][U1><---><Un — ]IPHLEL <eg, where P = U QLk X ... X U Qn,k
k=1 k=1
and where the (); 1, . .., Q; k, can now be chosen such that they are disjoint. This

implies that the linear span of 1, »...x@,,,» Where the ();’s are of the form T; x A;,
is dense in Lj.

2° For the convenience of the reader we recall the idea of the proof of Lem-
ma 2 in [4] to show that the intervals T; can be chosen disjoint. Consider the situa-
tion (all other cases can be treated similarly) where for the set

(Th x A1) x ... x (T, x Ay)
we have T = T5. To shorten the notation we write

Q:= (T35 x A3) x ... x (T, x Ay).

Choosing an equidistant partition () ?:1 of 71 we have

k

H(TlXAl)X(TlXAQ)XQ = 27; H(EjXAl)X(ElXAQ)XQ + Z ]I(EjXAl)X(E]'XAQ)XQ'
G#l j=1

It can be easily checked that H Z;‘f:l ]I(ijAl)X(ijAz)XQHLg — 0as k — oc.
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3° The denseness of H,, in L5 implies that £ is dense in Lo and Dy 5. The
remaining cases follow from the fact that

[ fnL®, x {0 xR xRyl 2y < (| fnllop

and
||fn]I(R+><R0)><(R+><R)"—1)HLS < anHLS u

3. THE MALLIAVIN DERIVATIVE AS OPERATOR ON S
Let C2°(R™) denote the space of smooth functions f : R" — R with compact

support.

DEFINITION 3.1. A random variable of the form F'= f(Xy,,..., Xy, ), where
feC*¥R"),ne N and ty,...,t, > 0, is said to be a smooth random variable.
The set of all smooth random variables is denoted by S.

DEFINITION 3.2. For F' = f(Xy,,...,X:,) € S we define the Malliavin de-
rivative operator D as a map from § into Lo(m ® P) by

Dt,xf(Xt17 e 7th)

= o %(tha s 7th)]I[0,ti]><{0} (t’ x)
N f(th + xl{[07t1](t)7 oo, X, + eT]I[O,tn] (t)) — [(Xeyso oo, Xe,) T, (z)

x
for (t,x) € Ry x R.
The following lemma holds true:

LEMMA 3.1. We have DF = DF in La(mm ® P) forall F € S.
Since for f(Xy,,...,Xy,) € S we get

E [ |Dyof(Xu,-... Xe,)|?dt < oo
R4

and
E [ |Duof(Xe,-.., Xe,)|Pdm(t, z) < oo,
Ry xRo

Lemma 3.1 follows for the canonical Lévy space from Propositions 3.5 and 5.5
in [12].

A proof of Lemma 3.1 for the situation where the Lévy process (X;) is a
square integrable pure jump process which has an absolutely continuous distribu-
tion can be found in [7].
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An outline of the proof in the general case is given in the Appendix. Like in
[7], Proposition 8, one can derive from the proof an explicit form for the functions
(fn) of the chaos expansion f(Xy,,..., X, ) = ZZO:O I, (fn),

fn((sl’xl)a ) (STM:B’N,))
(—1)n—|[| f(th +Zie[$iﬂ[0,t1}(si)a oo Xy +Zie[$iﬂ[0,tk](3i>)

:E I s
c{injup ™ T1-.-Tn

with the convention that to get fn((sl,xl), ey (86,0)y o0y (Spy xn)) one has to

take the limit lim,,,,| o fn((sl, x1), .., (Sn, xn))

Especially, since any /' € Ly D S has a unique chaos expansion, we conclude
that also D F' does not depend on the representation F' = f(Xy,,..., Xy, ). Using
the equality of D and D on S and the fact that S is closed with respect to multi-
plication we are now able to reformulate Proposition 5.1 of [12] for our situation:

COROLLARY 3.1. For F and G in S we have
Dt’x(FG) = GDtny + F.Dt’mG + ‘TDtnyDt’xG

form @ P-ace. (t,z,w) € Ry x R x Q.

4. THE CLOSURE OF THE MALLIAVIN DERIVATIVE OPERATOR

The operator D : S — Lo(m ® IP) is closable if for any sequence (F,,) C S
which converges to 0 in Ly such that D(F},) converges in Lo(m ® P) it follows
that (DF,,) converges to 0 in La(m ® P). As we know from the previous section
that D and D coincide on S C Dy o, it is clear that D is closable and the closure
of the domain of definition of D with respect to the norm

IF||p = [EIF]® + E| DF|[7, )2

is contained in D1 . What remains to show is that the closure is equal to D ».
THEOREM 4.1. The closure of S with respect to the norm || - |[p = || - [|p, ,
is the space D1 ».
Theorem 4.1 implies that the Malliavin derivative D defined via 1t6’s chaos

. D .
expansion and the closure of the operator Ly O S = Lo(m & P) coincide. Before
we start with the proof we formulate a lemma for later use.
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LEMMA 4.1. For ¢ € CX(R) and partitions m, := {s =t <t} <...<
t = u} of the interval [s, u] it follows for ¥(x) := xp(x) that

n

Dy — lim ( i P(Xpp = Xep ) —E Y (Xpr — X )
j=1

|mn|—0 j=1 i

where |y, | == maxi<icn [t — 1 4].

Proof. To keep the notation simple, we drop the n of the partition points ¢7.
Notice that

f ()0(33) dM(t7x) = II(]I(s,u] ® (P)

(s,u] xR
We set
n n
G" = Z ¢(th - th_1) —-E Z w(th - th—l)
j=1 j=1
and

G:= [ o(x)dM(t,x).
(s,u] xR

In general, (X, — Xy,_,) ¢ S but we can conclude from Lemma 3.1 that
D op(Xt; — Xty y) = Drap(Xy; — Xt )

m ® P-a.e. using a suitable approximation of ¥(X;, — Xy;_,) by a sequence of
smooth random variables from S. So we can write D; , G™ explicitly as

Dt,:EGn = Z w/(th - th_1)]I(tj,1,tj]><{0}(t7x)

¢(th - th—l + I) - ¢(th - th—l)

T

I[(tjfl,tj]XRo (t7 .’E)

Moreover, we have Dy, I1 (1, ® ¢) = T4, (t)p(z) m-a.e. Using the general
fact that for any I € D » with expectation zero the inequality

1713, ,< 21 DF |7, (mewp)
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holds true, we obtain
IG — G"[1%,, < 2IDG = DG™[17,(mep)

= 20’2]]“: f Z ]I(tjil,tj}(t)[so(o) - W(th - thfl)]2dt
Ry j=1

+2E [ 3 T, (O () — (X, — Xey, + )
Ry xRg j=1

+ (X, — Xy, )|Pdtdy(z)

— 0

as n — oo because of dominated convergence and the a.s. cadlag property of the
paths of (X;). m

Proof of Theorem 4.1. Accordingto Lemma 2.1 it is sufficient to show
that an expression like M (T} x A;)... M(T, x A,,), where the A;’s are bounded
Borel sets and the 7;’s finite disjoint intervals, can be approximated in D1 o by a
sequence (Fj); C S.

1° In this step we want to show that it is enough to approximate

4.1) LTy @¢1)... L1171, ® pn)

by (Fj)r C S, where ¢; € C2°(R). Since the intervals 7; are disjoint, the defini-
tion of the multiple integral implies that

M(Tl X Al) c M(Tn X An) = In(][Tlel ®...® ]ITnXAn) a.s.
By the same reason,
Il(]ITl ® (Pl) R II(HTn X (pn) = In((I[Tl &® 901) XR...R (]ITn ® (,On)) a.s.
We have
2
HIn(]I(Tl><A1)><...><(Tn><An)) - In((]IT1 ® ‘Pl) ®...® (I[Tn ® 9071)) H]D)LQ

< (A DN Tery say) s (@xan) = Iy @ 1) @ .. @ (g, @ ¢4) |1
< (AT Tl Tayxxa, = 91 - @ 0nl T (uemy-

The last expression can be made arbitrarily small by choosing ¢; such that the
expression ||T4, — ;| L3(w) 18 small. Indeed, for each i there are compact sets

CiCCiC...C A;andopensets Ui D UL D ... D A; such that

Ui\ Cp) = 0
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as k — oo. By the C'*° Urysohn lemma ([3], p. 237) there is for each k a function
@i € C=°(R) such that 0 < ¢} < 1, p% =1 on C} and supp(p%) C U;. Then

14, — @F 2y < (UE\ CE) — 0

as k — oo.

2° Now we use Lemma 4.1 to approximate the expression (4.1) by a sequence
(Fy)r C€S.Fori=1,...,nsety;(z) := zp;(x) and

k k
Gf = Z ]I{tj,tjfleffi}wi(th - thfl) —E Z I[{tj7tj71€Ti}1/}i(th - thfl)‘
=1 =1

The partition 7 = {0 < t§ < ... < ¥} can be chosen such that all end points of
the closed intervals T; belong to 7. Put

fk(Xtm e ,th) = H Gf
i=1

and notice that f, € C°°(R*¥+1). Let us choose functions 3, € C>°(R) such that
0 < B < 1and By, (x) =1 for |x| < m, the support of (3, is contained in {x;
|z] < m+ 2} and ||3),]|co < 1. Setting z_1 := 0 and

k
am(3307 [ 7xk) = H /Bm(xz - .'Ei_l),
=0

we have f(z)ay, (z) € C2°(R*¥+1). By dominated convergence one can show that
Dl,Q — n%g»noo fk(Xt()7 ceey th)am(Xtm ceey th) = fk(Xtoa . ,th).

Because the intervals (7;) are disjoint, it follows that the product rule holds in our
case:

n n
42 DI[GF=>GY...GF (DGHGE,...GF m®Pae.
=1 i=1
Indeed, because of Dt,fo = (Dme)]ITZ. (t) we have
2(Dy oGy )11, (1) (D o G5) 17, (1) =0 m @ P-ace.
for any ¢ # j. Equation (4.2) follows then by induction. Let
G; = Il(]ITi X (Pz)

We observe that G%,...,G% as well as GY,...,G¥_ |, DGF,GF, |, ... Gk are
mutually independent by construction. Hence to show Ly-convergence of these
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products it is enough to prove Lo-convergence for each factor. From Lemma 4.1
we obtain Gf — G;inDy g foralli =1,...,n, so that

Lo(m®P)— lim GY...GF (DGH)GE,,...GE

|7 |—0
=G1...Gi—1(DG;)Git1 ... Gy
Consequently, we have found a sequence (Fj) C S given by

Fk: = fk‘(Xtoa"')th)amk(Xtoa"' >th)7

where the my’s are chosen in a suitable way, that converges to expression (4.1) in
]D)l 2. N

COROLLARY 4.1. The set S of smooth random variables is dense in Lo, IDD(I)’2
and ID)‘II’Q.

Proof. The denseness in L is clear. To show that S is dense in ]D(i2 assume
F € DY, has the representation F' = %~ | I,(fn). Fora given e > 0 fix N such
that H YN In(fn)H]D)O < e.From F' € Ly we conclude
€ 1,2

Ne
FNe .= 3" L(fn) € Do
n=0

By Theorem 4.1 we can find a sequence (F) C S converging to FV= in D1 2, and
therefore also in IDD%Q. In the same way one can see that S is dense in ]D){Q. "

5. LIPSCHITZ FUNCTIONS OPERATE ON D 2
LEMMA 5.1. Assume that g : R — R is Lipschitz continuous with Lipschitz
constant L.
(a) Ifo > 0,then g(F) € DY, forall F € DY, and
(5.1) D;og(F) = GDioF  dt @ P-a.e.,

where G is a random variable which is a.s. bounded by L.
(b) Ifv # 0, then g(F) € DY , forall F € ]D){Q, where

9(F + Dy F) — g(F)
x

(5.2) Dyag(F) =

form ® P-a.e. (t,z,w) € Ry x Ry x Q.
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Proof. (a) We will adapt the proof of Proposition 1.2.4 in [8] to our sit-
uation. Corollary 4.1 implies that there exists a sequence (F},) C S of the form
Fy = fu(Xt,, ..., Xy,) which converges to F' in DY ,. Like in [8], we choose a
non-negative ¢ € C°(R) such that supp(¢) C [—1,1] and fR Y(x)dr =1 and
define the approximation of unity v, (x) := mi(mz). Then g,, := g * Py, is
smooth and converges uniformly to g as m — co. Moreover, || g/, ||co < Lq. Hence
9m(Fn) — gm(0) € S and (g,,(F,)) converges to g(F) in Ly. Moreover,

E f ‘Dt,Ogn(Fn)|2dt < Lg2] HFnH]%)(l) .
R4 :

Since (g, (Fy)) converges to g(F) in L and

sup llgn (Fn)3, < oo,
n s

Lemma 1.2.3 in [8] states that g(F) € D?’Q and that (D.,o gn(Fn)) converges to
D. o g(F) in the weak topology of L2 (€2; La(R4 x {0})). The obvious inequality
Elg, (F,)|? < Lg implies the existence of a subsequence (g, (Fy,)) ,, Which con-
verges to some G € Lo in the weak topology of Lo. One can show that |G| < Ly
a.s. Hence for any element o € Log (€2; La(R x {0})) we have

klim E [ g, (Fn.)(Deo By )e(t)dt = E(G [ (Dyo F)a(t)dt).
-0 R/, Ry

Consequently, D; o g(F') = GDioF dt @ P-a.e.

(b) Let (F,)n, € S be a sequence such that ]D){2 — lim F,, = F. Since the

expression

F+axD; . F)— g(F
Z(t,z) = 9( t; ) 9l )]IR+XRO(t,x)

isin Lo(m ® P), it is enough to show that the sequence (Dgn(Fn)]IR +XR0) con-
verges in Lo(m ® P) to Z, where (g,,) is the sequence constructed in (a). Choose
T > 0 and L > 0 large enough and § > 0 sufficiently small such that

lim sup E / |Z(t,2)* + | Dt agn(Fn)*dm(t, z) < e.
" (10,T)x{6<|x|<L})e

Then, for n > ng,

Z — Dgn(Fn)]IRJ,.XROH%Q(]m@P)

g(Fn + th,an) - g(Fn) 2

<e+2E i Z(t,x) —
x

[0,T]x{6<|z|<L}
+ 86 *Tu({s < |z < L})|lg — gnll%-

Hence we obtain (5.2) from the Lipschitz continuity of g and the uniform conver-
genceof g, t0g. m

dm(t, x)
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PROPOSITION 5.1. Let g : R — R be Lipschitz continuous. Then F' € D1 o
implies g(F') € D1 2, where Dg(F) is given by (5.1) and (5.2).

Proof. The assertion is an immediate consequence of Lemma 5.1 and the
equality (2.2). =

6. APPENDIX

Proof of Lemma 3.1. We denote by J,,(f,,) the multiple integral

f f fn((tl,xl),...,(tn,xn)) dM(tl,.%'l)...dM(tn,xn),
R4 xR [0,tn) xR [0,t2) xR

where for the definition of a stochastic integral with respect to M we refer to [1].
We have

6.1) Lu(fn) = 0V o (fn)-

Let us first prove on S a Clark—Ocone—Haussman type formula for the operator D.
By the Fourier inversion formula (see, for example, [1]) we infer for f € C2° (Rk)
that

f( Xy, Xy,) = ff( exp(2mZuJXt )du—ff e”“T)YT( )du,
R Jj=1

where (") = Eexp (27i Z?Zl(qutj/\t)) and

k
Yi(u) = exp (2mi Y uiXpae — n(u,t))  for 0 <t < T :=max{ty,..., 0}
j=1
We rewrite Y7 (u) by Itd’s formula using &(u, s) := 27i Z Tj,,)(s) and get

6.2) f(X4y,...,Xt,)

_ [ FwpereT
Rk
T
+ f f )e' “T)(‘Ostf(u)f(u, s) UdWS)du
+ f f(u)en “T)( i Y, (u) (%) — l)dN(s,w))du.

(O,T] XRo

It follows by Fubini’s theorem that

k
ff en(w) du—Eff Jexp (2mi 3° i Xy;) du = Ef(Xi, ..., Xy,).
j=1
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Now we deal with the second term on the right-hand side of (6.2). Using the fact
that the process (Y);c(o,r) is a square integrable martingale, we infer by the con-
ditional theorem of Fubini (see, e.g., [1]) and Fubini’s theorem for stochastic inte-
grals (see, e.g., [10]) that it can be written as

T
[E[ [ Yr(u)f(w)e™™De(u, s) du| Fy-]odW,.
0 Rk

Applying Theorem 8.22 (e) of [3] and the Fourier inversion formula we rewrite the
inner integral as follows:

fYT ) f ()¢ (u, s) du

k k
= 2 Tos(s f 2miu; f (u) exp (2mi Y u; Xy, )du
j=1 =1
Z [Otj] 8 ‘(th,...,th).
j=1 Ly

Similarly, one can write the last term on the right-hand side of (6.2) as
[ E[ [ fw)e™™Dyp(u)(e™ ™) — 1)du| F,-]dN (s, z),
(0,T]xRg Rk

where

[ Fw)e"™™ DY (u) (e ) — 1)du

o k k
= fkf(U)(exp [2mi 2 (X1, + 2T ,(5))] — exp (2 Zl“thj))d“

= f(th + a:]I[mtﬂ(s sy Xy x]I[O,tk}(S)) — f(th, e, th) .

Consequently, for F' = f(Xy,,..., X, ) € S the Clark—Ocone—Haussman type
formula holds true:

(6.3) F=EF+ [ E[D,F|F-]dM(t z).

R+ xR
Since Dy , f(Xy,, ..., Xy,) € Sforany (t,2) € Ry x R, iterating equation (6.3)
we obtain

f(thv"'ath) :Ef(thv"'vxtk)+ § JH(Ean(thv"'ath))v

n=1

where D™ := D ... D.
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Notice that ED" f(Xy,, ..., Xy, ) is a symmetric function on (R4 x R)™. The

relation (6.1) between the multiple and the iterated integral and equation (2.1) to-
gether with Dy, f(Xy,, ..., Xy,) € Lo(mm ® P) imply that

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

[10]

o
Diaf(Xeyy o, Xep) = Y. Joot (ED" 'Dypf (X4, ..., X))
n=1

= Dt,l“f(thv R 7th) m® P-ae =
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Abstract

The goal of this paper is to develop a stochastic calculus for random
elements whose randomness originates from finitely many increments
of a Lévy process. Using an explicit formula for the Malliavin deriva-
tive of we give a characterization for Malliavin smoothness of f(X).
The Skorohod integral is expressed via a pathwise integral with respect
to a random measure generated by the Lévy process.

Keywords Lévy process, Malliavin calculus
Mathematics Subject Classification (2010) 60G51, 60H05, 60H07

1 Introduction

In recent years Malliavin calculus for Lévy processes has been introduced
using chaos expansions (Applebaum [4], Di Nunno et al. [7], Lokka [12],
Nualart and Vives [15], Solé et al. [18] and others). When an explicit form of
the derivative is needed, the infinite series representation becomes laborious.
In many applications such as finance and backward stochastic differential
equations we would need to work with random variables of the form

f(th - Xtm s 7th - th—l)’ (1)

where X is a Lévy process, f is a Borel functionand 0 <ty <t; < ... <t, <
0o. In this paper we study Malliavin calculus for random variables of the
form f(X;) and the Skorohod integral for random fields whose randomness
originates from X;, — Xy,..., Xy, — X4, ..

It is well known that for the Brownian motion W it holds that f(W;) is
in the Malliavin Sobolev space D, 5 if and only if f belongs to the weighted
Sobolev space WH2(IR™, N(0,1)) (see for instance [13, Proposition V 2.3.1]).
We relate Malliavin differentiability to the properties of f : R — R for
any Lévy process X. We also investigate the Skorohod integral and give
the relation between the Skorohod integral and the pathwise integral on a
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dense subset of Dom(d). The relation between the two integrals for certain
integrable mappings can also be found in papers of Alos et al. |2, Corollary
2.9] and ©Oksendal and Zhang [16, Lemma 2.1|. In these works the relation
is shown for certain forward integrable processes, whereas we consider the
relation for certain Skorohod integrable processes.

1.1 The setting

Let X = (X¢)i>0 be a Lévy process with cadlag paths on a complete probabil-
ity space (2, F,P). Let (F;):>0 denote the natural filtration of X augmented
with the null sets of F. Denote FX :=\/,., F;. By the Lévy-Ito decomposi-
tion there exist v € R, ¢ > 0, a standard Brownian motion W and a Poisson
random measure N on B(R; x R) such that

Xy =yt + oW, + // xN(ds,dx) + // N (ds, dz).
(0,4 x{|z[>1} (0,6]x{0<|z|<1}

Here N(ds,dz) = N(ds,dz) — dsv(dz) is the compensated Poisson random
measure and v : B(R) — [0, o0] is the Lévy measure of X satisfying v({0}) =
0, [x(z* A1)r(dz) < oo and v(B) = EN((0,1] x B) when 0 ¢ B.

We consider the following measures p and m defined as

p:BMR) — [0,00], p(dw):=oc?d(dr) + 2*v(dx),
m: B(R; xR) — [0,00], m(dt,dz) := dtu(d).

For sets B € B(R; x R) such that m(B) < oo, a random measure M is
defined by

M(B) := a/ dW; + lim // z AN (t, z),
{teR4:(t,0)eB} oo S J{(tx)eB: 2 <|z|<n}

where the convergence is taken in Ly(IP). Then EM (B;)M (By) = m(B1NBs)
for all By, By with m(B;) < oo and m(Bs) < oco. For n =1,2,... write

La(m®") = Ly (R4 x R)", B[R x R)®", m®")

and set Ly(m®’) := R. A function f, : (R4 x R)” — R is said to be
symmetric, if it coincides with its symmetrization f,,,

1
fn((tlv 131), SRR (tna In)) = ﬁ Z fn((tﬂ(1)7 x”ﬂ))? R (tﬁ(n% xﬁ(n)))v

where the sum is taken over all permutations = : {1,...,n} — {1,...,n}.
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We let I,, denote the multiple integral of order n defined by Ito [10]. For
pairwise disjoint By,..., B, € B(R; x R) with m(B;) < oo the integral of
1p, ®---® 1p, is defined by

L(lp, ®- - ®1p,) = M(By)-- M(B,).

It is then extended to a linear and continuous operator I,, : Lo(m®") — Lo(P)
and it holds that I,(f,) = I.(f,) for all f, € Ly(m®"). We let Io(fo) := fo
for f() € R.

According to [10, Theorem 2|, letting I,,(Lo(m®")) = {L.(fn) : fu €
Ly(m®™)} for n =0,1,2,... it holds that

= D L(Ls(m®))

and the functions f, in the representation F' = Y °  I,(f,) in Lo(PP) are
unique when they are chosen to be symmetric. It then holds that

|FHL2 IP) Zn'anHLQ rm®n

1.2 Notation
Here we introduce some frequently used notation:
e Ry:=R\ {0}

e C'(IR™) is the space of real-valued functions on R™ which are infinitely
many times differentiable in all coordinates and have compact support.

e Cp°(R™) is the space of bounded smooth functions such that all the
partial derivatives are bounded.

2 On the chaos expansion of f(X;)

In this section we investigate chaos representations for random variables of
the form f(Xy) = > 07 I.(fn) € Lao(P), where f is a Borel function. If
f € C(R), then accordmg to Geiss et al. |9, page 7] it holds that

1
fal(t1, 1)y oy (tpy ) = EEA“ A f(Xl)ll(O () m®”" —a.c.,
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where A, is defined in Definition 2.1 below. Since C2°(R) is a dense subset
of Ly(Px,), we can see by approximation that

ful(ti,z1), .oy (tny ) = gulz1, ...y 2 )]1‘(8”}(t1,...,t) m®" —a.e. (3)

for some symmetric function g, € Lo(u®") for any f(X;) € Ly(P).
We let Hj, be the Hermite polynomial of order k, that is Hy(x) := 1 and

Hi(z) = (_kl,) ez ddkke > fork=1,2,.... Write Y; := X; —oW,. The follow-

ing proposition presents a decomposmon for f(Xy) € Lo(P) using Hermite
polynomials.

(0,1
ric. Then there exist functions Gy : R — R such that Gy (Y1) € Lyo(P),

Proposition 2.1. Let f(X1) =Y I, (gn]l®"]) € Lo(P) with g, symmet-

- +k)!
Gk(Yl):Z(Wl?n—')Im(gm+k(',0 )18 ), k=0,1,...,

(0,1]xRo

and
F(X1) =D Gr(Y) Hy(Wi)o®  in La(P).
k=0
For the proof we introduce a difference quotient and weak derivative.

Definition 2.1. For f : R™ — R we denote by Al the difference quotient
with respect to the ith coordinate,

Aif(ml,...,xm) _ f(xl,...,:zc,-_l,a:i—l—x,xiJrl,...,xm)—f($1,...,:13m)7

T

forx #0. If f € Ll¢(dz) := LP¢(R™, B(R™), dz) and there exists a function
h; € Li*(dx) such that

0

[ Jwge

o(x)der = —/ hi(x)p(x)dx  for all p € CZ(R™),
then we say that f has a weak derivative in the direction i and write
If m = 1, we also use the notation Af = A'f.

The following lemma will be used as a technical tool in this article.
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Lemma 2.1. Let n,k >0, A€ B(R. xR) and f € Ly(m®"), g € Ly(m®*).
Then
L(fLM I (g158) = Lngr (F15" @ g15F) s,

m

Proof. Let fr, =321, af" @7 Lam and g,, = 31, b'@F_; 1 g be sequences
of simple functions converging to f in Lo(mm®") and g in Lo (m®¥), respec-
tively. Then f,19" — f15" in Ly(m®"), g, 15%F — g1%5¥ in Ly(m®*) and
L,(f15™) and I,,(g1%%) are independent. This yields

LI I(g15E) = lim L (fnl5")Ik(gm15)
= lim Tk (ful$" ® g,m15F)
= Lk (f15" © g157)
in Lo(P). -

Lemma 2.2. Let n > 1 and g, € La(u®") be symmetric. Then

n

n n! ®(n—k)
I, <9nﬂ%1]) = Z m]n—k (gn('7 0,... 70)1(071]XRO)Hk(W1)0k7
k=0 ' J

where the sum 1s orthogonal.

Proof. Using R" = J,_o{z : #{i : #; = 0} = k} and Lemma 2.1 we get
k=0
~(n ®(n—k) X
- Z (k‘) In (g” <ﬂ(Ovllleo ® ]l((%,l]x{O}))
k=0
zn: (Z) Lt (gn(.7 0, ’0)IL(E?)(?]_X}TI%O)II€ <]l(é%k1}><{0}>
k=0 T

n! -
(n— k)']n—k: <9n(-,u)ﬂ%”m{()ﬂk(wl)ak’
k=0 : -

3

where in the last equation we used [14, Proposition 1.1.4|. The orthogonality
follows from the orthogonality of the sequence Hy(W;), k = 0,1, ..., which

.. ®(n—k) o
is independent from the sequence I,,_ (gn(~7 0,... 70)]1(0,1}x130>> k=0,1,....

k
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Proof of Proposition 2.1. Suppose first that f € C>*(R). Then f(X;) =
>0 o In(fn) where f, = IL((X’” for go(21,...,2,) = SEA, -+~ A, f(X4
by equation (2). It holds that the function

dk
Gy, ::/R@f(ax—i—-)ﬂ)wl(dx) for k=0,1,...

satisfies the assumption of Lemma A.1: Choose K > 0 such that f(z) =0

for |x| > K. Since for all k, %f is bounded and bounded functions are in
in Li(Pyw,) we have by [8, Theorem 2.27 (b)| that

G / dk+] _(a—y)? 1 d
e 202 a
dyJ + dﬁkﬂ V2ro?

dk+j
Wf (z)

< sup
zeR

By Lemma A.1 we have G,(Y1) =Y~ I (gm,kﬂ%f'}]xﬁo) with

1
gm,k('rlv v 7xm) = %EAQH U AmmGk(Yi)
1

— %EAQ:I"'A% Ag-- Ay f(X7)
k
n!
— g1, Tn 0,0
=@ e 0, 0)
k
forn=m-+kand x1,...,2,_r € Ryg. Thus
> n' ®(n—k)
Ge4) = 3 o g0 0 O,
n=~k k
and by Lemma 2.2 we have
n—k
=35 e R, et
n=0 k=0 M
n—k
- Z Z e (AT B AL

3

= Gp(Y1)Hy(Wy)o*
k=0
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in Ly(P).
If f ¢ C®(R), then we find a sequence (fU))2, C C®(R) such that

7j=1

f9 — fin Ly(Px,) (see [8, Proposition (7.9) using (8.18)]) with
X)) =GP () H(Wh)o _ZI DIE).
k=0 n=0
Thus
0.~ E|fV(Xy) - fOX)P = D EIG (V1) - G (V) PEIHi(Wh)o"|
whence there exist G(Y1) € Lo(P), k= 0,1, ..., such that

F(X2) = 3 GV Hi(W)o*

(4)

The convergence g’ — g, in Ly(m®") implies

[e.9]

Gk(}/l) = Zm[n,k(9n<,0, Oﬁlfz())(l]xlglo) k= 0,1,....
k

n—=

3 The Malliavin derivative

We denote by Dy o the space of all F'=35">°  I,(f,) € Lo(PP) such that

o0

IF 1D, =D+ DI fallf men) < o0

n=0

Let us denote Ly(m @ P) := Ly(Ry x R x Q, B(Ry x R) ® F¥,m ® P) and
define the Malliavin derivative D : Dy 9 — Ly(m ® P) by letting

DioF = nli(ful- (t,2)) in Ly(m®P).

Next we define a set of smooth random variables. For smooth random vari-
ables we have an explicit representation of the Malliavin derivative.
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Definition 3.1 (Smooth random variables S). We call a random variable F
smooth, if there exists

e a set of time points T = {0 <tg <t; <--- <t, <oo} and
e a function f € Cp°(R™)
such that
F=f(Xy, — X4, X, — Xy, -, X4, — X4, ) a.s. (4)
We denote the set of smooth random variables by S.

Note that the set 7 and the function f in the above definition are not
unique.

According to Geiss et al. |9, Theorem 4.1] smooth random variables (for
which tp = 0 and f € C*(R™)) are dense in D5 and from [9, Lemma
3.1] one immediately obtains the following representation of the Malliavin
derivative for smooth random variables.

Proposition 3.1. The set S of smooth random wvariables is dense in D o
and for F = f(Xy, — Xigy -, Xy, — X4,,_,) €S it holds that

Dt,xF = Z A;pr<Xt1 - Xt07 s 7Xtm - Xtm 1)]1(157;—1,%] (t) (5)

i=1 )
m ® P-a.e.

Proof. The proposition coincides with the claims in [9] for the subset of S
where tp = 0 and f € CX(R™). Let F € S with f € C;°(R™) and Fy, =
Foag (X, —Xo, ..., Xy, — Xt,,_, ), where oy, € C°(R™1) is such that ag(x) =
1for x| <k, 0 < ag(z) <1and |a%jozk(x)\ < 1forall z and j. Then Fy, — F
in Ly(P) and DFy, — >0 ALf(Xy, — X, oo, Xby — X)L 10 (8) in
Ly(m ® IP). Hence the proposition follows by the closability of D. H

We distinguish two components of the Malliavin derivative: the derivative
with respect to the Brownian motion part and the derivative with respect
to the jump part of the Lévy process. We let DY 12 and ]D 5 be subspaces of
Ly(P) equipped with the norms

2

®(n—1)
1Fllng, = o [IF112, +Zn ot |7 (1808 @ 1. o))

Lz(m®”)
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and

2

n—1)
1P llyeg = | 1F1, +Zn nt [ (LR @ T s )

Lo (m®mn)

respectively.
Let us define the operators

= L1 (ful (t.2) L, xqoy(t, )  for F € DY,

and

DYF =Y " nly i (fal, (t,2) Lr, xro(t,7)  for F € DY,

where the convergence of the sums is taken in Ly(m ® P). The operators
D° and D® are closed: let A € {{0},Ro} and (F) C Df', such that Fj, =
S o L (f7) — 0 in Ly(P) and DAF, — u in Ly(m ® P). There exist
fn € Loy(m®"), n =1,2,..., such that f, is symmetric in the first n — 1 pairs
of variables and u(t,z) = Y~ nlp_1(fu(, (t,2))) in Loy(m@P) (see Remark
4.1 below). We have

T ®(n—1)
0= kh_)rgo fn (]1IR+XIR ® IR, xa) = fn La(m®)
> tim (|77 OR0R @ 1n )| = Ul s
= e Ry xR + Lo(m®n) "l Lo (m®m)
= Il fnll 2 men)
. ®(n—1) 7 (k)
Simcee f” (]lRMR @ g, xa) Lo(m®n) — Jo Lo(m®n) — 0 Hencew =0

in Ly(m ® P).

Clearly Dy» = DY, N D and D = D° + D% In Propositions 3.2 and
3.3 we use the operator A to state a necessary and sufficient condition on a
Borel function f such that f(X;) is in D, or DT 9, respectively.

3.1 The derivative D°

Proposition 3.2. Assume o # 0. Let f(X1) € Lo(P), where f : R — R is a
Borel function. Then f(X1) € DY, if and only if Aof exists and Ao f(X1) €
Ly(P). If f(X1) € DY, then

D?,mf(Xl) = Ao f(X1)Loaxqo(t,2) m® P-a.e. (6)
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For the proof we need the following lemma.

Lemma 3.1. Let f(X1) = > 0" Gr(Y1)Hp(W1)o" € DY,. Then

D?, f(X ZGk (Y1) H,(Wh)o* 01]X{0}(t r) m® P-a.e.
k=1
Proof. Consider the representation f(X;) = > >, [n(gn]l((%"l]) where the

functions g, € Lo(u®") are symmetric. By Lemma 2.2 we have

D°f(Xy)

NE

nlp_1 (gn(-,O)]l%(l] )> Lo,1]x{0}

n=1
[e%¢) n—1 7’L 1
— (n—1—k) k

:Zn In1- k<9n('>0w 0)1%1 Ro )Hk(Wl)U Lo,11x{0}

el h—o n — 1 — \7—:1_/ ]x

N n! ®(n—k) e
- Z (n — k)!In—’f (971('7‘07' ;001511 )HJQ(Wl)U " 0,1)x {0}

n=1 k=1 J

in Ly(m ® P) since H,_y = Hj. Denoting

Fn,k = m[nk<gn(ao7 0)1(0 1]><1R0>

x>

we get
K oo n 2
EY D FuHi(Wi)o" ™ = >N " FHi(Wh)
k=1 n=k n=1 k=1
2
=E)) . ) FuH(Wh)o*!
n=1 k=(nAK)+1
= EZ Z E|Fn,k|21E|H;(W1)a’“‘1\2
n=1 k=(nAK)+
—0

as K — oosince Y1 iy 41 BIF s *EIHj, (W1)o"~!|? decreases monotonously

for all n as K increases By Proposition 2.1 we have G(Y1) =5 7 F, in
Ly(P), so that

Dy f(X ZGk YO H,(W1)o* Lo axqoy(t,2)  in Ly(m @ P).
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Proof of Proposition 3.2. "Only if*: Suppose

(X0 = 3 Gu(Y) Hi(Wh)o* € DY,

k=0

We define functions h and f,, as orthogonal sums in Ly(R?, B(R?), Py, ®Py, )

by
) =Y Gi(y)Hy(x)o"
k=1

and

By orthogonality in Ly(Py, ® ]Pyl) and monotone convergence we get
[ [ 15w+ 5P, @)y (@)
RJR
=3 [ ] G i P Py 4
o /RJR

/]R /‘Gk V2| Hy(2) 2o Py, (d2) Py, (dy)

k=0

Thus
y= f(o +y)llraew,) € L2(Pyy)

and

Yy ZIGk PIHNZ, @, 0% € L2(Py,).

Since (s 0) ) = /im0 |GHOPTHE, oy 7 for all y € R, we
obtain using dominated convergence that

m—00

= [ (i [ 150w+ 0) ~ o) a0) ) Pyg ).

0= lim / /R F(02 1 9) — ful, ) "Poyy (d2) Py, (dy)

m—0o0
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Hence there exists a set A; € B(R) such that Py,(4;) = 1 and f,.(-,y) —
flo-+y) in Ly(Pyy,) for all y € A;. Analogously we find a set Ay such that
L fn(y) — oh(-,y) in Ly(Py,) for all y € Ay, Fix y € A := 41 N As.

2

Let ¢ € C°(R) and write p(z) = \/%e_%. Since w and w are
bounded functions, we get

- f(@)¢' (z)dr = N flox+y)¢'(ocx + y)odx

pl@)

Furthermore, using Holder’s inequality we get

L

n—y

,y) |dz :/ loh(z,y)| \/ x)dx

e N R
< oh(z,y)|*p(x)dx ——dzx
</| e ) (—ﬁ:yp(fﬁ) )

< 00.

This implies h (=2, y) € LY*(dz) and Agf = h (=2,y) for all y € A.
Consequently, h(z,y) = Aof(ox + y) for ]P‘W1 ® Py,-a.e. (z,y) and by
Lemma 3.1 it holds that

DYf(X1) = h(W1,Y1)Lo1x{0y = Dof(X1)Lo1yxfop it Lo(m @ P).

"If*. Assume f has a weak derivative and Agf(X;) € Lo(PP). Assume
first that f has compact support and choose K > 0 such that f(x) = 0 for
|z| > K. Denote by ¢ the continuous density of X7,

1 <z y)2 1
x) = 2 Py, (d for all z € R.
(@) /]R vV 2%02 n(dy) € ( vV 27?02}
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Then
/|f(rc)|2d:r<sup /|f ) q(z)de < oo
R

|z|<K q
and

/ |Aof(z)Pdz < sup — / |Aof(7)]*q(x)dr < co.
R

||<Kq

Hence f € W'2(R) = {f € La(dz) : IAof € La(dx)}. By [1, Theorem 3.22]
there exists a sequence (f;) C C>°(R) converging to f in WH%(R). Then

| fr(X1) — (Xl)HQLQ(JP +[|D° fie(X1) = Ao f (X1)L0,11x{0} | 2o (e

:/ | fi(z) — f(2)[%q( dx+/ |[fi(@) = Aof ()[Pq(x)dx
< m;—a( [ 1ite) - 2das+/ £1() — Do >|2dx)

as k — oo. Since D is closed, it follows that f(X;) € DY, and D°f(X;) =
A(]f(Xl):ﬂ_(O’l]X{g} in LQ(IIII X ]P)
In case f does not have compact support, define for all K = 1,2,... a

function gx = fyk, where o € C®(R), ¢k, |¢%| € [0,1], ox(z) =1
when || < K —2 and ¢k (x) = 0 when |z| > K. Then gx(X;) € Ly(P) and
Aogr (X1) € Ly(P), thus

gr(X1) € DY, and  D°gx(X1) = Aogr (X1)L(0,11x{0}-
Furthermore,
gk (X1) — (X)) 2, + 1D°9x(X1) — Do f(X1) L0112, (mer)
< [ f(X1) Lk k1 (X1) | 2o )
+20% ([ Ao f (X)) 1.k (X)) 17,0y + 1 F (X)) (X7, m))

— 0

as K — oco. Again, the closedness of D° assures that f(X;) € DY, and

DOf(X1) = Ao f (X1)Lo,xf0}-
0

3.2 The derivative DRo

On the canonical Lévy space the operator D®° can be defined using a differ-
ence quotient with respect to w (see for instance Solé et al. |18, Section 5|).
For the pure jump process in a canonical space, the following proposition is
a special case of [18, Proposition 5.4].
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Proposition 3.3. Let f(X;) € Ly(IP), where f: R — R is a Borel function.
Then

Ef] a0 ) < oo
(O,I]X]RQ
if and only if f(X7) € ]D]Eg. If f(Xh) € ]Dlﬁg, then
D?:gf(Xl) = Ay f(X1)L(0,1)xR, (£, )
Proof. Consider the chaos expansion f(X;) = Y " I,(f,). Assume first
that f is bounded. Let € > 0. We show that

Ay f (X)) Lo gial>e (t:0) = Y ndoa (fuls (£:2)) Ljasey mOP—ace. (7)
n=1

Since f is bounded, the random field (t,2,w) — Ay f(X1)L(01]x{ja[>e} (L, T) is
in Ly(m ® IP) and it has a chaos expansion

Axf(Xl)ﬂ(O,l]x{lxba}(ta JJ) = Z n]n—l(hn('a (ta :L‘))) n LQ(m ® P)?
n=1

where h,, € Ly(m®") is symmetric in the first n — 1 pairs of variables (see
Remark 4.1 below).

Denote 1 := v, .., +00. Since P, %7 is a Radon measure, we can choose
fr € CX(R) such that fi, — fin Ly(Px, *n) as k — oo (|8, Proposition 7.9
using the C*° Urysohn Lemma 8.18|). Then

E Aa} X)) — Aa} X 2 d ,d
//(0,11x{|m|>s}| filX) FX)I" m(dt, dz)

=2 /{ >e} (|fk(X1 +2) — f(X1+ @) + | fu(X1) — f(Xl)P) v(dz)

< (24 2v(|2] > e)Ifx = f T, o
-0 (8)

as k — oo. Proposition 3.1 implies that equation (7) holds for f. Using (8)
and the fact that fi.(X;) — f(X7) in Lo(P) we get

hn«tlv $1>, SRR (tmxn)) = fn«tlv xl)’ SRR (tmxn))ﬂ{\xn\>5}

m®™-a.e. Thus (7) holds. The proposition follows for bounded f from (7) by
letting € — 0.
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When f is not bounded, consider f; := (—=k)V f A k. If
A f(X1)Lo1)xro (t, ) € Ly(m ® PP),

then from |A, fi(y)| < |ALf(y)| for all x € Ro,y € R we obtain fi(X;) €
lD]Eg and D fi.(X1) — Af(X1)L(0.1]xRr, it Lo(m @ P) by dominated conver-
gence. It follows that f(X;) € lD]ffg and D™ f(X1) = Af(X1)Lo1]xR,-

Assume f(X;) € DT'. Then by [9, Lemma 5.1(b)], for all k > 1 it holds
that fr(X;) € ]DIE”S and for = # 0 we have

(—k)V [f(X1) + mD?zOf(Xl)} Nk —((=k)V f(X1) AN E)

D fi(Xy) =

m ® P-a.e., so that \Df};fk(Xlﬂ < \Df};f(Xl)\ m ® P-a.e. and hence
fr(X1) — f(X1) in lD]Eg. Since fi is bounded, we have

DR, = LI 0 A= (R I A

— Ay f(X1)L(0,1)xR, (£, )

L0,1)xR (£, )

m ® P-a.e. and we get Dﬁg (X1) = Asf(X1)L(01)xR, (t, ) for m ® P-a.e.
(t,z,w). O

3.3 Characterization for f(X;) € Dy,
Corollary 3.1. Let f(X1) € Ly(P). Then f(X1) € Dy if and only if
(a) in case 0 #0, Aof exists and Ao f(X1) € Lo(P) and
(b) Af(Xl)l(OJ}xIRO < LQ(KH@ IP)
If f(Xl) € D1’27 then Df(Xl) = Af(X1>]1(O,1]><1R m P-a.e.
In the following example we see that in case X; has a density, which is (lo-
cally) bounded from below and above by a positive constant, then 1k )(X7)
is Malliavin differentiable if and only if the Lévy process X is of bounded

variation.

Example 3.1. (a) Let K € R and assume that X, has a density ¢ which is
bounded from below and above by a positive constant on [K —¢, K +¢]
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for some € > 0. Let f = Lig ). If 0 > 0, then Ljxo)(X1) & DY, by
Proposition 3.2. Let us check the condition of Proposition 3.3:

/ / E|A, f(X1) Lo (£)Pm(dt, dz)
R4+ xRo

—/ EH[K’K_x)(Xl)V(dx)—i-/ E]l[K_LK)(Xl)V(dZL')
(_0070)

(0,00)

~e / |$|I/(d$> +/ Em—[K,oo)(Xl + ZE) — :H-[K,oo)(Xl)|V(dx)7
0<|z|<e |z|>e

where A ~. B signifies %B < A < ¢B and the constant ¢ > 1 depends
on SUPge[K—e,K+¢] |q(l’)| and ianE[Kfa,KJrs] |Q($)| Thus

Lk 00)(X1) € ]D]Fg & |z|v(dz) < oo
’ 0<|z|<1

and

ligoo)(X1) €D1p < o0=0and / |z|v(dx) < oo.
0<a|<1

Note that the process X has trajectories of finite variation if and only if
o =0 and f0<|$‘<1 |z|v(dz) < oo (see [17, Theorem 21.9 and Definition
11.9]). -

In the following we use the idea of Avikainen |5, 6] to express bounded
variation functions with the help of signed measures. Suppose X; has
a bounded density ¢ and f : R — R is non-zero, of bounded variation,
right-continuous and vanishes at —oo. By [8, Theorem 3.29] there
exists a finite signed Borel-measure n (i.e. 7 = n*t —n~ and |n| =
nT(R) + n7(R) < oo) on R such that f(z) = n((—o0,z]). We use
F(X1) =n((—00, X1]) = [ Tjye0)(X1)n(dy) and get

/I o BIA X)L 0) ol )
:/R B
<) [ [ B 151+ )~ B0 (60 )il
<l®) [ [ (Uallelel) A Dwta)lniiay

</ (el A V()

[ (oo (X 4-0) = By () )| (k)
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where ¢ > 0 depends on |5|(R) and ||¢||. Proposition 3.3 yields

F(X) eDRy if / le|v(dz) < .
0<|z|<1

4 The Skorohod integral

The adjoint operator § of the Malliavin derivative D : Dy — Lo(m ® P)
is called the Skorohod integral (see, for instance, [14]|). For v € Ly(m ® P)
it holds that v € Dom(J) if and only if there exists a random variable H €
Lo(P) such that

(U, DG)LQ(lm@]P) =EHG for all G € DLQ.
If u € Dom(6), then H is unique and H =: §(u).

Remark 4.1. For each u € Ly(m ® P) there exist f, € Lo(m®"), n =
1,2,..., such that f,.1 is symmetric in the first n pairs of variables and

w(t,z) = > 00 o Ln(far1(s, (t,2))) (see Nualart and Vives [15, Section 4]).
Then ||u||L2 meP) =3 (n—1) ||fn||L2(m®" From the equation

(u7 nln—l(dn))Lg(]m@]P) = n(fm gn)Lg(m®") - EIn(fn)[n(gn)

for all n > 1 and g, € L2(m®™) one concludes (analogously to [14, Proposi-
tion 1.3.7]) that u € Dom(J) if and only if

1
o) 2
[l pom(s) = (HUIIiQ@n@m +Zn!\|fn|liz(m®n)> < .

n=1

If u € Dom(6), then

=3 L), (9)

Let Dy o(La(m)) denote the space of random fields u € Ly(m ® P) such
that u(t,z) € Dy for m-a.e. (¢,2) € Ry x R and there exists a measurable
version of Du verifying || Dul|p,me2ep) < 00. It holds that D;2(Lo(m)) C
Dom(6), and for u,v € Dy 5(Ls(m)) one has

—E / /IR +Xﬁu(t,gc)v(t,gc)m(dt,dgc)

—HE//]RMR//]R+XRDt7xu(s,y)Ds,yv(t,x)m(dt,dx)m(ds,dy)
(10)

(see, for instance, [15, Theorem 4.1] or [4, Equation (5.31)], where the random
measure N (dt,dz) is used instead of xN(dt, dx)).
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4.1 Relation between the Skorohod integral and a pathwise integral

In the following we aim to express the Skorohod integral using pathwise
integration. Alos et al. [2, Corollary 2.9] have shown a relation between the
pathwise integral and the Skorohod integral for a certain class of pathwise
integrable random fields. The relation is also considered by Oksendal and
Zhang [16, Lemma 2.1|. For later purpose, we show this relation here on a
dense subset of Dom().

Definition 4.1. We let S(Ly(mn)) denote the linear span of random fields of
the form

u(t7 l’) = f(th - Xtoa cee 7Xtm - Xtm—17‘r>1]'(tk—latk]<t> (11)

with m € N, f € C2°(R™) such that the set {x : f(y,z) # 0 for some y €
R™} is bounded, 0 <ty <t; < -+ <ty <ooandk € {l,...,m}.

Lemma 4.1. S(LQ(]III)) g DLQ(LQ(M)).

Proof. Consider w as in (11). Then

HUH%Q(I{II@IP) = /( } / ]E|f(Xt1 - Xtm D 7Xtm - Xtm—lvm)‘zm(dt? dl’)
te_1,tk R

< (k= i)l f I5on({z € R 2 f(y, 2) # 0 for some y € R™})

< 00,

x) and since

A ﬁ) for all

so that u € Ly(m ® P). Clearly u(t,z) € S C Dy, for all (¢
there exists a constant ¢ > 0 such that |A]f(z,z)[* < ¢(1
r,y € R, z€ R™ i=1,...,m, we have

HDUH%Q(mm@P)
m

—// Z// E|Aiyf(Xt1_Xto""’Xtm_Xtmfw'r)‘QX
(tg—1,tk] xR i=1 (ti—1,ti] xR

m(ds, dy)m(d¢, dx)
<c(ty —tr_1)u({z € R: f(z,2) # 0 for some z € R™})

X (ty — to) (0—2 + /R(y2 A 1)V(dy))

< 00,

so that u € Dy o(La(m)). O
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Definition 4.2. For u € S(Lo(m)) with representation like in (11) we write
bu(t, ) == f( Xy, — Xigr- - Xopy = Xty s — 2, o, Xy — X 15 2) L4 (2)
and

A"bu(t, )

= AKXy = X Xy = Xy — @, Xy = X 0) L ()

= %f(Xn - Xtm s 7Xtm - Xtmfl’ x)ﬂ(tkflatk](t)’ z=0
u(t,x)—bu(t,r) €T 7é 0.

T 9

The expressions bu(t,z) and A~bu(t,x) depend on the function f in (8),
so that we always mean byu(t,x) and Atbru(t, ) rather than bu(t,x) and
A~bu(t,x). To keep the notation simple we omit the dependence on f in the
notation.

The independence of the Brownian motion and jump part of the Lévy
process together with [14, formula (1.44)] give

5(UJ11R+><{0}) :f<Xt1 - Xtoa s 7Xtm - Xtm717 0>0<Wtk - Wtk&)
—/ A~bu(t,0)o*dt. (12)
R+

Noting that bu(t,0) = u(t,0) we denote the first term on the right hand side

of (12) by
// u(t, z)M(dPt,dz).
]R+><{0}

Moreover, we use the notation

// u(t, z)M(dPt, dz)
R+X\x|>€

= > (u(t,AX,))) AX, — /R /| . u(t, z)zdtv(dz),

|AX¢|>e
where the sum is a.s. finite.
Theorem 4.1. For u € S(Ly(m)) and compact sets U. C Ry such that
U. CU. fore <e andJ,..,U: = Ry, it holds that

e>0

_hm (// t :E)M(dpt dx)
e=0 R+X(USU{0})
— // Abu(t,x)m(dt,dx)> ; (13)
R4 x(UsU{0})

where the limit is taken in Ly(P).



20 Eija Laukkarinen

For the proof we present the following anticipating integration by parts
formula for the compound Poisson process.

Lemma 4.2. Let (Y;)i>0 be a compound Poisson process with Lévy measure
7, T>0and ¢ : R*> — R be such that E [, |¢(Yr, )|p(dzx) < oo. Then

T]E/ o(Yr,x)p(dz) =E > ¢(Yr— AY, AY)).
R 0<t<T, |AY:|>0

Proof. There exists a Poisson process (N;):>o with intensity A = p(R) €
(0,00) and an independent sequence (F;):2, of independent random variables
with F; ~ /A for all i = 1,2, ... such that

Ny
Y, = ZF, a.s. for all t > 0.

=1

Hence
T]E/RQS(YT, 2)v(dz) TZ]P /]Rgb <;Fm> 7(dz)
— TieAT)\%]Ed) (Z F;, Fn+1> A
- i e AT ]Egb (Z FZ,FnH)
— Z]P(NT =n+1)(n+1)E¢ (Z E, FnH) :

n=0 i=1

Since ¢ (Z"H Fy, — F};, F} ) has the same distribution for all j =1,... , n+1,
it holds that

n+1 n+1
TIE/¢(YT7 Z]PNTszrl Z]Egb(ZF >
R
=EZ¢<ZE—B,FJ->
j=1 i=1

=E ) ¢(Yr—AY,AY)).

0<t<T, |AY;|>0
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Proof of Theorem 4.1. If v(R) = 0, then the assertion follows from equation
(12). Assume v(R) € (0,00] and let u € S(Lz(m)) be given by

—1 m)l(rini—pﬁ'nﬂ (t)

7

K
u(t,r) = Z Fio(Xpi = Xy oo Xoa — Xy
i=1

Since by Proposition 3.1 the set S is dense in D o, it holds that H = 6(u)
if and only if
(U, DG)Lg(m@IP) =EHG for all G € S.

Let G= go(Xs, — Xgps .-, X5, — X5, ) € S. Next we find new expressions
for v and G to unify the time nets which determine the increments in the
functional. Write

r={ri,s;k=1,...,n;, j=1,...,n,i=1,...,K}
={0<ty <ty <+ <ty <o},

where s; = t;, for some k; for all j and r§ = tk;‘. for some k:; for all j and .
Then

k1 kn
G = go Z (Xo, — Xy y)sos Z (Xo, — Xty )
k=ko+1 k=kyp_1+1

= g(th = Xigy ooy Xty — Xtmfl)

for
k1 kn
9(T1=20, ..., T —Tm—1) = Go E (T, — Tp—1),-- -, E (T, — Tp—1)
k=ko+1 k=kn_1+1

Moreover,

K k;"L,L

u = E E fi(th Xtov s Xt — Xtm—l"T)]l(tkfl,tk]?

=1 k—km171+1

for
filzr — 20, ..., Ty — Tpp1, T)
ki ki,
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The mappings bu and A~bu do not depend on the choice between f; and f; 0.
Hence it is sufficient to consider

u(tv SC) = f(th - Xtov s 7Xtm - thLfl?x)II‘(tk—lytk}(t)'
To shorten the notation we write
X0 = (X, — X, Xy, — Xy, ) for1<i<j<m.

1)ttt

Let U C Ro be compact with v(U) > 0 and

Y, = // N(ds, dx).
Ot]><U

Then Y and Z := X — Y are independent Lévy processes, and from the
independence of their increments we conclude

(ulgr, xv, DG) 1y(mep)

=k / // [f(XT(l’k_l)a Ztk - Ztk—l + Y, XT(k+1’m)7 .I‘) X
R (tre—1,tk| XU

Abg(XTAY 7 — 24, +anT(kH’m))]m(dtad@PYtktk1<dy)> .

(14)

* *

To compute we keep random variables fixed and denote fi(y,x) :=
ooy +y,...,2), gely) =g(..,-+y,...) and T := t), — ty_1. Then we
have

LUt = T]E/ fe(Yr, ) (gr(Yr + ) — gr(Y7))zr(do)
U
=TE / Je(Yr, 2)ge(Yr + 2)av(dz) — Egy(Yr)T / Je(Yr, x)zv(dz).
U U
The process Y is a compound Poisson process and using Lemma 4.2 we get

TIE/Ufk(YT,x)gk(YT + z)zv(dr)

=E Z fe(Yr — AY, AY;) gi (Y1) AY,
0<t<T, |AY:|>0

=E > Fo(Yr — AXy, AX)gr(Yr)AX,.

tp_1<t<tp, AX €U



Malliavin calculus for Lévy processes 23

From equation (14) and from the independence of the increments and the
independence of Y and Z we get

(ulr, xv, DG) 1y(mep)

=FE|Gx

( > FXTERD X, — AX,, XTEEM A X)) AKX,

tp_1<t<tp, AX:€U

—/(tk-htk]/Uf(XT(l’m),:z:)xdtV(dx)>]

~EG ( / /}R M@ a) - /}R + /U (u(t,x)—bu(t,x))xdtu(dx)).

Hence

S(ulp, xv) = / /}R +XUbu(t,x)M(dpt,dx)— /R + /U A~ bu(t, 2)2?dtv(dz).

(15)
Using the same reasoning as in proof of Lemma 4.1 we see that ulg, xv. €
D1 5(La(m)). From equation (10) we get

||UIL]R+><U8 - UILIR+ xRo ||2D0m(5)

< 20l g, x(®o\U) Lo mer) + 1Dk, x(ko\v)) T mezer)

— 0

as € — 0 since u € Dy 5(Lo(m)). The claim follows from equations (12) and
(15) and the above convergence. O

Definition 4.3. We denote by L the linear span of mappings of the form
u(t,z) = Fliy(t)e(r),
where F € S and p € CX(R).
Finally, we complement Theorem 4.1 by
Proposition 4.1. The set L C S(Ly(m)) is dense in Dom(9).

In the proof we use the following lemma.
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Lemma 4.3 (Lemma 4.1 [9]). Consider I (L(ap¢) where 0 < a < b < o0
and ¢ € CX(R). Set

k
= (Gk —EGy) for Gi:= Z%O(th - th_l)(Xt;? - Xt§_1)7
i=1
where a =tk < ¥ < -« < ¥ =b and sup; |tF —t¥ ;| — 0 as k — oco. Then
S> Fk — Il (ﬂ(a,b](p) m LQ(]P) as k — oo.

Proof of Proposition 4.1. (a) We first observe that for n > 1 the linear span

of functions of the form .

H L (a; b:945

where (a;, b;] N (a;,b;] = 0 for i # j and ¢; € C°(R), is dense in Ly(m®").
By [9, Lemma 2.1] the linear span of functions of the form [T} | L, b,]x(cs.di]
is dense in Lo(m®™). Since pu is regular, we find for any € > 0 an open set
U; D (¢, d;] and a compact set V; C (¢;, d;] such that u(U;\V;) < €. Using the
C*> Urysohn Lemma ([8, 8.18]) we see that there exist functions ¥ € C>°(R)
such that ©F — L, 4, In Lo(p).

(b) To prove the proposition it is sufficient to show that for any n,
I,(fns1) can be approximated in Dom(d) by mappings from L. Note that
1L (frs ) [Domey < 2(n + 1)!an+1|@2(m®<n+1>)- Thus by part (a) of the
proof it is sufficient to approximate u = I,,(g,41) by mappings in £, where
gnir = 110 Laipgpi- Set Fj as in Lemma 4.3 with Fj — I} (L(a,5.%:)-
Then Fj, == T\, F} — 172, It (La i) in Lo(PP) by independence and it
holds that uy := Fi1(a,,, b..1]Pnt+1 € £. Consider the chaos representation

k ®n
Fk - ZI n ( an+1,bn4+1]xXR)¢ )

Using equation (9) and Lemma 2.1 we get

Z In-"_l I]_ (Zn+1 bn+l]><R)c ® :H_(a’ﬂ“'l?bn“'l]gon—"_l)

- Fk[l (:H'(an+17bn+1] Qpn-i-l)

and 6(u) = Ini1(gns1) = H?:ll I (1(a;p,%i)- The independence of the in-
crements of X implies that Fj, and I1(1(a,,, s, ,]@n+1) are independent and
Lemma 4.3 gives

s =l Boms) = 1k = wll L mer) + 110(ur) = S(u)lIZ, @)
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n 2

F, — Hh(ﬂ(ai,bi]%)

=1

=2E ||]l(an+1,bn+1}90n+1”2L2(m)

— 0

as k — o0. O

A  Appendix

Lemma A.1. Let f € C*(R) be such that sup, (1 + |z|)™ |Cf‘l— (x )| < 00
for all k,m =0,1,2,... and let Y; = Xy —oW,. Then f(Y1) = "1
with

1
Jal(tr, 1),y (tny m0)) = HEAM ERFAVS f(Y1>]1(0 1]xRo (L 21)s ey (tny )

-a.€e.

Proof. The proof follows the steps of proof of |9, Lemma 3.1]: By the Fourier
inversion theorem (see, for instance, |8, Theorem 8.26, using Corollary 8.23|)
we get

27riuY1

Y'l / f 27TZuY1d / f E 271'qu1) ]EeQﬂ—mY1 du

e2miuYy

Fix u € R and define an Ly(P)-martingale M by letting M, := FoTwTaYy for

t > 0. Write g(z) := & Then
M, = exp {—t/ (g(z) = 2miul fz)<1y)zv(da) + / 2miux N (ds, dz)
Ro (0,4 x{|z|>1}
+/ omiuaN (ds, dx)}
(0s¢]x{|=[<1}

=: eZt,
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Using It6’s formula |3, Theorem 4.4.7] we get
M, —1= / / — 2miull {p<1y)rdsv(dx)
Ro

// e?s= g(x)xN(ds, dz)
(0,4x{Jz|>1}
—I—// e~ g(x)xN(ds, dz)
x{|z[<1}
// eZs= (g(z) — 2miu)rdsv(dr)
{|z|<1}
= // M,-g(x)zN(ds, dz).
(0,t] xRo

Next we define an Ly(PP)-martingale M. We have  := Hg]lROH%Z(H) < 00, SO
that %(ﬂ(o,t]gﬂRg)@m S LQ(m@’”) with

2
1

= — (tr)".
n!

La(P)

1 n
L, (a(ﬂ(o,ﬂgﬂﬁo)@) >

Hence M, defined by

Mt._1+ZI< (1.g91Ry)® )

is an Lo(IP)-martingale with ||Mt||%2(lp) = e'®. Since

o0

Z(TH— 1)!

n=0

2

= (1+tr)e™

1
— (Lo, 191R,)""
TL. L2(m®n)

we have M, € D5 and from the Clark-Ocone formula [19, Theorem 10] we
obtain

M, = 1—|—/ E [DS@MA}"SJ M(ds,dz) = 1—|—/ M,-g(x)M(ds,dx).
(0,t] xRo (

0,t]xRo

Writing D, := M, — M, it holds that

2

W) = D12, o H / )M (ds, do)
0 t]XRO

La(IP)
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t
:K/ E|D,-|*ds
0
t
:/-@/ h(s)ds,
0

so that h(t) = 0 and consequently M = M.
TIULT Qn
Now, writing Ax(u) = ZZO:K-H I, <% (62 — _1]1(0,1]><]R0> ), we get

f(Y1)
= /R £ () (B> ) (ZK: I, (% (&;_11(0,1]%)@”) + AK(U)) du,

n=0

where

E{ /}R f(u)(Be*™™) A (u du}
S/]R’ ( 27er1 \du/ ’f 2m’uY1)UE‘AK(u)|2du
— 0

as K — oo since f in Li(R,B(R),dx). As a consequnece,

K~>oo - 1 e27riua: -1 ®n
f E )Z[ m Tﬂ(o,l]x]Ro du
. ) eQm‘ux -1 ®n
-y [ dweny [[ (=) avera
0 /R {0<t1 < <tn<1}xRZ x

K

R ] 627riur -1 Qn
= Z// IE/ f(u)e? (—) dud M®"
=0 7 J{0<t1 <<t <1}xRE R z

K

=D, / / E / F)Ag, - Ay, ™ dud M®"
— {0<t1 < <tn <1} XRY R

n=0
K

= Z// EAg, - Ay, f(Y1)dM®"
{0<t1 < <tn <1}XRY

n=0

= Z [n(fn)
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in Ly(IP) for

fal(t1, 1), ..o, (tn, z0))

1 n
= S BAL, - A, FVDLG e, (b1, 7). (fa, 7)),
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Abstract Assume a Lévy process (X¢);c[o,1) that is an Ly-martingale and let
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1 Introduction

We consider the quantitative Riemann approximation of stochastic integrals
driven by Lévy processes and its relation to the fractional smoothness in the
Malliavin sense. Besides the interest on its own, the problem is of interest for
numerical algorithms and for Stochastic Finance. To explain the latter aspect,
assume a price process (St)te[o,l] given under the martingale measure by a
diffusion

t

S; = sp —|—/ (S, )dW,,

0
where W is the Brownian motion and where usual conditions on ¢ are im-
posed. For a polynomially bounded Borel function f : R — R we obtain a
representation

1
f(S1) =W +/0 ©1dSy (1)

where (¢¢)¢e0,1) is a continuous adapted process which can be obtained via
the gradient of a solution to a parabolic backward PDE related to o with ter-
minal condition f. The process (¢¢)i[o,1) is interpreted as a trading strategy.
In practice one can trade only finitely many times which corresponds to a re-
placement of the stochastic integral in (1) by the sum ZkN:1 ot (S, — St 1)
with 0 =tg < t; < --- <ty = 1. The error

N

1
/ SDtdSt - Z (ptk—l(stk - Stk—l) (2)
0

k=1

caused by this replacement is often measured in Ly and has been studied by
various authors, for example by Zhang [21], Gobet and Temam [11], S. Geiss
[8], S. Geiss and Hujo [9] and C. Geiss and S. Geiss [7]. For results concerning
L, with p € (2,00) we refer to [20], the weak convergence is considered in
[10] and [19] and by other authors. In particular, if S is the Brownian motion
or the geometric Brownian motion, S. Geiss and Hujo investigated in [9] the
relation between the Malliavin fractional smoothness of f(S57) and the Lo-rate
of the discretization error (2).

It is natural to extend these results to Lévy processes. A first step was
done by M. Brodén and P. Tankov [5] (see Remark 3). The aim of this paper
is to develop results of [9] into the following directions:

(a) The Brownian motion and the geometric Brownian motion are general-
ized to Lévy processes (X¢)¢e[o,1) that are Lo-martingales and their Doléans-
Dade exponentials S = £(X),

Sp=1+ Sy-dXy,
(0,¢]
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respectively. For certain stochastic integrals (see Section 2.4 below)

F— / s dX, (3)
(0,1]

and for Y € {X,&(X)} we study the connection of the Malliavin fractional
smoothness of F' (introduced by the real interpolation method) and the be-
havior of

N

F— kafl(y;fk - }/tk—l)
k=1

agfpt(ﬂ (tk)]kvz()) = inf

; (4)

Lo

where the infimum is taken over F;, ,-measurable v;_; such that Ev,%_l (Y, —
EQ,C_I)2 < oo and where 0 =ty < --- <ty = 1 is a deterministic time-net.

(b) In contrast to [9], where the reduction of the stochastic approximation
problem to a deterministic one is based on It&’s formula and was done in [8,
7], we prove an analogous reduction in Theorems 3 and 4 by techniques based
on the It6 chaos decomposition.

(¢) One more principal difference to [9] is the fact that Lévy processes in
general do not satisfy the representation property and therefore there are F' €
L, that cannot be approximated by sums of the form Zivzl vep—1(Yy, — Yo y)
in Lo. As a consequence we have to use the (orthogonal) Galtschouk-Kunita-
Watanabe projection that projects Lo onto the subspace I(X) of stochastic
integrals f(O,l] Aed X, with E fol |\s|?ds < oo that can be defined in our setting
as the Ly-closure of

N
O=ap < ---<an=1
{Zvak—l(Xak - Xak—l) “Vay_y € LQ(Fak—l)’ N=1.9 } (5)
P ;2 ...

to deal with our approximation problem.

The paper is organized as follows. In Section 2 we recall some facts about
Lévy processes and Besov spaces. The Besov spaces are used to describe
Malliavin fractional smoothness. In Section 3 we investigate the discrete time
approximation. The basic statement is Theorem 3 that reduces the stochas-
tic approximation problem to a deterministic one in case of the Riemann-
approximation (2) (which we call simple approximation in the sequel). The
difference between the simple and optimal approximation (4) is shown in The-
orem 4 to be sufficiently small. Theorem 5 provides a lower bound for the
optimal Le-approximation. Finally, Theorems 6 and 7 give the connection to
the Besov spaces defined by real interpolation. We conclude with Section 4
where we use the example f(z) = 1(x o)(z) to demonstrate how the frac-
tional smoothness depends on the underlying Lévy process.
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2 Preliminaries
2.1 Notation
Throughout this paper we will use for A, B,C > 0 and ¢ > 1 the notation

A~.B for 1B§A§CB,
c
A=B+C for B-C<A<B+C. (6)

The phrase cadlag stands for a path which is right-continuous and has left
limits. Given ¢ € [1, ], the sequence space ¢, consists of all @ = (an)n>1 C

R such that [|alle, := (vaozl|a]v|q)l/q < oo for ¢ < oo and |afle, =
sup 1 lan| < oo, respectively.

2.2 Lévy processes

We follow the setting and presentation of [17, Section 1.1] and assume a
square integrable mean zero Lévy process X = (Xi)iep,1] on a stochastic
basis (2, F,P, (Ft)iep0,1]) satisfying the usual assumptions, i.e. (£2,F,P) is
complete where the filtration (F;)cp,1] is the augmented natural filtration
of X and therefore right-continuous and F := F; is assumed without loss of
generality. The Lévy measure v with v({0}) = 0 satisfies

/Rx2l/(d1:) < o0

by the square integrability of X (see [16, Theorem 25.3]). Let N be the as-
sociated Poisson random measure and dN(t,z) = dN(t,z) — dtdv(z) be the
compensated Poisson random measure. The Lévy-Itd decomposition (see [16,
Theorem 19.2]) can be written under our assumptions as

X, =Wy + / xN (ds, dz).
(0,¢] xR\ {0}
We introduce the finite measures p on B(R) and m on B([0,1] x R) by
p(de) = 0%50(dz) + 2v(dz),
m(dt, dx) := dtp(dx),

where we agree about u(R) > 0 to avoid pathologies. For B € B((0, 1] x R) we
define the random measure

M(B)::J/ th-i-/
{te(0,1]:(¢t,0)eB} BN((0,1]x(R\{0}))

xN(dt,dx)

and let

LY = Ly(([0,1] x R)", B(([0,1] x R)"), m®") for n > 1.
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By [12, Theorem 2] there is the chaos decomposition
Ly := Ly(2, F,P) EBI (L3),

where Io(L3J) is the space of the a.s. constant random variables and I,,(L%) :=
{I(fn) : fn € Ly} for n = 1,2,... and I,(f,) denotes the multiple integral
w.r.t. the random measure M. For properties of the multiple integral see [12,
Theorem 1]. Especially, ||1,(fn)[I7, = n!||fn|\2L3 and

17117, = Zn'llfnl\m
with f,, being the symmetrization of f,, i.e.

~ 1
fn(zla .. -7Zn) = ol an(zw(l)a .- -7z7r(n))

for all z; = (¢;,z;) € [0,1] x R, where the sum is taken over all permutations
mof {1,...,n}. For F € Ly the Lo-representation

F= Z In(fn)v
n=0

with Ip(fo) = EF a.s. is unique (note that I,(f,) = In(fn) a.s.).

2.3 Doléans-Dade stochastic exponential

Definition 1 For 0 <a <t <1 we let

= o)
= Z:: 7

where we can assume that all paths of (S )tela,1] are cadlag for any fixed
a € [0,1]. In particular, we let .S = (S¢)icjo,1) := (S7)tefo,1]-

The following lemma is standard and we omit its proof.

Lemma 1 For 0 <a <t <1 one has that

(i) Sg =1+ f(a,t] S¢_dX, a.s.,
(i) Sy =8¢S, a.s.,
(iii) S¢ is independent from F, and E(S#)? = etB)(t=a),
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2.4 The space M of the random variables to approximate

We will approximate random variables F' € Lo from a space M introduced
below. By (10) we see that this approach is analogous to the Brownian motion
case considered in [7] and [9], where the representation F' = EF + [ (0,1] PsdBs

was used together with the regularity assumption that (s)sepo,1) is a martin-
gale or close to a martingale. This regularity assumption is relevant for the
approach in this paper as well.

Definition 2 The closed subspace Ml C Ly consists of all mean zero F' € Lo
such that there exists a representation

F= Z In(fn)

with symmetric f,, such that there are hy € R and symmetric h,, € La(u®")
for n > 1 with

fn((tl,xl), ey (tn,xn)) = hnfl((ﬁl, ...,.’Enfl) for 0<t1 <---<t, <l

The orthogonal projection onto M is denoted by IT : Ly — M C L.

Let us summarize some facts about the space M:
(a) Representation of I7. For

oo

G=>) Ian) € Ly

n=0
with symmetric o, € L5 one computes the functions h,, of the projection
F =1II(G) by

hn—1($1, -~~7$n—1)

:n!/ol/(ﬁ../otzAan((tl,x1)7...,(tn1,%1),@”,%))

p(dzn)
“Tu(R)

dty---dt, forn>1. (7)

(b) Integral representation of the elements of M. Given F' € M with
a representation like in Definition 2 (the functions h,, are unique as elements
of Ly(u®™)), we define the martingale ¢ = (¢¢)tef0,1) by the La-sum

pri=ho+ 3 (n+ 1) (ha13), (8)
n=1
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which we will assume to be path-wise cadlag. It follows that

oz, = g+ D (n+ 12" |l uen)

n=1
— p2 - 2,141 2’
ho + ) ;(n + 1) sl s
1 o0
2 n 2
=hy+ W(R) ;t (n 4+ Dlns1 (frr) T,
so that -
p(R) sup o7, +IF(7, =Y (n+ DIT(f)ll7,- (9)
t€[0,1) n=0
Moreover, for t € [0, 1] we get that, a.s.,
Ft = ]E(F|ft) = / gDs_dXS. (10)
(0,¢]

In other words, (10) characterizes the elements from M if ¢ is defined by
symmetric (h,)52, as in (8) with >->° ((n+ 1)!||hnH%2(M®n) < 0.

(c) Examples for elements of M.

(c1) Onme class of examples is taken from Lemma 4 below: Let ITx : Ly —
I(X) C Ly be the orthogonal projection onto I(X) defined in (5) and let
f:R — R be a Borel function with f(X;) € Ls, then

Hx(f(X1)) = I(f(X1))-

This means the elements of M occur naturally when applying the Galtchouk-
Kunita-Watanabe projection. It should be noted, that in the case that ¢ =0
and v = ad,, with o > 0 and x9 € R\ {0} we have a chaos decomposition of
the form f(X1) = Ef(X1)+ > 0, ,Bnln(]l%‘”) with 3, € R, so that already
f(Xl) € M.

(c2) There are also examples of F' € M that cannot be obtained as pro-
jections ITx (f(X1)) = I (f(X1)) as in (c1). To construct such an example we
will decompose the Lévy process into a sum of two independent Lévy processes
and use only one of them in the integrand:

Ezample 1 Assume that X; = N} — N2, where N* = (Nti)te[O,l] are indepen-
dent Poisson processes with intensity A > 0. Then

F .= / (N — M\)dX, e M
(07]‘]

and there is no Borel function f: R — R with f(X;) € Ly and
I(f(X1))=F a.s.
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Proof For the Lévy measure of X we get v = A (5{,1} + 5{1}). Because X3
takes only values in the set of integers we can apply Lemma 5 to a bounded
Borel function f without assuming smoothness to get that

1

pr =5 [f(X1+1) = f(X1 = D] = 95(X1)

and

(X)) = /(Ol}sotdxt as. with g = B4 (X))| 7).

For a fixed T € (0,1) and a bounded f as above we have
2
P =BG, =@ [ B[V =20 e ]

= pu(R) /(0 . E[(N} = \) — @] dt

> p(R)(1 = T)E [(N} = AT) — o]’

If we can show that

inf B [(N} — AT) — E(u4(X2)|Fr)]* >0,
f bounded

then we get the assertion of our example. Because E(¢¢(X1)|Fr) is a functional
of X7 = N} — N2 it is sufficient to check that
E [N}~ E(NHo(N} — N)]* > 0

which follows by the independence of the Poisson processes N! and N2.

2.5 Real interpolation
Now we recall some facts about the real interpolation method.

Definition 3 For Banach spaces X; C X, where X; is continuously embed-
ded into Xy, we define for u > 0 the K-functional

K(u, 2 Xo, X1):= _inf  {[lzollxo +ullz1llx, }-
For 6 € (0,1) and g € [1, 0] the real interpolation space (Xo, X1)g,4 consists
of all elements = € X such that ||z||(x,, x,),, < 0o where
oo m 1
[Jo " T K (u, 25 Xo, X1)]749¢ ] *, g € [1, 00)
||'TH(X0,X1)e,q =
SUp, =o' K (u, ; Xo, X1), q = oo.
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The spaces (Xo, X1)g,q equipped with ||-[/(x,,x,),, become Banach spaces and
form a lexicographical scale, i.e. for any 0 < 8; < 0 < 1 and g1, ¢z € [1,00] it
holds that

Xo 2 (X0, X1)o1,q1 2 (X0, X1)02,9. 2 (X0, X1)0,,min{q1,q23 2 X1-

For more information the reader is referred to [3,4].

2.6 Besov spaces obtained by real interpolation

We recall the construction of Sobolev spaces based on the chaos expansion and
the construction of Besov spaces (or spaces of random variables of fractional
smoothness) based on real interpolation. We introduce two variants of the
Besov spaces, a direct one in Definition 4 and an abstract one in Definition 5.
The purpose of the abstract variant is twofold: firstly, it is needed to transfer
the results from [9] to our setting in the proofs of Theorems 6 and 7, and
secondly, the abstract variant indicates a way for further generalizations.

Definition 4 Let Dy » be the space of all F =" ' I,,(f,) € L such that

o0

IEII5, , =D _(n+ Dl La(f)]Z, < oo

n=0

Moreover,

B, = {(Lz’Dm)e,q € (0, ): [1,00]

»q €
Dyp:f=1,q=2

Definition 5 For a sequence of Banach spaces E = (E,)5%, with E,, # {0}
we let o(FE) and dy 2(E) be the Banach spaces of all a = (a,,)22, € E such
that

(oo}

lalle(e) = (Z ||an||%n>
n=0

respectively, are finite. Moreover, for 6 € (0,1) and ¢ € [1, o] we let

BY,(8) = { (5P Py 1€ O g o)

2

o 3
and [alla, ,(m) = (Z(Wr 1)||an?;n> :

n=0

d172(E) .

It can be shown that (cf. [9, Remark A.1])

o}

lallg ) ~e3 D0+ 1 llanll, -
n=0
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To describe the interpolation spaces Bg) 4(E) we use two types of functions. The
first one is a generating function for (||lan||3, Jozo, i-e. for a = (an)iZy € £2(E)
we let

(oo}
To(t) =Y llanll%, "
n=0

The second function will be used to describe our stochastic approximation in
a deterministic way: For a € f»(E) and a deterministic time-net 7 = (t)&_,
with 0 =tyg <--- <ty =1 we let

tr—1

Ala, 7) = (zN:/t (te —t)(T@”(t)dt)é.
k=1

For the formulation of the next two theorems which will connect approximation
properties with fractional smoothness special time nets are needed. Given 6 €
(0,1] and N > 1, we let 7% be the time-net

1
9
tﬁ"’::p(l-ff) for k=0,1,...,N (11)

for which one has (see [10, relation (4)])

N,6 N,0
|tfcv’9 —t Ity — . 1 -
(1—t)1_9 < (l_tiv_yol)l—e S GW for k= 1,...,N (12)

and t € [tg_’ol, t,lgv’e). For # = 1 we obtain equidistant time-nets. The following

two theorems are taken from [9]. For the convenience of the reader we comment
about the proofs in Remark 1 below.

Theorem 1 ([9]) For 6 € (0,1), ¢ € [1,00] and a = (a,)52 € l2(E) one has

6_1 o0
lalleg, 2y ~e lallescey + || (V53 Ala, 7h)

N=1llg,

where ¢ € [1,00) depends at most on (0, q) and the expressions may be infinite.

Theorem 2 ([9]) For 6 € (0,1] and a = (an)32, € (2(E) the following
assertions are equivalent:
(i) a € BY,(E).

(i) [o(1—8)' 0T/ (t)dt < oo.
(iii) There exists a constant ¢ > 0 such that

Ala, %) for N=1,2,...

C
< _—
~ VN
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Remark 1 We fix a = (a,)5%, € ¢2(F) and (0, q) according to Theorems 1
and 2. Then we let 3, = ||a,||p, and define f = Y7 Boh, € La(R,7),
where « is the standard Gaussian measure and ()5, the orthonormal basis
of Hermite polynomials. As before, let

A(B,T) (Z/tk (tx — t)(Tp)" (t )dt)l with Tj(t) Zﬁztn

th—1
Omitting the notation (E) in the case £ = (R, R, ...), we have ||a||s,(g) = [|5]|¢
and |lall4, ,(z) = l|Bla, .- Moreover, [9, Theorem 2.2] gives ||a||IBqu(E) ~e(0,q)
[8]lgg for 6 € (0,1) and g € [1,00] because of T, = Tj. Hence [9, Lemmas

3.9 and 3.10, Theorem 3.5 (X=W)] imply Theorem 1 of this paper. The equiv-
alence of (i) and (iii) of Theorem 2 follows in the same way by [9, Lemmas
3.9 and 3.10, Theorem 3.2 (X=W)]. Finally, the equivalence of (i) and (ii) of
Theorem 2 is a consequence of the proof of [9, Theorem 3.2 (X=W)].

3 Approximation of stochastic integrals

In the sequel we will use
(oo}
TN—{T—(tk) —0:0=1ty <~ <tN=1} and TZZUTN

as sets of deterministic time-nets and define |7| := maxi<p<n [tx — tx—1]. We
will consider the following approximations of a random variable F' € M with
respect to the processes X and S:

Definition 6 For N > 1,Y € {X,S}, F :f(O.l] ps—dXs € M, A= (Ap)Y_, C
F and 7 € Ty we let

() blm(FT _HF Zk 1 Ptr— 1(th th 1) Lo
(i) 0 (P A) = [P = S0 Ly (S~ 1)
(i) 05" (F:7) = inf || F = S50, v (¥ = Vi)

taken over all F;, _,-measurable v;_1 : §2 — R such that E|vx_1(Y;, —
Y, )P < oo

)

)
Lo

, where the infimum is

Remark 2 (i) The definition of a$i™ takes into account the additional sets
(Ar)N_, to avoid problems Wlth the case that S vanishes. These extra
sets A in a8™(F; 7, A) play different roles in Theorem 3, Theorem 4, and
in Theorems 5, 6 and 7. To recover a more standard form of a%™ assume
that (St)iejo,1) and (Si—)tejo,1) are positive so that we can write

F = ’ll)uf(sudeu) Wlth t/ju = &

(0,1] Su
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and obtain that

N N
F=> 0 (S =) =F= ¢, S, (Si —1)
k=1

k=1

N
=F- Zwtk—l(stk - Stk—l)

k=1
which is what one expects.
(ii) In the sequel the crucial assumption will be

2={5#0} forall te]0,1].

This can be achieved by the condition v((—o0, —1]) = 0 which implies
the almost sure positivity of S and we can adjust S on a set of measure
zero; see [13, Theorem 1.4.61] and [16, Theorem 19.2].

(iii) Because of the martingale property of (¢¢):eqo,1) it is easy to check that

N
aggt(F;T) = ||F - Zwtk—l(th - th%)
k=1 Lo
so that a3 = a3P".

The theorem below gives a description of the simple approximation by a
function Hy (t) that describes, in some sense, the curvature of F' € M with
respect to Y.

Theorem 3 Let F € M,

Hy () = u(R) Y nnlt" AT |12, uem)

n=1
with
AY (21, ... xp)
_ (n_%l)hn($17 axn> Y=X
(n+1)hn($1a 7xn)_hn—1(x1a -axn—l) Yy==5

Then, for T € T, one has

=

k=171

N th 2
a (Fim) = (Z (tk — t)H)Q((t)dt> :
)

. N t %
az&rﬂ(F; T, N ~e (Z/ (tk — t)Hg(t)dt) R
te—1

k=1

where in the last equivalence || < 1/u(R) and ¢ := (1 — /u(R)|7])~! and
ON = (0,...,9).
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Proof Case Y = X: We get that

Elpr — ¢t 17 = D (" = i) (n+ 10l 7, uom)
n=1

t
(n+1)2””’/ ' dull | ey

n=1 tk—1

= @ /tk1 Hg((u)du

which implies for a3 (F;7) = a®"(F; 1) =: ax(F;7) that

N th
ax(Fsn)P = u® Y. [ Bloe— n, Pt
k=1

te—1

N th
= Z/t (ty — u)H% (u)du.

=1 k—1
Case Y = S: Here we get that

ad" (i, V)
N th 2 %
= (n®> / E dt
k=1"tr-1
N th
= (M(R)Z/ E’ |fPt — Pty —/ «puqu]
1Y tk—1 (tr—1,t]
2 \3
dt)
N ty 2 3
- (M(R)Z/ E [% — 05, —/ %_dxu] dt)
=1 tk—1 (te—1,t]
N th 2
:|:<,[L(R) Z/ E / Sﬁu—qu - thk71(stti_l - 1)] dt)
k=1 (tk—1.t]

te—1
where the notation £+ was introduced in (6) and

N th 2
(b [" B[ aati—a s o) @)
k=1 tk—1 (tk—1,t]

N 2
< Vr(uw > e [ goudxu—gotk_xs::l_l)])
k=1 (tk—1,tk]
= VIr|uR)ag™ (F; 7, V).

Pt — Satkfﬂsfi_l

+ / SDudeu - @tk:—1(5:571 - 1)]
(te—1,t]

1
2

1

2

1
2
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Here we used S;* ' = S/*~* a.s. for t € (tx_1, %] and the martingale property
of [i1_ 1 Pu—dXu — @1, (S{71 = 1). Finally,

(#(R) iv:/tk E | — o, — /(tk-lyt] (pu_qu] 2dt>é
Z/tk E [(r = puy) = (F = Ftk_l)]zdty

—17tk—1

k
N Lt t 3
<Z/ / H%(u)dudt) .
k=1 tk—1 JYlE—1

The next theorem states that the simple and optimal approximation are equiv-
alent whenever Ay, := {S;,_, # 0} is taken.

O

Theorem 4 For F € M and 7 € T one has that
a3 (F; 7, A) — o (F;7)| < e[|7l[|F || 2, + V/|7]a" (F;7)]
where ¢ > 0 depends on p only and Ay := {S,_, # 0}.

Proof (a) In the first step we determine an optimal sequence of (v;)h—,'. For
0<a<b<1weget from Lemma 1 that

inf{ v(Sp — Sa) — / Pu—dXy
(ab]

v is Fy-measurable
. "E|v(Sp — Sa)|? < o0
2

= inf{ vS,(Sy —1) — / Ou—dXy
L

(a;b]

v is Fy-measurable
E|vS,|2 < 0o

= inf @]l{sa;éo}(Sg — 1) — / Pu—dX,
(a,b]

v is Fy-measurable
E|v]?2 < o0
Ly

The infimum is obtained with

v =

E(f,p-SidiFs) E([,eiStdFs)  E([) espanlr,)
E([Nsealr)  JJESpE o sled)

and

b a
oo | 5mE (fa 015 dt|]-‘a) LS, #£0
0 05, =0

where we used that

pr— = ¢ as.and S =57 as. on (a,b]. (13)
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(b) Now it holds that
g™ (F;7, A) — a2 (F; 7))

N
F—EF =) ¢, 14,5/ = 1)

k=1 Lo
N
—||FF —EF — ka—l(stk - Stk—l)
k=1 Lo

Y [y = vkm1Su (S = D,
k

(

Moreover (using again (13)) we have

Lo

N

[
=1
N 2
Z ||[80tk—1 - vk’_lstk-—l}]lAk ||2L2 [eM(R)(tkitk_l) - 1]) .
k=1

<

|| [gptk—l - Uk_lStk—l]IlAk ||L2

bty — tk—1
< 1—-— )1
> ||<)0tk—1 ( K(tklatk)> Ak||L2

]lAk /tl€ tr—1
—= K - —1)dt
K/(tk—latk:) ( tk_l(got @tk—l)(st ) |ftk—1

The first term on the right-hand side can be bounded from above by u(R)(tx —
ti—1)|¢ts_1 LA, |l L,- For the second term we let a = t_1 <t = b and \; =
14, (0t — ¢1,,_,) and obtain

E </b (52 — 1)dt fa>
) e n )
_ (E (/abw?dt ﬂ))é (/b Is¢ - 1||§dt>;
(L)) (P

where the last inequality follows from

+

Lo

b b
[ sz = 1iar = [ u®inta.
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< / ! (B)s(a.t) (jt/f(a,t)) dt

o M(R) 2
== k(a,b)”.

Hence

H [Sotk—l - vk_lStk—l]ﬂAk ||L2
< M(R)(tk - tk—l)”(ptk—l-ﬂAk HL2

R th 2
T “”(/ ||11Ak<sotsot“>||%2dt) .

2 th—1
Using e#® =) _ 1 < jy(R)eH®) (t), — t_1) we conclude with

|ag™ (F; 7, A) — ag (F37)|
%

N
< 37 Rtk — tee) 0ty L lza)* (R)e (1, — tk_n)
k=

=

p(®) [ i
B Mo — oIt
te—1

(]

k=1

R
< Irlu(®)e B2 |, + Ty P e /2030 (i),

pu(R)e ™) (¢, — tk—l))

O

Now we show that 1/v/N is the lower bound for our approximation if
time-nets of cardinality N + 1 are used.

Theorem 5 Let F € M and Y € {X,S}, where in the case X = S we
assume that 2 = {S; # 0} for allt € [0,1]. Unless there are a,b € R such that
F =a+bYy a.s., one has that

1}5nmf\/ﬁ inf ayP*(F;7n)| > 0.

TNETN

Proof Case Y = X: We have Hx (t) = 0 for some ¢t € (0, 1) if and only if h,, = 0
u®™ a.e. for all n = 1,2, ... which implies that F = I,(f1) = I1(ho) = hoX;.
This means that our assumption on F implies that Hx (t) > 0 for all ¢ € (0,1).
Consequently, Theorem 3 gives for any fixed s € (0,1) that

N th
N|aP'(F; )| = NZ/ (ty —t)H% (t)dt
k=1

th—1
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> N/ { tk—t Wity 1) O Hx (s) | dt

25 X Nztk\/s_tk 1\/8)
k=1

> SHA()(1 )

which proves the statement for Y = X.

Case Y = §: Similarly as in the previous case our assumption on F' implies
that Hg(t) > 0 for all ¢ € (0,1). In fact, assuming that Hg(t) = 0 for some
t € (0,1) implies

(n+ Dhp (1, s Zn) = hp1 (21, ey 1) ¥ -ace.

for all n = 1,2, .... By induction we derive that
h
h, = 0 ®n_ge. for m>0
(n+1)!

so that f, = ho/n! m®"-a.e. for n > 1. This would give that F' = ho(S; — 1)
a.s.

Hence applying Theorem 3 as in the case Y = X implies that there is an
€ > 0 such that

\ﬁa“m Firn, 2M)>e >0 forall 7y € Ty with |[7n] < ——.
( ) 7] < 5o

For an arbitrary N > 1 and 7y € 7y Theorem 4 gives
a* (Fimn) > ag™(Fy v, Q) = ey [|mn 1P || 2, + Vv [a (Fs )]

Letting 7 == 7w U{k/N : k = 1,..N — 1} € UN3' T, N > 2u(R) v 2
implies |Tn| < 1/N < 1/(2u(R)) and

\/N Opt(F TN)

> VNaP (F;7n)
> VN s eV (7N IIF L, + Vvl (F57v)]
>~ —a {” \/UVL AP (P ;(k/Nwo)]-

The convergence a5 (F; (k/N)N_;) — 0 as N — oo follows from Theorem 3

because of fol (1—t)H% (t)dt < oo which can bee seen by considering the trivial
time-net {0, 1}. Consequently,

TNETIN

I%ninf\/ﬁ[ inf a%pt(F;TN)} >

Sl
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Now we relate the approximation properties to the Besov regularity. We
recall that the nets 75 were introduced in (11) and that for § = 1 we obtain
the equidistant nets.

Theorem 6 For 6 € (0,1), g€ [1,00], Y € {X,S} and F € M the following
assertions are equivalent:

(i) FeBf,.
. o_1 o 00
(i) |(VEtaR E k)R, < oo
If 2 = {S; # 0} for allt € [0,1], then (i) and (ii) are equivalent to:
aee 8_1 4 %)
(i) H<N2 10 (Fimy)) %o

< 00.
éq

: g1 sim o)
(iv) ||(VEFagm (P, )R, < oo

For the proof the following lemma is needed.
Lemma 2 For F € M and t € [0,1) one has that

[Hs(t) — Hx (t)] < p(R)[|@t| .-

Moreover,

N tr % N th 2
| (Z/ (ts t)H@(t)dt) - (Z/ (ty — t)Hf((t)dt)
k=1"tk—1

k=1"tk-1
< VRR)THIF|z,-

Proof From the definition we get that

N|=

n=1

[N

[Hs(t) — Hx ()] < (M(R) Znn!ﬁ"_llhn—lllﬂ(#@n))

w(R)? Z(n — D" Y nh, H%z(u@("l)))

n=1

= 1(B)[lpe| z,-
Finally,

N th % N th 2
(Z/ (ts —t)H%(t)dt) - <Z/ (ts —t)H%(t)dt)

k=1"tk—1
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1 3
< [ )| ( / ||wt|%2dtu<R>)

= 712 [u(®)[2[| F|,

Proof (of Theorem 6) (i) <= (ii) follows from Theorem 1 and Theorem 3
because

= % (Z ”In(fn)”%Qtn) if F= Zln(fn) (14)
n=1 n=1

(iii) <= (iv) follows from Theorem 4 and (ii) <= (iv) from Theorem 3 and
Lemma 2. g

Theorem 7 (a) For F € M and 6 € (0,1] the following assertions are equiv-
alent:
(i) FeBf,.
(i) supy Nz2aQ®"(F;78) < oc.
If 2 ={S # 0} for allt € [0,1], then (i) and (ii) are equivalent to:
(iii) supy N%as (F;78) < o0.
(iv) supy N2ab‘m(F;T§,, 2N) < o0.
(b) If the assertions (i) - (ii) hold, then we have
|2 1

o [0

and if in addition 2 = {S; # 0} for allt € [0,1], then

NIE)nooN’aOPt 77_]%)

|2 = lim N|ablm F;TI%,QN)|2

N—o0

:20/ ) H ()t

Jim N |aP* (F; %)

Proof Part (a): (i) <= (ii) follows from Theorems 2 and 3 because of (14).
(ii) <= (iv) From [9, Lemma 3.8] and Theorem 3 it follows that the
desired equivalence is equivalent to

1 1
/ (1 —t)'"YH%(t)dt < oo if and only if / (1—t)'"PH2(t)dt < co0. (15)
0 0

In view of Lemma 2 it is therefore sufficient to check fol(l — )10l pe]|3, dt < o0
which follows from [ [lp:|2 u(R)dt = ||F — EF||2, < cc.
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(iv) <= (iii) follows from Theorem 4, aS?*(F;7) < ||F||z, and |7§| <
1/(6N) by (12).
Part (b): Let ae(s) :=1—(1 — s)% and H : [0,1) — [0, 00) be non-decreasing

and continuous such that fol(l — ' H2(t)dt < co. For any § € (0,1) and
n:=a~!(J) we observe that

1

4 4
%/0 (1= )0 H2()dt = 5/0 o (=L (1)) H2(t)dt

— ;/On o/ (s)[H?(a(s))a/(s)]ds.

Because

0= g 5 o (5 00) o (55 ) 0

for s € [0,n) and all terms on the right-hand side are bounded by the Lipschitz
constant of « on [0, 1], dominated convergence implies that

1 §
% ), (1 —t)"=H?(t)dt

dn 33 [0 o (na) o (B3]
[H(a(s))a/(5)] ds

N N6 N0 2
! NS — 1% A G)
= lim NY H*(t%)~" k=1
N (te21) 9

(NP AS — ) H2 ()% )dt

Il
2
gE

=

g
—

where we use that H is uniformly continuous on [0, d]. From this we deduce
that

N tlk\f,s
o NO g2
l}\l}rilgloka [ Jys (t, Y H*(t)dt
= —1

N it Ons
> liminf N / (tn " NG — ) HA(t))dt
N—co tN-0 NS
k=1""k-1
1 é

_ o \1—0 772
=5 |, -0 @
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for all 6 € (0,1) and therefore

N tIk\T,S 1 1
o NO 2 A+ _ 10772
1}52120ka2_:/th9 (ty ! — ) H?(t)dt > 20/0 (1—t)' =0 H2(t)dt.

On the other hand, (12) implies

/;Nki_1<(tk]vﬂ_t)ﬂ tkN"lJ“)())HQ t)dt < 9/ VO H2 (1) dt

for § € (0,1). Choose § such that the right hand side is less than € > 0. We
conclude (also using the previous computations of part (b) and the uniform
continuity of H on [0, d])

limsupNZ/ — t)H?(t)dt

N —oo
2
<h]5nj;10pNZ/N0 — O H*(t)dt + ¢
= lim N ( O NS —t)H?(t)dt + ¢
N—oo N,6

k=1 t, NS

1 5

=5 (1 OO H2 (t)dt + €

< 1 9H2

< 29/ (t)dt + =
and

)0 2
h;fnjipNZ/Ne dt<—/ H*(t)dt.

Consequently,

1 !
. (N0 _ 4 _ =672
ngnooNZ/M DH?(t)dt = o (1 O H2(t)dt.
It follows from (15) that for H € {Hx, Hg} our assumptlons on H are satisfied.
Hence Theorem 3 implies the limit expressions for a%* and a™(-; -, 2V) (note
that ¢ — 1 for |7| — 0 in Theorem 3). The relation for a2’
one for af™(-;-, 2%), Theorem 4 and the fact that

follows from the

1
Nlim VN |TN|a°pt(F;7'19V)§limsup\/;a§?t(F, %) =0

N—o0

where we have used (12) and, as in the proof of Theorem 5, the relation
fol(l —t)H% (t)dt < oo together with Theorem 3. O
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Using the results from [15, Theorem 2.4] one can derive from Theorem 3
for example the following assertion.

Corollary 1 For F' € M one has the following equivalences:
(i) There is a constant ¢ > 0 such that

Cc

inf ac)’(pt(F;TN) <

TNETN \/N

(ii) There is a constant ¢ > 0 such that

1
for N=1,2,... zﬁ/ Hx (t)dt < 0.
0

inf @™ (F;7n, 2V) < ¢

1
— N=1,2.... 3 Hq(t)dt < oo.
Jnf Jn friN=tb2 ’ﬁ/o s(£)dt < oo

4 Examples
4.1 Preparations

The following two lemmas provide information about the orthogonal projection
1I - L2 — M g LQ.

Lemma 3 Given G € Ly, 0 € (0,1) and q € [1, 0], one has that
(i) G € Dy implies II(G) € Dy 9,
(i) G € BY , implies I1(G) € BY .

Proof The lemma follows from the fact that for

G= Z I (o)

with symmetric «,, € L} the function h,, from Definition 2 computes as in (7)
so that [|fnllzy < [lan||zy where f, is defined as in Definition 2. Hence, the
statement can be derived (for example) from Theorem 1 using the monotonic-
ity of A with respect to ||a,|| g, and the definition of D ». O

Lemma 4 For a Borel function f : R — R with f(X1) € Ly there are sym-
metric gn € La(u®™) such that

o0
FOX) = EF(X) + 3 La(gn1 5. (16)
n=1
Moreover, it holds that IT(f(X1)) = Yoo, In(fn) with symmetric f,, satisfying

fn((tlvirl)v ceey (tn7xn)) = hnfl(xla ceey (Enfl)

—/Rgn( 1yeeey Ln—1, )/_}/(R) (17)

on0 <ty <+ <t, <1 andI(f(X1)) is the orthogonal projection of f(X1)
onto I(X) defined in (5).
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The representation (16) is proved in [1] and [2] and is based on invariance
properties of f(X7) that transfer to the chaos representation. One could also
use [6, Section 6].

Lemma 5 Let f € C;°(R) and f(X1) => 02, In(gn]l%%"u) € Dy o with sym-
metric g, € La(u®"). Then the martingale (@¢)icpo,1) given by (8) and (17)

has a closure @1, i.e. B(p1|F:) = ¢¢ a.s., with

X1 +2) — f(X / dx
1 :/]R []1{:,;750} f( = x) f( )+]l{x:0}f(X1) Z((R)) a.s.

Proof From [6, Proposition 5.1 and its proof] it is known that

f(Xa +2) = f(X0)

Tioroy + Lm0y f/(X1)

=Y (g2 Y) p@P ae (18)
n=1

Consequently, (17) implies that, a.s.,

[ [t DI g ] 0
- /R [z_:l nloy (00215 ) u(®)

SRS

n=1

_ N @(n—1)
= Z’n[n,1 (hnfl]l(o’l] )
n=1

= 901

where the second equality follows by a standard Fubini argument. O

p(dz)

Definition 7 For § > 0 we let
B(8) i= supP(|X; — A < 9).
AER

Ezxample 2 The small ball estimate
P(d) < b (19)
can be deduced if X; has a bounded density. As an example we use tempered

a-stable processes with a € (0,2), given by the Lévy measure

d —-m

with d > 0 and m € (2 — a, 00) being fixed parameters. Then [18, Theorem 5]
implies that X; has a bounded density.
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For K € R and ¢ € (0,1] we let fx . € C;°(R) with fx(z) =0if z < K,
fre(@)=1ifz> K+e,0< fre(r) <land 0 < fr (z) <2/eforallz € R.

Lemma 6 For K € R and € > 0 we have that

2
/ E fK,s(Xl‘i’x)*fK,s(Xl) ,u(d:Z?)
R\{0}

X

Y(2¢) )
g2 /O<I|<€:L‘ v(dz) + /€<|I<OO U(|z|)v(dx).

<4

Proof We get that

/ g | fre(Xi @) = freo(X0) [
R\ {0}

p(dz)

free(X1+12) = fro(X1)|?

X

-E [ u(d)
0<|z|<e x
€ - 5 X 2
—|—E ‘fK + ) Ik, (X1) pi(dz)
<\:c|<oo €T
4
< SP(Xy € [K -~ 5,K+25])/ 2?v(dr)
€ 0<|z|<e

+/ P(X; < K+¢e, X +2 > K)v(dr)
<zx<oo

—|—/ P(X;+2<K+¢ X1 > K)v(de)
co<r<—¢€

w(2€)
<4 v(dzx
o /<|m<s ( )

2
/< < P(1X) — K| < z)v(dx)

/ P(K < X; < K —2z)v(dx)

4 ¥2)

g2 /<|1<6 u(dw)+/€<lw<Oo ¥(|z|)v(dz).

Lemma 7 For K € R and € > 0 the following assertions are true:

2
/ g|freBa+ ) = () o)
R\ {0}

X

(i)
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(ii) If ¥(9) < cd, then

2

p(dz)

<90min{i/Rxgl/(dﬂc),/Rmy(dx)}.

Proof (i) Using p(dr) = z?v(dx) on R\ {0} one has that

/ E’fK,E(Xl'i‘(E)_fK,E(XI)
R\{0} x

/ E'fK,s(X1+x)_fK,s(X1)
R\{0} z

2
u(dz) < v(R).

(i) If ¥(6) < ¢d, then we can bound the right-hand side in Lemma 6 by

¢(25) 2
4 x°dy(x x| v(dz
/WSS ( >+/ P(lz))v(de)

2
€ e<|z|<o0

< 8 2dv(z) + c/ |z|v(dx)
€ Jr e<|z|<oo
8

<= v (dr) + E/ ?v(dx)
€ JrR € Je<|w|<oo
9c 9

< — | zv(dx).
€ Jr

Moreover,

$(22)

4

e? /0<|x<ex v(dz) +/5<I|<oo Y(lz])v(dz)

< 8(:/ |x|v(dx) —|—c/ |x|v(dx)
0<|z|<e e<|z|<oo
< 80/ |x|v(dx).
R
(]

Lemma 8 Let f(x) = X[k,00)(®) for a K € R. Assume 0 =0, [ 2|2 v(da) <
oo and assume that there is a ¢ > 0 such that ¥(§) < ¢d for all 6 > 0. Then

one has that
2 2
f(Xi+z) - f(Xy) ,u(dl‘)‘ < g (/ |_’13|glj(dl')> .
R

T

E

/R\{O}
Proof For dvo(x) := |z|2v(dz) we get that

/R\{O}

f(Xa+2) - f(XY)

T

E

p(da)
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2

< El/Rmxl t2) — (X2l rodn)

< w(R)E / F(X0+ 2) — £ Pl o (de)

<w(® [ v () e )

S o (R)2

4.2 Examples

Throughout the whole subsection we fix a real number K and let

f() = 1 (g 00) ().

(a) Without projection on M: We will obtain the (fractional) smoothness of
1 (k,0)(X1) in dependence of distributional properties of X. Note that Lemma
3 ensures that I7(1(k )(X1)) has at least the (fractional) smoothness of
1k ,00)(X1). Our standing assumption, as mentioned before, is fR 2?v(dx) <
00. The case C7 below confirms that for a compound Poisson process X we
have ]I(K,oo)(Xl) S ]D)LQ.

o P additional assumption on v | Smoothness
Ci| o=0 arbitrary flw|<1 v(dr) < oo Dy 5
Co| o=0 |9()<cd f\z\<1 |z|v(dz) < oo Dy
= 1
Cs | arbitrary | ¥(d) < cd B2 .

To check this table assume that the chaos-decomposition of fi o(X1) is
described by symmetric g€ € Lo(u®"). From (18) we derive in the case
o = 0 that

S ]|, ey = Z / D925 ()2, ooy il da)
n=1

_ZnQE / w1 (91 () 150D 2 d)
2
p(dz)

-1

\

(X +a) — (X))
X

p(dz)

R\(0)
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so that

(Xl <1+ |
R\{0}

Cases C7 and Csy: Exploiting Lemma 7 gives that

p(dz).

E ’ Tre(X1+2) — fr(X1) ?
x

sup ||fK,1/m(X1)||D1,2 < 0.

m=1,2,...

Moreover || fr,1/m(X1) = X(&,00)(X1)[|L, —m O by dominated convergence so
that C; and C5 follow by a standard argument.

Case C3: As before we get from (18) that

5. (XD)IE, ,

<+ [E
R

Exploiting Lemma 7 and the property 0 < fi _(z) < 2/e we continue with

2

fr (X1 + ) — fre(X1) u(dz).

T

+ 1 om0y fr o (X1)

L{zz0

9c 4 €
2 2 2
I3, , < 1+ % [ aav(o) +0* 50 (5)
9 2
<1+ ke / 22dv(x) + o2
g Jr 3

On the other hand,

X (K ,00) (X1) = Fr,e(X1)| 1o < \/@ < \/f

Estimating the K-functional K(u, 1k o0)(X1);L2,D12) by the help of the
decomposition T (o) (X1) = [11(,{700)()(1) - fK,E(Xl)] ¥ fr(X1) and opti-

1
mizing over € > 0 gives X(x 00)(X1) € B3 .

(b) After projection on M: Here we have the following

Proposition 1 Assume that 0 =0, 0 < [, |z|2v(dz) < oo and that 1(8) <
cd. Then one has for all K € R that

H(]I(K,oo)(Xl)) S DLQ.

Proof By the same reasoning as in the cases C; and Cj it is sufficient to show
that

Elllg ||H(fK,1/m(X1))”D1,2 < 0.

By (9) and Lemma 5 it suffices to check that

2

sup E

m=1,2,...

< 00.
x

/ lfK,}”(Xl +5C)_fK,,}L(X1)] dp(z)
R\{0}
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But this estimate follows from Lemma 8 and the representation
fiee@) = [ iy = [ L@ )y
—00 R

and [y, fie.(y)dy = 1. O

Example 8 An example for Proposition 1 is obtained from Example 2. Con-
sidering

d —m

ford >0, a € (0,2), m € (2—a,00) gives ¥(8) < ed and 0 < [ 2|2 dvy(z) <
00, where « turns out to be the Blumenthal-Getoor index. Using the results
of [14, Example 3.1Jone can also show that 1 g .)(X1) & D12 for a > 1 so
that the projection IT improves the smoothness of 1k )(X1) for o € [1, %)

Remark 3 Using a Fourier transform approach Brodén and Tankov [5] com-
pute the discretization error under the historical measure for the delta hedging
as well as for a strategy which is optimal under a given equivalent martingale
measure. Using the equivalences of Theorem 6 (i) <= (iv) and Theorem 7
(i) <= (iv) one can also conclude about the fractional smoothness of the
projection of the considered digital option from the computed convergence
rate for equidistant time nets.
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