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JYVÄSKYLÄ
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Finally, I would like to thank Lauri, my husband, for all the sup-

port and understanding. My little daughter, Iitu, deserves a special

acknowledgement for being such a sunshine and joy.
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tional smoothness for Lévy processes and approximation. To appear
in Potential Analysis.

The author of this dissertation has actively taken part in the research of the
papers [GGL] and [GL].



Introduction 1

Introduction

This thesis comprehends Malliavin calculus for Lévy processes based on Itô’s
chaos decomposition, fractional smoothness and approximation of stochastic
integrals. Our interest is in functionals of Lévy processes such as f(Xt1 −
Xt0 , . . . , Xtm − Xtm−1

), where Xtk − Xtk−1
, k = 1, . . . , m, are increments of

a Lévy process and f is a Borel function. An explicit formulation of the
Malliavin derivative is given using a difference quotient and weak derivative
of the functional. In particular, f(X1) is considered. The Skorohod integral
is expressed using pathwise integration for a class of stochastic fields.

Certain stochastic integrals are approximated in L2(P) by their left Rie-
mann sums and also with the optimal choice of a discrete time process. For
example, the stochastic integral

∫
(0,1]

ϕt−dXt arising from the Galtchouk-

Kunita-Watanabe representation

f(X1) = c +

∫

(0,1]

ϕt−dXt + N

is approximated. The convergence rate of the approximation error under
certain discretizations is related to Malliavin fractional smoothness of the
integral.

1 Malliavin calculus

Malliavin calculus or stochastic calculus of variations merges differential cal-
culus and probability theory. Initially Paul Malliavin [39, 38] gave the basis
for the theory while investigating the smoothness of the density of a random
variable providing a probabilistic proof for Hörmander’s theorem in 1978.
The differential calculus on the Wiener space was further developed by sev-
eral mathematicians such as Stroock [58, 59], Bismut [11] and Watanabe
[62] and was applied again in studying the regularity of probability laws of
solutions of stochastic differential equations driven by Brownian motion.

Later Malliavin calculus was applied to computing the trading strategy of
contingent claims in complete markets. The Clark-Ocone formula by Ocone
[45], an explicit interpretation of the Clark representation formula [14, 15],
was used by Ocone and Karatzas [46] in 1991. Since then more applications
in finance have been discovered, such as computation of greeks by Fournié et
al. [20] in 1999.

Meanwhile there was increasing interest in using Lévy process based mod-
els in finance as well as investigation of smoothness of densities of solutions
of stochastic differential equations driven by Lévy processes. The question
whether the theory of Malliavin calculus could be extended to Lévy processes
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with jumps gave rise. In the first attempts the Malliavin derivative was de-
fined as a stochastic gradient by Bass and Cranston [4], Bichteler et al. [10]
and Norris [41]. Another approach developed by Carlen and Pardoux [13],
E-Khatib and Privault [19], Malliavin and Thalmaier [40] and others is based
on the concept of pathwise instantaneous derivative or true derivative.

A third orientation uses Itô chaos decomposition by Itô [33], and it has
been the tool for Nualart and Vives [44], Privault [52], Lee and Shih [35, 34],
Løkka [37], Øksendal and Proske [47], DiNunno et al. [18, 17], Solé et al.
[56], Alós et al. [2], Applebaum [3] and many others. For the Brownian
motion the chaos decomposition based definition and the stochastic gradient
are analogous, but in general they differ.

One more way of creating Malliavin calculus for Lévy processes is using
Teugels martingales based on power jump processes, where the existence of
all moments for the process is required. This chaotic representation was
shown by Nualart and Schoutens [43], and Malliavin calculus based on it has
been studied by authors such as Leon et al. [36] and Davis and Johansson
[16] as well as Benth et al. [7] and Solé et al. [57], who compare the two
chaos expansion based approaches.

In this thesis we consider Malliavin calculus which is founded on Itô’s
chaos decomposition.

1.1 Lévy processes

Considering stochastic processes starting at zero with independent and sta-
tionary increments, the only such process with continuous paths is the Brow-
nian motion. This process is the underlying stochastic process in Paul Malli-
avin’s calculus. When the trajectories are not necessarily continuous, but
almost surely right-continuous with left limits, then such processes are called
Lévy processes.

Each Lévy process admits a Lévy measure, which expresses the jump
intensity of the process. Given a Lévy process X = (Xt)t≥0, we write ∆Xt :=
Xt − lim0≤s↑t Xs. The Lévy measure of X is the Borel measure ν : B(R) →
[0,∞] given by

ν(A) := E# {t ∈ (0, 1] : ∆Xt ∈ A \ {0}} for all A ∈ B(R).

The Lévy-Itô decomposition states that when X = (Xt)t≥0 is a Lévy
process on a complete probability space (Ω,F , P), then there exist γ ∈ R,
σ ≥ 0, a standard Brownian motion W and a Poisson random measure N on
R+ × (R \ {0}) with intensity dtν(dx) such that

Xt = γt + σWt +

∫∫

(0,t]×{x:|x|>1}

xN(dt, dx) +

∫∫

(0,t]×{x:0<|x|≤1}

xÑ(dt, dx)
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a.s. for all t ≥ 0, where Ñ(dt, dx) = N(dt, dx) − dtν(dx).

1.2 Itô’s chaos decomposition

In this subsection we shortly explain the chaos decomposition shown by Itô
[33]. Let

L2(P) := L2(Ω,FX , P),

where FX is the completion of the σ-algebra generated by X. We define
measures µ : B(R) → [0,∞] and m : B(R+ × R) → [0,∞] by

µ(dx) := σ2δ0(dx) + x2ν(dx),m(dt, dx) := dtµ(dx).

For sets B ∈ B(R+ × R) such that m(B) < ∞ we let

M(B) := σ

∫

{t∈R+:(t,0)∈B}

dWt + lim
n→∞

∫∫

{(t,x)∈B:1/n<|x|<n}

x dÑ(t, x)

where the convergence is taken in L2(P). The measure M is an independent
random measure with EM(B1)M(B2) =m(B1∩B2) for all B1, B2 ∈ B(R+×
R) such that m(B1) < ∞ and m(B2) < ∞.

We write L2(m⊗0) := R and L2(m⊗n) := L2((R+×R)n,B(R+×R)n,m⊗n)
for n = 1, 2, . . .. We define the multiple integral of order n,

In : L2(m⊗n) → L2(P)

as follows: Set I0(f0) := f0 for f0 ∈ R. Let n ≥ 1. Any mapping in L2(m⊗n)
can be approximated by simple functions of the form

m∑

k=1

ak1Bk
1
(t1, x1) ⊗ · · · ⊗ 1Bk

n
(tn, xn),

where ak ∈ R, Bk
i ∈ B(R+ × R), m(Bi) < ∞ and Bk

i ∩ Bk
j = ∅ for k =

1, . . . , m, i, j = 1, . . . , n, j 6= i and m = 1, 2, . . . For a simple function the
multiple integral is defined by

In

(
m∑

k=1

ak1Bk
1
⊗ · · · ⊗ 1Bk

n

)
:=

m∑

k=1

akM(Bk
1 ) · · ·M(Bk

n).

We denote by f̃n the symmetrization of fn,

f̃n((t1, x1), . . . , (tn, xn)) :=
1

n!

∑

π∈πn

fn((tπ(1), xπ(1)), . . . , (tπ(n), xπ(n))),
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where πn is the set of all permutations π : {1, . . . , n} → {1, . . . , n}. We

have that In(fn) = In(f̃n) and ‖In(fn)‖2
L2(P) = n!‖f̃n‖2

L2(m⊗n) for any simple

function fn ∈ L2(m⊗n). By the denseness of simple functions in L2(m⊗n)
and continuity of In we may define In(fn) for any fn ∈ L2(m⊗n) as the L2(P)-

limit of In(f
(m)
n ), where (f

(m)
n )∞m=1 are simple functions converging to fn in

L2(m⊗n).
See [33] for further properties of In.

Theorem 1 (Theorem 2, [33]). Let F ∈ L2(P). Then there exist functions
fn ∈ L2(m⊗n), n = 0, 1, 2, . . . , such that

F =

∞∑

n=0

In(fn) a.s..

Furthermore,

‖F‖L2(P) =

√√√√
∞∑

n=0

n!‖f̃n‖2
L2(m⊗n).

1.3 The Malliavin derivative and known results

The Malliavin Sobolev space D1,2 is the space of all F =
∑∞

n=0 In(fn) ∈ L2(P)
such that

‖F‖D1,2
:=

√√√√
∞∑

n=0

(n + 1)!‖f̃n‖2
L2(m⊗n) < ∞.

For F ∈ D1,2 the Malliavin derivative D : D1,2 → L2(m⊗ P) is defined by

Dt,xF :=

∞∑

n=1

nIn−1

(
f̃n(·, (t, x))

)
in L2(m⊗ P).

Our aim is to give an explicit representation for DF when F is a functional
of increments of the Lévy process. If X is the Brownian motion, then the
Malliavin derivative reduces to D·,0, and it is well known that

Dt,0F :=
m∑

k=1

∂

∂xk

f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
)1(tk−1,tk ](t)

for F = f(Xt1 −Xt0 , . . . , Xtm −Xtm−1
) with f ∈ C∞

p (Rm) (i.e. f is infinitely
many times differentiable in all coordinates and is of at most polynomial
growth).
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The Malliavin derivative Dt,x for x 6= 0 has been shown to relate to a shift
transformation or a difference quotient: Nualart and Vives [44] consider the
chaos expansion with respect to Ñ instead of M on the Poisson space: For
a measure space (T,B, λ) satisfying certain conditions let

Ω := {ω =
∑

i∈I

δzi
: I ⊆ N, zi ∈ T}

and N(A)(ω) := ω(A) for A ∈ B and choose P such that N is a Poisson
random measure on (Ω, σ(N), P). Nualart and Vives [44] show that the
Malliavin derivative D satisfies

DzF (ω) = F (ω + δz) − F (ω).

An analogous transformation is also used by Picard [50, 49, 51]. Løkka [37]
uses a general probability space and he showed that if σ = 0, X is a square
integrable martingale and the distribution of X1 is absolutely continuous,
then

Dt,xF =

m∑

k=1

f(Xt1 + x1(0,t1](t), . . . , Xtm + x1(0,tm]) − F

for F = f(Xt1 , . . . , Xtm) with f ∈ C∞
c (Rm) (i.e. f is smooth and has compact

support).

Solé et al. [56] use the chaos decomposition with respect to the measure
M . They construct a canonical probability space and show that for x 6= 0

Dt,xF (ω) =
F (ωt,x) − F (ω)

x
,

where the shift transformation ωt,x can be interpreted as adding a jump of
size x at time t to the trajectory.

The crucial difference in using the measure Ñ instead of M in the pure
jump case is in multiplying the Malliavin derivative by x. Essentially, Dt,xF =
xDt,xF .

1.4 Finding explicit representations for the Malliavin derivative on a general
probability space

We convert above representation properties to any complete probability space
generated by a Lévy process for certain functionals of the Lévy process using
a difference quotient of the functional.
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Definition 1. For f : R
m → R we denote by ∆i

x the difference quotient in
the ith coordinate,

∆i
xf(x1, . . . , xm) :=

f(x1, . . . , xi−1, xi + x, xi+1, . . . , xm) − f(x1, . . . , xm)

x
,

for x 6= 0. If f ∈ Lloc

1 (Rm,B(Rm), dx) and there exists a function hi ∈
Lloc

1 (Rm,B(Rm), dx) such that

∫

Rm

f(x)
∂

∂xi
ϕ(x)dx = −

∫

Rm

hi(x)ϕ(x)dx for all ϕ ∈ C∞
c (Rm),

then we say that f has a weak derivative in the direction i and write

∆i
0f := hi.

If m = 1, we also use the notation ∆f := ∆1f .

Definition 2. Given a Borel function f : R
m → R, we say that the random

variable f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) is in the domain of D, Dom(D), if

(i) in case σ 6= 0, the function f has weak derivatives of order one in all
coordinates, i.e. ∆k

0f exists, and ∆k
0f(Xt1 − Xt0 , . . . , Xtm − Xtm−1

) ∈
L2(P) for all k = 1, . . . , m and

(ii) ∆k
xf(Xt1−Xt0 , . . . , Xtm−Xtm−1

)1R0
(x) ∈ L2(µ⊗P) for all k = 1, . . . , m.

For f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) ∈ Dom(D) we define

Dt,xf(Xt1 − Xt0 , . . . , Xtm − Xtm−1
)

:=

{
0, for x = 0 if σ = 0∑m

k=1 ∆k
xf(Xt1 − Xt0 , . . . , Xtm − Xtm−1

)1(tk−1,tk](t), otherwise.

If f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) ∈ Dom(D), then

Df(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) ∈ L2(m⊗ P).

Definition 3 (Smooth random variables, S). We call a random variable F
smooth, if there exists a set of time points τ = {0 ≤ t0 < t1 < · · · < tm < ∞}
and a function f ∈ C∞

c (Rm) such that

F = f(Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtm − Xtm−1
) a.s.

We denote the set of smooth random variables by S.



Introduction 7

Theorem 2 ([GL], Theorem 4.1 and Lemma 3.1). The set of smooth random
variables S is dense in D1,2, S ⊆ Dom(D) and

DF = DF m⊗ P-a.e. for all F ∈ S.

Remark 1. Note that for F ∈ S the representation F = f(Xt1−Xt0 , . . . , Xtm−
Xtm−1

) is not unique. However, if F = f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) =

g(Xs1
− Xs0

, . . . , Xsk
− Xsk−1

) ∈ S, then

Df(Xt1 − Xt0 , . . . , Xtm − Xtm−1
) = Dg(Xs1

− Xs0
, . . . , Xsk

− Xsk−1
)

in L2(m⊗ P).

It is now possible to define the Malliavin derivative on the set of smooth
random variables using the operator D and obtain an equivalent definition
by taking its closure. The relation D = D yields a criterion for f(X1) ∈ D1,2

for a Borel function f .

Proposition 1 ([L], Corollary 3.1). Let f(X1) ∈ L2(P), where f : R → R

is a Borel function. Then f(X1) ∈ D1,2 if and only if f(X1) ∈ Dom(D).
Moreover, if f(X1) ∈ D1,2, then

Df(X1) = Df(X1) m⊗ P-a.e..

From Proposition 1 one might make the conjecture that Dom(D) ⊂ D1,2

and DF = DF for any F ∈ Dom(D). For simplicity, the claim is proved
only for f(X1) in [L].

When X is the Brownian motion it is well known that the Malliavin
derivative admits the chain rule: let F ∈ D1,2 and ϕ ∈ C1(R) be Lipschitz
continuous. Then ϕ(F ) ∈ D1,2 and Dt,0ϕ(F ) = ϕ′(F )Dt,0F m⊗ P-a.e. Solé
et al. [56] generalize the chain rule in the following way: Let F ∈ D1,2 be
measurable with respect to the completion of the σ-algebra generated by the
Brownian motion part of the Lévy process and G ∈ L2(P) be measurable
with respect to the completion of the σ-algebra generated by the jump part.
Let ϕ : R

2 → R be continuously differentiable in the first variable such that
the mapping (x1, x2) 7→ ∂

∂x1
ϕ(x1, x2) is bounded. Suppose ϕ(F, G) ∈ L2(P).

Then

D·,0ϕ(F, G) =
∞∑

n=1

nIn−1(fn(·, (·, 0)))

is defined in L2(m⊗ P) and

D·,0ϕ(F, G) =
∂

∂x1

ϕ(F, G)D·,0F m⊗ P − a.e.



8

From the difference quotient formula in Proposition 1 one can immediately
see that the chain rule does not apply for x 6= 0. However, we have the
following equation.

Proposition 2 ([GL], Proposition 5.1). Let ϕ : R → R be Lipschitz contin-
uous and F ∈ D1,2. Then ϕ(F ) ∈ D1,2 and

Dt,xϕ(F ) =

{
GDt,0F for x = 0
ϕ(F+xDt,xF )−ϕ(F )

x
for x 6= 0m⊗ P-a.e., where G is a random variable bounded by the Lipschitz constant

of ϕ.

If the function ϕ in Proposition 2 is continuously differentiable, then it
holds that G = ϕ′(F ). This can be seen by the same procedure as in [42,
Proposition 1.2.2].

1.5 A chaos expansion with Hermite polynomials

We present a chaos decomposition for f(X1) ∈ L2(P) using Hermite polyno-

mials Hk, that is H0(x) := 1 and Hk(x) := (−1)k

k!
e

x2

2
dk

dxk e
−x2

2 for k = 1, 2, . . . .

Proposition 3 ([L], Proposition 2.1). Assume f(X1) =
∑∞

n=0 In(fn) ∈
L2(P) and let Y1 := X1 − σW1.

(i) There exist functions Gk, k = 0, 1, 2, . . ., such that Gk(Y1) ∈ L2(P) and

f(X1) =

∞∑

k=0

Gk(Y1)Hk(W1)σ
k in L2(P).

(ii) There exist symmetric functions gn ∈ L2(µ
⊗n) such that

f̃n((t1, x1), . . . , (tn, xn)) = gn(x1, . . . , xn)1⊗n
(0,1](t1, . . . , tn)

and

Gk(Y1) =

∞∑

m=0

(m + k)!

m!
Im(gm+k(·, 0, . . . , 0︸ ︷︷ ︸

k

)1⊗m
(0,1]×R0

), k = 0, 1, . . . .

(iii) If f ∈ C∞
c (R), then the functions Gk are obtained from

Gk =

∫

R

dk

dxk
f(σx + ·)PW1

(dx) for k = 0, 1, . . .
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The fact that f̃n = gn1⊗n
(0,1] was shown by Baumgartner [5] and follows

also from the results in [GL]. According to [L, Lemma 3.1], if the sum
D0

t,xf(X1) :=
∑∞

n=1 nIn−1(f̃n(·, (t, x)))1R+×{0}(t, x) converges in L2(m⊗ P),
then

D0f(X1) =
∞∑

k=1

Gk(Y1)H
′
k(W1)σ

k−11(0,1]×{0} in L2(m⊗ P).

1.6 The Skorohod integral

The adjoint of the Malliavin derivative is the Skorohod integral and it is
commonly denoted by δ. If u ∈ L2(m⊗ P) and there exists H ∈ L2(P) such
that

(u, DG)L2(m⊗P) = (H, G)L2(P) for all G ∈ D1,2,

then u ∈Dom(δ) and δ(u) = H . If u is predictable, then the Skorohod
integral coincides with the Itô integral.

The forward integral is defined pathwise and - like the Skorohod integral
- it extends the Itô integral to anticipating integrands (see Russo and Vallois
[53] for continuous integrators). We are interested in the relation of the Sko-
rohod integral and a pathwise integral with respect to the random measure
M .

Considering certain pathwise integrable random fields, the relation be-
tween the Skorohod integral and a pathwise integral is shown by Alós et al.
[2, Corollary 2.9] in the canonical probability space under the assumption∫

R
x2ν(dx) < ∞. Øksendal and Zhang [48, Lemma 2.1] consider the relation

for a class of pathwise integrable random fields in the pure jump case. In
[48] the space Ω is the continuous dual of the Schwartz space and X is an
L2(P)-martingale. We show the relation on a general probability space and
express the Skorohod integral using the pathwise integral on a dense subset
of Dom(δ).

Let m ∈ N, f ∈ C∞
b (Rm+1) such that the set {x : f(y, x) 6= 0 for some y ∈

R
m} is bounded, 0 ≤ t0 < t1 < · · · < tm < ∞ and k ∈ {1, . . . , m}. Denote

u(t, x) := f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
, x)1(tk−1,tk](t), (1)

♭u(t, x) := f(Xt1 − Xt0 , . . . , Xtk − Xtk−1
− x, . . . , Xtm − Xtm−1

, x)1(tk−1,tk](t)

and

∆−♭u(t, x)

:= ∆k
xf(Xt1 − Xt0 , . . . , Xtk − Xtk−1

− x, . . . , Xtm − Xtm−1
, x)1(tk−1,tk](t).
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For u(t, 0) = ♭u(t, 0) we define the pathwise integral as:
∫∫

R+×{0}

♭u(t, x)M(dpt, dx)

:= f(Xt1 − Xt0 , . . . , Xtm − Xtm−1
, 0)σ(Wtk − Wtk−1

)

a.s. Moreover, we define
∫∫

R+×|x|>ε

♭u(t, x)M(dpt, dx)

:=
∑

|∆Xt|>ε

♭u(t, ∆Xt)∆Xt −
∫

R+

∫

|x|>ε

♭u(t, x)xdtν(dx).

The right-hand side of the above equation is well defined since the sum is
a.s. finite.

By [L, Lemma 4.1] we have u ∈ Dom(δ), and [L, Proposition 4.1] states
that the linear span of random fields of the form (1) is dense in Dom(δ). The
Skorohod integral of u can be expressed using the pathwise integral in the
following way.

Theorem 3 ([L], Theorem 4.1). For compact sets Uε ⊂ R \ {0} such that
Uε ⊆ Uε′ for ε′ ≤ ε and

⋃
ε>0 Uε = R \ {0}, it holds that

δ(u) = lim
ε→0

(∫∫

R+×(Uε∪{0})

♭u(t, x)M(dpt, dx)

−
∫∫

R+×(Uε∪{0})

∆−♭u(t, x)m(dt, dx)

)
,

where the limit is taken in L2(P).

2 Fractional smoothness and approximation

Fractional smoothness of random variables is considered here in terms of
fractional order Sobolev spaces obtained by real interpolation. These spaces
have been considered by Watanabe [62] and Hirsch [30] on the Wiener space
and Adams [1] for the usual Sobolev spaces. Letting γ denote the standard
normal distribution, Geiss and Geiss [21] and S. Geiss and Hujo [25] found
out that the interpolation spaces between the weighted Sobolev space D1,2(γ)
and L2(γ) are connected to the convergence rate of the approximation of
stochastic integrals driven by (geometric) Brownian motion.

In mathematical finance the models of perfect hedging are based on trad-
ing continuously. In practice continuous trading is infeasible. When dis-
cretizing a trading strategy, an error occurs. The error has been measured in
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the weak sense by, for instance, Bertsimas, Kogan and Lo [9], Hayashi and
Mykland [29] as well as S. Geiss and Toivola [26] for continuous processes
and by Tankov and Voltchkova [60] for jump processes. Approximation in
Lp(P) for p > 2 was considered by S. Geiss and Toivola [27]. In this work
we measure the error in L2(P) as has been done by Zhang [63], Gobet and
Temam [28], S. Geiss [23, 24], Geiss and Geiss [21, 22], S. Geiss and Hujo
[25], Hujo [31, 32] and Seppälä [55] for continuous processes and Brodén and
Tankov [12] for jump processes. We consider stochastic integrals driven by an
exponential Lévy process or a Lévy process and show that the convergence
rate depends on the choice of discretization time points and the fractional
smoothness of the stochastic integral.

Consider a Lévy process X which is an L2(P)-martingale and its Doléans-
Dade exponential S = E(X),

St = 1 +

∫

(0,t]

Sr−dXr.

Then a random variable f(ST ) ∈ L2(P) admits the orthogonal Galtchouk-
Kunita-Watanabe representation

f(ST ) = V0 +

∫

(0,T ]

ϕt−dSt + N .

We are interested in the quantitative Riemann approximation of the stochas-
tic integral

∫
(0,T ]

ϕtdSt and its relation to fractional smoothness. When X

is the Brownian motion, then N = 0. We consider discrete time points
0 = t0 < t1 < · · · < tn = T and measure the error in L2(P). The convergence
rate of the approximation error is r, if

∥∥∥∥∥

∫

(0,T ]

ϕt−dSt −
n∑

k=1

ϕtk−1
(Stk − Stk−1

)

∥∥∥∥∥
L2(P)

∼c n−r

for all n.
First results of the convergence rate were obtained for the Brownian mo-

tion. Zhang [63] showed that if f is absolutely continuous and is of poly-
nomial growth, then the convergence rate is r = 1/2. Gobet and Temam
[28] proved that for f = 1[K,∞) it holds r = 1

4
and for f(x) = (x − K)a

+, we
have r = 1

4
+ a

2
, a ∈ (0, 1

2
). Both Zhang [63] as well as Gobet and Temam

[28] used equidistant time nets and the essential observation is that the more
smooth the pay-off function f is, the more accurate is the approximation.
S. Geiss [23] showed that using non-equidistant time nets may improve the
approximation rate.
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Geiss and Geiss [21] showed that whenever the pay-off function f is
in a Besov space Bθ

2,q(γ), the optimal convergence rate r = 1
2

can be ob-
tained using certain non-equidistant time nets. Besov spaces Bθ

2,q(γ) =
(L2(γ), D1,2(γ))θ,q are obtained by real interpolation between L2(γ) and the
weighted Sobolev space D1,2(γ), where γ is the distribution of ST . By S. Geiss
and Hujo [25] a characterization for f ∈ Bθ

2,q(γ) is given by means of the be-
haviour of the approximation.

These results were obtained in the Brownian motion setting. First approx-
imation results concerning the discontinuous exponential Lévy model came
from Brodén and Tankov [12]. They use equidistant time-nets and compare
the convergence rates of the optimal trading strategy and delta-hedging and
show that under certain assumptions the optimal strategy leads to faster
convergence. Brodén and Tankov [12] compute under various assumptions
the convergence rate and show that it depends on the small-jump behaviour
of the Lévy process when σ = 0: for the optimal trading strategy they state
some integrability and smoothness conditions under which r = 1

2
. For the

digital option 1[K,∞)(ST ) they show the convergence rate r = 3
2
α−1 − 1

2
for

ν(dx) = k(x)|x|−1−αdx and α ∈ (3
2
, 2) for a class of functions k.

We connect the convergence rate in the Lévy process setting to Malliavin
fractional smoothness. The underlying process in [GGL] is the Lévy process
X itself or its stochastic exponential S. The convergence results are analo-
gous for the two processes. Therefore we omit here the case of the stochastic
exponential S.

The rest of this section involves approximation of a stochastic integral

F =

∫

(0,1]

ϕt−dXt,

where the integrand is of the form

ϕt =
∞∑

n=1

In

(
gn1⊗n

(0,t]

)
, t ∈ [0, 1),

with gn ∈ L2(µ
⊗n). It is notable that this is always the case when ϕ is the

integrand from the Galtchouk-Kunita-Watanabe projection

f(X1) = c +

∫

(0,1]

ϕt−dXt + N .

For a time net τ = {0 = t0 < t1 < · · · < tn = 1} we denote by a(F ; τ) the
L2(P)-approximation error,

a(F ; τ) :=

∥∥∥∥∥F −
n∑

k=1

ϕtk−1
(Xtk − Xtk−1

)

∥∥∥∥∥
L2(P)

.
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The approximation number a(F ; τ) corresponds to aopt
X (F ; τ) in [GGL]. Here

the integral is approximated with its left Riemann sum, which also minimizes
‖F −∑ vk−1(Xtk − Xtk−1

)‖L2(P) over square integrable predictable discrete
time processes v, when the discretization time points are fixed. Therefore
the left Riemann sum gives optimal approximation. When the underlying
stochastic process is the stochastic exponential, then the left Riemann sum
is no longer optimal, but the convergence rate remains the same.

2.1 Approximation

When the underlying process is continuous, then it is known from Geiss and
Geiss [21] that the convergence rate is never better than 1

2
, unless ϕ is a

deterministic constant. The following theorem states that the best possible
convergence rate for any Lévy process is also r = 1

2
.

Theorem 4 (Theorem 5, [GGL]). Unless there are a, b ∈ R such that F =
a + bX1 a.s., we have

lim inf
n→∞

√
n

[
inf

#τ=n+1
a(F ; τ)

]
> 0.

Let H(F ; t) :=
√

d
dt

E|ϕ2
t |. When the underlying process is continuous,

S. Geiss [23] showed that

1

c
a(F ; τ) ≤

(
n∑

k=1

∫ tk

tk−1

(tk − t)H2(F ; t)dt

) 1

2

≤ ca(F ; τ) (2)

for a constant c ≥ 1 not depending on τ or F . In [GGL] we see that the
approximation number is related to an integral of H also for processes with
jumps.

Theorem 5 (Theorem 3, [GGL]). It holds that

a(F ; τ) = µ(R)

(
n∑

k=1

∫ tk

tk−1

(tk − t)H2(F ; t)dt

) 1

2

.

If the underlying process is the stochastic exponential S instead of the
Lévy process X, the equation of Theorem 5 turns into an equivalence like
(2) with constant c = c(τ) such that c(τn) → 1 if suptk−1,tk∈τn

|tk − tk−1| → 0
as n → ∞.

According to Seppälä [55, Theorem 2.4], the optimal convergence rate

r = 1
2

for (infτn
a(F ; τn))∞n=1 is obtained if and only if

∫ 1

0
H(F ; t)dt < ∞. In
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this case one gets the optimal rate using the regular time nets generated by
H(F ; ·), i.e. the nets τn = {0 = tn0 < tn1 < · · · < tnn = 1}, which satisfy

∫ tn
k

tn
k−1

H(F ; t)dt =
1

n

∫ 1

0

H(F ; t)dt for all k = 1, . . . , n.

The function H(F ; ·) is increasing, which causes the need for the time points
tnk to be concentrated close to 1. The regular time nets generated by t 7→
(1 − t)θ−1, where θ ∈ (0, 1], are the following nets τ θ

n.

Definition 4. For θ ∈ (0, 1] let us denote by τ θ
n the time net which consists

of the time points tk = 1 − (1 − k
n
)

1

θ , k = 0, . . . , n.

If H(F ; t) ∼ (1−t)θ−1, then the optimal convergence rate is again achieved
with the time nets τ θ

n . S. Geiss [23] showed this before the results of Seppälä
[55]. These time nets give the optimal convergence rate also in the case
that F has certain Malliavin fractional smoothness (see [21] for continuous
processes and [GGL] for processes with jumps).

2.2 Fractional smoothness and its connection to approximation

The convergence rate of the approximation relates to fractional smoothness
in terms of Besov spaces. This observation was made first for approximation
in L2(P) by Geiss and Geiss [21] and S. Geiss and Hujo [25] and Seppälä [55].
S. Geiss and Toivola considered weak convergence [26] and Lp(P) convergence
for p > 2 [27]. Seppälä [54] studied the convergence rate for stochastic
integrals with no fractional smoothness in the usual sense. All these papers
assume the underlying stochastic process to be continuous.

The Besov spaces Bθ
2,q are defined as interpolation spaces between D1,2

and L2(P). We use the K-method of real interpolation to describe the spaces
Bθ

2,q.
For F ∈ L2(P) and t > 0, the K-functional is defined by

K(F, t; L2(P), D1,2) := inf{‖F1‖L2(P) + t‖F2‖D1,2
: F = F1 + F2}.

Given θ ∈ (0, 1) and q ∈ [1,∞], we let Bθ
2,q be the space of all F ∈ L2(P)

such that

‖F‖Bθ
2,q

:=
∥∥t−θK(F, t; L2(P), D1,2)

∥∥
Lq((0,∞), dt

t ) < ∞.

The spaces Bθ
2,q are intermediate spaces of D1,2 and L2(P) and they have a

lexicographical order,

D1,2 ⊆ Bθ
2,q′ ⊆ Bθ

2,q ⊆ Bθ′

2,q′ ⊆ L2(P)
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whenever 0 < θ′ < θ < 1 and 1 ≤ q′ ≤ q ≤ ∞. We refer to Triebel [61],
Bennet and Sharpley [6] or Bergh and Löfström [8] for more information
about interpolation.

The following theorem was formulated for continuous processes by S. Geiss
and Hujo [25], and it shows that the more smooth F is with respect to θ,
the better is the approximation for the equidistant time net. The relation is
shown for Lévy processes with jumps in [GGL].

Theorem 6 (Theorem 6, [GGL]). Let θ ∈ (0, 1), q ∈ [1,∞] and τn be
equidistant with #τn = n + 1. Then F ∈ B

θ
2,q if and only if

∥∥∥
(
n

θ
2
− 1

q a(F ; τn)
)∞

n=1

∥∥∥
ℓq

< ∞.

For q = ∞ the theorem exposes the convergence rate r = θ
2

for F ∈ B
θ
2,∞.

If F 6∈ B
θ
2,q for any (θ, q) ∈ (0, 1) × [1,∞] then a(F ; τn) converges to zero

slower than n−r for any r > 0. The convergence rate in the case of having
no fractional smoothness has been investigated for continuous processes by
Seppälä [54], who uses more general interpolation spaces.

Like for the Brownian motion (Geiss and Geiss [21]), the convergence
rate can be improved by choosing appropriate non-equidistant time nets (see
Theorem 7). On the other hand the convergence can be arbitrarily slow
despite optimizing over time nets: when X is the Brownian motion, it was
shown by Hujo [31] that for any sequence of positive real numbers β = (βn)∞n=1

with βn ↓ 0 there exists fβ ∈ L2(γ) such that

inf
#τ=n+1

a(fβ(X1); τ) ≥ βn for all n.

The following theorem states that the optimal convergence rate r = 1
2

can be
attained for F ∈ B

θ
2,2 by using the time nets τ θ

n from Definition 4. The less
smooth the integral F is, the more we need the discretization time points to
be concentrated close to 1. The observation was made first for continuous
processes by S. Geiss [23] and Geiss and Geiss [21] and for processes with
jumps in [GGL]. Seppälä [54] shows for the continuous underlying that this
convergence rate is achievable also if F 6∈ B

θ
2,2 for any θ ∈ (0, 1), but F is

contained in a more general interpolation space.

Theorem 7 (Theorem 7, [GGL]). Let θ ∈ (0, 1], τ θ
n be from Definition 4 and

write B
1
2,2 := D1,2. Then F ∈ B

θ
2,2 if and only if supn

√
na(F ; τ θ

n) < ∞. If
F ∈ B

θ
2,2, then

lim
n→∞

√
na(F ; τ θ

n) =

√
1

2θ

∫ 1

0

(1 − t)1−θH2(F ; t)dt.
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The fractional smoothness of f(X1) = c +
∫
(0,1]

ϕt−dXt + N is related

to the smoothness of the term F =
∫
(0,1]

ϕt−dXt in the Galtchouk-Kunita-

Watanabe decomposition:

f(X1) ∈ B
θ
2,q implies F ∈ B

θ
2,q

for θ ∈ (0, 1) and q ∈ [1,∞] and

f(X1) ∈ D1,2 implies F ∈ D1,2

by [GGL, Lemma 3]. The integral part F may indeed have better smoothness
than f(X1): Suppose X is tempered α-stable with α ∈ (1, 3

2
) such that

ν(dx) = d|x|−1−α(1 + |x|)−mdx for some m > 2 − α and d > 0. By [L,
Example 3.1] and [GGL, Proposition 1] we have1[K,∞)(X1) 6∈ D1,2 and

∫

(0,1]

ϕt−dXt ∈ D1,2.

3 Conclusions

Malliavin calculus for Lévy processes has been considered in this thesis on
a general probability space. Some results from special probability spaces
(canonical, dual of the Schwarz space) have been converted to a general
probability space for functionals of the Lévy process. It was shown that the
Malliavin derivative defined for smooth functionals using a difference quotient
yields a definition which is equivalent to the definition based on Itô’s chaos
decomposition.

Some approximation results of stochastic integrals were generalized from
the Brownian motion setting to the general Lévy process setting, provided
that the underlying process is an L2(P)-martingale. Connections between
L2(P)-approximation and Malliavin fractional smoothness were found. The
fractional smoothness of functionals of a Lévy process as well as the fractional
smoothness of stochastic integrals seem to depend heavily on the jump inten-
sity of small jumps. However, so far only special cases have been investigated.
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thesis, University of Innsbruck, 2011.

[6] C. Bennet and R. Sharpley. Interpolation of operators. Academic Press,
New York, 1988.

[7] F. E. Benth, G. Di Nunno, A. Løkka, B. Øksendal, and F. Proske.
Explicit representations of the minimal variance portfolio in markets
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processes. Journal of Functional Analysis, 206:109–148, 2004.

[19] Y. El-Khatib and N. Privault. Computations of Greeks in a market with
jumps via the Malliavin calculus. Finance and Stochastics, 8(2):161–179,
2004.
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Abstract. The Malliavin derivative for a Lévy process (Xt) can be de-
fined on the space D1,2 using a chaos expansion or in the case of a pure jump
process also via an increment quotient operator. In this paper we define the
Malliavin derivative operator D on the class S of smooth random variables
f(Xt1 , . . . , Xtn ), where f is a smooth function with compact support. We
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1. INTRODUCTION

In the recent years Malliavin calculus for Lévy processes has been developed
using various types of chaos expansions. For example, Lee and Shih [5] applied
a white noise approach, León et al. [6] worked with certain strongly orthogonal
martingales, Løkka [7] and Di Nunno et al. [2] considered multiple integrals with
respect to the compensated Poisson random measure and Solé et al. [11] used the
chaos expansion proved by Itô [4].

This chaos representation from Itô applies to any square integrable functional
of a general Lévy process. It uses multiple integrals like in the well-known Brow-
nian motion case but with respect to an independent random measure associated
with the Lévy process. Solé et al. propose in [12] a canonical space for a general
Lévy process. They define for random variables on the canonical space the incre-
ment quotient operator

Ψt,xF (ω) =
F (ωt,x)− F (ω)

x
, x ̸= 0,

∗ Partially supported by the Academy of Finland, project 110599.
∗∗ Supported by the Finnish Cultural Foundation.



2 C. Geiss and E. Laukkarinen

in a pathwise sense, where, roughly speaking, ωt,x can be interpreted as the out-
come of adding at time t a jump of the size x to the path ω. They show that on the
canonical Lévy space the Malliavin derivative Dt,xF defined via the chaos expan-
sion due to Itô and Ψt,xF coincide a.e. on R+ × R0 × Ω (where R0 := R \ {0})
whenever F ∈ L2 and E

∫
R+×R0

|Ψt,xF |2dm(t, x) < ∞ (see Section 2 for the
definition of m). On the other hand, on the Wiener space, the Malliavin deriva-
tive is introduced as an operator D mapping smooth random variables of the form
F = f

(
W (h1), . . . , W (hn)

)
into L2(Ω;H), i.e.

DF =
n∑

i=1

∂

∂xi
f
(
W (h1), . . . ,W (hn)

)
hi

(see, for example, [8]). Here f is a smooth function mapping from Rn into R such
that all its derivatives have at most polynomial growth, and {W (h), h ∈ H} is an
isonormal Gaussian family associated with a Hilbert space H. The closure of the
domain of the operator D is the space D1,2.

In the present paper we proceed in a similar way for a Lévy process (Xt)t0.
We will define a Malliavin derivative on a class of smooth random variables and
determine its closure. The class of smooth random variables we consider consists
of elements of the form F = f(Xt1 , . . . , Xtn), where f : Rn → R is a smooth
function with compact support.

Analogously to results of Solé et al. [12] about the canonical Lévy space the
Malliavin derivative DF ∈ L2(m ⊗ P), defined via chaos expansion, can be ex-
pressed explicitly as a two-parameter operator Dt,x. For certain smooth random
variables of the form F = f(Xt1 , . . . , Xtn) we have

Dt,xf(Xt1 , . . . , Xtn) =
n∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+ Ψt,xf(Xt1 , . . . , Xtn)1I{x ̸=0}(x)

form⊗ P-a.e. (t, x, ω). Here Ψt,x for x ̸= 0 is given by

Ψt,xf(Xt1 , . . . , Xtn)

:=
f
(
Xt1 + x1I[0,t1](t), . . . , Xtn + x1I[0,tn](t)

)
− f(Xt1 , . . . , Xtn)

x
.

Our main result is that the smooth random variables f(Xt1 , . . . , Xtn) are
dense in the space D1,2 defined via the chaos expansion. This implies that defin-
ing D as an operator on the smooth random variables as in Definition 3.2 below
and taking the closure leads to the same result as defining D using Itô’s chaos
expansion (see Definition 2.1).

The paper is organized as follows. In Section 2 we shortly recall Itô’s chaos
expansion, the definition of the Malliavin derivative and some related facts. The
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third and fourth sections focus on the introduction of the Malliavin derivative op-
erator on smooth random variables and the determination of its closure. Applying
the denseness result from the previous section we show in Section 5 that Lipschitz
functions map from D1,2 into D1,2.

2. THE MALLIAVIN DERIVATIVE VIA ITÔ’S CHAOS EXPANSION

We assume a càdlàg Lévy process X = (Xt)t0 on a complete probability
space (Ω,F ,P) with Lévy triplet (γ, σ2, ν), where γ ∈ R, σ  0 and ν is the
Lévy measure. Then X has the Lévy–Itô decomposition

Xt = γt+ σWt +
∫

[0,t]×{|x|1}
xdN(t, x) +

∫
[0,t]×{0<|x|<1}

xdÑ(t, x),

where W denotes a standard Brownian motion, N is the Poisson random measure
associated with the process X and Ñ the compensated Poisson random measure,
dÑ(t, x) = dN(t, x)− dtdν(x). Consider the measures µ on B(R),

dµ(x) := σ2dδ0(x) + x2dν(x),

andm on B(R+ × R), where R+ := [0,∞),

dm(t, x) := dtdµ(x).

For B ∈ B(R+ × R) such thatm(B) <∞ let

M(B) = σ
∫

{t∈R+:(t,0)∈B}
dWt + lim

n→∞

∫
{(t,x)∈B:1/n<|x|<n}

xdÑ(t, x),

where the convergence is taken in the space L2(Ω,F ,P). Now EM(B1)M(B2)
=m(B1 ∩B2) for allB1, B2 withm(B1)<∞ andm(B2)<∞. For n = 1, 2, . . .
let us write

Ln
2 := L2

(
(R+ × R)n,B(R+ × R)⊗n,m⊗n

)
.

For f ∈ Ln
2 Itô [4] defines a multiple integral In(f) with respect to the random

measure M . It follows that In(f)=In(f̃) a.s., where f̃ is the symmetrization of f ,

f̃(z1, . . . , zn) =
1

n!

∑
π∈Sn

f(zπ(1), . . . , zπ(n))

for all zi = (ti, xi) ∈ R+ × R, and Sn denotes the set of all permutations on
{1, . . . , n}.

Let (FX
t )t0 be the augmented natural filtration of X . Then (FX

t )t0 is right
continuous ([9], Theorem I 4.31). Set FX :=

∨
t0FX

t . By Theorem 2 of Itô [4]
the chaos decomposition

L2 := L2(Ω,FX ,P) =
∞
⊕
n=0

In(L
n
2 )
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holds, where I0(L0
2) := R and In(L

n
2 ) := {In(fn) : fn ∈ Ln

2} for n = 1, 2, . . .
For F ∈ L2 the representation

F =
∞∑
n=0

In(fn)

with I0(f0) = EF a.s. is unique if the functions fn are symmetric. Furthermore,

∥F∥2L2
=
∞∑
n=0

n!∥f̃n∥2Ln
2
.

DEFINITION 2.1. Let D1,2 be the space of all F =
∑∞

n=0 In(fn) ∈ L2 such
that

∥F∥2D1,2
:=

∞∑
n=0

(n+ 1)!∥f̃n∥2Ln
2
<∞.

Set L2(m⊗ P) := L2

(
R+ × R× Ω,B(R+ × R)⊗ FX ,m⊗P

)
. The Malliavin

derivative D : D1,2 → L2(m⊗P) is defined by

(2.1) Dt,xF :=
∞∑
n=1

nIn−1

(
f̃n

(
(t, x), ·

))
, (t, x, ω) ∈ R+ × R× Ω.

We consider (as Solé et al. [12]) the operators D·,0 and D·,x, x ̸= 0, and their
domains D0

1,2 and DJ
1,2. For σ > 0 assume that D0

1,2 consists of random variables
F =

∑∞
n=0 In(fn) ∈ L2 such that

∥F∥2D0
1,2

:= ∥F∥2L2
+
∞∑
n=1

n · n!∥f̃n1I(R+×{0})×(R+×R)n−1∥2Ln
2
<∞.

For ν ̸= 0, let DJ
1,2 be the set of F ∈ L2 such that

∥F∥2DJ
1,2

:= ∥F∥2L2
+
∞∑
n=1

n · n!∥f̃n1I(R+×R0)×(R+×R)n−1∥2Ln
2
<∞,

where R0 := R \ {0}. If both σ > 0 and ν ̸= 0, then

(2.2) D1,2 = D0
1,2 ∩ DJ

1,2.

In case ν = 0, D·,0 coincides with the classical Malliavin derivative DW (see, for
example, [8]) except for a multiplicative constant, DW

t F = σDt,0F .
In the next lemma we formulate a denseness result which will be used to de-

termine the closure of the Malliavin operator from Definition 3.2 below.

LEMMA 2.1. Let L ⊆ L2 be the linear span of random variables of the form

M(T1 ×A1) . . .M(Tn ×An), n = 1, 2, . . .

where the Ai’s are finite intervals of the form (ai, bi] and the Ti’s are finite disjoint
intervals of the form Ti = (si, ti]. Then L is dense in L2, D1,2, D0

1,2 and DJ
1,2.
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P r o o f. 1o First we consider the class of all linear combinations of

M(B1) . . .M(Bn) = In(1IB1×...×Bn),

n = 1, 2, . . . , where the sets Bi ∈ B(R+ ×R) are disjoint and fulfill the condition
m(Bi) <∞. It follows from the completeness of the multiple integrals in L2 (see
[4], Theorem 2) that this class is dense in L2. Especially, the class of all linear
combinations of 1IB1×...×Bn with disjoint sets B1, . . . , Bn of finite measure m is
dense in Ln

2 = L2

(
(R+ × R)n,B(R+ × R)⊗n,m⊗n

)
. Let Hn be the linear span

of 1I(T1×A1)×···×(Tn×An), where Ai = (ai, bi] and Ti = (si, ti]. One can easily see
that Hn is dense in Ln

2 as well. Indeed, because m is a Radon measure, there are
compact sets Ci ⊆ Bi such thatm(Bi \ Ci) is sufficiently small to get

∥1IB1×...×Bn − 1IC1×...×Cn∥Ln
2
< ε

for some given ε > 0. Since the compact sets (Ci) are disjoint, one can find dis-
joint bounded open sets Ui ⊇ Ci such that ∥1IC1×...×Cn − 1IU1×...×Un∥Ln

2
< ε. For

any bounded open set Ui ⊆ (0,∞) × R one can find a sequence of ‘half-open
rectangles’ Qi,k = (sik, t

i
k] × (aik, b

i
k] = T i

k × Ai
k such that Ui =

∪∞
k=1Qi,k (tak-

ing half-open rectangles Qx ⊆ Ui with rational ‘end points’ containing the point
x ∈ Ui gives Ui =

∪
Qx⊆Ui

Qx).
Hence for sufficiently large Ki’s we have

∥1IU1×...×Un − 1IP ∥Ln
2
< ε, where P :=

K1∪
k=1

Q1,k × . . .×
Kn∪
k=1

Qn,k

and where the Qi,1, . . . , Qi,Ki can now be chosen such that they are disjoint. This
implies that the linear span of 1IQ1×...×Qn , where the Qi’s are of the form Ti ×Ai,
is dense in Ln

2 .
2o For the convenience of the reader we recall the idea of the proof of Lem-

ma 2 in [4] to show that the intervals Ti can be chosen disjoint. Consider the situa-
tion (all other cases can be treated similarly) where for the set

(T1 ×A1)× . . .× (Tn ×An)

we have T1 = T2. To shorten the notation we write

Q := (T3 ×A3)× . . .× (Tn ×An).

Choosing an equidistant partition (Ej)
k
j=1 of T1 we have

1I(T1×A1)×(T1×A2)×Q =
∑
j ̸=l

1I(Ej×A1)×(El×A2)×Q +
k∑

j=1

1I(Ej×A1)×(Ej×A2)×Q.

It can be easily checked that
∥∥∑k

j=1 1I(Ej×A1)×(Ej×A2)×Q
∥∥
Ln
2
→ 0 as k →∞.
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3o The denseness of Hn in Ln
2 implies that L is dense in L2 and D1,2. The

remaining cases follow from the fact that

∥fn1I(R+×{0})×(R+×R)n−1∥Ln
2
¬ ∥fn∥Ln

2

and
∥fn1I(R+×R0)×(R+×R)n−1)∥Ln

2
¬ ∥fn∥Ln

2
. �

3. THE MALLIAVIN DERIVATIVE AS OPERATOR ON S

Let C∞c (Rn) denote the space of smooth functions f : Rn → R with compact
support.

DEFINITION 3.1. A random variable of the form F =f(Xt1 , . . . , Xtn), where
f ∈ C∞c (Rn), n ∈ N, and t1, . . . , tn  0, is said to be a smooth random variable.
The set of all smooth random variables is denoted by S.

DEFINITION 3.2. For F = f(Xt1 , . . . , Xtn) ∈ S we define the Malliavin de-
rivative operator D as a map from S into L2(m⊗P) by

Dt,xf(Xt1 , . . . , Xtn)

:=
n∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+
f
(
Xt1+ x1I[0,t1](t), . . . , Xtn+ x1I[0,tn](t)

)
− f(Xt1 , . . . , Xtn)

x
1IR0(x)

for (t, x) ∈ R+ × R.

The following lemma holds true:

LEMMA 3.1. We have DF = DF in L2(m⊗ P) for all F ∈ S.
Since for f(Xt1 , . . . , Xtn) ∈ S we get

E
∫
R+

|Dt,0f(Xt1 , . . . , Xtn)|2dt <∞

and
E

∫
R+×R0

|Dt,xf(Xt1 , . . . , Xtn)|2dm(t, x) <∞,

Lemma 3.1 follows for the canonical Lévy space from Propositions 3.5 and 5.5
in [12].

A proof of Lemma 3.1 for the situation where the Lévy process (Xt) is a
square integrable pure jump process which has an absolutely continuous distribu-
tion can be found in [7].
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An outline of the proof in the general case is given in the Appendix. Like in
[7], Proposition 8, one can derive from the proof an explicit form for the functions
(fn) of the chaos expansion f(Xt1 , . . . , Xtk) =

∑∞
n=0 In(fn),

fn
(
(s1, x1), . . . , (sn, xn)

)
=E

∑
I⊂{1,...,n}∪∅

(−1)n−|I|

n!

f
(
Xt1+

∑
i∈Ixi1I[0,t1](si), . . . , Xtk+

∑
i∈Ixi1I[0,tk](si)

)
x1 . . . xn

,

with the convention that to get fn
(
(s1, x1), . . . , (si, 0), . . . , (sn, xn)

)
one has to

take the limit lim|xi|↓0 fn
(
(s1, x1), . . . , (sn, xn)

)
.

Especially, since any F ∈ L2 ⊇ S has a unique chaos expansion, we conclude
that also DF does not depend on the representation F = f(Xt1 , . . . , Xtn). Using
the equality of D and D on S and the fact that S is closed with respect to multi-
plication we are now able to reformulate Proposition 5.1 of [12] for our situation:

COROLLARY 3.1. For F and G in S we have

Dt,x(FG) = GDt,xF + FDt,xG+ xDt,xFDt,xG

form⊗ P-a.e. (t, x, ω) ∈ R+ × R× Ω.

4. THE CLOSURE OF THE MALLIAVIN DERIVATIVE OPERATOR

The operator D : S → L2(m ⊗ P) is closable if for any sequence (Fn) ⊆ S
which converges to 0 in L2 such that D(Fn) converges in L2(m ⊗ P) it follows
that (DFn) converges to 0 in L2(m⊗ P). As we know from the previous section
that D and D coincide on S ⊆ D1,2, it is clear that D is closable and the closure
of the domain of definition of D with respect to the norm

∥F∥D := [E|F |2 + E∥DF∥2L2(m)]
1/2

is contained in D1,2. What remains to show is that the closure is equal to D1,2.

THEOREM 4.1. The closure of S with respect to the norm ∥ · ∥D = ∥ · ∥D1,2

is the space D1,2.

Theorem 4.1 implies that the Malliavin derivative D defined via Itô’s chaos
expansion and the closure of the operator L2 ⊇ S

D→ L2(m⊗ P) coincide. Before
we start with the proof we formulate a lemma for later use.
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LEMMA 4.1. For φ ∈ C∞c (R) and partitions πn := {s = tn0 < tn1 < . . . <
tnn = u} of the interval [s, u] it follows for ψ(x) := xφ(x) that

D1,2 − lim
|πn|→0

( n∑
j=1

ψ(Xtnj
−Xtnj−1

)− E
n∑

j=1

ψ(Xtnj
−Xtnj−1

)
)

=
∫

(s,u]×R
φ(x) dM(t, x),

where |πn| := max1¬i¬n |tni − tni−1|.

P r o o f. To keep the notation simple, we drop the n of the partition points tnj .
Notice that ∫

(s,u]×R
φ(x) dM(t, x) = I1(1I(s,u] ⊗ φ).

We set

Gn :=
n∑

j=1

ψ(Xtj −Xtj−1)− E
n∑

j=1

ψ(Xtj −Xtj−1)

and

G :=
∫

(s,u]×R
φ(x) dM(t, x).

In general, ψ(Xtj −Xtj−1) ̸∈ S but we can conclude from Lemma 3.1 that

Dt,xψ(Xtj −Xtj−1) = Dt,xψ(Xtj −Xtj−1)

m ⊗ P-a.e. using a suitable approximation of ψ(Xtj − Xtj−1) by a sequence of
smooth random variables from S. So we can write Dt,xG

n explicitly as

Dt,xG
n =

n∑
j=1

ψ′(Xtj −Xtj−1)1I(tj−1,tj ]×{0}(t, x)

+
n∑

j=1

ψ(Xtj −Xtj−1 + x)− ψ(Xtj −Xtj−1)

x
1I(tj−1,tj ]×R0

(t, x).

Moreover, we have Dt,xI1(1I(s,u] ⊗ φ) = 1I(s,u](t)φ(x) m-a.e. Using the general
fact that for any F ∈ D1,2 with expectation zero the inequality

∥F∥2D1,2
¬ 2∥DF∥2L2(m⊗P)
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holds true, we obtain

∥G−Gn∥2D1,2
¬ 2∥DG−DGn∥2L2(m⊗P)

= 2σ2E
∫
R+

n∑
j=1

1I(tj−1,tj ](t)[φ(0)− ψ
′(Xtj −Xtj−1)]

2dt

+ 2E
∫

R+×R0

n∑
j=1

1I(tj−1,tj ](t)[ψ(x)− ψ(Xtj −Xtj−1 + x)

+ ψ(Xtj −Xtj−1)]
2dtdν(x)

→ 0

as n→∞ because of dominated convergence and the a.s. càdlàg property of the
paths of (Xt). �

P r o o f o f T h e o r e m 4.1. According to Lemma 2.1 it is sufficient to show
that an expression like M(T1 ×A1) . . .M(Tn ×An), where the Ai’s are bounded
Borel sets and the Ti’s finite disjoint intervals, can be approximated in D1,2 by a
sequence (Fk)k ⊆ S.

1o In this step we want to show that it is enough to approximate

(4.1) I1(1IT1 ⊗ φ1) . . . I1(1ITn ⊗ φn)

by (Fk)k ⊆ S, where φi ∈ C∞c (R). Since the intervals Ti are disjoint, the defini-
tion of the multiple integral implies that

M(T1 ×A1) . . .M(Tn ×An) = In(1IT1×A1 ⊗ . . .⊗ 1ITn×An) a.s.

By the same reason,

I1(1IT1 ⊗ φ1) . . . I1(1ITn ⊗ φn) = In
(
(1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)

)
a.s.

We have∥∥In(1I(T1×A1)×...×(Tn×An))− In
(
(1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)

)∥∥2
D1,2

¬ (n+ 1)!∥1I(T1×A1)×...×(Tn×An) − (1IT1 ⊗ φ1)⊗ . . .⊗ (1ITn ⊗ φn)∥2Ln
2

¬ (n+ 1)!|T1| . . . |Tn|∥1IA1×...×An − φ1 ⊗ . . .⊗ φn∥2Ln
2 (µ
⊗n).

The last expression can be made arbitrarily small by choosing φi such that the
expression ∥1IAi − φi∥L1

2(µ)
is small. Indeed, for each i there are compact sets

Ci
1 ⊆ Ci

2 ⊆ . . . ⊆ Ai and open sets U i
1 ⊇ U i

2 ⊇ . . . ⊇ Ai such that

µ(U i
k \ Ci

k)→ 0
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as k →∞. By the C∞ Urysohn lemma ([3], p. 237) there is for each k a function
φi
k ∈ C∞c (R) such that 0 ¬ φi

k ¬ 1, φi
k = 1 on Ci

k and supp(φi
k) ⊂ U i

k. Then

∥1IAi − φk
i ∥2L1

2(µ)
¬ µ(U i

k \ Ci
k)→ 0

as k →∞.
2o Now we use Lemma 4.1 to approximate the expression (4.1) by a sequence

(Fk)k ⊆ S. For i = 1, . . . , n set ψi(x) := xφi(x) and

Gk
i :=

k∑
j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1)− E
k∑

j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1).

The partition πk = {0 ¬ tk0 ¬ . . . ¬ tkk} can be chosen such that all end points of
the closed intervals T̄i belong to πk. Put

fk(Xt0 , . . . , Xtk) :=
n∏

i=1

Gk
i

and notice that fk ∈ C∞(Rk+1). Let us choose functions βm ∈ C∞c (R) such that
0 ¬ βm ¬ 1 and βm(x) = 1 for |x| ¬ m, the support of βm is contained in {x;
|x| ¬ m+ 2} and ∥β′m∥∞ ¬ 1. Setting x−1 := 0 and

αm(x0, . . . , xk) :=
k∏

i=0

βm(xi − xi−1),

we have fk(x)αm(x) ∈ C∞c (Rk+1). By dominated convergence one can show that

D1,2 − lim
m→∞

fk(Xt0 , . . . , Xtk)αm(Xt0 , . . . , Xtk) = fk(Xt0 , . . . , Xtk).

Because the intervals (Ti) are disjoint, it follows that the product rule holds in our
case:

(4.2) D
n∏

i=1

Gk
i =

n∑
i=1

Gk
1 . . . G

k
i−1(DG

k
i )G

k
i+1 . . . G

k
n m⊗ P-a.e.

Indeed, because of Dt,xG
k
i = (Dt,xG

k
i )1ITi(t) we have

x(Dt,xG
k
i )1ITi(t)(Dt,xG

k
j )1ITj (t) = 0 m⊗ P-a.e.

for any i ̸= j. Equation (4.2) follows then by induction. Let

Gi := I1(1ITi ⊗ φi).

We observe that Gk
1, . . . , G

k
n as well as Gk

1, . . . , G
k
i−1, DG

k
i , G

k
i+1, . . . , G

k
n are

mutually independent by construction. Hence to show L2-convergence of these
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products it is enough to prove L2-convergence for each factor. From Lemma 4.1
we obtain Gk

i → Gi in D1,2 for all i = 1, . . . , n, so that

L2(m⊗ P)− lim
|πk|→0

Gk
1 . . . G

k
i−1(DG

k
i )G

k
i+1 . . . G

k
n

= G1 . . . Gi−1(DGi)Gi+1 . . . Gn.

Consequently, we have found a sequence (Fk) ⊆ S given by

Fk = fk(Xt0 , . . . , Xtk)αmk
(Xt0 , . . . , Xtk),

where the mk’s are chosen in a suitable way, that converges to expression (4.1) in
D1,2. �

COROLLARY 4.1. The set S of smooth random variables is dense in L2, D0
1,2

and DJ
1,2.

P r o o f. The denseness in L2 is clear. To show that S is dense in D0
1,2 assume

F ∈ D0
1,2 has the representation F =

∑∞
n=0 In(fn). For a given ε > 0 fix Nε such

that
∥∥∑∞

n=Nε
In(fn)

∥∥
D0
1,2
< ε. From F ∈ L2 we conclude

FNε :=
Nε∑
n=0

In(fn) ∈ D1,2.

By Theorem 4.1 we can find a sequence (Fk) ⊆ S converging to FNε in D1,2, and
therefore also in D0

1,2. In the same way one can see that S is dense in DJ
1,2. �

5. LIPSCHITZ FUNCTIONS OPERATE ON D1,2

LEMMA 5.1. Assume that g : R → R is Lipschitz continuous with Lipschitz
constant Lg.

(a) If σ > 0, then g(F ) ∈ D0
1,2 for all F ∈ D0

1,2 and

(5.1) Dt,0g(F ) = GDt,0F dt⊗ P-a.e.,

where G is a random variable which is a.s. bounded by Lg.
(b) If ν ̸= 0, then g(F ) ∈ DJ

1,2 for all F ∈ DJ
1,2, where

(5.2) Dt,xg(F ) =
g(F + xDt,xF )− g(F )

x

form⊗P-a.e. (t, x, ω) ∈ R+ × R0 × Ω.
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P r o o f. (a) We will adapt the proof of Proposition 1.2.4 in [8] to our sit-
uation. Corollary 4.1 implies that there exists a sequence (Fn) ⊆ S of the form
Fn = fn(Xt1 , . . . , Xtn) which converges to F in D0

1,2. Like in [8], we choose a
non-negative ψ ∈ C∞c (R) such that supp(ψ) ⊆ [−1, 1] and

∫
R ψ(x)dx = 1 and

define the approximation of unity ψm(x) := mψ(mx). Then gm := g ∗ ψm is
smooth and converges uniformly to g asm→∞. Moreover, ∥g′m∥∞ ¬ Lg. Hence
gm(Fn)− gm(0) ∈ S and

(
gn(Fn)

)
converges to g(F ) in L2. Moreover,

E
∫
R+

|Dt,0gn(Fn)|2dt ¬ L2
g ∥Fn∥2D0

1,2
.

Since
(
gn(Fn)

)
converges to g(F ) in L2 and

sup
n
∥gn(Fn)∥2D0

1,2
<∞,

Lemma 1.2.3 in [8] states that g(F ) ∈ D0
1,2 and that

(
D·,0 gn(Fn)

)
converges to

D·,0 g(F ) in the weak topology of L2

(
Ω;L2(R+ × {0})

)
. The obvious inequality

E|g′n(Fn)|2 ¬ L2
g implies the existence of a subsequence

(
g′nk

(Fnk
)
)
k

which con-
verges to some G ∈ L2 in the weak topology of L2. One can show that |G| ¬ Lg

a.s. Hence for any element α ∈ L∞
(
Ω;L2(R+ × {0})

)
we have

lim
k→∞

E
∫
R+

g′nk
(Fnk

)(Dt,0 Fnk
)α(t)dt = E

(
G

∫
R+

(Dt,0 F )α(t)dt
)
.

Consequently, Dt,0 g(F ) = GDt,0F dt⊗ P-a.e.
(b) Let (Fn)n ⊆ S be a sequence such that DJ

1,2 − limFn = F. Since the
expression

Z(t, x) :=
g(F + xDt,xF )− g(F )

x
1IR+×R0(t, x)

is in L2(m⊗ P), it is enough to show that the sequence
(
Dgn(Fn)1IR+×R0

)
con-

verges in L2(m⊗ P) to Z, where (gn) is the sequence constructed in (a). Choose
T > 0 and L > 0 large enough and δ > 0 sufficiently small such that

lim sup
n

E
∫

([0,T ]×{δ¬|x|¬L})c
|Z(t, x)|2 + |Dt,xgn(Fn)|2dm(t, x) < ε.

Then, for n  n0,

∥Z −Dgn(Fn)1IR+×R0∥2L2(m⊗P)

¬ ε+ 2E
∫

[0,T ]×{δ¬|x|¬L}

∣∣∣∣Z(t, x)− g(Fn + xDt,xFn)− g(Fn)

x

∣∣∣∣2dm(t, x)

+ 8δ−2Tµ({δ ¬ |x| ¬ L})∥g − gn∥2∞.

Hence we obtain (5.2) from the Lipschitz continuity of g and the uniform conver-
gence of gn to g. �
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PROPOSITION 5.1. Let g : R → R be Lipschitz continuous. Then F ∈ D1,2

implies g(F ) ∈ D1,2, where Dg(F ) is given by (5.1) and (5.2).

P r o o f. The assertion is an immediate consequence of Lemma 5.1 and the
equality (2.2). �

6. APPENDIX

P r o o f o f L e m m a 3.1. We denote by Jn(fn) the multiple integral∫
R+×R

∫
[0,tn)×R

. . .
∫

[0,t2)×R
fn

(
(t1, x1), . . . , (tn, xn)

)
dM(t1, x1) . . . dM(tn, xn),

where for the definition of a stochastic integral with respect to M we refer to [1].
We have

(6.1) In(f̃n) = n!Jn(f̃n).

Let us first prove on S a Clark–Ocone–Haussman type formula for the operator D.
By the Fourier inversion formula (see, for example, [1]) we infer for f ∈ C∞c (Rk)
that

f(Xt1 , . . . , Xtk) =
∫
Rk

f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du =

∫
Rk

f̂(u)eη(u,T )YT (u)du,

where eη(u,t) = E exp
(
2πi

∑k
j=1(ujXtj∧t)

)
and

Yt(u) = exp
(
2πi

k∑
j=1

ujXtj∧t − η(u, t)
)

for 0 ¬ t ¬ T := max{t1, . . . , tk}.

We rewrite YT (u) by Itô’s formula using ξ(u, s) := 2πi
∑k

j=1 uj1I[0,tj ](s) and get

(6.2) f(Xt1 , . . . , Xtk)

=
∫
Rk

f̂(u)eη(u,T ) du

+
∫
Rk

f̂(u)eη(u,T )
( T∫

0

Ys−(u)ξ(u, s) σdWs

)
du

+
∫
Rk

f̂(u)eη(u,T )
( ∫
(0,T ]×R0

Ys−(u)(e
xξ(u,s) − 1)dÑ(s, x)

)
du.

It follows by Fubini’s theorem that∫
Rk

f̂(u)eη(u,T ) du = E
∫
Rk

f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du = Ef(Xt1 , . . . , Xtk).
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Now we deal with the second term on the right-hand side of (6.2). Using the fact
that the process (Yt)t∈[0,T ] is a square integrable martingale, we infer by the con-
ditional theorem of Fubini (see, e.g., [1]) and Fubini’s theorem for stochastic inte-
grals (see, e.g., [10]) that it can be written as

T∫
0

E
[ ∫
Rk

YT (u)f̂(u)e
η(u,T )ξ(u, s) du

∣∣Fs−]σdWs.

Applying Theorem 8.22 (e) of [3] and the Fourier inversion formula we rewrite the
inner integral as follows:∫

Rk

YT (u)f̂(u)e
η(u,T )ξ(u, s) du

=
k∑

j=1

1I[0,tj ](s)
∫
Rk

2πiuj f̂(u) exp
(
2πi

k∑
j=1

ujXtj

)
du

=
k∑

j=1

1I[0,tj ](s)
∂f

∂xj
(Xt1 , . . . , Xtk).

Similarly, one can write the last term on the right-hand side of (6.2) as∫
(0,T ]×R0

E
[ ∫
Rk

f̂(u)eη(u,T )YT (u)(e
xξ(u,s) − 1)du

∣∣Fs−]dÑ(s, x),

where∫
Rk

f̂(u)eη(u,T )YT (u)(e
xξ(u,s) − 1)du

=
∫
Rk

f̂(u)
(
exp

[
2πi

k∑
j=1

uj
(
Xtj + x1I[0,tj ](s)

)]
− exp

(
2πi

k∑
j=1

ujXtj

))
du

= f
(
Xt1 + x1I[0,t1](s), . . . , Xtk + x1I[0,tk](s)

)
− f(Xt1 , . . . , Xtk) .

Consequently, for F = f(Xt1 , . . . , Xtk) ∈ S the Clark–Ocone–Haussman type
formula holds true:

(6.3) F = EF +
∫

R+×R
E [Dt,xF |Ft− ] dM(t, x).

Since Dt,xf(Xt1 , . . . , Xtk) ∈ S for any (t, x) ∈ R+ × R, iterating equation (6.3)
we obtain

f(Xt1 , . . . , Xtk) = Ef(Xt1 , . . . , Xtk) +
∞∑
n=1

Jn
(
EDnf(Xt1 , . . . , Xtk)

)
,

where Dn := D . . .D.
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Notice that EDnf(Xt1 , . . . , Xtk) is a symmetric function on (R+ ×R)n. The
relation (6.1) between the multiple and the iterated integral and equation (2.1) to-
gether with Dt,xf(Xt1 , . . . , Xtk) ∈ L2(m⊗P) imply that

Dt,xf(Xt1 , . . . , Xtk) =
∞∑
n=1

Jn−1
(
EDn−1Dt,xf(Xt1 , . . . , Xtk)

)
= Dt,xf(Xt1 , . . . , Xtk) m⊗P-a.e. �
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[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge 2004.
[2] G. Di Nunno, Th. Meyer-Brandis , B. Øksendal and F. Proske, Malliavin calculus
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211 (2004), pp. 1–70.

[6] J . León, J . L. Solé , F. Utzet and J. Vives, On Lévy processes, Malliavin calculus and
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22 (2005), pp. 867–892.

[8] D. Nualar t, The Malliavin Calculus and Related Topics, Springer, 2006.
[9] P. Prot ter, Stochastic Integration and Differential Equations: A New Approach, Springer,

Berlin 1995.
[10] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin–

Heidelberg–New York 1994.
[11] J . Solé , F. Utzet and J. Vives, Chaos expansion and Malliavin Calculus for Lévy pro-
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Abstract

The goal of this paper is to develop a stochastic calculus for random

elements whose randomness originates from �nitely many increments

of a Lévy process. Using an explicit formula for the Malliavin deriva-

tive of we give a characterization for Malliavin smoothness of f(X1).
The Skorohod integral is expressed via a pathwise integral with respect

to a random measure generated by the Lévy process.

Keywords Lévy process, Malliavin calculus
Mathematics Subject Classi�cation (2010) 60G51, 60H05, 60H07

1 Introduction

In recent years Malliavin calculus for Lévy processes has been introduced
using chaos expansions (Applebaum [4], Di Nunno et al. [7], Løkka [12],
Nualart and Vives [15], Solé et al. [18] and others). When an explicit form of
the derivative is needed, the in�nite series representation becomes laborious.
In many applications such as �nance and backward stochastic di�erential
equations we would need to work with random variables of the form

f(Xt1 −Xt0 , . . . , Xtn −Xtn−1), (1)

where X is a Lévy process, f is a Borel function and 0 ≤ t0 < t1 < . . . < tn <
∞. In this paper we study Malliavin calculus for random variables of the
form f(X1) and the Skorohod integral for random �elds whose randomness
originates from Xt1 −Xt0 , . . . , Xtn −Xtn−1 .

It is well known that for the Brownian motion W it holds that f(W1) is
in the Malliavin Sobolev space D1,2 if and only if f belongs to the weighted
Sobolev space W 1,2(Rn, N(0, 1)) (see for instance [13, Proposition V 2.3.1]).
We relate Malliavin di�erentiability to the properties of f : R → R for
any Lévy process X. We also investigate the Skorohod integral and give
the relation between the Skorohod integral and the pathwise integral on a
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dense subset of Dom(δ). The relation between the two integrals for certain
integrable mappings can also be found in papers of Alós et al. [2, Corollary
2.9] and Øksendal and Zhang [16, Lemma 2.1]. In these works the relation
is shown for certain forward integrable processes, whereas we consider the
relation for certain Skorohod integrable processes.

1.1 The setting

Let X = (Xt)t≥0 be a Lévy process with càdlàg paths on a complete probabil-
ity space (Ω,F ,P). Let (Ft)t≥0 denote the natural �ltration of X augmented
with the null sets of F . Denote FX :=

∨
t≥0Ft. By the Lévy-Itô decomposi-

tion there exist γ ∈ R, σ ≥ 0, a standard Brownian motion W and a Poisson
random measure N on B(R+ ×R) such that

Xt = γt+ σWt +

∫∫
(0,t]×{|x|>1}

xN(ds, dx) +

∫∫
(0,t]×{0<|x|≤1}

xÑ(ds, dx).

Here Ñ(ds, dx) = N(ds, dx) − dsν(dx) is the compensated Poisson random
measure and ν : B(R)→ [0,∞] is the Lévy measure of X satisfying ν({0}) =
0,
∫
R

(x2 ∧ 1)ν(dx) <∞ and ν(B) = EN((0, 1]×B) when 0 6∈ B̄.
We consider the following measures µ and m de�ned as

µ : B(R)→ [0,∞], µ(dx) := σ2δ0(dx) + x2ν(dx),

m : B(R+ ×R)→ [0,∞], m(dt, dx) := dtµ(dx).

For sets B ∈ B(R+ × R) such that m(B) < ∞, a random measure M is
de�ned by

M(B) := σ

∫
{t∈R+:(t,0)∈B}

dWt + lim
n→∞

∫∫
{(t,x)∈B: 1

n
<|x|<n}

x dÑ(t, x),

where the convergence is taken in L2(P). Then EM(B1)M(B2) = m(B1∩B2)
for all B1, B2 with m(B1) <∞ and m(B2) <∞. For n = 1, 2, . . . write

L2(m⊗n) = L2

(
(R+ ×R)n,B(R+ ×R)⊗n,m⊗n

)
and set L2(m⊗0) := R. A function fn : (R+ × R)n → R is said to be
symmetric, if it coincides with its symmetrization f̃n,

f̃n((t1, x1), . . . , (tn, xn)) =
1

n!

∑
π

fn((tπ(1), xπ(1)), . . . , (tπ(n), xπ(n))),

where the sum is taken over all permutations π : {1, . . . , n} → {1, . . . , n}.
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We let In denote the multiple integral of order n de�ned by Itô [10]. For
pairwise disjoint B1, . . . , Bn ∈ B(R+ × R) with m(Bi) < ∞ the integral of
1B1 ⊗ · · · ⊗ 1Bn is de�ned by

In (1B1 ⊗ · · · ⊗ 1Bn) := M(B1) · · ·M(Bn).

It is then extended to a linear and continuous operator In : L2(m⊗n)→ L2(P)
and it holds that In(fn) = In(f̃n) for all fn ∈ L2(m⊗n). We let I0(f0) := f0

for f0 ∈ R.
According to [10, Theorem 2], letting In(L2(m⊗n)) := {In(fn) : fn ∈

L2(m⊗n)} for n = 0, 1, 2, . . . it holds that

L2(P) =
∞⊕
n=0

In(L2(m⊗n))

and the functions fn in the representation F =
∑∞

n=0 In(fn) in L2(P) are
unique when they are chosen to be symmetric. It then holds that

‖F‖2
L2(P) =

∞∑
n=0

n!‖f̃n‖2
L2(m⊗n).

1.2 Notation

Here we introduce some frequently used notation:

• R0 := R \ {0}.

• C∞c (Rm) is the space of real-valued functions onRm which are in�nitely
many times di�erentiable in all coordinates and have compact support.

• C∞b (Rm) is the space of bounded smooth functions such that all the
partial derivatives are bounded.

2 On the chaos expansion of f(X1)

In this section we investigate chaos representations for random variables of
the form f(X1) =

∑∞
n=0 In(fn) ∈ L2(P), where f is a Borel function. If

f ∈ C∞c (R), then according to Geiss et al. [9, page 7] it holds that

fn((t1, x1), . . . , (tn, xn)) =
1

n!
E∆x1 · · ·∆xnf(X1)1⊗n(0,1](t1, . . . , tn) m

⊗n−a.e.,
(2)
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where ∆x is de�ned in De�nition 2.1 below. Since C∞c (R) is a dense subset
of L2(PX1), we can see by approximation that

fn((t1, x1), . . . , (tn, xn)) = gn(x1, . . . , xn)1⊗n(0,1](t1, . . . , tn) m
⊗n − a.e. (3)

for some symmetric function gn ∈ L2(µ⊗n) for any f(X1) ∈ L2(P).
We let Hk be the Hermite polynomial of order k, that is H0(x) := 1 and

Hk(x) := (−1)k

k!
e
x2

2
dk

dxk
e
−x2

2 for k = 1, 2, . . . .Write Yt := Xt−σWt. The follow-
ing proposition presents a decomposition for f(X1) ∈ L2(P) using Hermite
polynomials.

Proposition 2.1. Let f(X1) =
∑∞

n=0 In(gn1
⊗n
(0,1]) ∈ L2(P) with gn symmet-

ric. Then there exist functions Gk : R→ R such that Gk(Y1) ∈ L2(P),

Gk(Y1) =
∞∑
m=0

(m+ k)!

m!
Im(gm+k(·, 0, . . . , 0︸ ︷︷ ︸

k

)1⊗m(0,1]×R0
), k = 0, 1, . . . ,

and

f(X1) =
∞∑
k=0

Gk(Y1)Hk(W1)σk in L2(P).

For the proof we introduce a di�erence quotient and weak derivative.

De�nition 2.1. For f : Rm → R we denote by ∆i
x the di�erence quotient

with respect to the ith coordinate,

∆i
xf(x1, . . . , xm) :=

f(x1, . . . , xi−1, xi + x, xi+1, . . . , xm)− f(x1, . . . , xm)

x
,

for x 6= 0. If f ∈ Lloc

1 (dx) := Lloc

1 (Rm,B(Rm), dx) and there exists a function
hi ∈ Lloc

1 (dx) such that∫
Rm

f(x)
∂

∂xi
ϕ(x)dx = −

∫
Rm

hi(x)ϕ(x)dx for all ϕ ∈ C∞c (Rm),

then we say that f has a weak derivative in the direction i and write

∆i
0f := hi.

If m = 1, we also use the notation ∆f := ∆1f .

The following lemma will be used as a technical tool in this article.
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Lemma 2.1. Let n, k ≥ 0, A ∈ B(R+×R) and f ∈ L2(m⊗n), g ∈ L2(m⊗k).
Then

In(f1⊗nA )Ik(g1
⊗k
Ac ) = In+k

(
f1⊗nA ⊗ g1

⊗k
Ac

)
a.s.

Proof. Let fm =
∑m

i=1 a
m
i ⊗nj=11Amij

and gm =
∑m

i=1 b
m
i ⊗kj=11Bmij

be sequences

of simple functions converging to f in L2(m⊗n) and g in L2(m⊗k), respec-
tively. Then fm1

⊗n
A → f1⊗nA in L2(m⊗n), gm1

⊗k
Ac → g1⊗kAc in L2(m⊗k) and

In(f1⊗nA ) and Ik(g1
⊗k
Ac ) are independent. This yields

In(f1⊗nA )Ik(g1
⊗k
Ac ) = lim

m→∞
In(fm1

⊗n
A )Ik(gm1

⊗k
Ac )

= lim
m→∞

In+k

(
fm1

⊗n
A ⊗ gm1

⊗k
Ac

)
= In+k

(
f1⊗nA ⊗ g1

⊗k
Ac

)
in L2(P).

Lemma 2.2. Let n ≥ 1 and gn ∈ L2(µ⊗n) be symmetric. Then

In

(
gn1

⊗n
(0,1]

)
=

n∑
k=0

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
Hk(W1)σk,

where the sum is orthogonal.

Proof. Using Rn =
⋃n
k=0{x : #{i : xi = 0} = k} and Lemma 2.1 we get

In

(
gn1

⊗n
(0,1]

)
=

n∑
k=0

In

(
gn1

⊗n
(0,1]1{x:#{i:xi=0}=k}

)
=

n∑
k=0

(
n

k

)
In

(
gn

(
1
⊗(n−k)
(0,1]×R0

⊗ 1⊗k(0,1]×{0}

))
=

n∑
k=0

(
n

k

)
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
Ik

(
1
⊗k
(0,1]×{0}

)
=

n∑
k=0

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
Hk(W1)σk,

where in the last equation we used [14, Proposition 1.1.4]. The orthogonality
follows from the orthogonality of the sequence Hk(W1), k = 0, 1, . . ., which

is independent from the sequence In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
, k = 0, 1, . . ..
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Proof of Proposition 2.1. Suppose �rst that f ∈ C∞c (R). Then f(X1) =∑∞
n=0 In(fn) where fn = gn1

⊗n
(0,1] for gn(x1, . . . , xn) = 1

n!
E∆x1 · · ·∆xnf(X1)

by equation (2). It holds that the function

Gk :=

∫
R

dk

dxk
f(σx+ ·)PW1(dx) for k = 0, 1, . . .

satis�es the assumption of Lemma A.1: Choose K > 0 such that f(x) = 0

for |x| > K. Since for all k, dk

dxk
f is bounded and bounded functions are in

in L1(PW1) we have by [8, Theorem 2.27 (b)] that∣∣∣∣ dj

dyj
Gk(y)

∣∣∣∣ =

∣∣∣∣∫ K

−K

(
dk+j

dxk+j
f(x)

)
e−

(x−y)2

2σ2
1√

2πσ2
dx

∣∣∣∣
≤ sup

x∈R

∣∣∣∣ dk+j

dxk+j
f(x)

∣∣∣∣ eK|y|σ2 e−
y2

2σ2 .

By Lemma A.1 we have Gk(Y1) =
∑∞

m=0 Im

(
gm,k1

⊗m
(0,1]×R0

)
with

gm,k(x1, . . . , xm) =
1

m!
E∆x1 · · ·∆xmGk(Y1)

=
1

m!
E∆x1 · · ·∆xm ∆0 · · ·∆0︸ ︷︷ ︸

k

f(X1)

=
n!

(n− k)!
gn(x1, . . . , xn−k, 0, . . . , 0︸ ︷︷ ︸

k

)

for n = m+ k and x1, . . . , xn−k ∈ R0. Thus

Gk(Y1) =
∞∑
n=k

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
and by Lemma 2.2 we have

f(X1) =
∞∑
n=0

n∑
k=0

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
Hk(W1)σk

=
∞∑
k=0

∞∑
n=k

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
Hk(W1)σk

=
∞∑
k=0

Gk(Y1)Hk(W1)σk
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in L2(P).
If f 6∈ C∞c (R), then we �nd a sequence (f (j))∞j=1 ⊂ C∞c (R) such that

f (j) → f in L2(PX1) (see [8, Proposition (7.9) using (8.18)]) with

f (j)(X1) =
∞∑
k=0

G
(j)
k (Y1)Hk(W1)σk =

∞∑
n=0

In(g(j)
n 1

⊗n
(0,1]).

Thus

0← E|f (j)(X1)− f (i)(X1)|2 =
∞∑
k=0

E|G(j)
k (Y1)−G(i)

k (Y1)|2E|Hk(W1)σk|

whence there exist Gk(Y1) ∈ L2(P), k = 0, 1, . . ., such that

f(X1) =
∞∑
k=0

Gk(Y1)Hk(W1)σk.

The convergence g
(j)
n → gn in L2(m⊗n) implies

Gk(Y1) =
∞∑
n=k

n!

(n− k)!
In−k(gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

), k = 0, 1, . . . .

3 The Malliavin derivative

We denote by D1,2 the space of all F =
∑∞

n=0 In(fn) ∈ L2(P) such that

‖F‖2
D1,2

:=
∞∑
n=0

(n+ 1)!‖f̃n‖2
L2(m⊗n) <∞.

Let us denote L2(m⊗P) := L2(R+×R×Ω,B(R+×R)⊗FX ,m⊗P) and
de�ne the Malliavin derivative D : D1,2 → L2(m⊗P) by letting

Dt,xF =
∞∑
n=1

nIn−1(f̃n(·, (t, x))) in L2(m⊗P).

Next we de�ne a set of smooth random variables. For smooth random vari-
ables we have an explicit representation of the Malliavin derivative.
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De�nition 3.1 (Smooth random variables S). We call a random variable F
smooth, if there exists

• a set of time points τ = {0 ≤ t0 < t1 < · · · < tm <∞} and

• a function f ∈ C∞b (Rm)

such that

F = f(Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtm −Xtm−1) a.s. (4)

We denote the set of smooth random variables by S.

Note that the set τ and the function f in the above de�nition are not
unique.

According to Geiss et al. [9, Theorem 4.1] smooth random variables (for
which t0 = 0 and f ∈ C∞c (Rm)) are dense in D1,2 and from [9, Lemma
3.1] one immediately obtains the following representation of the Malliavin
derivative for smooth random variables.

Proposition 3.1. The set S of smooth random variables is dense in D1,2

and for F = f(Xt1 −Xt0 , . . . , Xtm −Xtm−1) ∈ S it holds that

Dt,xF =
m∑
i=1

∆i
xf(Xt1 −Xt0 , . . . , Xtm −Xtm−1)1(ti−1,ti](t) (5)

m⊗P-a.e.

Proof. The proposition coincides with the claims in [9] for the subset of S
where t0 = 0 and f ∈ C∞c (Rm). Let F ∈ S with f ∈ C∞b (Rm) and Fk =
Fαk(Xt0−X0, . . . , Xtm−Xtm−1), where αk ∈ C∞c (Rm+1) is such that αk(x) =
1 for |x| ≤ k, 0 ≤ αk(x) ≤ 1 and | ∂

∂xj
αk(x)| ≤ 1 for all x and j. Then Fk → F

in L2(P) and DFk →
∑m

i=1 ∆i
xf(Xt1 − Xt0 , . . . , Xtm − Xtm−1)1(ti−1,ti](t) in

L2(m⊗P). Hence the proposition follows by the closability of D.

We distinguish two components of the Malliavin derivative: the derivative
with respect to the Brownian motion part and the derivative with respect
to the jump part of the Lévy process. We let D0

1,2 and DR0
1,2 be subspaces of

L2(P) equipped with the norms

‖F‖D0
1,2

:=

√√√√‖F‖2
L2(P) +

∞∑
n=1

n · n!
∥∥∥f̃n (1⊗(n−1)

R+×R ⊗ 1R+×{0}

)∥∥∥2

L2(m⊗n)
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and

‖F‖
D
R0
1,2

:=

√√√√‖F‖2
L2(P) +

∞∑
n=1

n · n!
∥∥∥f̃n (1⊗(n−1)

R+×R ⊗ 1R+×R0

)∥∥∥2

L2(m⊗n)

respectively.
Let us de�ne the operators

D0
t,xF :=

∞∑
n=1

nIn−1(f̃n(·, (t, x)))1R+×{0}(t, x) for F ∈ D0
1,2

and

DR0
t,xF =

∞∑
n=1

nIn−1(f̃n(·, (t, x)))1R+×R0(t, x) for F ∈ DR0
1,2,

where the convergence of the sums is taken in L2(m ⊗ P). The operators
D0 and DR0 are closed: let A ∈ {{0},R0} and (Fk) ⊂ DA

1,2 such that Fk =∑∞
n=0 In(f

(k)
n ) → 0 in L2(P) and DAFk → u in L2(m ⊗ P). There exist

fn ∈ L2(m⊗n), n = 1, 2, . . ., such that fn is symmetric in the �rst n− 1 pairs
of variables and u(t, x) =

∑∞
n=1 nIn−1(fn(·, (t, x))) in L2(m⊗P) (see Remark

4.1 below). We have

0 = lim
k→∞

∥∥∥f̃n(k)
(1
⊗(n−1)
R+×R ⊗ 1R+×A)− fn

∥∥∥
L2(m⊗n)

≥ lim
k→∞

∣∣∣∣∥∥∥f̃n(k)
(1
⊗(n−1)
R+×R ⊗ 1R+×A)

∥∥∥
L2(m⊗n)

− ‖fn‖L2(m⊗n)

∣∣∣∣
= ‖fn‖L2(m⊗n)

since
∥∥∥f̃n(k)

(1
⊗(n−1)
R+×R ⊗ 1R+×A)

∥∥∥
L2(m⊗n)

≤
∥∥∥f̃n(k)

∥∥∥
L2(m⊗n)

→ 0. Hence u = 0

in L2(m⊗P).
Clearly D1,2 = D

0
1,2 ∩D

R0
1,2 and D = D0 + DR0 . In Propositions 3.2 and

3.3 we use the operator ∆ to state a necessary and su�cient condition on a
Borel function f such that f(X1) is in D0

1,2 or DR0
1,2, respectively.

3.1 The derivative D0

Proposition 3.2. Assume σ 6= 0. Let f(X1) ∈ L2(P), where f : R→ R is a
Borel function. Then f(X1) ∈ D0

1,2 if and only if ∆0f exists and ∆0f(X1) ∈
L2(P). If f(X1) ∈ D0

1,2, then

D0
t,xf(X1) = ∆0f(X1)1(0,1]×{0}(t, x) m⊗P-a.e. (6)
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For the proof we need the following lemma.

Lemma 3.1. Let f(X1) =
∑∞

k=0Gk(Y1)Hk(W1)σk ∈ D0
1,2. Then

D0
t,xf(X1) =

∞∑
k=1

Gk(Y1)H ′k(W1)σk−1
1(0,1]×{0}(t, x) m⊗P-a.e.

Proof. Consider the representation f(X1) =
∑∞

n=0 In(gn1
⊗n
(0,1]), where the

functions gn ∈ L2(µ⊗n) are symmetric. By Lemma 2.2 we have

D0f(X1)

=
∞∑
n=1

nIn−1

(
gn(·, 0)1

⊗(n−1)
(0,1]

)
1(0,1]×{0}

=
∞∑
n=1

n
n−1∑
k=0

(n− 1)!

(n− 1− k)!
In−1−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k+1

)1
⊗(n−1−k)
(0,1]×R0

)
Hk(W1)σk1(0,1]×{0}

=
∞∑
n=1

n∑
k=1

n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
H ′k(W1)σk−1

1(0,1]×{0}

in L2(m⊗P) since Hk−1 = H ′k. Denoting

Fn,k :=
n!

(n− k)!
In−k

(
gn(·, 0, . . . , 0︸ ︷︷ ︸

k

)1
⊗(n−k)
(0,1]×R0

)
we get

E

∣∣∣∣∣
K∑
k=1

∞∑
n=k

Fn,kH
′
k(W1)σk−1 −

∞∑
n=1

n∑
k=1

Fn,kH
′
k(W1)σk−1

∣∣∣∣∣
2

= E

∣∣∣∣∣∣
∞∑
n=1

n∑
k=(n∧K)+1

Fn,kH
′
k(W1)σk−1

∣∣∣∣∣∣
2

= E
∞∑
n=1

n∑
k=(n∧K)+1

E|Fn,k|2E|H ′k(W1)σk−1|2

→ 0

asK →∞ since
∑n

k=(n∧K)+1E|Fn,k|2E|H ′k(W1)σk−1|2 decreases monotonously

for all n as K increases. By Proposition 2.1 we have Gk(Y1) =
∑∞

n=k Fn,k in
L2(P), so that

D0
t,xf(X1) =

∞∑
k=1

Gk(Y1)H ′k(W1)σk−1
1(0,1]×{0}(t, x) in L2(m⊗P).
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Proof of Proposition 3.2. "Only if�: Suppose

f(X1) =
∞∑
k=0

Gk(Y1)Hk(W1)σk ∈ D0
1,2.

We de�ne functions h and fm as orthogonal sums in L2(R2,B(R2),PW1⊗PY1)
by

h(x, y) :=
∞∑
k=1

Gk(y)H ′k(x)σk−1

and

fm(x, y) :=
m∑
k=0

Gk(y)Hk(x)σk.

By orthogonality in L2(PW1 ⊗PY1) and monotone convergence we get∫
R

∫
R

|f(σx+ y)|2PW1(dx)PY1(dy)

=
∞∑
k=0

∫
R

∫
R

|Gk(y)|2|Hk(x)|2σ2k
PW1(dx)PY1(dy)

=

∫
R

∞∑
k=0

∫
R

|Gk(y)|2|Hk(x)|2σ2k
PW1(dx)PY1(dy)

<∞.

Thus
y 7→ ‖f(σ ·+y)‖L2(PW1

) ∈ L2(PY1)

and

y 7→

√√√√ ∞∑
k=0

|Gk(y)|2‖Hk‖2
L2(PW1

)σ
2k ∈ L2(PY1).

Since ‖fm(·, y)‖L2(PW1
) =

√∑m
k=0 |Gk(y)|2‖Hk‖2

L2(PW1
)σ

2k for all y ∈ R, we
obtain using dominated convergence that

0 = lim
m→∞

∫
R

∫
R

|f(σx+ y)− fm(x, y)|2PW1(dx)PY1(dy)

=

∫
R

(
lim
m→∞

∫
R

|f(σx+ y)− fm(x, y)|2PW1(dx)

)
PY1(dy).
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Hence there exists a set A1 ∈ B(R) such that PY1(A1) = 1 and fm(·, y) →
f(σ ·+y) in L2(PW1) for all y ∈ A1. Analogously we �nd a set A2 such that
∂
∂x
fm(·, y) → σh(·, y) in L2(PW1) for all y ∈ A2. Fix y ∈ A := A1 ∩ A2.

Let ϕ ∈ C∞c (R) and write p(x) = 1√
2π
e−

x2

2 . Since ϕ′(σ·+y)
p

and ϕ(σ·+y)
p

are
bounded functions, we get∫

R

f(x)ϕ′(x)dx =

∫
R

f(σx+ y)ϕ′(σx+ y)σdx

=

∫
R

f(σx+ y)
ϕ′(σx+ y)

p(x)
p(x)σdx

= lim
m→∞

∫
R

fm(x, y)
ϕ′(σx+ y)

p(x)
p(x)σdx

= − lim
m→∞

∫
R

∂

∂x
fm(x, y)

ϕ(σx+ y)

p(x)
p(x)dx

= −
∫
R

σh(x, y)
ϕ(σx+ y)

p(x)
p(x)dx

= −
∫
R

h

(
x− y
σ

, y

)
ϕ(x)dx.

Furthermore, using Hölder's inequality we get∫ n

−n
|h
(
x− y
σ

, y

)
|dx =

∫ n−y
σ

−n−y
σ

|σh(x, y)| 1√
p(x)

√
p(x)dx

≤

(∫ n−y
σ

−n−y
σ

|σh(x, y)|2p(x)dx

) 1
2
(∫ n−y

σ

−n−y
σ

1

p(x)
dx

) 1
2

<∞.

This implies h
( ·−y
σ
, y
)
∈ Lloc1 (dx) and ∆0f = h

( ·−y
σ
, y
)
for all y ∈ A.

Consequently, h(x, y) = ∆0f(σx + y) for PW1 ⊗ PY1-a.e. (x, y) and by
Lemma 3.1 it holds that

D0f(X1) = h(W1, Y1)1(0,1]×{0} = ∆0f(X1)1(0,1]×{0} in L2(m⊗P).

�If�: Assume f has a weak derivative and ∆0f(X1) ∈ L2(P). Assume
�rst that f has compact support and choose K > 0 such that f(x) = 0 for
|x| > K. Denote by q the continuous density of X1,

q(x) =

∫
R

1√
2πσ2

e−
(x−y)2

2σ2 PY1(dy) ∈
(

0,
1√

2πσ2

]
for all x ∈ R.
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Then ∫
R

|f(x)|2dx ≤ sup
|z|≤K

1

q(z)

∫
R

|f(x)|2q(x)dx <∞

and ∫
R

|∆0f(x)|2dx ≤ sup
|z|≤K

1

q(z)

∫
R

|∆0f(x)|2q(x)dx <∞.

Hence f ∈ W 1,2(R) = {f ∈ L2(dx) : ∃∆0f ∈ L2(dx)}. By [1, Theorem 3.22]
there exists a sequence (fk) ⊂ C∞c (R) converging to f in W 1,2(R). Then

‖fk(X1)− f(X1)‖2
L2(P) + ‖D0fk(X1)−∆0f(X1)1(0,1]×{0}‖2

L2(m⊗P)

=

∫
R

|fk(x)− f(x)|2q(x)dx+

∫
R

|f ′k(x)−∆0f(x)|2q(x)dx

≤ 1√
2πσ2

(∫
R

|fk(x)− f(x)|2dx+

∫
R

|f ′k(x)−∆0f(x)|2dx

)
→ 0

as k →∞. Since D0 is closed, it follows that f(X1) ∈ D0
1,2 and D0f(X1) =

∆0f(X1)1(0,1]×{0} in L2(m⊗P).
In case f does not have compact support, de�ne for all K = 1, 2, . . . a

function gK := fϕK , where ϕK ∈ C∞c (R), |ϕK |, |ϕ′K | ∈ [0, 1], ϕK(x) = 1
when |x| < K − 2 and ϕK(x) = 0 when |x| > K. Then gK(X1) ∈ L2(P) and
∆0gK(X1) ∈ L2(P), thus

gK(X1) ∈ D0
1,2 and D0gK(X1) = ∆0gK(X1)1(0,1]×{0}.

Furthermore,

‖gK(X1)− f(X1)‖2
L2(P) + ‖D0gK(X1)−∆0f(X1)1(0,1]‖2

L2(m⊗P)

≤ ‖f(X1)1[−K,K]c(X1)‖L2(P)

+ 2σ2
(
‖∆0f(X1)1[−K,K]c(X1)‖2

L2(P) + ‖f(X1)ϕ′K(X1)‖2
L2(P)

)
→ 0

as K → ∞. Again, the closedness of D0 assures that f(X1) ∈ D0
1,2 and

D0f(X1) = ∆0f(X1)1(0,1]×{0}.

3.2 The derivative DR0

On the canonical Lévy space the operator DR0 can be de�ned using a di�er-
ence quotient with respect to ω (see for instance Solé et al. [18, Section 5]).
For the pure jump process in a canonical space, the following proposition is
a special case of [18, Proposition 5.4].
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Proposition 3.3. Let f(X1) ∈ L2(P), where f : R→ R is a Borel function.
Then

E

∫∫
(0,1]×R0

|∆xf(X1)|2m(dt, dx) <∞

if and only if f(X1) ∈ DR0
1,2. If f(X1) ∈ DR0

1,2, then

DR0
t,x f(X1) = ∆xf(X1)1(0,1]×R0(t, x)

in L2(m⊗P).

Proof. Consider the chaos expansion f(X1) =
∑∞

n=0 In(fn). Assume �rst
that f is bounded. Let ε > 0. We show that

∆xf(X1)1(0,1]×{|x|>ε}(t, x) =
∞∑
n=1

nIn−1(f̃n(·, (t, x)))1{|x|>ε} m⊗P−a.e. (7)

Since f is bounded, the random �eld (t, x, ω) 7→ ∆xf(X1)1(0,1]×{|x|>ε}(t, x) is
in L2(m⊗P) and it has a chaos expansion

∆xf(X1)1(0,1]×{|x|>ε}(t, x) =
∞∑
n=1

nIn−1(hn(·, (t, x))) in L2(m⊗P),

where hn ∈ L2(m⊗n) is symmetric in the �rst n − 1 pairs of variables (see
Remark 4.1 below).

Denote η := ν|{|x|>ε}+δ0. Since PX1 ∗η is a Radon measure, we can choose
fk ∈ C∞c (R) such that fk → f in L2(PX1 ∗ η) as k →∞ ([8, Proposition 7.9
using the C∞ Urysohn Lemma 8.18]). Then

E

∫∫
(0,1]×{|x|>ε}

|∆xfk(X1)−∆xf(X1)|2m(dt, dx)

≤ 2E

∫
{|x|>ε}

(
|fk(X1 + x)− f(X1 + x)|2 + |fk(X1)− f(X1)|2

)
ν(dx)

≤ (2 + 2ν(|x| > ε))‖fk − f‖2
L2(PX1

∗η)

→ 0 (8)

as k →∞. Proposition 3.1 implies that equation (7) holds for fk. Using (8)
and the fact that fk(X1)→ f(X1) in L2(P) we get

hn((t1, x1), . . . , (tn, xn)) = f̃n((t1, x1), . . . , (tn, xn))1{|xn|>ε}

m
⊗n-a.e. Thus (7) holds. The proposition follows for bounded f from (7) by

letting ε→ 0.
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When f is not bounded, consider fk := (−k) ∨ f ∧ k. If

∆xf(X1)1(0,1]×R0(t, x) ∈ L2(m⊗P),

then from |∆xfk(y)| ≤ |∆xf(y)| for all x ∈ R0, y ∈ R we obtain fk(X1) ∈
D
R0
1,2 and DR0fk(X1)→ ∆f(X1)1(0,1]×R0 in L2(m⊗P) by dominated conver-

gence. It follows that f(X1) ∈ DR0
1,2 and DR0f(X1) = ∆f(X1)1(0,1]×R0 .

Assume f(X1) ∈ DR0
1,2. Then by [9, Lemma 5.1(b)], for all k ≥ 1 it holds

that fk(X1) ∈ DR0
1,2 and for x 6= 0 we have

DR0
t,x fk(X1) =

(−k) ∨
[
f(X1) + xDR0

t,x f(X1)
]
∧ k − ((−k) ∨ f(X1) ∧ k)

x

m ⊗ P-a.e., so that |DR0
t,x fk(X1)| ≤ |DR0

t,x f(X1)| m ⊗ P-a.e. and hence

fk(X1)→ f(X1) in DR0
1,2. Since fk is bounded, we have

DR0
t,x fk(X1) =

(−k) ∨ f(X1 + x) ∧ k − ((−k) ∨ f(X1) ∧ k)

x
1(0,1]×R0(t, x)

→ ∆xf(X1)1(0,1]×R0(t, x)

m ⊗ P-a.e. and we get DR0
t,x f(X1) = ∆xf(X1)1(0,1]×R0(t, x) for m ⊗ P-a.e.

(t, x, ω).

3.3 Characterization for f(X1) ∈ D1,2

Corollary 3.1. Let f(X1) ∈ L2(P). Then f(X1) ∈ D1,2 if and only if

(a) in case σ 6= 0, ∆0f exists and ∆0f(X1) ∈ L2(P) and

(b) ∆f(X1)1(0,1]×R0 ∈ L2(m⊗P).

If f(X1) ∈ D1,2, then Df(X1) = ∆f(X1)1(0,1]×R m⊗P-a.e.

In the following example we see that in case X1 has a density, which is (lo-
cally) bounded from below and above by a positive constant, then 1[K,∞)(X1)
is Malliavin di�erentiable if and only if the Lévy process X is of bounded
variation.

Example 3.1. (a) LetK ∈ R and assume thatX1 has a density q which is
bounded from below and above by a positive constant on [K−ε,K+ε]
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for some ε > 0. Let f = 1[K,∞). If σ > 0, then 1[K,∞)(X1) 6∈ D0
1,2 by

Proposition 3.2. Let us check the condition of Proposition 3.3:∫∫
R+×R0

E|∆xf(X1)1(0,1](t)|2m(dt, dx)

=

∫
(−∞,0)

E1[K,K−x)(X1)ν(dx) +

∫
(0,∞)

E1[K−x,K)(X1)ν(dx)

∼c
∫

0<|x|≤ε
|x|ν(dx) +

∫
|x|>ε

E|1[K,∞)(X1 + x)− 1[K,∞)(X1)|ν(dx),

where A ∼c B signi�es 1
c
B ≤ A ≤ cB and the constant c ≥ 1 depends

on supx∈[K−ε,K+ε] |q(x)| and infx∈[K−ε,K+ε] |q(x)|. Thus

1[K,∞)(X1) ∈ DR0
1,2 ⇔

∫
0<|x|≤1

|x|ν(dx) <∞

and

1[K,∞)(X1) ∈ D1,2 ⇔ σ = 0 and

∫
0<|x|≤1

|x|ν(dx) <∞.

Note that the process X has trajectories of �nite variation if and only if
σ = 0 and

∫
0<|x|≤1

|x|ν(dx) <∞ (see [17, Theorem 21.9 and De�nition

11.9]).

(b) In the following we use the idea of Avikainen [5, 6] to express bounded
variation functions with the help of signed measures. Suppose X1 has
a bounded density q and f : R→ R is non-zero, of bounded variation,
right-continuous and vanishes at −∞. By [8, Theorem 3.29] there
exists a �nite signed Borel-measure η (i.e. η = η+ − η− and |η| =
η+(R) + η−(R) < ∞) on R such that f(x) = η((−∞, x]). We use
f(X1) = η((−∞, X1]) =

∫
R
1[y,∞)(X1)η(dy) and get∫∫

R+×R0

E|∆xf(X1)1(0,1](t)|2m(dt, dx)

=

∫
R0

E

∣∣∣∣∫
R

(
1[y,∞)(X1 + x)− 1[y,∞)(X1)

)
η(dy)

∣∣∣∣2 ν(dx)

≤ |η|(R)

∫
R

∫
R0

E
∣∣1[y,∞)(X1 + x)− 1[y,∞)(X1)

∣∣2 ν(dx)|η|(dy)

≤ |η|(R)

∫
R

∫
R0

((‖q‖∞|x|) ∧ 1)ν(dx)|η|(dy)

≤ c

∫
R0

(|x| ∧ 1)ν(dx),
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where c > 0 depends on |η|(R) and ‖q‖∞. Proposition 3.3 yields

f(X1) ∈ DR0
1,2 if

∫
0<|x|≤1

|x|ν(dx) <∞.

4 The Skorohod integral

The adjoint operator δ of the Malliavin derivative D : D1,2 → L2(m ⊗ P)
is called the Skorohod integral (see, for instance, [14]). For u ∈ L2(m ⊗ P)
it holds that u ∈ Dom(δ) if and only if there exists a random variable H ∈
L2(P) such that

(u,DG)L2(m⊗P) = EHG for all G ∈ D1,2.

If u ∈ Dom(δ), then H is unique and H =: δ(u).

Remark 4.1. For each u ∈ L2(m ⊗ P) there exist fn ∈ L2(m⊗n), n =
1, 2, . . ., such that fn+1 is symmetric in the �rst n pairs of variables and
u(t, x) =

∑∞
n=0 In(fn+1(·, (t, x))) (see Nualart and Vives [15, Section 4]).

Then ‖u‖2
L2(m⊗P) =

∑∞
n=1(n− 1)!‖fn‖2

L2(m⊗n). From the equation

(u, nIn−1(g̃n))L2(m⊗P) = n!(f̃n, g̃n)L2(m⊗n) = EIn(fn)In(gn)

for all n ≥ 1 and gn ∈ L2(m⊗n) one concludes (analogously to [14, Proposi-
tion 1.3.7]) that u ∈ Dom(δ) if and only if

‖u‖Dom(δ) :=

(
‖u‖2

L2(m⊗P) +
∞∑
n=1

n!‖f̃n‖2
L2(m⊗n)

) 1
2

<∞.

If u ∈ Dom(δ), then

δ(u) =
∞∑
n=1

In(fn). (9)

Let D1,2(L2(m)) denote the space of random �elds u ∈ L2(m ⊗ P) such
that u(t, x) ∈ D1,2 for m-a.e. (t, x) ∈ R+ ×R and there exists a measurable
version of Du verifying ‖Du‖L2(m⊗2⊗P) < ∞. It holds that D1,2(L2(m)) ⊆
Dom(δ), and for u, v ∈ D1,2(L2(m)) one has

Eδ(u)δ(v) =E

∫∫
R+×R

u(t, x)v(t, x)m(dt, dx)

+E

∫∫
R+×R

∫∫
R+×R

Dt,xu(s, y)Ds,yv(t, x)m(dt, dx)m(ds, dy)

(10)

(see, for instance, [15, Theorem 4.1] or [4, Equation (5.31)], where the random
measure Ñ(dt, dx) is used instead of xÑ(dt, dx)).
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4.1 Relation between the Skorohod integral and a pathwise integral

In the following we aim to express the Skorohod integral using pathwise
integration. Alós et al. [2, Corollary 2.9] have shown a relation between the
pathwise integral and the Skorohod integral for a certain class of pathwise
integrable random �elds. The relation is also considered by Øksendal and
Zhang [16, Lemma 2.1]. For later purpose, we show this relation here on a
dense subset of Dom(δ).

De�nition 4.1. We let S(L2(m)) denote the linear span of random �elds of
the form

u(t, x) = f(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)1(tk−1,tk](t) (11)

with m ∈ N, f ∈ C∞b (Rm+1) such that the set {x : f(y, x) 6= 0 for some y ∈
R
m} is bounded, 0 ≤ t0 < t1 < · · · < tm <∞ and k ∈ {1, . . . ,m}.

Lemma 4.1. S(L2(m)) ⊆ D1,2(L2(m)).

Proof. Consider u as in (11). Then

‖u‖2
L2(m⊗P) =

∫
(tk−1,tk]

∫
R

E|f(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)|2m(dt, dx)

≤ (tk − tk−1)‖f‖2
∞µ({x ∈ R : f(y, x) 6= 0 for some y ∈ Rm})

<∞,

so that u ∈ L2(m ⊗ P). Clearly u(t, x) ∈ S ⊆ D1,2 for all (t, x) and since
there exists a constant c > 0 such that |∆i

yf(z, x)|2 ≤ c(1 ∧ 1
|y|2 ) for all

x, y ∈ R, z ∈ Rm, i = 1, . . . ,m, we have

‖Du‖2
L2(m⊗2⊗P)

=

∫∫
(tk−1,tk]×R

m∑
i=1

∫∫
(ti−1,ti]×R

E
∣∣∆i

yf(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)
∣∣2×

m(ds, dy)m(dt, dx)

≤ c(tk − tk−1)µ({x ∈ R : f(z, x) 6= 0 for some z ∈ Rm})

×(tm − t0)

(
σ2 +

∫
R

(y2 ∧ 1)ν(dy)

)
<∞,

so that u ∈ D1,2(L2(m)).
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De�nition 4.2. For u ∈ S(L2(m)) with representation like in (11) we write

[u(t, x) := f(Xt1 −Xt0 , . . . , Xtk −Xtk−1
− x, . . . , Xtm −Xtm−1 , x)1(tk−1,tk](t)

and

∆−[u(t, x)

:= ∆k
xf(Xt1 −Xt0 , . . . , Xtk −Xtk−1

− x, . . . , Xtm −Xtm−1 , x)1(tk−1,tk](t)

=

{
∂
∂xk

f(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)1(tk−1,tk](t), x = 0
u(t,x)−[u(t,x)

x
, x 6= 0.

The expressions [u(t, x) and ∆−[u(t, x) depend on the function f in (8),
so that we always mean [fu(t, x) and ∆−f [fu(t, x) rather than [u(t, x) and
∆−[u(t, x). To keep the notation simple we omit the dependence on f in the
notation.

The independence of the Brownian motion and jump part of the Lévy
process together with [14, formula (1.44)] give

δ(u1R+×{0}) =f(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , 0)σ(Wtk −Wtk−1
)

−
∫
R+

∆−[u(t, 0)σ2dt. (12)

Noting that [u(t, 0) = u(t, 0) we denote the �rst term on the right hand side
of (12) by ∫∫

R+×{0}
[u(t, x)M(dpt, dx).

Moreover, we use the notation∫∫
R+×|x|>ε

[u(t, x)M(dpt, dx)

:=
∑
|∆Xt|>ε

([u(t,∆Xt)) ∆Xt −
∫
R+

∫
|x|>ε

[u(t, x)xdtν(dx),

where the sum is a.s. �nite.

Theorem 4.1. For u ∈ S(L2(m)) and compact sets Uε ⊂ R0 such that
Uε ⊆ Uε′ for ε

′ ≤ ε and
⋃
ε>0 Uε = R0, it holds that

δ(u) = lim
ε→0

(∫∫
R+×(Uε∪{0})

[u(t, x)M(dpt, dx)

−
∫∫

R+×(Uε∪{0})
∆−[u(t, x)m(dt, dx)

)
, (13)

where the limit is taken in L2(P).
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For the proof we present the following anticipating integration by parts
formula for the compound Poisson process.

Lemma 4.2. Let (Yt)t≥0 be a compound Poisson process with Lévy measure
ν̄, T > 0 and φ : R2 → R be such that E

∫
R
|φ(YT , x)|ν̄(dx) <∞. Then

TE

∫
R

φ(YT , x)ν̄(dx) = E
∑

0<t≤T, |∆Yt|>0

φ(YT −∆Yt,∆Yt).

Proof. There exists a Poisson process (Nt)t≥0 with intensity λ = ν̄(R) ∈
(0,∞) and an independent sequence (Fi)

∞
i=1 of independent random variables

with Fi ∼ ν̄/λ for all i = 1, 2, . . . such that

Yt =
Nt∑
i=1

Fi a.s. for all t ≥ 0.

Hence

TE

∫
R

φ(YT , x)ν̄(dx) = T
∞∑
n=0

P(NT = n)E

∫
R

φ

(
n∑
i=1

Fi, x

)
ν̄(dx)

= T
∞∑
n=0

e−λT
(λT )n

n!
Eφ

(
n∑
i=1

Fi, Fn+1

)
λ

=
∞∑
n=0

e−λT
(λT )n+1

n!
Eφ

(
n∑
i=1

Fi, Fn+1

)

=
∞∑
n=0

P(NT = n+ 1)(n+ 1)Eφ

(
n∑
i=1

Fi, Fn+1

)
.

Since φ
(∑n+1

i=1 Fi − Fj, Fj
)
has the same distribution for all j = 1, . . . , n+ 1,

it holds that

TE

∫
R

φ(YT , x)ν̄(dx) =
∞∑
n=0

P(NT = n+ 1)
n+1∑
j=1

Eφ

(
n+1∑
i=1

Fi − Fj, Fj

)

= E

NT∑
j=1

φ

(
NT∑
i=1

Fi − Fj, Fj

)
= E

∑
0<t≤T, |∆Yt|>0

φ(YT −∆Yt,∆Yt).



Malliavin calculus for Lévy processes 21

Proof of Theorem 4.1. If ν(R) = 0, then the assertion follows from equation
(12). Assume ν(R) ∈ (0,∞] and let u ∈ S(L2(m)) be given by

u(t, x) =
K∑
i=1

fi,0(Xri1
−Xri0

, . . . , Xrini
−Xrini−1

, x)1(rimi−1,r
i
mi

](t).

Since by Proposition 3.1 the set S is dense in D1,2, it holds that H = δ(u)
if and only if

(u,DG)L2(m⊗P) = EHG for all G ∈ S.

Let G= g0(Xs1 −Xs0 , . . . , Xsn −Xsn−1) ∈ S. Next we �nd new expressions
for u and G to unify the time nets which determine the increments in the
functional. Write

τ = {rik, sj, k = 1, . . . , ni, j = 1, . . . , n, i = 1, . . . , K}
= {0 ≤ t0 < t1 < · · · < tm <∞},

where sj = tkj for some kj for all j and r
i
j = tkij for some kij for all j and i.

Then

G = g0

 k1∑
k=k0+1

(Xtk −Xtk−1
), . . . ,

kn∑
k=kn−1+1

(Xtk −Xtk−1
)


= g(Xt1 −Xt0 , . . . , Xtm −Xtm−1)

for

g(x1−x0, . . . , xm−xm−1) = g0

 k1∑
k=k0+1

(xk − xk−1), . . . ,
kn∑

k=kn−1+1

(xk − xk−1)

 .

Moreover,

u =
K∑
i=1

kmi∑
k=kmi−1+1

fi(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)1(tk−1,tk],

for

fi(x1 − x0, . . . , xm − xm−1, x)

= fi,0

 ki1∑
k=ki0+1

(xk − xk−1), . . . ,

kin∑
k=kin−1+1

(xk − xk−1), x

 .
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The mappings [u and ∆−[u do not depend on the choice between fi and fi,0.
Hence it is su�cient to consider

u(t, x) = f(Xt1 −Xt0 , . . . , Xtm −Xtm−1 , x)1(tk−1,tk](t).

To shorten the notation we write

Xτ(i,j) := (Xti −Xti−1
, . . . , Xtj −Xtj−1

) for 1 ≤ i ≤ j ≤ m.

Let U ⊂ R0 be compact with ν(U) > 0 and

Yt :=

∫∫
(0,t]×U

xN(ds, dx).

Then Y and Z := X − Y are independent Lévy processes, and from the
independence of their increments we conclude

(u1R+×U , DG)L2(m⊗P)

= E

∗(∫
R

∫∫
(tk−1,tk]×U

[
f(Xτ(1,k−1), Ztk − Ztk−1

+ y,Xτ(k+1,m), x)×

∆k
xg(Xτ(1,k−1), Ztk − Ztk−1

+ y,Xτ(k+1,m))
]
m(dt, dx)PYtk−tk−1

(dy)

)∗
.

(14)

To compute ∗ . . . ∗ we keep random variables �xed and denote fk(y, x) :=
f(. . . , · + y, . . . , x), gk(y) := g(. . . , · + y, . . .) and T := tk − tk−1. Then we
have

∗ . . . ∗ = TE

∫
U

fk(YT , x)(gk(YT + x)− gk(YT ))xν(dx)

= TE

∫
U

fk(YT , x)gk(YT + x)xν(dx)−Egk(YT )T

∫
U

fk(YT , x)xν(dx).

The process Y is a compound Poisson process and using Lemma 4.2 we get

TE

∫
U

fk(YT , x)gk(YT + x)xν(dx)

= E
∑

0<t≤T, |∆Yt|>0

fk(YT −∆Yt,∆Yt)gk(YT )∆Yt

= E
∑

tk−1<t≤tk, ∆Xt∈U

fk(YT −∆Xt,∆Xt)gk(YT )∆Xt.



Malliavin calculus for Lévy processes 23

From equation (14) and from the independence of the increments and the
independence of Y and Z we get

(u1R+×U , DG)L2(m⊗P)

= E

[
G×( ∑

tk−1<t≤tk, ∆Xt∈U

f(Xτ(1,k−1), Xtk −Xtk−1
−∆Xt,X

τ(k+1,m),∆Xt)∆Xt

−
∫

(tk−1,tk]

∫
U

f(Xτ(1,m), x)xdtν(dx)

)]

= EG

(∫∫
R+×U

[u(t, x)M(dpt, dx)−
∫
R+

∫
U

(u(t, x)− [u(t, x))xdtν(dx)

)
.

Hence

δ(u1R+×U) =

∫∫
R+×U

[u(t, x)M(dpt, dx)−
∫
R+

∫
U

∆−[u(t, x)x2dtν(dx).

(15)
Using the same reasoning as in proof of Lemma 4.1 we see that u1R+×Uε ∈
D1,2(L2(m)). From equation (10) we get

‖u1R+×Uε − u1R+×R0‖2
Dom(δ)

≤ 2‖u1R+×(R0\Uε)‖2
L2(m⊗P) + ‖D(u1R+×(R0\Uε))‖2

L2(m⊗2⊗P)

→ 0

as ε→ 0 since u ∈ D1,2(L2(m)). The claim follows from equations (12) and
(15) and the above convergence.

De�nition 4.3. We denote by L the linear span of mappings of the form

u(t, x) = F1(a,b](t)ϕ(x),

where F ∈ S and ϕ ∈ C∞c (R).

Finally, we complement Theorem 4.1 by

Proposition 4.1. The set L ⊆ S(L2(m)) is dense in Dom(δ).

In the proof we use the following lemma.
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Lemma 4.3 (Lemma 4.1 [9]). Consider I1

(
1(a,b]ϕ

)
where 0 ≤ a < b < ∞

and ϕ ∈ C∞c (R). Set

Fk := (Gk −EGk) for Gk :=
k∑
i=1

ϕ(Xtki
−Xtki−1

)(Xtki
−Xtki−1

),

where a = tk0 < tk1 < · · · < tkk = b and supi |tki − tki−1| → 0 as k → ∞. Then
S 3 Fk → I1

(
1(a,b]ϕ

)
in L2(P) as k →∞.

Proof of Proposition 4.1. (a) We �rst observe that for n ≥ 1 the linear span
of functions of the form

n∏
i=1

1(ai,bi]ϕi,

where (ai, bi] ∩ (aj, bj] = ∅ for i 6= j and ϕi ∈ C∞c (R), is dense in L2(m⊗n).
By [9, Lemma 2.1] the linear span of functions of the form

∏n
i=1 1(ai,bi]×(ci,di]

is dense in L2(m⊗n). Since µ is regular, we �nd for any ε > 0 an open set
Ui ⊃ (ci, di] and a compact set Vi ⊂ (ci, di] such that µ(Ui\Vi) < ε. Using the
C∞ Urysohn Lemma ([8, 8.18]) we see that there exist functions ϕki ∈ C∞c (R)
such that ϕki → 1(ci,di] in L2(µ).

(b) To prove the proposition it is su�cient to show that for any n,
In(fn+1) can be approximated in Dom(δ) by mappings from L. Note that
‖In(fn+1)‖2

Dom(δ) ≤ 2(n + 1)!‖fn+1‖2
L2(m⊗(n+1))

. Thus by part (a) of the

proof it is su�cient to approximate u = In(gn+1) by mappings in L, where
gn+1 =

∏n+1
i=1 1(ai,bi]ϕi. Set F i

k as in Lemma 4.3 with F i
k → I1

(
1(ai,bi]ϕi

)
.

Then Fk :=
∏n

i=1 F
i
k →

∏n
i=1 I1

(
1(ai,bi]ϕi

)
in L2(P) by independence and it

holds that uk := Fk1(an+1,bn+1]ϕn+1 ∈ L. Consider the chaos representation

Fk =
∞∑
n=0

In(fkn1
⊗n
((an+1,bn+1]×R)c).

Using equation (9) and Lemma 2.1 we get

δ(uk) =
∞∑
n=0

In+1(fkn1
⊗n
((an+1,bn+1]×R)c ⊗ 1(an+1,bn+1]ϕn+1)

= FkI1(1(an+1,bn+1]ϕn+1)

and δ(u) = In+1(gn+1) =
∏n+1

i=1 I1(1(ai,bi]ϕi). The independence of the in-
crements of X implies that Fk and I1(1(an+1,bn+1]ϕn+1) are independent and
Lemma 4.3 gives

‖uk − u‖2
Dom(δ) = ‖uk − u‖2

L2(m⊗P) + ‖δ(uk)− δ(u)‖2
L2(P)
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= 2E

∣∣∣∣∣Fk −
n∏
i=1

I1(1(ai,bi]ϕi)

∣∣∣∣∣
2

‖1(an+1,bn+1]ϕn+1‖2
L2(m)

→ 0

as k →∞.

A Appendix

Lemma A.1. Let f ∈ C∞(R) be such that supx∈R(1 + |x|)m| dk

dxk
f(x)| < ∞

for all k,m = 0, 1, 2, . . . and let Yt = Xt − σWt. Then f(Y1) =
∑∞

n=0 In(fn)
with

fn((t1, x1), . . . , (tn, xn)) =
1

n!
E∆x1 · · ·∆xnf(Y1)1⊗n(0,1]×R0

((t1, x1), . . . , (tn, xn))

m
⊗n-a.e.

Proof. The proof follows the steps of proof of [9, Lemma 3.1]: By the Fourier
inversion theorem (see, for instance, [8, Theorem 8.26, using Corollary 8.23])
we get

f(Y1) =

∫
R

f̂(u)e2πiuY1du =

∫
R

f̂(u)
(
Ee2πiuY1

) e2πiuY1

Ee2πiuY1
du.

Fix u ∈ R and de�ne an L2(P)-martingale M by letting Mt := e2πiuYt

Ee2πiuYt
for

t ≥ 0. Write g(x) := e2πiux−1
x

. Then

Mt = exp

{
−t
∫
R0

(g(x)− 2πiu1{|x|≤1})xν(dx) +

∫
(0,t]×{|x|>1}

2πiuxN(ds, dx)

+

∫
(0,t]×{|x|≤1}

2πiuxÑ(ds, dx)

}
=: eZt .
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Using Itô's formula [3, Theorem 4.4.7] we get

Mt − 1 = −
∫ t

0

∫
R0

eZs− (g(x)− 2πiu1{|x|≤1})xdsν(dx)

+

∫∫
(0,t]×{|x|>1}

eZs−g(x)xN(ds, dx)

+

∫∫
(0,t]×{|x|≤1}

eZs−g(x)xÑ(ds, dx)

+

∫ t

0

∫
{|x|≤1}

eZs− (g(x)− 2πiu)xdsν(dx)

=

∫∫
(0,t]×R0

Ms−g(x)xÑ(ds, dx).

Next we de�ne an L2(P)-martingale M̃ . We have κ := ‖g1R0‖2
L2(µ) <∞, so

that 1
n!

(1(0,t]g1R0)
⊗n ∈ L2(m⊗n) with∥∥∥∥In( 1

n!
(1(0,t]g1R0)

⊗n
)∥∥∥∥2

L2(P)

=
1

n!
(tκ)n .

Hence M̃ , de�ned by

M̃t := 1 +
∞∑
n=1

In

(
1

n!
(1(0,t]g1R0)

⊗n
)

is an L2(P)-martingale with ‖M̃t‖2
L2(P) = etκ. Since

∞∑
n=0

(n+ 1)!

∥∥∥∥ 1

n!
(1(0,t]g1R0)

⊗n
∥∥∥∥2

L2(m⊗n)

= (1 + tκ)etκ,

we have M̃t ∈ D1,2 and from the Clark-Ocone formula [19, Theorem 10] we
obtain

M̃t = 1+

∫
(0,t]×R0

E

[
Ds,xM̃t|Fs−

]
M(ds, dx) = 1+

∫
(0,t]×R0

M̃s−g(x)M(ds, dx).

Writing Dt := Mt − M̃t it holds that

h(t) := ‖Dt‖2
L2(P) =

∥∥∥∥∫
(0,t]×R0

Ds−g(x)M(ds, dx)

∥∥∥∥2

L2(P)
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= κ

∫ t

0

E|Ds− |2ds

= κ

∫ t

0

h(s)ds,

so that h(t) = 0 and consequently M̃ = M .

Now, writing AK(u) =
∑∞

n=K+1 In

(
1
n!

(
e2πiux−1

x
1(0,1]×R0

)⊗n)
, we get

f(Y1)

=

∫
R

f̂(u)(Ee2πiuY1)

(
K∑
n=0

In

(
1

n!

(
e2πiux − 1

x
1(0,1]×R0

)⊗n)
+ AK(u)

)
du,

where

E

[∫
R

f̂(u)(Ee2πiuY1)AK(u)du

]2

≤
∫
R

|f̂(u)(Ee2πiuY1)|du
∫
R

|f̂(u)(Ee2πiuY1)|E|AK(u)|2du

→ 0

as K →∞ since f̂ in L1(R,B(R), dx). As a consequnece,

f(Y1) ←K→∞
∫
R

f̂(u)(Ee2πiuY1)
K∑
n=0

In

(
1

n!

(
e2πiux − 1

x
1(0,1]×R0

)⊗n)
du

=
K∑
n=0

∫
R

f̂(u)(Ee2πiuY1)

∫∫
{0<t1<···<tn≤1}×Rn0

(
e2πiux − 1

x

)⊗n
dM⊗ndu

=
K∑
n=0

∫∫
{0<t1<···<tn≤1}×Rn0

E

∫
R

f̂(u)e2πiuY1

(
e2πiux − 1

x

)⊗n
dudM⊗n

=
K∑
n=0

∫∫
{0<t1<···<tn≤1}×Rn0

E

∫
R

f̂(u)∆x1 · · ·∆xne
2πiuY1dudM⊗n

=
K∑
n=0

∫∫
{0<t1<···<tn≤1}×Rn0

E∆x1 · · ·∆xnf(Y1)dM⊗n

=
K∑
n=0

In(fn)
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in L2(P) for

fn((t1, x1), . . . , (tn, xn))

=
1

n!
E∆x1 · · ·∆xnf(Y1)1⊗n(0,1]×R0

((t1, x1), . . . , (tn, xn)).
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1 Introduction

We consider the quantitative Riemann approximation of stochastic integrals
driven by Lévy processes and its relation to the fractional smoothness in the
Malliavin sense. Besides the interest on its own, the problem is of interest for
numerical algorithms and for Stochastic Finance. To explain the latter aspect,
assume a price process (St)t∈[0,1] given under the martingale measure by a
diffusion

St = s0 +
∫ t

0

σ(Sr)dWr,

where W is the Brownian motion and where usual conditions on σ are im-
posed. For a polynomially bounded Borel function f : R → R we obtain a
representation

f(S1) = V0 +
∫ 1

0

ϕtdSt (1)

where (ϕt)t∈[0,1) is a continuous adapted process which can be obtained via
the gradient of a solution to a parabolic backward PDE related to σ with ter-
minal condition f . The process (ϕt)t∈[0,1) is interpreted as a trading strategy.
In practice one can trade only finitely many times which corresponds to a re-
placement of the stochastic integral in (1) by the sum

∑N
k=1 ϕtk−1(Stk−Stk−1)

with 0 = t0 < t1 < · · · < tN = 1. The error

∫ 1

0

ϕtdSt −
N∑
k=1

ϕtk−1(Stk − Stk−1) (2)

caused by this replacement is often measured in L2 and has been studied by
various authors, for example by Zhang [21], Gobet and Temam [11], S. Geiss
[8], S. Geiss and Hujo [9] and C. Geiss and S. Geiss [7]. For results concerning
Lp with p ∈ (2,∞) we refer to [20], the weak convergence is considered in
[10] and [19] and by other authors. In particular, if S is the Brownian motion
or the geometric Brownian motion, S. Geiss and Hujo investigated in [9] the
relation between the Malliavin fractional smoothness of f(S1) and the L2-rate
of the discretization error (2).

It is natural to extend these results to Lévy processes. A first step was
done by M. Brodén and P. Tankov [5] (see Remark 3). The aim of this paper
is to develop results of [9] into the following directions:

(a) The Brownian motion and the geometric Brownian motion are general-
ized to Lévy processes (Xt)t∈[0,1] that are L2-martingales and their Doléans-
Dade exponentials S = E(X),

St = 1 +
∫

(0,t]

Su−dXu,
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respectively. For certain stochastic integrals (see Section 2.4 below)

F =
∫

(0,1]

ϕs−dXs (3)

and for Y ∈ {X, E(X)} we study the connection of the Malliavin fractional
smoothness of F (introduced by the real interpolation method) and the be-
havior of

aopt
Y (F ; (tk)Nk=0) = inf

∥∥∥∥∥F −
N∑
k=1

vk−1(Ytk − Ytk−1)

∥∥∥∥∥
L2

, (4)

where the infimum is taken over Ftk−1 -measurable vk−1 such that Ev2
k−1(Ytk−

Ytk−1)2 <∞ and where 0 = t0 < · · · < tN = 1 is a deterministic time-net.

(b) In contrast to [9], where the reduction of the stochastic approximation
problem to a deterministic one is based on Itô’s formula and was done in [8,
7], we prove an analogous reduction in Theorems 3 and 4 by techniques based
on the Itô chaos decomposition.

(c) One more principal difference to [9] is the fact that Lévy processes in
general do not satisfy the representation property and therefore there are F ∈
L2 that cannot be approximated by sums of the form

∑N
k=1 vk−1(Ytk − Ytk−1)

in L2. As a consequence we have to use the (orthogonal) Galtschouk-Kunita-
Watanabe projection that projects L2 onto the subspace I(X) of stochastic
integrals

∫
(0,1]

λsdXs with E
∫ 1

0
|λs|2ds <∞ that can be defined in our setting

as the L2-closure of{
N∑
k=1

vak−1(Xak −Xak−1) : vak−1 ∈ L2(Fak−1),
0 = a0 < · · · < aN = 1

N = 1, 2, ...

}
(5)

to deal with our approximation problem.

The paper is organized as follows. In Section 2 we recall some facts about
Lévy processes and Besov spaces. The Besov spaces are used to describe
Malliavin fractional smoothness. In Section 3 we investigate the discrete time
approximation. The basic statement is Theorem 3 that reduces the stochas-
tic approximation problem to a deterministic one in case of the Riemann-
approximation (2) (which we call simple approximation in the sequel). The
difference between the simple and optimal approximation (4) is shown in The-
orem 4 to be sufficiently small. Theorem 5 provides a lower bound for the
optimal L2-approximation. Finally, Theorems 6 and 7 give the connection to
the Besov spaces defined by real interpolation. We conclude with Section 4
where we use the example f(x) = 1(K,∞)(x) to demonstrate how the frac-
tional smoothness depends on the underlying Lévy process.
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2 Preliminaries

2.1 Notation

Throughout this paper we will use for A,B,C ≥ 0 and c ≥ 1 the notation

A ∼c B for
1
c
B ≤ A ≤ cB,

A = B ± C for B − C ≤ A ≤ B + C. (6)

The phrase càdlàg stands for a path which is right-continuous and has left
limits. Given q ∈ [1,∞], the sequence space `q consists of all α = (αN )N≥1 ⊆
R such that ‖α‖`q := (

∑∞
N=1 |αN |q)

1/q
< ∞ for q < ∞ and ‖α‖`∞ :=

supN≥1 |αN | <∞, respectively.

2.2 Lévy processes

We follow the setting and presentation of [17, Section 1.1] and assume a
square integrable mean zero Lévy process X = (Xt)t∈[0,1] on a stochastic
basis (Ω,F ,P, (Ft)t∈[0,1]) satisfying the usual assumptions, i.e. (Ω,F ,P) is
complete where the filtration (Ft)t∈[0,1] is the augmented natural filtration
of X and therefore right-continuous and F := F1 is assumed without loss of
generality. The Lévy measure ν with ν({0}) = 0 satisfies∫

R
x2ν(dx) <∞

by the square integrability of X (see [16, Theorem 25.3]). Let N be the as-
sociated Poisson random measure and dÑ(t, x) = dN(t, x) − dtdν(x) be the
compensated Poisson random measure. The Lévy-Itô decomposition (see [16,
Theorem 19.2]) can be written under our assumptions as

Xt = σWt +
∫

(0,t]×R\{0}
xÑ(ds, dx).

We introduce the finite measures µ on B(R) and m on B([0, 1]× R) by

µ(dx) := σ2δ0(dx) + x2ν(dx),
m(dt, dx) := dtµ(dx),

where we agree about µ(R) > 0 to avoid pathologies. For B ∈ B((0, 1]×R) we
define the random measure

M(B) := σ

∫
{t∈(0,1]:(t,0)∈B}

dWt +
∫
B∩((0,1]×(R\{0}))

xÑ(dt, dx)

and let

Ln2 := L2(([0, 1]× R)n,B(([0, 1]× R)n),m⊗n) for n ≥ 1.
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By [12, Theorem 2] there is the chaos decomposition

L2 := L2(Ω,F ,P) =
∞⊕
n=0

In(Ln2 ),

where I0(L0
2) is the space of the a.s. constant random variables and In(Ln2 ) :=

{In(fn) : fn ∈ Ln2} for n = 1, 2, . . . and In(fn) denotes the multiple integral
w.r.t. the random measure M. For properties of the multiple integral see [12,
Theorem 1]. Especially, ‖In(fn)‖2L2

= n!‖f̃n‖2Ln2 and

‖F‖2L2
=
∞∑
n=0

n!‖f̃n‖2Ln2

with f̃n being the symmetrization of fn, i.e.

f̃n(z1, . . . , zn) =
1
n!

∑
fn(zπ(1), . . . , zπ(n))

for all zi = (ti, xi) ∈ [0, 1] × R, where the sum is taken over all permutations
π of {1, . . . , n}. For F ∈ L2 the L2-representation

F =
∞∑
n=0

In(f̃n),

with I0(f0) = EF a.s. is unique (note that In(fn) = In(f̃n) a.s.).

2.3 Doléans-Dade stochastic exponential

Definition 1 For 0 ≤ a ≤ t ≤ 1 we let

Sat := 1 +
∞∑
n=1

In(1⊗n(a,t])

n!
,

where we can assume that all paths of (Sat )t∈[a,1] are càdlàg for any fixed
a ∈ [0, 1]. In particular, we let S = (St)t∈[0,1] := (S0

t )t∈[0,1].

The following lemma is standard and we omit its proof.

Lemma 1 For 0 ≤ a ≤ t ≤ 1 one has that

(i) Sat = 1 +
∫
(a,t]

Sau−dXu a.s.,
(ii) St = Sat Sa a.s.,
(iii) Sat is independent from Fa and E(Sat )2 = eµ(R)(t−a).
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2.4 The space M of the random variables to approximate

We will approximate random variables F ∈ L2 from a space M introduced
below. By (10) we see that this approach is analogous to the Brownian motion
case considered in [7] and [9], where the representation F = EF +

∫
(0,1]

ϕsdBs
was used together with the regularity assumption that (ϕs)s∈[0,1) is a martin-
gale or close to a martingale. This regularity assumption is relevant for the
approach in this paper as well.

Definition 2 The closed subspace M ⊆ L2 consists of all mean zero F ∈ L2

such that there exists a representation

F =
∞∑
n=1

In(fn)

with symmetric fn such that there are h0 ∈ R and symmetric hn ∈ L2(µ⊗n)
for n ≥ 1 with

fn((t1, x1), ..., (tn, xn)) = hn−1(x1, ..., xn−1) for 0 < t1 < · · · < tn < 1.

The orthogonal projection onto M is denoted by Π : L2 →M ⊆ L2.

Let us summarize some facts about the space M:

(a) Representation of Π. For

G =
∞∑
n=0

In(αn) ∈ L2

with symmetric αn ∈ Ln2 one computes the functions hn of the projection
F = Π(G) by

hn−1(x1, ..., xn−1)

= n!
∫ 1

0

∫ tn

0

...

∫ t2

0

∫
R
αn((t1, x1), ..., (tn−1, xn−1), (tn, xn))

×µ(dxn)
µ(R)

dt1 · · · dtn for n ≥ 1. (7)

(b) Integral representation of the elements of M. Given F ∈M with
a representation like in Definition 2 (the functions hn are unique as elements
of L2(µ⊗n)), we define the martingale ϕ = (ϕt)t∈[0,1) by the L2-sum

ϕt := h0 +
∞∑
n=1

(n+ 1)In
(
hn1

⊗n
(0,t]

)
, (8)
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which we will assume to be path-wise càdlàg. It follows that

‖ϕt‖2L2
= h2

0 +
∞∑
n=1

(n+ 1)2n!tn‖hn‖2L2(µ⊗n)

= h2
0 +

1
µ(R)

∞∑
n=1

(n+ 1)2n!tn‖fn+1‖2Ln+1
2

= h2
0 +

1
µ(R)

∞∑
n=1

tn(n+ 1)‖In+1(fn+1)‖2L2

so that

µ(R) sup
t∈[0,1)

‖ϕt‖2L2
+ ‖F‖2L2

=
∞∑
n=0

(n+ 1)‖In(fn)‖2L2
. (9)

Moreover, for t ∈ [0, 1] we get that, a.s.,

Ft := E(F |Ft) =
∫

(0,t]

ϕs−dXs. (10)

In other words, (10) characterizes the elements from M if ϕ is defined by
symmetric (hn)∞n=0 as in (8) with

∑∞
n=0(n+ 1)!‖hn‖2L2(µ⊗n) <∞.

(c) Examples for elements of M.

(c1) One class of examples is taken from Lemma 4 below: Let ΠX : L2 →
I(X) ⊆ L2 be the orthogonal projection onto I(X) defined in (5) and let
f : R→ R be a Borel function with f(X1) ∈ L2, then

ΠX(f(X1)) = Π(f(X1)).

This means the elements of M occur naturally when applying the Galtchouk-
Kunita-Watanabe projection. It should be noted, that in the case that σ = 0
and ν = αδx0 with α > 0 and x0 ∈ R \ {0} we have a chaos decomposition of
the form f(X1) = Ef(X1) +

∑∞
n=1 βnIn(1⊗n(0,1]) with βn ∈ R, so that already

f(X1) ∈M.

(c2) There are also examples of F ∈ M that cannot be obtained as pro-
jections ΠX(f(X1)) = Π(f(X1)) as in (c1). To construct such an example we
will decompose the Lévy process into a sum of two independent Lévy processes
and use only one of them in the integrand:

Example 1 Assume that Xt = N1
t −N2

t , where N i = (N i
t )t∈[0,1] are indepen-

dent Poisson processes with intensity λ > 0. Then

F :=
∫

(0,1]

(N1
t− − λt)dXt ∈M

and there is no Borel function f : R→ R with f(X1) ∈ L2 and

Π(f(X1)) = F a.s.
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Proof For the Lévy measure of X we get ν = λ
(
δ{−1} + δ{1}

)
. Because X1

takes only values in the set of integers we can apply Lemma 5 to a bounded
Borel function f without assuming smoothness to get that

ϕ1 =
1
2

[f(X1 + 1)− f(X1 − 1)] =: ψf (X1)

and

Π(f(X1)) =
∫

(0,1]

ϕt−dXt a.s. with ϕt := E(ψf (X1)|Ft).

For a fixed T ∈ (0, 1) and a bounded f as above we have

‖F −Π(f(X1))‖2L2
= µ(R)

∫
(0,1]

E
[
(N1

t− − λt)− ϕt−
]2
dt

= µ(R)
∫

(0,1]

E
[
(N1

t − λt)− ϕt
]2
dt

≥ µ(R)(1− T )E
[
(N1

T − λT )− ϕT
]2
.

If we can show that

inf
f bounded

E
[
(N1

T − λT )− E(ψf (X1)|FT )
]2
> 0,

then we get the assertion of our example. Because E(ψf (X1)|FT ) is a functional
of XT = N1

T −N2
T it is sufficient to check that

E
[
N1
T − E(N1

T |σ(N1
T −N2

T )
]2
> 0

which follows by the independence of the Poisson processes N1 and N2.

2.5 Real interpolation

Now we recall some facts about the real interpolation method.

Definition 3 For Banach spaces X1 ⊆ X0, where X1 is continuously embed-
ded into X0, we define for u > 0 the K-functional

K(u, x;X0, X1) := inf
x=x0+x1

{‖x0‖X0 + u‖x1‖X1}.

For θ ∈ (0, 1) and q ∈ [1,∞] the real interpolation space (X0, X1)θ,q consists
of all elements x ∈ X0 such that ‖x‖(X0,X1)θ,q <∞ where

‖x‖(X0,X1)θ,q :=


[∫∞

0
[u−θK(u, x;X0, X1)]q duu

] 1
q , q ∈ [1,∞)

supu>0 u
−θK(u, x;X0, X1), q =∞.
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The spaces (X0, X1)θ,q equipped with ‖·‖(X0,X1)θ,q become Banach spaces and
form a lexicographical scale, i.e. for any 0 < θ1 < θ2 < 1 and q1, q2 ∈ [1,∞] it
holds that

X0 ⊇ (X0, X1)θ1,q1 ⊇ (X0, X1)θ2,q2 ⊇ (X0, X1)θ2,min{q1,q2} ⊇ X1.

For more information the reader is referred to [3,4].

2.6 Besov spaces obtained by real interpolation

We recall the construction of Sobolev spaces based on the chaos expansion and
the construction of Besov spaces (or spaces of random variables of fractional
smoothness) based on real interpolation. We introduce two variants of the
Besov spaces, a direct one in Definition 4 and an abstract one in Definition 5.
The purpose of the abstract variant is twofold: firstly, it is needed to transfer
the results from [9] to our setting in the proofs of Theorems 6 and 7, and
secondly, the abstract variant indicates a way for further generalizations.

Definition 4 Let D1,2 be the space of all F =
∑∞
n=0 In(fn) ∈ L2 such that

‖F‖2D1,2
:=

∞∑
n=0

(n+ 1)‖In(fn)‖2L2
<∞.

Moreover,

Bθ2,q :=
{

(L2,D1,2)θ,q : θ ∈ (0, 1), q ∈ [1,∞]
D1,2 : θ = 1, q = 2 .

Definition 5 For a sequence of Banach spaces E = (En)∞n=0 with En 6= {0}
we let `2(E) and d1,2(E) be the Banach spaces of all a = (an)∞n=0 ∈ E such
that

‖a‖`2(E) :=

( ∞∑
n=0

‖an‖2En

) 1
2

and ‖a‖d1,2(E) :=

( ∞∑
n=0

(n+ 1)‖an‖2En

) 1
2

,

respectively, are finite. Moreover, for θ ∈ (0, 1) and q ∈ [1,∞] we let

Bθ2,q(E) :=
{

(`2(E), d1,2(E))θ,q : θ ∈ (0, 1), q ∈ [1,∞]
d1,2(E) : θ = 1, q = 2 .

It can be shown that (cf. [9, Remark A.1])

‖a‖2Bθ2,2(E) ∼c2θ

∞∑
n=0

(n+ 1)θ‖an‖2En .
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To describe the interpolation spaces Bθ2,q(E) we use two types of functions. The
first one is a generating function for (‖an‖2En)∞n=0, i.e. for a = (an)∞n=0 ∈ `2(E)
we let

Ta(t) :=
∞∑
n=0

‖an‖2Ent
n.

The second function will be used to describe our stochastic approximation in
a deterministic way: For a ∈ `2(E) and a deterministic time-net τ = (tk)Nk=0

with 0 = t0 ≤ · · · ≤ tN = 1 we let

A(a, τ) :=
( N∑
k=1

∫ tk

tk−1

(tk − t)(Ta)′′(t)dt
) 1

2

.

For the formulation of the next two theorems which will connect approximation
properties with fractional smoothness special time nets are needed. Given θ ∈
(0, 1] and N ≥ 1, we let τθN be the time-net

tN,θk := 1−
(

1− k

N

) 1
θ

for k = 0, 1, . . . , N (11)

for which one has (see [10, relation (4)])

|tN,θk − t|
(1− t)1−θ

≤
|tN,θk − tN,θk−1|
(1− tN,θk−1)1−θ

≤ 1
θN

for k = 1, ..., N (12)

and t ∈ [tN,θk−1, t
N,θ
k ). For θ = 1 we obtain equidistant time-nets. The following

two theorems are taken from [9]. For the convenience of the reader we comment
about the proofs in Remark 1 below.

Theorem 1 ([9]) For θ ∈ (0, 1), q ∈ [1,∞] and a = (an)∞n=0 ∈ `2(E) one has

‖a‖Bθ2,q(E) ∼c ‖a‖`2(E) +
∥∥∥(N θ

2−
1
qA(a, τ1

N )
)∞
N=1

∥∥∥
`q

where c ∈ [1,∞) depends at most on (θ, q) and the expressions may be infinite.

Theorem 2 ([9]) For θ ∈ (0, 1] and a = (an)∞n=0 ∈ `2(E) the following
assertions are equivalent:

(i) a ∈ Bθ2,2(E).
(ii)

∫ 1

0
(1− t)1−θ T ′′a (t)dt <∞.

(iii) There exists a constant c > 0 such that

A(a, τθN ) ≤ c√
N

for N = 1, 2, . . .
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Remark 1 We fix a = (an)∞n=0 ∈ `2(E) and (θ, q) according to Theorems 1
and 2. Then we let βn := ‖an‖En and define f =

∑∞
n=0 βnhn ∈ L2(R, γ),

where γ is the standard Gaussian measure and (hn)∞n=0 the orthonormal basis
of Hermite polynomials. As before, let

A(β, τ) :=
( N∑
k=1

∫ tk

tk−1

(tk − t)(Tβ)′′(t)dt
) 1

2

with Tβ(t) :=
∞∑
n=0

β2
nt
n.

Omitting the notation (E) in the case E = (R,R, ...), we have ‖a‖`2(E) = ‖β‖`2
and ‖a‖d1,2(E) = ‖β‖d1,2 . Moreover, [9, Theorem 2.2] gives ‖a‖Bθ2,q(E) ∼c(θ,q)
‖β‖Bθ2,q for θ ∈ (0, 1) and q ∈ [1,∞] because of Ta = Tβ . Hence [9, Lemmas
3.9 and 3.10, Theorem 3.5 (X=W)] imply Theorem 1 of this paper. The equiv-
alence of (i) and (iii) of Theorem 2 follows in the same way by [9, Lemmas
3.9 and 3.10, Theorem 3.2 (X=W)]. Finally, the equivalence of (i) and (ii) of
Theorem 2 is a consequence of the proof of [9, Theorem 3.2 (X=W)].

3 Approximation of stochastic integrals

In the sequel we will use

TN := {τ = (tk)Nk=0 : 0 = t0 < · · · < tN = 1} and T :=
∞⋃
N=1

TN

as sets of deterministic time-nets and define |τ | := max1≤k≤N |tk − tk−1|. We
will consider the following approximations of a random variable F ∈ M with
respect to the processes X and S:

Definition 6 For N ≥ 1, Y ∈ {X,S}, F =
∫
(0,1]

ϕs−dXs ∈M, A= (Ak)Nk=1 ⊆
F and τ ∈ TN we let

(i) asim
X (F ; τ) :=

∥∥∥F −∑N
k=1 ϕtk−1(Xtk −Xtk−1)

∥∥∥
L2

,

(ii) asim
S (F ; τ,A) :=

∥∥∥F −∑N
k=1 ϕtk−11Ak(Stk−1

tk
− 1)

∥∥∥
L2

,

(iii) aopt
Y (F ; τ) := inf

∥∥∥F −∑N
k=1 vk−1(Ytk − Ytk−1)

∥∥∥
L2

, where the infimum is

taken over all Ftk−1-measurable vk−1 : Ω → R such that E|vk−1(Ytk −
Ytk−1)|2 <∞.

Remark 2 (i) The definition of asim
S takes into account the additional sets

(Ak)Nk=1 to avoid problems with the case that S vanishes. These extra
sets A in asim

S (F ; τ,A) play different roles in Theorem 3, Theorem 4, and
in Theorems 5, 6 and 7. To recover a more standard form of asim

S assume
that (St)t∈[0,1] and (St−)t∈[0,1] are positive so that we can write

F =
∫

(0,1]

ψu−(Su−dXu) with ψu :=
ϕu
Su
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and obtain that

F −
N∑
k=1

ϕtk−1(Stk−1
tk
− 1) = F −

N∑
k=1

ψtk−1Stk−1(Stk−1
tk
− 1)

= F −
N∑
k=1

ψtk−1(Stk − Stk−1)

which is what one expects.
(ii) In the sequel the crucial assumption will be

Ω = {St 6= 0} for all t ∈ [0, 1].

This can be achieved by the condition ν((−∞,−1]) = 0 which implies
the almost sure positivity of S and we can adjust S on a set of measure
zero; see [13, Theorem I.4.61] and [16, Theorem 19.2].

(iii) Because of the martingale property of (ϕt)t∈[0,1) it is easy to check that

aopt
X (F ; τ) =

∥∥∥∥∥F −
N∑
k=1

ϕtk−1(Xtk −Xtk−1)

∥∥∥∥∥
L2

so that asim
X = aopt

X .

The theorem below gives a description of the simple approximation by a
function HY (t) that describes, in some sense, the curvature of F ∈ M with
respect to Y .

Theorem 3 Let F ∈M,

H2
Y (t) := µ(R)

∞∑
n=1

nn!tn−1‖AYn ‖2L2(µ⊗n)

with

AYn (x1, ..., xn)

:=
{

(n+ 1)hn(x1, ..., xn) : Y = X
(n+ 1)hn(x1, ..., xn)− hn−1(x1, ..., xn−1) : Y = S

.

Then, for τ ∈ T , one has

aopt
X (F ; τ) =

(
N∑
k=1

∫ tk

tk−1

(tk − t)H2
X(t)dt

) 1
2

,

asim
S (F ; τ,ΩN ) ∼c

(
N∑
k=1

∫ tk

tk−1

(tk − t)H2
S(t)dt

) 1
2

,

where in the last equivalence |τ | < 1/µ(R) and c := (1 −
√
µ(R)|τ |)−1 and

ΩN = (Ω, . . . , Ω).
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Proof Case Y = X: We get that

E|ϕt − ϕtk−1 |2 =
∞∑
n=1

(tn − tnk−1)(n+ 1)2n!‖hn‖2L2(µ⊗n)

=
∞∑
n=1

(n+ 1)2nn!
∫ t

tk−1

un−1du‖hn‖2L2(µ⊗n)

=
1

µ(R)

∫ t

tk−1

H2
X(u)du

which implies for asim
X (F ; τ) = aopt

X (F ; τ) =: aX(F ; τ) that

|aX(F ; τ)|2 = µ(R)
N∑
k=1

∫ tk

tk−1

E|ϕt − ϕtk−1 |2dt

=
N∑
k=1

∫ tk

tk−1

(tk − u)H2
X(u)du.

Case Y = S: Here we get that

asim
S (F ; τ,ΩN )

=

(
µ(R)

N∑
k=1

∫ tk

tk−1

E
∣∣∣ϕt − ϕtk−1S

tk−1
t−

∣∣∣2 dt)
1
2

=
(
µ(R)

N∑
k=1

∫ tk

tk−1

E
∣∣∣∣
[
ϕt − ϕtk−1 −

∫
(tk−1,t]

ϕu−dXu

]

+

[∫
(tk−1,t]

ϕu−dXu − ϕtk−1(Stk−1
t− − 1)

] ∣∣∣∣2dt) 1
2

=
(
µ(R)

N∑
k=1

∫ tk

tk−1

E

[
ϕt − ϕtk−1 −

∫
(tk−1,t]

ϕu−dXu

]2

dt

) 1
2

±
(
µ(R)

N∑
k=1

∫ tk

tk−1

E

[∫
(tk−1,t]

ϕu−dXu − ϕtk−1(Stk−1
t− − 1)

]2

dt

) 1
2

where the notation ± was introduced in (6) and(
µ(R)

N∑
k=1

∫ tk

tk−1

E

[∫
(tk−1,t]

ϕu−dXu − ϕtk−1(Stk−1
t− − 1)

]2

dt

) 1
2

≤
√
|τ |
(
µ(R)

N∑
k=1

E

[∫
(tk−1,tk]

ϕu−dXu − ϕtk−1(Stk−1
tk
− 1)

]2) 1
2

=
√
|τ |µ(R)asim

S (F ; τ,ΩN ).
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Here we used Stk−1
t− = S

tk−1
t a.s. for t ∈ (tk−1, tk] and the martingale property

of
∫
(tk−1,t]

ϕu−dXu − ϕtk−1(Stk−1
t − 1). Finally,

(
µ(R)

N∑
k=1

∫ tk

tk−1

E

[
ϕt − ϕtk−1 −

∫
(tk−1,t]

ϕu−dXu

]2

dt

) 1
2

=
(
µ(R)

N∑
k=1

∫ tk

tk−1

E
[
(ϕt − ϕtk−1)− (Ft − Ftk−1)

]2
dt

) 1
2

=
( N∑
k=1

∫ tk

tk−1

∫ t

tk−1

H2
S(u)dudt

) 1
2

.

�

The next theorem states that the simple and optimal approximation are equiv-
alent whenever Ak := {Stk−1 6= 0} is taken.

Theorem 4 For F ∈M and τ ∈ T one has that

|asim
S (F ; τ,A)− aopt

S (F ; τ)| ≤ c
[
|τ |‖F‖L2 +

√
|τ |aopt

X (F ; τ)
]

where c > 0 depends on µ only and Ak := {Stk−1 6= 0}.

Proof (a) In the first step we determine an optimal sequence of (vk)N−1
k=1 . For

0 ≤ a < b ≤ 1 we get from Lemma 1 that

inf

{∥∥∥∥∥v(Sb − Sa)−
∫

(a,b]

ϕu−dXu

∥∥∥∥∥
L2

:
v is Fa-measurable
E|v(Sb − Sa)|2 <∞

}

= inf

{∥∥∥∥∥vSa(Sab − 1)−
∫

(a,b]

ϕu−dXu

∥∥∥∥∥
L2

:
v is Fa-measurable

E|vSa|2 <∞

}

= inf

{∥∥∥∥∥v1{Sa 6=0}(Sab − 1)−
∫

(a,b]

ϕu−dXu

∥∥∥∥∥
L2

:
v is Fa-measurable

E|v|2 <∞

}
.

The infimum is obtained with

v =

E
(∫ b

a
ϕt−S

a
t−dt|Fa

)
E
(∫ b

a
(Sat−)2dt|Fa

) =
E
(∫ b

a
ϕtS

a
t dt|Fa

)
∫ b
a

E(Sat )2dt
=:

E
(∫ b

a
ϕtS

a
t dt|Fa

)
κ(a, b)

and

v :=

{
1

Saκ(a,b)
E
(∫ b

a
ϕtS

a
t dt|Fa

)
: Sa 6= 0

0 : Sa = 0

where we used that

ϕt− = ϕt a.s. and Sat− = Sat a.s. on (a, b]. (13)
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(b) Now it holds that

|asim
S (F ; τ,A)− aopt

S (F ; τ)|

=
∣∣∣∣
∥∥∥∥∥F − EF −

N∑
k=1

ϕtk−11Ak(Stk−1
tk
− 1)

∥∥∥∥∥
L2

−

∥∥∥∥∥F − EF −
N∑
k=1

vk−1(Stk − Stk−1)

∥∥∥∥∥
L2

∣∣∣∣
≤

∥∥∥∥∥
N∑
k=1

[ϕtk−1 − vk−1Stk−1 ](Stk−1
tk
− 1)1Ak

∥∥∥∥∥
L2

=

(
N∑
k=1

‖[ϕtk−1 − vk−1Stk−1 ]1Ak‖2L2
[eµ(R)(tk−tk−1) − 1]

) 1
2

.

Moreover (using again (13)) we have

‖[ϕtk−1 − vk−1Stk−1 ]1Ak‖L2

≤ ‖ϕtk−1

(
1− tk − tk−1

κ(tk−1, tk)

)
1Ak‖L2

+

∥∥∥∥∥ 1Ak
κ(tk−1, tk)

E

(∫ tk

tk−1

(ϕt − ϕtk−1)(Stk−1
t − 1)dt|Ftk−1

)∥∥∥∥∥
L2

.

The first term on the right-hand side can be bounded from above by µ(R)(tk−
tk−1)‖ϕtk−11Ak‖L2 . For the second term we let a = tk−1 < tk = b and λt =
1Ak(ϕt − ϕtk−1) and obtain

E

(∫ b

a

λt(Sat − 1)dt
∣∣∣Fa)

≤

(
E

(∫ b

a

|λt|2dt
∣∣∣Fa))

1
2
(

E

(∫ b

a

(Sat − 1)2dt
∣∣∣Fa))

1
2

=

(
E

(∫ b

a

|λt|2dt
∣∣∣Fa))

1
2
(∫ b

a

‖Sat − 1‖22dt

) 1
2

≤

(
E

(∫ b

a

|λt|2dt
∣∣∣Fa))

1
2
√
µ(R)

2
κ(a, b)

where the last inequality follows from∫ b

a

‖Sat − 1‖22dt =
∫ b

a

µ(R)κ(a, t)dt
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≤
∫ b

a

µ(R)κ(a, t)
(
d

dt
κ(a, t)

)
dt

=
µ(R)

2
κ(a, b)2.

Hence

‖[ϕtk−1 − vk−1Stk−1 ]1Ak‖L2

≤ µ(R)(tk − tk−1)‖ϕtk−11Ak‖L2

+

√
µ(R)

2

(∫ tk

tk−1

‖1Ak(ϕt − ϕtk−1)‖2L2
dt

) 1
2

.

Using eµ(R)(tk−tk−1) − 1 ≤ µ(R)eµ(R)(tk − tk−1) we conclude with

|asim
S (F ; τ,A)− aopt

S (F ; τ)|

≤

(
N∑
k=1

[
µ(R)(tk − tk−1)‖ϕtk−11Ak‖L2

]2
µ(R)eµ(R)(tk − tk−1)

) 1
2

+

(
N∑
k=1

[
µ(R)

2

∫ tk

tk−1

‖1Ak(ϕt − ϕtk−1)‖2L2
dt

]
µ(R)eµ(R)(tk − tk−1)

) 1
2

≤ |τ |µ(R)eµ(R)/2‖F‖L2 +
√
|τ |
√
µ(R)

2
eµ(R)/2aopt

X (F ; τ).

�

Now we show that 1/
√
N is the lower bound for our approximation if

time-nets of cardinality N + 1 are used.

Theorem 5 Let F ∈ M and Y ∈ {X,S}, where in the case X = S we
assume that Ω = {St 6= 0} for all t ∈ [0, 1]. Unless there are a, b ∈ R such that
F = a+ bY1 a.s., one has that

lim inf
N→∞

√
N

[
inf

τN∈TN
aopt
Y (F ; τN )

]
> 0.

Proof Case Y = X: We have HX(t) = 0 for some t ∈ (0, 1) if and only if hn = 0
µ⊗n a.e. for all n = 1, 2, ... which implies that F = I1(f1) = I1(h0) = h0X1.
This means that our assumption on F implies that HX(t) > 0 for all t ∈ (0, 1).
Consequently, Theorem 3 gives for any fixed s ∈ (0, 1) that

N
∣∣aopt
X (F ; τN )

∣∣2 = N

N∑
k=1

∫ tk

tk−1

(tk − t)H2
X(t)dt
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≥ N

∫ 1

s

[ N∑
k=1

(tk − t)1[tk−1,tk)(t)H
2
X(s)

]
dt

=
1
2
H2
X(s)N

N∑
k=1

(tk ∨ s− tk−1 ∨ s)2

≥ 1
2
H2
X(s)(1− s)2

which proves the statement for Y = X.
Case Y = S: Similarly as in the previous case our assumption on F implies

that HS(t) > 0 for all t ∈ (0, 1). In fact, assuming that HS(t) = 0 for some
t ∈ (0, 1) implies

(n+ 1)hn(x1, ..., xn) = hn−1(x1, ..., xn−1) µ⊗n-a.e.

for all n = 1, 2, .... By induction we derive that

hn =
h0

(n+ 1)!
µ⊗n-a.e. for n ≥ 0

so that fn = h0/n! m⊗n-a.e. for n ≥ 1. This would give that F = h0(S1 − 1)
a.s.

Hence applying Theorem 3 as in the case Y = X implies that there is an
ε > 0 such that

√
Nasim

S (F ; τN , ΩN ) ≥ ε > 0 for all τN ∈ TN with |τN | ≤
1

2µ(R)
.

For an arbitrary N ≥ 1 and τN ∈ TN Theorem 4 gives

aopt
S (F ; τN ) ≥ asim

S (F ; τN , ΩN )− c(4)
[
|τN |‖F‖L2 +

√
|τN |aopt

X (F ; τN )
]
.

Letting τ̃N := τN ∪ {k/N : k = 1, ..., N − 1} ∈
⋃2N−1
k=N Tk, N ≥ 2µ(R) ∨ 2

implies |τ̃N | ≤ 1/N ≤ 1/(2µ(R)) and
√
Naopt

S (F ; τN )

≥
√
Naopt

S (F ; τ̃N )

≥
√
N

ε√
2N
− c(4)

√
N
[
|τ̃N |‖F‖L2 +

√
|τ̃N |aopt

X (F ; τ̃N )
]

≥ ε√
2
− c(4)

[
‖F‖L2√

N
+ aopt

X (F ; (k/N)Nk=0)
]
.

The convergence aopt
X (F ; (k/N)Nk=0) → 0 as N → ∞ follows from Theorem 3

because of
∫ 1

0
(1−t)H2

X(t)dt <∞ which can bee seen by considering the trivial
time-net {0, 1}. Consequently,

lim inf
N→∞

√
N

[
inf

τN∈TN
aopt
S (F ; τN )

]
≥ ε√

2
.

�
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Now we relate the approximation properties to the Besov regularity. We
recall that the nets τθN were introduced in (11) and that for θ = 1 we obtain
the equidistant nets.

Theorem 6 For θ ∈ (0, 1), q ∈ [1,∞], Y ∈ {X,S} and F ∈ M the following
assertions are equivalent:

(i) F ∈ Bθ2,q.
(ii)

∥∥∥(N
θ
2−

1
q aopt
X (F ; τ1

N ))∞N=1

∥∥∥
`q
<∞.

If Ω = {St 6= 0} for all t ∈ [0, 1], then (i) and (ii) are equivalent to:

(iii)
∥∥∥(N

θ
2−

1
q aopt
S (F ; τ1

N ))∞N=1

∥∥∥
`q
<∞.

(iv)
∥∥∥(N

θ
2−

1
q asim
S (F ; τ1

N , Ω
N ))∞N=1

∥∥∥
`q
<∞.

For the proof the following lemma is needed.

Lemma 2 For F ∈M and t ∈ [0, 1) one has that

|HS(t)−HX(t)| ≤ µ(R)‖ϕt‖L2 .

Moreover,∣∣∣∣∣
(

N∑
k=1

∫ tk

tk−1

(tk − t)H2
S(t)dt

) 1
2

−

(
N∑
k=1

∫ tk

tk−1

(tk − t)H2
X(t)dt

) 1
2
∣∣∣∣∣

≤
√
µ(R)|τ | ‖F‖L2 .

Proof From the definition we get that

|HS(t)−HX(t)| ≤

(
µ(R)

∞∑
n=1

nn!tn−1‖hn−1‖2L2(µ⊗n)

) 1
2

=

(
µ(R)2

∞∑
n=1

(n− 1)!tn−1‖nhn−1‖2L2(µ⊗(n−1))

) 1
2

= µ(R)‖ϕt‖L2 .

Finally,∣∣∣∣∣∣
(

N∑
k=1

∫ tk

tk−1

(tk − t)H2
S(t)dt

) 1
2

−

(
N∑
k=1

∫ tk

tk−1

(tk − t)H2
X(t)dt

) 1
2
∣∣∣∣∣∣

≤

(
N∑
k=1

∫ tk

tk−1

(tk − t)|HS(t)−HX(t)|2dt

) 1
2
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≤ |τ | 12 |µ(R)| 12
(∫ 1

0

‖ϕt‖2L2
dt µ(R)

) 1
2

= |τ | 12 |µ(R)| 12 ‖F‖L2 .

�

Proof (of Theorem 6) (i) ⇐⇒ (ii) follows from Theorem 1 and Theorem 3
because

H2
X(t) =

d2

dt2

( ∞∑
n=1

‖In(fn)‖2L2
tn

)
if F =

∞∑
n=1

In(fn). (14)

(iii) ⇐⇒ (iv) follows from Theorem 4 and (ii) ⇐⇒ (iv) from Theorem 3 and
Lemma 2. �

Theorem 7 (a) For F ∈M and θ ∈ (0, 1] the following assertions are equiv-
alent:

(i) F ∈ Bθ2,2.
(ii) supN N

1
2 aopt
X (F ; τθN ) <∞.

If Ω = {St 6= 0} for all t ∈ [0, 1], then (i) and (ii) are equivalent to:
(iii) supN N

1
2 aopt
S (F ; τθN ) <∞.

(iv) supN N
1
2 asim
S (F ; τθN , Ω

N ) <∞.
(b) If the assertions (i) - (ii) hold, then we have

lim
N→∞

N
∣∣aopt
X (F ; τθN )

∣∣2 =
1
2θ

∫ 1

0

(1− t)1−θH2
X(t)dt

and if in addition Ω = {St 6= 0} for all t ∈ [0, 1], then

lim
N→∞

N
∣∣aopt
S (F ; τθN )

∣∣2 = lim
N→∞

N
∣∣asim
S (F ; τθN , Ω

N )
∣∣2

=
1
2θ

∫ 1

0

(1− t)1−θH2
S(t)dt.

Proof Part (a): (i) ⇐⇒ (ii) follows from Theorems 2 and 3 because of (14).
(ii) ⇐⇒ (iv) From [9, Lemma 3.8] and Theorem 3 it follows that the

desired equivalence is equivalent to∫ 1

0

(1− t)1−θH2
X(t)dt <∞ if and only if

∫ 1

0

(1− t)1−θH2
S(t)dt <∞. (15)

In view of Lemma 2 it is therefore sufficient to check
∫ 1

0
(1−t)1−θ‖ϕt‖2L2

dt <∞
which follows from

∫ 1

0
‖ϕt‖2L2

µ(R)dt = ‖F − EF‖2L2
<∞.
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(iv) ⇐⇒ (iii) follows from Theorem 4, aopt
X (F ; τ) ≤ ‖F‖L2 and |τθN | ≤

1/(θN) by (12).

Part (b): Let α(s) := 1−(1− s)
1
θ and H : [0, 1)→ [0,∞) be non-decreasing

and continuous such that
∫ 1

0
(1 − t)1−θH2(t)dt < ∞. For any δ ∈ (0, 1) and

η := α−1(δ) we observe that

1
2θ

∫ δ

0

(1− t)1−θH2(t)dt =
1
2

∫ δ

0

α′(α−1(t))H2(t)dt

=
1
2

∫ η

0

α′(s)
[
H2(α(s))α′(s)

]
ds.

Because

α′(s) = lim
N→∞

N∑
k=1

N

[
α

(
k

N
∧ η
)
− α

(
k − 1
N
∧ η
)]

1[ k−1
N , kN )(s)

for s ∈ [0, η) and all terms on the right-hand side are bounded by the Lipschitz
constant of α on [0, η], dominated convergence implies that

1
2θ

∫ δ

0

(1− t)1−θH2(t)dt

= lim
N→∞

1
2

N∑
k=1

∫ k
N ∧η

k−1
N ∧η

N

[
α

(
k

N
∧ η
)
− α

(
k − 1
N
∧ η
)]

[
H2(α(s))α′(s)

]
ds

= lim
N→∞

N

N∑
k=1

H2(tN,θk−1)
(tN,θk ∧ δ − tN,θk−1 ∧ δ)2

2

= lim
N→∞

N

N∑
k=1

∫ tN,θk ∧δ

tN,θk−1∧δ
(tN,θk ∧ δ − t)H2(tN,θk−1)dt

where we use that H is uniformly continuous on [0, δ]. From this we deduce
that

lim inf
N→∞

N

N∑
k=1

∫ tN,θk

tN,θk−1

(tN,θk − t)H2(t)dt

≥ lim inf
N→∞

N

N∑
k=1

∫ tN,θk ∧δ

tN,θk−1∧δ
(tN,θk ∧ δ − t)H2(tN,θk−1)dt

=
1
2θ

∫ δ

0

(1− t)1−θH2(t)dt
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for all δ ∈ (0, 1) and therefore

lim inf
N→∞

N

N∑
k=1

∫ tN,θk

tN,θk−1

(tN,θk − t)H2(t)dt ≥ 1
2θ

∫ 1

0

(1− t)1−θH2(t)dt.

On the other hand, (12) implies∫ 1

δ

N

N∑
k=1

(
(tN,θk − t)1[

tN,θk−1,t
N,θ
k

)(t))H2(t)dt ≤ 1
θ

∫ 1

δ

(1− t)1−θH2(t)dt

for δ ∈ (0, 1). Choose δ such that the right hand side is less than ε > 0. We
conclude (also using the previous computations of part (b) and the uniform
continuity of H on [0, δ])

lim sup
N→∞

N

N∑
k=1

∫ tN,θk

tN,θk−1

(tN,θk − t)H2(t)dt

≤ lim sup
N→∞

N

N∑
k=1

∫ tN,θk ∧δ

tN,θk−1∧δ
(tN,θk − t)H2(t)dt+ ε

= lim
N→∞

N

N∑
k=1

∫ tN,θk ∧δ

tN,θk−1∧δ
(tN,θk ∧ δ − t)H2(t)dt+ ε

=
1
2θ

∫ δ

0

(1− t)1−θH2(t)dt+ ε

≤ 1
2θ

∫ 1

0

(1− t)1−θH2(t)dt+ ε

and

lim sup
N→∞

N

N∑
k=1

∫ tN,θk

tN,θk−1

(tN,θk − t)H2(t)dt ≤ 1
2θ

∫ 1

0

(1− t)1−θH2(t)dt.

Consequently,

lim
N→∞

N

N∑
k=1

∫ tN,θk

tN,θk−1

(tN,θk − t)H2(t)dt =
1
2θ

∫ 1

0

(1− t)1−θH2(t)dt.

It follows from (15) that for H ∈ {HX , HS} our assumptions on H are satisfied.
Hence Theorem 3 implies the limit expressions for aopt

X and asim
S (·; ·, ΩN ) (note

that c → 1 for |τ | → 0 in Theorem 3). The relation for aopt
S follows from the

one for asim
S (·; ·, ΩN ), Theorem 4 and the fact that

lim
N→∞

√
N
√
|τθN |a

opt
X (F ; τθN ) ≤ lim sup

N→∞

√
1
θ
aopt
X (F ; τθN ) = 0

where we have used (12) and, as in the proof of Theorem 5, the relation∫ 1

0
(1− t)H2

X(t)dt <∞ together with Theorem 3. �



22 Christel Geiss et al.

Using the results from [15, Theorem 2.4] one can derive from Theorem 3
for example the following assertion.

Corollary 1 For F ∈M one has the following equivalences:

(i) There is a constant c > 0 such that

inf
τN∈TN

aopt
X (F ; τN ) ≤ c√

N
for N = 1, 2, . . . iff

∫ 1

0

HX(t)dt <∞.

(ii) There is a constant c > 0 such that

inf
τN∈TN

asim
S (F ; τN , ΩN ) ≤ c√

N
for N = 1, 2, . . . iff

∫ 1

0

HS(t)dt <∞.

4 Examples

4.1 Preparations

The following two lemmas provide information about the orthogonal projection
Π : L2 →M ⊆ L2.

Lemma 3 Given G ∈ L2, θ ∈ (0, 1) and q ∈ [1,∞], one has that

(i) G ∈ D1,2 implies Π(G) ∈ D1,2,
(ii) G ∈ Bθ2,q implies Π(G) ∈ Bθ2,q.

Proof The lemma follows from the fact that for

G =
∞∑
n=0

In(αn)

with symmetric αn ∈ Ln2 the function hn from Definition 2 computes as in (7)
so that ‖fn‖Ln2 ≤ ‖αn‖Ln2 where fn is defined as in Definition 2. Hence, the
statement can be derived (for example) from Theorem 1 using the monotonic-
ity of A with respect to ‖an‖En and the definition of D1,2. �

Lemma 4 For a Borel function f : R → R with f(X1) ∈ L2 there are sym-
metric gn ∈ L2(µ⊗n) such that

f(X1) = Ef(X1) +
∞∑
n=1

In(gn1⊗n(0,1]). (16)

Moreover, it holds that Π(f(X1)) =
∑∞
n=1 In(fn) with symmetric fn satisfying

fn((t1, x1), ..., (tn, xn)) = hn−1(x1, ..., xn−1)

:=
∫

R
gn(x1, ..., xn−1, x)

µ(dx)
µ(R)

(17)

on 0 < t1 < · · · < tn < 1 and Π(f(X1)) is the orthogonal projection of f(X1)
onto I(X) defined in (5).
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The representation (16) is proved in [1] and [2] and is based on invariance
properties of f(X1) that transfer to the chaos representation. One could also
use [6, Section 6].

Lemma 5 Let f ∈ C∞b (R) and f(X1) =
∑∞
n=1 In(gn1⊗n(0,1]) ∈ D1,2 with sym-

metric gn ∈ L2(µ⊗n). Then the martingale (ϕt)t∈[0,1) given by (8) and (17)
has a closure ϕ1, i.e. E(ϕ1|Ft) = ϕt a.s., with

ϕ1 =
∫

R

[
1{x 6=0}

f(X1 + x)− f(X1)
x

+ 1{x=0}f
′(X1)

]
µ(dx)
µ(R)

a.s.

Proof From [6, Proposition 5.1 and its proof] it is known that

1{x 6=0}
f(X1 + x)− f(X1)

x
+ 1{x=0}f

′(X1)

=
∞∑
n=1

nIn−1(gn(·, x)1⊗(n−1)
(0,1] ) µ⊗ P a.e. (18)

Consequently, (17) implies that, a.s.,∫
R

[
1{x 6=0}

f(X1 + x)− f(X1)
x

+ 1{x=0}f
′(X1)

]
µ(dx)
µ(R)

=
∫

R

[ ∞∑
n=1

nIn−1

(
gn(·, x)1⊗(n−1)

(0,1]

)] µ(dx)
µ(R)

=
∞∑
n=1

nIn−1

(∫
R
gn(·, x)

µ(dx)
µ(R)

1
⊗(n−1)
(0,1]

)

=
∞∑
n=1

nIn−1

(
hn−11

⊗(n−1)
(0,1]

)
=: ϕ1

where the second equality follows by a standard Fubini argument. �

Definition 7 For δ > 0 we let

ψ(δ) := sup
λ∈R

P(|X1 − λ| ≤ δ).

Example 2 The small ball estimate

ψ(δ) ≤ cδ (19)

can be deduced if X1 has a bounded density. As an example we use tempered
α-stable processes with α ∈ (0, 2), given by the Lévy measure

να(dx) :=
d

|x|1+α
(1 + |x|)−m1{x 6=0}dx

with d > 0 and m ∈ (2− α,∞) being fixed parameters. Then [18, Theorem 5]
implies that X1 has a bounded density.
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For K ∈ R and ε ∈ (0, 1] we let fK,ε ∈ C∞b (R) with fK,ε(x) = 0 if x ≤ K,
fK,ε(x) = 1 if x ≥ K+ε, 0 ≤ fK,ε(x) ≤ 1 and 0 ≤ f ′K,ε(x) ≤ 2/ε for all x ∈ R.

Lemma 6 For K ∈ R and ε > 0 we have that∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx)

≤ 4
ψ(2ε)
ε2

∫
0<|x|≤ε

x2ν(dx) +
∫
ε<|x|<∞

ψ(|x|)ν(dx).

Proof We get that∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx)

= E
∫

0<|x|≤ε

∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)
x

∣∣∣∣2 µ(dx)

+E
∫
ε<|x|<∞

∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)
x

∣∣∣∣2 µ(dx)

≤ 4
ε2

P(X1 ∈ [K − ε,K + 2ε])
∫

0<|x|≤ε
x2ν(dx)

+
∫
ε<x<∞

P(X1 ≤ K + ε,X1 + x ≥ K)ν(dx)

+
∫
−∞<x<−ε

P(X1 + x ≤ K + ε,X1 ≥ K)ν(dx)

≤ 4
ψ(2ε)
ε2

∫
0<|x|≤ε

x2ν(dx)

+
∫
ε<x<∞

P(|X1 −K| ≤ x)ν(dx)

+
∫
−∞<x<−ε

P(K ≤ X1 ≤ K − 2x)ν(dx)

≤ 4
ψ(2ε)
ε2

∫
0<|x|≤ε

x2ν(dx) +
∫
ε<|x|<∞

ψ(|x|)ν(dx).

�

Lemma 7 For K ∈ R and ε > 0 the following assertions are true:

(i)

∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx) ≤ ν(R)
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(ii) If ψ(δ) ≤ cδ, then∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx)

≤ 9cmin
{

1
ε

∫
R
x2ν(dx),

∫
R
|x|ν(dx)

}
.

Proof (i) Using µ(dx) = x2ν(dx) on R \ {0} one has that∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx) ≤ ν(R).

(ii) If ψ(δ) ≤ cδ, then we can bound the right-hand side in Lemma 6 by

4
ψ(2ε)
ε2

∫
0<|x|≤ε

x2dν(x) +
∫
ε<|x|<∞

ψ(|x|)ν(dx)

≤ 8c
ε

∫
R
x2dν(x) + c

∫
ε<|x|<∞

|x|ν(dx)

≤ 8c
ε

∫
R
x2ν(dx) +

c

ε

∫
ε<|x|<∞

x2ν(dx)

≤ 9c
ε

∫
R
x2ν(dx).

Moreover,

4
ψ(2ε)
ε2

∫
0<|x|≤ε

x2ν(dx) +
∫
ε<|x|<∞

ψ(|x|)ν(dx)

≤ 8c
∫

0<|x|≤ε
|x|ν(dx) + c

∫
ε<|x|<∞

|x|ν(dx)

≤ 8c
∫

R
|x|ν(dx).

�

Lemma 8 Let f(x) = χ[K,∞)(x) for a K ∈ R. Assume σ = 0,
∫

R |x|
3
2 ν(dx) <

∞ and assume that there is a c > 0 such that ψ(δ) ≤ cδ for all δ > 0. Then
one has that

E

∣∣∣∣∣
∫

R\{0}

∣∣∣∣f(X1 + x)− f(X1)
x

∣∣∣∣µ(dx)

∣∣∣∣∣
2

≤ c

2

(∫
R
|x| 32 ν(dx)

)2

.

Proof For dν0(x) := |x| 32 ν(dx) we get that

E

∣∣∣∣∣
∫

R\{0}

∣∣∣∣f(X1 + x)− f(X1)
x

∣∣∣∣µ(dx)

∣∣∣∣∣
2
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≤ E
∣∣∣∣∫

R
|f(X1 + x)− f(X1)||x|− 1

2 ν0(dx)
∣∣∣∣2

≤ ν0(R)E
∫

R
|f(X1 + x)− f(X1)|2|x|−1ν0(dx)

≤ ν0(R)
∫

R
ψ

(
|x|
2

)
|x|−1ν0(dx)

≤ c

2
ν0(R)2.

�

4.2 Examples

Throughout the whole subsection we fix a real number K and let

f(x) := 1(K,∞)(x).

(a) Without projection on M: We will obtain the (fractional) smoothness of
1(K,∞)(X1) in dependence of distributional properties of X. Note that Lemma
3 ensures that Π(1(K,∞)(X1)) has at least the (fractional) smoothness of
1(K,∞)(X1). Our standing assumption, as mentioned before, is

∫
R x

2ν(dx) <
∞. The case C1 below confirms that for a compound Poisson process X we
have 1(K,∞)(X1) ∈ D1,2.

σ ψ additional assumption on ν Smoothness

C1 σ = 0 arbitrary
∫
|x|≤1

ν(dx) <∞ D1,2

C2 σ = 0 ψ(δ) ≤ cδ
∫
|x|≤1

|x|ν(dx) <∞ D1,2

C3 arbitrary ψ(δ) ≤ cδ B
1
2
2,∞

To check this table assume that the chaos-decomposition of fK,ε(X1) is
described by symmetric gK,εn ∈ L2(µ⊗n). From (18) we derive in the case
σ = 0 that

∞∑
n=1

nn!‖gK,εn ‖2L2(µ⊗n) =
∞∑
n=1

n2

∫
R

(n− 1)!‖gK,εn (·, x)‖2L2(µ⊗(n−1))µ(dx)

=
∞∑
n=1

n2E
∫

R
In−1(gK,εn (·, x)1⊗(n−1)

(0,1] )2µ(dx)

=
∫

R
E

∣∣∣∣∣
∞∑
n=1

nIn−1(gK,εn (·, x)1⊗(n−1)
(0,1] )

∣∣∣∣∣
2

µ(dx)

=
∫

R\{0}
E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx)
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so that

‖fK,ε(X1)‖2D1,2
≤ 1 +

∫
R\{0}

E
∣∣∣∣fK,ε(X1 + x)− fK,ε(X1)

x

∣∣∣∣2 µ(dx).

Cases C1 and C2: Exploiting Lemma 7 gives that

sup
m=1,2,...

‖fK,1/m(X1)‖D1,2 <∞.

Moreover ‖fK,1/m(X1) − χ(K,∞)(X1)‖L2 →m 0 by dominated convergence so
that C1 and C2 follow by a standard argument.

Case C3: As before we get from (18) that

‖fK,ε(X1)‖2D1,2

≤1 +
∫

R
E
∣∣∣∣1{x6=0}

fK,ε(X1 + x)− fK,ε(X1)
x

+ 1{x=0}f
′
K,ε(X1)

∣∣∣∣2µ(dx).

Exploiting Lemma 7 and the property 0 ≤ f ′K,ε(x) ≤ 2/ε we continue with

‖fK,ε(X1)‖2D1,2
≤ 1 +

9c
ε

∫
R
x2dν(x) + σ2 4

ε2
ψ
(ε

2

)
≤ 1 +

9c
ε

∫
R
x2dν(x) + σ2 2c

ε
.

On the other hand,

‖χ(K,∞)(X1)− fK,ε(X1)‖L2 ≤
√
ψ
(ε

2

)
≤
√
cε

2
.

Estimating the K-functional K(u,1(K,∞)(X1);L2,D1,2) by the help of the

decomposition 1(K,∞)(X1) =
[
1(K,∞)(X1) − fK,ε(X1)

]
+ fK,ε(X1) and opti-

mizing over ε > 0 gives χ(K,∞)(X1) ∈ B
1
2
2,∞.

(b) After projection on M: Here we have the following

Proposition 1 Assume that σ = 0, 0 <
∫

R |x|
3
2 ν(dx) < ∞ and that ψ(δ) ≤

cδ. Then one has for all K ∈ R that

Π(1(K,∞)(X1)) ∈ D1,2.

Proof By the same reasoning as in the cases C1 and C2 it is sufficient to show
that

sup
m=1,2,...

‖Π(fK,1/m(X1))‖D1,2 <∞.

By (9) and Lemma 5 it suffices to check that

sup
m=1,2,...

E

∣∣∣∣∣
∫

R\{0}

[
fK, 1

m
(X1 + x)− fK, 1

m
(X1)

x

]
dµ(x)

∣∣∣∣∣
2

<∞.
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But this estimate follows from Lemma 8 and the representation

fK,ε(x) =
∫ x

−∞
f ′K,ε(y)dy =

∫
R
1[y,∞)(x)f ′K,ε(y)dy

and
∫

R f
′
K,ε(y)dy = 1. �

Example 3 An example for Proposition 1 is obtained from Example 2. Con-
sidering

να(dx) =
d

|x|1+α
(1 + |x|)−m1{x 6=0}dx

for d > 0, α ∈
(
0, 3

2

)
, m ∈ (2−α,∞) gives ψ(δ) ≤ cδ and 0 <

∫
R |x|

3
2 dνα(x) <

∞, where α turns out to be the Blumenthal-Getoor index. Using the results
of [14, Example 3.1]one can also show that 1(K,∞)(X1) 6∈ D1,2 for α ≥ 1 so
that the projection Π improves the smoothness of 1(K,∞)(X1) for α ∈

[
1, 3

2

)
.

Remark 3 Using a Fourier transform approach Brodén and Tankov [5] com-
pute the discretization error under the historical measure for the delta hedging
as well as for a strategy which is optimal under a given equivalent martingale
measure. Using the equivalences of Theorem 6 (i) ⇐⇒ (iv) and Theorem 7
(i) ⇐⇒ (iv) one can also conclude about the fractional smoothness of the
projection of the considered digital option from the computed convergence
rate for equidistant time nets.
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120. MYLLYMÄKI, MARI, Statistical models and inference for spatial point patterns with
intensity-dependent marks. (115 pp.) 2009

121. AVIKAINEN, RAINER, On generalized bounded variation and approximation of SDEs. (18 pp.)
2009
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131. SEPPÄLÄ, HEIKKI, Interpolation spaces with parameter functions and L2-approximations of
stochastic integrals. (18 pp.) 2011

132. TUHOLA-KUJANPÄÄ, ANNA, On superharmonic functions and applications to Riccati type
equations. (17 pp.) 2012

133. JIANG, RENJIN, Optimal regularity of solutions to Poisson equations on metric measure spaces
and an application. (13 pp.) 2012
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